JPH07233438A - High tensile strength steel and its production - Google Patents

High tensile strength steel and its production

Info

Publication number
JPH07233438A
JPH07233438A JP32625694A JP32625694A JPH07233438A JP H07233438 A JPH07233438 A JP H07233438A JP 32625694 A JP32625694 A JP 32625694A JP 32625694 A JP32625694 A JP 32625694A JP H07233438 A JPH07233438 A JP H07233438A
Authority
JP
Japan
Prior art keywords
less
ceq
steel
weight
value defined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32625694A
Other languages
Japanese (ja)
Inventor
Masayuki Hashimoto
正幸 橋本
Kazuhide Takahashi
和秀 高橋
Yutaka Moriya
豊 森谷
Toru Kawanaka
徹 川中
Koshiro Tsukada
幸四郎 束田
Tatsuya Shimoda
達也 下田
Saburo Tani
三郎 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32625694A priority Critical patent/JPH07233438A/en
Publication of JPH07233438A publication Critical patent/JPH07233438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high tensile strength steel excellent in SR cracking resistance or the like by preparing a high tensile strength steel in which the componental compsn. is specified and the weld cracking sensitivity index and carbon equivalent value are prescribed. CONSTITUTION:A high tensile strength steel having a compsn. contg., by weight, 0.075 to 0.094% C, 0.01 to 0.4% Si, 0.5 to 1.5% Mn, <=0.01% P, <=0.005% S, 0.5 to 2% Ni, 0.1 to 0.9% Cr, 0.2 to 1% Mo, 0.003 to 0.03% Nb, 0.01 to 0.08% Al and 0.0005 to 0.008% N, and in which PcM value defined by PcM=C+Si/30+ Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B (wt.%) is regulated to <=0.24 and Ceq value defined by Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (wt.%) is regulated to >=0.45, and the balance iron with inevitable impurities and substantially contg. no B is prepd. Thus, the 780N/mm<2> class high tensile strength steel excellent in weldability, acoustic anisotropy and SR cracking properties can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接性、音響異方性及
び耐SRわれ特性に優れた780N/mm2級高張力鋼
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 780 N / mm 2 class high-strength steel excellent in weldability, acoustic anisotropy and SR resistance and a method for producing the same.

【0002】[0002]

【従来の技術】780N/mm2 級高張力鋼(以下、H
T780と称す)はこれまでに種々の鋼種が提案されて
いるが、そのほとんどが焼入性向上のためにBを添加し
て、焼入れ焼戻し処理を行うことにより製造されてい
る。これらの鋼は優れた母材強度および靭性を有する
が、Bを含有するので溶接部の硬化性が高い(溶接低温
われ感受性が高い)ので、溶接施工時において溶接われ
防止対策を行なう必要がある。一般に、溶接われ防止対
策としては被溶接物を100℃以上に予熱することが行
なわれているが、高温に加熱された作業環境は安全衛生
上の観点から好ましくなく、またかかる環境下では施工
能率が著しく低下する。
2. Description of the Related Art 780 N / mm 2 high-strength steel (hereinafter referred to as H
Various steel grades have been proposed so far, but most of them are produced by adding B to improve hardenability and performing quenching and tempering treatment. These steels have excellent base material strength and toughness, but since they contain B, the hardenability of the welded portion is high (the weld temperature is highly sensitive to cracking), so it is necessary to take measures to prevent weld cracking during welding. . Generally, as a measure for preventing weld cracks, preheating the work piece to 100 ° C or higher is performed, but the working environment heated to a high temperature is not preferable from the viewpoint of safety and hygiene, and under such environment, construction efficiency is high. Is significantly reduced.

【0003】このようなB含有鋼HT780の問題点を
解決するために、特公昭49−42568号公報および
特開平4−314825号公報によればBを含有しない
B無添加高張力鋼が実用化されている。
In order to solve the problem of the B-containing steel HT780, according to Japanese Patent Publication No. Sho 49-42568 and Japanese Patent Laid-Open No. 4-314825, a B-free high-strength steel containing no B is put to practical use. Has been done.

【0004】前者は、C:0.07〜0.09%、S
i:0.46〜0.50%、Mn:1.30〜1.38
%、Cu:0.10〜0.23%、Ni:0.43〜
0.92%、Cr:0.95〜1.20%、Mo:0.
48〜0.59%、Ti:0.008〜0.015%、
Al:0.08〜0.11%(いずれも重量%)を含有
するものであって、高靭性溶接熱影響部を有する高張力
鋼を開示している。
The former is C: 0.07 to 0.09%, S
i: 0.46 to 0.50%, Mn: 1.30 to 1.38
%, Cu: 0.10 to 0.23%, Ni: 0.43 to
0.92%, Cr: 0.95 to 1.20%, Mo: 0.
48 to 0.59%, Ti: 0.008 to 0.015%,
Disclosed is a high-strength steel containing Al: 0.08 to 0.11% (all by weight) and having a high toughness weld heat affected zone.

【0005】後者は、C:0.038〜0.053%、
Cu:1.02〜1.72%、Nb:0.013〜0.
032%、V:0.021〜0.057%、Ti:0.
011〜0.019%を含み、かつ59.3C+Cu≦
4.2満足するようにCおよびCuを含有し、熱間圧延
ののち直接焼入れを行い、析出強化を活用するため55
0〜600℃にて焼き戻し処理を行う溶接性に優れたH
T780の製造方法を開示している。
The latter is C: 0.038 to 0.053%,
Cu: 1.02 to 1.72%, Nb: 0.013 to 0.
032%, V: 0.021 to 0.057%, Ti: 0.
011 to 0.019% and 59.3C + Cu ≦
4.2 In order to utilize precipitation strengthening by containing C and Cu so as to satisfy the requirement, performing direct quenching after hot rolling, 55
H with excellent weldability that is tempered at 0-600 ℃
A method of manufacturing T780 is disclosed.

【0006】一方、橋梁などの溶接構造物においては、
安全性確保の観点から溶接欠陥の検出を斜角による超音
波探傷によって厳密に行う必要がある。超音波探傷検査
においては鋼板の最終圧延方向(L方向)と最終圧延方
向に直交する方向(C方向)における音速に差がある
と、欠陥の正確な検出が困難となる。この場合にL方向
の検査とC方向の検査とを区別して評価判定することは
技術的に限界があるため、欠陥エコーであると疑わしい
ものが発見された溶接箇所はすべて補修しなければなら
ず、必要以上の欠陥補修を余儀なくされ、施工費が莫大
なものになる。
On the other hand, in welded structures such as bridges,
From the viewpoint of ensuring safety, it is necessary to strictly detect welding defects by ultrasonic flaw detection using oblique angles. In ultrasonic flaw detection, if there is a difference in sound velocity between the final rolling direction (L direction) of the steel sheet and the direction (C direction) orthogonal to the final rolling direction, it becomes difficult to accurately detect the defect. In this case, since there is a technical limit to the evaluation judgment by distinguishing the inspection in the L direction from the inspection in the C direction, it is necessary to repair all the welded spots where a suspected defect echo is found. However, repairing more defects than necessary will result in enormous construction costs.

【0007】このような音響異方性に関する問題点を解
決するために、特開昭63−235431号公報は音響
異方性の小さい鋼板を得る製造方法を開示している。こ
れには(C+Mn/6)値が0.36%以下で、かつ炭
素等量値Ceq(=C+Mn/6+(Cr+Mo+V)/
5+(Ni+Cu)/15)が0.40%以下の組成を
有する鋼を1000℃以上1200℃以下に加熱し、オ
ーステナイトの再結晶域で全圧下率を50%以上、圧延
仕上温度を850℃以上とし、Ar3 変態点を50℃下
回る温度域から毎秒5℃以上15℃未満の冷却速度で4
00℃以上680℃以下の温度域まで冷却して音響異方
性の小さい鋼板を得る製造方法が記載されている。
In order to solve such a problem relating to acoustic anisotropy, Japanese Patent Laid-Open No. 63-235431 discloses a manufacturing method for obtaining a steel sheet having a small acoustic anisotropy. This has a (C + Mn / 6) value of 0.36% or less and a carbon equivalent value Ceq (= C + Mn / 6 + (Cr + Mo + V) /
Steel having a composition of 5+ (Ni + Cu) / 15) of 0.40% or less is heated to 1000 ° C or more and 1200 ° C or less, the total rolling reduction is 50% or more, and the rolling finishing temperature is 850 ° C or more in the recrystallization region of austenite. At a cooling rate of 5 ° C. or more and less than 15 ° C. per second from a temperature range of 50 ° C. below the Ar 3 transformation point.
A manufacturing method for obtaining a steel sheet having a small acoustic anisotropy by cooling to a temperature range of 00 ° C to 680 ° C is described.

【0008】また、各種のタンク類及び圧力容器などで
は、厚鋼板の溶接継手において性能向上や溶接残留応力
の軽減を図るために応力除去焼きなまし(以下、SRと
いう)処理が行なわれている。しかしながら、SR処理
は一般に焼戻し温度域より少し低い温度域で行なわれる
ため、母材及び溶接部を脆化させ、また、いわゆるSR
割れを生じることがある。SR割れの発生を防止するた
め、通常は母材及び溶接部止端部をグラインダー研削
し、応力集中を生じない滑らかな形状に仕上げている。
Further, in various tanks and pressure vessels, stress relief annealing (hereinafter referred to as SR) treatment is performed in order to improve performance and reduce welding residual stress in welded joints of thick steel plates. However, since SR treatment is generally performed in a temperature range slightly lower than the tempering temperature range, the base metal and the welded portion are embrittled, and the so-called SR treatment is performed.
May cause cracks. In order to prevent the occurrence of SR cracks, the base material and the toe of the weld are usually grinded to a smooth shape without stress concentration.

【0009】このようなSRわれ特性を改善するため
に、特開昭51−17112号公報、特開昭62−19
2564号公報、特開昭62−37342号公報および
特開平5−51696号公報には、SRわれ感受性を高
めるS量を低減したSRわれ特性に優れた鋼が記載され
ている。
In order to improve such SR cracking characteristics, JP-A-51-17112 and JP-A-62-19.
No. 2564, JP-A-62-37342, and JP-A-5-51696 describe steels having excellent SR cracking characteristics in which the amount of S that increases SR cracking sensitivity is reduced.

【0010】また、特開昭55−24966号公報、特
開昭57−92125号公報、特開平3−150335
号公報および特開平5−1351号公報には、CaやT
i等の硫化物形成元素の添加によって固溶S量を抑制
し、SRわれ特性に優れた鋼および製造方法が記載され
ている。
Further, JP-A-55-24966, JP-A-57-92125, and JP-A-3-150335.
In Japanese Patent Laid-Open No. 5-13551 and Japanese Patent Laid-Open No. 5-1351, Ca and T
It describes a steel that suppresses the amount of solid solution S by adding a sulfide-forming element such as i, and has excellent SR cracking properties, and a manufacturing method.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、特公昭
49−42568号公報に記載のB無添加高張力鋼は、
Siを0.46%以上含有するため溶接性及び溶接継手
靭性が不十分である。また、特開平4−314825号
公報に記載のB無添加高張力鋼は、溶接性には優れるも
のの、析出強化を活用して母材強度を確保するため、焼
戻し処理を550〜600℃といった低温域で実施する
ことが必要不可欠となる。このため溶接継手強度が不十
分となる。この対策として母材強度を確保するために低
温域で圧延することも考えられる。しかしながら、低温
域で熱間圧延された鋼板は、L方向とC方向とで超音波
の伝搬速度が大きく異なる音響異方性の増大を引き起こ
す。
However, the B-free high-strength steel described in JP-B-49-42568 is
Since Si is contained in 0.46% or more, the weldability and weld joint toughness are insufficient. The B-free high-strength steel described in JP-A-4-314825 has excellent weldability, but in order to secure the strength of the base metal by utilizing precipitation strengthening, the tempering treatment is performed at a low temperature of 550 to 600 ° C. Implementation in the region becomes essential. Therefore, the strength of the welded joint becomes insufficient. As a countermeasure against this, rolling in a low temperature region may be considered in order to secure the strength of the base material. However, a steel sheet hot-rolled in a low temperature region causes an increase in acoustic anisotropy in which the propagation speed of ultrasonic waves is greatly different in the L direction and the C direction.

【0012】特開昭63−235431号公報に記載の
音響異方性の小さい鋼板は、炭素等量値Ceqが0.40
%以下であるため母材強度が不十分であり、また仮に母
材強度がHT780程度まで達成された場合において
も、Ceqが0.40%以下であるため溶接継手強度が不
足する。
The steel sheet having a small acoustic anisotropy described in JP-A-63-235431 has a carbon equivalent value Ceq of 0.40.
% Or less, the base metal strength is insufficient, and even if the base metal strength reaches about HT780, Ceq is 0.40% or less and the weld joint strength is insufficient.

【0013】また、上述の特開昭51−17112号公
報、特開昭55−24966号公報、特開昭62−37
342号公報、特開昭57−92125号公報、特開昭
62−192564号公報、特開平3−150335号
公報、特開平5−1351号公報、特開平5−5169
6号公報に記載の鋼はいずれもB含有鋼であるため、溶
接性に劣る。
Further, the above-mentioned JP-A-51-17112, JP-A-55-24966 and JP-A-62-37.
342, JP-A-57-92125, JP-A-62-192564, JP-A-3-150335, JP-A-51351, and JP-A-5-5169.
All of the steels described in Japanese Patent No. 6 are B-containing steels, and thus have poor weldability.

【0014】以上のようにHT780に対する需要家の
要望が高いにもかかわらず、溶接性、音響異方性および
SRわれ特性のすべてに優れた780N/mm2 級高張
力鋼は未だ実現されていない。
Despite the high demands of consumers for HT780 as described above, a 780 N / mm 2 class high strength steel excellent in all of weldability, acoustic anisotropy and SR cracking properties has not yet been realized. .

【0015】[0015]

【課題を解決するための手段】本発明はこれらの問題点
を解決するものであり、溶接性、音響異方性およびSR
われ特性に優れた780N/mm2 級高張力鋼及びその
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves these problems, including weldability, acoustic anisotropy and SR.
It is an object of the present invention to provide a 780 N / mm 2 class high strength steel having excellent cracking properties and a method for producing the same.

【0016】本発明に係る高張力鋼は、重量%でC0.
075〜0.094%、Si0.01〜0.4%、Mn
0.5〜1.5%、P0.01%以下、S0.005%
以下、Ni0.5〜2%、Cr0.1〜0.9%、Mo
0.2〜1%、Nb0.003〜0.03%、Al0.
01〜0.08%、N0.0005〜0.008%を含
み、PCM=C+Si/30+Mn/20+Cu/20+
Ni/60+Cr/20+Mo/15+V/10+5B
(重量%)で定義されるPCM値が0.24以下で、かつ
Ceq=C+Mn/6+Si/24+Ni/40+Cr/
5+Mo/4+V/14(重量%)で定義されるCeq値
が0.45以上であり、残部が鉄および不可避的不純物
からなる実質的にBを含有しない溶接性、音響異方性及
び耐SRわれ特性に優れていることを特徴とする。
The high-strength steel according to the present invention has a C0.
075-0.094%, Si0.01-0.4%, Mn
0.5-1.5%, P0.01% or less, S0.005%
Hereinafter, Ni 0.5 to 2%, Cr 0.1 to 0.9%, Mo
0.2-1%, Nb0.003-0.03%, Al0.
01 to 0.08%, N 0.0005 to 0.008% included, P CM = C + Si / 30 + Mn / 20 + Cu / 20 +
Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
The P CM value defined by (wt%) is 0.24 or less, and Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr /
The Ceq value defined by 5 + Mo / 4 + V / 14 (wt%) is 0.45 or more, and the balance is substantially B-free weldability, acoustic anisotropy and SR resistance, which consist of iron and inevitable impurities. It is characterized by excellent characteristics.

【0017】さらに、Cu0.01〜1.5%、V0.
005〜0.1%、Ti0.003〜0.02%のうち
少なくとも1種を含有することが望ましい。さらに、C
a0.0005〜0.01%、REM0.0005〜
0.01%のうち少なくとも1種を含有することが望ま
しい。
Further, Cu 0.01-1.5%, V0.
It is desirable to contain at least one of 005 to 0.1% and Ti 0.003 to 0.02%. Furthermore, C
a 0.0005-0.01%, REM 0.0005
It is desirable to contain at least one of 0.01%.

【0018】本発明に係る高張力鋼の製造方法は、重量
%でC0.075〜0.094%、Si0.01〜0.
4%、Mn0.50〜1.5%、P0.01%以下、S
0.005%以下、Ni0.5〜2%、Cr0.1〜
0.9%、Mo0.2〜1%、Nb0.003〜0.0
3%、Al0.01〜0.08%、N0.0005〜
0.008%を含み、PCM=C+Si/30+Mn/2
0+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B(重量%)で定義されるPCM値が0.
24以下で、かつCeq=C+Mn/6+Si/24+N
i/40+Cr/5+Mo/4+V/14(重量%)で
定義されるCeq値が0.45以上であり、実質的にBを
含有しない鋼を、1000〜1250℃の温度範囲に加
熱し、1050℃以下の温度域での累積圧下率を20%
以上とし、かつT=85Mn+40Ni+95Cr+1
20Mo+3100Nb+40Cu+500V+100
0(Ti−3.42N)+580とした場合に圧延仕上
温度がT℃〜1050℃の範囲内になるように圧延した
後に、Ar3 変態点以上から直接焼入し、次いでAc1
変態点以下の温度域に再加熱して焼戻し処理し、溶接
性、音響異方性及び耐SRわれ特性に優れたものとする
ことを特徴とする。
The method for producing high-strength steel according to the present invention uses C0.075 to 0.094% by weight and Si 0.01 to 0.
4%, Mn 0.50 to 1.5%, P 0.01% or less, S
0.005% or less, Ni 0.5-2%, Cr 0.1-
0.9%, Mo 0.2 to 1%, Nb 0.003 to 0.0
3%, Al 0.01 to 0.08%, N 0.0005 to 5%
Including 0.008%, P CM = C + Si / 30 + Mn / 2
0 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
The P CM value defined by + V / 10 + 5B (% by weight) is 0.
24 or less and Ceq = C + Mn / 6 + Si / 24 + N
A steel having a Ceq value defined by i / 40 + Cr / 5 + Mo / 4 + V / 14 (% by weight) of 0.45 or more and containing substantially no B is heated to a temperature range of 1000 to 1250 ° C. and 1050 ° C. 20% cumulative reduction in the following temperature range
Above, and T = 85Mn + 40Ni + 95Cr + 1
20Mo + 3100Nb + 40Cu + 500V + 100
0 (Ti-3.42N) + 580, after rolling so that the rolling finishing temperature is in the range of T ° C to 1050 ° C, it is directly quenched from the Ar 3 transformation point or higher, and then Ac 1
It is characterized in that it is reheated to a temperature range below the transformation point and tempered to obtain excellent weldability, acoustic anisotropy and SR resistance.

【0019】[0019]

【作用】本発明の構成要素限定理由は次のとおりであ
る。 1)C:0.075〜0.094% Cは母材強度および溶接継手強度をともに向上させるた
めに添加する。0.075%未満では強度不足となり、
0.094%を越えると溶接性が著しく劣化する。 2)Si:0.01〜0.4% Siは母材強度および溶接継手強度をともに向上させる
ために添加する。0.01%未満では強度不足となり、
0.4%を越えると溶接性、溶接継手靭性が著しく劣化
する。 3)Mn:0.5〜1.5% Mnは母材強度および溶接継手強度をともに向上させる
ために添加する。0.5%未満では強度不足となり、
1.5%を越えると溶接性が劣化する。 4)P:0.01%以下 不純物元素であるPは0.01%を越えると溶接継手性
能が著しく劣化し、また、SRわれ感受性をも高めるの
で、できるだけ低減することが望ましい。 5)S:0.005%以下 不純物元素であるSは0.005%を越えるとSRわれ
感受性が高くなり、溶接継手性能を著しく劣化させるの
で、できるだけ低減することが望ましい。 6)Ni:0.5〜2% Niは母材強度および靭性、並びに溶接継手強度を向上
させるために添加する。0.5%未満では強度および靭
性が不足し、2%を越える添加は経済性が損なわれる。 7)Cr:0.1〜0.9% Crは母材強度および溶接継手強度をともに向上させる
ために添加する。0.1%未満では強度不足となり、
0.9%を越える添加は溶接性が損なわれる。 8)Mo:0.2〜1% Moは母材強度および溶接継手強度をともに向上させる
ために添加する。0.2%未満では強度不足となり、1
%を越える添加は溶接性が損なわれる。 9)Nb:0.003〜0.03% Nbは母材強度および溶接継手強度をともに向上させる
ために添加する。0.003%未満では強度不足とな
り、0.03%を越える添加は溶接金属の靭性が損なわ
れる。 10)Al:0.01〜0.08% Alは脱酸、およびミクロ組織の微細化による母材靭性
の確保のために添加する。0.01%未満では組織の微
細化による母材靭性の確保が不十分となり、0.08%
を越える添加はかえって母材靭性が損なわれる。 11)N:0.0005〜0.008% NはAlと反応して析出物を生成することによりミクロ
組織を微細化し、母材靭性を向上させるために添加す
る。0.0005%未満では析出物の量が不足し、0.
008%を越える添加はかえって母材靭性および溶接継
手靭性が損なわれる。
The reason for limiting the constituent elements of the present invention is as follows. 1) C: 0.075 to 0.094% C is added to improve both the base metal strength and the weld joint strength. If it is less than 0.075%, the strength will be insufficient,
If it exceeds 0.094%, the weldability is significantly deteriorated. 2) Si: 0.01 to 0.4% Si is added to improve both the base metal strength and the weld joint strength. If it is less than 0.01%, the strength will be insufficient,
If it exceeds 0.4%, the weldability and the weld joint toughness are significantly deteriorated. 3) Mn: 0.5 to 1.5% Mn is added to improve both the base metal strength and the weld joint strength. If it is less than 0.5%, the strength will be insufficient,
If it exceeds 1.5%, the weldability deteriorates. 4) P: 0.01% or less If P, which is an impurity element, exceeds 0.01%, the welded joint performance is significantly deteriorated, and SR susceptibility is also increased, so it is desirable to reduce it as much as possible. 5) S: 0.005% or less If S, which is an impurity element, exceeds 0.005%, SR cracking sensitivity becomes high and the welded joint performance is significantly deteriorated. Therefore, it is desirable to reduce S as much as possible. 6) Ni: 0.5 to 2% Ni is added to improve the base material strength and toughness, and the weld joint strength. If it is less than 0.5%, the strength and toughness are insufficient, and if it exceeds 2%, the economy is impaired. 7) Cr: 0.1 to 0.9% Cr is added to improve both the base metal strength and the weld joint strength. If it is less than 0.1%, the strength will be insufficient,
Addition of more than 0.9% impairs weldability. 8) Mo: 0.2 to 1% Mo is added to improve both the base metal strength and the weld joint strength. If it is less than 0.2%, the strength is insufficient and 1
If it is added in excess of%, the weldability is impaired. 9) Nb: 0.003 to 0.03% Nb is added to improve both the base metal strength and the weld joint strength. If it is less than 0.003%, the strength becomes insufficient, and if it exceeds 0.03%, the toughness of the weld metal is impaired. 10) Al: 0.01 to 0.08% Al is added for deoxidation and ensuring the toughness of the base material by refining the microstructure. If it is less than 0.01%, it becomes insufficient to secure the base material toughness due to the refinement of the structure, and 0.08%
If the addition exceeds the above range, the toughness of the base material is deteriorated. 11) N: 0.0005 to 0.008% N reacts with Al to form a precipitate, thereby making the microstructure fine and improving the base material toughness. If it is less than 0.0005%, the amount of precipitates is insufficient, so that
Addition of more than 008% will rather deteriorate the toughness of the base metal and the toughness of the welded joint.

【0020】本発明では上記の合金元素の他に、さらに
下記Cu,V,Tiなどの元素の一種または二種以上を
含ませるようにしても好ましい結果が得られる。 12)Cu:0.01〜1.5% Cuは母材強度および溶接継手強度をともに向上させる
ために添加する。0.01%未満では強度不足となり、
1.50%を越える添加は溶接性が損なわれる。13)
V:0.005〜0.1% Vは母材強度および溶接継手強度をともに向上させるた
めに添加する。0.005%未満では強度不足となり、
0.100%を越える添加は母材靭性、溶接性が損なわ
れる。 14)Ti:0.003〜0.02% Tiはミクロ組織の微細化を通じて母材靭性および溶接
継手靭性をともに向上させるために添加する。さらにT
iはSと結合して安定な硫化物を生成することによって
結晶粒界の固溶S量を低減させるので、耐SRわれ特性
を高める。0.003%未満では組織の微細化による靭
性向上の効果が不十分であり、かつSRわれ特性向上の
効果が得られない。一方、0.020%を越える添加は
母材靭性および溶接継手靭性がともに損なわれる。 15)Ca:0.0005〜0.01% Caは結晶粒を微細化するとともに、硫化物を生成し
て、結晶粒界における固溶S量を低減させるため、耐S
Rわれ特性を一層高める。この効果を有効に得るために
は、0.0005%以上の量を添加する必要があるが、
0.0100%以上の添加は非金属介在物の量が増加し
て延性を低下させてしまうので好ましくない。 16)REM:0.0005〜0.01% REMは鋼中でREM(O,S)として硫化物を生成す
ることによって結晶粒界の固溶S量を低減して耐SRわ
れ特性を高める。0.0005%以上の量を添加する必
要があるが、0.0100%以上の添加は鋼の清浄度が
低下し、靭性を劣化させてしまうので好ましくない。 17)PCM(溶接われ感受性指数):0.24以下 溶接性の指標であるPCM(=C+Si/30+Mn/2
0+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B(%))は、溶接施工時の予熱温度の
低減化をはかるために0.24%以下に抑える。 18)Ceq(炭素当量値):0.45以上 焼入れ性の指標であるCeqは、溶接継手強度および溶接
継手靭性をともに確保するために0.45%以上とす
る。 19)直接焼入れ時のスラブ加熱温度:1000〜12
50℃ 合金元素の固溶をはかり十分な焼入れ性を確保するとと
もに、圧延時の所定の条件を達成するため、加熱温度は
1000℃以上とする必要がある。しかし1250℃を
越える加熱温度はミクロ組織の粗大化によって母材靭性
を損なうので上限を1250℃とする。 20)直接焼入れ時の圧延仕上温度:T〜1050℃ ただしT=85Mn+40Ni+95Cr+120Mo
+3100Nb+40Cu+500V+1000(Ti
−3.42N)+580 本発明において圧延仕上温度は母材強度、母材靭性、音
響異方性に大きな影響を及ぼす要素であり、添加元素の
量に応じて厳密に限定する必要がある。圧延仕上温度が
上記式にて求められるT℃より低くなると、急激に母材
強度、母材靭性が低下し、音響異方性は増大する。した
がって下限温度をT℃と限定する。一方、圧延仕上温度
が1050を越えるとミクロ組織が粗大化し母材靭性の
劣化が著しくなる。したがって上限温度を1050℃と
限定する。 21)焼戻し温度:Ac1 変態点以下(600〜700
℃) 焼戻し温度は溶接継手強度確保のため600℃以上とす
る必要がある。しかし焼戻しを700℃を越える温度に
て実施すると、急激な母材強度の低下を引き起こす。 22)不純物元素であるB:0.0002%以下 不純物元素であるBは微量であっても溶接性を著しく劣
化させるため、本発明鋼においてはその含有量を0.0
002%以下に抑えることが望ましい。
In the present invention, preferable results can be obtained even if one or more of the following elements such as Cu, V and Ti are contained in addition to the above alloy elements. 12) Cu: 0.01 to 1.5% Cu is added to improve both the base metal strength and the weld joint strength. If it is less than 0.01%, the strength will be insufficient,
Addition of more than 1.50% impairs weldability. 13)
V: 0.005-0.1% V is added to improve both the base metal strength and the weld joint strength. If it is less than 0.005%, the strength will be insufficient,
Addition of more than 0.100% impairs base material toughness and weldability. 14) Ti: 0.003 to 0.02% Ti is added to improve both the base metal toughness and the weld joint toughness through the refinement of the microstructure. Furthermore T
i combines with S to form a stable sulfide, thereby reducing the amount of solid solution S in the crystal grain boundaries, and thus improves the SR resistance property. If it is less than 0.003%, the effect of improving the toughness due to the refinement of the structure is insufficient, and the effect of improving the SR cracking property cannot be obtained. On the other hand, addition of more than 0.020% impairs both the base metal toughness and the weld joint toughness. 15) Ca: 0.0005 to 0.01% Ca refines the crystal grains and forms sulfides to reduce the amount of solid solution S in the crystal grain boundaries.
Further enhances the radius characteristics. To obtain this effect effectively, it is necessary to add an amount of 0.0005% or more.
Addition of 0.0100% or more is not preferable because the amount of non-metallic inclusions increases and the ductility decreases. 16) REM: 0.0005 to 0.01% REM forms a sulfide as REM (O, S) in steel, thereby reducing the amount of solid solution S in the crystal grain boundaries and enhancing the SR resistance property. It is necessary to add 0.0005% or more, but addition of 0.0100% or more is not preferable because the cleanliness of the steel decreases and the toughness deteriorates. 17) P CM (welding crack susceptibility index): 0.24 or less P CM (= C + Si / 30 + Mn / 2) which is an index of weldability
0 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5B (%)) is suppressed to 0.24% or less in order to reduce the preheating temperature during welding. 18) Ceq (carbon equivalent value): 0.45 or more Ceq, which is an index of hardenability, is set to 0.45% or more in order to secure both weld joint strength and weld joint toughness. 19) Slab heating temperature during direct quenching: 1000-12
50 ° C. In order to form a solid solution of alloying elements to ensure sufficient hardenability and to achieve predetermined conditions during rolling, the heating temperature must be 1000 ° C. or higher. However, the heating temperature exceeding 1250 ° C impairs the toughness of the base material due to the coarsening of the microstructure, so the upper limit is made 1250 ° C. 20) Rolling finishing temperature during direct quenching: T to 1050 ° C., where T = 85Mn + 40Ni + 95Cr + 120Mo
+ 3100Nb + 40Cu + 500V + 1000 (Ti
-3.42 N) +580 In the present invention, the rolling finishing temperature is a factor that greatly affects the base material strength, the base material toughness, and the acoustic anisotropy, and needs to be strictly limited according to the amount of the added element. When the rolling finishing temperature becomes lower than T ° C. calculated by the above formula, the strength of the base material and the toughness of the base material suddenly decrease, and the acoustic anisotropy increases. Therefore, the lower limit temperature is limited to T ° C. On the other hand, when the rolling finishing temperature exceeds 1050, the microstructure becomes coarse and the toughness of the base material deteriorates significantly. Therefore, the upper limit temperature is limited to 1050 ° C. 21) Tempering temperature: Ac 1 transformation point or lower (600 to 700)
The tempering temperature must be 600 ° C or higher to secure the strength of the welded joint. However, if tempering is carried out at a temperature higher than 700 ° C., the strength of the base material is rapidly lowered. 22) Impurity element B: 0.0002% or less Since the impurity element B significantly deteriorates the weldability even in a small amount, its content in the steel of the present invention is 0.0
It is desirable to suppress it to 002% or less.

【0021】[0021]

【実施例】以下、添付の図面及び表1と表2を参照して
本発明の種々の実施例について説明する。表1中の鋼種
1〜20は成分組成の点で本発明の範囲内となる実施例
の鋼種にあたり、鋼種21〜30は成分組成の点で本発
明の範囲外となる比較例の鋼種にあたる。表1の最右欄
のT(℃)は、T=85Mn+40Ni+95Cr+1
20Mo+3100Nb+40Cu+500V+100
0(Ti−3.42N)+580で表される式より求め
た値を示している。次の欄のPCMは、PCM=C+Si/
30+Mn/20+Cu/20+Ni/60+Cr/2
0+Mo/15+V/10+5Bで表される溶接われ感
受性指数式より求めた値を示している。次の欄のCeq
は、Ceq=C+Mn/6+Si/24+Ni/40+C
r/5+Mo/4+V/14(重量%)で表される炭素
等量式より求めた値を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the accompanying drawings and Tables 1 and 2. Steel types 1 to 20 in Table 1 correspond to steel types of Examples that fall within the scope of the present invention in terms of component composition, and steel types 21 to 30 correspond to steel types of Comparative Examples that fall outside the scope of the present invention in terms of component composition. T (° C.) in the rightmost column of Table 1 is T = 85Mn + 40Ni + 95Cr + 1
20Mo + 3100Nb + 40Cu + 500V + 100
The value obtained from the formula represented by 0 (Ti-3.42N) +580 is shown. P CM in the next column is P CM = C + Si /
30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 2
The values obtained from the weld crack sensitivity index formula represented by 0 + Mo / 15 + V / 10 + 5B are shown. Ceq in the next column
Is Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + C
The values obtained from the carbon equivalent formula represented by r / 5 + Mo / 4 + V / 14 (wt%) are shown.

【0022】実施例のうち鋼種5,6,8,9,11,
13,14,16,18,19,20はCu含有鋼であ
り、鋼種5,6,7,10,11,13,15,16は
V含有鋼であり、鋼種12,13,14,15はTi含
有鋼であり、鋼種4,5,15,20はCa含有鋼であ
り、鋼種5,7,20はREM含有鋼である。これらの
鋼種の添加成分は、それぞれCu0.01〜1.50
%、V0.005〜0.100%、Ti0.003〜
0.020%、Ca0.0005〜0.0100%、R
EM0.0005〜0.0100%の範囲に入ってい
る。
Steel types 5, 6, 8, 9, 11, among the examples
13, 14, 16, 18, 19, 20 are Cu-containing steels, steel types 5, 6, 7, 10, 11, 13, 15, 16 are V-containing steels, and steel types 12, 13, 14, 15 are Ti-containing steels, steel types 4, 5, 15 and 20 are Ca-containing steels, and steel types 5, 7, and 20 are REM-containing steels. The additive components of these steel types are Cu 0.01 to 1.50, respectively.
%, V 0.005 to 0.100%, Ti 0.003 to
0.020%, Ca 0.0005 to 0.0100%, R
It is in the range of EM 0.0005 to 0.0100%.

【0023】実施例のうち鋼種1〜3は、C0.075
〜0.094%、Si0.01〜0.40%、Mn0.
50〜1.50%、P0.01%以下、S0.005%
以下、Ni0.50〜2.00%、Cr0.10〜0.
90%、Mo0.20〜1.00%、Nb0.003〜
0.030%、Al0.01〜0.08%、N0.00
05〜0.0080%を含み、PCM=C+Si/30+
Mn/20+Cu/20+Ni/60+Cr/20+M
o/15+V/10+5B(%)で定義されるPCM値が
0.24%以下で、かつCeq=C+Mn/6+Si/2
4+Ni/40+Cr/5+Mo/4+V/14で定義
されるCeq値が0.45%以上であることをそれぞれ満
たしている。
Steel types 1 to 3 among the examples are C0.075.
.About.0.094%, Si0.01 to 0.40%, Mn0.
50-1.50%, P0.01% or less, S0.005%
Hereinafter, Ni 0.50 to 2.00%, Cr 0.10 to 0.
90%, Mo 0.20 to 1.00%, Nb 0.003 to
0.030%, Al0.01-0.08%, N0.00
Including 05 to 0.0080%, P CM = C + Si / 30 +
Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + M
P CM value defined by o / 15 + V / 10 + 5B (%) is 0.24% or less, and Ceq = C + Mn / 6 + Si / 2
It is satisfied that the Ceq value defined by 4 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 is 0.45% or more.

【0024】鋼種1,5〜13,16,18,19,2
0では炭素等量値Ceqを0.51,0.49,0.4
8,0.50,0.51,0.45,0.51,0.4
8,0.51,0.50,0.51,0.49,0.4
6,0.47とそれぞれしている。とくに鋼種1ではC
含有量を0.094%と上限値ぎりぎりにしているにも
かかわらず、他元素の添加量を抑えているので、炭素等
量値Ceqは0.51の程度である。
Steel grades 1, 5 to 13, 16, 18, 18, 19, 2
At 0, the carbon equivalent value Ceq is 0.51, 0.49, 0.4.
8, 0.50, 0.51, 0.45, 0.51, 0.4
8, 0.51, 0.50, 0.51, 0.49, 0.4
6 and 0.47 respectively. Especially for steel type 1, C
The carbon equivalent value Ceq is about 0.51 because the addition amount of other elements is suppressed even though the content is close to the upper limit value of 0.094%.

【0025】鋼種2は、C含有量を0.075%とし、
Cr及びMoの含有量をそれぞれ0.86%,0.64
%としているので、炭素等量値Ceqは0.55である。
鋼種3は、C含有量を0.076%とし、Mn,Ni及
びMoの含有量をそれぞれ1.37%,1.80%,
0.94%としているので、炭素等量値Ceqは0.61
と実施例のなかで最も高い。
Steel type 2 has a C content of 0.075%,
The contents of Cr and Mo are 0.86% and 0.64, respectively.
%, The carbon equivalent value Ceq is 0.55.
Steel type 3 had a C content of 0.076% and Mn, Ni and Mo contents of 1.37%, 1.80%,
Since it is 0.94%, the carbon equivalent value Ceq is 0.61.
And the highest among the examples.

【0026】実施例の鋼種1〜20は、すべて溶接われ
感受性指数PCMが0.20〜0.24の範囲内にあり、
また温度Tが846〜936℃の範囲内にある。比較例
のうち鋼種21,29は、C含有量がそれぞれ0.09
8%,0.110%と高すぎ、鋼種22はC含有量が
0.071%と低すぎる。
The steel grades 1 to 20 of the examples all have a weld crack sensitivity index P CM in the range of 0.20 to 0.24,
The temperature T is in the range of 846 to 936 ° C. Among the comparative examples, the steel types 21 and 29 had a C content of 0.09 each.
8% and 0.110% are too high, and steel type 22 has a C content of 0.071%, which is too low.

【0027】比較例のうち鋼種23は、Nb含有量が
0.034%と高すぎ、鋼種24はNb含有量が0.0
02%と低すぎる。比較例のうち鋼種25,26,28
は、B含有量が0.0009%,0.0010%,0.
0004%とそれぞれ規定値0.0002%を上回るB
含有鋼である。
Among the comparative examples, the steel type 23 had a too high Nb content of 0.034%, and the steel type 24 had a Nb content of 0.034%.
It is too low at 02%. Steel types 25, 26, 28 among comparative examples
Has a B content of 0.0009%, 0.0010%, 0.
0004% and B exceeding the specified value of 0.0002%, respectively
It is contained steel.

【0028】比較例のうち鋼種27は、炭素等量値Ceq
が0.43と規定値0.45を下回っている。比較例の
うち鋼種30は、S含有量が0.007%と高すぎる。
Among the comparative examples, the steel type 27 has a carbon equivalent value Ceq.
Is 0.43, which is below the specified value of 0.45. Among the comparative examples, the steel type 30 has an S content of 0.007%, which is too high.

【0029】次に、表2及び図1〜図3を参照しながら
実施例の効果について説明する。表2は、表1に示した
組成の各鋼種の諸性質について調べた結果をまとめたも
のである。具体的には板厚、スラブ加熱温度、圧延仕上
温度、焼戻し温度などの諸条件を変えて製造したとき
に、各鋼種の音響異方性、破面遷移温度(靭性)、機械
的強度(引張強さ、降伏強さ)、溶接性(最高硬さ)お
よびSRわれ特性などがどのような影響を受けるかにつ
きそれぞれ調べた。以下、諸性質につき順に説明する。 1)音響異方性 音響異方性はJISZ3060に規定された超音波試験に準
拠して評価し、音速比が1.02以下となるものを合格
と判定した。鋼種1.1 (実施例)及び鋼種1.2(比較
例)は上記の鋼種1と同じ組成の鋼材を圧延仕上温度を
それぞれ変えて製造したものに該当する。鋼種1.1 では
圧延仕上温度をT〜1050℃の範囲内である970℃
としているため音響異方性は良好であるが、比較例の鋼
種1.2 は圧延仕上温度がT℃(853℃)以下にあたる
830℃であり、音響異方性が増大化している。通常、
音響異方性は1.02以下であれば良好とされるので、鋼種
1.1は音響異方性に優れ、鋼種1.2 は音響異方性に劣る
といえる。
Next, the effect of the embodiment will be described with reference to Table 2 and FIGS. Table 2 is a summary of the results obtained by examining various properties of each steel type having the composition shown in Table 1. Specifically, when manufactured under various conditions such as plate thickness, slab heating temperature, rolling finishing temperature, tempering temperature, etc., acoustic anisotropy of each steel type, fracture surface transition temperature (toughness), mechanical strength (tensile strength) The influence of strength, yield strength), weldability (maximum hardness), SR breaking property, etc. was investigated. Hereinafter, various properties will be described in order. 1) Acoustic Anisotropy The acoustic anisotropy was evaluated according to the ultrasonic test prescribed in JIS Z3060, and the one having a sound velocity ratio of 1.02 or less was judged to be acceptable. Steel type 1.1 (Example) and steel type 1.2 (Comparative example) correspond to steels having the same composition as Steel type 1 above, but manufactured at different rolling finish temperatures. With steel type 1.1, the rolling finishing temperature is 970 ° C, which is within the range of T to 1050 ° C.
Although the acoustic anisotropy is good, the steel type 1.2 of the comparative example has a rolling finishing temperature of 830 ° C., which is lower than T ° C. (853 ° C.), and the acoustic anisotropy is increased. Normal,
It is considered good if the acoustic anisotropy is 1.02 or less.
It can be said that 1.1 is excellent in acoustic anisotropy, and steel type 1.2 is inferior in acoustic anisotropy.

【0030】図1は、横軸に圧延仕上温度(℃)をと
り、縦軸に音響異方性をとって、鋼種1の組成の鋼材に
つき両者の相関を調べた結果を示す特性線図である。図
から明らかなように、圧延仕上温度が約853℃のあた
りで音響異方性が大きく変化し、この温度以下で熱間圧
延を仕上げると音響異方性が1.02を大きく上回るよ
うになった。 2)破面遷移温度 破面遷移温度vTsは、JIS4号試験片(JISZ22
02)を用いて2mmVノッチシャルピー衝撃試験(荷重1
0kgf )を行なって求めた。母材の破面遷移温度vTs
がマイナス40℃以下となるものを合格と判定した。比
較例の鋼種27.1及び鋼種27.2は、上記の鋼種27と同じ
組成の鋼材をそれぞれ焼戻し温度を580℃,610℃
と変えて製造したものに該当する。鋼種27.1のvTsは
マイナス21℃、鋼種27.1のvTsはマイナス27℃で
あった。また、比較例の鋼種1.2では破面遷移温度がマ
イナス35℃の結果が得られた。なお、比較例のうち鋼
種23では溶接金属部の靭性不良が認められ、鋼種27.1
と鋼種27.2では溶接継手部の靭性不良が認められた。こ
れに対して実施例の鋼種1.1 及び2〜20はすべて所定
の合格レベルを上回る結果が得られた。
FIG. 1 is a characteristic diagram showing the results of investigating the correlation between rolling finish temperatures (° C.) on the horizontal axis and acoustic anisotropy on the vertical axis for steel materials having composition of steel type 1. is there. As is clear from the figure, the acoustic anisotropy changes greatly when the rolling finishing temperature is about 853 ° C., and when the hot rolling is finished below this temperature, the acoustic anisotropy greatly exceeds 1.02. It was 2) Fracture surface transition temperature The fracture surface transition temperature vTs is the JIS No. 4 test piece (JISZ22
02) using 2mmV notch Charpy impact test (load 1
0 kgf). Fracture transition temperature vTs of base material
Those having a temperature of -40 ° C or less were judged to be acceptable. The steel types 27.1 and 27.2 of the comparative examples are steel materials having the same composition as the above-mentioned steel type 27, respectively, with tempering temperatures of 580 ° C. and 610 ° C.
It corresponds to the one manufactured by changing. The vTs of steel type 27.1 was −21 ° C. and the vTs of steel type 27.1 was −27 ° C. Further, in the steel type 1.2 of the comparative example, the result that the fracture surface transition temperature was −35 ° C. was obtained. In addition, in the comparative example, in steel type 23, poor toughness of the weld metal part was recognized, and steel type 27.1
With steel type 27.2, poor toughness of the welded joint was observed. On the other hand, all of the steel types 1.1 and 2 to 20 of the examples obtained the results exceeding the predetermined passing level.

【0031】図2は、横軸に圧延仕上温度(℃)をと
り、縦軸に破面遷移温度vTs(℃)をとって、鋼種1
の組成の鋼材につき両者の相関を調べた結果を示す特性
線図である。図から明らかなように、圧延仕上温度が約
853℃のあたりで破面遷移温度が大きく変化し、この
温度以下で熱間圧延を仕上げると破面遷移温度vTsが
マイナス40℃を大きく上回り、靭性が大幅に劣化す
る。 3)機械的強度 各鋼種の母材の引張強さ及び降伏強さはJIS4号試験
片または4号試験片(JIS Z2201)を用いて測定し
た。降伏強さが685N/mm2 以上で、かつ引張強さ
が780N/mm2 以上となるものを合格と判定した。
実施例の鋼種1.1 及び2〜20はすべて降伏強さ及び引
張強さの要求を満たす結果が得られた。これに対して比
較例の鋼種1.2 ,22,24では降伏強さがそれぞれ不
足している。
In FIG. 2, the horizontal axis represents the rolling finish temperature (° C.) and the vertical axis represents the fracture surface transition temperature vTs (° C.).
It is a characteristic diagram which shows the result of having investigated the correlation of both with respect to the steel material of composition. As is clear from the figure, the fracture surface transition temperature greatly changes around a rolling finish temperature of about 853 ° C., and when hot rolling is completed below this temperature, the fracture surface transition temperature vTs greatly exceeds −40 ° C. Is significantly degraded. 3) Mechanical strength The tensile strength and the yield strength of the base material of each steel type were measured using JIS No. 4 test piece or No. 4 test piece (JIS Z2201). A product having a yield strength of 685 N / mm 2 or more and a tensile strength of 780 N / mm 2 or more was judged to be acceptable.
The steel grades 1.1 and 2 to 20 of the examples all obtained the results satisfying the requirements of yield strength and tensile strength. On the other hand, the yield strengths of the steel types 1.2, 22, and 24 of the comparative examples are insufficient.

【0032】図2は、横軸に圧延仕上温度(℃)をと
り、縦軸に引張強さ(N/mm2 )をとって、鋼種1の組
成の鋼材につき両者の相関を調べた結果を示す特性線図
である。図から明らかなように、圧延仕上温度が約85
3℃のあたりで引張強さが大きく変化し、この温度以下
で熱間圧延を仕上げると引張強さが780N/mm2
大きく下回り、強度の低下が著しい。 4)溶接性 溶接性は溶接部の最高硬さによって評価した。下記条件
にて各鋼種の板材を溶接してJIS1号試験片(JIS
Z3101)を採取し、ビッカース硬度計により溶接部の
最高硬さHvを求めた。最高硬さHv値が350以下と
なるものを合格と判定し、溶接性の評価の指標とした。
In FIG. 2, the horizontal axis represents the rolling finish temperature (° C.) and the vertical axis represents the tensile strength (N / mm 2 ). It is a characteristic diagram shown. As is clear from the figure, the rolling finishing temperature is about 85
The tensile strength greatly changes around 3 ° C., and when the hot rolling is finished at this temperature or less, the tensile strength greatly falls below 780 N / mm 2 , and the strength is remarkably reduced. 4) Weldability Weldability was evaluated by the maximum hardness of the weld. Welded plate materials of each steel type under the following conditions and JIS No. 1 test piece (JIS
Z3101) was sampled and the maximum hardness Hv of the welded portion was determined by a Vickers hardness meter. A sample having a maximum hardness Hv value of 350 or less was judged to be acceptable and used as an index for evaluating weldability.

【0033】溶接方法 :被覆アーク溶接 溶接電流 :170A 溶接電圧 :25V 溶接速度 :150mm/分 溶接雰囲気:20℃ 試験片温度:20℃ 比較例の鋼種21,25,26,28,29はいずれも
最高硬さHv値が350を上回った。なお、比較例のう
ち鋼種23,24,27.1,27.2は最高硬さの点では問題
なかったが、溶接金属部やHAZなどに靭性不良が認め
られたので、溶接性が良好であるとはいえない。一方、
実施例の鋼種1.1 及び2〜20はいずれも最高硬さHv
値が350以下の結果が得られ、溶接性にも優れたもの
であることが判明した。 5)SRわれ特性 SRわれ特性はJISZ3158に準拠した斜めy形SR割
れ試験によって評価した。SR断面割れ率が75%以下
となるものを合格と判定した。なお、SR保持温度を約
595℃とし、SR保持時間を4.5〜7.4時間とし
た。
Welding method: Coated arc welding Welding current: 170 A Welding voltage: 25 V Welding speed: 150 mm / min Welding atmosphere: 20 ° C. Test piece temperature: 20 ° C. All the steel grades 21, 25, 26, 28 and 29 of the comparative examples. The maximum hardness Hv value exceeded 350. Although the steel types 23, 24, 27.1, and 27.2 of the comparative examples had no problem in terms of the maximum hardness, but poor toughness was observed in the weld metal part and HAZ, so it can be said that the weldability is good. Absent. on the other hand,
The steel types 1.1 and 2 to 20 of the examples have the highest hardness Hv.
A value of 350 or less was obtained, and it was found that the weldability was also excellent. 5) SR cracking characteristics SR cracking characteristics were evaluated by an oblique y-type SR cracking test based on JIS Z3158. Those having an SR cross-section crack ratio of 75% or less were judged to be acceptable. The SR holding temperature was about 595 ° C and the SR holding time was 4.5 to 7.4 hours.

【0034】実施例の鋼種1.1 及び2〜20はいずれも
SR断面割れ率が75%を下回る結果が得られた。これ
に対して比較例の鋼種21,29,39ではSR断面割
れ率がそれぞれ87%,100%,94%となり、SR
割れ感受性が高い。
In each of the steel types 1.1 and 2 to 20 of the examples, the SR cross-section cracking ratio was less than 75%. On the other hand, in the steel types 21, 29 and 39 of the comparative examples, the SR cross-section crack ratios are 87%, 100% and 94%, respectively.
Highly susceptible to cracking.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明によれば、溶接性、音響異方性お
よびSRわれ特性に優れた780N/mm2 級高張力鋼
及びその製造方法を提供することができる。
According to the present invention, it is possible to provide a 780 N / mm 2 class high strength steel excellent in weldability, acoustic anisotropy and SR cracking properties, and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】音響異方性と圧延仕上温度との相関を示す特性
線図である。
FIG. 1 is a characteristic diagram showing a correlation between acoustic anisotropy and rolling finish temperature.

【図2】破面遷移温度と圧延仕上温度との相関を示す特
性線図である。
FIG. 2 is a characteristic diagram showing a correlation between a fracture surface transition temperature and a rolling finish temperature.

【図3】引張強さと圧延仕上温度との相関を示す特性線
図である。
FIG. 3 is a characteristic diagram showing a correlation between tensile strength and rolling finish temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川中 徹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 束田 幸四郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 下田 達也 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 谷 三郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Kawanaka Toru Kawanaka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan KK (72) Koshiro Tsukada, Inventor 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside the Steel Pipe Co., Ltd. (72) Inventor Tatsuya Shimoda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Ltd. (72) Inventor Saburo Tani, 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Within the corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.5〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、PCM=C+Si
/30+Mn/20+Cu/20+Ni/60+Cr/
20+Mo/15+V/10+5B(重量%)で定義さ
れるPCM値が0.24以下で、かつCeq=C+Mn/6
+Si/24+Ni/40+Cr/5+Mo/4+V/
14(重量%)で定義されるCeq値が0.45以上であ
り、残部が鉄および不可避的不純物からなる実質的にB
を含有しない溶接性、音響異方性及び耐SRわれ特性に
優れていることを特徴とする高張力鋼。
1. C0.075-0.094% by weight,
Si 0.01-0.4%, Mn 0.5-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N 0.0005 to 0.008% included, P CM = C + Si
/ 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr /
P CM value defined by 20 + Mo / 15 + V / 10 + 5B (% by weight) is 0.24 or less, and Ceq = C + Mn / 6
+ Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V /
Ceq value defined by 14 (wt%) is 0.45 or more, and the balance is essentially B and consists of iron and inevitable impurities.
A high-strength steel characterized by having excellent weldability, acoustic anisotropy, and resistance to SR cracking, which does not contain iron.
【請求項2】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.50〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、PCM=C+Si
/30+Mn/20+Cu/20+Ni/60+Cr/
20+Mo/15+V/10+5B(重量%)で定義さ
れるPCM値が0.24以下で、かつCeq=C+Mn/6
+Si/24+Ni/40+Cr/5+Mo/4+V/
14(重量%)で定義されるCeq値が0.45以上であ
り、実質的にBを含有しない鋼を、 1000〜1250℃の温度範囲に加熱し、1050℃
以下の温度域での累積圧下率を20%以上とし、かつT
=85Mn+40Ni+95Cr+120Mo+310
0Nb+40Cu+500V+1000(Ti−3.4
2N)+580とした場合に圧延仕上温度がT℃〜10
50℃の範囲内になるように圧延した後に、Ar3 変態
点以上から直接焼入し、次いでAc1 変態点以下の温度
域に再加熱して焼戻し処理し、溶接性、音響異方性及び
耐SRわれ特性に優れたものとすることを特徴とする高
張力鋼の製造方法。
2. C0.075 to 0.094% by weight,
Si 0.01-0.4%, Mn 0.50-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N 0.0005 to 0.008% included, P CM = C + Si
/ 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr /
P CM value defined by 20 + Mo / 15 + V / 10 + 5B (% by weight) is 0.24 or less, and Ceq = C + Mn / 6
+ Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V /
A steel having a Ceq value defined by 14 (% by weight) of 0.45 or more and containing substantially no B is heated to a temperature range of 1000 to 1250 ° C., and 1050 ° C.
The cumulative rolling reduction in the temperature range below is 20% or more, and T
= 85Mn + 40Ni + 95Cr + 120Mo + 310
0Nb + 40Cu + 500V + 1000 (Ti-3.4
2N) +580, the rolling finishing temperature is T ° C to 10 ° C.
After rolling so as to be in the range of 50 ° C., it is directly quenched from the Ar 3 transformation point or higher, then reheated to a temperature range of the Ac 1 transformation point or lower and tempered to obtain weldability, acoustic anisotropy and A method for producing high-strength steel, which is characterized by excellent SR resistance.
【請求項3】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.5〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、さらにCa0.
0005〜0.01%、REM0.0005〜0.01
%の少なくとも1種を含み、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B(重
量%)で定義されるPCM値が0.24以下で、かつCeq
=C+Mn/6+Si/24+Ni/40+Cr/5+
Mo/4+V/14(重量%)で定義されるCeq値が
0.45以上であり、残部が鉄および不可避的不純物か
らなる実質的にBを含有しない溶接性、音響異方性及び
耐SRわれ特性に優れていることを特徴とする高張力
鋼。
3. C0.075 to 0.094% by weight,
Si 0.01-0.4%, Mn 0.5-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N 0.0005 to 0.008%, and Ca 0.
0005-0.01%, REM 0.0005-0.01
% Of at least one, P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B P CM value defined by (% by weight) is 0.24 or less, and Ceq
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 +
The Ceq value defined by Mo / 4 + V / 14 (wt%) is 0.45 or more, and the balance is substantially B-free weldability, acoustic anisotropy and SR resistance, which consist of iron and inevitable impurities. A high-strength steel characterized by excellent properties.
【請求項4】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.5〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、さらにCa0.
0005〜0.01%、REM0.0005〜0.01
%の少なくとも1種を含み、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B(重
量%)で定義されるPCM値が0.24以下で、かつCeq
=C+Mn/6+Si/24+Ni/40+Cr/5+
Mo/4+V/14(重量%)で定義されるCeq値が
0.45以上であり、実質的にBを含有しない鋼を、 1000〜1250℃の温度範囲に加熱し、1050℃
以下の温度域での累積圧下率を20%以上とし、かつT
=85Mn+40Ni+95Cr+120Mo+310
0Nb+40Cu+500V+1000(Ti−3.4
2N)+580とした場合に圧延仕上温度がT℃〜10
50℃の範囲内になるように圧延した後に、Ar3 変態
点以上から直接焼入し、次いでAc1 変態点以下の温度
域に再加熱して焼戻し処理し、溶接性、音響異方性及び
耐SRわれ特性に優れたものとすることを特徴とする高
張力鋼の製造方法。
4. C0.075-0.094% by weight,
Si 0.01-0.4%, Mn 0.5-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N 0.0005 to 0.008%, and Ca 0.
0005-0.01%, REM 0.0005-0.01
% Of at least one, P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B P CM value defined by (% by weight) is 0.24 or less, and Ceq
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 +
Steel having a Ceq value defined by Mo / 4 + V / 14 (wt%) of 0.45 or more and containing substantially no B is heated to a temperature range of 1000 to 1250 ° C., and 1050 ° C.
The cumulative rolling reduction in the temperature range below is 20% or more, and T
= 85Mn + 40Ni + 95Cr + 120Mo + 310
0Nb + 40Cu + 500V + 1000 (Ti-3.4
2N) +580, the rolling finishing temperature is T ° C to 10 ° C.
After rolling so as to be in the range of 50 ° C., it is directly quenched from the Ar 3 transformation point or higher, then reheated to a temperature range of the Ac 1 transformation point or lower and tempered to obtain weldability, acoustic anisotropy and A method for producing high-strength steel, which is characterized by excellent SR resistance.
【請求項5】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.5〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、さらにCu0.
01〜1.50%、V0.005〜0.1%、Ti0.
003〜0.02%の少なくとも1種を含み、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B(重
量%)で定義されるPCM値が0.24以下で、かつCeq
=C+Mn/6+Si/24+Ni/40+Cr/5+
Mo/4+V/14(重量%)で定義されるCeq値が
0.45以上であり、残部が鉄および不可避的不純物か
らなる実質的にBを含有しない溶接性、音響異方性及び
耐SRわれ特性に優れていることを特徴とする高張力
鋼。
5. C0.075-0.094% by weight,
Si 0.01-0.4%, Mn 0.5-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N0.0005 to 0.008%, and Cu0.
01 to 1.50%, V 0.005 to 0.1%, Ti 0.
Containing at least one of 003 to 0.02%, P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B P CM value defined by (% by weight) is 0.24 or less, and Ceq
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 +
The Ceq value defined by Mo / 4 + V / 14 (wt%) is 0.45 or more, and the balance is substantially B-free weldability, acoustic anisotropy and SR resistance, which consist of iron and inevitable impurities. A high-strength steel characterized by excellent properties.
【請求項6】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.5〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、さらにCu0.
01〜1.5%、V0.005〜0.1%、Ti0.0
03〜0.02%の少なくとも1種を含み、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B(重
量%)で定義されるPCM値が0.24以下で、かつCeq
=C+Mn/6+Si/24+Ni/40+Cr/5+
Mo/4+V/14(重量%)で定義されるCeq値が
0.45以上であり、実質的にBを含有しない鋼を、 1000〜1250℃の温度範囲に加熱し、1050℃
以下の温度域での累積圧下率を20%以上とし、かつT
=85Mn+40Ni+95Cr+120Mo+310
0Nb+40Cu+500V+1000(Ti−3.4
2N)+580とした場合に圧延仕上温度がT℃〜10
50℃の範囲内になるように圧延した後に、Ar3 変態
点以上から直接焼入し、次いでAc1 変態点以下の温度
域に再加熱して焼戻し処理し、溶接性、音響異方性及び
耐SRわれ特性に優れたものとすることを特徴とする高
張力鋼の製造方法。
6. C0.075 to 0.094% by weight,
Si 0.01-0.4%, Mn 0.5-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N0.0005 to 0.008%, and Cu0.
01-1.5%, V0.005-0.1%, Ti0.0
03-0.02% of at least one, P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B P CM value defined by (% by weight) is 0.24 or less, and Ceq
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 +
Steel having a Ceq value defined by Mo / 4 + V / 14 (wt%) of 0.45 or more and containing substantially no B is heated to a temperature range of 1000 to 1250 ° C., and 1050 ° C.
The cumulative rolling reduction in the temperature range below is 20% or more, and T
= 85Mn + 40Ni + 95Cr + 120Mo + 310
0Nb + 40Cu + 500V + 1000 (Ti-3.4
2N) +580, the rolling finishing temperature is T ° C to 10 ° C.
After rolling so as to be in the range of 50 ° C., it is directly quenched from the Ar 3 transformation point or higher, then reheated to a temperature range of the Ac 1 transformation point or lower and tempered to obtain weldability, acoustic anisotropy and A method for producing high-strength steel, which is characterized by excellent SR resistance.
【請求項7】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.5〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、さらにCu0.
01〜1.5%、V0.005〜0.1%、Ti0.0
03〜0.02%の少なくとも1種を含み、さらにCa
0.0005〜0.01%、REM0.0005〜0.
01%の少なくとも1種を含み、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B(重
量%)で定義されるPCM値が0.24以下で、かつCeq
=C+Mn/6+Si/24+Ni/40+Cr/5+
Mo/4+V/14(重量%)で定義されるCeq値が
0.45以上であり、残部が鉄および不可避的不純物か
らなる実質的にBを含有しない溶接性、音響異方性及び
耐SRわれ特性に優れていることを特徴とする高張力
鋼。
7. A weight percentage of C 0.075 to 0.094%,
Si 0.01-0.4%, Mn 0.5-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N0.0005 to 0.008%, and Cu0.
01-1.5%, V0.005-0.1%, Ti0.0
03-0.02% of at least one, further Ca
0.0005-0.01%, REM 0.0005-0.
01% of at least one of P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B P CM value defined by (% by weight) is 0.24 or less, and Ceq
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 +
The Ceq value defined by Mo / 4 + V / 14 (wt%) is 0.45 or more, and the balance is substantially B-free weldability, acoustic anisotropy and SR resistance, which consist of iron and inevitable impurities. A high-strength steel characterized by excellent properties.
【請求項8】 重量%でC0.075〜0.094%、
Si0.01〜0.4%、Mn0.5〜1.5%、P
0.01%以下、S0.005%以下、Ni0.5〜2
%、Cr0.1〜0.9%、Mo0.2〜1%、Nb
0.003〜0.03%、Al0.01〜0.08%、
N0.0005〜0.008%を含み、さらにCu0.
01〜1.5%、V0.005〜0.1%、Ti0.0
03〜0.02%の少なくとも1種を含み、さらにCa
0.0005〜0.01%、REM0.0005〜0.
01%の少なくとも1種を含み、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B(重
量%)で定義されるPCM値が0.24以下で、かつCeq
=C+Mn/6+Si/24+Ni/40+Cr/5+
Mo/4+V/14(重量%)で定義されるCeq値が
0.45以上であり、実質的にBを含有しない鋼を、 1000〜1250℃の温度範囲に加熱し、1050℃
以下の温度域での累積圧下率を20%以上とし、かつT
=85Mn+40Ni+95Cr+120Mo+310
0Nb+40Cu+500V+1000(Ti−3.4
2N)+580とした場合に圧延仕上温度がT℃〜10
50℃の範囲内になるように圧延した後に、Ar3 変態
点以上から直接焼入し、次いでAc1 変態点以下の温度
域に再加熱して焼戻し処理し、溶接性、音響異方性及び
耐SRわれ特性に優れたものとすることを特徴とする高
張力鋼の製造方法。
8. C0.075-0.094% by weight,
Si 0.01-0.4%, Mn 0.5-1.5%, P
0.01% or less, S0.005% or less, Ni 0.5 to 2
%, Cr 0.1 to 0.9%, Mo 0.2 to 1%, Nb
0.003-0.03%, Al0.01-0.08%,
N0.0005 to 0.008%, and Cu0.
01-1.5%, V0.005-0.1%, Ti0.0
03-0.02% of at least one, further Ca
0.0005-0.01%, REM 0.0005-0.
01% of at least one of P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B P CM value defined by (% by weight) is 0.24 or less, and Ceq
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 +
Steel having a Ceq value defined by Mo / 4 + V / 14 (wt%) of 0.45 or more and containing substantially no B is heated to a temperature range of 1000 to 1250 ° C., and 1050 ° C.
The cumulative rolling reduction in the temperature range below is 20% or more, and T
= 85Mn + 40Ni + 95Cr + 120Mo + 310
0Nb + 40Cu + 500V + 1000 (Ti-3.4
2N) +580, the rolling finishing temperature is T ° C to 10 ° C.
After rolling so as to be in the range of 50 ° C., it is directly quenched from the Ar 3 transformation point or higher, then reheated to a temperature range of the Ac 1 transformation point or lower and tempered to obtain weldability, acoustic anisotropy and A method for producing high-strength steel, which is characterized by excellent SR resistance.
JP32625694A 1993-12-29 1994-12-27 High tensile strength steel and its production Pending JPH07233438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32625694A JPH07233438A (en) 1993-12-29 1994-12-27 High tensile strength steel and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34965393 1993-12-29
JP5-349653 1993-12-29
JP32625694A JPH07233438A (en) 1993-12-29 1994-12-27 High tensile strength steel and its production

Publications (1)

Publication Number Publication Date
JPH07233438A true JPH07233438A (en) 1995-09-05

Family

ID=26572118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32625694A Pending JPH07233438A (en) 1993-12-29 1994-12-27 High tensile strength steel and its production

Country Status (1)

Country Link
JP (1) JPH07233438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121068A (en) * 2006-11-13 2008-05-29 Jfe Steel Kk Steel material for iron shell of converter
CN102851609A (en) * 2012-05-23 2013-01-02 江阴市恒润重工股份有限公司 Material used in offshore wind power equipment, and workpiece manufacturing process
JP2013144842A (en) * 2011-12-14 2013-07-25 Jfe Steel Corp Cr-Mo STEEL SHEET EXCELLENT IN REHEAT CRACKING RESISTANCE, STRENGTH, AND TOUGHNESS AND METHOD FOR PRODUCING THE SAME
WO2017145766A1 (en) * 2016-02-25 2017-08-31 株式会社日本製鋼所 Cu-containing low alloy copper having excellent balance between strength and low-temperature toughness and method for producing same
CN109112421A (en) * 2018-08-24 2019-01-01 唐山钢铁集团有限责任公司 A kind of steels for pressure vessel use 07Cr2AlMoR and its production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121068A (en) * 2006-11-13 2008-05-29 Jfe Steel Kk Steel material for iron shell of converter
JP2013144842A (en) * 2011-12-14 2013-07-25 Jfe Steel Corp Cr-Mo STEEL SHEET EXCELLENT IN REHEAT CRACKING RESISTANCE, STRENGTH, AND TOUGHNESS AND METHOD FOR PRODUCING THE SAME
CN102851609A (en) * 2012-05-23 2013-01-02 江阴市恒润重工股份有限公司 Material used in offshore wind power equipment, and workpiece manufacturing process
CN102851609B (en) * 2012-05-23 2014-08-20 江阴市恒润重工股份有限公司 Material used in offshore wind power equipment, and workpiece manufacturing process
WO2017145766A1 (en) * 2016-02-25 2017-08-31 株式会社日本製鋼所 Cu-containing low alloy copper having excellent balance between strength and low-temperature toughness and method for producing same
JP2017150041A (en) * 2016-02-25 2017-08-31 株式会社日本製鋼所 Cu-CONTAINING LOW ALLOY STEEL EXCELLENT IN STRENGTH-LOW TEMPERATURE TOUGHNESS AND MANUFACTURING METHOD THEREFOR
EP3421630A4 (en) * 2016-02-25 2019-01-02 The Japan Steel Works, Ltd. Cu-containing low alloy copper having excellent balance between strength and low-temperature toughness and method for producing same
CN109112421A (en) * 2018-08-24 2019-01-01 唐山钢铁集团有限责任公司 A kind of steels for pressure vessel use 07Cr2AlMoR and its production method
CN109112421B (en) * 2018-08-24 2020-10-02 唐山钢铁集团有限责任公司 Steel 07Cr2AlMoR for pressure vessel and production method thereof

Similar Documents

Publication Publication Date Title
JP4226626B2 (en) High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same
US11628512B2 (en) Clad steel plate and method of producing the same
JP4418391B2 (en) High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP4317499B2 (en) High tensile strength steel sheet having a low acoustic anisotropy and excellent weldability and having a tensile strength of 570 MPa or higher, and a method for producing the same
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
US6558483B2 (en) Cu precipitation strengthened steel
JP2000345289A (en) On-line type weather resistant thick steel plate
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JPH07233438A (en) High tensile strength steel and its production
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
GB2168999A (en) High toughness steel
EP1026274A1 (en) High-strength steel plate reduced in softening in weld heat-affected zone
JP2781000B2 (en) Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP3296145B2 (en) Manufacturing method of high strength steel
JPH06271984A (en) Steel plate excellent in fatigue propagation resistance and arrest property and its production
JP3267081B2 (en) High tensile steel and method for producing the same
JPH07233437A (en) High tensile strength steel and its production
JP3705161B2 (en) High tensile steel plate
JPH08333626A (en) Production of thick steel plate excellent in weldability, acoustic anisotropy, and large heat input welded joint characteristic
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability
JPH10204584A (en) Heat treated type earthquake-proof steel product excellent in hot-dip galvanizing crack resistance