JPWO2019157477A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019157477A5
JPWO2019157477A5 JP2020564804A JP2020564804A JPWO2019157477A5 JP WO2019157477 A5 JPWO2019157477 A5 JP WO2019157477A5 JP 2020564804 A JP2020564804 A JP 2020564804A JP 2020564804 A JP2020564804 A JP 2020564804A JP WO2019157477 A5 JPWO2019157477 A5 JP WO2019157477A5
Authority
JP
Japan
Prior art keywords
opening
channel
cross
along
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020564804A
Other languages
Japanese (ja)
Other versions
JP2021514492A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/017559 external-priority patent/WO2019157477A1/en
Publication of JP2021514492A publication Critical patent/JP2021514492A/en
Publication of JPWO2019157477A5 publication Critical patent/JPWO2019157477A5/ja
Pending legal-status Critical Current

Links

Images

Claims (37)

少なくとも1つのチャネルシステムで形成されたプレートを備える装置であって、前記少なくとも1つのチャネルシステムの各々は、
第1のリザーバに隣接する第1の開口部であって、前記第1のリザーバは前記第1の開口部を越えて位置している、第1の開口部と、
第2のリザーバに隣接する第2の開口部であって、前記第2のリザーバは前記第2の開口部を越えて位置している、第2の開口部と、
前記プレート内にあって、前記第1の開口部および前記第2の開口部に結合されているチャネルであって、前記チャネルの特性長は、前記第1の開口部または前記第2の開口部における対象オブジェクトの最小平均自由行程の1000倍未満であり、前記チャネルの特性幅は、前記第1の開口部における、または前記第2の開口部における前記対象オブジェクトの最小平均自由行程の1000倍未満であり、前記対象オブジェクトは媒体の別個の部分であり、前記第1のリザーバおよび前記第2のリザーバは前記チャネルの外側に存在する、チャネルと、
前記第1の開口部から前記第2の開口部へと延びる重心であって、前記チャネルの長さに沿って見たときに前記チャネルの断面領域の中心である重心と、を備え、
第1の積と第2の積との比率は1よりも大きく、前記第1の積は、前記第1の開口部のキャプチャ領域と前記第1の開口部に関連する第1の透過率との積であり、前記第2の積は、前記第2の開口部のキャプチャ領域と前記第2の開口部に関連する第2の透過率との積である、装置。
A device comprising a plate formed of at least one channel system, each of said at least one channel system.
A first opening adjacent to the first reservoir, wherein the first reservoir is located beyond the first opening.
A second opening adjacent to the second reservoir, wherein the second reservoir is located beyond the second opening.
A channel in the plate that is coupled to the first opening and the second opening, the characteristic length of the channel being the first opening or the second opening. Is less than 1000 times the minimum mean free path of the target object in, and the characteristic width of the channel is less than 1000 times the minimum mean free path of the target object in the first opening or in the second opening. The target object is a separate part of the medium, the first reservoir and the second reservoir are outside the channel, with the channel.
It comprises a center of gravity extending from the first opening to the second opening, which is the center of the cross-sectional region of the channel when viewed along the length of the channel.
The ratio of the first product to the second product is greater than 1, the first product being the capture area of the first opening and the first transmittance associated with the first opening. The second product is the product of the capture region of the second opening and the second transmittance associated with the second opening.
前記チャネルの前記長さに沿った前記チャネルの断面領域は、円形、長方形、多角形、または楕円形である、請求項1に記載の装置。 The device of claim 1, wherein the cross-sectional area of the channel along the length of the channel is circular, rectangular, polygonal, or elliptical. 前記チャネルの断面領域の等価半径は、前記第1の開口部から前記第2の開口部の方向に、前記重心に沿って、前記チャネルの前記長さの少なくとも一部に沿って直線的に増加し、前記等価半径は、前記チャネルの前記断面領域を円周率で除したものの平方根であり、前記断面領域は前記重心に対して垂直に測定される、請求項1に記載の装置。 The equivalent radius of the cross-sectional region of the channel increases linearly from the first opening to the second opening along the center of gravity and along at least a portion of the length of the channel. The apparatus according to claim 1, wherein the equivalent radius is the square root of the cross-sectional region of the channel divided by the circumferential ratio, and the cross-sectional region is measured perpendicular to the center of gravity. 前記チャネルの前記断面領域の前記等価半径は、前記第1の開口部から前記第2の開口部の前記方向に、前記重心に沿って、前記チャネルの前記長さ全体に沿って直線的に増加する、請求項3に記載の装置。 The equivalent radius of the cross-sectional region of the channel increases linearly from the first opening in the direction of the second opening, along the center of gravity, and along the entire length of the channel. The device according to claim 3. 前記チャネルの前記断面領域の等価半径は、前記第1の開口部から前記第2の開口部の方向に、前記重心に沿って、前記チャネルの前記長さの少なくとも一部に沿って変化率が減少しながら増加し、前記等価半径は、前記チャネルの前記断面領域を円周率で除したものの平方根であり、前記断面領域は前記重心に対して垂直に測定される、請求項1に記載の装置。 The equivalent radius of the cross-sectional region of the channel has a rate of change from the first opening in the direction of the second opening, along the center of gravity, along at least a portion of the length of the channel. The first aspect of claim 1, wherein the equivalent radius increases while decreasing, and the equivalent radius is the square root of the cross-section region of the channel divided by pi, the cross-section region being measured perpendicular to the center of gravity. Device. 前記チャネルの前記断面領域の前記等価半径は、前記第1の開口部から前記第2の開口部の前記方向に、前記重心に沿って、前記チャネルの前記長さ全体に沿って変化率が減少しながら増加する、請求項5に記載の装置。 The equivalent radius of the cross-sectional region of the channel decreases in the direction from the first opening to the second opening, along the center of gravity, and along the entire length of the channel. The device according to claim 5, which increases while increasing. 前記チャネルの前記断面領域の等価半径は、前記第1の開口部から前記第2の開口部の方向に、前記重心に沿って、前記チャネルの前記長さの少なくとも一部に沿って変化率が増加しながら増加し、前記等価半径は、前記チャネルの前記断面領域を円周率で除したものの平方根であり、前記断面領域は前記重心に対して垂直に測定される、請求項1に記載の装置。 The equivalent radius of the cross-sectional region of the channel has a rate of change from the first opening in the direction of the second opening, along the center of gravity, along at least a portion of the length of the channel. 1. Device. 前記チャネルの前記断面領域の前記等価半径は、前記第1の開口部から前記第2の開口部の前記方向に、前記重心に沿って、前記チャネルの前記長さ全体に沿って変化率が増加しながら増加する、請求項7に記載の装置。 The equivalent radius of the cross-sectional region of the channel increases in rate from the first opening in the direction of the second opening, along the center of gravity, and along the entire length of the channel. The device according to claim 7, which increases while increasing. 前記プレートは、前記プレート内に並列の形態で構成された少なくとも2つのチャネルシステムを備える、請求項1に記載の装置。 The device of claim 1, wherein the plate comprises at least two channel systems configured in parallel within the plate. 前記装置は、互いに隣接して直列に構成された少なくとも2つのプレートを備える、請求項1に記載の装置。 The device according to claim 1, wherein the device comprises at least two plates configured in series adjacent to each other. 前記チャネルシステムは複数の第2の開口部を備え、前記チャネルシステムは前記第1の開口部を前記複数の第2の開口部に拡散的に結合させている、請求項1に記載の装置。 The device of claim 1, wherein the channel system comprises a plurality of second openings, wherein the channel system is diffusively coupled to the plurality of second openings. 前記チャネルシステムは複数の第1の開口部を備え、前記チャネルシステムは、前記複数の第1の開口部を前記第2の開口部に拡散的に結合させている、請求項1に記載の装置。 The device of claim 1, wherein the channel system comprises a plurality of first openings, the channel system diffusively couplings the plurality of first openings to the second opening. .. 前記媒体は、真空、ガス、液体、固体、またはこれらの組み合わせを含む、請求項1に記載の装置。 The device of claim 1, wherein the medium comprises a vacuum, gas, liquid, solid, or a combination thereof. 前記対象オブジェクトは粒子を含み、前記粒子は、光子、電子、原子、分子、塵埃粒子、エアロゾル、準粒子、正孔、または媒体の別の別個の部分のうちの少なくとも1つである、請求項1に記載の装置。 The object of interest comprises a particle, wherein the particle is at least one of a photon, an electron, an atom, a molecule, a dust particle, an aerosol, a quasiparticle, a hole, or another separate part of a medium. The device according to 1. 前記対象オブジェクトは仮想粒子を含み、前記仮想粒子は、量子場理論によって記述されるような、仮想光子、仮想電子、仮想陽電子、または仮想クォークを含む、請求項1に記載の装置。 The apparatus according to claim 1, wherein the target object includes a virtual particle, and the virtual particle contains a virtual photon, a virtual electron, a virtual positron, or a virtual quark as described by quantum field theory. 前記対象オブジェクトは波を含み、前記波は音響波、海洋波、音子、光子、または電子のうちの少なくとも1つである、請求項1に記載の装置。 The device of claim 1, wherein the object is a wave, wherein the wave is at least one of an acoustic wave, an ocean wave, a sound, a photon, or an electron. 前記プレートは、前記第1のリザーバ内の対象オブジェクトと比較して前記第2のリザーバ内の対象オブジェクトの正味の濃度差を生成させるために用いられる、請求項1に記載の装置。 The device of claim 1, wherein the plate is used to generate a net concentration difference of the subject object in the second reservoir as compared to the subject object in the first reservoir. 前記プレートは、前記第1のリザーバから前記第2のリザーバの中へと対象オブジェクトの正味のバルクフローを生成させるために用いられる、請求項1に記載の装置。 The device of claim 1, wherein the plate is used to generate a net bulk flow of objects of interest from the first reservoir into the second reservoir. 通常動作中に前記プレートに正味の推力が作用する、請求項18に記載の装置。 18. The apparatus of claim 18, wherein a net thrust acts on the plate during normal operation. 前記プレートの前記チャネルを介して対象オブジェクトの質量流量を調節すること、および関連する推力を調節すること、が可能なバルブを更に備える、請求項18に記載の装置。 18. The device of claim 18, further comprising a valve capable of regulating the mass flow rate of the subject object through said channel of the plate and adjusting the associated thrust. 前記バルブは並進スパイクバルブ(translating spike valve)を含む、請求項20に記載の装置。 20. The device of claim 20, wherein the valve comprises a translation spike valve. 前記対象オブジェクトは光子を含み、光子の前記正味のバルクフローは熱伝達を生み、前記熱伝達は1つのオブジェクトからより熱いオブジェクトへ、またはより冷たいオブジェクトへと生じる、請求項18に記載の装置。 18. The device of claim 18, wherein the object of interest comprises photons, the net bulk flow of photons produces heat transfer, and the heat transfer occurs from one object to a hotter object or a colder object. 対象オブジェクトの軌跡を前記第1の開口部から前記第2の開口部への方向に集束するように構成された集束装置を更に備え、前記対象オブジェクトの透過率の差の少なくとも一部は、前記集束装置によって促進される、請求項1に記載の装置。 A focusing device configured to focus the locus of the target object in the direction from the first opening to the second opening is further provided, and at least a part of the difference in the transmittance of the target object is the above. The device according to claim 1, which is promoted by a focusing device. 前記集束装置は、前記対象オブジェクトの前記軌跡を集束させるように構成された表面形状寸法を用いている、請求項23に記載の装置。 23. The device of claim 23, wherein the focusing device uses surface shape dimensions configured to focus the locus of the target object. 前記表面形状寸法は凹状の表面を備える、請求項24に記載の装置。 24. The apparatus of claim 24, wherein the surface shape dimension comprises a concave surface. 前記集束装置は特定のチャネルを備え、前記特定のチャネルの断面領域は、前記特定のチャネルの前記長さに沿って減少する、請求項24に記載の装置。 24. The device of claim 24, wherein the focusing device comprises a particular channel and the cross-sectional area of the particular channel is reduced along the length of the particular channel. 前記集束装置は特定のチャネルを備え、前記特定のチャネルの断面領域は、前記特定のチャネルの前記長さに沿って増加する、請求項24に記載の装置。 24. The device of claim 24, wherein the focusing device comprises a particular channel, and the cross-sectional area of the particular channel increases along the length of the particular channel. 前記集束装置は、レンズ材料を通る屈折を使用する、請求項23に記載の装置。 23. The device of claim 23, wherein the focusing device uses refraction through a lens material. 前記集束装置は、前記対象オブジェクトの体積数密度の等温かつ断熱的な増加、およびエントロピーの低減を生じさせる、請求項23に記載の装置。 23. The device of claim 23, wherein the focusing device results in an isothermal and adiabatic increase in the volume number density of the target object and a reduction in entropy. 対象オブジェクトの軌跡を前記第1の開口部から前記第2の開口部への方向にデフォーカスするように構成されたデフォーカス装置を更に備え、前記対象オブジェクトの透過率の差の少なくとも一部は、前記デフォーカス装置によって促進される、請求項1に記載の装置。 Further, a defocusing device configured to defocus the locus of the target object in the direction from the first opening to the second opening is further provided, and at least a part of the difference in the transmittance of the target object is The device according to claim 1, which is promoted by the defocus device. 前記デフォーカス装置は、対象オブジェクトの前記軌跡をデフォーカスさせるように構成された表面形状寸法を用いている、請求項30に記載の装置。 The device according to claim 30, wherein the defocus device uses a surface shape dimension configured to defocus the locus of the target object. 前記表面形状寸法は凸状の表面を備える、請求項31に記載の装置。 31. The apparatus of claim 31, wherein the surface shape dimension comprises a convex surface. 前記デフォーカス装置は、減少する断面領域を有する特定のチャネルを備える、請求項31に記載の装置。 31. The device of claim 31, wherein the defocusing device comprises a particular channel having a reduced cross-sectional area. 前記デフォーカス装置は、増加する断面領域を有する特定のチャネルを備える、請求項31に記載の装置。 31. The device of claim 31, wherein the defocusing device comprises a particular channel with an increasing cross-sectional area. 前記デフォーカス装置は、レンズ材料を通る屈折を使用する、請求項30に記載の装置。 30. The device of claim 30, wherein the defocus device uses refraction through a lens material. 前記デフォーカス装置は、対象オブジェクトの体積数密度の等温かつ断熱的な低減、およびエントロピーの増加を生じさせる、請求項30に記載の装置。 30. The device of claim 30, wherein the defocusing device results in an isothermal and adiabatic reduction in the volume number density of the target object and an increase in entropy. 前記チャネルは第1のセクションと第2のセクションを備え、前記第1のセクションおよび前記第2のセクションは互いに拡散的に結合され、前記第1のセクションは前記第1の開口部に拡散的に結合され、前記第2のセクションは前記第2の開口部に拡散的に結合され、前記第1のセクションは、前記第1の開口部から前記第2の開口部に向かう方向に断面領域が減少する区域を備え、前記第2のセクションは、前記第1の開口部から前記第2の開口部に向かう方向に断面領域が増加する区域を備え、断面領域の変化は、前記第1のセクションにおけるよりも前記第2のセクションにおいて、より小さい、請求項1に記載の装置。 The channel comprises a first section and a second section, the first section and the second section are diffusively coupled to each other and the first section is diffusively coupled to the first opening. Combined, the second section is diffusively coupled to the second opening, the first section having a reduced cross-sectional area in the direction from the first opening to the second opening. The second section comprises an area where the cross-sectional area increases in the direction from the first opening to the second opening, and the change in the cross-sectional area is in the first section. The device according to claim 1, which is smaller than in the second section.
JP2020564804A 2018-02-09 2019-02-11 Filtration equipment and methods Pending JP2021514492A (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201862710120P 2018-02-09 2018-02-09
US62/710,120 2018-02-09
US201862710224P 2018-02-12 2018-02-12
US62/710,224 2018-02-12
US201862710608P 2018-02-23 2018-02-23
US62/710,608 2018-02-23
US201862917461P 2018-12-06 2018-12-06
US201862917459P 2018-12-06 2018-12-06
US62/917,461 2018-12-06
US62/917,459 2018-12-06
PCT/US2019/017559 WO2019157477A1 (en) 2018-02-09 2019-02-11 Filtration apparatus and method

Publications (2)

Publication Number Publication Date
JP2021514492A JP2021514492A (en) 2021-06-10
JPWO2019157477A5 true JPWO2019157477A5 (en) 2022-02-18

Family

ID=67540695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020564804A Pending JP2021514492A (en) 2018-02-09 2019-02-11 Filtration equipment and methods

Country Status (6)

Country Link
US (2) US11167313B2 (en)
EP (1) EP3749993A1 (en)
JP (1) JP2021514492A (en)
KR (1) KR20200138187A (en)
CN (1) CN112005147B (en)
WO (1) WO2019157477A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260330B2 (en) * 2018-02-09 2022-03-01 Paul NEISER Filtration apparatus and method
WO2019157477A1 (en) 2018-02-09 2019-08-15 Neiser Paul Filtration apparatus and method
CN112041724A (en) 2018-02-15 2020-12-04 P·奈瑟 Apparatus and method for selectively transmitting an object
CN112074349A (en) * 2018-02-17 2020-12-11 P·奈瑟 Apparatus and method for selectively transmitting an object
EP4058351A1 (en) * 2019-11-14 2022-09-21 Paul NEISER Filtration apparatus and method

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1329559A (en) 1916-02-21 1920-02-03 Tesla Nikola Valvular conduit
US1424932A (en) 1920-08-28 1922-08-08 Moreau Marcel Eloi Solar heating device
US2574865A (en) 1947-06-17 1951-11-13 Edwards Miles Lowell Spray nozzle
GB837391A (en) 1957-11-22 1960-06-15 New York Air Brake Co Vapour jet pump
GB1236942A (en) 1967-06-19 1971-06-23 Pall Corp Air cleaner
US3993564A (en) 1972-04-06 1976-11-23 Advanced Product Engineering Corporation Filtration apparatus
US3790829A (en) 1972-07-13 1974-02-05 G Roth Thermoelectromagnetic energy conversion system
US3974824A (en) 1974-08-09 1976-08-17 Solergy, Inc. Solar heating device
US4262840A (en) 1978-06-01 1981-04-21 Maschinenfabrik Augsburg-Nurnberg Ag Rotor for high operating speeds
SU874129A1 (en) 1978-08-16 1981-10-23 Ордена Трудового Красного Знамени Экспериментальный Научно-Исследовательский Институт Металлорежущих Станков Apparatus for suctioning and cleaning air
US4482365A (en) 1982-03-01 1984-11-13 Pall Corporation Vortex air cleaner and self-cleaning barrier filter assembly for supercharged engines
DE3230657A1 (en) * 1982-08-18 1984-02-23 Philips Kommunikations Industrie AG, 8500 Nürnberg OPTICAL MULTIPLEXER
US4854825A (en) 1987-02-27 1989-08-08 Commonwealth Scientific And Industrial Research Organization Multi-stage vacuum pump
US4850806A (en) 1988-05-24 1989-07-25 The Boc Group, Inc. Controlled by-pass for a booster pump
US4906837A (en) * 1988-09-26 1990-03-06 The Boeing Company Multi-channel waveguide optical sensor
FR2656038A1 (en) 1989-12-20 1991-06-21 Devil EXHAUST VENTURI EXHAUST.
DE4127405C2 (en) 1991-08-19 1996-02-29 Fraunhofer Ges Forschung Process for the separation of mixtures of microscopic dielectric particles suspended in a liquid or a gel and device for carrying out the process
US5441576A (en) 1993-02-01 1995-08-15 Bierschenk; James L. Thermoelectric cooler
US5738731A (en) 1993-11-19 1998-04-14 Mega Chips Corporation Photovoltaic device
JP3129386B2 (en) * 1994-06-29 2001-01-29 富士通株式会社 Optical device
US5648874A (en) 1994-06-29 1997-07-15 Fujitsu Limited Optical apparatus
US5657408A (en) * 1994-12-23 1997-08-12 Alliedsignal Inc. Optical device comprising a plurality of units having at least two geometrically-differentiated tapered optical waveguides therein
FR2741161B1 (en) * 1995-11-09 1998-01-30 France Telecom OPTICAL COMPONENT / DIVIDER
US5851507A (en) 1996-09-03 1998-12-22 Nanomaterials Research Corporation Integrated thermal process for the continuous synthesis of nanoscale powders
US6733166B2 (en) * 1997-12-09 2004-05-11 Federal -Mogul World Wide, Inc. Illuminated interior article system utilizing a Y-branch waveguide
US6478958B1 (en) 2000-01-19 2002-11-12 Baldwin Filters, Inc. Apparatus for filtering impurities out of fluid
GB2364791B (en) * 2000-07-14 2004-12-29 Evan Arkas Optical channel plates
US6388819B1 (en) 2001-01-12 2002-05-14 Eastman Kodak Company High numerical aperture objective lens assembly
EP1261039A1 (en) 2001-05-23 2002-11-27 Université de Liège Solar concentrator
US7318912B2 (en) 2001-06-07 2008-01-15 Nanostream, Inc. Microfluidic systems and methods for combining discrete fluid volumes
US7776213B2 (en) 2001-06-12 2010-08-17 Hydrotreat, Inc. Apparatus for enhancing venturi suction in eductor mixers
AU2003216175A1 (en) * 2002-02-04 2003-09-02 Colorado School Of Mines Laminar flow-based separations of colloidal and cellular particles
US7170112B2 (en) 2002-10-30 2007-01-30 International Business Machines Corporation Graded-base-bandgap bipolar transistor having a constant—bandgap in the base
US20050056311A1 (en) 2003-09-11 2005-03-17 Son Pham Ky Miniature thermal-photoelectric power supply
US20050088734A1 (en) 2003-10-28 2005-04-28 The Boeing Company Autonomously assembled space telescope
WO2005103562A2 (en) 2004-04-23 2005-11-03 Light Prescriptions Innovators, Llc Optical manifold for light-emitting diodes
EP1766465A4 (en) * 2004-05-31 2011-07-20 Sekonix Co Ltd Optical device for a display having tapered waveguide and process for making the same
EP1758669B1 (en) 2004-06-07 2013-10-16 Entegris, Inc. System and method for removing contaminants
WO2006018840A2 (en) 2004-08-16 2006-02-23 Ellumina Vision Ltd. Electron microscope array for inspection and lithography
JP4467568B2 (en) 2004-10-21 2010-05-26 Hoya株式会社 Fine particle deposition apparatus and fine particle deposit manufacturing method
US7444961B1 (en) 2005-04-11 2008-11-04 Ellis James S Animal sorting and grading system using an internal evaluation to predict maximum value
US20070018764A1 (en) 2005-07-19 2007-01-25 Analisi Tecnologica Innovadora Per A Processos Device and method for separating magnetic particles
WO2007016800A1 (en) 2005-08-09 2007-02-15 Etech Ag Air cleaner system
EP1941601A2 (en) 2005-10-07 2008-07-09 Raabe-Asprey, Joan Electromagnetic thrust system
JP4795847B2 (en) 2006-05-17 2011-10-19 株式会社日立ハイテクノロジーズ Electron lens and charged particle beam apparatus using the same
JP2008003466A (en) * 2006-06-26 2008-01-10 Mitsutoyo Corp Lens optical system and photoelectric encoder
US8317137B2 (en) 2006-11-20 2012-11-27 Denny Charles Cormier Switchable article and device to generate a lateral or transverse Casimir force for propulsion, guidance and maneuvering of a space vehicle
US20090152176A1 (en) 2006-12-23 2009-06-18 Baxter International Inc. Magnetic separation of fine particles from compositions
US8088196B2 (en) 2007-01-23 2012-01-03 Air Products And Chemicals, Inc. Purification of carbon dioxide
US20090042241A1 (en) 2007-04-06 2009-02-12 California Institute Of Technology Microfluidic device
WO2009023547A2 (en) 2007-08-14 2009-02-19 Arcxis Biotechnologies Polymer microfluidic biochip fabrication
US7879123B2 (en) 2007-09-27 2011-02-01 Pall Corporation Inertial separator
US20090187211A1 (en) 2007-12-21 2009-07-23 Abbott Laboratories Vena cava filter having hourglass shape
US7918908B2 (en) 2008-04-30 2011-04-05 Venturedyne, Ltd. Dust collector with equalized cleaning performance
EP2313928A4 (en) 2008-07-18 2013-06-19 Univ Colorado Regents Geometric diode, applications and method
DE102008035972A1 (en) 2008-07-31 2010-02-04 Pfeiffer Vacuum Gmbh Vacuum pumping arrangement
EP2559533B1 (en) 2008-09-26 2020-04-15 United Technologies Corporation Casting
US9742049B2 (en) 2009-02-17 2017-08-22 Douglas W. Houle Gravoltaic cells
TW201037385A (en) * 2009-04-15 2010-10-16 E Pin Optical Industry Co Ltd Rectangular stacked glass lens module with alignment fixture and manufacturing method thereof
ES2350991B1 (en) 2009-06-03 2011-10-14 Abengoa Solar New Technologies S.A. SOLAR CONCENTRATION PLANT TOWER TECHNOLOGY WITH NATURAL SHOT.
WO2012118991A1 (en) 2011-03-02 2012-09-07 Game Changers, Llc Distributed thrusters driven gas compressor
DE102010023131A1 (en) 2010-06-09 2011-12-15 Basf Se Arrangement and method for separating magnetisable particles from a liquid
US9612007B2 (en) * 2011-02-16 2017-04-04 Dupont Lightstone Light system for building structures
US8723422B2 (en) 2011-02-25 2014-05-13 The Aerospace Corporation Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages
US9476780B2 (en) 2011-03-11 2016-10-25 Alliance For Sustainable Energy, Llc Calorimeters for testing energy storage systems and power electronics methods of making the same and methods of use
TWI407101B (en) 2011-04-11 2013-09-01 Ind Tech Res Inst Magnetic separation unit, magnetic separation device and method for separating magnetic substances in bio-samples
US8698094B1 (en) 2011-07-20 2014-04-15 Kla-Tencor Corporation Permanent magnet lens array
US9560812B2 (en) 2011-07-29 2017-02-07 Corning Incorporated Solar redshift systems
WO2013085929A1 (en) 2011-12-05 2013-06-13 Lawrence Livermore National Security, Llc Charged particle beam scanning using deformed high gradient insulator
FR2984756B1 (en) 2011-12-27 2014-02-21 Commissariat Energie Atomique NANO DEVICE AND MICRO FLUID FOR SEPARATING AND CONCENTRATING PARTICLES PRESENT IN A FLUID
WO2013122819A1 (en) 2012-02-15 2013-08-22 Qd Vision, Inc. Method of making components including quantum dots, methods, and products
CA2868366C (en) 2012-04-24 2017-10-03 Nordischer Maschinenbau Rud. Baader Gmbh + Co. Kg A fish corral
ITBO20130002A1 (en) 2013-01-02 2014-07-03 Massimo Carmelo Camarda DEVICE FOR THE REFINED DIELECTROPHORETIC SEPARATION
WO2014121226A2 (en) 2013-02-01 2014-08-07 Arizona Board of Regents, a body corporate of the State of Arizona Acting for and on behalf of Arizo Punctuated microgradients for improved separations of molecules and particles
US20130283797A1 (en) * 2013-06-28 2013-10-31 Shiva Science & Technology Group LLC Fluidic zero-point power and propulsion units
WO2015123300A1 (en) 2014-02-14 2015-08-20 College Of William And Mary Mass transfer device and system generating vortices for particle suspension, concentration, and transport
JP6181326B2 (en) * 2014-05-13 2017-08-16 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. Light source and solar imitation lighting system
KR101884387B1 (en) 2014-12-05 2018-08-01 한국화학연구원 A polymer membrane for gas separation or enrichment comprising hybrid nanoporous material, uses thereof, and a preparation method thereof
WO2016094715A2 (en) 2014-12-10 2016-06-16 Berkeley Lights, Inc. Movement and selection of micro-objects in a microfluidic apparatus
WO2016191606A1 (en) 2015-05-26 2016-12-01 Geordge Mason University Mechanical and thermal electric generators
US11177317B2 (en) 2016-04-04 2021-11-16 Synopsys, Inc. Power harvesting for integrated circuits
US20190120213A1 (en) 2017-10-25 2019-04-25 Mark Anthony Pederson Amalthea venturi thermal cycle
WO2019094737A1 (en) 2017-11-10 2019-05-16 Neiser Paul Refrigeration apparatus and method
US11260330B2 (en) 2018-02-09 2022-03-01 Paul NEISER Filtration apparatus and method
WO2019157477A1 (en) 2018-02-09 2019-08-15 Neiser Paul Filtration apparatus and method
CN112041724A (en) 2018-02-15 2020-12-04 P·奈瑟 Apparatus and method for selectively transmitting an object
US20200024004A1 (en) 2018-05-16 2020-01-23 Robert L. De Biase Force Cell to Provide Propellant-Less Propulsion for Linear Thrust Applications and Fuel-Less Torque for Rotary Applications Using External Casimir Forces
WO2020117712A1 (en) 2018-12-03 2020-06-11 Neiser Paul Apparatus and method for producing a force

Similar Documents

Publication Publication Date Title
TWI641017B (en) Collimator electrode stack and charged particle lithography system
JP5528419B2 (en) Thin film heat pipe manufactured by extrusion
US20100012303A1 (en) Hollow plate heat exchangers
TWM532046U (en) Vapor chamber with liquid-vapor separating structure
US20120006514A1 (en) Grid heat sink
JP2006295178A (en) Heatsink apparatus for electronic device
JP6258236B2 (en) Method and apparatus for fluid temperature and flow control
JPWO2019157477A5 (en)
US11167313B2 (en) Filtration apparatus and method
JP6543638B2 (en) Corrugated fins for heat exchangers
FI109148B (en) plate heat exchangers
US8833438B2 (en) Multi-orientation single or two phase coldplate with positive flow characteristics
TW202040588A (en) A filter and a fuel assembly for a nuclear plant
JP6713345B2 (en) Heat exchanger
KR101382936B1 (en) Radiator with Structures Woven of Tubes and Wires
JP5737527B2 (en) X-ray tube
RU2714133C1 (en) Cylindrical recuperative heat exchanger of coaxial type
Alimi et al. Buoyancy effects on mixed convection heat and mass transfer in a duct with sudden expansions
GB2040432A (en) Heat conducting element for plate heat exchanger
WO2021064964A1 (en) Diffraction element fixing device
JP2010505085A (en) Cooling member
JP6485918B2 (en) Plate type heat exchanger
KR102423841B1 (en) Acoustic energy focusing device
KR102277445B1 (en) Heat exchanger of which maintenace is easy
JP6938095B2 (en) Thermoacoustic engine