JPWO2019146736A1 - Curable resin composition for sealing - Google Patents

Curable resin composition for sealing Download PDF

Info

Publication number
JPWO2019146736A1
JPWO2019146736A1 JP2019567173A JP2019567173A JPWO2019146736A1 JP WO2019146736 A1 JPWO2019146736 A1 JP WO2019146736A1 JP 2019567173 A JP2019567173 A JP 2019567173A JP 2019567173 A JP2019567173 A JP 2019567173A JP WO2019146736 A1 JPWO2019146736 A1 JP WO2019146736A1
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
epoxy resin
molecular weight
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019567173A
Other languages
Japanese (ja)
Inventor
大河 佐藤
大河 佐藤
有希 久保
有希 久保
直輝 名取
直輝 名取
賢 大橋
賢 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Publication of JPWO2019146736A1 publication Critical patent/JPWO2019146736A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、(A)分子量が1000未満の2官能脂環式エポキシ樹脂、(B)分子量が1000以上の多官能エポキシ樹脂、(C)2官能ビニルエーテル化合物、及び(D)カチオン重合開始剤を含む、封止用硬化性樹脂組成物を提供する。The present invention comprises (A) a bifunctional alicyclic epoxy resin having a molecular weight of less than 1000, (B) a polyfunctional epoxy resin having a molecular weight of 1000 or more, (C) a bifunctional vinyl ether compound, and (D) a cationic polymerization initiator. Provided is a curable resin composition for sealing, which comprises.

Description

本発明は封止用硬化性樹脂組成物に関し、詳しくは、各種半導体素子、特に、有機エレクトロルミネッセンス素子(以下、「有機EL素子」とも略称する)等の発光素子や太陽電池等の受光素子等の光電変換素子の封止に好適な封止用硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition for encapsulation, and more specifically, various semiconductor devices, particularly light emitting devices such as organic electroluminescence devices (hereinafter, also abbreviated as “organic EL devices”), light receiving elements such as solar cells, and the like. The present invention relates to a curable resin composition for sealing suitable for sealing a photoelectric conversion element of the above.

有機EL素子は発光材料に有機物質を使用した発光素子であり、低電圧で高輝度の発光を得ることができるため近年脚光を浴びている。有機EL素子の耐久性を高めるためには、素子内部を外気中の酸素や水分から遮断することが必要であり、例えば、基板上に形成された発光層の全面を覆うように樹脂組成物による封止層を形成して有機EL素子を封止することが行われる。 An organic EL element is a light emitting element that uses an organic substance as a light emitting material, and has been in the limelight in recent years because it can obtain high-luminance light emission at a low voltage. In order to improve the durability of the organic EL device, it is necessary to block the inside of the device from oxygen and moisture in the outside air. For example, a resin composition is used so as to cover the entire surface of the light emitting layer formed on the substrate. An organic EL element is sealed by forming a sealing layer.

この種の樹脂組成物には、熱硬化性または光硬化性の樹脂組成物が使用されることが多く、例えば、特許文献1には、低分子量の多官能エポキシ樹脂と高分子量の単官能又は多官能エポキシ樹脂と分子中にグリシジル基を含有するシランカップリング剤とを含む光硬化性樹脂組成物が提案されている。かかる樹脂組成物は硬化物のアウトガス発生量が少ないという利点を有するものの、高粘度であるために室温での流動性が低く、一様な性状の封止層を形成し難いという欠点がある。 Thermosetting or photocurable resin compositions are often used for this type of resin composition. For example, Patent Document 1 describes a low molecular weight polyfunctional epoxy resin and a high molecular weight monofunctional or high molecular weight. A photocurable resin composition containing a polyfunctional epoxy resin and a silane coupling agent containing a glycidyl group in the molecule has been proposed. Although such a resin composition has an advantage that the amount of outgas generated from the cured product is small, it has a drawback that it has low fluidity at room temperature due to its high viscosity and it is difficult to form a sealing layer having uniform properties.

特開2010−126699号公報Japanese Unexamined Patent Publication No. 2010-1266699

本発明は、上記の事情に鑑みて為されたものであり、室温での流動性に優れ、かつ、アウトガス発生量が少ない硬化物を与え得る、封止用の硬化性樹脂組成物を提供することを目的とする。
また、室温での流動性に優れ、アウトガス発生量が少なく、しかも、透明性の高い硬化物を与え得る、封止用の硬化性樹脂組成物を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a curable resin composition for sealing, which can provide a cured product having excellent fluidity at room temperature and a small amount of outgas generated. The purpose is.
Another object of the present invention is to provide a curable resin composition for sealing, which is excellent in fluidity at room temperature, generates a small amount of outgas, and can give a cured product having high transparency.

本発明者らは、上記目的を達成すべく鋭意研究をした結果、低分子量の2官能脂環式エポキシ樹脂と2官能ビニルエーテル化合物との混合物に、一定以上の分子量を有するエポキシ樹脂を溶解することで、硬化前は粘度が低く、室温での流動性に優れ、硬化によって、透明性が高く、アウトガスの発生が少ない硬化物を生成する硬化性樹脂組成物となることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors have determined to dissolve an epoxy resin having a molecular weight of a certain level or more in a mixture of a low molecular weight bifunctional alicyclic epoxy resin and a bifunctional vinyl ether compound. The present invention was completed by finding that a curable resin composition having a low viscosity before curing, excellent fluidity at room temperature, and by curing produces a cured product having high transparency and less generation of outgas. I came to do it.

すなわち、本発明は以下の特徴を有する。
[1] (A)分子量が1000未満の2官能脂環式エポキシ樹脂、(B)分子量が1000以上の多官能エポキシ樹脂、(C)2官能ビニルエーテル化合物、及び(D)カチオン重合開始剤を含む、封止用硬化性樹脂組成物。
[2] (B)多官能エポキシ樹脂の分子量が10000以下である、上記[1]に記載の封止用硬化性樹脂組成物。
[3] (B)多官能エポキシ樹脂が環状骨格を有する、上記[1]または[2]に記載の封止用硬化性樹脂組成物。
[4] (C)2官能ビニルエーテル化合物の分子量が1000以下である、上記[1]〜[3]のいずれか1つに記載の封止用硬化性樹脂組成物。
[5] 25℃における粘度が300mPas未満である、上記[1]〜[4]のいずれか1つに記載の封止用硬化性樹脂組成物。
[6] (D)カチオン重合開始剤が熱カチオン重合開始剤である、上記[1]〜[5]のいずれか1つに記載の封止用硬化性樹脂組成物。
[7] (A)2官能脂環式エポキシ樹脂の分子量が100以上である、上記[1]〜[6]のいずれか1つに記載の封止用硬化性樹脂組成物。
[8] 有機EL素子の封止用である、上記[1]〜[7]のいずれか1つに記載の封止用硬化性樹脂組成物。
[9] 上記[1]〜[7]のいずれか1つに記載の封止用硬化性樹脂組成物の硬化物で有機EL素子が封止されている有機ELデバイス。
That is, the present invention has the following features.
[1] Includes (A) a bifunctional alicyclic epoxy resin having a molecular weight of less than 1000, (B) a polyfunctional epoxy resin having a molecular weight of 1000 or more, (C) a bifunctional vinyl ether compound, and (D) a cationic polymerization initiator. , Curable resin composition for sealing.
[2] The curable resin composition for sealing according to the above [1], wherein the polyfunctional epoxy resin has a molecular weight of 10,000 or less.
[3] (B) The curable resin composition for sealing according to the above [1] or [2], wherein the polyfunctional epoxy resin has a cyclic skeleton.
[4] The curable resin composition for sealing according to any one of the above [1] to [3], wherein the (C) bifunctional vinyl ether compound has a molecular weight of 1000 or less.
[5] The curable resin composition for sealing according to any one of the above [1] to [4], which has a viscosity at 25 ° C. of less than 300 mPas.
[6] The curable resin composition for sealing according to any one of the above [1] to [5], wherein the cationic polymerization initiator is a thermosetting polymerization initiator.
[7] The curable resin composition for sealing according to any one of the above [1] to [6], wherein the bifunctional alicyclic epoxy resin has a molecular weight of 100 or more.
[8] The curable resin composition for sealing according to any one of the above [1] to [7], which is used for sealing an organic EL element.
[9] An organic EL device in which an organic EL element is sealed with a cured product of the curable resin composition for sealing according to any one of the above [1] to [7].

本発明の硬化性樹脂組成物は室温での粘度が低く流動性が高いので、塗工により一様な性状の組成物層(塗布層)を容易に形成することができる。そして、その硬化物は高温にさらされてもアウトガス発生量が少なく、長期に亘って素子の劣化を防ぐ封止層を形成し得る。また、その硬化物は高い透明性を有するため、有機EL素子等の発光素子や太陽電池等の受光素子等の光電変換素子の封止に特に有利である。 Since the curable resin composition of the present invention has low viscosity at room temperature and high fluidity, it is possible to easily form a composition layer (coating layer) having uniform properties by coating. Then, the cured product generates a small amount of outgas even when exposed to a high temperature, and can form a sealing layer that prevents deterioration of the device for a long period of time. Further, since the cured product has high transparency, it is particularly advantageous for sealing a photoelectric conversion element such as a light emitting element such as an organic EL element or a light receiving element such as a solar cell.

以下、本発明をその好適な実施形態に即して説明する。なお、後述の例示、好ましい記載等は、これらが互いに矛盾しない限り、組み合わせることができる。
本発明の硬化性樹脂組成物(以下、単に「樹脂組成物」ともいう。)は、少なくとも、(A)分子量が1000未満の2官能脂環式エポキシ樹脂、(B)分子量が1000以上の多官能エポキシ樹脂、(C)2官能ビニルエーテル化合物、及び(D)カチオン重合開始剤を含むことが主たる特徴である。
Hereinafter, the present invention will be described according to its preferred embodiment. It should be noted that the examples and preferred descriptions described below can be combined as long as they do not contradict each other.
The curable resin composition of the present invention (hereinafter, also simply referred to as “resin composition”) is at least (A) a bifunctional alicyclic epoxy resin having a molecular weight of less than 1000, and (B) having a molecular weight of 1000 or more. Its main feature is that it contains a functional epoxy resin, (C) a bifunctional vinyl ether compound, and (D) a cationic polymerization initiator.

<(A)分子量が1000未満の2官能脂環式エポキシ樹脂>
本発明の硬化性樹脂組成物は、(A)分子量が1000未満の2官能脂環式エポキシ樹脂(以下、「(A)成分」ともいう。)を含有する。(A)成分は、1分子中に脂環エポキシ基を2個有し、分子量が1000未満の化合物であれば特に制限はされない。「脂環エポキシ基」とは、脂環式基の脂環を構成する隣接する2つの炭素原子が酸素原子との間でオキシラン環(エポキシ基)を形成した基であり、例えば、エポキシシクロペンチル基、エポキシシクロヘキシル基等が挙げられ、好ましくはエポキシシクロヘキシル基である。(A)成分は、複数の脂環エポキシ基が脂環部分で縮合した、脂環式縮合脂環構造を有していてもよい。
<(A) Bifunctional alicyclic epoxy resin with a molecular weight of less than 1000>
The curable resin composition of the present invention contains (A) a bifunctional alicyclic epoxy resin having a molecular weight of less than 1000 (hereinafter, also referred to as “component (A)”). The component (A) is not particularly limited as long as it is a compound having two alicyclic epoxy groups in one molecule and having a molecular weight of less than 1000. The "aliphatic epoxy group" is a group in which two adjacent carbon atoms constituting the alicyclic of the alicyclic group form an oxylan ring (epoxide group) with an oxygen atom. For example, an epoxycyclopentyl group. , Epoxide cyclohexyl group and the like, preferably an epoxycyclohexyl group. The component (A) may have an alicyclic condensed alicyclic structure in which a plurality of alicyclic epoxy groups are condensed at the alicyclic portion.

(A)成分は、好ましくは、式(I): The component (A) is preferably of the formula (I) :.

[式(I)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示し、上記連結基は、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド結合、又はこれらが複数個連結した基である]
で表される化合物である。
[In formula (I), X represents a single bond or a linking group (a divalent group having one or more atoms), and the linking group is a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, A carbonate group, an amide bond, or a group in which a plurality of these are linked]
It is a compound represented by.

式(I)で表される化合物において、連結基として例示される2価の炭化水素基としては、炭素数が1〜18の直鎖状又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基(特に2価のシクロアルキレン基)などが好ましく例示される。炭素数が1〜18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基等が挙げられる。2価の脂環式炭化水素基としては、例えば、1,2−シクロペンチレン、1,3−シクロペンチレン、シクロペンチリデン、1,2−シクロヘキシレン、1,3−シクロヘキシレン、1,4−シクロヘキシレン、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。 In the compound represented by the formula (I), the divalent hydrocarbon group exemplified as the linking group includes a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic group. Hydrocarbon groups (particularly divalent cycloalkylene groups) and the like are preferably exemplified. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1, Examples thereof include a divalent cycloalkylene group (including a cycloalkylidene group) such as 4-cyclohexylene and a cyclohexylidene group.

式(I)で表される化合物の代表的な例としては、下記式(I−1)〜(I−7)で表される化合物などが挙げられる。なお、下記の式(I−6)中、nは、1〜7の整数を表す。 Typical examples of the compound represented by the formula (I) include compounds represented by the following formulas (I-1) to (I-7). In the following formula (I-6), n represents an integer of 1 to 7.

式(I)で表される化合物は、市販品を使用することができ、例えば、「セロキサイド2021P」、「セロキサイド2081」、「セロキサイド8000」(以上、ダイセル社製)、「Synasia S−21E」、「Synasia S−28」、「Synasia S−60」(以上、Synasia社製)、「TTA60」、「TTA2081」、「TTA2083」(以上、Tetrachem社製)等が挙げられる。 As the compound represented by the formula (I), a commercially available product can be used, for example, "Selokiside 2021P", "Selokiside 2081", "Selokiside 8000" (all manufactured by Daicel), "Synasia S-21E". , "Synasia S-28", "Synasia S-60" (hereinafter, manufactured by Synasia), "TTA60", "TTA2081", "TTA2083" (hereinafter, manufactured by Tetrachem) and the like.

本発明において、(A)成分は、硬化性樹脂組成物の室温での流動性の観点から、分子量は1000未満であり、900以下が好ましく、800以下がより好ましく、700以下がさらに好ましく、600以下が特に好ましい。また、分子量の下限は特に限定はされないが、アウトガス発生を抑制する観点から、分子量は100以上が好ましく、125以上がより好ましく、150以上が特に好ましい。 In the present invention, the component (A) has a molecular weight of less than 1000, preferably 900 or less, more preferably 800 or less, further preferably 700 or less, and further preferably 600, from the viewpoint of fluidity of the curable resin composition at room temperature. The following are particularly preferred. The lower limit of the molecular weight is not particularly limited, but from the viewpoint of suppressing the generation of outgas, the molecular weight is preferably 100 or more, more preferably 125 or more, and particularly preferably 150 or more.

本発明において、(A)成分は、硬化性樹脂組成物の室温での流動性の観点から、粘度(25℃)が10〜1000mPasであることが好ましく、25〜750mPasであることがより好ましい。なお、本発明における「25℃における粘度」および「粘度(25℃)」は、いずれも、「振動式粘度計を使用して測定される25℃における粘度」を意味する。 In the present invention, the component (A) preferably has a viscosity (25 ° C.) of 10 to 1000 mPas, more preferably 25 to 750 mPas, from the viewpoint of fluidity of the curable resin composition at room temperature. The "viscosity at 25 ° C." and "viscosity (25 ° C.)" in the present invention both mean "viscosity at 25 ° C. measured using a vibration viscometer".

本発明において、(A)成分のエポキシ当量は、反応性等の観点から、好ましくは50〜500g/eq、より好ましくは75〜450g/eq、特に好ましくは90〜400g/eqである。本明細書中、「エポキシ当量」とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法に従って測定される。 In the present invention, the epoxy equivalent of the component (A) is preferably 50 to 500 g / eq, more preferably 75 to 450 g / eq, and particularly preferably 90 to 400 g / eq, from the viewpoint of reactivity and the like. In the present specification, "epoxy equivalent" is the number of grams (g / eq) of a resin containing an epoxy group equivalent to 1 gram, and is measured according to the method specified in JIS K 7236.

本発明において、(A)成分は1種または2種以上を使用することができる。硬化性樹脂組成物中の(A)成分の含有量は、耐熱性の観点から、硬化性樹脂組成物の不揮発分全体当たり、40質量%以上が好ましく、45質量%以上がより好ましい。また、硬化時の反応性の観点から、硬化性樹脂組成物の不揮発分全体当たり75質量%以下が好ましく、70質量%以下がより好ましく、65質量%以下が特に好ましい。 In the present invention, one kind or two or more kinds of the component (A) can be used. The content of the component (A) in the curable resin composition is preferably 40% by mass or more, more preferably 45% by mass or more, based on the total non-volatile content of the curable resin composition from the viewpoint of heat resistance. Further, from the viewpoint of reactivity at the time of curing, the curable resin composition is preferably 75% by mass or less, more preferably 70% by mass or less, and particularly preferably 65% by mass or less, based on the total non-volatile content.

<(B)分子量が1000以上の多官能エポキシ樹脂>
本発明の硬化性樹脂組成物は、(B)分子量が1000以上の多官能エポキシ樹脂(以下、「(B)成分」とも略称する。)を含有する。(B)成分は、平均して1分子当り2個以上のエポキシ基を有し、分子量が1000以上の化合物であれば特に限定はされない。なお、本明細書中、樹脂組成物中の成分がポリマーである場合、その分子量は「重量平均分子量」を意味するものとする。
ここで、重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として島津製作所社製LC−9A/RID−6Aを、カラムとして昭和電工社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
<(B) Polyfunctional epoxy resin with a molecular weight of 1000 or more>
The curable resin composition of the present invention contains (B) a polyfunctional epoxy resin having a molecular weight of 1000 or more (hereinafter, also abbreviated as “component (B)”). The component (B) is not particularly limited as long as it has an average of two or more epoxy groups per molecule and has a molecular weight of 1000 or more. In the present specification, when the component in the resin composition is a polymer, its molecular weight means "weight average molecular weight".
Here, the weight average molecular weight is measured by a gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is measured by moving the LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device and the polystyrene K-800P / K-804L / K-804L manufactured by Showa Denko Co., Ltd. as a column. It can be measured using chloroform or the like as a phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.

(B)成分は、環状骨格を有するエポキシ樹脂が好ましく、(B1)芳香族エポキシ樹脂、(B2)脂環式骨格を有するエポキシ樹脂等が好ましく用いられる。また、(B)成分の1分子当りの平均のエポキシ基の個数は2〜10個が好ましく、2〜8個がより好ましい。 As the component (B), an epoxy resin having a cyclic skeleton is preferable, and (B1) an aromatic epoxy resin, (B2) an epoxy resin having an alicyclic skeleton, and the like are preferably used. The average number of epoxy groups per molecule of the component (B) is preferably 2 to 10, more preferably 2 to 8.

(B1)芳香族エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル−p−アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、及びフェノール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物等が挙げられる。中でも、透明性の点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。芳香族エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂である「1004」(三菱ケミカル社製、エポキシ当量:875〜975g/eq、重量平均分子量:1650)、ビスフェノールF型エポキシ樹脂である「4004P」(三菱ケミカル社製、エポキシ当量:840〜975g/eq、重量平均分子量:1815)等が挙げられる。 (B1) As the aromatic epoxy resin, bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, fragrance Group glycidylamine type epoxy resin (for example, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyl toluidine, diglycidylaniline, etc.), phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin , Diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalene diol, diglycidyl etherified product of phenols, alkyl substitutes of these epoxy resins, halides and the like. Of these, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable from the viewpoint of transparency. Examples of the aromatic epoxy resin include "1004" which is a bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent: 875-975 g / eq, weight average molecular weight: 1650) and "4004P" which is a bisphenol F type epoxy resin. (Manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent: 840 to 975 g / eq, weight average molecular weight: 1815) and the like.

(B2)脂環式骨格を有するエポキシ樹脂としては、(i)脂環エポキシ基を有する化合物、(ii)脂環にエポキシ基が直接単結合で結合している化合物、(iii)脂環にグリシジルエーテル骨格及び/又はジグリシジルアミン骨格が直結した構造を有する化合物等が挙げられる。 Examples of the epoxy resin having (B2) an alicyclic skeleton include (i) a compound having an alicyclic epoxy group, (ii) a compound in which an epoxy group is directly bonded to the alicyclic with a single bond, and (iii) an alicyclic. Examples thereof include compounds having a structure in which a glycidyl ether skeleton and / or a diglycidyl amine skeleton is directly linked.

(i)脂環エポキシ基を有する化合物としては、例えば、下記式(b−1)、(b−2)、(b−3)、(b−4)で表される化合物が挙げられる。下記式(b−1)中のRは炭素数1〜8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s−ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状アルキレン基が挙げられ、下記式(b−1)中のlは6〜30の整数を示し、下記式(b−2)中のmは7〜30の整数を示し、下記式(b−3)中のn1、n2はそれぞれ2〜30の整数を示し(b−4)中のn3〜n6は、それぞれ1〜30の整数を示す。 Examples of the compound (i) having an alicyclic epoxy group include compounds represented by the following formulas (b-1), (b-2), (b-3) and (b-4). R in the following formula (b-1) is an alkylene group having 1 to 8 carbon atoms, and is a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, an s-butylene group, a pentylene group, or a hexylene. Examples thereof include a linear or branched alkylene group such as a group, a heptylene group, and an octylene group. L in the following formula (b-1) represents an integer of 6 to 30, and m in the following formula (b-2). Indicates an integer of 7 to 30, n1 and n2 in the following formula (b-3) each indicate an integer of 2 to 30, and n3 to n6 in (b-4) indicate an integer of 1 to 30, respectively. ..

(ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(II)で表される化合物が挙げられる。 Examples of the compound in which the epoxy group is directly bonded to the alicyclic (ii) by a single bond include a compound represented by the following formula (II).

式(II)中、R'はp価のアルコールからp個の−OHを除した基であり、p、nはそれぞれ自然数を表す。p価のアルコール[R'−(OH)p]としては、2,2−ビス(ヒドロキシメチル)−1−ブタノール等の多価アルコールなど(炭素数1〜15のアルコール等)が挙げられる。pは1〜6が好ましく、nは1〜30が好ましい。pが1の場合、nは2以上であり、pが2以上の場合、それぞれの( )内(丸括弧内)の基におけるnは同一でもよく異なっていてもよい。上記化合物としては、具体的には、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物(商品名「EHPE3150」、ダイセル社製)等が挙げられる。In formula (II), R'is a group obtained by subtracting p -OH from a p-valent alcohol, and p and n each represent a natural number. Examples of the p-valent alcohol [R'-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms). p is preferably 1 to 6, and n is preferably 1 to 30. When p is 1, n is 2 or more, and when p is 2 or more, n in each group in parentheses (in parentheses) may be the same or different. Specific examples of the above compound include 1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (trade name "EHPE3150", manufactured by Daicel Corporation). ) Etc. can be mentioned.

(iii)脂環にグリシジルエーテル骨格及び/又はジグリシジルアミン骨格が直結した構造を有する化合物としては、例えば、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。また、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル−p−アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のジグリシジルエーテル化物等の芳香族エポキシ樹脂の芳香環が水素付加により脂環に変換されたエポキシ樹脂等が挙げられる。中でも、透明性の点から、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂が好ましい。上記化合物としては、具体的には、水添ビスフェノールA型エポキシ樹脂である「YX−8040」(三菱ケミカル社製)、エポキシ当量:1000g/eq、重量平均分子量:3831)等が挙げられる。 (Iii) Examples of the compound having a structure in which the glycidyl ether skeleton and / or the diglycidyl amine skeleton are directly linked to the alicyclic include a hydrogenated bisphenol A type epoxy resin, a hydrogenated bisphenol F type epoxy resin, and a dicyclopentadiene type epoxy resin. And so on. In addition, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, aromatic glycidylamine type epoxy resin (for example, tetraglycidyldiaminodiphenylmethane, Triglycidyl-p-aminophenol, diglycidyl toluidine, diglycidyl aniline, etc.), phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol diglycidyl etherified product, naphthalenediol diglycidyl ether Examples thereof include an epoxy resin in which the aromatic ring of an aromatic epoxy resin such as a compound or a diglycidyl ether compound of phenols is converted into an alicyclic by hydrogenation. Of these, hydrogenated bisphenol A type epoxy resin and hydrogenated bisphenol F type epoxy resin are preferable from the viewpoint of transparency. Specific examples of the compound include hydrogenated bisphenol A type epoxy resin "YX-8040" (manufactured by Mitsubishi Chemical Corporation), epoxy equivalent: 1000 g / eq, weight average molecular weight: 3831) and the like.

(B)成分は、アウトガス発生量を抑制する観点から、その分子量(重量平均分子量)が1000以上であり、好ましく1500以上である。その分子量(重量平均分子量)の上限は特に限定はされないが、硬化性樹脂組成物の室温での流動性の観点から、その分子量(重量平均分子量)は10,000以下が好ましく、5,000以下がより好ましい。 The component (B) has a molecular weight (weight average molecular weight) of 1000 or more, preferably 1500 or more, from the viewpoint of suppressing the amount of outgas generated. The upper limit of the molecular weight (weight average molecular weight) is not particularly limited, but the molecular weight (weight average molecular weight) is preferably 10,000 or less, preferably 5,000 or less, from the viewpoint of the fluidity of the curable resin composition at room temperature. Is more preferable.

(B)成分のエポキシ当量は、反応性等の観点から、好ましくは50〜3000g/eq、より好ましくは80〜2000g/eq、より好ましくは100〜1500g/eqである。なお、本明細書中、「エポキシ当量」とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法に従って測定される。 The epoxy equivalent of the component (B) is preferably 50 to 3000 g / eq, more preferably 80 to 2000 g / eq, and more preferably 100 to 1500 g / eq from the viewpoint of reactivity and the like. In the present specification, "epoxy equivalent" is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method specified in JIS K 7236.

(B)成分は、液状または固形のいずれでもよく、液状エポキシ樹脂と固形エポキシ樹脂とを併用してもよい。ここで、「液状」及び「固形」とは、常温(25℃)でのエポキシ樹脂の状態である。 The component (B) may be either liquid or solid, and a liquid epoxy resin and a solid epoxy resin may be used in combination. Here, "liquid" and "solid" are states of the epoxy resin at room temperature (25 ° C.).

(B)成分は市販品を使用することができ、(B1)芳香族エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂である「1004」(三菱ケミカル社製、エポキシ当量:875〜975g/eq、重量平均分子量:1650)等が挙げられる。また、(B2)脂環式骨格を有するエポキシ樹脂としては、「EHPE3150」(ダイセル社製、化合物名:2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物、エポキシ当量:70〜190g/eq、重量平均分子量:2400)、水添ビスフェノールA型エポキシ樹脂である「YX−8040」(三菱ケミカル社製、エポキシ当量:1000g/eq、重量平均分子量:3831)等が挙げられる。 As the component (B), a commercially available product can be used, and as the (B1) aromatic epoxy resin, for example, "1004" (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 875-975 g / eq) which is a bisphenol A type epoxy resin. , Weight average molecular weight: 1650) and the like. Further, as the epoxy resin having the (B2) alicyclic skeleton, "EHPE3150" (manufactured by Daicel Co., Ltd., compound name: 2,2-bis (hydroxymethyl) -1-butanol 1,2-epoxy-4- ( 2-Oxylanyl) cyclohexane adduct, epoxy equivalent: 70-190 g / eq, weight average molecular weight: 2400), hydrogenated bisphenol A type epoxy resin "YX-8040" (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 1000 g / eq) , Weight average molecular weight: 3831) and the like.

本発明において、(B)成分は1種または2種以上を使用することができる。硬化性樹脂組成物中の(B)成分の含有量は、アウトガス発生量を効果的に抑制する観点から、硬化性樹脂組成物の不揮発分全体当たり、2.5質量%以上が好ましく、5質量%以上がより好ましい。また、室温での流動性を維持する観点から、硬化性樹脂組成物の不揮発分全体当たり30質量%以下が好ましく、25質量%以下がより好ましい。 In the present invention, one kind or two or more kinds of the component (B) can be used. The content of the component (B) in the curable resin composition is preferably 2.5% by mass or more, preferably 5% by mass, based on the total non-volatile content of the curable resin composition, from the viewpoint of effectively suppressing the amount of outgas generated. % Or more is more preferable. Further, from the viewpoint of maintaining fluidity at room temperature, the curable resin composition is preferably 30% by mass or less, more preferably 25% by mass or less, based on the total non-volatile content.

<(C)2官能ビニルエーテル化合物>
本発明の硬化性樹脂組成物は、2官能ビニルエーテル化合物(以下、「(C)成分」ともいう)を含有する。(C)成分は、1分子中に2個のビニルエーテル基を有する化合物であれば、特に制限なく、使用することができる。
<(C) Bifunctional vinyl ether compound>
The curable resin composition of the present invention contains a bifunctional vinyl ether compound (hereinafter, also referred to as “component (C)”). The component (C) can be used without particular limitation as long as it is a compound having two vinyl ether groups in one molecule.

(C)成分としては、より具体的には、1,4−ブタンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、1,8−オクタンジオールジビニルエーテル、1,9−ノナンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、ビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、3,3−ビス(ビニルオキシメチル)オキセタン、イソソルバイドジビニルエーテル等が挙げられる。中でも、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテルが好ましい。
(C)成分は市販品を使用することができ、シクロヘキサンジメタノールジビニルエーテルである「CHDVE」(日本カーバイド社製、分子量196.29)、ジエチレングリコールジビニルエーテルである「DEGDVE」(日本カーバイド社製、分子量158.20)等が挙げられる。
More specifically, the component (C) includes 1,4-butanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, cyclohexanedimethanol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, and polyethylene glycol divinyl ether. , Propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, 1,8-octanediol divinyl ether, 1,9-nonanediol divinyl ether, trimethylpropandivinyl ether, bisphenol A divinyl ether, bisphenol F divinyl ether, Examples thereof include 3,3-bis (vinyloxymethyl) oxetane and isosorbide divinyl ether. Of these, cyclohexanedimethanol divinyl ether and diethylene glycol divinyl ether are preferable.
As the component (C), a commercially available product can be used, which is a cyclohexanedimethanol divinyl ether "CHDVE" (manufactured by Nippon Carbide, molecular weight 196.29) and a diethylene glycol divinyl ether "DEGDVE" (manufactured by Nippon Carbide, Inc., The molecular weight is 158.20) and the like.

(C)成分は、分子量が1000以下であるものが好ましく、分子量が500以下であるものがより好ましく、400以下がさらに好ましい。 The component (C) preferably has a molecular weight of 1000 or less, more preferably 500 or less, and even more preferably 400 or less.

本発明において、(C)成分は1種または2種以上を使用することができる。 In the present invention, one kind or two or more kinds of the component (C) can be used.

硬化性樹脂組成物中の(C)成分の含有量は、室温での硬化性樹脂組成物の流動性を維持する観点から、硬化性樹脂組成物の不揮発分全体当たり、20質量%以上が好ましく、25質量%以上がより好ましい。また、アウトガス抑制の観点から、硬化性樹脂組成物の不揮発分全体当たり50質量%以下が好ましく、45質量%以下がより好ましい。 The content of the component (C) in the curable resin composition is preferably 20% by mass or more based on the total non-volatile content of the curable resin composition from the viewpoint of maintaining the fluidity of the curable resin composition at room temperature. , 25% by mass or more is more preferable. Further, from the viewpoint of suppressing outgas, 50% by mass or less is preferable, and 45% by mass or less is more preferable, based on the total non-volatile content of the curable resin composition.

<(D)カチオン重合開始剤>
本発明の硬化性樹脂組成物は、カチオン重合開始剤(以下、「(D)成分」ともいう)を含有する。(D)成分は、(A)成分のエポキシ基、(B)成分のエポキシ基、及び(C)成分のビニル基に作用して、(A)成分、(B)成分、及び(C)成分のそれぞれのカチオン重合反応を開始させ得るものであれば、光カチオン重合開始剤であっても、熱カチオン重合開始剤であってもよい。即ち、本発明の硬化性樹脂組成物は、光硬化性樹脂組成物であっても、熱硬化性樹脂組成物であってもよい。
<(D) Cationic polymerization initiator>
The curable resin composition of the present invention contains a cationic polymerization initiator (hereinafter, also referred to as “component (D)”). The component (D) acts on the epoxy group of the component (A), the epoxy group of the component (B), and the vinyl group of the component (C) to act on the component (A), the component (B), and the component (C). As long as it can initiate each of the cationic polymerization reactions of the above, it may be a photocationic polymerization initiator or a thermal cationic polymerization initiator. That is, the curable resin composition of the present invention may be a photocurable resin composition or a thermosetting resin composition.

光カチオン重合開始剤は、光酸発生剤、光硬化剤又は光カチオン発生剤とも呼ばれ、紫外線照射により、硬化剤としての実質的な機能((A)成分、(B)成分、及び(C)成分を重合させる機能)を発揮するものである。 The photocationic polymerization initiator is also called a photoacid generator, a photocuring agent or a photocationic generator, and has a substantial function as a curing agent by irradiation with ultraviolet rays (component (A), component (B), and (C). ) The function of polymerizing the components) is exhibited.

光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe−ヘキサフルオロホスフェート、ジアリルヨードニウムヘキサフルオロアンチモネート等が挙げられる。これらの光カチオン重合開始剤は、1種または2種以上を使用することができる。 Examples of the photocationic polymerization initiator include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate, and the like. 4-Chrolphenyl diphenyl sulfonium hexafluorophosphate, 4-chlorophenyl diphenyl sulfonium hexafluoroantimonate, bis [4- (diphenyl sulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (diphenyl sulfonio) phenyl ] Sulfide bishexafluoroantimonate, (2,4-cyclopentadiene-1-yl) [(1-methylethyl) benzene] -Fe-hexafluorophosphate, diallyl iodonium hexafluoroantimonate and the like. As these photocationic polymerization initiators, one kind or two or more kinds can be used.

本発明において、熱カチオン重合開始剤は、有機EL素子面に光を照射せずに封止することが出来る点から、光カチオン重合開始剤よりも有利であり、好ましく使用される。熱カチオン重合開始剤は、熱酸発生剤、熱硬化剤又は熱カチオン発生剤とも呼ばれ、硬化温度になれば、硬化剤としての実質的な機能((A)成分、(B)成分及び(C)成分を重合させる機能)を発揮するものである。 In the present invention, the thermal cationic polymerization initiator is more advantageous than the photocationic polymerization initiator because it can seal the surface of the organic EL device without irradiating it with light, and is preferably used. The thermal cation polymerization initiator is also called a thermoacid generator, a thermosetting agent or a thermocation generator, and when it reaches the curing temperature, it has a substantial function as a curing agent (component (A), component (B) and ( C) It exerts a function of polymerizing components).

熱カチオン重合開始剤としては、特に限定はされないが、カチオン成分とアニオン成分とが対になった有機オニウム塩化合物が好ましい。前記カチオン成分としては、例えば、有機スルホニウム、有機オキソニウム、有機アンモニウム、有機ホスホニウムや有機ヨードニウム等を挙げることができる。また、前記アニオン成分としては、例えば、BF 、B(C 、SbF 、Sb(C 、AsF 、PF 、PF 、CFSO 、CSO や(CFSO等を挙げることができる。当該熱カチオン重合開始剤の市販品としては、例えば、TA−60、TA−60B、TA−100、TA−120、TA−160(以上、サンアプロ社製)、K−PURE〔登録商標〕TAG−2678、同TAG−2681、同TAG−2689、同TAG−2690、同TAG−2700、同CXC−1612、同CXC−1614、同CXC−1615、同CXC−1616、同CXC−1733、同CXC−1738、同CXC−1742、同CXC−1802、同CXC−1821(以上、King Industries社製)、サンエイドSI−45、同SI−45L、同SI−60、同SI−60L、同SI−80、同SI−80L、同SI−100、同SI−100L、同SI−110、同SI−110L、同SI−150、同SI−150L、同SI−180、同SI−180L、同SI−B2、同SI−B2A、同SI−B3、同SI−B3A、同SI−B4、同SI−B5、同SI−200、同SI−210、同SI−220、同SI−300、同SI−360(以上、三新化学工業社製)を挙げることができる。The thermal cationic polymerization initiator is not particularly limited, but an organic onium salt compound in which a cationic component and an anionic component are paired is preferable. Examples of the cation component include organic sulfonium, organic oxonium, organic ammonium, organic phosphonium, and organic iodonium. As examples of the anion component, e.g., BF 4 -, B (C 6 F 5) 4 -, SbF 4 -, Sb (C 6 F 5) 4 -, AsF 6 -, PF 6 -, PF 6 -, CF 3 SO 3 , C 4 F 9 SO 3 , (CF 3 SO 2 ) 3 C − and the like can be mentioned. Commercially available products of the thermal cationic polymerization initiator include, for example, TA-60, TA-60B, TA-100, TA-120, TA-160 (all manufactured by San-Apro), K-PURE (registered trademark) TAG-. 2678, TAG-2681, TAG-2689, TAG-2690, TAG-2700, CXC-1612, CXC-1614, CXC-1615, CXC-1616, CXC-1733, CXC- 1738, CXC-1742, CXC-1802, CXC-1821 (all manufactured by King Industries), Sun Aid SI-45, SI-45L, SI-60, SI-60L, SI-80, SI-80L, SI-100, SI-100L, SI-110, SI-110L, SI-150, SI-150L, SI-180, SI-180L, SI-B2, SI-B2A, SI-B3, SI-B3A, SI-B4, SI-B5, SI-200, SI-210, SI-220, SI-300, SI-360 ( As mentioned above, (manufactured by Sanshin Chemical Industry Co., Ltd.) can be mentioned.

中でも、4級アンモニウムカチオンを有する塩が好ましく、より好ましくは4級アンモニウムカチオンとボレートアニオン(BF 、B(C 等)からなる塩、4級アンモニウムカチオンとアンチモンアニオン(SbF 、Sb(C 等)からなる塩であり、特に好ましくは、4級アンモニウムカチオンとボレートアニオン(BF 、B(C 等)からなる塩である。Among them, preferred are salts having quaternary ammonium cation, more preferably a quaternary ammonium cation and a borate anion (BF 4 -, B (C 6 F 5) 4 - , etc.) salt comprising a quaternary ammonium cation and antimony anions ( SbF 4 -, Sb (C 6 F 5) 4 - is a salt comprising etc.), particularly preferably a quaternary ammonium cation and a borate anion consisting etc.) - (BF 4 -, B (C 6 F 5) 4 It is salt.

4級アンモニウムカチオンとボレートアニオン(BF 、B(C 等)からなる塩の具体例としては、例えば、ジメチルフェニル(4−メトキシベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(4−メチルベンジル)アンモニウムヘキサフルオロテトラキス(ペンタフルオロフェニル)ボレート、メチルフェニルジベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルトリベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(3,4−ジメチルベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジエチル−N−ベンジルアニリニウム四フッ化ホウ素等が挙げられる。Quaternary ammonium cation and a borate anion (BF 4 -, B (C 6 F 5) 4 - , etc.) Specific examples of a salt, for example, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl) borate , Dimethylphenyl (4-methylbenzyl) ammonium hexafluorotetrakis (pentafluorophenyl) borate, methylphenyldibenzylammonium tetrakis (pentafluorophenyl) borate, phenyltribenzylammonium tetrakis (pentafluorophenyl) borate, dimethylphenyl (3, Examples thereof include 4-dimethylbenzyl) ammonium tetrakis (pentafluorophenyl) borate, N, N-diethyl-N-benzylanilinium tetrafluoride.

本発明において、(D)成分は1種または2種以上を使用することができる。 In the present invention, one kind or two or more kinds of the component (D) can be used.

本発明において、硬化性樹脂組成物中の(D)成分の含有量は、硬化性樹脂組成物の不揮発分全体当たり、0.1〜5.0質量%が好ましく、0.1〜2.5質量%がより好ましい。 In the present invention, the content of the component (D) in the curable resin composition is preferably 0.1 to 5.0% by mass, preferably 0.1 to 2.5% by mass, based on the total non-volatile content of the curable resin composition. More preferably by mass.

(D)成分が熱カチオン重合開始剤の場合、比較的低温で硬化剤としての実質的な機能を発揮できるものが好適である。具体的には、150℃以下で硬化剤としての実質的な機能を発揮できるものが好ましい。これにより、素子を有する基板や封止基板が耐熱性の低い樹脂材料からなる場合の熱硬化工程での加熱による基板への影響や素子の熱劣化を低減することができる。硬化剤としての実質的な機能を発揮するより好ましい温度は120℃以下である。 When the component (D) is a thermal cationic polymerization initiator, one capable of exhibiting a substantial function as a curing agent at a relatively low temperature is preferable. Specifically, those capable of exhibiting a substantial function as a curing agent at 150 ° C. or lower are preferable. As a result, when the substrate having the element or the sealing substrate is made of a resin material having low heat resistance, the influence on the substrate due to heating in the thermosetting step and the thermal deterioration of the element can be reduced. A more preferable temperature for exhibiting a substantial function as a curing agent is 120 ° C. or lower.

本発明の硬化性樹脂組成物は、上述の(A)成分〜(D)成分を少なくとも含有する組成物であり、好ましくは、上述の(A)成分〜(D)成分からなる組成物である。下記の成分((E)熱可塑性樹脂、(F)吸湿性フィラー等)を、必要に応じて配合することができる。 The curable resin composition of the present invention is a composition containing at least the above-mentioned components (A) to (D), and is preferably a composition comprising the above-mentioned components (A) to (D). .. The following components ((E) thermoplastic resin, (F) hygroscopic filler, etc.) can be blended as needed.

<(E)熱可塑性樹脂>
本発明の硬化性樹脂組成物には、硬化物である封止層への可撓性の付与、硬化性樹脂組成物の塗工性(はじき防止)等の観点から、(E)熱可塑性樹脂(以下、「(E)成分)」ともいう)を含有させることができる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエステル樹脂、(メタ)アクリル系ポリマー等を挙げることができる。これらの熱可塑性樹脂は、1種のみを使用してもよく、2種以上を併用してもよい。
<(E) Thermoplastic resin>
The curable resin composition of the present invention includes (E) a thermoplastic resin from the viewpoints of imparting flexibility to the sealing layer, which is a cured product, and coating properties (preventing repelling) of the curable resin composition. (Hereinafter, also referred to as “(E) component)”) can be contained. Examples of the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, polysulfone resin, polyester resin, (meth) acrylic polymer and the like. Only one type of these thermoplastic resins may be used, or two or more types may be used in combination.

(E)成分の重量平均分子量は、10,000より大きいことが好ましく、15,000以上がより好ましく、20,000以上が特に好ましい。しかし、この重量平均分子量が大きすぎると、(B)成分との相溶性が低下する等の傾向がある。そのため、この重量平均分子量は、1,000,000以下であるのが好ましく、800,000以下がより好ましい。 The weight average molecular weight of the component (E) is preferably greater than 10,000, more preferably 15,000 or more, and particularly preferably 20,000 or more. However, if the weight average molecular weight is too large, the compatibility with the component (B) tends to decrease. Therefore, the weight average molecular weight is preferably 1,000,000 or less, and more preferably 800,000 or less.

(E)成分としては、フェノキシ樹脂が特に好ましい。フェノキシ樹脂は、熱硬化性樹脂(特にエポキシ樹脂)との相溶性が良く、硬化性樹脂組成物から得られる硬化物の水分遮断性に有利に作用する。フェノキシ樹脂の重量平均分子量は、好ましくは15,000以上、より好ましくは20,000以上であり、好ましくは1,000,000以下、より好ましくは800,000以下である。 As the component (E), a phenoxy resin is particularly preferable. The phenoxy resin has good compatibility with a thermosetting resin (particularly an epoxy resin), and has an advantageous effect on the water-blocking property of the cured product obtained from the curable resin composition. The weight average molecular weight of the phenoxy resin is preferably 15,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, and more preferably 800,000 or less.

好適なフェノキシ樹脂としては、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、およびノルボルネン骨格から選択される1種以上の骨格を有するものが挙げられる。フェノキシ樹脂は1種または2種以上を使用できる。 Suitable phenoxy resins include one or more skeletons selected from bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolak skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, and norbornene skeleton. What you have. One type or two or more types of phenoxy resin can be used.

フェノキシ樹脂の市販品としては、例えば、三菱化学社製の1256(ビスフェノールA骨格含有フェノキシ樹脂)、4275(ビスフェノールA骨格及びビスフェノールF骨格含有フェノキシ樹脂)等が挙げられる。 Examples of commercially available phenoxy resins include 1256 (bisphenol A skeleton-containing phenoxy resin) and 4275 (bisphenol A skeleton-containing phenoxy resin) manufactured by Mitsubishi Chemical Corporation.

本発明の硬化性樹脂組成物が(E)成分(特に、フェノキシ樹脂)を含有する場合、その含有量は、硬化性樹脂組成物の不揮発分全体当たり、1〜40質量%が好ましく、5〜30質量%がより好ましい。 When the curable resin composition of the present invention contains the component (E) (particularly, phenoxy resin), the content thereof is preferably 1 to 40% by mass, preferably 1 to 40% by mass, based on the total non-volatile content of the curable resin composition. 30% by mass is more preferable.

<(F)吸湿性フィラー>
本発明の硬化性樹脂組成物には、硬化物である封止層に、より高い耐水蒸気透過性を付与するために、吸湿性フィラー(以下、「(F)成分」とも略称する)」)を配合することができる。(F)吸湿性フィラーは、水分を吸収する能力を有するフィラーであれば特に限定はされないが、好ましくは吸湿性金属酸化物である。吸湿性金属酸化物は、水分を吸収する能力をもち、吸湿した水分と化学反応して水酸化物になる金属酸化物を意味する。具体的には、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム、酸化バリウム、未焼成ハイドロタルサイト、半焼成ハイドロタルサイト、焼成ハイドロタルサイト、焼成ドロマイト等が挙げられる。中でも、吸湿性の点から、半焼成ハイドロタルサイト、焼成ハイドロタルサイトが好ましい。
<(F) Hygroscopic filler>
The curable resin composition of the present invention has a hygroscopic filler (hereinafter, also abbreviated as “component (F)”) in order to impart higher water vapor permeability to the sealing layer which is a cured product. Can be blended. The hygroscopic filler (F) is not particularly limited as long as it is a filler having an ability to absorb water, but is preferably a hygroscopic metal oxide. A hygroscopic metal oxide means a metal oxide having an ability to absorb water and chemically reacting with the absorbed water to become a hydroxide. Specific examples thereof include calcium oxide, magnesium oxide, strontium oxide, aluminum oxide, barium oxide, uncalcined hydrotalcite, semi-calcined hydrotalcite, calcined hydrotalcite, and calcined dolomite. Of these, semi-calcined hydrotalcite and calcined hydrotalcite are preferable from the viewpoint of hygroscopicity.

ハイドロタルサイトは、未焼成ハイドロタルサイト、半焼成ハイドロタルサイト、および焼成ハイドロタルサイトに分類することができる。 Hydrotalcite can be classified into uncalcined hydrotalcite, semi-calcined hydrotalcite, and calcined hydrotalcite.

未焼成ハイドロタルサイトは、例えば、天然ハイドロタルサイト(MgAl(OH)16CO・4HO)に代表されるような層状の結晶構造を有する金属水酸化物であり、例えば、基本骨格となる層[Mg1−XAl(OH)X+と中間層[(COX/2・mHO]X−からなる。本発明における未焼成ハイドロタルサイトは、合成ハイドロタルサイト等のハイドロタルサイト様化合物を含む概念である。ハイドロタルサイト様化合物としては、例えば、下記式(I)および下記式(II)で表されるものが挙げられる。Unfired hydrotalcite is, for example, a metal hydroxide having a layered crystal structure typified by natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O), for example, It consists of a basic skeleton layer [Mg 1-X Al X (OH) 2 ] X + and an intermediate layer [(CO 3 ) X / 2 · mH 2 O] X− . The uncalcined hydrotalcite in the present invention is a concept including hydrotalcite-like compounds such as synthetic hydrotalcite. Examples of the hydrotalcite-like compound include those represented by the following formulas (I) and (II).

[M2+ 1−x3+x(OH)x+・[(An−x/n・mHO]x− (I)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、M3+はAl3+、Fe3+などの3価の金属イオンを表し、An−はCO 2−、Cl、NO などのn価のアニオンを表し、0<x<1であり、0≦m<1であり、nは正の数である。)
式(I)中、M2+は、好ましくはMg2+であり、M3+は、好ましくはAl3+であり、An−は、好ましくはCO 2−である。
[M 2+ 1-x M 3+ x (OH) 2] x + · [(A n-) x / n · mH 2 O] x- (I)
(Wherein, M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, M 3+ represents a trivalent metal ion such as Al 3+, Fe 3+, A n- is CO 3 2-, Cl -, NO 3 - represents a n-valent anion, such as a 0 <x <1, a 0 ≦ m <1, n is a positive number).
Wherein (I), M 2+ is preferably Mg 2+, M 3+ is preferably Al 3+, A n-is preferably CO 3 2-.

2+ Al(OH)2x+6−nz(An−・mHO (II)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、An−はCO 2−、Cl、NO3−などのn価のアニオンを表し、xは2以上の正の数であり、zは2以下の正の数であり、mは正の数であり、nは正の数である。)
式(II)中、M2+は、好ましくはMg2+であり、An−は、好ましくはCO 2−である。
M 2+ x Al 2 (OH) 2x + 6-nz (A n-) z · mH 2 O (II)
(Wherein, M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, A n- is CO 3 2-, Cl -, represents an n-valent anion such as NO 3-, x is 2 or more Is a positive number, z is a positive number less than or equal to 2, m is a positive number, and n is a positive number.)
Wherein (II), M 2+ is preferably Mg 2+, A n-is preferably CO 3 2-.

半焼成ハイドロタルサイトは、未焼成ハイドロタルサイトを焼成して得られる、層間水の量が減少または消失した層状の結晶構造を有する金属水酸化物をいう。「層間水」とは、組成式を用いて説明すれば、上述した未焼成の天然ハイドロタルサイトおよびハイドロタルサイト様化合物の組成式に記載の「HO」を指す。Semi-calcined hydrotalcite refers to a metal hydroxide having a layered crystal structure in which the amount of interlayer water is reduced or eliminated, which is obtained by calcining uncalcined hydrotalcite. The term "interlayer water" refers to "H 2 O" described in the above-mentioned composition formulas of uncalcined natural hydrotalcite and hydrotalcite-like compounds, if it is described using a composition formula.

一方、焼成ハイドロタルサイトは、未焼成ハイドロタルサイトまたは半焼成ハイドロタルサイトを焼成して得られ、層間水だけでなく、水酸基も縮合脱水によって消失した、アモルファス構造を有する金属酸化物をいう。 On the other hand, calcined hydrotalcite refers to a metal oxide having an amorphous structure obtained by calcining uncalcined hydrotalcite or semi-calcined hydrotalcite, in which not only interlayer water but also hydroxyl groups are eliminated by condensation dehydration.

未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、飽和吸水率により区別することができる。半焼成ハイドロタルサイトの飽和吸水率は、1質量%以上20質量%未満である。一方、未焼成ハイドロタルサイトの飽和吸水率は、1質量%未満であり、焼成ハイドロタルサイトの飽和吸水率は、20質量%以上である。 Uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the saturated water absorption rate. The saturated water absorption rate of the semi-baked hydrotalcite is 1% by mass or more and less than 20% by mass. On the other hand, the saturated water absorption rate of uncalcined hydrotalcite is less than 1% by mass, and the saturated water absorption rate of calcined hydrotalcite is 20% by mass or more.

ここでいう「飽和吸水率」とは、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトまたは焼成ハイドロタルサイトを天秤にて1.5g量り取り、初期質量を測定した後、大気圧下、60℃、90%RH(相対湿度)に設定した小型環境試験器(エスペック社製SH−222)に200時間静置した場合の、初期質量に対する質量増加率を言い、下記式(i):
飽和吸水率(質量%)
=100×(吸湿後の質量−初期質量)/初期質量 (i)
で求めることができる。
The "saturated water absorption rate" as used herein means that 1.5 g of unfired hydrotalcite, semi-fired hydrotalcite or calcined hydrotalcite is weighed with a balance, the initial mass is measured, and then the temperature is 60 ° C. , The mass increase rate with respect to the initial mass when left to stand for 200 hours in a small environmental tester (SH-222 manufactured by Espec Co., Ltd.) set to 90% RH (relative humidity).
Saturated water absorption rate (mass%)
= 100 × (mass after moisture absorption-initial mass) / initial mass (i)
Can be obtained at.

半焼成ハイドロタルサイトの飽和吸水率は、好ましくは3質量%以上20質量%未満、より好ましくは5質量%以上20質量%未満である。 The saturated water absorption of the semi-baked hydrotalcite is preferably 3% by mass or more and less than 20% by mass, and more preferably 5% by mass or more and less than 20% by mass.

また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、熱重量分析で測定される熱重量減少率により区別することができる。半焼成ハイドロタルサイトの280℃における熱重量減少率は15質量%未満であり、かつその380℃における熱重量減少率は12質量%以上である。一方、未焼成ハイドロタルサイトの280℃における熱重量減少率は、15質量%以上であり、焼成ハイドロタルサイトの380℃における熱重量減少率は、12質量%未満である。 Further, uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the thermogravimetric reduction rate measured by thermogravimetric analysis. The thermogravimetric reduction rate of the semi-baked hydrotalcite at 280 ° C. is less than 15% by mass, and the thermogravimetric reduction rate at 380 ° C. is 12% by mass or more. On the other hand, the thermogravimetric reduction rate of uncalcined hydrotalcite at 280 ° C. is 15% by mass or more, and the thermogravimetric reduction rate of calcined hydrotalcite at 380 ° C. is less than 12% by mass.

熱重量分析は、日立ハイテクサイエンス社製TG/DTA EXSTAR6300を用いて、アルミニウム製のサンプルパンにハイドロタルサイトを5mg秤量し、蓋をせずオープンの状態で、窒素流量200mL/分の雰囲気下、30℃から550℃まで昇温速度10℃/分の条件で行うことができる。熱重量減少率は、下記式(ii):
熱重量減少率(質量%)
=100×(加熱前の質量−所定温度に達した時の質量)/加熱前の質量 (ii)
で求めることができる。
For thermogravimetric analysis, 5 mg of hydrotalcite was weighed in an aluminum sample pan using TG / DTA EXSTAR6300 manufactured by Hitachi High-Tech Science, and the nitrogen flow rate was 200 mL / min in an open state without a lid. It can be carried out from 30 ° C. to 550 ° C. under the condition of a heating rate of 10 ° C./min. The thermogravimetric reduction rate is calculated by the following formula (ii):
Thermogravimetric reduction rate (mass%)
= 100 × (mass before heating-mass when a predetermined temperature is reached) / mass before heating (ii)
Can be obtained at.

また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、粉末X線回折で測定されるピークおよび相対強度比により区別することができる。半焼成ハイドロタルサイトは、粉末X線回折により2θが8〜18°付近に二つにスプリットしたピーク、または二つのピークの合成によりショルダーを有するピークを示し、低角側に現れるピークまたはショルダーの回折強度(=低角側回折強度)と、高角側に現れるピークまたはショルダーの回折強度(=高角側回折強度)の相対強度比(低角側回折強度/高角側回折強度)は、0.001〜1,000である。一方、未焼成ハイドロタルサイトは8〜18°付近で一つのピークしか有しないか、または低角側に現れるピークまたはショルダーと高角側に現れるピークまたはショルダーの回折強度の相対強度比が前述の範囲外となる。焼成ハイドロタルサイトは8°〜18°の領域に特徴的ピークを有さず、43°に特徴的なピークを有する。粉末X線回折測定は、粉末X線回折装置(PANalytical社製、Empyrean)により、対陰極CuKα(1.5405Å)、電圧:45V、電流:40mA、サンプリング幅:0.0260°、走査速度:0.0657°/s、測定回折角範囲(2θ):5.0131〜79.9711°の条件で行った。ピークサーチは、回折装置付属のソフトウエアのピークサーチ機能を利用し、「最小有意度:0.50、最小ピークチップ:0.01°、最大ピークチップ:1.00°、ピークベース幅:2.00°、方法:2次微分の最小値」の条件で行うことができる。 In addition, uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the peak and relative intensity ratio measured by powder X-ray diffraction. The semi-baked hydrotalcite shows a peak in which 2θ is split into two in the vicinity of 8 to 18 ° by powder X-ray diffraction, or a peak having a shoulder due to the combination of the two peaks, and the peak or shoulder appearing on the low angle side. The relative intensity ratio (low-angle side diffraction intensity / high-angle side diffraction intensity) of the diffraction intensity (= low-angle side diffraction intensity) and the diffraction intensity of the peak or shoulder appearing on the high-angle side (= high-angle side diffraction intensity) is 0.001. ~ 1,000. On the other hand, uncalcined hydrotalcite has only one peak near 8 to 18 °, or the relative intensity ratio of the diffraction intensity of the peak or shoulder appearing on the low angle side and the peak or shoulder appearing on the high angle side is in the above range. Be outside. The calcined hydrotalcite does not have a characteristic peak in the region of 8 ° to 18 °, but has a characteristic peak in 43 °. Powder X-ray diffraction measurement is performed by a powder X-ray diffractometer (PANalytical, Empyrean) with anti-cathode CuKα (1.5405 Å), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: 0. The measurement was performed under the conditions of .0657 ° / s and the measurement diffraction angle range (2θ): 5.0131 to 79.9711 °. The peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It can be performed under the condition of "0.00 °, method: minimum value of second derivative".

半焼成ハイドロタルサイトのBET比表面積は、1〜250m/gが好ましく、5〜200m/gがより好ましい。半焼成ハイドロタルサイトのBET比表面積は、BET法に従って、比表面積測定装置(Macsorb HM Model 1210 マウンテック社製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて算出することができる。BET specific surface area of the semi-sintered hydrotalcite is preferably 1~250m 2 / g, 5~200m 2 / g is more preferable. The BET specific surface area of semi-calcined hydrotalcite is calculated by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM Model 1210 Mountec) according to the BET method and using the BET multipoint method. Can be done.

半焼成ハイドロタルサイトの平均粒子径は、1〜1,000nmが好ましく、10〜800nmがより好ましい。半焼成ハイドロタルサイトの平均粒子径は、レーザー回折散乱式粒度分布測定(JIS Z 8825)により粒度分布を体積基準で作成したときの該粒度分布のメディアン径である。 The average particle size of the semi-baked hydrotalcite is preferably 1 to 1,000 nm, more preferably 10 to 800 nm. The average particle size of the semi-baked hydrotalcite is the median size of the particle size distribution when the particle size distribution is prepared on a volume basis by laser diffraction scattering type particle size distribution measurement (JIS Z 8825).

(F)成分は、表面処理剤で表面処理したものを用いることができる。表面処理に使用する表面処理剤としては、例えば、高級脂肪酸、アルキルシラン類、シランカップリング剤等を使用することができ、なかでも、高級脂肪酸、アルキルシラン類が好適である。表面処理剤は、1種または2種以上を使用できる。 As the component (F), one that has been surface-treated with a surface treatment agent can be used. As the surface treatment agent used for the surface treatment, for example, higher fatty acids, alkylsilanes, silane coupling agents and the like can be used, and among them, higher fatty acids and alkylsilanes are preferable. As the surface treatment agent, one kind or two or more kinds can be used.

高級脂肪酸としては、例えば、ステアリン酸、モンタン酸、ミリスチン酸、パルミチン酸などの炭素数18以上の高級脂肪酸が挙げられ、中でも、ステアリン酸が好ましい。これらは1種または2種以上組み合わせて使用してもよい。アルキルシラン類としては、メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ジメチルジメトキシシラン、オクチルトリエトキシシラン、n−オクタデシルジメチル(3−(トリメトキシシリル)プロピル)アンモニウムクロライド等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。シランカップリング剤としては、例えば、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリエトキシシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシランおよび11−メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルジメトキシメチルシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−メチルアミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシランおよびN−(2−アミノエチル)−3−アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3−ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p−スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3−アクリルオキシプロピルトリメトキシシランおよび3−メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3−イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらは1種または2種以上組み合わせて使用してもよい。 Examples of the higher fatty acid include higher fatty acids having 18 or more carbon atoms such as stearic acid, montanic acid, myristic acid, and palmitic acid, and stearic acid is preferable. These may be used alone or in combination of two or more. Examples of alkylsilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltriethoxysilane, and n-octadecyldimethyl (n-octadecyldimethyl). Examples thereof include 3- (trimethoxysilyl) propyl) ammonium chloride. These may be used alone or in combination of two or more. Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy. Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane 3-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N- (2) Amino-based silane coupling agents such as −aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane; ureido-based silanes such as 3-ureidopropyltriethoxysilane Coupling agents, vinyl-based silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; styryl-based silane coupling agents such as p-styryltrimethoxysilane; 3-acrylicoxypropyltrimethoxy Acrylic silane coupling agents such as silane and 3-methacryloxypropyltrimethoxysilane; isocyanate-based silane coupling agents such as 3-isocyanpropyltrimethoxysilane, bis (triethoxysilylpropyl) disulfide, bis (triethoxysilylpropyl) ) A sulfide-based silane coupling agent such as tetrasulfide; phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, imidazole silane, triazinesilane and the like can be mentioned. These may be used alone or in combination of two or more.

(F)成分の表面処理は、例えば、未処理の(F)成分を混合機で常温にて攪拌分散させながら、表面処理剤を添加噴霧して5〜60分間攪拌することによって行なうことができる。混合機としては、公知の混合機を使用することができ、例えば、Vブレンダー、リボンブレンダー、バブルコーンブレンダー等のブレンダー、ヘンシェルミキサーおよびコンクリートミキサー等のミキサー、ボールミル、カッターミル等が挙げられる。又、ボールミルなどで吸湿材を粉砕する際に、前記の高級脂肪酸、アルキルシラン類またはシランカップリング剤を混合し、表面処理する方法も可能である。表面処理剤の処理量は(F)成分の種類または表面処理剤の種類等によっても異なるが、(F)成分100質量部に対して1〜10質量部が好ましい。 The surface treatment of the component (F) can be carried out, for example, by stirring and dispersing the untreated component (F) at room temperature with a mixer, adding and spraying a surface treatment agent, and stirring for 5 to 60 minutes. .. As the mixer, a known mixer can be used, and examples thereof include blenders such as V blenders, ribbon blenders and bubble cone blenders, mixers such as Henshell mixers and concrete mixers, ball mills and cutter mills. Further, when pulverizing the moisture absorbing material with a ball mill or the like, a method of mixing the above-mentioned higher fatty acid, alkylsilanes or silane coupling agent and surface-treating the material is also possible. The treatment amount of the surface treatment agent varies depending on the type of the component (F), the type of the surface treatment agent, and the like, but is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (F).

本発明の硬化性樹脂組成物における(F)成分の含有量は特に限定はされないが、樹脂組成物の硬化物からなる封止層とプラスチック基板との密着性および封止層の透明性の観点から、該含有量は、樹脂組成物中の不揮発分の合計100質量%あたり、40質量%以下が好ましく、35質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下がさらに好ましい。また、吸湿性の効果を十分得るという観点から、該含有量は、樹脂組成物中の不揮発分の合計100質量%あたり、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましい。 The content of the component (F) in the curable resin composition of the present invention is not particularly limited, but from the viewpoint of adhesion between the sealing layer made of the cured product of the resin composition and the plastic substrate and the transparency of the sealing layer. Therefore, the content is preferably 40% by mass or less, preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, based on 100% by mass of the total non-volatile content in the resin composition. .. Further, from the viewpoint of sufficiently obtaining a hygroscopic effect, the content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on 100% by mass of the total non-volatile content in the resin composition. , 1.0% by mass or more is more preferable.

本発明における(F)成分の具体例としては、以下のものが挙げられる:
・DHT−4C(協和化学工業社製):半焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:15m/g)
・DHT−4A−2(協和化学工業社製):半焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:13m/g)
・KW−2200(協和化学工業社製):焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:146m/g)
・DHT−4A(協和化学工業社製):未焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:10m/g)
Specific examples of the component (F) in the present invention include the following:
-DHT-4C (manufactured by Kyowa Chemical Industry Co., Ltd.): Semi-calcined hydrotalcite (average particle size: 400 nm, BET specific surface area: 15 m 2 / g)
-DHT-4A-2 (manufactured by Kyowa Chemical Industry Co., Ltd.): Semi-calcined hydrotalcite (average particle size: 400 nm, BET specific surface area: 13 m 2 / g)
-KW-2200 (manufactured by Kyowa Chemical Industry Co., Ltd.): calcined hydrotalcite (average particle size: 400 nm, BET specific surface area: 146 m 2 / g)
-DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.): Unfired hydrotalcite (average particle size: 400 nm, BET specific surface area: 10 m 2 / g)

<その他の添加剤>
本発明の硬化性樹脂組成物は、上述の(E)成分及び(F)成分とは異なるその他の添加剤をさらに含有していてもよい。このような添加剤としては、例えば、ゴム粒子、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等の有機充填剤;オルベン、ベントン等の増粘剤;シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤;トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤;等を挙げることができる。
<Other additives>
The curable resin composition of the present invention may further contain other additives different from the above-mentioned component (E) and component (F). Examples of such additives include organic fillers such as rubber particles, silicone powder, nylon powder, and fluororesin powder; thickeners such as Orben and Benton; silicone-based, fluorine-based, and polymer-based defoamers. Alternatively, a leveling agent; an adhesion imparting agent such as a triazole compound, a thiazole compound, a triazine compound, and a porphyrin compound; and the like can be mentioned.

<硬化性樹脂組成物の製造方法>
本発明の硬化性樹脂組成物は、必須成分((A)成分〜(D)成分)及び必要により配合される成分((E)成分、(F)成分等)を公知の攪拌機や分散機により混合することで調製される。攪拌機や分散機の例としては、ディゾルバー、プラネタリミキサー、ロールミル、サンドミル、ボールミル、ビーズミル、ホモジナイザー、高圧ホモジナイザー、アジホモミキサー、自転・公転ミキサーなどが挙げられる。
<Manufacturing method of curable resin composition>
In the curable resin composition of the present invention, essential components (components (A) to (D)) and components to be blended as necessary (components (E), (F), etc.) are mixed by a known stirrer or disperser. Prepared by mixing. Examples of the stirrer and disperser include a dissolver, a planetary mixer, a roll mill, a sand mill, a ball mill, a bead mill, a homogenizer, a high-pressure homogenizer, an azihomo mixer, and a rotation / revolution mixer.

本発明の硬化性樹脂組成物は、25℃で液状であり、好ましくは、その粘度(25℃)が300mPas未満であり、より好ましくは、250mPas以下である。下限は特に限定はされないが、10mPas以上が好ましく、20mPas以上が好ましい。なお、本発明における「25℃における粘度」および「粘度(25℃)」は、いずれも、「振動式粘度計を使用して測定される25℃における粘度」を意味する。 The curable resin composition of the present invention is liquid at 25 ° C., preferably has a viscosity (25 ° C.) of less than 300 mPas, and more preferably 250 mPas or less. The lower limit is not particularly limited, but is preferably 10 mPas or more, and preferably 20 mPas or more. The "viscosity at 25 ° C." and "viscosity (25 ° C.)" in the present invention both mean "viscosity at 25 ° C. measured using a vibration viscometer".

<用途>
本発明の硬化性樹脂組成物は、各種半導体素子等の封止に使用される。透明性が高いことから、有機EL素子等の発光素子や太陽電池等の受光素子等の光電変換素子の封止に特に好適である。具体的には、例えば、有機EL素子の発光部の上部および/または周囲(側部)に適用して有機EL素子の発光部を外部から保護する封止層を形成する封止剤として使用する。本発明の硬化性樹脂組成物は、室温での流動性に優れるため、封止対象物に直接塗工でき、一様な性状の樹脂組成物層(塗布層)を容易に形成することができる。塗工方法としては、バーコート、カンマコート、ダイコート、ブレードコート、ディスペンサー、インクジェット等を単独または組み合わせて用いることができる。こうして形成された樹脂組成物層(塗布層)を硬化することで、透明性、封止性能の良好な封止層を形成することができる。
<Use>
The curable resin composition of the present invention is used for sealing various semiconductor elements and the like. Since it has high transparency, it is particularly suitable for sealing a light emitting element such as an organic EL element or a photoelectric conversion element such as a light receiving element such as a solar cell. Specifically, for example, it is used as a sealing agent that is applied to the upper part and / or the periphery (side part) of the light emitting part of the organic EL element to form a sealing layer that protects the light emitting part of the organic EL element from the outside. .. Since the curable resin composition of the present invention has excellent fluidity at room temperature, it can be directly applied to the object to be sealed, and a resin composition layer (coating layer) having uniform properties can be easily formed. .. As the coating method, bar coat, comma coat, die coat, blade coat, dispenser, inkjet and the like can be used alone or in combination. By curing the resin composition layer (coating layer) thus formed, a sealing layer having good transparency and sealing performance can be formed.

<硬化物>
本発明の硬化性樹脂組成物は光若しくは熱により硬化させることができる。光により硬化させる場合、例えば、水銀ランプ等で1000mJ/cm2以上の光照射を行うことができる。また、熱により硬化させる場合、例えば温度60〜150℃、で加熱して硬化させることができる。本発明の硬化性樹脂組成物を硬化して得られる硬化物はアウトガス発生量が極めて少なく、長期に亘って素子の劣化を防ぐ封止層を形成し得る。特に、硬化物が100℃以上の高温下にさらされても、アウトガス発生量が極めて少なく、高温環境下において長期に亘って素子の劣化を防ぐ封止層を形成し得る。
<Cured product>
The curable resin composition of the present invention can be cured by light or heat. When cured by light, for example, light irradiation of 1000 mJ / cm 2 or more can be performed with a mercury lamp or the like. When it is cured by heat, it can be cured by heating at, for example, a temperature of 60 to 150 ° C. The cured product obtained by curing the curable resin composition of the present invention produces an extremely small amount of outgas, and can form a sealing layer that prevents deterioration of the device over a long period of time. In particular, even if the cured product is exposed to a high temperature of 100 ° C. or higher, the amount of outgas generated is extremely small, and a sealing layer that prevents deterioration of the device for a long period of time in a high temperature environment can be formed.

<有機ELデバイス>
有機ELデバイスの封止には、有機EL素子の周囲の基板に封止剤を枠状に塗布し、該封止剤によって、有機ELが形成された基板と封止基板とを貼り合わせる方法(枠封止法)、或いは、有機ELが形成された基板の基板と封止基板との間及び有機EL素子と封止基板との間に封止剤を塗布し、これを硬化させる方法(面封止法)がある。
<Organic EL device>
To seal the organic EL device, a sealing agent is applied in a frame shape to the substrate around the organic EL element, and the substrate on which the organic EL is formed and the sealing substrate are bonded to each other by the sealing agent (a method). Frame sealing method), or a method of applying a sealing agent between the substrate and the sealing substrate on which the organic EL is formed and between the organic EL element and the sealing substrate and curing it (surface). There is a sealing method).

本発明の硬化性樹脂組成物は室温での粘度が低く流動性が高いので、いずれの封止方法における封止剤にも適用でき、基板に対して塗工により一様な性状の組成物層(塗布層)を容易に形成することができる。組成物層(塗布層)を熱硬化して封止層を形成する場合、加熱手段としては、例えば、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱などが挙げられる。硬化温度及び硬化時間のそれぞれの下限値は、組成物層(塗布層)が硬化した硬化物層(封止層)が封止対象物に十分に満足できる接着強度で接着させる観点から、硬化温度は、60℃以上が好ましく、80℃以上がより好ましい。硬化時間は、15分以上が好ましく、30分以上がより好ましい。このようにして、有機EL素子が本発明の硬化性樹脂組成物によって封止された有機ELデバイスを得ることができる。 Since the curable resin composition of the present invention has low viscosity at room temperature and high fluidity, it can be applied to a sealing agent in any sealing method, and a composition layer having uniform properties by coating on a substrate. (Coating layer) can be easily formed. When the composition layer (coating layer) is thermoset to form a sealing layer, the heating means includes, for example, a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, and heating by crimping a heat tool. Can be mentioned. The lower limit of each of the curing temperature and the curing time is the curing temperature from the viewpoint that the cured product layer (sealing layer) obtained by curing the composition layer (coating layer) adheres to the object to be sealed with a sufficiently satisfactory adhesive strength. Is preferably 60 ° C. or higher, more preferably 80 ° C. or higher. The curing time is preferably 15 minutes or more, more preferably 30 minutes or more. In this way, it is possible to obtain an organic EL device in which the organic EL element is sealed with the curable resin composition of the present invention.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、特に断りがない限り、硬化物の反応率以外の「%」および「部」は、それぞれ「質量%」および「質量部」を意味する。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. In the following description, unless otherwise specified, “%” and “parts” other than the reaction rate of the cured product mean “% by mass” and “parts by mass”, respectively.

実施例及び比較例で使用した材料は以下の通りである。
(A)成分
・ダイセル社製「セロキサイド2021P」
脂環エポキシ基を有する化合物(化合物名:3’,4’−エポキシシクロヘキシルメチル3,4−エポキシシクロヘキサンカルボキシレート(式(I−1)の化合物)、分子量:252.3、エポキシ当量:128〜145g/eq、粘度(25℃):100−600mPas)
・Synasia社製「Synasia S−28」
脂環エポキシ基を有する化合物(化合物名:ビス((3,4−エポキシシクロヘキシル)メチル)アジペート)(式(I−4)の化合物)、分子量:366、エポキシ当量:190〜210g/eq、粘度(25℃):450−750mPas)
The materials used in the examples and comparative examples are as follows.
(A) Ingredients-Daicel's "Selokiside 2021P"
Compound having an alicyclic epoxy group (compound name: 3', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (compound of formula (I-1)), molecular weight: 252.3, epoxy equivalent: 128 to 145 g / eq, viscosity (25 ° C.): 100-600 mPas)
-Synasia "Synasia S-28"
Compound having an alicyclic epoxy group (compound name: bis ((3,4-epoxycyclohexyl) methyl) adipate) (compound of formula (I-4)), molecular weight: 366, epoxy equivalent: 190-210 g / eq, viscosity (25 ° C): 450-750 mPas)

(B)成分
・ダイセル社製「EHPE3150」(2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物、2官能以上、重量平均分子量:2400)
・三菱ケミカル社製「1004」(ビスフェノールA型エポキシ樹脂、2官能、重量平均分子量:1650)
・三菱ケミカル社製「YX8040」(水添ビスフェノールA型エポキシ樹脂、2官能、重量平均分子量:3831)
(C)成分
・日本カーバイド社製「CHDVE」(シクロヘキサンジメタノールジビニルエーテル、分子量196.29)
・日本カーバイド社製「DEGDVE」(ジエチレングリコールジビニルエーテル、分子量158.20)
(D)成分
・King Industries社製「CXC−1821」(4級アンモニウムカチオンとボレートアニオンからなる塩、熱カチオン重合開始剤)
Ingredients (B) -Daicel's "EHPE3150" (1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, bifunctional or higher, weight average molecular weight : 2400)
-Mitsubishi Chemical Corporation "1004" (bisphenol A type epoxy resin, bifunctional, weight average molecular weight: 1650)
-Mitsubishi Chemical Corporation "YX8040" (hydrogenated bisphenol A type epoxy resin, bifunctional, weight average molecular weight: 3831)
(C) Ingredients- "CHDVE" manufactured by Nippon Carbide Co., Ltd. (Cyclohexanedimethanol divinyl ether, molecular weight 196.29)
-"DEGDVE" manufactured by Nippon Carbide (diethylene glycol divinyl ether, molecular weight 158.20)
(D) Ingredients- "CXC-1821" manufactured by King Industries (a salt composed of a quaternary ammonium cation and a borate anion, a thermal cation polymerization initiator)

<実施例1>
2官能脂環式エポキシ樹脂(ダイセル社製「セロキサイド2021P」)55部と、高分子量多官能エポキシ樹脂(ダイセル社製「EHPE3150」)10部と、2官能ジビニルエーテルとしてシクロヘキサンジメタノールジビニルエーテル(日本カーバイド社製「CHDVE」)35部と、熱カチオン重合開始剤(King Industries社製「CXC−1821」)0.25部とを配合し、高速回転ミキサーで均一に分散して、組成物を得た。
<Example 1>
55 parts of bifunctional alicyclic epoxy resin (“Selokiside 2021P” manufactured by Daicel), 10 parts of high molecular weight polyfunctional epoxy resin (“EHPE3150” manufactured by Daicel), and cyclohexanedimethanol divinyl ether (Japan) as bifunctional divinyl ether. 35 parts of "CHDVE" manufactured by Carbide and 0.25 part of a thermal cationic polymerization initiator ("CXC-1821" manufactured by King Industries) were mixed and uniformly dispersed with a high-speed rotating mixer to obtain a composition. It was.

<実施例2〜4>
実施例1で用いた各材料を表1に記載の配合比に変更して、実施例1と同様に均一に分散して実施例2〜4の組成物を得た。
<Examples 2 to 4>
Each material used in Example 1 was changed to the compounding ratio shown in Table 1 and uniformly dispersed in the same manner as in Example 1 to obtain the compositions of Examples 2 to 4.

<実施例5>
「EHPE3150」を、ビスフェノールA型エポキシ樹脂「1004」10部に変更したこと以外は実施例1と同様にして、組成物を得た。
<Example 5>
A composition was obtained in the same manner as in Example 1 except that "EHPE3150" was changed to 10 parts of bisphenol A type epoxy resin "1004".

<実施例6>
「EHPE3150」を、水添ビスフェノールA型エポキシ樹脂「YX8040」10部に変更したこと以外は実施例1と同様にして、樹脂組成物を得た。
<Example 6>
A resin composition was obtained in the same manner as in Example 1 except that "EHPE3150" was changed to 10 parts of hydrogenated bisphenol A type epoxy resin "YX8040".

<実施例7>
「CHDVE」を、ジエチレングリコールジビニルエーテル(「DEGDVE」)35部に変更したこと以外は実施例1と同様にして、樹脂組成物を得た。
<Example 7>
A resin composition was obtained in the same manner as in Example 1 except that "CHDVE" was changed to 35 parts of diethylene glycol divinyl ether ("DEGDVE").

<実施例8>
「セロキサイド2021P」55部を、Synasia社製「S―28」45部に変更し、「EHPE3150」量を15部、「CHDVE」量を40部に変更したこと以外は実施例1と同様にして、樹脂組成物を得た。
<Example 8>
The same as in Example 1 except that 55 parts of "Selokiside 2021P" were changed to 45 parts of "S-28" manufactured by Synasia, and the amount of "EHPE3150" was changed to 15 parts and the amount of "CHDVE" was changed to 40 parts. , A resin composition was obtained.

<実施例9>
2官能脂環式エポキシ樹脂(ダイセル社製「セロキサイド2021P」)60部と、高分子量多官能エポキシ樹脂(ダイセル社製「EHPE3150」)20部と、2官能ジビニルエーテルとしてシクロヘキサンジメタノールジビニルエーテル(日本カーバイド社製「CHDVE」)30部と、半焼成ハイドロタルサイト(協和化学工業社製「DHT−4C」)5部と、熱カチオン重合開始剤(King Industries社製「CXC−1821」)0.25部とを配合し、高速回転ミキサーで均一に分散して、組成物を得た。
<Example 9>
60 parts of bifunctional alicyclic epoxy resin (“Selokiside 2021P” manufactured by Daicel), 20 parts of high molecular weight polyfunctional epoxy resin (“EHPE3150” manufactured by Daicel), and cyclohexanedimethanol divinyl ether (Japan) as bifunctional divinyl ether. 30 parts of "CHDVE" manufactured by Carbide, 5 parts of semi-baked hydrotalcite ("DHT-4C" manufactured by Kyowa Chemical Industry Co., Ltd.), and a thermal cationic polymerization initiator ("CXC-1821" manufactured by King Industries) 0. 25 parts were blended and uniformly dispersed with a high-speed rotary mixer to obtain a composition.

<比較例1>
2官能脂環式エポキシ樹脂(ダイセル社製「セロキサイド2021P」)100部と、熱カチオン重合開始剤(King Industries社製「CXC−1821」)0.25部とを配合し、高速回転ミキサーで均一に分散して、組成物を得た。
<Comparative example 1>
100 parts of a bifunctional alicyclic epoxy resin (Daicel's "Celoxide 2021P") and 0.25 part of a thermal cationic polymerization initiator (King Industries'"CXC-1821") are blended and uniform with a high-speed rotary mixer. The composition was obtained.

<比較例2>
高分子量の多官能エポキシ樹脂(ダイセル社製「EHPE3150」)50部と、2官能ジビニルエーテルとしてシクロヘキサンジメタノールジビニルエーテル(日本カーバイド社製「CHDVE」)50部と、熱カチオン重合開始剤(King Industries社製「CXC−1821」)0.25部とを配合し、高速回転ミキサーで分散を試みたが、高分子量の多官能エポキシ樹脂(ダイセル社製「EHPE3150」)が不溶で組成物を得られなかった。
<Comparative example 2>
50 parts of high molecular weight polyfunctional epoxy resin (“EHPE3150” manufactured by Daicel Co., Ltd.), 50 parts of cyclohexanedimethanol divinyl ether (“CHDVE” manufactured by Nippon Carbide Co., Ltd.) as bifunctional divinyl ether, and a thermal cationic polymerization initiator (King Industries). 0.25 parts of "CXC-1821" manufactured by Daicel Co., Ltd.) was blended and dispersion was attempted with a high-speed rotary mixer, but a high molecular weight polyfunctional epoxy resin ("EHPE3150" manufactured by Daicel Co., Ltd.) was insoluble and a composition was obtained. There wasn't.

<比較例3>
2官能脂環式エポキシ樹脂(「セロキサイド2021P」)50部と、2官能ジビニルエーテルとしてシクロヘキサンジメタノールジビニルエーテル(「CHDVE」)50部と、熱カチオン重合開始剤(King Industries社製「CXC−1821」)0.25部とを配合し、高速回転ミキサーで均一に分散して、組成物を得た。
<Comparative example 3>
50 parts of bifunctional alicyclic epoxy resin (“Celoxyside 2021P”), 50 parts of cyclohexanedimethanol divinyl ether (“CHDVE”) as bifunctional divinyl ether, and thermal cationic polymerization initiator (CXC-1821) manufactured by King Industries. ”) 0.25 parts were blended and uniformly dispersed with a high-speed rotary mixer to obtain a composition.

<比較例4>
2官能脂環式エポキシ樹脂(「セロキサイド2021P」)50部と、高分子量の多官能エポキシ樹脂として「EHPE3150」50部と、熱カチオン重合開始剤(King
Industries社製「CXC−1821」)0.25部とを配合し、高速回転ミキサーで均一に分散して、組成物を得た。
<Comparative example 4>
50 parts of bifunctional alicyclic epoxy resin ("Selokiside 2021P"), 50 parts of "EHPE3150" as high molecular weight polyfunctional epoxy resin, and thermal cationic polymerization initiator (King)
0.25 parts of “CXC-1821” manufactured by Industries, Inc.) was blended and uniformly dispersed with a high-speed rotary mixer to obtain a composition.

実施例及び比較例で調製した組成物は粘度、反応率、及びアウトガス量について以下の評価試験を行った。その結果を下記表1に示す。 The compositions prepared in Examples and Comparative Examples were subjected to the following evaluation tests for viscosity, reaction rate, and outgas amount. The results are shown in Table 1 below.

<粘度測定>
実施例及び比較例で調製した組成物を、振動式粘度計(セコニック社製「VM−10A」)を用いて、25℃における粘度を測定し、以下の基準で評価した。
優(◎) :100mPas未満
良好(○):100mPas以上300mPas未満
可(△) :300mPas以上500mPas未満
不良(×):500mPas以上もしくは不溶
<Viscosity measurement>
The compositions prepared in Examples and Comparative Examples were measured for viscosity at 25 ° C. using a vibrating viscometer (“VM-10A” manufactured by SEKONIC Corporation) and evaluated according to the following criteria.
Excellent (◎): Less than 100 mPas Good (○): 100 mPas or more and less than 300 mPas Possible (△): 300 mPas or more and less than 500 mPas Defective (×): 500 mPas or more or insoluble

<反応率測定>
実施例及び比較例で調製した組成物を、100℃で30分間加熱して硬化させた際の反応前後の発熱量を示差走査熱量計(日立社製「DSC7000X」)により測定し、反応率を次式から算出した。
組成物の反応率(%)=100×(1―硬化後の発熱量/硬化前の発熱量)
反応率は以下の基準で評価した。
良好(○):95%以上
可(△) :90%以上95%未満
不良(×):90%未満
<Measurement of reaction rate>
The calorific value before and after the reaction when the compositions prepared in Examples and Comparative Examples were heated at 100 ° C. for 30 minutes and cured was measured with a differential scanning calorimeter (“DSC7000X” manufactured by Hitachi, Ltd.), and the reaction rate was measured. It was calculated from the following formula.
Reaction rate (%) of the composition = 100 × (1-calorific value after curing / calorific value before curing)
The reaction rate was evaluated according to the following criteria.
Good (○): 95% or more Possible (△): 90% or more and less than 95% Poor (×): Less than 90%

<アウトガス量測定>
実施例及び比較例で調製した組成物を100℃で30分間加熱して硬化物を作製し、100℃で2時間加熱した際のアウトガス量を示差熱熱重量同時測定装置(日立ハイテクサイエンス社製「STA7000」)により測定した。
アウトガス量は以下の基準で評価した。
優(◎) :100ppm未満
良好(○):100ppm以上300ppm未満
可(△) :300ppm以上500ppm未満
不良(×):500ppm以上
<Measurement of outgassing amount>
The compositions prepared in Examples and Comparative Examples were heated at 100 ° C. for 30 minutes to prepare a cured product, and the amount of outgas when heated at 100 ° C. for 2 hours was measured by a differential thermogravimetric simultaneous measuring device (manufactured by Hitachi High-Tech Science Corporation). It was measured by "STA7000").
The amount of outgas was evaluated according to the following criteria.
Excellent (◎): Less than 100ppm Good (○): 100ppm or more and less than 300ppm Possible (△): 300ppm or more and less than 500ppm Defective (×): 500ppm or more

<透過率測定>
実施例1〜9、比較例1〜4で調製したそれぞれの樹脂組成物について、無アルカリガラス板(長さ50mm、幅50mm、厚み700μm、日本電気硝子社製OA−10G)に樹脂組成物を適当量滴下後、同サイズの無アルカリガラスで挟みあわせ100℃で30分間加熱して透過率測定用サンプルを作製した(厚み:10μm)。スガ試験機社製ヘーズメーターを用いて、空気をリファレンスとしてD65光にて評価用サンプルの全光線透過率を測定した結果、いずれも全光線透過率が90%以上であり、高い透明性を示すことを確認した。
<Measurement of transmittance>
For each of the resin compositions prepared in Examples 1 to 9 and Comparative Examples 1 to 4, the resin composition was placed on a non-alkali glass plate (length 50 mm, width 50 mm, thickness 700 μm, OA-10G manufactured by Nippon Electric Glass Co., Ltd.). After dropping an appropriate amount, the mixture was sandwiched between non-alkali glass of the same size and heated at 100 ° C. for 30 minutes to prepare a sample for transmittance measurement (thickness: 10 μm). As a result of measuring the total light transmittance of the evaluation sample with D65 light using air as a reference using a haze meter manufactured by Suga Test Instruments Co., Ltd., the total light transmittance is 90% or more, showing high transparency. It was confirmed.

表1中、粘度、反応率及びアウトガス量は実測値と評価結果を示す。
表1の結果から、実施例1〜9の組成物はいずれも、室温での粘度が低く、塗工適性に優れる組成物であり、しかも、硬化反応の反応率が高く、硬化反応後の硬化物は高温下に置かれてもアウトガス発生量が極めて少なく、長期に亘って素子の劣化を防ぐ封止層を形成し得るものであることが確認できた。
In Table 1, the viscosity, reaction rate and outgas amount show the measured values and the evaluation results.
From the results in Table 1, all of the compositions of Examples 1 to 9 have a low viscosity at room temperature and are excellent in coating suitability, and also have a high reaction rate of the curing reaction and are cured after the curing reaction. It was confirmed that the amount of outgas generated is extremely small even when the product is placed at a high temperature, and that a sealing layer that prevents deterioration of the device can be formed for a long period of time.

<デバイス封止試験>
有機EL素子を用いた封止性を評価した。まず、酸化インジウムスズ(ITO)付ガラス基板(ジオマテック社製)に発光面積が4mmとなるように有機EL素子(有機膜の厚さ:110nm、陰極の厚さ:10nm)を形成した。次に有機EL素子上に化学気相成長法(CVD法)を用いて窒化膜(厚さ:500nm)を形成した。次いで、実施例1で作製した組成物を、窒化膜付の有機EL素子に滴下した後、その上から無アルカリガラス板を重ねて積層体(無アルカリガラス板/組成物層/窒化膜付の有機EL素子/ITO付ガラス基板)を調製した。該積層体を100℃で30分間加熱して組成物を硬化させることで、有機EL素子を封止した積層体を製造した(硬化物の厚さ:10μm)。封止した有機EL素子に電圧を印加し、初期特性を評価した結果、良好な発光性を示し、封止層が良好に形成されていることが確認できた。
<Device sealing test>
The sealing property using the organic EL element was evaluated. First, an organic EL element (organic film thickness: 110 nm, cathode thickness: 10 nm) was formed on a glass substrate with indium tin oxide (ITO) (manufactured by Geomatec) so that the light emitting area was 4 mm 2 . Next, a nitride film (thickness: 500 nm) was formed on the organic EL device by using a chemical vapor deposition method (CVD method). Next, the composition produced in Example 1 was dropped onto an organic EL device with a nitride film, and then a non-alkali glass plate was laminated on top of the composition (non-alkali glass plate / composition layer / with a nitride film). Organic EL element / glass substrate with ITO) was prepared. By heating the laminate at 100 ° C. for 30 minutes to cure the composition, a laminate in which the organic EL element was sealed was produced (thickness of the cured product: 10 μm). As a result of applying a voltage to the sealed organic EL element and evaluating the initial characteristics, it was confirmed that good light emission was exhibited and the sealing layer was well formed.

本発明の封止用硬化性樹脂組成物は、アウトガス発生量が極めて少ない硬化物を生成するので、長期に亘って素子の劣化を防ぐ封止層を得ることができる。また、本発明の封止用硬化性樹脂組成物は、室温での流動性に優れ、封止対象物に直接塗工できるので、一様な性状の組成物層(塗布層)を容易に形成することができ、意図した箇所に高性能の封止層を形成することができる。 Since the curable resin composition for sealing of the present invention produces a cured product in which the amount of outgas generated is extremely small, it is possible to obtain a sealing layer that prevents deterioration of the device for a long period of time. Further, since the curable resin composition for sealing of the present invention has excellent fluidity at room temperature and can be directly applied to the object to be sealed, a composition layer (coating layer) having uniform properties can be easily formed. It is possible to form a high-performance sealing layer at an intended location.

本願は、日本で出願された特願2018−011571号を基礎としており、その内容は本願明細書に全て包含される。 This application is based on Japanese Patent Application No. 2018-011571 filed in Japan, the contents of which are all included in the specification of the present application.

Claims (9)

(A)分子量が1000未満の2官能脂環式エポキシ樹脂、(B)分子量が1000以上の多官能エポキシ樹脂、(C)2官能ビニルエーテル化合物、及び(D)カチオン重合開始剤を含む、封止用硬化性樹脂組成物。 Encapsulation containing (A) a bifunctional alicyclic epoxy resin having a molecular weight of less than 1000, (B) a polyfunctional epoxy resin having a molecular weight of 1000 or more, (C) a bifunctional vinyl ether compound, and (D) a cationic polymerization initiator. Curable resin composition for use. (B)多官能エポキシ樹脂の分子量が10000以下である、請求項1に記載の封止用硬化性樹脂組成物。 (B) The curable resin composition for sealing according to claim 1, wherein the polyfunctional epoxy resin has a molecular weight of 10,000 or less. (B)多官能エポキシ樹脂が環状骨格を有する、請求項1または2に記載の封止用硬化性樹脂組成物。 (B) The curable resin composition for sealing according to claim 1 or 2, wherein the polyfunctional epoxy resin has a cyclic skeleton. (C)2官能ビニルエーテル化合物の分子量が1000以下である、請求項1〜3のいずれか1項に記載の封止用硬化性樹脂組成物。 (C) The curable resin composition for sealing according to any one of claims 1 to 3, wherein the bifunctional vinyl ether compound has a molecular weight of 1000 or less. 25℃における粘度が300mPas未満である、請求項1〜4のいずれか1項に記載の封止用硬化性樹脂組成物。 The curable resin composition for sealing according to any one of claims 1 to 4, wherein the viscosity at 25 ° C. is less than 300 mPas. (D)カチオン重合開始剤が熱カチオン重合開始剤である、請求項1〜5のいずれか1項に記載の封止用硬化性樹脂組成物。 (D) The curable resin composition for sealing according to any one of claims 1 to 5, wherein the cationic polymerization initiator is a thermosetting polymerization initiator. (A)2官能脂環式エポキシ樹脂の分子量が100以上である、請求項1〜6のいずれか1項に記載の封止用硬化性樹脂組成物。 (A) The curable resin composition for sealing according to any one of claims 1 to 6, wherein the bifunctional alicyclic epoxy resin has a molecular weight of 100 or more. 有機EL素子の封止用である、請求項1〜7のいずれか1項に記載の封止用硬化性樹脂組成物。 The curable resin composition for sealing according to any one of claims 1 to 7, which is used for sealing an organic EL element. 請求項1〜7のいずれか1項に記載の硬化性樹脂組成物の硬化物で有機EL素子が封止されている有機ELデバイス。 An organic EL device in which an organic EL element is sealed with a cured product of the curable resin composition according to any one of claims 1 to 7.
JP2019567173A 2018-01-26 2019-01-25 Curable resin composition for sealing Pending JPWO2019146736A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018011571 2018-01-26
JP2018011571 2018-01-26
PCT/JP2019/002388 WO2019146736A1 (en) 2018-01-26 2019-01-25 Curable resin composition for sealing

Publications (1)

Publication Number Publication Date
JPWO2019146736A1 true JPWO2019146736A1 (en) 2021-01-28

Family

ID=67396061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019567173A Pending JPWO2019146736A1 (en) 2018-01-26 2019-01-25 Curable resin composition for sealing

Country Status (5)

Country Link
JP (1) JPWO2019146736A1 (en)
KR (1) KR20200115573A (en)
CN (1) CN111587266A (en)
TW (1) TW201936877A (en)
WO (1) WO2019146736A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292568A (en) * 2002-04-03 2003-10-15 Daicel Chem Ind Ltd Method for curing heat-curable epoxy resin composition, cured product, and application thereof
JP2009108183A (en) * 2007-10-30 2009-05-21 Konica Minolta Medical & Graphic Inc Curable composition
WO2014017524A1 (en) * 2012-07-26 2014-01-30 電気化学工業株式会社 Resin composition
JP2014225380A (en) * 2013-05-16 2014-12-04 積水化学工業株式会社 Sealant for organic electroluminescent display element and manufacturing method of organic electroluminescent display element
WO2015129670A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 Curable resin composition for sealing organic electroluminescent display element, curable resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
JP2016027127A (en) * 2014-06-27 2016-02-18 株式会社ダイセル Monomer composition, and curable composition comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4010394B2 (en) * 2001-12-14 2007-11-21 大日本印刷株式会社 Electroluminescent element
JP5201347B2 (en) 2008-11-28 2013-06-05 株式会社スリーボンド Photocurable resin composition for sealing organic EL elements
KR101697892B1 (en) * 2013-06-10 2017-01-18 미쯔이가가꾸가부시끼가이샤 Heat-curable composition, surface sealing material for organic el element, and cured object obtained therefrom
CN105026456B (en) * 2013-08-26 2017-10-17 积水化学工业株式会社 Light solidify afterwards resin combination
JPWO2015087807A1 (en) * 2013-12-11 2017-03-16 積水化学工業株式会社 Curable resin composition for sealing organic electroluminescence display element, curable resin sheet for sealing organic electroluminescence display element, and organic electroluminescence display element
CN110028838A (en) * 2014-06-27 2019-07-19 株式会社大赛璐 Monomer composition and solidification compound containing it
JP6228289B1 (en) * 2016-12-28 2017-11-08 株式会社ダイセル Composition for sealing an organic electroluminescence device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292568A (en) * 2002-04-03 2003-10-15 Daicel Chem Ind Ltd Method for curing heat-curable epoxy resin composition, cured product, and application thereof
JP2009108183A (en) * 2007-10-30 2009-05-21 Konica Minolta Medical & Graphic Inc Curable composition
WO2014017524A1 (en) * 2012-07-26 2014-01-30 電気化学工業株式会社 Resin composition
JP2014225380A (en) * 2013-05-16 2014-12-04 積水化学工業株式会社 Sealant for organic electroluminescent display element and manufacturing method of organic electroluminescent display element
WO2015129670A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 Curable resin composition for sealing organic electroluminescent display element, curable resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
JP2016027127A (en) * 2014-06-27 2016-02-18 株式会社ダイセル Monomer composition, and curable composition comprising the same

Also Published As

Publication number Publication date
TW201936877A (en) 2019-09-16
KR20200115573A (en) 2020-10-07
CN111587266A (en) 2020-08-25
WO2019146736A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP6369475B2 (en) Sealing resin composition and sealing sheet
JP7120017B2 (en) Encapsulating resin composition and encapsulating sheet
WO2015068787A1 (en) Hydrotalcite-containing sealing resin composition and sealing sheet
JP6801680B2 (en) Thermosetting resin composition for sealing and sheet for sealing
TW200913181A (en) Optical semiconductor-sealing composition
KR102579970B1 (en) Bag sheet
WO2021111855A1 (en) Sealing agent, sealing sheet, electronic device, and perovskite type solar cell
JP6572887B2 (en) Manufacturing method of sealing body
JP2010209152A (en) Electro-conductive resin composition, semiconductor device using the same, and manufacturing method for electro-conductive resin composition
JP2009185131A (en) Thermosetting composition for optical semiconductor, sealing agent for optical semiconductor element, and optical semiconductor device
WO2020166398A1 (en) Latent curing agent and method for manufacturing same, composition for forming coating film, and cation-curable composition
JPWO2019146736A1 (en) Curable resin composition for sealing
CN110382561A (en) The composition of sealing
WO2015129783A1 (en) Curable resin composition for sealing organic electroluminescence display element, curable resin sheet for sealing organic electroluminescence display element, and organic electroluminescence display element
JP6741001B2 (en) Sealing resin composition and sealing sheet
KR20200123173A (en) Epoxy resin composition
JP2016180036A (en) Sealing resin composition and sealing sheet
JPWO2018159564A1 (en) Resin composition
WO2023090317A1 (en) Curable resin composition
TWI835960B (en) Sealing composition and semiconductor device
JP5328442B2 (en) Insulating resin composition, semiconductor device using the same, and method for producing insulating resin composition
JP7318462B2 (en) Sealing resin composition
KR20210148236A (en) Resin sheet with support
JP2023143317A (en) Resin composition and thermosetting adhesive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207