JP7318462B2 - Sealing resin composition - Google Patents

Sealing resin composition Download PDF

Info

Publication number
JP7318462B2
JP7318462B2 JP2019180697A JP2019180697A JP7318462B2 JP 7318462 B2 JP7318462 B2 JP 7318462B2 JP 2019180697 A JP2019180697 A JP 2019180697A JP 2019180697 A JP2019180697 A JP 2019180697A JP 7318462 B2 JP7318462 B2 JP 7318462B2
Authority
JP
Japan
Prior art keywords
group
resin composition
mass
sealing
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180697A
Other languages
Japanese (ja)
Other versions
JP2021054981A (en
Inventor
有希 山本
麻衣 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2019180697A priority Critical patent/JP7318462B2/en
Priority to TW109134031A priority patent/TW202126740A/en
Priority to KR1020227014752A priority patent/KR20220075400A/en
Priority to PCT/JP2020/037060 priority patent/WO2021065973A1/en
Priority to CN202080067916.2A priority patent/CN114502634A/en
Publication of JP2021054981A publication Critical patent/JP2021054981A/en
Application granted granted Critical
Publication of JP7318462B2 publication Critical patent/JP7318462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は封止用樹脂組成物に関し、特に有機EL(Electroluminescence)デバイスや太陽電池等の電子デバイスの封止に好適な封止用樹脂組成物に関する。 TECHNICAL FIELD The present invention relates to a sealing resin composition, and more particularly to a sealing resin composition suitable for sealing electronic devices such as organic EL (Electroluminescence) devices and solar cells.

電子デバイス、特に有機EL(Electroluminescence)デバイスや太陽電池等の水分に弱い電子デバイスを、水分等を含む外気から保護するため、吸湿性フィラーを含む樹脂組成物を用いて電子デバイスを封止する方法が知られている(特許文献1)。 A method of sealing an electronic device, especially an electronic device vulnerable to moisture such as an organic EL (Electroluminescence) device and a solar cell, using a resin composition containing a hygroscopic filler in order to protect the electronic device from outside air containing moisture and the like. is known (Patent Document 1).

国際公開2017/057708号パンフレットInternational publication 2017/057708 pamphlet

高い耐透湿性を有する封止用樹脂組成物を得る観点から、樹脂組成物中の吸湿性フィラーの含有量を増加させることが望ましいが、吸湿性フィラーの含有量を増大させると、樹脂組成物の接着性や透明性が低下するという問題が生じる。従って、本発明の目的は、耐透湿性に優れ、かつ接着性および透明性にも優れた封止用樹脂組成物を提供することを目的とする。 From the viewpoint of obtaining a sealing resin composition having high resistance to moisture permeation, it is desirable to increase the content of the hygroscopic filler in the resin composition. However, there arises a problem that the adhesiveness and transparency of the film are deteriorated. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a sealing resin composition which is excellent in moisture permeation resistance, adhesiveness and transparency.

本発明者らは、上記課題を解決すべく鋭意検討した結果、ポリオレフィン系樹脂を含む樹脂組成物において、吸湿性フィラーを高い含有量で配合した場合でも、粘着付与剤と特定の金属錯体を配合した場合において、耐透湿性に加え、接着性と透明性にも優れた樹脂組成物となり得ることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a resin composition containing a polyolefin resin contains a tackifier and a specific metal complex even when the hygroscopic filler is blended at a high content. In this case, the inventors have found that a resin composition having excellent adhesion and transparency in addition to moisture permeation resistance can be obtained, and have completed the present invention.

すなわち、本発明は以下の特徴を有する。
[1](A)ポリオレフィン系樹脂;
(B)吸湿性フィラー;
(C)金属錯体;および
(D)粘着付与剤
を含む封止用樹脂組成物であって、封止用樹脂組成物中の不揮発成分100質量%に対する(B)吸湿性フィラーの含有量が45質量%超であり、(C)金属錯体が、2つの配位原子がともに酸素原子である二座配位子および配位原子が酸素原子である単座配位子が中心金属に結合した金属錯体である、封止用樹脂組成物。
[2](B)吸湿性フィラーが半焼成ハイドロタルサイトである、[1]に記載の封止用樹脂組成物。
[3](C)金属錯体の中心金属がアルミニウムまたはチタンである、[1]または[2]に記載の封止用樹脂組成物。
[4](C)金属錯体が、一般式(1):
That is, the present invention has the following features.
[1] (A) polyolefin resin;
(B) a hygroscopic filler;
(C) a metal complex; and (D) a sealing resin composition containing a tackifier, wherein the content of (B) a hygroscopic filler with respect to 100% by mass of non-volatile components in the sealing resin composition is 45 % by mass, and (C) the metal complex is a metal complex in which a bidentate ligand whose two coordinating atoms are both oxygen atoms and a monodentate ligand whose coordinating atoms are oxygen atoms are bound to the central metal A sealing resin composition.
[2] The resin composition for sealing according to [1], wherein (B) the hygroscopic filler is semi-calcined hydrotalcite.
[3] The encapsulating resin composition according to [1] or [2], wherein the central metal of (C) the metal complex is aluminum or titanium.
[4] (C) The metal complex has the general formula (1):

(式中、
Mは周期表の第2周期から第6周期の金属を表し、
およびRはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、または置換基を有していてもよいアラルキル基を表し、
は水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリール基、または置換基を有していてもよいアラルキル基を表し、
Xは配位原子が酸素原子である単座配位子を表し、
[ ]内の酸素原子(O)とMとの間の実線は共有結合を表し、
[ ]内の酸素原子(O)とMとの間の破線は配位結合を表し、並びに
mは3または4の整数であり、nは1~3の整数であり、およびm>nである。)
で表される金属錯体である、[1]~[4]のいずれか1項に記載の封止用樹脂組成物。
[5]式(1)中のMがアルミニウムまたはチタンである、[4]に記載の封止用樹脂組成物。
[6](A)ポリオレフィン系樹脂が、酸無水物基を有するポリオレフィン系樹脂、および/または、エポキシ基を有するポリオレフィン系樹脂を含む、[1]~[5]のいずれか1項に記載の封止用樹脂組成物。
[7](A)ポリオレフィン系樹脂が、酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂を含む、[1]~[5]のいずれか1項に記載の封止用樹脂組成物。
[8](A)ポリオレフィン系樹脂が、酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂の反応物を含む、[1]~[5]のいずれか1項に記載の封止用樹脂組成物。
[9]樹脂組成物中の不揮発成分100質量%に対する(C)金属錯体の含有量が0.1~5質量%である、[1]~[8]のいずれか1項に記載の封止用樹脂組成物。
[10]樹脂組成物中の不揮発成分100質量%に対する(D)粘着付与剤の含有量が5~40質量%である、[1]~[9]のいずれか1項に記載の封止用樹脂組成物。
[11]電子デバイスの封止用である、[1]~[10]のいずれか1項に記載の封止用樹脂組成物。
[12]電子デバイスが有機ELデバイスまたは太陽電池である、[11]に記載の封止用樹脂組成物。
[13]支持体と、該支持体上に形成された、[1]~[12]のいずれか1項に記載の樹脂組成物の層とを含む、封止用シート。
[14][1]~[10]のいずれか1項に記載の封止用樹脂組成物で封止されている、電子デバイス。
[15]電子デバイスが有機ELデバイスまたは太陽電池である、[14]に記載の電子デバイス。
(In the formula,
M represents a metal from period 2 to period 6 of the periodic table,
R 1 and R 3 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group, or represents an optionally substituted aralkyl group,
R 2 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkoxycarbonyl group, or a substituted represents an aryl group that may be substituted, or an aralkyl group that may have a substituent,
X represents a monodentate ligand whose coordinating atom is an oxygen atom;
The solid line between the oxygen atom (O) and M in [ ] represents a covalent bond,
The dashed line between the oxygen atom (O) and M in [ ] represents a coordinate bond, and m is an integer of 3 or 4, n is an integer of 1 to 3, and m>n . )
The encapsulating resin composition according to any one of [1] to [4], which is a metal complex represented by
[5] The encapsulating resin composition according to [4], wherein M in formula (1) is aluminum or titanium.
[6] (A) The polyolefin resin according to any one of [1] to [5], including a polyolefin resin having an acid anhydride group and/or a polyolefin resin having an epoxy group. Resin composition for encapsulation.
[7] (A) The sealing resin according to any one of [1] to [5], wherein the polyolefin resin includes a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group. Composition.
[8] (A) The encapsulant according to any one of [1] to [5], wherein the polyolefin resin contains a reaction product of a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group. A resin composition for stopping.
[9] The encapsulation according to any one of [1] to [8], wherein the content of (C) the metal complex is 0.1 to 5% by mass with respect to 100% by mass of non-volatile components in the resin composition. resin composition for
[10] The sealing material according to any one of [1] to [9], wherein the content of (D) the tackifier is 5 to 40% by mass with respect to 100% by mass of non-volatile components in the resin composition. Resin composition.
[11] The encapsulating resin composition according to any one of [1] to [10], which is used for encapsulating electronic devices.
[12] The encapsulating resin composition of [11], wherein the electronic device is an organic EL device or a solar cell.
[13] A sealing sheet comprising a support and a layer of the resin composition according to any one of [1] to [12] formed on the support.
[14] An electronic device encapsulated with the encapsulating resin composition according to any one of [1] to [10].
[15] The electronic device of [14], wherein the electronic device is an organic EL device or a solar cell.

本発明によれば、耐透湿性に加え、接着性および透明性にも優れた封止用樹脂組成物を実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition for sealing which is excellent also in adhesiveness and transparency in addition to moisture-permeation resistance can be implement|achieved.

[封止用樹脂組成物]
本発明の封止用樹脂組成物(以下、単に「樹脂組成物」とも略称する。)は、必須成分として、(A)ポリオレフィン系樹脂、(B)吸湿性フィラー、(C)金属錯体、および(D)粘着付与剤を含有する。
[Resin composition for encapsulation]
The encapsulating resin composition of the present invention (hereinafter also simply referred to as "resin composition") comprises, as essential components, (A) a polyolefin resin, (B) a hygroscopic filler, (C) a metal complex, and (D) Contains a tackifier.

<(A)ポリオレフィン系樹脂>
本発明の封止用樹脂組成物は、ポリオレフィン系樹脂(以下、「(A)成分」ともいう。)を含む。ポリオレフィン系樹脂はオレフィン由来の骨格を有するものであれば特に制限なく使用することができる。なお、オレフィンは、1個のオレフィン性炭素-炭素二重結合を有するモノオレフィンおよび/または2個のオレフィン性炭素-炭素二重結合を有するジオレフィンが好ましい。モノオレフィンとしては、好ましくは、エチレン、プロピレン、1-ブテン、イソブチレン(イソブテン)、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィンが挙げられ、ジオレフィンとしては、好ましくは、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン等が挙げられる。モノオレフィンおよびジオレフィンはそれぞれ1種であっても2種以上であってよい。かかるポリオレフィン系樹脂は、1種のみを使用してもよく、2種以上を併用してもよい。
<(A) Polyolefin resin>
The encapsulating resin composition of the present invention contains a polyolefin resin (hereinafter also referred to as "component (A)"). Any polyolefin-based resin can be used without any particular limitation as long as it has an olefin-derived skeleton. The olefin is preferably a monoolefin having one olefinic carbon-carbon double bond and/or a diolefin having two olefinic carbon-carbon double bonds. Preferred monoolefins include α-olefins such as ethylene, propylene, 1-butene, isobutylene (isobutene), 1-pentene, 1-hexene, 1-heptene and 1-octene. Preferred are 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene and the like. Monoolefins and diolefins may be of one type or two or more types. Such polyolefin-based resins may be used alone or in combination of two or more.

ポリオレフィン系樹脂は、ホモポリマー、ランダム共重合体、またはブロック共重合体のいずれであってもよい。また、共重合体は、(i)2種以上のモノオレフィンの共重合体、(ii)モノオレフィンとジオレフィンとの共重合体、または(iii)モノオレフィンと不飽和カルボン酸エステル(例えば、メチルメタクリレート等)や芳香族ビニル(例えば、スチレン等)等のオレフィン以外のエチレン性不飽和化合物(ジエン系モノマーを除く)との共重合体等が挙げられる。 Polyolefin resins may be homopolymers, random copolymers, or block copolymers. Further, the copolymer is (i) a copolymer of two or more monoolefins, (ii) a copolymer of a monoolefin and a diolefin, or (iii) a monoolefin and an unsaturated carboxylic acid ester (e.g., methyl methacrylate, etc.) and copolymers with ethylenically unsaturated compounds other than olefins (excluding diene-based monomers) such as aromatic vinyls (eg, styrene, etc.).

ポリオレフィン系樹脂は、ポリブテン系樹脂、ポリプロピレン系樹脂が好ましい。ここで、「ポリブテン系樹脂」とは、ポリマーを構成する全オレフィンモノマー単位のうちの主単位(最大含有量単位)がブテン由来である樹脂を指し、「ポリプロピレン系樹脂」とは、ポリマーを構成する全オレフィンモノマー単位のうちの主単位(最大含有量単位)がプロピレン由来である樹脂を指す。 The polyolefin-based resin is preferably a polybutene-based resin or a polypropylene-based resin. Here, "polybutene resin" refers to a resin in which the main unit (maximum content unit) of all olefin monomer units constituting the polymer is derived from butene, and "polypropylene resin" constitutes the polymer. It refers to a resin in which the main unit (maximum content unit) of all the olefin monomer units is derived from propylene.

なお、ポリブテン系樹脂が共重合体の場合、ブテン以外のモノマーとしては、例えば、スチレン、エチレン、プロピレン、イソプレン等が挙げられる。ポリプロピレン系樹脂が共重合体の場合、プロピレン以外のモノマーとしては、例えば、エチレン、ブテン、イソプレン等が挙げられる。 When the polybutene-based resin is a copolymer, examples of monomers other than butene include styrene, ethylene, propylene, and isoprene. When the polypropylene-based resin is a copolymer, examples of monomers other than propylene include ethylene, butene, and isoprene.

ポリオレフィン系樹脂は、封止用樹脂組成物の耐透湿性等をより向上させる観点から、酸無水物基(即ち、カルボニルオキシカルボニル基(-CO-O-CO-))を有するポリオレフィン系樹脂、および/または、エポキシ基を有するポリオレフィン系樹脂を含むことができる。酸無水物基としては、例えば、無水コハク酸に由来する基、無水マレイン酸に由来する基、無水グルタル酸に由来する基等が挙げられる。酸無水物基は1種または2種以上を有することができる。酸無水物基を有するポリオレフィン系樹脂は、例えば、酸無水物基を有する不飽和化合物で、ポリオレフィン系樹脂をラジカル反応条件下にてグラフト変性することで得られる。また、酸無水物基を有する不飽和化合物を、オレフィンとともにラジカル共重合するようにしてもよい。同様に、エポキシ基を有するポリオレフィン系樹脂は、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、アリルグリシジルエーテル等のエポキシ基を有する不飽和化合物で、ポリオレフィン系樹脂をラジカル反応条件下にてグラフト変性することで得られる。また、エポキシ基を有する不飽和化合物を、オレフィンとともにラジカル共重合するようにしてもよい。 The polyolefin resin is a polyolefin resin having an acid anhydride group (that is, a carbonyloxycarbonyl group (-CO-O-CO-)) from the viewpoint of further improving the moisture permeability resistance of the encapsulating resin composition, and/or it may contain a polyolefin resin having an epoxy group. The acid anhydride group includes, for example, a group derived from succinic anhydride, a group derived from maleic anhydride, a group derived from glutaric anhydride, and the like. One or more acid anhydride groups can be used. A polyolefin resin having an acid anhydride group can be obtained, for example, by graft-modifying a polyolefin resin with an unsaturated compound having an acid anhydride group under radical reaction conditions. Also, an unsaturated compound having an acid anhydride group may be radically copolymerized with an olefin. Similarly, the polyolefin resin having an epoxy group is, for example, an unsaturated compound having an epoxy group such as glycidyl (meth)acrylate, 4-hydroxybutyl acrylate glycidyl ether, allyl glycidyl ether, etc., and the polyolefin resin is reacted under radical reaction conditions. It is obtained by graft modification at. Also, an unsaturated compound having an epoxy group may be radically copolymerized with an olefin.

酸無水物基を有するポリオレフィン系樹脂としては、酸無水物基を有するポリブテン系樹脂、酸無水物基を有するポリプロピレン系樹脂が好ましい。また、エポキシ基を有するポリオレフィン系樹脂としては、エポキシ基を有するポリブテン系樹脂、エポキシ基を有するポリプロピレン系樹脂が好ましい。 As the polyolefin-based resin having an acid anhydride group, a polybutene-based resin having an acid anhydride group and a polypropylene-based resin having an acid anhydride group are preferable. Polybutene-based resins having epoxy groups and polypropylene-based resins having epoxy groups are preferable as polyolefin-based resins having epoxy groups.

酸無水物基を有するポリオレフィン系樹脂において、樹脂中の酸無水物基の濃度は、0.05~10mmol/gが好ましく、0.1~5mmol/gがより好ましい。酸無水物基の濃度はJIS K 2501の記載に従い、樹脂1g中に存在する酸を中和するのに必要な水酸化カリウムのmg数として定義される酸価の値より得られる。 In the polyolefin resin having acid anhydride groups, the concentration of acid anhydride groups in the resin is preferably 0.05 to 10 mmol/g, more preferably 0.1 to 5 mmol/g. The concentration of acid anhydride groups is obtained from the value of acid value defined as mg of potassium hydroxide required to neutralize the acid present in 1 g of resin according to JIS K 2501.

エポキシ基を有するポリオレフィン系樹脂において、樹脂中のエポキシ基の濃度は、0.05~10mmol/gが好ましく、0.1~5mmol/gがより好ましい。エポキシ基濃度はJIS K 7236-1995に基づいて得られるエポキシ当量から求められる。 In polyolefin resins having epoxy groups, the concentration of epoxy groups in the resin is preferably 0.05 to 10 mmol/g, more preferably 0.1 to 5 mmol/g. The epoxy group concentration is determined from the epoxy equivalent obtained based on JIS K 7236-1995.

(A)成分は、封止用樹脂組成物の耐透湿性等をより一層向上させる観点から、ポリオレフィン系樹脂が酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂を含む態様であることが好ましい。 In order to further improve the moisture permeation resistance of the encapsulating resin composition, the component (A) is in a mode in which the polyolefin resin contains a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group. Preferably.

このような(A)成分は、加熱により酸無水物基とエポキシ基が反応して架橋構造を形成し得る。このように(A)成分が酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂の反応物を含む場合、本発明の樹脂組成物は耐透湿性等がより一層向上した封止層を形成し得る。なお、架橋構造の形成は樹脂組成物による封止後(すなわち、封止層の形成後)に行うこともできるが、例えば有機ELデバイス等、封止対象のデバイスが熱に弱い素子を含むものである場合、例えば封止用シートの製造時に、基材上に形成した樹脂組成物層に架橋構造を形成しておくのが望ましい。 Such a component (A) can form a crosslinked structure by reacting the acid anhydride group and the epoxy group by heating. Thus, when the component (A) contains a reaction product of a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group, the resin composition of the present invention provides sealing with further improved resistance to moisture permeation. It can form layers. The formation of the crosslinked structure can be performed after sealing with the resin composition (that is, after forming the sealing layer). In this case, it is desirable to form a crosslinked structure in the resin composition layer formed on the substrate, for example, at the time of production of the sealing sheet.

(A)成分が、酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂を含む態様の場合、エポキシ基を有するポリオレフィン系樹脂と酸無水物基を有するポリオレフィン系樹脂との反応における量比は、適切な架橋構造が形成できれば特に限定されないが、エポキシ基と酸無水物基とのモル比(エポキシ基:酸無水物基)で、好ましくは100:10~100:400、より好ましくは100:25~100:350、特に好ましくは100:40~100:300である。 In the case where the component (A) contains a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group, the reaction between the polyolefin resin having an epoxy group and the polyolefin resin having an acid anhydride group The amount ratio is not particularly limited as long as an appropriate crosslinked structure can be formed, but the molar ratio between the epoxy group and the acid anhydride group (epoxy group: acid anhydride group) is preferably 100:10 to 100:400, more preferably is 100:25 to 100:350, particularly preferably 100:40 to 100:300.

(A)成分の数平均分子量は、特に限定はされないが、封止用樹脂組成物をフィルム状に加工する際のワニスの良好な塗工性と樹脂組成物における他の成分との良好な相溶性をもたらすという観点から、1,000,000以下が好ましく、750,000以下がより好ましく、500,000以下がより一層好ましく、400,000以下がさらに好ましい。一方、封止用樹脂組成物のワニスの塗工時のハジキを防止し、形成される封止用樹脂組成物層の耐透湿性と機械強度を向上させるという観点から、2,000以上が好ましく、10,000以上がより好ましく、30,000以上がさら一層好ましく、50,000以上が特に好ましい。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。GPC法による数平均分子量は、測定装置として社島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてトルエン等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The number average molecular weight of the component (A) is not particularly limited, but it is possible to achieve good varnish coating properties when processing the sealing resin composition into a film and good compatibility with other components in the resin composition. From the viewpoint of providing solubility, it is preferably 1,000,000 or less, more preferably 750,000 or less, even more preferably 500,000 or less, and even more preferably 400,000 or less. On the other hand, it is preferably 2,000 or more from the viewpoint of preventing repelling during coating of the varnish of the sealing resin composition and improving the moisture permeation resistance and mechanical strength of the formed sealing resin composition layer. , is more preferably 10,000 or more, even more preferably 30,000 or more, and particularly preferably 50,000 or more. In addition, a number average molecular weight is measured by the gel permeation chromatography (GPC) method (polystyrene conversion). The number-average molecular weight by the GPC method was measured using LC-9A/RID-6A manufactured by Shimadzu Corporation as a measuring device, Shodex K-800P/K-804L/K-804L manufactured by Showa Denko Co., Ltd. as a column, and toluene or the like as a mobile phase. can be measured at a column temperature of 40° C. using a standard polystyrene calibration curve.

以下、(A)成分の具体例を説明する。
ポリプロピレン系樹脂の具体例として、例えば、星光PMC社製「T-YP341」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)、星光PMC社製「T-YP279」(無水マレイン酸変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:35,000)、星光PMC社製「T-YP276」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:57,000)、星光PMC社製「T-YP312」(無水マレイン酸変性プロピレン-ブテンランダム共共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:60,900)、星光PMC社製「T-YP313」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)等が挙げられる。
Specific examples of the component (A) are described below.
As a specific example of the polypropylene-based resin, for example, "T-YP341" manufactured by Seiko PMC (glycidyl methacrylate-modified propylene-butene random copolymer, amount of butene units per 100 mass% total of propylene units and butene units: 29 mass %, epoxy group concentration: 0.638 mmol/g, number average molecular weight: 155,000), "T-YP279" manufactured by Seiko PMC (maleic anhydride-modified propylene-butene random copolymer, sum of propylene units and butene units Amount of butene units per 100% by mass: 36% by mass, acid anhydride group concentration: 0.464 mmol/g, number average molecular weight: 35,000), "T-YP276" manufactured by Seiko PMC (glycidyl methacrylate-modified propylene- Butene random copolymer, amount of butene units per 100% by mass of propylene units and butene units combined: 36% by mass, epoxy group concentration: 0.638 mmol/g, number average molecular weight: 57,000), manufactured by Seiko PMC Co., Ltd. "T-YP312" (maleic anhydride-modified propylene-butene random copolymer, amount of butene units per 100% by mass of total propylene units and butene units: 29% by mass, acid anhydride group concentration: 0.464 mmol/ g, number average molecular weight: 60,900), "T-YP313" manufactured by Seiko PMC (glycidyl methacrylate-modified propylene-butene random copolymer, amount of butene units per 100% by mass of propylene units and butene units total: 29 mass %, epoxy group concentration: 0.638 mmol/g, number average molecular weight: 155,000) and the like.

ポリブテン系樹脂の具体例として、例えば、HV-1900(JXエネルギー社製):ポリブテン(数平均分子量:2,900)、HV-300M(東邦化学工業株式会社製):無水マレイン酸変性液状ポリブテン(酸無水物基濃度:0.77mmol/g、数平均分子量:2,100)、BASF社製「オパノールB100」(ポリイソブチレン、粘度平均分子量:1,110,000)、BASF社製「N50SF」(ポリイソブチレン、粘度平均分子量:400,000)等が挙げられる。 Specific examples of polybutene-based resins include, for example, HV-1900 (manufactured by JX Energy): polybutene (number average molecular weight: 2,900), HV-300M (manufactured by Toho Chemical Industry Co., Ltd.): maleic anhydride-modified liquid polybutene ( Acid anhydride group concentration: 0.77 mmol / g, number average molecular weight: 2,100), BASF "Opanol B100" (polyisobutylene, viscosity average molecular weight: 1,110,000), BASF "N50SF" ( polyisobutylene, viscosity average molecular weight: 400,000) and the like.

本発明の封止用樹脂組成物中の(A)成分の含有量は特に制限はないが、封止用樹脂組成物としての接着性や封止層の形状保持性等の観点、またフィルム加工時の塗工性や取り扱い性(タック抑制)の観点から、該含有量は、樹脂組成物中の不揮発成分100質量%に対し、50質量%以下が好ましく、45質量%以下がより好ましく、35質量%以下がさらに好ましい。また、該含有量は、樹脂組成物中の不揮発成分100質量%に対し、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。 The content of component (A) in the encapsulating resin composition of the present invention is not particularly limited. From the viewpoint of coatability and handleability (tack suppression) at times, the content is preferably 50% by mass or less, more preferably 45% by mass or less, with respect to 100% by mass of the non-volatile components in the resin composition. % by mass or less is more preferable. The content is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more, based on 100% by mass of non-volatile components in the resin composition.

また、(A)成分が、酸無水物基を有するポリオレフィン系樹脂および/またはエポキシ基を有するポリオレフィン系樹脂を含む態様の場合、(A)成分全体当たりの酸無水物基を有するポリオレフィン系樹脂および/またはエポキシ基を有するポリオレフィン系樹脂の量は、好ましくは5~90質量%、より好ましくは10~80質量%、さらに好ましくは15~70質量%である。 In addition, in the case where the component (A) contains a polyolefin resin having an acid anhydride group and/or a polyolefin resin having an epoxy group, the polyolefin resin having an acid anhydride group per component (A) as a whole and / Or the amount of polyolefin resin having an epoxy group is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, further preferably 15 to 70% by mass.

<(B)吸湿性フィラー>
本発明の封止用樹脂組成物は、吸湿性フィラー(以下、「(B)成分」ともいう)を含む。
<(B) Hygroscopic filler>
The encapsulating resin composition of the present invention contains a hygroscopic filler (hereinafter also referred to as "component (B)").

(B)吸湿性フィラーは、水分を吸収する能力を有するフィラーであれば特に限定はされないが、好ましくは金属酸化物、金属水酸化物等が挙げられる。具体的には、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム、酸化バリウム、焼成ハイドロタルサイト、焼成ドロマイト等の金属酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム、水酸化アルミニウム、水酸化バリウム、半焼成ハイドロタルサイト等の金属水酸化物等が挙げられる。中でも、吸湿性の点から、半焼成ハイドロタルサイト、焼成ハイドロタルサイトが好ましく、透明性の観点から半焼成ハイドロタルサイトが好ましい。 The hygroscopic filler (B) is not particularly limited as long as it is a filler capable of absorbing moisture, but metal oxides and metal hydroxides are preferred. Specifically, metal oxides such as calcium oxide, magnesium oxide, strontium oxide, aluminum oxide, barium oxide, calcined hydrotalcite, calcined dolomite, calcium hydroxide, magnesium hydroxide, strontium hydroxide, aluminum hydroxide, water metal hydroxides such as barium oxide and semi-calcined hydrotalcite; Among them, semi-calcined hydrotalcite and calcined hydrotalcite are preferable from the viewpoint of hygroscopicity, and semi-calcined hydrotalcite is preferable from the viewpoint of transparency.

以下、吸湿性フィラーとして好ましい焼成ハイドロタルサイト、半焼成ハイドロタルサイトについて説明する。ハイドロタルサイトは、未焼成ハイドロタルサイト、半焼成ハイドロタルサイト、および焼成ハイドロタルサイトに分類することができ、特に樹脂組成物の透明性や耐透湿性の観点から半焼成ハイドロタルサイトが好ましい。未焼成ハイドロタルサイトは、例えば、天然ハイドロタルサイト(MgAl(OH)16CO・4HO)に代表されるような層状の結晶構造を有する金属水酸化物であり、例えば、基本骨格となる層[Mg1-XAl(OH)X+と中間層[(COX/2・mHO]X-からなる。本発明における未焼成ハイドロタルサイトは、合成ハイドロタルサイト等のハイドロタルサイト様化合物を含む概念である。ハイドロタルサイト様化合物としては、例えば、下記式(I)および下記式(II)で表されるものが挙げられる。 Calcined hydrotalcite and semi-calcined hydrotalcite, which are preferable as the hygroscopic filler, are described below. Hydrotalcite can be classified into unbaked hydrotalcite, semi-baked hydrotalcite, and calcined hydrotalcite, and semi-baked hydrotalcite is particularly preferable from the viewpoint of transparency and resistance to moisture permeation of the resin composition. . Uncalcined hydrotalcite is a metal hydroxide having a layered crystal structure typified by, for example, natural hydrotalcite ( Mg6Al2 (OH) 16CO3.4H2O ). It consists of a layer [Mg 1−X Al X (OH) 2 ] X+ serving as a basic skeleton and an intermediate layer [(CO 3 ) X/2 ·mH 2 O] X− . The uncalcined hydrotalcite in the present invention is a concept including hydrotalcite-like compounds such as synthetic hydrotalcite. Examples of hydrotalcite-like compounds include those represented by the following formulas (I) and (II).

[M2+ 1-x3+ (OH)x+・[(An-x/n・mHO]x- (I)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、M3+はAl3+、Fe3+などの3価の金属イオンを表し、An-はCO 2-、Cl、NO などのn価のアニオンを表し、0<x<1であり、0≦m<1であり、nは正の数である。)
式(I)中、M2+は、好ましくはMg2+であり、M3+は、好ましくはAl3+であり、An-は、好ましくはCO 2-である。
[M 2+ 1−x M 3+ x (OH) 2 ] x+ ·[(A n− ) x/n ·mH 2 O] x− (I)
(In the formula, M 2+ represents a divalent metal ion such as Mg 2+ and Zn 2+ , M 3+ represents a trivalent metal ion such as Al 3+ and Fe 3+ , and A n− represents CO 3 2− , Cl - represents an n-valent anion such as NO 3 - , where 0<x<1, 0≦m<1, and n is a positive number.)
In formula (I), M 2+ is preferably Mg 2+ , M 3+ is preferably Al 3+ and A n- is preferably CO 3 2- .

2+ Al(OH)2x+6-nz(An-・mHO (II)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、An-はCO 2-、Cl、NO などのn価のアニオンを表し、xは2以上の正の数であり、zは2以下の正の数であり、mは正の数であり、nは正の数である。)
式(II)中、M2+は、好ましくはMg2+であり、An-は、好ましくはCO 2-である。
M 2+ x Al 2 (OH) 2x+6−nz (A n− ) z ·mH 2 O (II)
(In the formula, M 2+ represents a divalent metal ion such as Mg 2+ and Zn 2+ , A n- represents an n-valent anion such as CO 3 2− , Cl , NO 3 , and x is 2 or more. is a positive number, z is a positive number less than or equal to 2, m is a positive number, and n is a positive number.)
In formula (II), M 2+ is preferably Mg 2+ and A n- is preferably CO 3 2- .

半焼成ハイドロタルサイトは、未焼成ハイドロタルサイトを焼成して得られる、層間水の量が減少または消失した層状の結晶構造を有する金属水酸化物をいう。「層間水」とは、組成式を用いて説明すれば、上述した未焼成の天然ハイドロタルサイトおよびハイドロタルサイト様化合物の組成式に記載の「HO」を指す。 Semi-calcined hydrotalcite refers to a metal hydroxide having a layered crystal structure in which the amount of inter-layer water is reduced or eliminated, which is obtained by calcining uncalcined hydrotalcite. The term "interlayer water" refers to "H 2 O" described in the compositional formulas of the above-described uncalcined natural hydrotalcite and hydrotalcite-like compound, when explained using the compositional formulas.

一方、焼成ハイドロタルサイトは、未焼成ハイドロタルサイトまたは半焼成ハイドロタルサイトを焼成して得られ、層間水だけでなく、水酸基も縮合脱水によって消失した、アモルファス構造を有する金属酸化物をいう。 On the other hand, calcined hydrotalcite is obtained by calcining uncalcined hydrotalcite or semi-calcined hydrotalcite, and refers to a metal oxide having an amorphous structure in which not only interlayer water but also hydroxyl groups have disappeared due to condensation and dehydration.

未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、飽和吸水率により区別することができる。半焼成ハイドロタルサイトの飽和吸水率は、1重量%以上20重量%未満である。一方、未焼成ハイドロタルサイトの飽和吸水率は、1重量%未満であり、焼成ハイドロタルサイトの飽和吸水率は、20重量%以上である。 Uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by their saturated water absorption. The semi-calcined hydrotalcite has a saturated water absorption of 1% by weight or more and less than 20% by weight. On the other hand, the saturated water absorption of uncalcined hydrotalcite is less than 1% by weight, and the saturated water absorption of calcined hydrotalcite is 20% by weight or more.

上記の「飽和吸水率」は、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトまたは焼成ハイドロタルサイトを天秤にて1.5g量り取り、初期質量を測定した後、大気圧下、60℃、90%RH(相対湿度)に設定した小型環境試験器(エスペック社製SH-222)に200時間静置した場合の、初期質量に対する質量増加率を言い、下記式(i):
飽和吸水率(質量%)=100×(吸湿後の質量-初期質量)/初期質量 (i)
で求めることができる。
The above "saturated water absorption rate" is obtained by weighing 1.5 g of uncalcined hydrotalcite, semi-calcined hydrotalcite or calcined hydrotalcite with a balance, measuring the initial mass, and measuring the initial mass at 60 ° C. and 90% under atmospheric pressure. Refers to the mass increase rate relative to the initial mass when left standing for 200 hours in a small environmental tester (SH-222 manufactured by Espec Co., Ltd.) set to % RH (relative humidity), and the following formula (i):
Saturated water absorption (mass%) = 100 × (mass after moisture absorption - initial mass) / initial mass (i)
can be found at

半焼成ハイドロタルサイトの飽和吸水率は、好ましくは3質量%以上20質量%未満、より好ましくは5質量%以上20質量%未満である。 The saturated water absorption of the semi-calcined hydrotalcite is preferably 3% by mass or more and less than 20% by mass, more preferably 5% by mass or more and less than 20% by mass.

また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、熱重量分析で測定される熱重量減少率により区別することができる。半焼成ハイドロタルサイトの280℃における熱重量減少率は15質量%未満であり、かつその380℃における熱重量減少率は12質量%以上である。一方、未焼成ハイドロタルサイトの280℃における熱重量減少率は、15質量%以上であり、焼成ハイドロタルサイトの380℃における熱重量減少率は、12質量%未満である。 In addition, uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the thermal weight loss rate measured by thermogravimetric analysis. The semi-calcined hydrotalcite has a thermal weight loss rate at 280°C of less than 15% by mass, and a thermal weight loss rate at 380°C of 12% by mass or more. On the other hand, the thermal weight loss rate at 280°C of the uncalcined hydrotalcite is 15% by mass or more, and the thermal weight loss rate at 380°C of the calcined hydrotalcite is less than 12% by mass.

熱重量分析は、日立ハイテクサイエンス社製TG/DTA EXSTAR6300を用いて、アルミニウム製のサンプルパンにハイドロタルサイトを5mg秤量し、蓋をせずオープンの状態で、窒素流量200mL/分の雰囲気下、30℃から550℃まで昇温速度10℃/分の条件で行うことができる。熱重量減少率は、下記式(ii):
熱重量減少率(質量%)
=100×(加熱前の質量-所定温度に達した時の質量)/加熱前の質量 (ii)
で求めることができる。
Thermogravimetric analysis was carried out using TG/DTA EXSTAR6300 manufactured by Hitachi High-Tech Science Co., Ltd., weighing 5 mg of hydrotalcite in an aluminum sample pan, opening the pan without a lid, under an atmosphere of nitrogen flow rate of 200 mL/min. It can be carried out from 30° C. to 550° C. under the condition of a temperature increase rate of 10° C./min. The thermal weight loss rate is expressed by the following formula (ii):
Thermal weight loss rate (mass%)
= 100 x (mass before heating - mass when reaching predetermined temperature) / mass before heating (ii)
can be found at

また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、粉末X線回折で測定されるピークおよび相対強度比により区別することができる。半焼成ハイドロタルサイトは、粉末X線回折により2θが8~18°付近に二つにスプリットしたピーク、または二つのピークの合成によりショルダーを有するピークを示し、低角側に現れるピークまたはショルダーの回折強度(=低角側回折強度)と、高角側に現れるピークまたはショルダーの回折強度(=高角側回折強度)の相対強度比(低角側回折強度/高角側回折強度)は、0.001~1,000である。一方、未焼成ハイドロタルサイトは8~18°付近で一つのピークしか有しないか、または低角側に現れるピークまたはショルダーと高角側に現れるピークまたはショルダーの回折強度の相対強度比が前述の範囲外となる。焼成ハイドロタルサイトは8°~18°の領域に特徴的ピークを有さず、43°に特徴的なピークを有する。粉末X線回折測定は、粉末X線回折装置(PANalytical社製、Empyrean)により、対陰極CuKα(1.5405Å)、電圧:45V、電流:40mA、サンプリング幅:0.0260°、走査速度:0.0657°/s、測定回折角範囲(2θ):5.0131~79.9711°の条件で行った。ピークサーチは、回折装置付属のソフトウエアのピークサーチ機能を利用し、「最小有意度:0.50、最小ピークチップ:0.01°、最大ピークチップ:1.00°、ピークベース幅:2.00°、方法:2次微分の最小値」の条件で行うことができる。 Also, uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by peaks and relative intensity ratios measured by powder X-ray diffraction. Semi-calcined hydrotalcite shows a peak split into two near 2θ of 8 to 18° by powder X-ray diffraction, or a peak having a shoulder due to the synthesis of two peaks, and the peak or shoulder appears on the low angle side. The relative intensity ratio (low-angle diffraction intensity/high-angle diffraction intensity) of the diffraction intensity (=low-angle diffraction intensity) and the peak or shoulder diffraction intensity (=high-angle diffraction intensity) appearing on the high-angle side is 0.001. ~1,000. On the other hand, the uncalcined hydrotalcite has only one peak in the vicinity of 8 to 18°, or the relative intensity ratio of the diffraction intensity of the peak or shoulder appearing on the low angle side and the peak or shoulder appearing on the high angle side is within the above range. outside. Calcined hydrotalcite has no characteristic peak in the region of 8° to 18° and a characteristic peak at 43°. Powder X-ray diffraction measurement was performed using a powder X-ray diffractometer (manufactured by PANalytical, Empyrean), anticathode CuKα (1.5405 Å), voltage: 45 V, current: 40 mA, sampling width: 0.0260°, scanning speed: 0 0657°/s, measurement diffraction angle range (2θ): 5.0131 to 79.9711°. The peak search is performed using the peak search function of the software attached to the diffractometer. .00°, method: minimum value of second derivative”.

未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトの具体例としては、以下のものが挙げられる。
・DHT-4C(協和化学工業社製):半焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:15m/g)
・DHT-4A-2(協和化学工業社製):半焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:13m/g)
・KW-2200(協和化学工業社製):焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:146m/g)
・DHT-4A(協和化学工業社製):未焼成ハイドロタルサイト(平均粒子径:400nm、BET比表面積:10m/g)
Specific examples of uncalcined hydrotalcite, semi-calcined hydrotalcite, and calcined hydrotalcite include the following.
・DHT-4C (manufactured by Kyowa Chemical Industry Co., Ltd.): semi-calcined hydrotalcite (average particle size: 400 nm, BET specific surface area: 15 m 2 /g)
・ DHT-4A-2 (manufactured by Kyowa Chemical Industry Co., Ltd.): semi-calcined hydrotalcite (average particle size: 400 nm, BET specific surface area: 13 m 2 /g)
・KW-2200 (manufactured by Kyowa Chemical Industry Co., Ltd.): calcined hydrotalcite (average particle size: 400 nm, BET specific surface area: 146 m 2 /g)
・DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.): uncalcined hydrotalcite (average particle size: 400 nm, BET specific surface area: 10 m 2 /g)

吸湿性フィラーの平均粒径は、特に限定されるものではないが、封止対象物への影響や耐透湿性の観点から、25μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、5μm以下が特に好ましく、1μm以下が最も好ましい。一方、吸湿性フィラーの分散性や樹脂組成物の粘度の観点から、該平均粒径は、0.001μm以上が好ましく、0.01μm以上がより好ましく、0.1μm以上がさらに好ましい。 The average particle diameter of the hygroscopic filler is not particularly limited, but is preferably 25 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less from the viewpoint of the effect on the sealing object and moisture permeation resistance. 5 μm or less is particularly preferred, and 1 μm or less is most preferred. On the other hand, from the viewpoint of the dispersibility of the hygroscopic filler and the viscosity of the resin composition, the average particle diameter is preferably 0.001 μm or more, more preferably 0.01 μm or more, and even more preferably 0.1 μm or more.

吸湿性フィラーの平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、吸湿性フィラーの粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、吸湿性フィラーを超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、堀場製作所社製LA-500等を使用することができる。 The average particle size of the hygroscopic filler can be measured by a laser diffraction/scattering method based on Mie scattering theory. Specifically, the particle size distribution of the hygroscopic filler can be prepared on a volume basis using a laser diffraction particle size distribution measuring apparatus, and the median diameter can be used as the average particle size for measurement. As a measurement sample, a hygroscopic filler dispersed in water by ultrasonic waves can be preferably used. LA-500 manufactured by Horiba Ltd. can be used as the laser diffraction particle size distribution analyzer.

なお吸湿性フィラーのうち、ハイドロタルサイトの平均粒径は、1~1,000nmが好ましく、10~800nmがより好ましい。ハイドロタルサイトの平均粒子径は、レーザー回折散乱式粒度分布測定(JIS Z 8825)により粒度分布を体積基準で作成したときの該粒度分布のメディアン径である。 Among the hygroscopic fillers, hydrotalcite preferably has an average particle size of 1 to 1,000 nm, more preferably 10 to 800 nm. The average particle size of hydrotalcite is the median size of the particle size distribution when the particle size distribution is prepared on a volume basis by laser diffraction scattering particle size distribution measurement (JIS Z 8825).

また吸湿性フィラーのうち、ハイドロタルサイトのBET比表面積は、1~250m/gが好ましく、5~200m/gがより好ましい。ハイドロタルサイトのBET比表面積は、BET法に従って、比表面積測定装置(Macsorb HM Model 1210 マウンテック社製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて算出することができる。 Among the hygroscopic fillers, hydrotalcite preferably has a BET specific surface area of 1 to 250 m 2 /g, more preferably 5 to 200 m 2 /g. The BET specific surface area of hydrotalcite can be calculated using the BET multipoint method by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM Model 1210, manufactured by Mountec) according to the BET method. .

(B)成分は、表面処理剤で表面処理したものを用いることができる。表面処理に使用する表面処理剤としては、例えば、高級脂肪酸、アルキルシラン類、シランカップリング剤等を使用することができ、なかでも、高級脂肪酸、アルキルシラン類が好適である。表面処理剤は、1種または2種以上を使用できる。 Component (B) can be used after being surface-treated with a surface-treating agent. Examples of surface treatment agents that can be used for surface treatment include higher fatty acids, alkylsilanes, silane coupling agents, and the like, with higher fatty acids and alkylsilanes being preferred. 1 type(s) or 2 or more types can be used for a surface treating agent.

高級脂肪酸としては、例えば、ステアリン酸、モンタン酸、ミリスチン酸、パルミチン酸などの炭素数18以上の高級脂肪酸が挙げられ、中でも、ステアリン酸が好ましい。これらは1種または2種以上を組み合わせて使用してもよい。アルキルシラン類としては、メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ジメチルジメトキシシラン、オクチルトリエトキシシラン、n-オクタデシルジメチル(3-(トリメトキシシリル)プロピル)アンモニウムクロライド等が挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシランおよび11-メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランおよびN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシランおよび3-メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらは1種または2種以上を組み合わせて使用してもよい。 Examples of higher fatty acids include higher fatty acids having 18 or more carbon atoms, such as stearic acid, montanic acid, myristic acid, and palmitic acid. Among them, stearic acid is preferred. These may be used singly or in combination of two or more. Examples of alkylsilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltriethoxysilane, n-octadecyldimethyl ( 3-(trimethoxysilyl)propyl)ammonium chloride and the like. These may be used singly or in combination of two or more. Examples of silane coupling agents include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl(dimethoxy)methylsilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. epoxy-based silane coupling agents such as silane; mercapto-based silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-(2 amino-based silane coupling agents such as -aminoethyl)-3-aminopropyltrimethoxysilane and N-(2-aminoethyl)-3-aminopropyldimethoxymethylsilane; ureido-based silanes such as 3-ureidopropyltriethoxysilane; Coupling agents, vinyl silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; styryl silane coupling agents such as p-styryltrimethoxysilane; 3-acryloxypropyltrimethoxy Acrylate-based silane coupling agents such as silane and 3-methacryloxypropyltrimethoxysilane; isocyanate-based silane coupling agents such as 3-isocyanatopropyltrimethoxysilane, bis(triethoxysilylpropyl) disulfide, bis(triethoxysilylpropyl) ) sulfide-based silane coupling agents such as tetrasulfide; These may be used singly or in combination of two or more.

(B)成分の表面処理は、例えば、未処理の(B)成分を混合機で常温にて攪拌させながら、表面処理剤を添加噴霧して5~60分間攪拌することによって行なうことができる。混合機としては、公知の混合機を使用することができ、例えば、Vブレンダー、リボンブレンダー、バブルコーンブレンダー等のブレンダー、ヘンシェルミキサーおよびコンクリートミキサー等のミキサー、ボールミル、カッターミル等が挙げられる。また、ボールミルなどで吸湿材を粉砕する際に、前記の高級脂肪酸、アルキルシラン類またはシランカップリング剤を混合し、表面処理する方法も可能である。表面処理剤の処理量は(B)成分の種類または表面処理剤の種類等によっても異なるが、(B)成分100質量部に対して1~10質量部が好ましい。 The surface treatment of component (B) can be carried out, for example, by adding and spraying a surface treatment agent while stirring untreated component (B) in a mixer at room temperature and stirring for 5 to 60 minutes. As the mixer, known mixers can be used, and examples thereof include blenders such as V blenders, ribbon blenders and bubble cone blenders, mixers such as Henschel mixers and concrete mixers, ball mills and cutter mills. In addition, when the hygroscopic material is pulverized with a ball mill or the like, it is also possible to mix the higher fatty acid, the alkylsilanes or the silane coupling agent with the hygroscopic material for surface treatment. The treatment amount of the surface treatment agent varies depending on the type of component (B) or the type of surface treatment agent, but is preferably 1 to 10 parts by weight per 100 parts by weight of component (B).

樹脂組成物中の(B)成分の含有量は、耐透湿性の観点から、樹脂組成物中の不揮発成分100質量%に対して、45質量%超である。該含有量は、好ましくは46質量%以上であり、より好ましくは48質量%以上であり、さらに好ましくは50質量%以上である。該含有量の上限は、本発明の効果が発揮されれば特に限定されないが、樹脂組成物の接着性、透明性の観点から、樹脂組成物中の不揮発成分100質量%に対して、好ましくは80質量%以下であり、より好ましくは75質量%以下であり、さらに好ましくは70質量%以下である。 The content of component (B) in the resin composition is more than 45% by mass with respect to 100% by mass of non-volatile components in the resin composition from the viewpoint of resistance to moisture permeation. The content is preferably 46% by mass or more, more preferably 48% by mass or more, and still more preferably 50% by mass or more. The upper limit of the content is not particularly limited as long as the effect of the present invention is exhibited, but from the viewpoint of adhesiveness and transparency of the resin composition, relative to 100% by mass of non-volatile components in the resin composition, preferably It is 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less.

<(C)金属錯体>
本発明の樹脂組成物は、金属錯体(以下、「(C)成分」ともいう)を含む。本発明における(C)金属錯体としては、2つの配位原子がともに酸素原子である二座配位子および配位原子が酸素原子である単座配位子が中心金属に結合した金属錯体を使用する。
<(C) Metal Complex>
The resin composition of the present invention contains a metal complex (hereinafter also referred to as "component (C)"). As the (C) metal complex in the present invention, a metal complex in which a bidentate ligand whose two coordinating atoms are both oxygen atoms and a monodentate ligand whose coordinating atoms are oxygen atoms are bonded to the central metal is used. do.

本発明において、金属錯体とは、金属原子またはイオンに他の原子、分子、イオンが結合した化学種のことである。また、配位子とは、金属原子またはイオンに結合している分子またはイオンを指す。また、当該結合に直接かかわっている原子を配位原子といい、配位原子が2つの配位子を二座配位子、配位原子が1つの配位子を単座配位子という。 In the present invention, a metal complex is a chemical species in which other atoms, molecules, or ions are bonded to metal atoms or ions. Also, ligand refers to a molecule or ion that binds to a metal atom or ion. Atoms directly involved in the bond are called coordinating atoms, ligands with two coordinating atoms are called bidentate ligands, and ligands with one coordinating atom are called monodentate ligands.

(C)成分は、2つの配位原子がともに酸素原子である二座配位子(以下、「酸素・二座配位子」とも略称する)および配位原子が酸素原子である単座配位子(以下、「酸素・単座配位子」とも略称する)が中心金属に結合した構造の金属錯体であれば、特に制限されず、該構造を満たす、公知の金属錯体を使用することができる。中でも、中心金属が周期表の第2周期から第6周期の金属である金属錯体が好ましく、より好ましくは中心金属が第3周期から第5周期の金属である金属錯体であり、さらに好ましくは中心金属がAl、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ge、Zr、In、またはSnである金属錯体であり、さらに好ましくは中心金属がAl、Ti、またはZrである金属錯体である。樹脂組成物の透明性の観点から、特に中心金属がAl(アルミニウム)またはTi(チタン)である金属錯体が好ましい。(C)成分は1種または2種以上を使用することができる。 Component (C) is a bidentate ligand whose two coordinating atoms are both oxygen atoms (hereinafter also abbreviated as “oxygen/bidentate ligand”) and a monodentate ligand whose coordinating atom is an oxygen atom. It is not particularly limited as long as it is a metal complex having a structure in which an element (hereinafter also abbreviated as "oxygen/monodentate ligand") is bound to a central metal, and known metal complexes satisfying this structure can be used. . Among them, metal complexes in which the central metal is a metal from the 2nd to 6th period of the periodic table are preferable, more preferably metal complexes in which the central metal is a metal from the 3rd to the 5th period of the periodic table, and still more preferably a central metal A metal complex in which the metal is Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ge, Zr, In, or Sn, more preferably a metal complex in which the central metal is Al, Ti, or Zr be. From the viewpoint of the transparency of the resin composition, metal complexes in which the central metal is Al (aluminum) or Ti (titanium) are particularly preferred. (C) Component can use 1 type(s) or 2 or more types.

酸素・二座配位子としては、例えば、下記式(a)で表される化合物が挙げられる。 Examples of the oxygen/bidentate ligand include compounds represented by the following formula (a).

式(a)中、R、R、Rは後掲の式(1)中のそれらと同義である。 In formula (a), R 1 , R 2 and R 3 have the same meanings as those in formula (1) below.

式(a)で表される化合物は中心金属に配位する前の酸素・二座配位子を表す。なお、本発明においては、中心金属に配位した状態の酸素・二座配位子と中心金属に配位する前の酸素・二座配位子とを、特に区別せずに「酸素・二座配位子」と称することがある。当該式(a)で表される化合物の具体例は、後掲の式(1)で表される金属錯体における酸素・二座配位子の具体例と同義である。 The compound represented by the formula (a) represents an oxygen/bidentate ligand before coordinating to the central metal. In the present invention, the oxygen/bidentate ligand in a state coordinated to the central metal and the oxygen/bidentate ligand before being coordinated to the central metal are referred to as "oxygen/bidentate ligands" without particular distinction. It is sometimes referred to as a "dentate ligand". Specific examples of the compound represented by the formula (a) are synonymous with specific examples of the oxygen/bidentate ligand in the metal complex represented by the formula (1) below.

酸素・単座配位子としては、例えば、アルコキシドアニオン(RO)、カルボキシレートアニオン(RCOO)等が挙げられる。酸素・単座配位子の具体例も、後掲の式(1)で表される金属錯体における酸素・単座配位子の具体例と同義である。なお、本発明においては、中心金属に配位した状態の酸素・単座配位子、中心金属に配位する前の酸素・単座配位子(アルコール(ROH)、カルボン酸(RCOOH))を特に区別せずに、「酸素・単座配位子」と称することがある。 Examples of oxygen/monodentate ligands include alkoxide anions (RO ) and carboxylate anions (RCOO ). Specific examples of the oxygen/monodentate ligand are also synonymous with specific examples of the oxygen/monodentate ligand in the metal complex represented by formula (1) below. In the present invention, the oxygen/monodentate ligand in a state coordinated to the central metal, and the oxygen/monodentate ligand before being coordinated to the central metal (alcohol (ROH), carboxylic acid (RCOOH)) are particularly It may be referred to as "oxygen/monodentate ligand" without distinction.

また、(C)成分の金属錯体において、酸素・二座配位子の数は1以上であり、好ましくは1以上3以下であり、より好ましくは2である。酸素・二座配位子の数が複数の場合、それらは同一の配位子であっても、異なる配位子であってもよいが、同一の配位子が好ましい。また、酸素・単座配位子の数は1以上であり、好ましくは1以上3以下であり、より好ましくは2または3である。酸素・単座配位子が複数の場合、それらは同一の配位子であっても、異なる配位子であってもよいが、同一の配位子が好ましい。 In the metal complex of component (C), the number of oxygen-bidentate ligands is 1 or more, preferably 1 or more and 3 or less, more preferably 2. When the number of oxygen-bidentate ligands is plural, they may be the same ligand or different ligands, but the same ligand is preferred. The number of oxygen/monodentate ligands is 1 or more, preferably 1 or more and 3 or less, more preferably 2 or 3. When there are a plurality of oxygen/monodentate ligands, they may be the same ligand or different ligands, but the same ligand is preferred.

(C)成分は、下記一般式(1)で表される金属錯体(以下、式(1)の金属錯体ともいう)がより好ましい。 Component (C) is more preferably a metal complex represented by the following general formula (1) (hereinafter also referred to as a metal complex of formula (1)).

式(1)において、
Mは金属錯体の中心金属であり、周期表の第2周期から第6周期の金属を表す。好ましくは第3周期から第5周期の金属であり、より好ましくはAl、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ge、Zr、In、またはSnであり、さらに好ましくはAl、Ti、またはZrであり、特に好ましくはAl(アルミニウム)またはTi(チタン)である。
およびRはそれぞれ独立に、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表す。
は水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、またはアラルキル基を表す。
Xは酸素・単座配位子を表す。
In formula (1),
M is the central metal of the metal complex and represents a metal from the 2nd to the 6th periods of the periodic table. It is preferably a 3rd to 5th period metal, more preferably Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ge, Zr, In, or Sn, still more preferably Al, Ti , or Zr, and particularly preferably Al (aluminum) or Ti (titanium).
R 1 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group.
R2 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, or an aralkyl group.
X represents an oxygen/monodentate ligand.

[ ]内の酸素原子(O)とMとの間の実線は共有結合を表し、[ ]内の酸素原子(O)とMとの間の破線は配位結合を表す。 A solid line between the oxygen atom (O) and M in [ ] represents a covalent bond, and a dashed line between the oxygen atom (O) and M in [ ] represents a coordinate bond.

mは3または4の整数であり、nは1~3の整数であり、m>nである。 m is an integer of 3 or 4, n is an integer of 1 to 3, and m>n.

、R、およびRにおけるアルキル基は、直鎖状または分枝鎖状のいずれでもよい。アルキル基の炭素数は、好ましくは1~20、さらに好ましくは1~10、特に好ましくは1~6である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、1-エチルプロピル基、ヘキシル基、イソヘキシル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基等が挙げられる。アルキル基は置換基を有していてもよい。その置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換基を有していてもよいアミノ基等が挙げられる。 Alkyl groups in R 1 , R 2 and R 3 may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-20, more preferably 1-10, and particularly preferably 1-6. Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1-ethylpropyl group, Examples include hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group and 2-ethylbutyl group. The alkyl group may have a substituent. Examples of the substituent include a halogen atom, a hydroxy group, an optionally substituted amino group, and the like.

上記のハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。上記の置換基を有していてもよいアミノ基としては、例えば、アミノ基、モノ-またはジ-アルキルアミノ基(例、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジブチルアミノ基)、モノ-またはジ-シクロアルキルアミノ基(例、シクロプロピルアミノ基、シクロヘキシルアミノ基)、モノ-またはジ-アリールアミノ基(例、フェニルアミノ基)、モノ-またはジ-アラルキルアミノ基(例、ベンジルアミノ基、ジベンジルアミノ基)、複素環アミノ基(例、ピリジルアミノ基)等が挙げられる。 Examples of the halogen atom include fluorine atom, chlorine atom, bromine atom, and iodine atom. Examples of the amino group optionally having a substituent include amino group, mono- or di-alkylamino group (e.g., methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group , dibutylamino group), mono- or di-cycloalkylamino group (e.g., cyclopropylamino group, cyclohexylamino group), mono- or di-arylamino group (e.g., phenylamino group), mono- or di-aralkyl Examples include amino groups (eg, benzylamino group, dibenzylamino group), heterocyclic amino groups (eg, pyridylamino group), and the like.

、R、およびRにおけるアルコキシ基は、好ましくは炭素数が1~6のアルコキシ基であり、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。アルコキシ基は置換基を有していてもよい。その置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換基を有していてもよいアミノ基等が挙げられる。ハロゲン原子の具体例、置換基を有していてもよいアミノ基の具体例は、前述と同様である。 The alkoxy group for R 1 , R 2 and R 3 is preferably an alkoxy group having 1 to 6 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec -butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group and the like. An alkoxy group may have a substituent. Examples of the substituent include a halogen atom, a hydroxy group, an optionally substituted amino group, and the like. Specific examples of the halogen atom and specific examples of the amino group optionally having a substituent are the same as those described above.

、R、およびRにおけるアリール基の炭素数は、好ましくは6~18、より好ましくは6~14である。アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基等が挙げられる。アリール基は置換基を有していてもよい。その置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアミノ基等が挙げられる。 The number of carbon atoms in the aryl group in R 1 , R 2 and R 3 is preferably 6-18, more preferably 6-14. Examples of aryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl and 9-anthryl groups. The aryl group may have a substituent. Examples of the substituent include a halogen atom, a hydroxy group, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, An amino group optionally having a substituent and the like can be mentioned.

上記のアルケニル基は直鎖状または分枝鎖状のいずれでもよい。アルケニル基の炭素数は、好ましくは2~10、より好ましくは2~6である。例えば、エテニル基(即ち、ビニル基)、1-プロペニル基、2-プロペニル基、2-メチル-1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-メチル-2-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、4-メチル-3-ペンテニル基、1-ヘキセニル基、3-ヘキセニル基、5-ヘキセニル基等が挙げられる。アルケニル基が有していてもよい置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換基を有していてもよいアミノ基等が挙げられる。ハロゲン原子の具体例、置換基を有していてもよいアミノ基の具体例は、前述と同様である。 The above alkenyl groups may be straight or branched. The alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms. For example, ethenyl group (that is, vinyl group), 1-propenyl group, 2-propenyl group, 2-methyl-1-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-methyl-2 -butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 4-methyl-3-pentenyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group and the like. be done. Examples of the substituent which the alkenyl group may have include a halogen atom, a hydroxy group, an amino group which may have a substituent, and the like. Specific examples of the halogen atom and specific examples of the amino group optionally having a substituent are the same as those described above.

上記のアルキニル基は、直鎖状または分枝鎖状のいずれでもよい。アルキニル基の炭素数は、好ましくは2~10、より好ましくは2~6である。例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、3-ヘキシニル基、4-ヘキシニル基、5-ヘキシニル基、4-メチル-2-ペンチニル基等が挙げられる。アルキニル基が有していてもよい置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換基を有していてもよいアミノ基等が挙げられる。ハロゲン原子の具体例、置換基を有していてもよいアミノ基の具体例は、前述と同様である。 The above alkynyl groups may be straight or branched. The number of carbon atoms in the alkynyl group is preferably 2-10, more preferably 2-6. For example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group, 2-hexynyl group, 3-hexynyl group, 4-hexynyl group, 5-hexynyl group, 4-methyl-2-pentynyl group and the like. Examples of the substituent which the alkynyl group may have include a halogen atom, a hydroxy group, an amino group which may have a substituent, and the like. Specific examples of the halogen atom and specific examples of the amino group optionally having a substituent are the same as those described above.

、R、およびRにおけるアラルキル基の炭素数は、好ましくは7~16である。例えば、ベンジル基、フェネチル基、ナフチルメチル基、フェニルプロピル基等が挙げられる。アラルキル基は置換基を有していてもよい。その置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換基を有していてもよいアミノ基等が挙げられる。ハロゲン原子の具体例、置換基を有していてもよいアミノ基の具体例は、前述と同様である。 The aralkyl group in R 1 , R 2 and R 3 preferably has 7 to 16 carbon atoms. Examples thereof include benzyl group, phenethyl group, naphthylmethyl group, phenylpropyl group and the like. The aralkyl group may have a substituent. Examples of the substituent include a halogen atom, a hydroxy group, an optionally substituted amino group, and the like. Specific examples of the halogen atom and specific examples of the amino group optionally having a substituent are the same as those described above.

におけるアルコキシカルボニル基は、好ましくはアルコキシの炭素数が1~6のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基等が挙げられる。アルコキシカルボニル基は置換基を有していてもよい。その置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換基を有していてもよいアミノ基等が挙げられる。ハロゲン原子の具体例は、前述のアルキル基の置換基であるハロゲン原子のそれと同様であり、置換基を有していてもよいアミノ基の具体例は、前述のアルキル基の置換基である置換基を有していてもよいアミノ基のそれと同様である。 The alkoxycarbonyl group for R 2 is preferably an alkoxycarbonyl group having 1 to 6 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxy carbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group and the like. An alkoxycarbonyl group may have a substituent. Examples of the substituent include a halogen atom, a hydroxy group, an optionally substituted amino group, and the like. Specific examples of the halogen atom are the same as those of the halogen atom which is the substituent of the alkyl group described above, and specific examples of the amino group which may have a substituent are the substituents which are the substituent of the alkyl group described above. It is the same as that of an optionally substituted amino group.

式中、Xで表される酸素・単座配位子は、通常、ブレンステッド酸の共役塩基であり、例えば、アルコキシドアニオン(RO)、カルボキシレートアニオン(RCOO)等が挙げられる。 In the formula, the oxygen/monodentate ligand represented by X is usually a conjugate base of Bronsted acid, such as alkoxide anion (RO ) and carboxylate anion (RCOO ).

アルコキシドアニオン(RO)において、有機基Rは脂肪族基または芳香族基のいずれでもよい。また、脂肪族基は飽和脂肪族基または不飽和脂肪族基のいずれでもよい。有機基Rの炭素数は、好ましくは1~20、さらに好ましくは1~10、特に好ましくは1~6である。アルコキシドアニオン(RO)としては、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、イソブトキシド、sec-ブトキシド、tert-ブトキシド、ペンチルオキシド、ヘキシルオキシド等が挙げられる。 In alkoxide anions (RO ), the organic group R can be either an aliphatic group or an aromatic group. Also, the aliphatic group may be either a saturated aliphatic group or an unsaturated aliphatic group. The number of carbon atoms in the organic group R is preferably 1-20, more preferably 1-10, and particularly preferably 1-6. Alkoxide anions (RO ) include, for example, methoxide, ethoxide, propoxide, isopropoxide, butoxide, isobutoxide, sec-butoxide, tert-butoxide, pentyl oxide, hexyl oxide and the like.

カルボキシレートアニオン(RCOO)において、有機基Rは脂肪族基または芳香族基のいずれでもよい。また、脂肪族基は飽和脂肪族基または不飽和脂肪族基のいずれでもよい。有機基Rの炭素数は、好ましくは1~20、さらに好ましくは1~10、特に好ましくは1~6である。カルボキシレートアニオン(RCOO)としては、例えば、酢酸、プロピオン酸、安息香酸等のカルボン酸に対応するカルボキシレートアニオン等が挙げられる。 In the carboxylate anion (RCOO ), the organic group R can be either an aliphatic group or an aromatic group. Also, the aliphatic group may be either a saturated aliphatic group or an unsaturated aliphatic group. The number of carbon atoms in the organic group R is preferably 1-20, more preferably 1-10, and particularly preferably 1-6. Examples of carboxylate anions (RCOO ) include carboxylate anions corresponding to carboxylic acids such as acetic acid, propionic acid and benzoic acid.

式中の[ ]内が酸素・二座配位子を表す。酸素・二座配位子の具体例としては、アセチルアセトン、3-メチル-2,4-ペンタンジオン、アセチルアセトアルデヒド、2,4-ヘキサンジオン、2,4-ヘプタンジオン、5-メチル-2,4-ヘキサンジオン、5,5-ジメチル-2,4-ヘキサンジオン、ベンゾイルアセトン、ベンゾイルアセトフェノン、サリチルアルデヒド、1,1,1-トリフルオロアセチルアセトン、1,1,1,5,5,5-ヘキサフルオロアセチルアセトン、3-メトキシ-2,4-ペンタンジオン、3-シアノ-2,4-ペンタンジオン、3-ニトロ-2,4-ペンタンジオン、3-クロロ-2,4-ペンタンジオン、アセト酢酸、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、サリチル酸、サリチル酸メチル、マロン酸、マロン酸ジメチル、マロン酸ジエチル等が挙げられる。中心金属に配位した状態では、酸素・二座配位子は、それからプロトンを一つまたはそれ以上取り去った構造となる。 [ ] in the formula represents an oxygen/bidentate ligand. Specific examples of oxygen/bidentate ligands include acetylacetone, 3-methyl-2,4-pentanedione, acetylacetaldehyde, 2,4-hexanedione, 2,4-heptanedione, 5-methyl-2,4 -hexanedione, 5,5-dimethyl-2,4-hexanedione, benzoylacetone, benzoylacetophenone, salicylaldehyde, 1,1,1-trifluoroacetylacetone, 1,1,1,5,5,5-hexafluoro Acetylacetone, 3-methoxy-2,4-pentanedione, 3-cyano-2,4-pentanedione, 3-nitro-2,4-pentanedione, 3-chloro-2,4-pentanedione, acetoacetic acid, aceto Methyl acetate, ethyl acetoacetate, propyl acetoacetate, salicylic acid, methyl salicylate, malonic acid, dimethyl malonate, diethyl malonate and the like. When coordinated to the central metal, the oxygen-bidentate ligand has one or more protons removed from it.

式(1)の金属錯体の具体例としては以下のものが挙げられる。中心金属MがAl(アルミニウム)の金属錯体として、例えば、アルミニウムアルキルアセトアセテートジイソプロピレート(アルミニウム9-オクタデシニルアセト-アセテートジイソプロポキシド)、アルミニウムエチルアセトアセテートジイソプロピレート、アルミニウムエチルアセトアセテートジn-ブチレート、アルミニウムプロピルアセトアセテートジイソプロピレート、アルミニウムn-ブチルアセトアセテートジイソプロピレート等が挙げられる。 Specific examples of the metal complex of formula (1) include the following. Examples of metal complexes in which the central metal M is Al (aluminum) include aluminum alkylacetoacetate diisopropylate (aluminum 9-octadecynylacetoacetate diisopropoxide), aluminum ethylacetoacetate diisopropylate, and aluminum ethylacetoacetate. di-n-butylate, aluminum propylacetoacetate diisopropylate, aluminum n-butylacetoacetate diisopropylate and the like.

また、中心金属MがTi(チタン)の金属錯体として、例えば、チタンアリルアセトアセテートトリイソプロポキサイド、チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタンジイソプロポキサイドビス(エチルアセトアセテート)、チタンメチルフェノキサイド、チタンオキシドビス(ペンタンジオネート)等が挙げられる。 Examples of metal complexes in which the central metal M is Ti (titanium) include titanium allylacetoacetate triisopropoxide, titanium di-n-butoxide (bis-2,4-pentanedionate), titanium diisopropoxide bis ( tetramethylheptanedionate), titanium diisopropoxide bis(ethylacetoacetate), titanium methylphenoxide, titanium oxide bis(pentanedionate) and the like.

また、中心金属MがZr(ジルコニウム)の金属錯体として、例えば、ジルコニウムアリルアセトアセテートトリイソプロポキサイド、ジルコニウムジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、ジルコニウムジイソプロポキシド(ビス-2,4-ペンタンジオネート)、ジルコニウムジイソプロポキシドビス(テトラメチルヘプタンジオネート)、ジルコニウムジイソプロポキシドビス(エチルアセトアセテート)、ジルコニウムブトキシド(アセチルアセテート)(ビスエチルアセトアセテート)、ジルコニウムトリブトキシモノアセチルアセトネート等が挙げられる。 In addition, metal complexes in which the central metal M is Zr (zirconium) include, for example, zirconium allylacetoacetate triisopropoxide, zirconium di-n-butoxide (bis-2,4-pentanedionate), zirconium diisopropoxide ( bis-2,4-pentanedionate), zirconium diisopropoxide bis(tetramethylheptanedionate), zirconium diisopropoxide bis(ethylacetoacetate), zirconium butoxide (acetylacetate) (bisethylacetoacetate), and zirconium tributoxy monoacetylacetonate.

樹脂組成物中の(C)成分の含有量は特に限定はされないが、樹脂組成物の接着性や透明性の観点から、樹脂組成物中の不揮発成分100質量%に対し、0.1質量%以上が好ましく、0.3質量%以上がより好ましい。また(C)成分由来のアウトガスによる封止対象への影響を抑制し易くする観点から、該含有量は、樹脂組成物中の不揮発成分100質量%に対し、5質量%以下が好ましく、3質量%以下がより好ましい。 The content of component (C) in the resin composition is not particularly limited, but from the viewpoint of adhesiveness and transparency of the resin composition, it is 0.1% by mass with respect to 100% by mass of non-volatile components in the resin composition. The above is preferable, and 0.3% by mass or more is more preferable. In addition, from the viewpoint of easily suppressing the influence of outgassing derived from the component (C) on the sealing object, the content is preferably 5% by mass or less, and 3% by mass with respect to 100% by mass of the nonvolatile components in the resin composition. % or less is more preferable.

本発明の1つの実施態様において、本発明の樹脂組成物中の(C)成分の含有量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.1~5質量%であり、より好ましくは0.3~3質量%である。 In one embodiment of the present invention, the content of component (C) in the resin composition of the present invention is preferably 0.1 to 5% by mass with respect to 100% by mass of non-volatile components in the resin composition. Yes, more preferably 0.3 to 3% by mass.

本発明の(C)成分とは異なる金属錯体、例えば、酸素・二座配位子が中心金属に結合した金属錯体であっても、その中心金属に酸素・単座配位子が結合していない金属錯体や、酸素・単座配位子が中心金属に結合した金属錯体であっても、その中心金属に酸素・二座配位子が結合していない金属錯体を配合しても、目的の優れた接着性、透明性および耐透湿性を兼ね備えた樹脂組成物を実現することができない。その理由は必ずしも明らかではないが、本発明の(C)成分である酸素・二座配位子および酸素・単座配位子が中心金属に結合した構造を有する金属錯体は、加水分解されやすい酸素・単座配位子を有するため、(B)成分である吸湿性フィラーの表面を修飾しやすく、(B)成分を樹脂組成物中に十分に分散させることができ、さらに、樹脂組成物が封止対象に貼合すると、酸素・二座配位子が、封止対象の表面に存在するガラス、プラスチック、無機膜等の表面の官能基とキレート交換して強固な結合を生じ、(B)成分を高い含有量で配合した場合でも、耐透湿性に加え、接着性および透明性にも優れた樹脂組成物になると推測される。 A metal complex different from the component (C) of the present invention, for example, a metal complex in which an oxygen/bidentate ligand is bound to a central metal, but an oxygen/monodentate ligand is not bound to the central metal. Even if it is a metal complex, a metal complex in which an oxygen/monodentate ligand is bound to the central metal, or a metal complex in which an oxygen/bidentate ligand is not bound to the central metal, the desired performance is excellent. However, it is not possible to realize a resin composition that has both adhesiveness, transparency and resistance to moisture permeation. Although the reason for this is not necessarily clear, the metal complex having a structure in which the oxygen/bidentate ligand and the oxygen/monodentate ligand, which are the component (C) of the present invention, are bonded to the central metal, is susceptible to hydrolysis.・Since it has a monodentate ligand, it is easy to modify the surface of the hygroscopic filler, which is the component (B), and the component (B) can be sufficiently dispersed in the resin composition. When it is attached to an object to be sealed, the oxygen/bidentate ligand exchanges chelates with the functional groups on the surface of the object to be sealed, such as glass, plastic, inorganic film, etc., to form a strong bond (B). It is presumed that even when the components are blended at a high content, the resin composition will be excellent in adhesiveness and transparency in addition to moisture permeation resistance.

<(D)粘着付与剤>
本発明の封止用樹脂組成物は、粘着付与剤(以下、「(D)成分」とも略称する)」を含む。
<(D) Tackifier>
The encapsulating resin composition of the present invention contains a tackifier (hereinafter also abbreviated as "component (D)").

粘着付与剤は、特に限定されず、テルペン系樹脂、テルペンフェノール系樹脂、ロジン系樹脂、水素添加テルペン系樹脂、芳香族変性テルペン系樹脂等、クマロン樹脂、インデン樹脂、石油樹脂(脂肪族系石油樹脂、水添脂環式石油樹脂、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、脂環族系石油樹脂、ジシクロペンタジエン(以下、「DCPD」とも略称する)系石油樹脂、水添ジシクロペンタジエン系石油樹脂等)等が挙げられるが、接着性および透明性の観点から、ジシクロペンタジエン系石油樹脂、水添ジシクロペンタジエン系石油樹脂がより好ましく、水添ジシクロペンタジエン系石油樹脂が特に好ましい。 The tackifier is not particularly limited, and includes terpene-based resins, terpene-phenolic resins, rosin-based resins, hydrogenated terpene-based resins, aromatic modified terpene-based resins, coumarone resins, indene resins, petroleum resins (aliphatic petroleum resins, hydrogenated alicyclic petroleum resins, aromatic petroleum resins, aliphatic-aromatic copolymer petroleum resins, alicyclic petroleum resins, dicyclopentadiene (hereinafter also abbreviated as "DCPD") petroleum resins, Hydrogenated dicyclopentadiene petroleum resins, etc.), etc., but from the viewpoint of adhesiveness and transparency, dicyclopentadiene petroleum resins and hydrogenated dicyclopentadiene petroleum resins are more preferred, and hydrogenated dicyclopentadiene petroleum resins are more preferred. Petroleum resins are particularly preferred.

樹脂組成物中の(D)成分の含有量は特に限定はされないが、樹脂組成物の接着性等の観点から、樹脂組成物中の不揮発成分100質量%に対し、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。また高温領域における接着安定性等の観点から、該含有量は、樹脂組成物中の不揮発成分100質量%に対し、40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下がさらに好ましい。 The content of the component (D) in the resin composition is not particularly limited, but from the viewpoint of the adhesiveness of the resin composition, etc., it is preferably 5% by mass or more with respect to 100% by mass of the non-volatile components in the resin composition. 10% by mass or more is more preferable, and 15% by mass or more is even more preferable. Further, from the viewpoint of adhesion stability in a high temperature range, the content is preferably 40% by mass or less, more preferably 30% by mass or less, and 25% by mass or less with respect to 100% by mass of non-volatile components in the resin composition. More preferred.

本発明の1つの実施態様において、本発明の樹脂組成物中の(D)成分の含有量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは5~40質量%であり、より好ましくは10~30質量%であり、さらに好ましくは15~25質量%である。 In one embodiment of the present invention, the content of component (D) in the resin composition of the present invention is preferably 5 to 40% by mass with respect to 100% by mass of non-volatile components in the resin composition, More preferably 10 to 30% by mass, still more preferably 15 to 25% by mass.

<(E)添加剤>
本発明の効果を損なわない範囲内で、本発明の樹脂組成物には、鉱物油系軟化剤、植物油系軟化剤、サブファクチス、脂肪酸、脂肪酸塩、合成有機化合物、合成オイル等の軟化剤;硬化剤;ゴム粒子、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等の有機充填剤;シリコーン系、フッ素系、高分子系等の消泡剤またはレベリング剤;トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤;オルベン、ベントン等の増粘剤;酸化防止剤;熱安定剤;光安定剤等の添加剤を配合することができる。また、吸湿性フィラー以外の無機フィラーを配合してもよい。このような無機フィラーとしては、例えば、シリカ、マイカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、炭酸カルシウム、炭酸マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。
<(E) Additive>
The resin composition of the present invention contains softening agents such as mineral oil softeners, vegetable oil softeners, subfactices, fatty acids, fatty acid salts, synthetic organic compounds, synthetic oils, etc.; Agent; Organic filler such as rubber particles, silicone powder, nylon powder, fluororesin powder; Antifoaming agent or leveling agent such as silicone, fluorine, or polymer; Triazole compound, thiazole compound, triazine compound, porphyrin compound, etc. thickening agents such as orben and bentone; antioxidants; heat stabilizers; and additives such as light stabilizers. Inorganic fillers other than hygroscopic fillers may also be blended. Examples of such inorganic fillers include silica, mica, alumina, barium sulfate, talc, clay, mica powder, calcium carbonate, magnesium carbonate, boron nitride, aluminum borate, barium titanate, strontium titanate, and calcium titanate. , magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, and the like.

<(F)硬化剤および/または硬化促進剤>
本発明の樹脂組成物は、例えばエポキシ基を有するポリイソブチレン系樹脂等を含む等の場合において、硬化剤および/または硬化促進剤を含んでいてもよい。硬化剤および/または硬化促進剤は、1種のみを使用してもよく、2種以上を併用してもよい。硬化剤としては、例えばイミダゾール化合物、3級・4級アミン系化合物、ジメチルウレア化合物、有機ホスフィン化合物、1級・2級アミン系化合物等挙げられる。硬化促進剤としては、例えば、イミダゾール化合物、3級・4級アミン系化合物、ジメチルウレア化合物、有機ホスフィン化合物等が挙げられる。
<(F) Curing Agent and/or Curing Accelerator>
The resin composition of the present invention may contain a curing agent and/or a curing accelerator, for example, when it contains a polyisobutylene resin having an epoxy group. The curing agent and/or curing accelerator may be used alone or in combination of two or more. Examples of curing agents include imidazole compounds, tertiary/quaternary amine compounds, dimethylurea compounds, organic phosphine compounds, primary/secondary amine compounds, and the like. Examples of curing accelerators include imidazole compounds, tertiary/quaternary amine compounds, dimethylurea compounds, and organic phosphine compounds.

本発明における硬化剤および/または硬化促進剤としてのイミダゾール化合物としては、例えば、1H-イミダゾール、2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2-フェニル-4,5-ビス(ヒドロキシメチル)イミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニルイミダゾール、2-ドデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’)-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。イミダゾール化合物の具体例としては、キュアゾール2MZ、2P4MZ、2E4MZ、2E4MZ-CN、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2PHZ、1B2MZ、1B2PZ、2PZ、C17Z、1.2DMZ、2P4MHZ-PW、2MZ-A、2MA-OK(いずれも四国化成工業社製)等が挙げられる。 Examples of imidazole compounds as curing agents and/or curing accelerators in the present invention include 1H-imidazole, 2-methylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl -2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 2,4-diamino-6-(2 '-Undecylimidazolyl-(1'))-ethyl-s-triazine, 2-phenyl-4,5-bis(hydroxymethyl)imidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole , 2-phenylimidazole, 2-dodecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6-(2′- methylimidazolyl-(1′)-ethyl-s-triazine, 2,4-diamino-6-(2′-methylimidazolyl-(1′))-ethyl-s-triazine isocyanuric acid adduct, etc. imidazole Specific examples of the compounds include Curazole 2MZ, 2P4MZ, 2E4MZ, 2E4MZ-CN, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2PHZ, 1B2MZ, 1B2PZ, 2PZ, C17Z, 1.2DMZ, 2P4MHZ-PW, 2MZ-A, 2MA-OK (both manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like.

本発明における硬化剤および/または硬化促進剤としての3級・4級アミン系硬化剤としては、特に制限はないが、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;DBU(1,8-ジアザビシクロ[5.4.0]ウンデセン-7)、DBN(1,5-ジアザビシクロ[4.3.0]ノネン-5)、DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、DBU-ギ酸塩、DBU-フェノールノボラック樹脂塩等のジアザビシクロ化合物;ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアミノメチル)フェノール(TAP)等の3級アミンおよびそれらの塩、芳香族ジメチルウレア、脂肪族ジメチルウレア等のジメチルウレア化合物;等が挙げられる。 The tertiary/quaternary amine-based curing agent as the curing agent and/or curing accelerator in the present invention is not particularly limited, but quaternary ammonium salts such as tetramethylammonium bromide and tetrabutylammonium bromide; DBU (1 ,8-diazabicyclo[5.4.0]undecene-7), DBN (1,5-diazabicyclo[4.3.0]nonene-5), DBU-phenol salt, DBU-octylate, DBU-p- diazabicyclo compounds such as toluenesulfonate, DBU-formate, DBU-phenol novolak resin salt; benzyldimethylamine, 2-(dimethylaminomethyl)phenol, 2,4,6-tris(diaminomethyl)phenol (TAP), etc. tertiary amines and salts thereof, aromatic dimethylurea, aliphatic dimethylurea and other dimethylurea compounds;

本発明における硬化剤としての1級・2級アミン系化合物としては、例えば、脂肪族アミンであるジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、1,3-ビスアミノメチルシクロヘキサン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン等、脂環式アミンであるN-アミノエチルピベラジン、1,4-ビス(3-アミノプロピル)ピペラジン等、芳香族アミンであるジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン等が挙げられる。1級・2級アミン系化合物の具体例としては、カヤハードA-A(日本化薬社製:4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン)等が挙げられる。 Examples of the primary/secondary amine compound as the curing agent in the present invention include aliphatic amines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, 1 , 3-bisaminomethylcyclohexane, dipropylenediamine, diethylaminopropylamine, bis(4-aminocyclohexyl)methane, norbornenediamine, 1,2-diaminocyclohexane and the like, N-aminoethylpiverazine which is an alicyclic amine, 1,4-bis(3-aminopropyl)piperazine, aromatic amines such as diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and diethyltoluenediamine. . Specific examples of the primary/secondary amine compounds include Kayahard AA (manufactured by Nippon Kayaku Co., Ltd.: 4,4'-diamino-3,3'-dimethyldiphenylmethane).

本発明における硬化剤および/または硬化促進剤としてのジメチルウレア化合物の具体例としては、DCMU(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)、U-CAT3512T(サンアプロ社製)等の芳香族ジメチルウレア、U-CAT3503N(サンアプロ社製)等の脂肪族ジメチルウレア等が挙げられる。中でも硬化性の点から、芳香族ジメチルウレアが好ましく用いられる。 Specific examples of dimethylurea compounds as curing agents and/or curing accelerators in the present invention include DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and U-CAT3512T (manufactured by San-Apro Co., Ltd.). and aromatic dimethyl urea such as U-CAT3503N (manufactured by San-Apro Co., Ltd.). Among them, aromatic dimethylurea is preferably used from the viewpoint of curability.

本発明における硬化剤および/または硬化促進剤としての有機ホスフィン化合物としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、トリ-tert-ブチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート、トリフェニルホスフィントリフェニルボラン等が挙げられる。有機ホスフィン化合物の具体例としては、TPP、TPP-MK、TPP-K、TTBuP-K、TPP-SCN、TPP-S(北興化学工業社製)等が挙げられる。 Examples of organic phosphine compounds as curing agents and/or curing accelerators in the present invention include triphenylphosphine, tetraphenylphosphonium tetra-p-tolylborate, tetraphenylphosphonium tetraphenylborate, tri-tert-butylphosphonium tetraphenyl borate, (4-methylphenyl)triphenylphosphoniumthiocyanate, tetraphenylphosphoniumthiocyanate, butyltriphenylphosphoniumthiocyanate, triphenylphosphinetriphenylborane and the like. Specific examples of organic phosphine compounds include TPP, TPP-MK, TPP-K, TTBuP-K, TPP-SCN, and TPP-S (manufactured by Hokko Chemical Industry Co., Ltd.).

樹脂組成物中の硬化剤および/または硬化促進剤の含有量は特に制限はないが、封止層(樹脂組成物層)の透明性等の低下を防止するという観点から、樹脂組成物中の不揮発成分100質量%に対し、5質量%以下が好ましく、1質量%以下がより好ましい。一方、封止層のタックを抑制させるという観点から、該含有量は、樹脂組成物中の不揮発成分100質量%に対し、0.0005質量%以上が好ましく、0.001質量%以上がより好ましい。 The content of the curing agent and/or curing accelerator in the resin composition is not particularly limited, but from the viewpoint of preventing a decrease in the transparency of the sealing layer (resin composition layer), etc. 5 mass % or less is preferable with respect to 100 mass % of non-volatile components, and 1 mass % or less is more preferable. On the other hand, from the viewpoint of suppressing tackiness of the sealing layer, the content is preferably 0.0005% by mass or more, more preferably 0.001% by mass or more, relative to 100% by mass of the non-volatile components in the resin composition. .

<(G)有機溶剤>
本発明の樹脂組成物には、例えば、後述の支持体上に樹脂組成物の層が形成された封止用シートを作製する際の樹脂組成物の塗工性等の観点から、有機溶剤を配合することができる。有機溶剤としては、例えば、アセトン、メチルエチルケトン(以下、「MEK」とも略称する)、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。かかる有機溶剤は、1種のみを使用してもよく、2種以上を併用してもよい。有機溶剤の量は、特に限定されないが、塗工性の観点から樹脂組成物の粘度(25℃)が300~2000mPa・sとなる量を使用するのが好ましい。
<(G) Organic solvent>
The resin composition of the present invention contains an organic solvent, for example, from the viewpoint of the coating properties of the resin composition when producing a sheet for encapsulation in which a layer of the resin composition is formed on a support, which will be described later. can be compounded. Examples of organic solvents include ketones such as acetone, methyl ethyl ketone (hereinafter also abbreviated as "MEK") and cyclohexanone, and acetic esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate. , cellosolve, carbitol such as butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like. Such organic solvents may be used alone or in combination of two or more. Although the amount of the organic solvent is not particularly limited, it is preferable to use an amount such that the viscosity (25° C.) of the resin composition is 300 to 2000 mPa·s from the viewpoint of coatability.

<樹脂組成物の製造方法>
本発明の樹脂組成物は、上述の成分(少なくとも(A)成分~(D)成分を含む)を、混練ローラーや回転ミキサーなどを用いて混合することによって製造することができる。
<Method for producing resin composition>
The resin composition of the present invention can be produced by mixing the above components (including at least components (A) to (D)) using a kneading roller, a rotating mixer, or the like.

<封止用シート>
例えば、有機溶剤を配合してワニス状にした本発明の樹脂組成物を支持体上に塗布し、得られた塗膜を加熱あるいは熱風吹きつけ等で乾燥することにより、支持体上に本発明の樹脂組成物の層が形成されたシートである封止用シートが得られる。樹脂組成物に、(A)成分として、酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂を含む樹脂組成物を使用して調製した封止用シートの場合、その調製時に、酸無水物基とエポキシ基とを反応させて、架橋構造を形成しておくことで、樹脂組成物の層の耐透湿性が高まり、封止性能(空気中の水分や酸素の遮断性能等)がより高い封止用シートが得られる。
<Sheet for sealing>
For example, the resin composition of the present invention prepared as a varnish by blending an organic solvent is coated on a support, and the resulting coating film is dried by heating or blowing hot air to obtain a coating of the present invention on the support. A sheet for sealing, which is a sheet on which a layer of the resin composition is formed, is obtained. In the case of a sealing sheet prepared by using a resin composition containing a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group as the component (A) in the resin composition, during its preparation, By reacting the acid anhydride group and the epoxy group to form a crosslinked structure, the moisture permeation resistance of the resin composition layer is increased, and the sealing performance (blocking performance of moisture and oxygen in the air, etc.) is obtained.

封止用シートに使用する支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどのプラスチックフィルムが挙げられる。プラスチックフィルムとしては、特にPETが好ましい。また支持体はアルミ箔、ステンレス箔、銅箔等の金属箔であってもよい。支持体はマット処理、コロナ処理の他、離型処理を施してあってもよい(以下、「離型処理が施された支持体」を「剥離性支持体」とも称す)。離型処理としては、例えば、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤による離型処理が挙げられる。本発明において支持体が離型層を有する場合、該離型層も支持体の一部とみなす。支持体の厚さは、特に限定されないが、取扱い性等の観点から、好ましくは20~200μm、より好ましくは20~125μmである。 Supports used for sealing sheets include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyesters such as polyethylene terephthalate (hereinafter sometimes abbreviated as "PET") and polyethylene naphthalate, polycarbonates and polyimides. plastic film. PET is particularly preferable as the plastic film. Also, the support may be a metal foil such as an aluminum foil, a stainless steel foil, or a copper foil. The support may be subjected to matte treatment, corona treatment, or release treatment (hereinafter, "release-treated support" is also referred to as "releasable support"). Examples of the mold release treatment include mold release treatment using a mold release agent such as a silicone resin mold release agent, an alkyd resin mold release agent, and a fluororesin mold release agent. In the present invention, when the support has a release layer, the release layer is also considered part of the support. Although the thickness of the support is not particularly limited, it is preferably 20 to 200 μm, more preferably 20 to 125 μm from the viewpoint of handleability.

剥離性支持体は、本発明の樹脂組成物の層が形成される側の片面に離型処理が施された支持体であり、封止用シートを実際に封止構造の形成に使用する前に剥離される支持体である。このため、剥離性支持体には必ずしも防湿性は必要ではないが、封止用シートが封止に供されるまでの保管期間の樹脂組成物の層への水分の侵入を防止する観点からは、防湿性を有することが好ましい。封止用シートの防湿性を向上させるために、バリア層を有するプラスチックフィルムを支持体として用いてもよい(以下、かかるバリア層を有するプラスチックフィルムを「防湿性支持体」とも称す)。このバリア層としては、例えば、窒化ケイ素等の窒化物、酸化アルミニウム等の酸化物、ステンレス箔、アルミ箔の金属箔等が挙げられる。プラスチックフィルムとしては、上述のプラスチックフィルムが挙げられる。バリア層を有するプラスチックフィルムは市販品を使用してもよい。また、防湿性支持体は金属箔とプラスチックフィルムを複合ラミネートしたフィルムであってもよい。例えば、アルミ箔付きポリエチレンテレフタレートフィルムの市販品としては、東海東洋アルミ販売社製「PETツキAL1N30」、福田金属社製「PETツキAL3025」等が挙げられる。また、2層以上の複層構造を有するもの、例えば、上記のプラスチックフィルムと上記の金属箔とを接着剤を介して張り合わせたものも使用できる。このものは安価であり、ハンドリング性の観点からも有利である。 The peelable support is a support whose one side on which a layer of the resin composition of the present invention is formed has been subjected to release treatment, and the sheet for sealing is applied before actually using it to form a sealing structure. It is a support that is peeled off. For this reason, the peelable support does not necessarily need to be moisture-proof, but from the viewpoint of preventing moisture from entering the layer of the resin composition during the storage period until the encapsulating sheet is subjected to encapsulation. , preferably have moisture resistance. In order to improve the moisture resistance of the sealing sheet, a plastic film having a barrier layer may be used as a support (hereinafter, such a plastic film having a barrier layer is also referred to as "moisture-proof support"). Examples of the barrier layer include nitrides such as silicon nitride, oxides such as aluminum oxide, stainless steel foil, and metal foil such as aluminum foil. The plastic film includes the plastic films described above. A commercially available plastic film having a barrier layer may be used. Also, the moisture-proof support may be a composite laminated film of a metal foil and a plastic film. For example, commercial products of polyethylene terephthalate film with aluminum foil include "PET Tsuki AL1N30" manufactured by Tokai Toyo Aluminum Sales Co., Ltd., "PET Tsuki AL3025" manufactured by Fukuda Metal Co., Ltd., and the like. In addition, those having a multi-layer structure of two or more layers, for example, those obtained by laminating the above plastic film and the above metal foil via an adhesive can also be used. This product is inexpensive and advantageous from the viewpoint of handling.

封止用シートにおいて、樹脂組成物の層は、保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムは、支持体と同様のプラスチックフィルムを用いるのが好ましい。また、保護フィルムもマット処理、コロナ処理の他、離型処理を施してあってもよい。保護フィルムの厚さは特に制限されないが、通常1~150μm、好ましくは10~100μmである。 In the sheet for sealing, the layer of the resin composition may be protected with a protective film. By protecting the surface of the resin composition layer with a protective film, it is possible to prevent the surface of the resin composition layer from being dusted or scratched. It is preferable to use the same plastic film as the support as the protective film. The protective film may also be subjected to matte treatment, corona treatment, or release treatment. Although the thickness of the protective film is not particularly limited, it is usually 1 to 150 μm, preferably 10 to 100 μm.

封止用シートは、支持体に、防湿性を有し、かつ、透過率の高い支持体を使用すれば、封止用シートを、封止対象にラミネートすることで、高い耐透湿性を備えた封止構造を形成することができる。このような、防湿性を有し、かつ、透過率の高い支持体としては、表面に酸化ケイ素(シリカ)、窒化ケイ素、SiCN、アモルファスシリコン等の無機物を蒸着させたプラスチックフィルム等が挙げられる。プラスチックフィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド等が挙げられる。プラスチックフィルムとしては、特にPETが好ましい。市販されている防湿性を有するプラスチックフィルムの例としては、テックバリアHX、AX、LX、Lシリーズ(三菱樹脂社製)やさらに防湿効果を高めたX-BARRIER(三菱樹脂社製)等が挙げられる。支持体として、2層以上の複層構造を有するものを使用しても良い。 If a support having moisture resistance and high transmittance is used as the support for the sealing sheet, the sealing sheet can be laminated to the object to be sealed to provide high resistance to moisture permeation. A sealed structure can be formed. Examples of such moisture-proof and high-transmittance supports include plastic films having inorganic substances such as silicon oxide (silica), silicon nitride, SiCN, and amorphous silicon vapor-deposited on their surfaces. Examples of plastic films include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polycarbonates, and polyimides. PET is particularly preferable as the plastic film. Examples of commercially available moisture-proof plastic films include Techbarrier HX, AX, LX, and L series (manufactured by Mitsubishi Plastics) and X-BARRIER (manufactured by Mitsubishi Plastics), which has a further improved moisture-proof effect. be done. As the support, one having a multi-layer structure of two or more layers may be used.

なお、剥離性支持体を有した封止用シートの場合、封止用シートを封止対象にラミネート後、支持体を剥離して、別途用意した封止基材(防湿性を有するプラスチックフィルム、銅箔、アルミニウム箔などの金属箔)をラミネートすることができる。 In the case of a sealing sheet having a peelable support, after laminating the sealing sheet to the sealing object, the support is peeled off and a separately prepared sealing base material (moisture-proof plastic film, metal foil such as copper foil and aluminum foil) can be laminated.

本発明の封止用シートの支持体には円偏光板を使用することができる。一般に円偏光板は偏光板と1/4波長板により構成される。円偏光板を支持体として使用する場合は、一般に1/4波長板が樹脂組成物層側に配置される。また、円偏光板と防湿性支持体の双方を含む支持体を用いる場合、好ましくは防湿性支持体が樹脂組成物層側に配置され、円偏光板の1/4波長板が防湿性支持体側に配置される。防湿性支持体と円偏光板は接着剤等により接着することができ、接着剤としては、透明性の高い接着剤であれば特に限定されず、例えば、アクリル系接着剤、ポリビニルアルコール系接着剤等が使用される。 A circularly polarizing plate can be used as the support of the sealing sheet of the present invention. A circularly polarizing plate is generally composed of a polarizing plate and a quarter-wave plate. When a circularly polarizing plate is used as the support, a quarter-wave plate is generally arranged on the resin composition layer side. Further, when a support containing both a circularly polarizing plate and a moisture-proof support is used, the moisture-proof support is preferably arranged on the resin composition layer side, and the quarter-wave plate of the circularly polarizing plate is preferably arranged on the moisture-proof support side. placed in The moisture-proof support and the circularly polarizing plate can be adhered with an adhesive or the like, and the adhesive is not particularly limited as long as it is highly transparent, and examples thereof include acrylic adhesives and polyvinyl alcohol adhesives. etc. are used.

なお、円偏光板には、偏光子(偏光板)を保護する保護フィルムを設けることができ、この保護フィルムも公知のものを使用することができ、例えば、特開2016-105166号公報や国際公開2014/003189号パンフレット等に記載の保護フィルムを挙げることができる。 In addition, the circularly polarizing plate can be provided with a protective film that protects the polarizer (polarizing plate), and a known protective film can be used. Protective films described in pamphlet No. 2014/003189 and the like can be mentioned.

本発明の封止用シートにおいて、支持体は、剥離性支持体、防湿性支持体および円偏光板から選ばれる少なくとも一つで構成されていることが好ましい。 In the sealing sheet of the present invention, the support preferably comprises at least one selected from a peelable support, a moisture-proof support and a circularly polarizing plate.

<電子デバイス>
本発明の樹脂組成物によって、電子デバイスを封止する場合、上記封止用シートを用いて封止を行うのが好適である。すなわち、封止構造を設ける電子デバイス部分に本発明の封止用シートをラミネートすることで、本発明の封止用樹脂組成物で封止された電子デバイスが得られる。
<Electronic device>
When encapsulating an electronic device with the resin composition of the present invention, it is preferable to perform encapsulation using the encapsulating sheet. That is, by laminating the sheet for encapsulation of the present invention on the electronic device portion where the encapsulation structure is to be provided, an electronic device encapsulated with the resin composition for encapsulation of the present invention can be obtained.

本発明の封止用樹脂組成物は、耐透湿性に優れ、接着性および透明性にも優れるため、電子デバイス、特にこられの特性が求められる有機ELデバイスや太陽電池等の電子デバイス用の封止用樹脂組成物として好適に用いることができる。 Since the encapsulating resin composition of the present invention is excellent in moisture permeability resistance, adhesiveness and transparency, it is suitable for use in electronic devices, particularly organic EL devices and solar cells that require these characteristics. It can be suitably used as a sealing resin composition.

以下に実施例を示して本発明をより詳しく説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、成分および共重合単位の量における「部」および「%」は、特に断りがない限り、それぞれ、「質量部」および「質量%」を意味する。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples. In the following description, "parts" and "%" in the amounts of components and copolymer units mean "parts by mass" and "% by mass", respectively, unless otherwise specified.

実施例および比較例に用いた原料は以下の通りである。
(A)ポリオレフィン系樹脂
・T-YP312(星光PMC社製):無水マレイン酸変性プロピレン-ブテン共重合体(プロピレン単位/ブテン単位=71%/29%、酸無水物基濃度:0.464mmol/g、数平均分子量:60,900)の40%トルエン溶液
・T-YP313(星光PMC社製):グリシジルメタクリレート変性プロピレン-ブテン共重合体(プロピレン単位/ブテン単位=71%/29%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)の40%トルエン溶液
・T-YP341(星光PMC社製):グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体(プロピレン単位/ブテン単位:71%/29%、グリシジル基濃度:0.638mmol/g、数平均分子量:155,000)の20%シリコーン溶液
・HV-1900(JXエネルギー社製):ポリブテン(数平均分子量:2,900)
・HV-300M(東邦化学工業株式会社製):無水マレイン酸変性液状ポリブテン(酸無水物基濃度:0.77mmol/g、数平均分子量:2,100)
Raw materials used in Examples and Comparative Examples are as follows.
(A) Polyolefin resin T-YP312 (manufactured by Seiko PMC): Maleic anhydride-modified propylene-butene copolymer (propylene unit/butene unit = 71%/29%, acid anhydride group concentration: 0.464 mmol/ g, number average molecular weight: 60,900) 40% toluene solution T-YP313 (manufactured by Seiko PMC): glycidyl methacrylate-modified propylene-butene copolymer (propylene unit / butene unit = 71% / 29%, epoxy group concentration: 0.638 mmol/g, number average molecular weight: 155,000) 40% toluene solution T-YP341 (manufactured by Seiko PMC): Glycidyl methacrylate-modified propylene-butene random copolymer (propylene unit/butene unit: 71 %/29%, glycidyl group concentration: 0.638 mmol/g, number average molecular weight: 155,000) 20% silicone solution HV-1900 (manufactured by JX Energy): polybutene (number average molecular weight: 2,900)
・ HV-300M (manufactured by Toho Chemical Industry Co., Ltd.): Maleic anhydride-modified liquid polybutene (acid anhydride group concentration: 0.77 mmol / g, number average molecular weight: 2,100)

(B)吸湿性フィラー
・DHT-4C(協和化学工業社製):半焼成ハイドロタルサイト(表1中、「半焼成HT」と略記する)(平均粒子径:400nm、BET比表面積:15m/g)
(B) Hygroscopic filler DHT-4C (manufactured by Kyowa Chemical Industry Co., Ltd.): semi-calcined hydrotalcite (abbreviated as “semi-calcined HT” in Table 1) (average particle size: 400 nm, BET specific surface area: 15 m 2 /g)

(C)金属錯体
・アルミキレートM(川研ファインケミカル社製):アルミニウムアルキルアセトアセテートジイソプロピレート
・KR38S(味の素ファインテクノ社製):イソプロピルトリス(ジオクチルパイロフォスフェート)チタネート
・オルガチックスZC540(マツモトファインケミカル社製):ジルコニウムトリブトキシモノアセチルアセトネート
・オルガチックスZC320(マツモトファインケミカル社製):ステアリン酸ジルコニウム
(C) Metal complex Aluminum chelate M (manufactured by Kawaken Fine Chemicals Co., Ltd.): aluminum alkylacetoacetate diisopropylate KR38S (manufactured by Ajinomoto Fine-Techno Co., Ltd.): isopropyl tris (dioctylpyrophosphate) titanate Organics ZC540 (Matsumoto Fine Chemicals) company): zirconium tributoxy monoacetylacetonate ORGATIX ZC320 (manufactured by Matsumoto Fine Chemicals Co., Ltd.): zirconium stearate

(D)粘着付与剤
・アルコンP125(荒川化学社製):シクロヘキサン環含有飽和炭化水素樹脂、軟化点125℃
・T-REZ HA125(東燃ゼネラル社製):水添DCPD型炭化水素樹脂(軟化点125℃)
(D) Tackifier Alcon P125 (manufactured by Arakawa Chemical Co., Ltd.): Cyclohexane ring-containing saturated hydrocarbon resin, softening point 125°C
・ T-REZ HA125 (manufactured by TonenGeneral Co., Ltd.): Hydrogenated DCPD type hydrocarbon resin (softening point 125 ° C.)

(F)硬化剤
・アニオン重合型アミン系硬化剤(2,4,6-トリス(ジアミノメチル)フェノール、以下「TAP」と略記する。)
(F) Curing agent/anion-polymerizable amine-based curing agent (2,4,6-tris(diaminomethyl)phenol, hereinafter abbreviated as “TAP”)

(G)有機溶剤
・トルエン
(G) Organic solvent/toluene

その他
・スワゾール#1000(丸善石油社製):芳香族系混合溶剤
Other ・Swasol #1000 (manufactured by Maruzen Oil Co., Ltd.): Aromatic mixed solvent

以下の手順で樹脂組成物のワニスを表1に示す配合比にて調製した後、封止用シートを作製した。
<実施例1>
シクロヘキサン環含有飽和炭化水素樹脂(アルコンP125、60%スワゾール溶液)77部に、無水マレイン酸変性液状ポリイソブチレン(HV-300M)35部、ポリブテン(HV-1900)60部、アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)1.5部および半焼成ハイドロタルサイト(DHT-4C)270部を3本ロールで分散させて、混合物を得た。得られた混合物に、グリシジルメタクリレート変性ポリプロピレン-ポリブテン共重合体(T-YP341、20%シリコーン溶液)40部、アニオン重合型アミン系硬化剤(TAP)0.5部およびトルエン170部を配合し、得られた混合物を高速回転ミキサーで均一に分散して、樹脂組成物のワニスを得た。ワニスをシリコーン系離型剤で処理されたポリエチレンテレフタレートフィルム(厚さ38μm)(以下PETフィルム)の離型処理面に、ダイコーターにて均一に塗布し、140℃で30分間加熱することにより、厚さ20μmの樹脂組成物層(樹脂組成物層中の残留溶媒量:約1質量%)を形成し、次いで、カバーフィルム(シリコーン系離型剤で処理されたPETフィルム(厚さ38μm))を貼り合わせて封止用シートを得た。
After preparing a varnish of the resin composition at the compounding ratio shown in Table 1 according to the following procedure, a sealing sheet was produced.
<Example 1>
77 parts of a cyclohexane ring-containing saturated hydrocarbon resin (Alcon P125, 60% Swarsol solution), 35 parts of maleic anhydride-modified liquid polyisobutylene (HV-300M), 60 parts of polybutene (HV-1900), aluminum alkylacetoacetate diisopropyl A mixture was obtained by dispersing 1.5 parts of latoate (aluminum chelate M) and 270 parts of semi-calcined hydrotalcite (DHT-4C) with a triple roll. 40 parts of a glycidyl methacrylate-modified polypropylene-polybutene copolymer (T-YP341, 20% silicone solution), 0.5 parts of an anionic polymerizable amine curing agent (TAP) and 170 parts of toluene were added to the resulting mixture, The resulting mixture was uniformly dispersed in a high-speed rotating mixer to obtain a resin composition varnish. A varnish was evenly applied to the release-treated surface of a polyethylene terephthalate film (thickness: 38 μm) (hereinafter referred to as PET film) treated with a silicone-based release agent using a die coater, and heated at 140° C. for 30 minutes. A resin composition layer having a thickness of 20 μm (amount of residual solvent in the resin composition layer: about 1% by mass) is formed, and then a cover film (a PET film (thickness of 38 μm) treated with a silicone release agent) is formed. were pasted together to obtain a sealing sheet.

<実施例2>
アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)1.5部の代わりにジルコニウムトリブトキシモノアセチルアセトネート(オルガチックスZC540)1.5部を用いたこと以外は実施例1と同様にして、封止用シートを得た。
<Example 2>
Sealing was carried out in the same manner as in Example 1, except that 1.5 parts of zirconium tributoxy monoacetylacetonate (Orgatics ZC540) was used instead of 1.5 parts of aluminum alkyl acetoacetate diisopropylate (aluminum chelate M). A sealing sheet was obtained.

<実施例3>
シクロヘキサン環含有飽和炭化水素樹脂(アルコンP125、60%シリコーン溶液)77部の代わりに水添DCPD型炭化水素樹脂(T-REZ HA125)77部を用い、アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)の添加量を1部とし、かつ半焼成ハイドロタルサイト(DHT-4C)の添加量を200部としたこと以外は実施例1と同様にして、封止用シートを得た。
<Example 3>
Using 77 parts of hydrogenated DCPD type hydrocarbon resin (T-REZ HA125) instead of 77 parts of cyclohexane ring-containing saturated hydrocarbon resin (Alcon P125, 60% silicone solution), aluminum alkylacetoacetate diisopropylate (aluminum chelate M ) was changed to 1 part, and the added amount of semi-calcined hydrotalcite (DHT-4C) was changed to 200 parts.

<実施例4>
ポリブテン(HV-1900)を添加せず、かつシクロヘキサン環含有飽和炭化水素樹脂(アルコンP125、60%シリコーン溶液)の添加量を137部としたこと以外は実施例1と同様にして、封止用シートを得た。
<Example 4>
In the same manner as in Example 1, except that polybutene (HV-1900) was not added and the amount of cyclohexane ring-containing saturated hydrocarbon resin (Alcon P125, 60% silicone solution) was 137 parts. got a sheet.

<実施例5>
アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)の添加量を1.8部とし、かつ半焼成ハイドロタルサイト(DHT-4C)の添加量を350部としたこと以外は実施例1と同様にして、封止用シートを得た。
<Example 5>
The procedure of Example 1 was repeated except that the amount of aluminum alkylacetoacetate diisopropylate (aluminum chelate M) was 1.8 parts and the amount of semi-calcined hydrotalcite (DHT-4C) was 350 parts. to obtain a sealing sheet.

<実施例6>
シクロヘキサン環含有飽和炭化水素樹脂(アルコンP125、60%シリコーン溶液)77部に、ポリブテン(HV-1900)95部、アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)1部、および半焼成ハイドロタルサイト(DHT-4C)200部を3本ロールで分散させて、混合物を得た。得られた混合物に、グリシジルメタクリレート変性ポリプロピレン-ポリブテン共重合体(T-YP312、40%トルエン溶液)20部、無水マレイン酸変性プロピレン-ブテン共重合体(T-YP313、40%トルエン溶液)20部、アニオン重合型アミン系硬化剤(TAP)0.5部およびトルエン170部を配合し、得られた混合物を高速回転ミキサーで均一に分散して、樹脂組成物のワニスを得た。得られたワニスを用いて実施例1と同様にして、封止用シートを得た。
<Example 6>
77 parts of cyclohexane ring-containing saturated hydrocarbon resin (Alcon P125, 60% silicone solution), 95 parts of polybutene (HV-1900), 1 part of aluminum alkylacetoacetate diisopropylate (aluminum chelate M), and semi-calcined hydrotalcite 200 parts of (DHT-4C) were dispersed with three rolls to obtain a mixture. To the resulting mixture were added 20 parts of glycidyl methacrylate-modified polypropylene-polybutene copolymer (TYP312, 40% toluene solution) and 20 parts of maleic anhydride-modified propylene-butene copolymer (TYP313, 40% toluene solution). , 0.5 parts of an anionic polymerizable amine-based curing agent (TAP) and 170 parts of toluene were blended, and the resulting mixture was uniformly dispersed with a high-speed rotating mixer to obtain a varnish of a resin composition. A sealing sheet was obtained in the same manner as in Example 1 using the obtained varnish.

<比較例1>
アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)1部の代わりにイソプロピルトリス(ジオクチルパイロフォスフェート)チタネート(KR38S)1部を用いたこと以外は実施例3と同様にして、封止用シートを得た。
<Comparative Example 1>
A sealing sheet was prepared in the same manner as in Example 3, except that 1 part of isopropyl tris(dioctylpyrophosphate) titanate (KR38S) was used instead of 1 part of aluminum alkylacetoacetate diisopropylate (aluminum chelate M). Obtained.

<比較例2>
アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)1.5部の代わりにステアリン酸ジルコニウム(オルガチックスZC320)1.5部を用いたこと以外は実施例1と同様にして、封止用シートを得た。
<Comparative Example 2>
A sealing sheet was prepared in the same manner as in Example 1, except that 1.5 parts of zirconium stearate (Orgatics ZC320) was used instead of 1.5 parts of aluminum alkylacetoacetate diisopropylate (aluminum chelate M). Obtained.

<比較例3>
アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)を添加しなかったこと以外は実施例1と同様にして、封止用シートを得た。
<Comparative Example 3>
A sealing sheet was obtained in the same manner as in Example 1, except that aluminum alkylacetoacetate diisopropylate (aluminum chelate M) was not added.

<比較例4>
アルミニウムアルキルアセトアセテートジイソプロピレート(アルミキレートM)を添加せず、かつ半焼成ハイドロタルサイト(DHT-4C)の添加量を100部としたこと以外は実施例6と同様にして、封止用シートを得た。
<Comparative Example 4>
For sealing, in the same manner as in Example 6, except that aluminum alkylacetoacetate diisopropylate (aluminum chelate M) was not added and the amount of semi-calcined hydrotalcite (DHT-4C) was 100 parts. got a sheet.

<測定方法・評価方法>
各種測定方法・評価方法について以下に説明する。
<Measurement method/evaluation method>
Various measurement methods and evaluation methods are described below.

<接着性の評価>
実施例および比較例で作製した封止用シート(長さ50mm、幅20mmに裁断したもの)のカバーフィルムを剥離し、樹脂組成物層をバッチ式真空ラミネーター(ニチゴー・モートン社製、V-160)を用いて、長さ100mmおよび幅25mmのアルミ箔/PET複合フィルム「PETツキAL1N30」(アルミ箔:30μm、PET:25μm:東洋アルミ販売社製商品名)にラミネートした。ラミネートは、温度80℃、時間300秒、圧力0.3MPaの条件で行った。そしてPETフィルムを剥離し、露出した樹脂組成物層上に、さらにガラス板(長さ76mm、幅26mm、厚さ1.2mm、マイクロスライドガラス)を上記と同じ条件でラミネートした。得られた積層体について、アルミ箔/PET複合フィルムの長さ方向に対して、180度方向に、引張り速度を300mm/分として剥離したときのピール強度により接着性を測定した。
良好(○):ピール強度が0.2kgf/cm以上
不良(×):ピール強度が0.2kgf/cm未満
<Evaluation of adhesiveness>
The cover film of the sealing sheet (cut into a length of 50 mm and a width of 20 mm) prepared in Examples and Comparative Examples was peeled off, and the resin composition layer was applied to a batch-type vacuum laminator (manufactured by Nichigo-Morton, V-160 ) was used to laminate an aluminum foil/PET composite film “PET Tsuki AL1N30” (aluminum foil: 30 μm, PET: 25 μm: manufactured by Toyo Aluminum Sales Co., Ltd.) having a length of 100 mm and a width of 25 mm. Lamination was performed under the conditions of a temperature of 80° C., a time of 300 seconds, and a pressure of 0.3 MPa. Then, the PET film was peeled off, and a glass plate (length 76 mm, width 26 mm, thickness 1.2 mm, microslide glass) was further laminated on the exposed resin composition layer under the same conditions as above. The obtained laminate was peeled off at a pulling speed of 300 mm/min in a direction of 180 degrees with respect to the length direction of the aluminum foil/PET composite film, and the adhesiveness was measured by the peel strength.
Good (○): Peel strength is 0.2 kgf/cm or more Poor (×): Peel strength is less than 0.2 kgf/cm

<透明性の評価>
実施例および比較例で作製した封止用シートを長さ50mmおよび幅20mmにカットし、カバーフィルムを剥離した後、樹脂組成物層をガラス板(長さ76mm、幅26mmおよび厚さ1.2mmのマイクロスライドガラス;松浪ガラス工業社製白スライドグラスS1112 縁磨No.2)にバッチ式真空ラミネーター(ニチゴー・モートン社製、V-160)を用いてラミネートし、評価用サンプルを得た。ラミネート条件は、温度80℃、減圧時間30秒の後、圧力0.3MPaにて30秒加圧であった。封止用シートのPETフィルムを剥離し、スガ試験機社製ヘーズメーターを用いて、空気をリファレンスとしてD65光にて評価用サンプル(厚み20μm)のヘイズを測定し、以下の基準で透明性を評価した。
良好(○):ヘイズが3.5%未満
不良(×):ヘイズが3.5%以上
<Evaluation of transparency>
The encapsulating sheets prepared in Examples and Comparative Examples were cut into a length of 50 mm and a width of 20 mm, the cover film was peeled off, and the resin composition layer was applied to a glass plate (length 76 mm, width 26 mm and thickness 1.2 mm). (Matsunami Glass Industry Co., Ltd. white slide glass S1112 edge-polished No. 2) was laminated using a batch-type vacuum laminator (Nichigo-Morton, V-160) to obtain a sample for evaluation. The lamination conditions were a temperature of 80° C., a pressure reduction time of 30 seconds, and a pressure of 0.3 MPa for 30 seconds. Peel off the PET film of the sealing sheet, use a haze meter manufactured by Suga Test Instruments Co., Ltd., measure the haze of the evaluation sample (thickness 20 μm) with air as a reference with D65 light, and measure the transparency according to the following criteria. evaluated.
Good (○): Haze is less than 3.5% Poor (×): Haze is 3.5% or more

<耐透湿性の評価>
各実施例および比較例で、シリコーン系離型剤で処理されたPETフィルム(支持体)の代わりに、アルミ箔/PET複合フィルム「PETツキAL1N30」(アルミ箔:30μm、PET:25μm、東海東洋アルミ販売社の商品名)を用いたこと以外は各実施例および比較例と同様にして、封止用シートを得た。
<Evaluation of moisture permeability resistance>
In each of the examples and comparative examples, the aluminum foil/PET composite film "PET Tsuki AL1N30" (aluminum foil: 30 µm, PET: 25 µm, Tokai Toyo A sealing sheet was obtained in the same manner as in each example and comparative example, except for using Aluminum Distributor's trade name).

カルシウムを蒸着した無アルカリガラスを有機ELデバイスの発行面のモデルとして使用し、有機ELデバイスの発光面積減少開始時間を測定することにより、各封止用シートの耐透湿性を評価した(カルシウム(Ca)試験)。無アルカリガラス50mm×50mm角を、煮沸したイソプロピールアルコールで5分間洗浄し、150℃において30分以上乾燥した。当該ガラスを用い、端部からの距離を3mmとしたマスクを使用し、カルシウム(純度99.8%)を蒸着した(厚さ300nm)。各実施例および比較例と同じ樹脂組成物層を有する封止用シートをグローブボックス内で130℃で1時間加熱した後、カルシウムを蒸着した無アルカリガラスをグローブボックス内で熱ラミネーター(フジプラ社製 ラミパッカーDAiSY A4(LPD2325)にて、各封止用シートと貼りあわせて、積層体(評価用サンプル)を調製した。 Using non-alkali glass deposited with calcium as a model for the light emitting surface of the organic EL device, the moisture permeability resistance of each sealing sheet was evaluated by measuring the light emitting area reduction start time of the organic EL device (calcium ( Ca) Test). A 50 mm×50 mm square non-alkali glass was washed with boiled isopropyl alcohol for 5 minutes and dried at 150° C. for 30 minutes or more. Using the glass and using a mask with a distance of 3 mm from the edge, calcium (purity 99.8%) was evaporated (thickness 300 nm). After heating a sealing sheet having the same resin composition layer as in each example and comparative example at 130° C. for 1 hour in a glove box, alkali-free glass deposited with calcium was placed in a glove box using a thermal laminator (manufactured by Fujipla Co., Ltd.). A laminated body (evaluation sample) was prepared by laminating each sheet for sealing with a lamination packer DAiSY A4 (LPD2325).

カルシウムが水と接触して酸化カルシウムになると白色から透明になる。そのため、評価用サンプルへの水分侵入は、評価用サンプルの端部から白色を呈するカルシウムまでの距離(mm)を測定することによって評価できる。そのため、カルシウムを含む評価用サンプルを、有機ELデバイスの発光面のモデルとして使用した。 When calcium comes into contact with water, it becomes calcium oxide, which turns from white to transparent. Therefore, the penetration of water into the evaluation sample can be evaluated by measuring the distance (mm) from the edge of the evaluation sample to the white calcium. Therefore, an evaluation sample containing calcium was used as a model for the light-emitting surface of the organic EL device.

まず、評価用サンプルの端部から蒸着したカルシウムの距離をミツトヨ社製Measuring Microscope MF-Uにより測定し、この値を初期値とした。次いで、温度85℃、85%RHに設定した小型環境試験器(エスペック社製SH-222)に評価用サンプルを一定時間静置し、一定時間時間ごとに、評価用サンプルの端部からカルシウムまでの距離を測定した。以下のフィックの拡散式: First, the distance of deposited calcium from the edge of the sample for evaluation was measured by Mitutoyo's Measuring Microscope MF-U, and this value was used as the initial value. Next, the evaluation sample is left for a certain period of time in a small environmental tester (Espec SH-222) set at a temperature of 85 ° C. and 85% RH, and at regular intervals, from the end of the evaluation sample to calcium. distance was measured. Fick's diffusion formula below:

(式中、Xは、評価用サンプルの端部からカルシウムまでの距離(mm)を示し、tは評価用サンプルを小型環境試験器に静置した時間(hr)を示し、Kは比例定数を示す。)
に基づき、「評価用サンプルの端部からカルシウムまでの距離」と「評価用サンプルを小型環境試験器に静置した時間」から、最小二乗法により理論曲線を引くことで、比例定数Kを算出した。算出したKを用いて、X=2.6mmとなる時間を、発光面積減少開始時間として算出した。耐透湿性が高いほど水分の侵入速度を遅らせることができ、発光面積減少開始時間は長くなる。
良好(○):250hr以上
不良(×):250hr未満
(Wherein, X represents the distance (mm) from the end of the evaluation sample to the calcium, t represents the time (hr) for the evaluation sample to stand still in the small environmental tester, and K represents the constant of proportionality. show.)
Calculate the proportionality constant K by drawing a theoretical curve using the least squares method from the "distance from the end of the evaluation sample to calcium" and "the time the evaluation sample was left standing in the small environmental tester". bottom. Using the calculated K, the time at which X=2.6 mm was calculated as the emission area reduction start time. The higher the resistance to moisture permeation, the slower the penetration speed of moisture, and the longer the light emitting area reduction start time.
Good (○): 250 hr or more Poor (×): Less than 250 hr

表1の結果から、実施例1~6の封止用シートは、耐透湿性に優れるとともに、接着性および透明性にも優れることが示された。一方、比較例1および3の封止用シートは、接着性は優れるものの、透明性に劣り、また、比較例2の封止用シートは、耐透湿性と透明性は優れるものの、接着性が低いことが分かる。さらに、比較例4の封止用シートは、接着性と透明性に優れるものの、耐透湿性に劣ることが分かる。 The results in Table 1 show that the sealing sheets of Examples 1 to 6 are excellent in moisture permeation resistance as well as adhesiveness and transparency. On the other hand, the sealing sheets of Comparative Examples 1 and 3 have excellent adhesiveness but poor transparency, and the sealing sheet of Comparative Example 2 has excellent moisture permeability resistance and transparency, but poor adhesiveness. I know it's low. Furthermore, it can be seen that the sealing sheet of Comparative Example 4 is excellent in adhesiveness and transparency, but inferior in moisture permeation resistance.

本発明の封止用樹脂組成物は、耐透湿性に加え、接着性と透明性にも優れるため、電子デバイス、特に有機ELデバイスや太陽電池等の電子デバイスの封止に好適に使用することができる。 The encapsulating resin composition of the present invention is excellent in adhesiveness and transparency in addition to moisture permeation resistance, so that it can be suitably used for encapsulating electronic devices, particularly electronic devices such as organic EL devices and solar cells. can be done.

Claims (11)

(A)ポリオレフィン系樹脂;
(B)吸湿性フィラー;
(C)金属錯体;および
(D)粘着付与剤
を含む封止用樹脂組成物であって、(A)ポリオレフィン系樹脂が、酸無水物基を有するポリオレフィン系樹脂、および/または、エポキシ基を有するポリオレフィン系樹脂を含み、封止用樹脂組成物中の不揮発成分100質量%に対する(B)吸湿性フィラーの含有量が45質量%超であり、(C)金属錯体が、一般式(1):

(式中、
Mはアルミニウムまたはジルコニウムを表し、
およびR はそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、または置換基を有していてもよいアラルキル基を表し、
は水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリール基、または置換基を有していてもよいアラルキル基を表し、
Xは配位原子が酸素原子である単座配位子を表し、
[ ]内の酸素原子(O)とMとの間の実線は共有結合を表し、
[ ]内の酸素原子(O)とMとの間の破線は配位結合を表し、並びに
mは3または4の整数であり、nは1~3の整数であり、およびm>nである。)
で表される金属錯体である、封止用樹脂組成物。
(A) polyolefin resin;
(B) a hygroscopic filler;
(C) a metal complex; and (D) a sealing resin composition containing a tackifier, wherein (A) the polyolefin resin comprises a polyolefin resin having an acid anhydride group and/or an epoxy group; The content of (B) the hygroscopic filler is more than 45% by mass with respect to 100% by mass of non-volatile components in the sealing resin composition, and the (C) metal complex has the general formula (1) :

(In the formula,
M represents aluminum or zirconium,
R 1 and R 3 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group, or represents an optionally substituted aralkyl group,
R 2 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkoxycarbonyl group, or a substituted represents an aryl group that may be substituted, or an aralkyl group that may have a substituent,
X represents a monodentate ligand whose coordinating atom is an oxygen atom;
The solid line between the oxygen atom (O) and M in [ ] represents a covalent bond,
The dashed line between the oxygen atom (O) and M in [ ] represents a coordinate bond, and
m is an integer of 3 or 4, n is an integer of 1 to 3, and m>n. )
A sealing resin composition which is a metal complex represented by
(B)吸湿性フィラーが半焼成ハイドロタルサイトである、請求項1に記載の封止用樹脂組成物。 2. The encapsulating resin composition according to claim 1, wherein (B) the hygroscopic filler is semi-calcined hydrotalcite. (A)ポリオレフィン系樹脂が、酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂を含む、請求項1または2に記載の封止用樹脂組成物。 3. The encapsulating resin composition according to claim 1, wherein (A) the polyolefin resin comprises a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group. (A)ポリオレフィン系樹脂が、酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂の反応物を含む、請求項1~のいずれか1項に記載の封止用樹脂組成物。 (A) The resin composition for sealing according to any one of claims 1 to 3 , wherein the polyolefin resin comprises a reaction product of a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group. . 樹脂組成物中の不揮発成分100質量%に対する(C)金属錯体の含有量が0.1~5質量%である、請求項1~のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 4 , wherein the content of (C) the metal complex is 0.1 to 5% by mass based on 100% by mass of non-volatile components in the resin composition. 樹脂組成物中の不揮発成分100質量%に対する(D)粘着付与剤の含有量が5~40質量%である、請求項1~のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 5 , wherein the content of (D) the tackifier is 5 to 40% by mass with respect to 100% by mass of non-volatile components in the resin composition. 電子デバイスの封止用である、請求項1~のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 6 , which is used for encapsulating electronic devices. 電子デバイスが有機ELデバイスまたは太陽電池である、請求項に記載の封止用樹脂組成物。 8. The encapsulating resin composition according to claim 7 , wherein the electronic device is an organic EL device or a solar cell. 支持体と、該支持体上に形成された、請求項1~のいずれか1項に記載の樹脂組成物の層とを含む、封止用シート。 A sealing sheet comprising a support and a layer of the resin composition according to any one of claims 1 to 8 formed on the support. 請求項1~のいずれか1項に記載の封止用樹脂組成物で封止されている、電子デバイス。 An electronic device sealed with the sealing resin composition according to any one of claims 1 to 6 . 電子デバイスが有機ELデバイスまたは太陽電池である、請求項10に記載の電子デバイス。 11. The electronic device according to claim 10 , wherein the electronic device is an organic EL device or a solar cell.
JP2019180697A 2019-09-30 2019-09-30 Sealing resin composition Active JP7318462B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019180697A JP7318462B2 (en) 2019-09-30 2019-09-30 Sealing resin composition
TW109134031A TW202126740A (en) 2019-09-30 2020-09-30 Sealing resin composition
KR1020227014752A KR20220075400A (en) 2019-09-30 2020-09-30 Resin composition for sealing
PCT/JP2020/037060 WO2021065973A1 (en) 2019-09-30 2020-09-30 Sealing resin composition
CN202080067916.2A CN114502634A (en) 2019-09-30 2020-09-30 Sealing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180697A JP7318462B2 (en) 2019-09-30 2019-09-30 Sealing resin composition

Publications (2)

Publication Number Publication Date
JP2021054981A JP2021054981A (en) 2021-04-08
JP7318462B2 true JP7318462B2 (en) 2023-08-01

Family

ID=75270366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180697A Active JP7318462B2 (en) 2019-09-30 2019-09-30 Sealing resin composition

Country Status (5)

Country Link
JP (1) JP7318462B2 (en)
KR (1) KR20220075400A (en)
CN (1) CN114502634A (en)
TW (1) TW202126740A (en)
WO (1) WO2021065973A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210910A (en) 2013-04-04 2014-11-13 三菱レイヨン株式会社 Thermoplastic resin composition, molded body, laminated molded body, and solar cell module
WO2015068805A1 (en) 2013-11-08 2015-05-14 日本化薬株式会社 Sealing resin composition
WO2017057708A1 (en) 2015-09-30 2017-04-06 味の素株式会社 Resin composition for sealing
JP2018162418A (en) 2017-03-27 2018-10-18 味の素株式会社 Sealing resin composition and sealing sheet
WO2019167905A1 (en) 2018-02-27 2019-09-06 味の素株式会社 Resin composition for sealing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156593A1 (en) * 2013-03-29 2014-10-02 古河電気工業株式会社 Resin composition for element encapsulation for organic electronic devices, resin sheet for element encapsulation for organic electronic devices, organic electroluminescent element and image display device
JP2015163669A (en) * 2014-01-31 2015-09-10 東洋インキScホールディングス株式会社 organic metal-containing curable resin composition
TWI738641B (en) * 2015-03-20 2021-09-11 日商味之素股份有限公司 Manufacturing method of package
KR101765396B1 (en) 2015-11-17 2017-08-04 주식회사 한성에스엘씨 an aerial cableway power Transmission winch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210910A (en) 2013-04-04 2014-11-13 三菱レイヨン株式会社 Thermoplastic resin composition, molded body, laminated molded body, and solar cell module
WO2015068805A1 (en) 2013-11-08 2015-05-14 日本化薬株式会社 Sealing resin composition
WO2017057708A1 (en) 2015-09-30 2017-04-06 味の素株式会社 Resin composition for sealing
JP2018162418A (en) 2017-03-27 2018-10-18 味の素株式会社 Sealing resin composition and sealing sheet
WO2019167905A1 (en) 2018-02-27 2019-09-06 味の素株式会社 Resin composition for sealing

Also Published As

Publication number Publication date
WO2021065973A1 (en) 2021-04-08
KR20220075400A (en) 2022-06-08
CN114502634A (en) 2022-05-13
TW202126740A (en) 2021-07-16
JP2021054981A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7334731B2 (en) Sealing composition
JP7120017B2 (en) Encapsulating resin composition and encapsulating sheet
JP6801680B2 (en) Thermosetting resin composition for sealing and sheet for sealing
KR102579970B1 (en) Bag sheet
WO2021111855A1 (en) Sealing agent, sealing sheet, electronic device, and perovskite type solar cell
CN115558342A (en) Sealing sheet
JP2024091938A (en) Adhesive Composition
JP7318462B2 (en) Sealing resin composition
JP6741001B2 (en) Sealing resin composition and sealing sheet
JP2022183745A (en) Adhesive composition, adhesive sheet and electronic device
JP7516951B2 (en) Sealing sheet and adhesive composition layer
WO2021095792A1 (en) Method for manufacturing sealing sheet
TW202128864A (en) Resin composition and resin sheet
KR20210148236A (en) Resin sheet with support
CN115558212A (en) Sealing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7318462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150