WO2021111855A1 - Sealing agent, sealing sheet, electronic device, and perovskite type solar cell - Google Patents

Sealing agent, sealing sheet, electronic device, and perovskite type solar cell Download PDF

Info

Publication number
WO2021111855A1
WO2021111855A1 PCT/JP2020/042668 JP2020042668W WO2021111855A1 WO 2021111855 A1 WO2021111855 A1 WO 2021111855A1 JP 2020042668 W JP2020042668 W JP 2020042668W WO 2021111855 A1 WO2021111855 A1 WO 2021111855A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant
mass
resin
sealing
lead
Prior art date
Application number
PCT/JP2020/042668
Other languages
French (fr)
Japanese (ja)
Inventor
賢 大橋
麻衣 細井
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to KR1020227018553A priority Critical patent/KR20220107195A/en
Priority to DE112020005939.1T priority patent/DE112020005939T5/en
Priority to CN202080083334.3A priority patent/CN114762144A/en
Publication of WO2021111855A1 publication Critical patent/WO2021111855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4071Curing agents not provided for by the groups C08G59/42 - C08G59/66 phosphorus containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a sealant for an electronic device having a lead-containing portion, and a sealing sheet using the lead-containing part, an electronic device, and a perovskite type solar cell.
  • a perovskite-type solar cell generally includes an electrode and a photoelectric conversion layer containing a perovskite compound. Further, in order to protect the electrodes and the photoelectric conversion layer from water, the perovskite type solar cell is usually provided with a sealing portion. Various studies have been conducted on such a sealing portion (Patent Document 1).
  • Lead may be contained in the photoelectric conversion layer of the perovskite type solar cell. If water penetrates into the photoelectric conversion layer, lead may flow out from the photoelectric conversion layer and leak to the outside of the solar cell. Further, such lead leakage can also occur in an electronic device other than a perovskite type solar cell provided with a lead-containing portion such as the photoelectric conversion layer. Lead leakage is desired to be suppressed from both environmental and safety perspectives.
  • the present invention has been devised in view of the above problems, and is a sealing agent for electronic devices capable of suppressing the infiltration of water and suppressing the leakage of lead from the lead-containing portion to the outside of the electronic device; It is an object of the present invention to provide a sealing sheet containing the sealing agent; and an electronic device and a perovskite type solar cell using the sealing agent for sealing.
  • the present inventor has diligently studied to solve the above-mentioned problems. As a result, the present inventor has found that the above-mentioned problems can be solved when the inorganic filler and the resin are used in an appropriate combination, and completed the present invention. That is, the present invention includes the following.
  • a sealant for an electronic device including a lead-containing portion.
  • the encapsulant contains an inorganic filler and a resin.
  • the lead adsorption parameter of the sealant is 10 ⁇ g / m 2 or more.
  • the water vapor penetration barrier parameter of the sealant is less than 0.025 cm / h 0.5.
  • the lead adsorption parameter represents the mass of lead adsorbed per 1 m 2 of the sealant layer when the lead adsorption capacity evaluation test is performed.
  • a first test sheet having a length of 16 cm and a width of 24 cm, comprising a polyethylene terephthalate film and a layer of the sealant having a thickness of 20 ⁇ m formed on the polyethylene terephthalate film is provided.
  • a nylon mesh cloth is attached to the layer side of the sealant of the first test sheet; the first test sheet to which the mesh cloth is attached is cut into 1 cm squares.
  • the cut first test sheet is immersed in 50 ml of a lead ion-containing aqueous solution having a lead ion concentration of 20 ⁇ g / L adjusted to 20 ° C to 25 ° C, and stirred for 15 minutes.
  • the water vapor infiltration barrier property parameter represents a constant K obtained from the following formula (1) when the water vapor barrier property evaluation test is performed.
  • a second support film including an aluminum foil having a thickness of 30 ⁇ m and a polyethylene terephthalate film having a thickness of 25 ⁇ m, and a layer of the sealant formed on the aluminum foil of the support film are provided. Drying the test sheet; washing a 50 mm square glass plate made of non-alkali glass with boiling isopropyl alcohol for 5 minutes and drying; one side of the glass plate, the end of the glass plate.
  • Calcium is vapor-deposited on a portion excluding an area having a distance of 0 mm to 2 mm to form a calcium film having a thickness of 200 nm; in a nitrogen atmosphere, the sealant layer of the second test sheet and the sealant layer.
  • the surface of the glass plate on the calcium film side is bonded to obtain an evaluation sample; the distance X2 [mm] between the end of the evaluation sample and the end of the calcium film is measured;
  • the evaluation sample is stored in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85% RH; from the time when the evaluation sample is stored in the constant temperature and humidity chamber, the evaluation sample stored in the constant temperature and humidity chamber is used.
  • a sealant for an electronic device provided with a lead-containing portion.
  • the inorganic filler contains one or more selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide.
  • the inorganic filler contains one or more selected from the group consisting of semi-calcined hydrotalcite and calcium oxide.
  • a sealing sheet comprising a support and a layer of a sealing agent according to any one of [1] to [7] formed on the support.
  • a lead-containing portion and a sealing portion for sealing the lead-containing portion are provided.
  • An electronic device in which the sealing portion contains the sealing agent according to any one of [1] to [7].
  • a first electrode, a perovskite layer containing a lead atom, a second electrode, and a sealing portion for sealing the perovskite layer are provided.
  • a perovskite-type solar cell in which the sealing portion contains the sealing agent according to any one of [1] to [7].
  • a sealing agent for an electronic device capable of suppressing the infiltration of water and suppressing the leakage of lead from the lead-containing portion to the outside of the electronic device; a sealing sheet containing the sealing agent;
  • an electronic device and a perovskite type solar cell using the sealing agent for sealing can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an evaluation sample produced in the water vapor barrier property evaluation test.
  • FIG. 2 is a plan view schematically showing a state in which the evaluation sample before being stored in the constant temperature and humidity chamber is viewed from the glass plate side.
  • FIG. 3 is a plan view schematically showing a state in which the evaluation sample after being stored in the constant temperature and humidity chamber is viewed from the glass plate side.
  • FIG. 4 is a cross-sectional view schematically showing an example of a perovskite type solar cell according to an embodiment of the present invention.
  • the encapsulant according to the first embodiment of the present invention contains an inorganic filler and a resin. Since the resin usually plays a role of binding and holding an inorganic filler, it may be appropriately referred to as a "binder resin".
  • the encapsulant according to the present embodiment may further contain an arbitrary component in addition to the inorganic filler and the binder resin.
  • the encapsulant according to this embodiment has a specific range of lead adsorption parameters. Further, the encapsulant according to this embodiment has a specific range of water vapor infiltration barrier parameters. When this sealant is used for sealing an electronic device having a lead-containing portion, it can suppress the infiltration of water into the lead-containing portion and lead leakage from the lead-containing portion to the outside of the electronic device. Can be suppressed.
  • Lead Adsorption Parameter of Encapsulant is usually 10 [mu] g / m 2 or more, preferably 11 ⁇ g / m 2 or more, more preferably 12 [mu] g / m 2 or more, particularly preferably 13 ug / m 2 That is all.
  • the lead adsorption parameter represents the mass of lead adsorbed per 1 m 2 of the sealant layer when the following lead adsorption capacity evaluation test is performed.
  • a first test sheet is prepared; a nylon mesh cloth is attached to the layer side of the sealant of the first test sheet; the mesh cloth is attached.
  • the first test sheet was cut into 1 cm squares; the cut first test sheet was immersed in 50 ml of a lead ion-containing aqueous solution having a lead ion concentration of 20 ⁇ g / L adjusted to 20 ° C to 25 ° C. Stir for 15 minutes.
  • the first test sheet represents a sheet having a length of 16 cm and a width of 24 cm, comprising a polyethylene terephthalate film and a layer of a sealant having a thickness of 20 ⁇ m formed on the polyethylene terephthalate film.
  • the reason why the first test sheet and the mesh cloth are bonded in the lead adsorption capacity evaluation test is to prevent the first test sheets from adhering to each other in the lead ion-containing aqueous solution.
  • the encapsulant is a thermosetting encapsulant
  • the encapsulant is usually thermoset at 100 ° C. for 60 minutes after the mesh cloth is attached, and then the first test sheet is cut. ..
  • a first test sheet should be prepared in the lead adsorption capacity evaluation test; the layer side of the encapsulant of the first test sheet is made of nylon.
  • the first test sheet to which the mesh cloth is attached is cut into 1 cm squares; the cut first test sheet is adjusted to 20 ° C to 25 ° C for lead ions. It can be immersed in 50 ml of a lead ion-containing aqueous solution having a concentration of 20 ⁇ g / L and stirred for 15 minutes.
  • a first test sheet should be prepared in the lead adsorption capacity evaluation test; nylon is placed on the layer side of the encapsulant of the first test sheet.
  • the sealant is heat-cured at 100 ° C. for 60 minutes by laminating a mesh cloth made of the same material; the first test sheet to which the mesh cloth is bonded is cut into 1 cm squares; (1)
  • the test sheet can be immersed in 50 ml of a lead ion-containing aqueous solution having a lead ion concentration of 20 ⁇ g / L adjusted to 20 ° C. to 25 ° C. and stirred for 15 minutes.
  • the mass of lead adsorbed on the sealant layer when the lead adsorption capacity evaluation test is performed can be measured by using the concentration of lead ions contained in the lead ion-containing aqueous solution.
  • the lead ion concentration can be measured using a portable scanning lead measuring device (model name HSA-1000, manufactured by HACH). As a specific measurement method, the method described later in the examples can be adopted.
  • the lead adsorption parameter represents the magnitude of the ability of the encapsulant to adsorb lead. Specifically, the larger the lead adsorption parameter, the greater the ability of the encapsulant to adsorb lead.
  • a sealant having a lead adsorption parameter in the above range can effectively adsorb lead flowing out from the lead-containing portion when used for sealing the lead-containing portion in an electronic device. Therefore, it is possible to suppress the leakage of lead from the electronic device to the outside.
  • the effect of suppressing lead leakage as described above is beneficial in various situations such as storage, transportation, use, and damage of electronic devices.
  • the lead adsorption parameter can be adjusted, for example, by the type and amount of the inorganic filler.
  • the water vapor infiltration barrier parameter of the encapsulant according to the first embodiment of the present invention is usually less than 0.025 cm / h 0.5 , preferably less than 0.024 cm / h 0.5 , more preferably 0.0230 cm / h. h less than 0.5, more preferably less than 0.022Cm / h 0.5, particularly preferably less than 0.021cm / h 0.5.
  • the lower limit of the water vapor penetration barrier parameter is ideally is 0.000cm / h 0.5 or more, it may be 0.001 cm / h 0.5 or more.
  • the water vapor infiltration barrier property parameter represents the constant K obtained from the equation (1) when the following water vapor barrier property evaluation test is performed.
  • the second test sheet is dried; a 50 mm square glass plate made of non-alkali glass is washed with boiling isopropyl alcohol for 5 minutes and dried; the glass plate.
  • a 200 nm-thick calcium film on the central portion of one side of the glass; in a nitrogen atmosphere, the sealant layer of the second test sheet and the calcium film side of the glass plate.
  • the surface and the surface are bonded together to obtain an evaluation sample; the sealing distance X2 [mm] of the evaluation sample is measured; the evaluation sample is stored in a constant temperature and humidity chamber having a temperature of 85 ° C.
  • the time t may be referred to as a “decrease start time t”.
  • the sealant is curable, usually, the sealant layer of the second test sheet and the surface of the glass plate on the calcium film side are bonded together, and then the sealant layer is cured. , Get an evaluation sample.
  • the curing conditions for example, the conditions described later in the examples can be adopted.
  • Specific curing conditions can be, for example, 100 ° C. for 60 minutes. Further, it is preferable that the second test sheet performed in the water vapor barrier property evaluation test is sufficiently dried. Specific drying conditions may be at least one of a condition of 130 ° C. for 60 minutes and a condition of 100 ° C. for 5 minutes.
  • the sealant Can suppress the infiltration of water and also suppress the leakage of lead from the lead-containing portion to the outside of the electronic device.
  • the encapsulant is an adhesive encapsulant, it is dried under the condition of 130 ° C. for 60 minutes.
  • the sealant is a thermosetting type sealant, it is usually dried under the condition of 100 ° C. for 5 minutes.
  • the second test sheet is dried under the condition of 130 ° C. for 60 minutes; 50 mm formed of non-alkali glass.
  • the corner glass plate is washed with boiling isopropyl alcohol for 5 minutes and dried; calcium is deposited on the central part of one side of the glass plate to form a calcium film with a thickness of 200 nm; in a nitrogen atmosphere.
  • the sealant layer of the second test sheet and the surface of the glass plate on the calcium film side are bonded to obtain an evaluation sample; the sealing distance X2 [mm] of the evaluation sample is measured; the evaluation sample, temperature 85 ° C., it is housed in a thermo-hygrostat RH 85% humidity; the evaluation sample from the time T P1 housed in a thermo-hygrostat, the evaluation sample accommodated in the thermostat-humidistat chamber sealing Measure the decrease start time t [time] up to the time point T P2 when the distance X1 [mm] becomes "X2 + 0.1 mm"; and calculate the constant K based on the following equation (1). sell.
  • the second test sheet is dried under the condition of 100 ° C. for 5 minutes; it is formed of non-alkali glass.
  • a 50 mm square glass plate is washed with boiling isopropyl alcohol for 5 minutes and dried; calcium is deposited on the central part of one side of the glass plate to form a calcium film with a thickness of 200 nm; in a nitrogen atmosphere.
  • the sealant layer of the second test sheet and the surface of the glass plate on the calcium film side are laminated and cured under the condition of 100 ° C.
  • the evaluation sample temperature 85 ° C., it is housed in a thermo-hygrostat RH 85% humidity; measuring the sealing distance X2 [mm] evaluation samples from the time T P1 housed in a thermo-hygrostat, a thermostat To measure the reduction start time t [time] up to the time point T P2 when the sealing distance X1 [mm] of the evaluation sample stored in the constant humidity bath becomes "X2 + 0.1 mm"; and to the following formula (1) Based on this, the constant K can be calculated.
  • the second test sheet represents a sheet including a support film including an aluminum foil having a thickness of 30 ⁇ m and a polyethylene terephthalate film having a thickness of 25 ⁇ m, and a sealant layer formed on the aluminum foil of the support film.
  • the thickness of the sealant layer can be, for example, 20 ⁇ m.
  • the central portion of one side of the glass plate represents a portion of one side of the glass plate excluding the peripheral area.
  • the peripheral area on one side of the glass plate represents an area on one side of the glass plate having a distance of 0 mm to 2 mm from the end portion of the glass plate.
  • the sealing distance of the evaluation sample represents the distance between the end of the evaluation sample and the end of the calcium film. The sealing distance usually corresponds to the distance between the edge of the sealant layer and the edge of the calcium membrane.
  • X1 is the sealing distance [mm] from the end of the evaluation sample to the end of the calcium film after being put into the constant temperature and humidity chamber.
  • X2 is the sealing distance [mm] from the end of the evaluation sample to the end of the calcium film before being put into the constant temperature and humidity chamber.
  • FIG. 1 is a cross-sectional view schematically showing an evaluation sample 10 manufactured in a water vapor barrier property evaluation test.
  • the evaluation sample 10 produced in the water vapor barrier property evaluation test includes a square glass plate 100 washed with boiling isopropyl alcohol and calcium formed on one side 100U of the glass plate 100.
  • a film 200 and a second test sheet 300 attached to the surface 100U of the glass plate 100 are provided.
  • the calcium film 200 is not formed on the peripheral area 110U of the surface 100U of the glass plate 100 at a distance L from the end 100E of the glass plate 100 of 0 mm to 2 mm.
  • a calcium film 200 is formed on the central portion 120U of the surface 100U of the glass plate 100 excluding the peripheral area 110U.
  • the calcium film 200 is usually formed by thin film deposition using a mask (not shown) covering the peripheral area 110U, and has a high purity (for example, a purity of 99.8% or more).
  • the second test sheet 300 includes a sealant layer 310 and a support film 320 including a polyethylene terephthalate film 321 and an aluminum foil 322, and the sealant layer 310 is a glass plate 100. It is attached to the surface 100U of. Therefore, the calcium film 200 is sealed by the sealant layer 310.
  • the glass plate 100 and the support film 320 included in the evaluation sample 10 have a sufficiently high ability to block water. Therefore, as shown by the arrow A1, the moisture around the evaluation sample 10 passes through the end portion 310E of the sealant layer 310 and passes through the sealant layer 310 in the in-plane direction (direction perpendicular to the thickness direction). ) And can infiltrate the calcium membrane 200. Therefore, the calcium film 200 of the evaluation sample 10 housed in the constant temperature and humidity chamber can be gradually oxidized from the end portion 200E toward the central portion 200C.
  • FIG. 2 is a plan view schematically showing a state in which the evaluation sample 10 before being stored in the constant temperature and humidity chamber is viewed from the glass plate 100 side.
  • FIG. 3 is a plan view schematically showing a state in which the evaluation sample 10 after being stored in the constant temperature and humidity chamber is viewed from the glass plate 100 side.
  • the calcium film 200 was not oxidized due to the infiltration of water. Therefore, the sealing distance X2 between the end portion 10E of the evaluation sample 10 and the end portion 200E of the calcium film 200 can usually maintain the dimension immediately after the formation of the calcium film 200.
  • the calcium film 200 can gradually change from the end portion 200E to the central portion 200C to the transparent calcium oxide film 210 due to the infiltration of water. This change is observed as a shrinkage of the calcium membrane 200. Therefore, after the evaluation sample 10 is stored in the constant temperature and humidity chamber, the sealing distance X1 between the end portion 10E of the evaluation sample 10 and the end portion 200E of the calcium film 200 may gradually increase with the passage of time. ..
  • the reduction start time t (that is, the evaluation sample 10 is stored in a constant temperature and humidity chamber) as the time required for the moisture to move within the sealing agent layer 310 by the sealing distance X1.
  • the sealing distance X1 [mm] of the evaluation sample 10 stored in a thermo-hygrostat is "X2 + 0.1 mm"
  • a sealing distance X1 which is the movement Is applied to the diffusion equation of Fick represented by the equation (1) to derive the constant K as the water vapor infiltration barrier property parameter.
  • the evaluation sample 10 can correspond to a model of an electronic device, and the calcium film 200 can correspond to a lead-containing portion to be sealed by a sealant.
  • the water vapor infiltration barrier property parameter represents the magnitude of the ability of the sealant provided in the electronic device to suppress the infiltration of water in the in-plane direction. Specifically, the smaller the water vapor infiltration barrier parameter, the better the ability of the sealant to suppress the infiltration of water.
  • a sealant having a water vapor infiltration barrier parameter in the above range can suppress the infiltration of water into the lead-containing portion when used for sealing the lead-containing portion in an electronic device. Therefore, it is possible to suppress the oxidation of the components contained in the lead-containing portion and suppress the outflow of lead from the lead-containing portion.
  • the water vapor infiltration barrier property parameter can be adjusted by, for example, the type and amount of the inorganic filler; the type and amount of the binder resin;
  • the encapsulant according to the first embodiment of the present invention contains an inorganic filler. Part or all of the inorganic filler can exhibit hygroscopicity and lead adsorption in the sealing agent as a resin composition containing the inorganic filler and the binder resin.
  • One type of inorganic filler may be used alone, or two or more types may be used in combination at any ratio.
  • an inorganic filler capable of exhibiting hygroscopicity in the encapsulant and another inorganic filler capable of exhibiting lead adsorption in the encapsulant may be used in combination. It is a phenomenon that the present inventor has found for the first time that a lead-adsorbing inorganic filler can exhibit lead-adsorbing property in a sealing agent as a resin composition containing a binder resin as described above.
  • Hydrotalcite examples of inorganic fillers include hydrotalcite. Hydrotalcite can be classified into uncalcined hydrotalcite, semi-calcined hydrotalcite, and calcined hydrotalcite.
  • Unfired hydrotalcites e.g., as typified by natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O), a metal hydroxide having a layered crystal structure.
  • Unfired hydrotalcite for example, consists of a composed layer [Mg 1-Xa Al Xa ( OH) 2] Xa + basic skeleton intermediate layer [(CO 3) Xa / 2 ⁇ m a H 2 O] Xa- and ..
  • xa represents a number satisfying 0 ⁇ xa ⁇ 1, and ma represents a positive number.
  • uncalcined hydrotalcite is a concept that includes hydrotalcite-like compounds such as synthetic hydrotalcite. Examples of the hydrotalcite-like compound include compounds represented by the following formula (I) or the following formula (II).
  • Mi 2+ represents divalent metal ions such as Mg 2+ and Zn 2+.
  • Mi 3+ represents trivalent metal ions such as Al 3+ and Fe 3+.
  • Ai Ni- is, CO 3 2-, Cl -, NO 3 - , such as, represent ni-valent anion, xi represents a number satisfying 0 ⁇ xi ⁇ 1.
  • m i represents a number satisfying 0 ⁇ m i ⁇ 1, ni represents a positive number.
  • Mi 2+ preferably represents Mg 2+. Further, Mi 3+ preferably represents Al 3+. Furthermore, Ai ni- preferably represents CO 3 2-.
  • Mii 2+ represents divalent metal ions such as Mg 2+ and Zn 2+.
  • Aii Nii- is, CO 3 2-, Cl -, such as NO 3-, represent nii-valent anion, xii represents a positive number greater than or equal to 2 zii represents a positive number less than or equal to 2.
  • m ii represents a positive number nii represents a positive number.
  • Mii 2+ preferably represents Mg 2+.
  • Aii nii- preferably represents CO 3 2-.
  • Unfired hydrotalcite can exhibit excellent lead adsorption in the encapsulant. Therefore, for example, when unfired hydrotalcite and an inorganic filler capable of exhibiting hygroscopicity in the sealing agent are used in an appropriate combination, the sealing having the lead adsorption parameter and the water vapor infiltration barrier property parameter in the above range is used. The agent can be obtained.
  • the saturated water absorption rate of uncalcined hydrotalcite is usually less than 1% by mass, and may be less than 0.8% by mass or less than 0.6% by mass.
  • the "saturated water absorption rate" of hydrotalcite such as unfired hydrotalcite is based on the initial mass when hydrotalcite is allowed to stand in an environment of 60 ° C. and 90% RH (relative humidity) under atmospheric pressure for 200 hours. The rate of mass increase. This saturated water absorption rate can be measured by the following method.
  • thermogravimetric reduction rate of uncalcined hydrotalcite at 280 ° C. is usually 15% by mass or more, preferably 15.1% by mass or more, and particularly preferably 15.2% by mass or more.
  • thermogravimetric analysis The rate of decrease in thermal weight of hydrotalcite such as uncalcined hydrotalcite can be measured by thermogravimetric analysis.
  • thermogravimetric analysis 5 mg of hydrotalcite was weighed in an aluminum sample pan using a thermal analyzer (TG / DTA EXSTAR6300, manufactured by Hitachi High-Tech Science Co., Ltd.), and the nitrogen flow rate was 200 mL in an open state without a lid. It can be carried out under the condition of a heating rate of 10 ° C./min from 30 ° C. to 550 ° C. in an atmosphere of / min.
  • the thermogravimetric reduction rate can be calculated by the following formula (ii) using the result of the above thermogravimetric analysis.
  • Thermogravimetric reduction rate (mass%) 100 ⁇ (mass before heating-mass when a predetermined temperature is reached) / mass before heating (ii)
  • 2 ⁇ When powder X-ray diffraction of unfired hydrotalcite is measured, 2 ⁇ usually has only one peak near 8 ° to 18 °, or the relative intensity between the low-angle side diffraction intensity and the high-angle side diffraction intensity.
  • the ratio (low-angle side diffraction intensity / high-angle side diffraction intensity) is out of the range of 0.001 to 1,000.
  • the low-angle side diffraction intensity represents the diffraction intensity of the peak or shoulder that appears on the low-angle side (the side where 2 ⁇ is small).
  • the high-angle side diffraction intensity represents the diffraction intensity of the peak or shoulder that appears on the high-angle side (the side where 2 ⁇ is large).
  • Measurement of powder X-ray diffraction of hydrotalcite such as uncalcined hydrotalcite can be performed using a powder X-ray diffractometer (Empylean, manufactured by PANalytical).
  • powder X-ray diffraction measurement anti-cathode CuK ⁇ (1.5405 ⁇ ), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: 0.0657 ° / s, measurement diffraction angle range (2 ⁇ ). : Can be performed under the conditions of 5.0131 ° to 79.9711 °.
  • the peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It can be performed under the condition of "0.00 °, method: minimum value of second derivative".
  • unfired hydrotalcites examples include "Almakaiser 1" (average particle size: 620 nm), “Magceller 1” (average particle size: 470 nm), and “DHT-4A” (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size). : 400 nm), “STABIACE HT-1", “STABIACE HT-7”, “STABIACE HT-P” (Sakai Chemical Industry Co., Ltd.) and the like.
  • One type of uncalcined hydrotalcite may be used alone, or two or more types may be used in combination at any ratio.
  • Semi-calcined hydrotalcite refers to a metal hydroxide having a layered crystal structure in which the amount of interlayer water is reduced or eliminated, which is obtained by calcining uncalcined hydrotalcite.
  • interlayer water refers to "H 2 O" described in the above-mentioned composition formulas of uncalcined natural hydrotalcite and hydrotalcite-like compounds, if it is described using a composition formula.
  • Semi-fired hydrotalcite can exhibit excellent lead adsorption and hygroscopicity in the encapsulant. Therefore, when semi-baked hydrotalcite is appropriately used, a sealant having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained. It was first discovered by the present inventor that semi-calcined hydrotalcite exhibits lead adsorption.
  • semi-fired hydrotalcite usually has a saturated water absorption rate different from that of unfired hydrotalcite, they can be distinguished by the saturated water absorption rate.
  • the saturated water absorption of the semi-baked hydrotalcite is usually 1% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more, and usually less than 20% by mass.
  • the saturated water absorption rate of semi-fired hydrotalcite can be measured by the same method as the saturated water absorption rate of unfired hydrotalcite.
  • thermogravimetric reduction rate of the semi-calcined hydrotalcite at 280 ° C. is usually less than 15% by mass, preferably less than 14% by mass, and particularly preferably less than 13% by mass.
  • the thermogravimetric reduction rate of the semi-baked hydrotalcite at 380 ° C. is usually 12% by mass or more, preferably 15% by mass or more, and particularly preferably 16% by mass or more.
  • the thermogravimetric reduction rate of semi-baked hydrotalcite can be measured by the same method as the thermogravimetric loss rate of uncalcined hydrotalcite.
  • Semi-calcined hydrotalcites usually differ in peak and relative intensity ratios measured by powder X-ray diffraction from uncalcined hydrotalcites, so they are distinguished by peaks and relative intensity ratios measured by powder X-ray diffraction. it can.
  • the powder X-ray diffraction of semi-baked hydrotalcite When the powder X-ray diffraction of semi-baked hydrotalcite is measured, it usually shows a peak in which 2 ⁇ is split into two in the vicinity of 8 ° to 18 °, or a peak having a shoulder due to the combination of the two peaks, and the low angle side.
  • the relative intensity ratio (low-angle side diffraction intensity / high-angle side diffraction intensity) between the diffraction intensity and the high-angle side diffraction intensity is 0.001 to 1,000.
  • the measurement of the powder X-ray diffraction of the semi-fired hydrotalcite can be performed by the same method as the measurement of the powder X-ray d
  • semi-baked hydrotalcite examples include "DHT-4C” (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size: 400 nm); “DHT-4A-2” (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size: 400 nm); And so on.
  • One type of semi-baked hydrotalcite may be used alone, or two or more types may be used in combination at any ratio.
  • Calcined hydrotalcite refers to a metal oxide having an amorphous structure obtained by calcining uncalcined hydrotalcite or semi-calcined hydrotalcite, in which not only interlayer water but also hydroxyl groups are eliminated by condensation dehydration.
  • the calcined hydrotalcite can exhibit excellent lead adsorption and hygroscopicity in the encapsulant. Therefore, when the calcined hydrotalcite is appropriately used, a sealing agent having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained.
  • the fact that calcined hydrotalcite exhibits lead adsorption is the first discovery by the present inventor.
  • calcined hydrotalcite usually has a saturated water absorption rate different from that of uncalcined hydrotalcite and semi-fired hydrotalcite, they can be distinguished by the saturated water absorption rate.
  • the saturated water absorption of the calcined hydrotalcite is usually 20% by mass or more, preferably 30% by mass or more, and particularly preferably 40% by mass or more.
  • the saturated water absorption rate of calcined hydrotalcite can be measured by the same method as the saturated water absorption rate of uncalcined hydrotalcite.
  • thermogravimetric reduction rate usually has a different thermogravimetric reduction rate from uncalcined hydrotalcite and semi-calcined hydrotalcite, they can be distinguished by the thermogravimetric reduction rate.
  • the thermogravimetric reduction rate of calcined hydrotalcite at 380 ° C. is usually less than 12% by mass, preferably less than 10% by mass, and particularly preferably less than 7% by mass.
  • the thermogravimetric reduction rate of calcined hydrotalcite can be measured by the same method as the thermogravimetric loss rate of uncalcined hydrotalcite.
  • calcined hydrotalcites usually differ in peaks and relative intensity ratios measured by powder X-ray diffraction from uncalcined hydrotalcites and semi-calcined hydrotalcites, they are the peaks and peaks measured by powder X-ray diffraction. It can be distinguished by the relative strength ratio.
  • 2 ⁇ usually has no characteristic peak in the region of 8 ° to 18 °, and 2 ⁇ has a characteristic peak in 43 °.
  • the measurement of the powder X-ray diffraction of the calcined hydrotalcite can be performed by the same method as the measurement of the powder X-ray diffraction of the uncalcined hydrotalcite.
  • calcined hydrotalcite examples include "KW-2200" (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size: 400 nm) and the like.
  • One type of calcined hydrotalcite may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • Calcium oxide Another example of an inorganic filler is calcium oxide.
  • Calcium oxide can exhibit excellent lead adsorption and hygroscopicity in the encapsulant. Therefore, when calcium oxide is appropriately used, a sealing agent having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained. It was first discovered by the present inventor that calcium oxide exhibits lead adsorption. Calcium oxide may be used in a state of being contained in a mixture with other inorganic fillers. Examples of such a mixture include calcined dolomite (a mixture containing calcium oxide and magnesium oxide).
  • zeolite Yet another example of an inorganic filler is zeolite.
  • Zeolites can exhibit excellent lead adsorption in the encapsulant.
  • zeolite can exhibit excellent hygroscopicity in a sealing agent, for example, by appropriately adjusting the composition. Therefore, when zeolite is used appropriately, a sealing agent having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained.
  • zeolite has high hydrophilicity.
  • the hydrophilicity of zeolite can be adjusted, for example, by the molar ratio of silica and alumina contained in zeolite.
  • the specific molar ratio of silica to alumina (silica / alumina) of the zeolite is preferably less than 100, more preferably less than 50, still more preferably less than 25.
  • Zeolites usually have pores.
  • the pore size of the zeolite is preferably adjusted so that high lead adsorption and hygroscopicity can be obtained.
  • the pore size of the zeolite is preferably 6 ⁇ or less, more preferably 5 ⁇ or less, still more preferably 4 ⁇ or less. “ ⁇ ” represents 1.0 ⁇ 10-10 m.
  • the pore size of zeolite can be measured by a gas adsorption method or a mercury intrusion method.
  • Yet another example of the inorganic filler is a hygroscopic metal oxide other than those described above.
  • a hygroscopic metal oxide include magnesium oxide, strontium oxide, aluminum oxide, barium oxide and the like.
  • the hygroscopic metal oxide can exhibit excellent hygroscopicity in the sealant. Therefore, for example, when a hygroscopic metal oxide and an inorganic filler capable of exhibiting lead adsorption in a sealing agent are used in an appropriate combination, a seal having the lead adsorption parameter and the water vapor infiltration barrier property parameter in the above range is used. A stop can be obtained.
  • the inorganic filler (4.5. Preferred inorganic filler)
  • semi-calcined hydrotalcite, calcined hydrotalcite, calcium oxide, and zeolite are preferable. Since these can exhibit excellent lead adsorption and hygroscopicity in the sealant, the lead adsorption parameter and the water vapor infiltration barrier parameter of the sealant can be easily adjusted within the above-mentioned ranges. Therefore, the encapsulant preferably contains one or more kinds of inorganic fillers selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite, calcium oxide, and zeolite.
  • inorganic filler As the inorganic filler, one that has been surface-treated with an appropriate surface treatment agent may be used. Unless otherwise specified, surface-treated ones are also included in the term "inorganic filler".
  • the surface treatment agent include higher fatty acids, alkylsilane compounds and silane coupling agents, and higher fatty acids and alkylsilane compounds are suitable.
  • One type of surface treatment agent may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • higher fatty acids include higher fatty acids having 18 or more carbon atoms, such as stearic acid, montanic acid, myristic acid, and palmitic acid. Of these, stearic acid is preferable.
  • alkylsilane compound examples include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltrimethoxysilane, and n-octadecyl. Examples thereof include dimethyl (3- (trimethoxysilyl) propyl) ammonium chloride.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Epoxy silane coupling agents such as silane; mercapto silane cups such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane Ring agent; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N- Amino-based silane coupling agents such as (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane; such as 3-ureidopropyltrie
  • Ureido-based silane coupling agent such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; styryl-based silane coupling agent such as p-styryltrimethoxysilane; 3 -Acrylate-based silane coupling agents such as acrylicoxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane; isocyanate-based silane coupling agents such as 3-isocyanoxidetrimethoxysilane; bis (triethoxysilylpropyl) Examples thereof include sulfide-based silane coupling agents such as disulfide and bis (triethoxysilylpropyl) tetrasulfide; phenyltrimethoxysilane; metharoxypropyltrimethoxysilane; imidazolesilane; triazinesilane; and the like.
  • vinyl-based silane coupling agent such
  • the amount of surface treatment agent may vary depending on the type of inorganic filler and surface treatment agent.
  • the amount of the surface treatment agent used for the surface treatment with respect to 100 parts by mass of the inorganic filler not subjected to the surface treatment is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and particularly preferably 1.0. It is 5 parts by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and particularly preferably 6 parts by mass or less.
  • the surface treatment is performed with an amount of the surface treatment agent in the above range, aggregation can be suppressed and the surface area of the inorganic filler can be increased, so that the lead adsorption property and hygroscopic property of the inorganic filler can be easily exhibited.
  • the surface treatment method of the inorganic filler may be performed by mixing the inorganic filler and the surface treatment agent.
  • the surface treatment is preferably performed by spraying a surface treatment agent while stirring the untreated hydrotalcite with a mixer, for example. ..
  • the treatment temperature is preferably room temperature. Further, the stirring is preferably performed for 5 to 60 minutes.
  • the mixer examples include blenders such as V blenders, ribbon blenders and bubble cone blenders; mixers such as Henshell mixers and concrete mixers; mills such as ball mills and cutter mills; Further, for example, the surface treatment may be performed by crushing the hydrotalcite and at the same time mixing the hydrotalcite with the surface treatment agent.
  • the average particle size of the inorganic filler is preferably 1 nm or more, more preferably 10 nm or more, further preferably 100 nm or more, particularly preferably 200 nm or more, preferably less than 10 ⁇ m, more preferably less than 5 ⁇ m, still more preferably 1 ⁇ m or less. Especially preferably, it is 800 nm or less.
  • the average particle size of hydrotalcite is preferably 1 nm or more, particularly preferably 10 nm or more, and preferably 1,000 nm or less, preferably 800 nm or less. Is particularly preferable.
  • the average particle size of the zeolite is preferably 100 nm or more, more preferably 200 nm or more, preferably less than 10 ⁇ m, and particularly preferably less than 5 ⁇ m.
  • the processability of the encapsulant becomes good, and the encapsulating sheet can be easily produced.
  • the average particle size of the inorganic filler can be obtained as the median size of the particle size distribution by measuring the particle size distribution on a volume basis by laser diffraction scattering type particle size distribution measurement (JIS Z 8825).
  • the BET specific surface area of the inorganic filler is preferably 1 m 2 / g or more, more preferably 5 m 2 / g or more, preferably 250 m 2 / g or less, and more preferably 200 m 2 / g or less.
  • the inorganic filler contains hydrotalcite such as semi-baked hydrotalcite, it is preferable that the hydrotalcite has a BET specific surface area in the above range.
  • the BET specific surface area of the inorganic filler can be calculated by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM Model 1210, manufactured by Mountech) according to the BET method, and using the BET multipoint method.
  • a specific surface area measuring device Macsorb HM Model 1210, manufactured by Mountech
  • the amount of the inorganic filler is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and particularly preferably 25% by mass or more, based on 100% by mass of the non-volatile component of the sealant. It is preferably 80% by mass or less, more preferably 75% by mass or less, still more preferably 70% by mass or less, and may be, for example, 65% by mass or less and 60% by mass or less.
  • the amount of the inorganic filler is equal to or higher than the lower limit of the above range, the lead adsorption property and hygroscopic property of the inorganic filler are largely exhibited.
  • the lead adsorption property parameter and the water vapor penetration barrier property parameter of the sealant are set in the above range. It becomes easy to adjust to. Further, when the amount of the inorganic filler is not more than the upper limit value in the above range, the viscosity and wettability of the sealant can be improved, so that the adhesion between the sealant and the object to be sealed such as the lead-containing part and the electrode Can be improved. Therefore, the formation of a gap between the sealing target and the sealing agent can be effectively suppressed, and thus the sealing property can be improved, so that the infiltration of water and the leakage of lead can be particularly effectively suppressed.
  • the encapsulant according to the first embodiment of the present invention contains a binder resin in combination with the above-mentioned inorganic filler.
  • the binder resin has a function of suppressing foreign substances such as dust from entering the electronic device, a function of holding the inorganic filler so as not to separate from the sealing portion, and a function of adhering the sealing agent to the sealing target such as the lead adsorption portion. , A function of suppressing the infiltration of water, and some or all of the functions can be exerted.
  • the encapsulant according to the first embodiment of the present invention may contain an arbitrary component in combination with an inorganic filler and a binder resin.
  • the type and ratio of the binder resin and any component can be appropriately selected depending on the type and amount of the inorganic filler and the properties required for the encapsulant.
  • the adhesive type sealant represents a type of sealant that exhibits adhesiveness and can seal the object to be sealed by crimping. Since the adhesive type adhesive can usually be adhered only by applying pressure at room temperature for a relatively short time, it can function as a pressure-sensitive adhesive. Further, the thermosetting type sealant represents a type of sealant that can achieve sealing by heat-curing in contact with the object to be sealed.
  • the components contained in the sealant are not limited to the examples described below.
  • the components shown as examples suitable for the adhesive type encapsulant may be used for other encapsulants (for example, thermosetting type encapsulant).
  • the component shown as an example suitable for a thermosetting type sealant may be used for other sealants (for example, an adhesive type sealant).
  • thermoplastic resin as binder resin
  • Thermoplastic resin is preferable as the binder resin for the adhesive type encapsulant.
  • the thermoplastic resin one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • thermoplastic resin is not particularly limited, and for example, a thermoplastic resin described later may be used as a binder resin suitable for a thermosetting encapsulant. Among them, a polyolefin-based resin is mentioned as a preferable example of the thermoplastic resin.
  • an inorganic filler containing at least one selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide a sealing agent having excellent transparency can be obtained.
  • the polyolefin-based resin a resin having a skeleton derived from an olefin monomer can be used.
  • the polyolefin-based resin include the polyolefin-based resins described in International Publication No. 2011/62167 and International Publication No. 2013/108731. Of these, the isobutylene-modified resin described in International Publication No. 2011/62167 and the styrene-isobutylene-modified resin described in International Publication No. 2013/108731 are preferable.
  • preferred polyolefin-based resins include, for example, polyethylene-based resins, polypropylene-based resins, polybutene-based resins, and polyisobutylene-based resins.
  • the polyolefin-based resin may be a homopolymer or a copolymer. Further, the copolymer may be a random copolymer or a block copolymer.
  • copolymer examples include copolymers of two or more types of olefins; copolymers of olefins and monomers other than olefins such as non-conjugated diene and styrene;
  • preferred copolymers include ethylene-non-conjugated diene copolymers, ethylene-propylene copolymers, ethylene-propylene-non-conjugated diene copolymers, ethylene-butene copolymers, propylene-butene copolymers, Examples thereof include a propylene-butene-non-conjugated diene copolymer, a styrene-isobutylene copolymer, and a styrene-isobutylene-styrene copolymer.
  • the polyolefin-based resin may contain a polyolefin-based resin having an acid anhydride group (that is, a carbonyloxycarbonyl group (-CO-O-CO-)).
  • a polyolefin resin having an acid anhydride group that is, a carbonyloxycarbonyl group (-CO-O-CO-)
  • the adhesiveness and moisture heat resistance of the sealant can be improved.
  • the acid anhydride group examples include a group derived from succinic anhydride, a group derived from maleic anhydride, a group derived from glutaric anhydride, and the like.
  • the type of the acid anhydride group may be one type or two or more types.
  • the polyolefin-based resin having an acid anhydride group can be produced, for example, by graft-modifying the polyolefin-based resin with an unsaturated compound having an acid anhydride group under radical reaction conditions. Further, the polyolefin-based resin having an acid anhydride group can be produced, for example, by radically copolymerizing an unsaturated compound having an acid anhydride group with an olefin.
  • the concentration of the acid anhydride group in the polyolefin resin having an acid anhydride group is preferably 0.05 mmol / g or more, more preferably 0.1 mmol / g or more, preferably 10 mmol / g or less, more preferably. It is 5 mmol / g or less.
  • the concentration of the acid anhydride group is obtained from the value of the acid value defined as the number of mg of potassium hydroxide required to neutralize the acid present in 1 g of the resin according to the description of JIS K2501.
  • the amount of the polyolefin-based resin having an acid anhydride group is preferably 0% by mass or more, more preferably 10% by mass or more, and particularly preferably 11% by mass or more, based on 100% by mass of the total amount of the polyolefin-based resin. It is preferably 70% by mass or less, more preferably 50% by mass or less, and particularly preferably 40% by mass or less.
  • the polyolefin-based resin may contain a polyolefin-based resin having an epoxy group.
  • a polyolefin resin having an epoxy group is used, the adhesiveness and moisture heat resistance of the sealant can be improved.
  • the polyolefin-based resin having an epoxy group is an unsaturated compound having an epoxy group such as glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether, and allyl glycidyl ether, and the polyolefin-based resin is subjected to radical reaction conditions. It can be manufactured by graft modification.
  • the term "glycidyl (meth) acrylate” includes both glycidyl acrylate and glycidyl methacrylate.
  • the polyolefin-based resin having an epoxy group can be produced, for example, by radically copolymerizing an unsaturated compound having an epoxy group with an olefin.
  • the concentration of the epoxy group in the polyolefin resin having an epoxy group is preferably 0.05 mmol / g or more, more preferably 0.1 mmol / g or more, preferably 10 mmol / g or less, more preferably 5 mmol / g or less. Is.
  • the epoxy group concentration is determined from the epoxy equivalent obtained based on JIS K 7236-1995.
  • the amount of the polyolefin resin having an epoxy group is preferably 0% by mass or more, more preferably 10% by mass or more, particularly preferably 11% by mass or more, and preferably 11% by mass or more, based on 100% by mass of the total amount of the polyolefin resin. It is 70% by mass or less, more preferably 50% by mass or less, and particularly preferably 30% by mass or less.
  • polyolefin resin may be used alone, or two or more types may be used in combination at any ratio.
  • a polyolefin-based resin having an acid anhydride group and a polyolefin-based resin having an epoxy group it is preferable to use a polyolefin-based resin having an acid anhydride group and a polyolefin-based resin having an epoxy group in combination.
  • a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group are used in combination, a crosslinked structure can be formed by the reaction of the acid anhydride group and the epoxy group, so that a sealing that suppresses the infiltration of water can be formed. The ability of the agent can be effectively enhanced.
  • the molar ratio of the epoxy group to the acid anhydride group is preferably 100:10 to 100: 400, more preferably 100: 50 to 100: 200, and particularly preferably 100. : 90 to 100: 150.
  • polystyrene resin examples include "Opanol B100” manufactured by BASF (viscosity average molecular weight: 1,110,000) and "B50SF” manufactured by BASF (viscosity average molecular weight: 400,000).
  • polybutene resin examples include "HV-1900” (polybutene, number average molecular weight: 2,900) manufactured by JX Energy Co., Ltd. and "HV-300M” (male anhydride-modified liquid polybutene) manufactured by Toho Chemical Industry Co., Ltd. ("HV”).
  • -300 (modified product with number average molecular weight: 1,400), number average molecular weight: 2,100, number of carboxy groups constituting the acid anhydride group: 3.2 / 1 molecule, acid value: 43. 4 mgKOH / g, acid anhydride group concentration: 0.77 mmol / g).
  • styrene-isobutylene copolymer examples include “SIBSTAR T102” manufactured by Kaneka (styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass), manufactured by Seikou PMC.
  • TiBSTAR T102 styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass
  • Seikou PMC Specific examples of the styrene-isobutylene copolymer.
  • T-YP757B maleic anhydride-modified styrene-isobutylene-styrene block copolymer, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 100,000
  • T-YP766 manufactured by Seikou PMC.
  • polyethylene-based resin or polypropylene-based resin examples include "EPT X-3012P” manufactured by Mitsui Chemicals, Inc. (ethylene-propylene-5-ethylidene-2-norbornene copolymer, "EPT1070” manufactured by Mitsui Chemicals, Ltd. (ethylene-propylene). -Dicyclopentadiene copolymer), "Toughmer A4085” (ethylene-butene copolymer) manufactured by Mitsui Chemicals, Inc. can be mentioned.
  • T-YP341 manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer, amount of butene unit per 100% by mass of propylene unit and butene unit in total).
  • Modified propylene-butene random copolymer amount of butene unit per 100% by mass of propylene unit and butene unit: 36% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 57,000), starlight PMC "T-YP312” (maleic anhydride-modified propylene-butene random copolymer, amount of butene units per 100% by mass of propylene units and butene units in total: 29% by mass, acid anhydride group concentration: 0 .464 mmol / g, number average molecular weight: 60,900), "T-YP313” manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer, butene units per 100% by mass of propylene units and butene units in total Amount: 29% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 155,000), "
  • the number average molecular weight of the thermoplastic resin is preferably 1,000 or more, more preferably 3,000 or more, further preferably 5,000 or more, further preferably 10,000 or more, further preferably 30,000 or more, 50, 000 or more is particularly preferable.
  • a thermoplastic resin having a number average molecular weight in such a range is used, repelling during application of the varnish of the sealing agent can be suppressed, so that the ability of the sealing portion for suppressing the infiltration of water can be effectively enhanced.
  • the mechanical strength of the sealing part can be increased.
  • the number average molecular weight of the thermoplastic resin is preferably 1,000,000 or less, more preferably 800,000 or less, further preferably 700,000 or less, further preferably 600,000 or less, further preferably 500,000 or less.
  • thermoplastic resin having a number average molecular weight in such a range is used, the applicability of the varnish as a sealing agent can be improved, and the compatibility between the thermoplastic resin and other components can be improved.
  • the number average molecular weight can be measured in polystyrene conversion by the gel permeation chromatography (GPC) method. Specifically, the number average molecular weight by the GPC method is determined by using Shimadzu LC-9A / RID-6A as a measuring device and Showa Denko Shodex K-800P / K-804L / K-804L as a column. It can be measured at a column temperature of 40 ° C. using toluene or the like, and calculated using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the weight average molecular weight of the thermoplastic resin is usually larger than 5,000, preferably 8,000 or more, more preferably 10,000 or more, still more preferably 15,000 or more, and particularly preferably 20,000 or more. It is preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably 600,000 or less, and particularly preferably 500,000 or less.
  • the weight average molecular weight can be measured in polystyrene conversion by the gel permeation chromatography (GPC) method. Specifically, the weight average molecular weight by the GPC method is determined by using Shimadzu LC-9A / RID-6A as a measuring device and Showa Denko Shodex K-800P / K-804L / K-804L as a column. It can be measured at a column temperature of 40 ° C. using chloroform or the like, and calculated using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the thermoplastic resin preferably has amorphous properties.
  • Amorphous means that the resin does not have a definite melting point. Specifically, amorphous means that no clear peak is observed when the melting point is measured by DSC (differential scanning calorimetry).
  • DSC differential scanning calorimetry
  • the amount of the thermoplastic resin is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, still more preferably 7% by mass or more, based on 100% by mass of the non-volatile component of the encapsulant. , More preferably 10% by mass or more, further preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the amount of the thermoplastic resin is in such a range, the ability of the sealant to suppress the infiltration of water can be effectively enhanced, and the transparency of the sealant can be improved.
  • the amount of the thermoplastic resin is preferably 80% by mass or less, more preferably 75% by mass or less, still more preferably 70% by mass or less, still more preferably 60% by mass, based on 100% by mass of the non-volatile component of the encapsulant. % Or less, more preferably 55% by mass or less, and particularly preferably 50% by mass or less.
  • the amount of the thermoplastic resin is in such a range, the applicability and compatibility of the varnish of the sealant are improved, so that the ability of the sealant to suppress the infiltration of water is effectively enhanced or the sealant is sealed. It is possible to improve the handleability of the agent (for example, suppress the tack).
  • the amount of the thermoplastic resin is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and preferably 300 parts by mass or less, more preferably, with respect to 100 parts by mass of the inorganic filler. Is 200 parts by mass or less, particularly preferably 150 parts by mass or less.
  • the amount of the polyolefin resin having an acid anhydride group is preferably 1 part by mass or more, preferably 1 part by mass or more, based on 100 parts by mass of the inorganic filler.
  • thermoplastic resin contains a polyolefin resin having an epoxy group
  • the amount of the polyolefin resin having an epoxy group is preferably 1 part by mass or more, preferably 2 parts by mass with respect to 100 parts by mass of the inorganic filler. As mentioned above, it is particularly preferably 3 parts by mass or more, preferably 30 parts by mass or less, more preferably 28 parts by mass or less, and particularly preferably 26 parts by mass or less.
  • the inorganic filler is semi-firing hydrotalcite
  • the mass ratio of the semi-firing hydrotalcite to the thermoplastic resin satisfies the above requirements.
  • the thermoplastic resin is used in such an amount, the encapsulant can particularly effectively suppress the infiltration of water and the leakage of lead.
  • a component that the sealant can contain in combination with the inorganic filler is a tackifier.
  • the tackifier is a compound that can improve the tackiness of the sealant when used in combination with a plastic resin, and is also called "tack fire".
  • the tackifier is suitable for a tacky sealant, and is therefore preferably used in combination with a thermoplastic resin.
  • the tackifier one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • tackifying resin examples include terpene resin, modified terpene resin (hydrocarboned terpene resin, terpene phenol copolymer resin, aromatic modified terpene resin, etc.), kumaron resin, inden resin, petroleum resin (aliphatic petroleum resin, water). Hydrocarbon petroleum resins, aromatic petroleum resins, aliphatic aromatic copolymer petroleum resins, dicyclopentadiene petroleum resins and their hydrides, etc.) can be mentioned.
  • petroleum resin is preferable from the viewpoints of adhesiveness of the sealant, ability to suppress the infiltration of water, transparency and the like.
  • Examples of petroleum resins include aliphatic petroleum resins, aromatic petroleum resins, aliphatic aromatic copolymer petroleum resins, and hydrogenated hydrocarbon petroleum resins.
  • the compound is more preferable.
  • hydrogenated hydrocarbon petroleum resins and hydrides of dicyclopentadiene petroleum resins are particularly preferable.
  • the hydrogenated hydrocarbon petroleum resin one obtained by hydrogenating an aromatic petroleum resin may be used.
  • the hydrogenation rate of the hydrogenated hydrocarbon petroleum resin is preferably 30% to 99%, more preferably 40% to 97%, still more preferably 50% to 90%.
  • the hydrogenated hydrocarbon petroleum resin having a hydrogenation rate in the above range is less colored, has excellent transparency, and can be produced at a low production cost.
  • the hydrogenation rate can be determined from the ratio of the peak intensities of 1 H-NMR of hydrogen in the aromatic ring before hydrogenation and after hydrogenation.
  • a cyclohexane ring-containing hydrogenated petroleum resin and a dicyclopentadiene-based hydrogenated petroleum resin are particularly preferable.
  • Examples of the terpene resin include YS resin PX1000, YS resin PX1150, YS resin PX1150N, YS resin PX1250, YS resin TH130, and YS resin TR105 (all manufactured by Yasuhara Chemical Co., Ltd.).
  • Examples of the aromatic-modified terpene resin include YS resin TO85, YS resin TO105, YS resin TO115, and YS resin TO125 (all manufactured by Yasuhara Chemical Co., Ltd.).
  • Examples of the hydrogenated terpene resin include Clearon P, Clearon M, and Clearon K series (all manufactured by Yasuhara Chemical Co., Ltd.).
  • Examples of the terpene phenol copolymer resin include YS Polystar 2000, Polystar U, Polystar T, Polystar S, and Mighty Ace G (all manufactured by Yasuhara Chemical Co., Ltd.).
  • Examples of the liquid resin include YS resin LP and YS resin CP (both manufactured by Yasuhara Chemical Co., Ltd.).
  • Examples of the hydrocarbon resin include T-REZ RB093, T-REZ RC100, T-REZ RC115, T-REZ RC093, and T-REZ RE100 (all manufactured by JXTG Energy Co., Ltd.); Examples thereof include tack 90, petrotac 90HS, petrotac 90V, petrotac 100V (all manufactured by Tosoh Corporation).
  • Examples of hydrogenated hydrocarbon petroleum resins include Escorez 5300 series and 5600 series (all manufactured by Exxon Mobile Co., Ltd.); T-REZ OP501, T-REZ PR801, T-REZ PR803, T-REZ HA085, T-REZ HA103, T-REZ HA105, T-REZ HA125, T-REZ HB103, T-REZ HB125, (hydrocarbonated dicyclopentadiene petroleum resin, manufactured by JXTG Energy Co., Ltd.); Quintone1325, Quintone1345 (all manufactured by Nippon Zeon Co., Ltd.); Examples thereof include Imarb S-100, Imarb S-110, Imarb P-100, Imarb P-125, and Imarb P-140 (hydrocarbonated dicyclopentadiene petroleum resin, manufactured by Idemitsu Kosan Co., Ltd.).
  • aromatic petroleum resin examples include ENDEX155 (manufactured by Eastman); neopolymer L-90, neopolymer 120, neopolymer 130, neopolymer 140, neopolymer 150, neopolymer 170S, neopolymer 160, neopolymer.
  • Examples of the aliphatic aromatic copolymer petroleum resin include Quintone D100 (manufactured by Zeon Corporation), T-REZ RD104, and T-REZ PR802 (manufactured by JXTG Energy Co., Ltd.).
  • Examples of the cyclohexane ring-containing hydrogenated petroleum resin include Alcon P-90, Alcon P-100, Alcon P-115, Alcon P-125, Alcon P-140, Alcon M-90, Alcon M-100, and Alcon M-. 115, Alcon M-135 (both manufactured by Arakawa Chemical Co., Ltd.) and the like can be mentioned.
  • Examples of the cyclohexane ring-containing saturated hydrocarbon resin include TFS13-030 (manufactured by Arakawa Chemical Industries, Ltd.).
  • Examples of the ultra-light rosin resin include pine crystal ME-H, pine crystal ME-D, pine crystal ME-G, pine crystal KR-85, pine crystal KE-311, pine crystal KE-359, and pine crystal D-6011. , Pine Crystal PE-590, Pine Crystal KE-604, Pine Crystal PR-580 (all manufactured by Arakawa Chemical Co., Ltd.) and the like.
  • the number average molecular weight of the tackifier is preferably 100 to 2,000, more preferably 700 to 1,500, and even more preferably 500 to 1,000.
  • the softening point of the tackifier is preferably 50 ° C. to 200 ° C., more preferably 90 ° C. to 180 ° C., and even more preferably 100 ° C. to 150 ° C.
  • the softening point can be measured by the ring-and-ball method according to JIS K2207.
  • the amount of the tackifier is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, based on 100% by mass of the non-volatile component of the encapsulant.
  • the amount of the tackifier is preferably 80% by mass or less, more preferably 60% by mass or less, further preferably 50% by mass or less, and 40% by mass or less with respect to 100% by mass of the non-volatile component of the encapsulant. Especially preferable.
  • the amount of the tackifier is in such a range, the ability of the sealant to suppress the infiltration of water can be effectively increased.
  • crosslinking agent and crosslinking accelerator examples of components that the encapsulant can contain in combination with the inorganic filler include cross-linking agents and cross-linking accelerators.
  • the cross-linking agent and the cross-linking accelerator can react with the reactive groups of other components to form a cross-linked structure.
  • the thermoplastic resin has a reactive group such as an acid anhydride group and an epoxy group
  • the cross-linking agent and the cross-linking accelerator can react with the reactive group to form a cross-linked structure.
  • the above-mentioned thermoplastic resin and tackifier are not included in the cross-linking agent and the cross-linking accelerator.
  • the cross-linking agent and the cross-linking accelerator one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • cross-linking agent and the cross-linking accelerator examples include amine compounds, guanidine compounds, imidazole compounds, phosphonium compounds, and phenol compounds.
  • amine compound examples include quaternary ammonium salts such as tetramethylammonium bromide and tetrabutylammonium bromide; DBU (1,8-diazabicyclo [5.4.0] undecene-7), DBN (1,5-diazabicyclo).
  • quaternary ammonium salts such as tetramethylammonium bromide and tetrabutylammonium bromide
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • DBN 1,5-diazabicyclo
  • DBU-phenol salt DBU-octylate, DBU-p-toluenesulfonate, DBU-gerate, DBU-phenolnovolac resin salt and other diazabicyclo compounds
  • benzyldimethyl Tertiary amines such as amines, 2- (dimethylaminomethyl) phenols, 2,4,6-tris (diaminomethyl) phenols and salts thereof
  • dimethyls such as aromatic dimethylurea, aliphatic dimethylurea and aromatic dimethylurea. Urea compounds; etc.
  • guanidine compound examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine and tetramethyl.
  • imidazole compound examples include 1H-imidazole, 2-methyl-imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl-imidazole, 2-phenyl-4,5-bis ( Hydroxymethyl) -imidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-imidazole, 2-dodecyl-imidazole, 2-heptadecylimidazole , 1,2-dimethyl-imidazole and the like.
  • Examples of the phosphonium compound include triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl) triphenylphosphonium thiocyanate, and tetra.
  • Examples thereof include phenylphosphonium thiocyanate and butyltriphenylphosphonium thiocyanate.
  • Types of phenolic compounds include, for example, MEH-7700, MEH-7810, MEH-7851 (manufactured by Meiwa Kasei Co., Ltd.), NHN, CBN, GPH (manufactured by Nippon Kayaku Co., Ltd.), SN170, SN180, SN190, SN475, SN485, Examples thereof include SN495, SN375, SN395 (manufactured by Toto Kasei Co., Ltd.) and TD2090 (manufactured by DIC Corporation).
  • specific examples of the triazine skeleton-containing phenolic compound include LA3018 (manufactured by DIC Corporation) and the like.
  • Specific examples of the triazine skeleton-containing phenol novolac compound include LA7052, LA7054, LA1356 (manufactured by DIC Corporation) and the like.
  • the cross-linking agent examples include a resin having a functional group capable of reacting with an acid anhydride group.
  • the functional group capable of reacting with the acid anhydride group examples include a hydroxyl group, a primary or secondary amino group, a thiol group, an epoxy group, an oxetane group and the like, and an epoxy group is preferable.
  • the resin having a functional group capable of reacting with the acid anhydride group for example, the resin described in International Publication No. 2017/057708 can be used.
  • Examples of the cross-linking agent include a resin having a functional group capable of reacting with an epoxy group.
  • the functional group capable of reacting with the epoxy group include a hydroxyl group, a phenolic hydroxyl group, an amino group, a carboxy group, an acid anhydride group and the like, and an acid anhydride group is preferable.
  • the acid anhydride group include a group derived from succinic anhydride, a group derived from maleic anhydride, a group derived from glutaric anhydride and the like.
  • the resin having a functional group capable of reacting with the epoxy group for example, the resin described in International Publication No. 2017/057708 can be used.
  • the curing agent may be used as a cross-linking agent or a cross-linking accelerator.
  • the amount of the cross-linking agent and the cross-linking accelerator is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and particularly 0.02% by mass or more, based on 100% by mass of the non-volatile component of the sealing agent. preferable.
  • the handleability of the sealing agent can be improved (for example, tack suppression).
  • the amount of the cross-linking agent and the cross-linking accelerator is preferably 5% by mass or less, more preferably 2.5% by mass or less, based on 100% by mass of the non-volatile component of the sealant. When the amount of the cross-linking agent and the cross-linking accelerator is in such a range, the ability of the sealing agent to suppress the infiltration of water can be effectively enhanced.
  • plasticizer can improve the flexibility and moldability of the sealant.
  • plasticizer a material that is liquid at room temperature (25 ° C.) is preferable.
  • plasticizers include paraffinic process oils, naphthenic process oils, liquid paraffins, polyethylene waxes, polypropylene waxes, mineral oils such as vaseline, castor oil, cottonseed oil, rapeseed oil, soybean oil, palm oil, palm oil, olive oil, etc.
  • liquid poly ⁇ -olefin compounds such as vegetable oils, liquid polybutene, hydrogenated liquid polybutene, liquid polybutadiene, and hydrogenated liquid polybutadiene.
  • the weight average molecular weight of the plasticizer is preferably 500 to 5,000, more preferably 1,000 to 3,000, from the viewpoint of adhesiveness.
  • One type of plasticizer may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of the plasticizer is preferably 50% by mass or less with respect to 100% by mass of the non-volatile component in the encapsulant.
  • examples of the components suitable for the adhesive type sealant include resins other than those described above (for example, epoxy resin, urethane resin, acrylic resin, polyamide resin, etc.); rubber particles, silicone.
  • Organic fillers such as powders, nylon powders and fluororesin powders; thickeners such as olben and benton; silicone-based, fluorine-based and polymer-based defoaming agents or leveling agents; triazole compounds, thiazole compounds, triazine compounds, porphyrin Adhesion-imparting agents such as compounds; antioxidants; etc. can be mentioned.
  • the adhesive type sealant may contain a component described later as a component that can be contained in the thermosetting type sealant.
  • thermosetting resin as a binder resin
  • examples of components that the sealant can contain in combination with the inorganic filler include thermosetting resins.
  • the thermosetting resin is preferable as a binder resin for a thermosetting type sealing agent.
  • One type of thermosetting resin may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • thermosetting resin examples include epoxy resin, cyanate ester resin, phenol resin, bismaleimide-triazine resin, polyimide resin, acrylic resin, vinylbenzyl resin and the like, and epoxy resin is preferable.
  • epoxy resin is combined with an inorganic filler containing at least one selected from the group consisting of semi-baked hydrotalcite and calcium oxide, a sealing agent having excellent transparency can be obtained.
  • the epoxy resin preferably has two or more epoxy groups per molecule on average.
  • epoxy resins include hydrogenated epoxy resins (hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, etc.), fluorine-containing epoxy resins, chain aliphatic epoxy resins, cyclic aliphatic epoxy resins, etc.
  • Bisphenol A type epoxy resin biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, fragrance Group glycidylamine type epoxy resin (for example, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyltoluidine, diglycidylaniline, etc.), alicyclic epoxy resin, phenol novolac type epoxy resin, alkylphenol type epoxy resin, cresol Novolak type epoxy resin, bisphenol A Novolak type epoxy resin, epoxy resin having a butadiene structure, diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalenediol, diglycidyl etherified product of phenols, and diglycidyl
  • a liquid epoxy resin may be used, a solid epoxy resin may be used, or a liquid epoxy resin and a solid epoxy resin may be used in combination.
  • the "liquid epoxy resin” represents an epoxy resin that is liquid at normal temperature (25 ° C.) and atmospheric pressure (1 atm).
  • the “solid epoxy resin” represents a solid epoxy resin at normal temperature (25 ° C.) and atmospheric pressure (1 atm). From the viewpoint of coatability, processability and adhesiveness, it is preferable that 10% by mass or more of the total epoxy resin is a liquid epoxy resin. Further, from the viewpoint of kneadability with the inorganic filler and viscosity of the varnish, it is particularly preferable to use the liquid epoxy resin and the solid epoxy resin in combination.
  • the mass ratio of the liquid epoxy resin to the solid epoxy resin is preferably 1: 2 to 1: 0, more preferably 1: 1.5 to 1: 0.
  • epoxy resin hydrogenated epoxy resin, fluorine-containing epoxy resin, chain aliphatic type epoxy resin, cyclic aliphatic type epoxy resin, and alkylphenol type epoxy resin are preferable. Of these, hydrogenated epoxy resins, fluorine-containing epoxy resins, chain aliphatic epoxy resins, and cyclic aliphatic epoxy resins are more preferable. When these epoxy resins are used, the transparency of the encapsulant can be enhanced.
  • Hydrolydrogenated epoxy resin means an epoxy resin obtained by hydrogenating an aromatic ring-containing epoxy resin.
  • the hydrogenation rate of the hydrogenated epoxy resin is preferably 50% or more, more preferably 70% or more.
  • hydrogenated epoxy resin hydrogenated bisphenol A type epoxy resin and hydrogenated bisphenol F type epoxy resin are preferable.
  • the hydrogenated bisphenol A type epoxy resin include liquid hydrogenated bisphenol A type epoxy resin (for example, "YX8000” (manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent: about 205)) and "Denacol EX-252" (Nagase Chemtex Co., Ltd.). , Epoxy equivalent: about 213)), solid hydrogenated bisphenol A type epoxy resin (for example, "YX8040” (manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent: about 1000)).
  • fluorine-containing epoxy resin examples include the fluorine-containing epoxy resin described in International Publication No. 2011/089947.
  • Chain-aliphatic epoxy resin means an epoxy resin having a linear or branched alkyl chain or an alkyl ether chain.
  • Examples of the chain aliphatic epoxy resin include polyglycerol polyglycidyl ether (for example, “Denacol EX-512", “Denacol EX-521", manufactured by Nagase ChemteX Corporation), pentaerythritol polyglycidyl ether (for example, "Denacol EX-521").
  • Denacol EX-411 manufactured by Nagase ChemteX
  • diglycerol polyglycidyl ether for example
  • Denacol EX-421 manufactured by Nagase Chemtex
  • glycerol polyglycidyl ether for example
  • Denacol EX-313 manufactured by Nagase Chemtex
  • Denacol EX-314 Nagase ChemteX
  • Trimethylol Propanepolyglycidyl Ether for example
  • Denacol EX-321 Nagase Chemtex
  • Neopentyl glycol diglycidyl ether for example
  • Denacol EX-211 Nagasechemtex
  • 1,6-hexanediol diglycidyl ether eg, "Denacol EX-212", Nagasechemtex
  • ethylene glycol diglycidyl ether eg, "Denacol EX-810", “Denacol EX-811", manufactured by Nag
  • the "cyclic aliphatic epoxy resin” means an epoxy resin having a cyclic aliphatic skeleton (for example, a cycloalkane skeleton) in the molecule.
  • examples of the cyclic aliphatic epoxy resin include "EHPE-3150” manufactured by Daicel Chemical Industries, Ltd., “TOPR-300” manufactured by Nittetsu Chemical & Materials Co., Ltd., and the like.
  • alkylphenol type epoxy resin means an epoxy resin having a benzene ring skeleton having one or more alkyl groups and one or more hydroxy groups as a substituent, and the hydroxy groups are converted into glycidyl ether groups.
  • alkylphenol type epoxy resin examples include "HP-820” manufactured by DIC; "YDC-1312” manufactured by Nippon Steel & Sumitomo Metal Chemical Industries, Ltd .; "EX-146” manufactured by Nagase ChemteX Corporation.
  • the thermosetting resin preferably contains an aromatic ring-containing epoxy resin.
  • the aromatic ring-containing epoxy resin represents an epoxy resin containing an aromatic ring in the molecule.
  • the use of aromatic ring-containing epoxy resins tends to improve the reactivity of the encapsulant, the glass transition temperature of the encapsulant after curing, or any or all of the adhesions.
  • Examples of the aromatic ring-containing epoxy resin include an alkylphenol type epoxy resin and a fluorine-containing aromatic epoxy resin.
  • aromatic ring-containing epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene type epoxy resin, and fluorine-containing aromatic epoxy resin.
  • bisphenol type epoxy resin and fluorine-containing aromatic epoxy resin are preferable, bisphenol type epoxy resin is more preferable, and bisphenol A type epoxy resin and bisphenol F type epoxy resin are further preferable.
  • Examples of the bisphenol A type epoxy resin include “828EL”, “1001” and “1004AF” manufactured by Mitsubishi Chemical Corporation; “840” and “850-S” manufactured by DIC Corporation; “YD-128” manufactured by Nippon Steel & Sumitomo Metal Chemical Corporation. And so on.
  • Examples of the mixture of the liquid bisphenol A type epoxy resin and the liquid bisphenol F type epoxy resin include "ZX-1059” (epoxy equivalent: about 165) manufactured by Nippon Steel Chemical Industries, Ltd.
  • Examples of the bisphenol F type epoxy resin include “807” manufactured by Mitsubishi Chemical Corporation; “830” manufactured by DIC Corporation; and “YDF-170” manufactured by Nippon Steel & Sumitomo Metal Chemical Corporation.
  • phenol novolac type epoxy resin examples include "N-730A”, “N-740”, “N-770” and “N-775" manufactured by DIC; “152” and “154” manufactured by Mitsubishi Chemical Corporation. Can be mentioned.
  • Biphenyl aralkyl type epoxy resin means an epoxy resin having a main chain in which a novolak structure and a divalent biphenyl structure are bonded.
  • Examples of the biphenyl aralkyl type epoxy resin include "NC-3000”, “NC-3000L” and “NC-3100” manufactured by Nippon Kayaku Co., Ltd.
  • Fluorene type epoxy resin means an epoxy resin having a fluorene skeleton.
  • Examples of the fluorene type epoxy tree include "OGSOL PG-100", “CG-500EG-200” and “EG-280” manufactured by Osaka Gas Chemical Co., Ltd.
  • Fluorine-containing aromatic epoxy resin means a fluorine-containing epoxy resin having an aromatic ring.
  • examples of the fluorine-containing aromatic epoxy resin include the fluorine-containing aromatic epoxy resin described in International Publication No. 2011/089947.
  • Aromatic ring-containing epoxy resins generally have a high refractive index. Therefore, from the viewpoint of increasing the transparency of the encapsulant by bringing the refractive indexes of the resin and the inorganic filler closer to each other, the refractive index of the entire epoxy resin can be adjusted by combining the epoxy resin containing an aromatic ring and the epoxy resin not containing an aromatic ring structure. You may adjust.
  • examples suitable for combination with an aromatic ring-containing epoxy resin include a hydrogenated epoxy resin, a fluorine-containing epoxy resin, a chain aliphatic type epoxy resin, and a cyclic aliphatic type.
  • Epoxy resin can be mentioned.
  • hydrogenated epoxy resins fluorine-containing epoxy resins, and cyclic aliphatic epoxy resins are preferable.
  • hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, and fluorine-containing epoxy resin are preferable, and hydrogenated bisphenol A type epoxy resin and hydrogenated bisphenol F type epoxy resin are more preferable.
  • a type epoxy resin is particularly preferable.
  • the amount of the aromatic ring-containing epoxy resin is preferably 0.5% by mass to 40% by mass, and 1% by mass, based on 100% by mass of the total of the aromatic ring-containing epoxy resin and the epoxy resin not containing the aromatic ring structure. % To 35% by mass is more preferable, and 2% by mass to 30% by mass is particularly preferable.
  • the epoxy equivalent of the epoxy resin is preferably 50 to 5,000, more preferably 50 to 3,000, still more preferably 80 to 2,000, and particularly preferably 100 to 1,500.
  • the "epoxy equivalent” is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and can be measured according to the method specified in JIS K 7236.
  • the weight average molecular weight of the thermosetting resin is preferably 100 to 5,000, more preferably 250 to 3,000, and even more preferably 400 to 1,500.
  • the weight average molecular weight of the thermosetting resin can be measured as a polystyrene-equivalent value by the gel permeation chromatography (GPC) method.
  • the amount of the thermosetting resin is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably 45% by mass, based on 100% by mass of the non-volatile component of the encapsulant.
  • the above is preferably 95% by mass or less, more preferably 90% by mass or less, and particularly preferably 85% by mass or less.
  • the amount of the thermosetting resin is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, particularly preferably 160 parts by mass or more, and preferably 300 parts by mass or less, based on 100 parts by mass of the inorganic filler. It is preferably 250 parts by mass or less, and particularly preferably 200 parts by mass or less.
  • thermosetting sealant may contain a thermoplastic resin as a binder resin in combination with the thermosetting resin.
  • binder resin contains a thermosetting resin and a thermoplastic resin in combination, it is possible to improve the flexibility of the sealing agent and the varnish coating property (repelling suppression) of the sealing agent.
  • thermoplastic resin one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • thermoplastic resin examples include phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, polysulfone resin, polyester resin, (meth) acrylic resin and the like.
  • (meth) acrylic resin includes both acrylic resin and methacrylic resin.
  • thermoplastic resin to be combined with the thermosetting resin the above-mentioned thermoplastic resin may be used as the binder resin suitable for the adhesive type encapsulant.
  • Phenoxy resin is preferable as the thermoplastic resin to be combined with the thermosetting resin.
  • the phenoxy resin has good compatibility with a thermosetting resin (particularly an epoxy resin). Further, when the phenoxy resin is used, the ability of the sealing agent for suppressing the infiltration of water can be effectively enhanced.
  • the phenoxy resin has one or more skeletons selected from bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolak skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, and norbornene skeleton. Resin is preferred.
  • phenoxy resins include, for example, YX7200B35 (Mitsubishi Chemical: biphenyl skeleton-containing phenoxy resin), 1256 (Mitsubishi Chemical: bisphenol A skeleton-containing phenoxy resin), YX6954BH35 (Mitsubishi Chemical: bisphenol acetophenone skeleton included). Phenoxy resin) and the like.
  • the range of the weight average molecular weight of the thermoplastic resin to be combined with the thermosetting resin may be the same range as the weight average molecular weight of the thermoplastic resin described above as a binder resin suitable for the adhesive type encapsulant.
  • a thermoplastic resin having a weight average molecular weight in such a range has flexibility of the sealant, applicability of the varnish of the sealant (suppression of repelling), and compatibility between the thermosetting resin and the thermoplastic resin. Can be improved.
  • the weight average molecular weight of the phenoxy resin is preferably 10,000 to 500,000, more preferably 20,000 to 300,000.
  • the method for measuring the weight average molecular weight is as described above.
  • the amount of the thermoplastic resin to be combined with the thermosetting resin is preferably 0.1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more, based on 100% by mass of the non-volatile component of the encapsulant. It is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 25% by mass or less, and particularly preferably 15% by mass or less.
  • the amount of the thermoplastic resin to be combined with the thermosetting resin is preferably 1 part by mass or more, more preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more, and preferably 90 parts by mass with respect to 100 parts by mass of the inorganic filler. It is less than or equal to parts by mass, more preferably 70 parts by mass or less, and particularly preferably 50 parts by mass or less.
  • the amount of the thermoplastic resin to be combined with the thermosetting resin is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more, based on 100 parts by mass of the thermosetting resin. Is 80 parts by mass or less, more preferably 60 parts by mass or less, and particularly preferably 40 parts by mass or less.
  • the sealant can contain in combination with the inorganic filler
  • examples of components that the sealant can contain in combination with the inorganic filler include a curing agent.
  • the curing agent When used in combination with a thermosetting resin, the curing agent has a function of reacting with the thermosetting resin to cure the encapsulant. From the viewpoint of suppressing thermal deterioration of the electronic device during curing of the encapsulant, the curing agent is preferably one that can react with the thermosetting resin at a temperature of 140 ° C. or lower (preferably 120 ° C. or lower).
  • One type of curing agent may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the type of curing agent can be selected according to the type of thermosetting resin.
  • a curing agent corresponding to an epoxy resin as a preferable thermosetting resin will be described.
  • the curing agent corresponding to the epoxy resin include ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, dimethylurea compounds, amine adduct compounds, organic acid dihydrazide compounds, organic phosphine compounds, dicyandiamide compounds, 1 Examples thereof include secondary and secondary amine compounds. Of these, ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, dimethylurea compounds and amine adduct compounds are preferable. Further, ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, and dimethylurea compounds are more preferable.
  • the encapsulant may contain a curing accelerator in combination with the curing agent. Only one type of curing accelerator may be used, or two or more types may be used in combination.
  • the type of curing accelerator can be selected according to the type of thermosetting resin.
  • a curing accelerator corresponding to an epoxy resin as a preferable thermosetting resin will be described.
  • the curing accelerator compatible with the epoxy resin include imidazole compounds, tertiary amine compounds, dimethylurea compounds, and amine adduct compounds. Of these, imidazole compounds, tertiary amine compounds, and dimethylurea compounds are preferable.
  • the ionic liquid as a curing agent is preferably an ionic liquid capable of curing a thermosetting resin (particularly an epoxy resin) at a temperature of 140 ° C. or lower (preferably 120 ° C. or lower). That is, the ionic liquid is a salt that can be melted in a temperature range of 140 ° C. or lower (preferably 120 ° C. or lower), and a salt having a curing action of a thermosetting resin (particularly an epoxy resin) is preferable.
  • the ionic liquid is preferably used in a state of being uniformly dissolved in a thermosetting resin (particularly an epoxy resin). Ionic liquids can usually effectively enhance the ability of the sealant to suppress the ingress of water.
  • Examples of the cation constituting the ionic liquid as a curing agent include ammonium cations such as imidazolium ion, piperidinium ion, pyrrolidinium ion, pyrazonium ion, guanidinium ion and pyridinium ion; and tetraalkylphosphonium cation (for example, tetraalkylphosphonium cation).
  • Phosphonium-based cations such as tetrabutylphosphonium ion, tributylhexylphosphonium ion, etc .
  • sulfonium-based cations such as triethylsulfonium ion and the like can be mentioned.
  • anion constituting the ionic liquid as a curing agent examples include halide-based anions such as fluoride ion, chloride ion, bromide ion and iodide ion; alkylsulfate-based anion such as methanesulfonate ion; trifluoromethanesulfone.
  • Fluorine-containing compound anions such as acid ion, hexafluorophosphonate ion, trifluorotris (pentafluoroethyl) phosphonate ion, bis (trifluoromethanesulfonyl) imide ion, trifluoroacetate ion, tetrafluoroborate ion; phenol ion, Phenolic anions such as 2-methoxyphenol ion, 2,6-di-tert-butylphenol ion; acidic amino acid ions such as aspartate ion and glutamate ion; neutral amino acid ions such as glycine ion, alanine ion and phenylalanine ion; N N-acylamino acid ion represented by the following formula (A) such as -benzoylalanine ion, N-acetylphenylalanine ion, N-acetylglycine ion;
  • RA represents a linear or branched alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenyl group
  • X A represents a side chain of an amino acid.
  • the amino acid in the formula (A) include aspartic acid, glutamic acid, glycine, alanine, phenylalanine and the like, and glycine is preferable.
  • ammonium-based cations and phosphonium-based cations are preferable, and imidazolium ions and phosphonium ions are more preferable.
  • imidazolium ion examples include 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-propyl-3-methylimidazolium ion and the like.
  • anion a phenol-based anion, an N-acylamino acid ion represented by the formula (A), and a carboxylic acid-based anion are preferable, and an N-acylamino acid ion and a carboxylic acid-based anion are more preferable.
  • phenolic anion examples include 2,6-di-tert-butylphenol ion.
  • carboxylic acid-based anions include acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylic acid ion, formate ion, ⁇ -lipoate ion, lactate ion, tartrate ion, horse urate ion, and N-methyl horse.
  • Examples thereof include acetate ion, 2-pyrrolidone-5-carboxylic acid ion, formate ion, lactate ion, tartrate ion, horse urate ion, N-methyl horse urate ion, and acetate ion and decanoate ion. , N-methylhorseurate ion, formate ion is more preferable.
  • Specific examples of the N-acylamino acid ion represented by the formula (A) include N-benzoylalanine ion, N-acetylphenylalanine ion, aspartate ion, glycine ion, N-acetylglycine ion and the like. -Benzoylalanine ion, N-acetylphenylalanine ion, N-acetylglycine ion are preferable, and N-acetylglycine ion is more preferable.
  • Examples of the ionic liquid include 1-butyl-3-methylimidazolium lactate, tetrabutylphosphonium-2-pyrrolidone-5-carboxylate, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium trifluoroacetate, and the like.
  • Decanoate N-Acetylglycine tetrabutylphosphonium salt, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium formate, 1-ethyl-3-methylimidazolium salt horseuriate, N -Methylhorseurate 1-ethyl-3-methylimidazolium salt is more preferred.
  • a method for synthesizing an ionic liquid for example, NaBF 4 , NaPF 6 , and CF are used as a precursor composed of a cation moiety such as alkylimidazolium, alkylpyridinium, alkylammonium, and alkylsulfonium ion and an anion moiety containing halogen.
  • a cation moiety such as alkylimidazolium, alkylpyridinium, alkylammonium, and alkylsulfonium ion and an anion moiety containing halogen.
  • An anion exchange method in which SO 3 Na, LiN (SO 2 CF 3 ) 2, etc. are reacted can be mentioned.
  • an acid ester method in which an amine-based substance is reacted with an acid ester to introduce an alkyl group and an organic acid residue becomes a counter anion.
  • a neutralization method in which amines are neutralized with an organic acid to obtain a salt
  • the anion and cation may be used in equal amounts
  • the solvent in the obtained reaction solution may be distilled off, and the solvent may be used as it is.
  • the obtained reaction solution may be mixed with an organic solvent (methanol, toluene, ethyl acetate, acetone, etc.) and then concentrated for use.
  • Examples of the acid anhydride compound as a curing agent include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, and dodecenyl succinic anhydride. Things etc. can be mentioned.
  • Specific examples of the acid anhydride compound include Jamaicacid TH, TH-1A, HH, MH, MH-700, MH-700G (all manufactured by New Japan Chemical Co., Ltd.) and the like.
  • imidazole compound as a curing agent or curing accelerator examples include 1H-imidazole, 2-methyl-imidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, and 1-cyanoethyl-2-ethyl.
  • imidazole compound examples include curesol 2MZ, 2P4MZ, 2E4MZ, 2E4MZ-CN, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2PHZ, 1B2MZ, 1B2PZ, 2PZ, C17Z, 1.2DMZ, 2P4MHZ-PW. , 2MZ-A, 2MA-OK (both manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like.
  • DBN 1,5-diazabicyclo [4.3.0] non-5-ene
  • DBU 1,8-diazabiclo [5. 4.0] undec-7-ene
  • DBU 2-ethylhexanate DBU phenol salt
  • DBU p-toluenesulfonate examples include U
  • dimethylurea compound as a curing agent or curing accelerator examples include aromatic dimethyls such as DCMU (3- (3,4-dichlorophenyl) -1,1-dimethylurea) and U-CAT3512T (manufactured by San-Apro).
  • aromatic dimethyls such as DCMU (3- (3,4-dichlorophenyl) -1,1-dimethylurea) and U-CAT3512T (manufactured by San-Apro).
  • Urea examples thereof include aliphatic dimethyl urea such as U-CAT3503N (manufactured by San-Apro). Of these, aromatic dimethylurea is preferable from the viewpoint of curability.
  • Examples of the amine adduct compound as a curing agent or curing accelerator include an epoxy adduct compound obtained by stopping the addition reaction of a tertiary amine to an epoxy resin in the middle.
  • Specific examples of amine adduct compounds include Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Examples thereof include Amicure PN-40J (both manufactured by Ajinomoto Fine Techno Co., Ltd.).
  • organic acid dihydrazide compound as a curing agent examples include Amicure VDH-J, Amicure UDH, Amicure LDH (all manufactured by Ajinomoto Fine-Techno Co., Ltd.) and the like.
  • organic phosphine compound as a curing agent or curing accelerator
  • examples of the organic phosphine compound as a curing agent or curing accelerator include triphenylphosphine, tetraphenylphosphonium tetra-p-tolylbolate, tetraphenylphosphonium tetraphenylborate, tri-tert-butylphosphonium tetraphenylborate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, triphenylphosphine triphenylborane and the like can be mentioned.
  • organic phosphine compound examples include TPP, TPP-MK, TPP-K, TTBuP-K, TPP-SCN, TPP-S (manufactured by Hokuko Chemical Industry Co., Ltd.) and the like.
  • Examples of the dicyandiamide compound as a curing agent include dicyandiamide.
  • Specific examples of the dicyandiamide compound include DICY7 and DICY15 (both manufactured by Mitsubishi Chemical Corporation), which are dicyandiamide finely pulverized products.
  • Examples of the primary and secondary amine compounds as the curing agent include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, 1,3-bisaminomethylcyclohexane, and the like.
  • Aliper amines such as diproprenedamines, diethylaminopropylamines, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane; N-aminoethylpyverazine, 1,4-bis (3-aminopropyl) ) Alicyclic amines such as piperazine; aromatic amines such as diaminodiphenylmethane, m-phenylenediamine, m-xylene diamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diethyltoluenediamine; Specific examples of the primary and secondary amine compounds include Kayahard AA (manufactured by Nippon Kayaku Co., Ltd .: 4,4'-diamino-3,3'-dimethyldiphenylmethane).
  • cross-linking agent and cross-linking accelerators may be used as the curing agent.
  • Preferred combinations of the curing agent and the curing accelerator include two or more selected from ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, dimethyl urea compounds, and amine adduct compounds.
  • the amount of the curing agent is preferably 0.1% by mass to 40% by mass, more preferably 0.5% by mass to 38 parts by mass, and 1% by mass to 35% by mass with respect to 100% by mass of the non-volatile component of the encapsulant.
  • the portion is more preferable.
  • the amount of the curing agent is not more than the lower limit of the above range, the curing of the encapsulant can be sufficiently advanced. Further, when the amount of the curing agent is not more than the upper limit value in the above range, the storage stability of the sealing agent can be enhanced.
  • the amount of the ionic liquid as the curing agent is preferably 20% by mass or less, more preferably 18% by mass or less, and particularly preferably 15% by mass or less, based on 100% by mass of the non-volatile component of the encapsulant.
  • the amount of ionic liquid is in the above range, the ability of the sealant to suppress the infiltration of water can be effectively enhanced.
  • the amount of the curing accelerator is preferably 0.05% by mass to 10% by mass, more preferably 0.1% by mass to 8% by mass, and 0.5% by mass with respect to 100% by mass of the non-volatile component of the encapsulant. It is more preferably to 5% by mass.
  • the amount of the curing accelerator is not more than the lower limit of the above range, the curing of the encapsulant can be rapidly advanced. Further, when the amount of the curing accelerator is not more than the upper limit of the above range, the storage stability of the encapsulant can be enhanced.
  • thermosetting encapsulants an example of a component suitable for the thermosetting encapsulant is a coupling agent.
  • the sealing agent contains a coupling agent, the aggregation of the inorganic filler is suppressed and the surface area of the inorganic filler can be increased, so that the lead adsorption property and the hygroscopic property of the inorganic filler can be easily exhibited.
  • One type of coupling agent may be used alone, or two or more types may be used in combination at any ratio.
  • Examples of the coupling agent include a silane coupling agent, an aluminate coupling agent, and a titanate coupling agent.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane 3-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N- (2) Amino-based silane coupling agents such as -aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane; ureido-based silanes such as
  • aluminate coupling agent examples include alkylacetoacetate aluminum diisopropylate (for example, "Plenact AL-M” manufactured by Ajinomoto Fine-Techno Co., Ltd.).
  • titanate-based coupling agents include Plenact TTS, Plenact 46B, Plenact 55, Plenact 41B, Plenact 38S, Plenact 138S, Plenact 238S, Plenact 338X, Plenact 44, and Plenact 9SA (all manufactured by Ajinomoto Fine-Techno). Can be mentioned.
  • the amount of the coupling agent is preferably 0% by mass to 15% by mass, more preferably 0.5% by mass to 10% by mass, based on 100% by mass of the non-volatile component of the encapsulant.
  • the amount of the coupling agent is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, particularly preferably 1 part by mass or more, and preferably 20 parts by mass with respect to 100 parts by mass of the inorganic filler. Hereinafter, it is more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • thermosetting encapsulant examples include organic fillers such as rubber particles, silicone powder, nylon powder, and fluororesin powder; and thickening such as Orben and Benton.
  • Agents Silicone-based, fluoro-based, polymer-based defoaming agents or leveling agents; adhesion-imparting agents such as triazole compounds, thiazole compounds, triazine compounds, and porphyrin compounds; and the like.
  • the thermosetting type encapsulant may contain the above-mentioned components as the components that the adhesive type encapsulant can contain.
  • the encapsulant according to the first embodiment of the present invention preferably has high transparency.
  • the transparency of the sealant can be expressed by the parallel line transmittance with respect to D65 light.
  • the parallel line transmittance of the 20 ⁇ m-thick sealant layer is preferably 80% to 100%, more preferably 85% to 100%.
  • the parallel line transmittance of the sealant is calculated by forming a laminate in which the sealant is laminated on a glass plate and using air as a reference. Specifically, the parallel line transmittance can be measured by the following method.
  • a sealing sheet with a layer of sealing agent with a thickness of 20 ⁇ m This sealing sheet is cut into a length of 70 mm and a width of 25 mm, and the sealing sheet is a glass plate (microslide glass having a length of 76 mm, a width of 26 mm and a thickness of 1.2 mm, a white slide glass manufactured by Matsunami Glass Industry Co., Ltd.).
  • a laminated body is obtained by laminating S1112 edge polishing No. 2) with a batch type vacuum laminator (manufactured by Nichigo Morton, V-160). Laminating conditions are a temperature of 80 ° C., a depressurization time of 30 seconds, and then a pressure of 0.3 MPa for 30 seconds.
  • thermosetting sealant In the case of a thermosetting sealant, this laminate is heated in a thermodynamic oven at 100 ° C. for 60 minutes to obtain a sample. Using a haze meter HZ-V3 (halogen lamp) manufactured by Suga Test Instruments Co., Ltd., measure the parallel line transmittance (%) of the sample with D65 light using air as a reference.
  • haze meter HZ-V3 halogen lamp
  • the encapsulant according to the second embodiment of the present invention contains an inorganic filler containing at least one selected from the group consisting of semi-baked hydrotalcite, calcined hydrotalcite and calcium oxide, and a binder resin. Since semi-fired hydrotalcite, fired hydrotalcite and calcium oxide can exhibit excellent lead adsorption and hygroscopicity in the sealant, the sealant can be used to seal an electronic device having a lead-containing portion. When used in an application, it is possible to suppress the infiltration of water into the lead-containing portion and to suppress the leakage of lead from the lead-containing portion to the outside of the electronic device.
  • the encapsulant according to the second embodiment of the present invention may or may not have the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range.
  • the encapsulant according to the second embodiment of the present invention contains one or more kinds of inorganic fillers selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide. Except for the above items, the encapsulant according to the second embodiment of the present invention may have the same composition and physical properties as the encapsulant according to the first embodiment. You can get the same benefits.
  • the method for producing the sealant is not particularly limited.
  • the sealant can be produced by a method of mixing the compounding components using a mixing device such as a kneading roller and a rotary mixer. Further, at the time of the above mixing, the solvent may be mixed in combination with the compounding ingredients.
  • the sealing agent When used for sealing purposes, the sealing agent can suppress the infiltration of water and the leakage of lead. Therefore, it is preferable to use it for sealing an electronic device including a lead-containing portion.
  • the electronic device include a solar cell such as a perovskite type solar cell; a secondary battery such as a lead storage battery; and an electronic component containing lead solder.
  • a sealing sheet according to an embodiment of the present invention includes a support and a layer of the sealing agent formed on the support. Since the sealant layer is a layer formed of the sealant, it contains the above-mentioned sealant. By laminating such a sealing sheet so that the layer of the sealing agent is in contact with the sealing target, the sealing of the sealing target by the sealing agent can be achieved. Laminating is usually performed so that the object to be sealed and the layer of the sealant are in direct contact with each other. When two members are in "direct” contact, it means that there is no other member between them.
  • the thickness of the sealant layer can be set according to the object to be sealed.
  • the specific thickness of the sealant layer is usually in the range of 3 ⁇ m to 200 ⁇ m, preferably 5 ⁇ m to 175 ⁇ m, and more preferably 5 ⁇ m to 150 ⁇ m.
  • the thickness of the sealant layer is equal to or greater than the lower limit of the above range, damage to the sealing target due to lamination with the sealing sheet can be suppressed, or sealing obtained as a sealant layer after lamination can be suppressed.
  • the uniformity of the thickness of the part can be increased. Further, when the thickness of the sealant layer is not more than the upper limit of the above range, the infiltration of water into the electronic device can be effectively suppressed.
  • the thinner the sealing portion as the sealing agent layer the smaller the area of the side portion where the outside air and the sealing portion are in contact with each other.
  • the infiltration of water can be effectively suppressed (see FIG. 4 described later).
  • the support a film formed of an appropriate material is usually used.
  • the support include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, cycloolefin polymers, polyethylene terephthalate (hereinafter sometimes abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate and polyimide.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • polyesters such as polyethylene naphthalate, polycarbonate and polyimide.
  • Plastic film metal foil such as aluminum foil, stainless foil, copper foil; and the like.
  • a composite film obtained by laminating a metal foil and a plastic film may be used as a support.
  • the support may be provided with a barrier layer from the viewpoint of enhancing moisture permeability.
  • a barrier layer from the viewpoint of enhancing moisture permeability.
  • the support includes a plastic film
  • the material of the barrier layer include inorganic substances. Examples of such an inorganic substance include nitrides such as silicon nitride and SiCN; oxides such as silicon oxide and aluminum oxide; amorphous silicon; stainless steel and metal of aluminum; and the like.
  • the barrier layer can be formed, for example, by depositing the above-mentioned material.
  • the support may be surface-treated.
  • the surface treatment include a matte treatment, a corona treatment, and a mold release treatment.
  • the mold release treatment include a mold release treatment using a mold release agent such as a silicone resin-based mold release agent, an alkyd resin-based mold release agent, and a fluororesin-based mold release agent.
  • the support examples include “PET Tsuki AL1N30” manufactured by Tokai Toyo Aluminum Sales Co., Ltd., “PET Tsuki AL3025” manufactured by Fukuda Metal Co., Ltd., and “Alpet” manufactured by Panac Co., Ltd. as commercially available polyethylene terephthalate films with aluminum foil. Can be mentioned.
  • Tech Barrier HX, AX, LX, L series manufactured by Mitsubishi Plastics
  • X-BARRIER manufactured by Mitsubishi Plastics
  • the thickness of the support is not particularly limited, but from the viewpoint of handleability and the like, it is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 125 ⁇ m or less, in particular. It is preferably 100 ⁇ m or less.
  • the sealing sheet may be provided with a protective film, if necessary.
  • the sealing sheet may be provided with a support, a layer of a sealing agent, and a protective film in this order, so that the layer of the sealing agent may be protected by the protective film.
  • a protective film By protecting with a protective film, it is possible to prevent dust from adhering to and scratching the surface of the sealant layer.
  • the protective film for example, a plastic film similar to the support can be used.
  • the protective film may be surface-treated like the support.
  • the thickness of the protective film is not particularly limited and may be usually 1 ⁇ m or more, preferably 10 ⁇ m or more, usually 150 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less.
  • the sealing sheet can be manufactured by a manufacturing method comprising forming a layer of a sealing agent on a support.
  • the sealant layer is formed by, for example, preparing a varnish containing a sealant and a solvent, applying the varnish onto a support, and drying the applied varnish. Can be done.
  • an organic solvent is usually used as the solvent.
  • the organic solvent include ketone solvents such as acetone, methyl ethyl ketone (hereinafter, also abbreviated as “MEK”) and cyclohexanone; acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate.
  • Carbitol solvents such as cellosolve and butylcarbitol
  • aromatic hydrocarbon solvents such as toluene and xylene
  • amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone
  • aromatic mixed solvents such as solventnaphtha; Be done.
  • aromatic mixed solvent include "Swazole” (manufactured by Maruzen Petroleum Co., Ltd., trade name) and "Ipsol” (manufactured by Idemitsu Kosan Co., Ltd., trade name).
  • the solvent one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • a heating method, a hot air blowing method, or the like can be used for drying the varnish.
  • the drying conditions are not particularly limited, and the temperature can be, for example, 50 ° C. to 100 ° C.
  • the drying time is preferably 1 minute or more, more preferably 3 minutes or more, preferably 60 minutes or less, and more preferably 15 minutes or less.
  • the method for producing the sealing sheet may include heating the layer of the sealing agent, if necessary. Since the reaction of the reactive groups contained in the encapsulant can be allowed to proceed by heating, the hardness of the encapsulant layer can be increased by advancing the reaction such as the crosslinking reaction and the polymerization reaction to an appropriate degree. it can. This heating is suitable when an adhesive type sealant is used. In particular, when a pressure-sensitive adhesive containing a polyolefin resin having a reactive group such as an acid anhydride group and an epoxy group is used, it is preferable to carry out the above heating. By such heating before sealing, it is possible to avoid thermal deterioration of the components contained in the sealing target.
  • the heating conditions are not particularly limited.
  • the heating temperature is preferably 50 ° C. to 200 ° C., more preferably 100 ° C. to 180 ° C., and even more preferably 120 ° C. to 160 ° C.
  • the heating time is preferably 15 minutes to 120 minutes, more preferably 30 minutes to 100 minutes
  • the method for manufacturing the sealing sheet may include providing a protective film, if necessary.
  • the protective film can be provided, for example, by laminating the protective film and the layer of the sealant.
  • the protective film may be provided before heating the encapsulant layer or after heating the encapsulant layer.
  • the sealing sheet can be used for sealing a lead-containing part, an electrode, or the like to be sealed.
  • the sealing method using a sealing sheet usually involves laminating a layer of a sealing agent on the sealing sheet on the sealing target.
  • the sealing sheet includes a protective film
  • the above-mentioned lamination is usually performed after the protective film is peeled off.
  • the laminating method may be a batch method or a continuous method using a roll.
  • a layer of a sealant and a support are provided in this order on the object to be sealed. Therefore, the object to be sealed after lamination can be covered with a layer of a sealing agent and a support.
  • a state in which the sealing target is covered with a layer of a sealing agent and a support may be obtained without peeling the support. In this state, the object to be sealed is sealed not only by the layer of the sealing agent but also by the support, so that the infiltration of water can be effectively suppressed.
  • sealing sheet having a highly moisture-permeable support such as a support having a barrier layer or a support having a metal foil
  • sealing with a layer of a sealing agent and the support as described above is used. It is preferable to stop.
  • the support may be peeled off after the above-mentioned lamination to obtain a state in which the sealing target is covered with a layer of a sealing agent. Even in this state, the infiltration of water can be effectively suppressed by the layer of the sealing agent that seals the object to be sealed.
  • a sealing sheet having a support that does not have high moisture permeability such as a support that does not have a barrier layer and a support that does not have a metal foil
  • the sealant layer is used as described above. It is preferable to perform sealing with.
  • the sealing method using the sealing sheet may include, for example, further providing a sealing base material.
  • a sealing base material for example, the same film as the above-mentioned support may be used, or a rigid plate material such as a glass plate, a metal plate, or a steel plate may be used.
  • the sealing method using the sealing sheet may include, for example, curing the sealing agent layer after laminating.
  • curing the sealing agent layer after laminating usually, by applying heat to the sealant layer, reactions such as a cross-linking reaction and a polymerization reaction of reactive groups contained in the sealant are allowed to proceed, and the sealant layer is thermoset.
  • the adhesion between the sealing target and the sealing agent can be improved, and the mechanical strength of the sealing agent layer can be improved, so that the sealing ability of the sealing agent can be enhanced. Therefore, the infiltration of water and the leakage of lead can be suppressed particularly effectively.
  • thermosetting after lamination is suitable when a thermosetting type sealant is used.
  • the sealant layer is usually heated by an appropriate heat treatment device.
  • the heat treatment apparatus include a hot air circulation type oven, an infrared heater, a heat gun, and a high frequency induction heating apparatus.
  • the sealant layer may be heated, for example, by pressure-bonding the heat tool to the sealant layer.
  • the curing temperature is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, and particularly preferably 60 ° C. or higher.
  • the curing temperature is preferably 150 ° C. or lower, more preferably 100 ° C. or lower, and even more preferably 80 ° C. or lower.
  • the curing time is preferably 10 minutes or more, more preferably 20 minutes or more.
  • sealing with a layer of a sealing agent is achieved. Therefore, when the target to be sealed contains a lead-containing portion, not only the infiltration of water into the lead-containing portion but also the leakage of lead from the lead-containing portion can be suppressed.
  • An electronic device includes a lead-containing portion and a sealing portion for sealing the lead-containing portion.
  • the sealing portion contains the above-mentioned sealing agent.
  • the sealing agent contained in the sealing portion may be cured.
  • the sealing portion containing the sealing agent cured in this way is included in the "sealing portion containing the sealing agent".
  • the infiltration of water into the lead-containing portion can be suppressed by the sealing portion.
  • the leakage of lead from the lead-containing portion to the outside of the electronic device can be suppressed by the sealing portion.
  • the lead-containing part is a part containing a lead atom, and can include a wide range of parts depending on the type of electronic device.
  • the electronic device will be specifically described by taking as an example a perovskite type solar cell including a perovskite layer as the lead-containing portion.
  • FIG. 4 is a cross-sectional view schematically showing an example of a perovskite type solar cell 400 according to an embodiment of the present invention.
  • the perovskite type solar cell 400 as an example includes a first electrode 410, a perovskite layer 420 containing a lead atom, a second electrode 430, and a seal containing a sealant which may be cured.
  • a stop portion 440 is provided.
  • a perovskite layer 420 is provided between the first electrode 410 and the second electrode 430 so that the electric charge generated in the perovskite layer 420 as the photoelectric conversion layer can be taken out through the first electrode 410 and the second electrode 430. It is provided.
  • the first electrode 410 and the second electrode 430 are made of a conductive material.
  • the type of the conductive material is not limited, but it is preferable that one or both of the first electrode 410 and the second electrode 430 are formed of a transparent conductive material.
  • Examples of such materials include conductive oxides such as ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), and GZO (gallium zinc oxide).
  • Conductive polymer and the like.
  • the perovskite layer 420 contains a perovskite compound, and the perovskite layer 420 can be irradiated with light to generate an electric charge.
  • the perovskite compound include a compound represented by the following formula (P). A P k M P XP (k + 2) (P)
  • k represents an integer of 1 or 2.
  • Ap represents a monovalent organic molecule or an ion thereof.
  • the monovalent organic molecule is not particularly limited, but for example, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, dimethylamine, dipropylamine dibutylamine, dipentylamine, dihexylamine, etc.
  • monovalent organic molecule ions include methylammonium (CH 3 NH 3 ), phenethylammonium and the like.
  • methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine and their ions, and phenethylammine are preferable, and methylamine, ethylamine, propylamine and these ions are more preferable.
  • M p represents a divalent metal atom.
  • M p preferably includes lead as divalent metal atom.
  • M p may comprise a metal atom other than lead in combination with lead.
  • metal atoms other than lead include tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, and europium. Can be mentioned.
  • One type of these metal atoms may be used alone, or two or more types may be used in combination.
  • X p represents a halogen atom or a chalcogen atom.
  • the halogen atom is not particularly limited, and examples thereof include chlorine, bromine, iodine, and sulfur.
  • the chalcogen atom is not particularly limited, but selenium can be mentioned. One of these may be used alone, or two or more of them may be used in combination.
  • perovskite compound examples include the perovskite compounds described in International Publication No. 2014/045021, Japanese Patent Application Laid-Open No. 2014-49596, Japanese Patent Application Laid-Open No. 2016-82003, and the like.
  • the perovskite compound a compound containing a lead atom such as CH 3 NH 3 PbI 3 is preferable.
  • a compound containing a lead atom such as CH 3 NH 3 PbI 3 is preferable.
  • One type of perovskite compound may be used alone, or two or more types may be used in combination at any ratio.
  • the perovskite layer 420 may contain an arbitrary component such as an oxide semiconductor in combination with the perovskite compound.
  • the sealing portion 440 is provided so as to seal the perovskite layer 420. Therefore, part or all of the surface of the perovskite layer 420 is covered with the sealing portion 440, and the surface of the perovskite layer 420 is not exposed. In the example shown in FIG. 4, a portion of the surface of the perovskite layer 420 that is not in contact with the first electrode 410 or the second electrode 430 is covered with the sealing portion 440. In such a perovskite layer, the space between the outside air and the perovskite layer 420 is sealed by a sealing portion 440. Therefore, it is possible to suppress the infiltration of moisture in the outside air into the perovskite layer 420.
  • the solar cell 400 further includes a first base material 450 and a second base material 460.
  • first base material 450 and the second base material 460 is used as a supporting base material for supporting the solar cell 400 or its manufacturing intermediate during manufacturing and use.
  • the other of the first base material 450 and the second base material 460 is usually used as a sealing base material for sealing the main surface of the solar cell 400 in a wide range.
  • the first electrode 410, the perovskite layer 420 and the second electrode 430 are generally provided in the space between the first base material 450 and the second base material 460. Therefore, as shown in FIG.
  • the sealing portion 440 can be provided so as to fill the space between the first base material 450 and the second base material 460, the first base material 450 and the second base material 450 and the second base material Members such as the first electrode 410, the perovskite layer 420, and the second electrode 430 provided between the 460s can all be sealed by the sealing portion 440.
  • the first base material 450 and the second base material 460 are made of a material that does not easily allow water to permeate or have a large thickness, so that the infiltration of water can be highly suppressed. Therefore, in the solar cell 400 according to the above example, the infiltration route of water into the perovskite layer 420 can be limited to the in-plane infiltration route A4 passing through the side portion 440S of the sealing portion 440.
  • the above-mentioned sealant can particularly effectively suppress the infiltration of water in such an infiltration route A4.
  • the above-mentioned sealing agent when used for sealing the perovskite layer 420 provided between the first base material 450 and the second base material 460, the above-mentioned sealing agent is said to suppress the infiltration of water and the leakage of lead. It is possible to exert the effect particularly remarkably.
  • the perovskite type solar cell 400 may be further modified and implemented.
  • the perovskite type solar cell 400 may include an arbitrary layer between the first electrode 410 and the perovskite layer 420.
  • the perovskite type solar cell 400 may include an arbitrary layer between the perovskite layer 420 and the second electrode 430.
  • the optional layer include an electron transport layer and a hole transport layer.
  • the manufacturing method of electronic devices can be produced by a method including forming a lead-containing layer and forming a sealing portion for sealing the lead-containing layer.
  • the sealing portion can be formed as a layer of a sealing agent that covers the lead-containing portion, for example, by laminating a layer of a sealing agent using a sealing sheet.
  • a perovskite-type solar cell 400 having a sealing portion 440 as a sealing agent layer can be manufactured by a method including laminating a sealing agent layer of a sealing sheet (not shown) so as to cover the whole. ..
  • the support of the sealing sheet may be used as the second base material 460.
  • another second base material 460 may be provided on the sealing portion 440.
  • the sealing sheets produced in Examples and Comparative Examples were cut into a length of 16 cm and a width of 24 cm to obtain a first test sheet.
  • a mesh cloth (bolting cloth (nylon) mesh 40 NB-40, manufactured by AS ONE Corporation) is attached to the layer side of the sealant of this first test sheet, and then finely chopped into 1 cm squares to form a lead ion-containing aqueous solution.
  • the mixture was placed in 50 ml and stirred with a high-speed rotary mixer (Kentaro ARE-310, rotation speed 2000 rpm) for 15 minutes (lead adsorption capacity evaluation test).
  • thermosetting type sealant after the sealant was heat-cured under the condition of 100 ° C. for 60 minutes after the mesh cloth was attached, it was used for the first test. I chopped the sheet into small pieces. The lead ion concentration M1 of the lead ion-containing aqueous solution after stirring was measured.
  • the lead ion concentration of the lead ion-containing aqueous solution before immersing the first test sheet is 20 ⁇ g / L, minus the lead ion concentration M1 of the lead ion-containing aqueous solution after immersing the first test sheet.
  • the amount of change was obtained.
  • the amount of lead adsorption was calculated by multiplying this amount of change by the volume of the lead ion-containing aqueous solution of 50 mL.
  • the calculated lead adsorption amount is divided by the area of the sealant layer of the first test sheet used, which is 384 cm 2 , and the mass of lead adsorbed per 1 m 2 of the sealant layer X ( ⁇ g / m). 2 ) was calculated.
  • the mass X of the adsorbed lead corresponds to the lead adsorbability parameter. Based on the mass X of adsorbed lead, the lead adsorption capacity of the encapsulant was evaluated according to the following criteria.
  • the lead ion concentration of the lead ion-containing aqueous solution was measured by the following method. 5 ml of a lead ion-containing aqueous solution was placed in a test tube in a lead sensor pack (manufactured by HACH), and a reagent tablet (a reagent for measurement attached to the lead sensor pack) was dissolved. Then, the test electrode was immersed in a lead ion-containing aqueous solution, and the lead ion concentration was measured using a portable scanning lead measuring device (model name HSA-1000, manufactured by HACH).
  • a support film As a support film, a composite film "PET Tsuki AL1N30" (aluminum foil thickness 30 ⁇ m, polyethylene terephthalate film thickness 25 ⁇ m, manufactured by Tokai Toyo Aluminum Sales Co., Ltd.) including an aluminum foil and a polyethylene terephthalate film was prepared. A layer of a sealant was formed on the aluminum foil side surface of the support film in the same manner as in the manufacturing method of the sealing sheet in each Example and Comparative Example except that this support film was used instead of the support. did. As a result, a second test sheet provided with a support film and a layer of a sealant was obtained.
  • PET Tsuki AL1N30 aluminum foil thickness 30 ⁇ m, polyethylene terephthalate film thickness 25 ⁇ m, manufactured by Tokai Toyo Aluminum Sales Co., Ltd.
  • the obtained second test sheet was dried in a nitrogen atmosphere in order to remove the adsorbed water contained in the sealant layer. Drying was carried out at 130 ° C. for 60 minutes in Examples 1 to 4 and Comparative Examples 1 to 3 using the adhesive type sealant. Further, the drying was carried out at 100 ° C. for 5 minutes in Examples 5 to 6 and Comparative Example 4 using the thermosetting type sealant.
  • a 50 mm x 50 mm square glass plate made of non-alkali glass was prepared.
  • the glass plate was washed with boiling isopropyl alcohol for 5 minutes and dried at 150 ° C. for 30 minutes or more.
  • Calcium was vapor-deposited on one side of this glass plate using a mask covering the peripheral area at a distance of 0 mm to 2 mm from the end of the glass plate.
  • a calcium film (purity 99.8%) having a thickness of 200 nm was formed on one side of the glass plate in the central portion excluding the peripheral area having a distance of 0 mm to 2 mm from the edge of the glass plate.
  • the sealant layer of the second test sheet described above and the surface of the glass plate on the calcium film side are bonded together using a thermal laminator (Lamipacker DAiSY A4 (LPD2325) manufactured by Fujipla Co., Ltd.).
  • a thermal laminator Lipacker DAiSY A4 (LPD2325) manufactured by Fujipla Co., Ltd.
  • the obtained laminate was obtained as an evaluation sample.
  • the obtained laminate was heated at a temperature of 100 ° C. for 60 minutes to cure the sealant layer, and an evaluation sample was prepared. Obtained.
  • the moisture usually passes through the end portion of the sealant layer and is perpendicular to the in-plane direction (vertical to the thickness direction). Can move in the direction) to reach the calcium membrane. Therefore, when water penetrates into the evaluation sample, the calcium film is gradually oxidized from the end and becomes transparent, so that shrinkage of the calcium film is observed. Therefore, the intrusion of water into the evaluation sample can be evaluated by measuring the sealing distance [mm] from the end of the evaluation sample to the calcium film. Therefore, the evaluation sample containing the calcium film can be used as a model of the electronic device containing lead.
  • the sealing distance X2 [mm] from the end of the evaluation sample to the end of the calcium film was measured with a microscope (Measuring Microscope MF-U, manufactured by Mitutoyo).
  • this sealing distance X2 may be referred to as an initial sealing distance X2.
  • the evaluation sample was stored in a constant temperature and humidity chamber set to a temperature of 85 ° C. and a humidity of 85% RH.
  • the sealing distance X1 (mm) from the end of the evaluation sample stored in the constant temperature and humidity chamber to the end of the calcium film increases by 0.1 mm from the initial sealing distance X2
  • the evaluation sample is prepared. It was taken out from a constant temperature and humidity chamber. The time from the time when the evaluation sample was stored in the constant temperature and humidity chamber to the time when the evaluation sample was taken out from the constant temperature and humidity chamber was determined as the decrease start time t [hour].
  • This decrease start time t is the sealing distance X1 [from the time point T P1 when the evaluation sample is stored in the constant temperature and humidity chamber to the end of the evaluation sample stored in the constant temperature and humidity chamber and the end of the calcium film. mm] corresponds to the time until the time point T P2 when it becomes “X2 + 0.1 mm”.
  • the sealing distance X1 and the reduction start time t were applied to the diffusion equation of Fick in the equation (1) to calculate the constant K as the water vapor infiltration barrier parameter.
  • the water vapor infiltration barrier property as the ability of the encapsulant to suppress the infiltration of water was evaluated according to the following criteria.
  • “H” means "time”.
  • the reaction solution was concentrated using an evaporator at a pressure of 40 mmHg to 50 mmHg at 60 ° C. to 80 ° C. for 2 hours and 90 ° C. for 5 hours.
  • the obtained concentrate was dissolved in 14.2 ml of ethyl acetate (manufactured by Junsei Chemical Co., Ltd.) at room temperature to prepare a solution.
  • the obtained solution was concentrated using an evaporator at a pressure of 40 mmHg to 50 mmHg at 70 ° C. to 90 ° C. for 3 hours to obtain 11.7 g (purity: 96.9%) of N-acetylglycine tetrabutylphosphonium salt. Obtained as an oily compound.
  • Example 1 Manufacturing of varnish
  • a swazole solution (60% non-volatile component) of a dicyclopentadiene petroleum resin (T-REZ HA105, manufactured by JXTG Energy Co., Ltd., softening point 105 ° C.)
  • T-REZ HA105 dicyclopentadiene petroleum resin
  • an antioxidant manufactured by Irganox 1010 BASF
  • a glycidyl methacrylate-modified propylene-butene random copolymer (T-YP341, manufactured by Starlight PMC), propylene unit / butene unit: 71% / 29%, epoxy group concentration: 0.638 mmol / g, number average.
  • TAP a swazole solution (20% non-volatile component) having a molecular weight of 155,000
  • an amine compound (2,4,6-tris (diaminomethyl) phenol
  • a polyethylene terephthalate film (PET thickness 50 ⁇ m; SP3000, manufactured by Toyo Cloth Co., Ltd.) having a surface treated with a silicone-based mold release agent (release treated surface) was prepared.
  • the varnish is uniformly applied on the mold release surface of the support with a die coater and heated at 140 ° C. for 30 minutes to obtain a sealing sheet having a layer of a sealing agent having a thickness of 20 ⁇ m. It was.
  • Example 2 The type of inorganic filler was changed from semi-calcined hydrotalcite A to commercially available calcined hydrotalcite C (calcined hydrotalcite, BET specific surface area: 190 m 2 / g, average particle size: 400 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 1.
  • Example 3 The type of inorganic filler was changed from semi-calcined hydrotalcite A to commercially available calcium oxide (BET specific surface area: 5 m 2 / g, average particle size: 4000 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 1.
  • Example 4 The type of inorganic filler was changed from semi-calcined hydrotalcite A to nanozeolite (Zeoal 4A, manufactured by Nakamura Choukousha, average particle size 300 nm, pore diameter 4 ⁇ ). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 1.
  • Example 1 Semi-baked hydrotalcite A as an inorganic filler was not used. Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 1.
  • Example 2 The type of inorganic filler was changed from semi-fired hydrotalcite A to commercially available unfired hydrotalcite D (BET specific surface area: 10 m 2 / g, average particle size: 400 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 1.
  • Example 3 The type of inorganic filler was changed from semi-baked hydrotalcite A to synthetic mica (PDM-5B, manufactured by Topy Industries, Ltd., average particle size: 6.0 ⁇ m). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 1.
  • Example 5 Manufacturing of varnish 162 parts of a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin ("ZX1059” manufactured by Nittetsu Chemical & Materials Co., Ltd.) and commercially available semi-fired hydrotalcite A (semi-fired hydrotalcite," as an inorganic filler.
  • a polyethylene terephthalate film (thickness 38 ⁇ m, hereinafter sometimes referred to as “release PET film”) having a surface (release treated surface) treated with an alkyd-based mold release agent was prepared.
  • the above varnish is uniformly applied on the release-treated surface of the support with a die coater so that the thickness of the sealing agent layer after drying is 20 ⁇ m, and dried at 80 ° C. for 5 minutes. , Formed a layer of sealant.
  • a release PET film was placed on the surface of the sealant layer as a protective film, and a seal sheet having a support, a sealant layer and a release PET film in this order was obtained.
  • Example 6 The type of inorganic filler was changed from semi-calcined hydrotalcite A to commercially available calcium oxide (BET specific surface area: 5 m 2 / g, average particle size: 4000 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 5.
  • Example 4 The type of inorganic filler was changed from semi-fired hydrotalcite A to commercially available unfired hydrotalcite D (BET specific surface area: 10 m 2 / g, average particle size: 400 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 ⁇ m were produced by the same method as in Example 5.
  • the water vapor transmittance P0 of the obtained resin sheet was determined by an infrared sensor method according to JIS K7129B. Water vapor permeability (g / m 2 ⁇ 24 hours), the water vapor transmission rate measurement device (MOCON (MOCON) Co., PERMATRAN-W 3/34) using a temperature of 40 ° C., a relative humidity of 90% Measured in.
  • the water vapor transmittance P0 of the resin sheet and the water vapor transmittance P2 of the reference film were applied to the following formula (2) to calculate the water vapor transmittance P1 of the sealant layer.
  • the ability of the sealant to suppress the infiltration of water may differ depending on the infiltration direction of the water vapor. Further, it can be seen that the encapsulant according to the examples exhibits a specifically high water vapor infiltration barrier property in the in-plane direction.
  • Powder X-ray diffraction of hydrotalcite The powder X-ray diffraction of each hydrotalcite used in the above-mentioned Examples and Comparative Examples was measured. Powder X-ray diffraction is measured by a powder X-ray diffractometer (Empylean, manufactured by PANalytical), anti-cathode CuK ⁇ (1.5405 ⁇ ), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: The measurement was performed under the conditions of 0.0657 ° / s and the measurement diffraction angle range (2 ⁇ ): 5.0131 to 79.9711 °.
  • Powder X-ray diffraction is measured by a powder X-ray diffractometer (Empylean, manufactured by PANalytical), anti-cathode CuK ⁇ (1.5405 ⁇ ), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: The measurement was performed under the conditions of 0.
  • the peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It was carried out under the condition of "0.00 °, method: minimum value of second derivative".
  • hydrotalcite A is “semi-calcined hydrotalcite” and hydrotalcite C is “calcined hydrotalcite”.
  • Site D is "unfired hydrotalcite”.
  • Evaluation sample 100 Glass plate 200 Calcium film 300 Second test sheet 310 Encapsulant layer 320 Support film 321 Aluminum foil 322 Polyethylene terephthalate film 400 Perovskite type solar cell 410 First electrode 420 Perovskite layer 430 Second electrode 440 Sealing Part 450 First base material 460 Second base material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Sealing Material Composition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This sealing agent is for electronic devices provided with lead-containing parts, and contains a resin and an inorganic filler containing at least one selected from the group consisting of half-calcined hydrotalcite and calcined hydrotalcite.

Description

封止剤、封止シート、電子デバイスおよびペロブスカイト型太陽電池Encapsulants, encapsulants, electronic devices and perovskite solar cells
 本発明は、鉛含有部を備える電子デバイス用の封止剤、並びに、それを用いた封止シート、電子デバイスおよびペロブスカイト型太陽電池に関する。 The present invention relates to a sealant for an electronic device having a lead-containing portion, and a sealing sheet using the lead-containing part, an electronic device, and a perovskite type solar cell.
 近年注目を集める電子デバイスの一つに、ペロブスカイト型太陽電池がある。ペロブスカイト型太陽電池は、一般に、電極と、ペロブスカイト化合物を含む光電変換層とを備える。また、電極及び光電変換層を水から保護するために、ペロブスカイト型太陽電池には、封止部が設けられることが通常である。このような封止部について、従来から、様々な検討が行われてきた(特許文献1)。 One of the electronic devices that has been attracting attention in recent years is the perovskite type solar cell. A perovskite-type solar cell generally includes an electrode and a photoelectric conversion layer containing a perovskite compound. Further, in order to protect the electrodes and the photoelectric conversion layer from water, the perovskite type solar cell is usually provided with a sealing portion. Various studies have been conducted on such a sealing portion (Patent Document 1).
国際公開第2018/056312号International Publication No. 2018/056312
 ペロブスカイト型太陽電池が備える光電変換層には、鉛が含まれることがある。この光電変換層に仮に水分が浸入した場合、光電変換層から鉛が流出し、太陽電池の外部へと漏出する可能性がある。また、このような鉛の漏出は、前記の光電変換層のような鉛含有部を備えるペロブスカイト型太陽電池以外の電子デバイスにおいても、生じうる。鉛の漏出は、環境面及び安全面のいずれの観点からも、抑制することが望まれる。 Lead may be contained in the photoelectric conversion layer of the perovskite type solar cell. If water penetrates into the photoelectric conversion layer, lead may flow out from the photoelectric conversion layer and leak to the outside of the solar cell. Further, such lead leakage can also occur in an electronic device other than a perovskite type solar cell provided with a lead-containing portion such as the photoelectric conversion layer. Lead leakage is desired to be suppressed from both environmental and safety perspectives.
 本発明は、前記の課題に鑑みて創案されたもので、水分の浸入を抑制でき、且つ、鉛含有部から電子デバイスの外部への鉛の漏出を抑制できる、電子デバイス用の封止剤;前記封止剤を含む封止シート;並びに、前記封止剤を封止に用いた電子デバイスおよびペロブスカイト型太陽電池;を提供することを目的とする。 The present invention has been devised in view of the above problems, and is a sealing agent for electronic devices capable of suppressing the infiltration of water and suppressing the leakage of lead from the lead-containing portion to the outside of the electronic device; It is an object of the present invention to provide a sealing sheet containing the sealing agent; and an electronic device and a perovskite type solar cell using the sealing agent for sealing.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、無機フィラーと樹脂とを適切に組み合わせて用いた場合に、前記の課題を解決できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor has diligently studied to solve the above-mentioned problems. As a result, the present inventor has found that the above-mentioned problems can be solved when the inorganic filler and the resin are used in an appropriate combination, and completed the present invention.
That is, the present invention includes the following.
 〔1〕 鉛含有部を備える電子デバイス用の封止剤であって、
 前記封止剤が、無機フィラー及び樹脂を含み、
 前記封止剤の鉛吸着性パラメータが、10μg/m以上であり、
 前記封止剤の水蒸気侵入バリア性パラメータが、0.025cm/h0.5未満であり、
 前記鉛吸着性パラメータは、鉛吸着能評価試験を行った場合に、封止剤の層1m当たりに吸着される鉛の質量を表し、
 前記鉛吸着能評価試験では、ポリエチレンテレフタレートフィルムと、前記ポリエチレンテレフタレートフィルム上に形成された厚さ20μmの前記封止剤の層と、を備える、長さ16cm、幅24cmの第一試験用シートを用意すること;前記第一試験用シートの前記封止剤の層側に、ナイロン製のメッシュ布を貼合すること;メッシュ布を貼合された前記第一試験用シートを、1cm角に切断すること;切断された前記第一試験用シートを、20℃~25℃に調整した鉛イオン濃度20μg/Lの鉛イオン含有水溶液50mlに浸漬し、15分撹拌することを行い、
 前記水蒸気浸入バリア性パラメータは、水蒸気バリア性評価試験を行った場合に、下記式(1)から求められる定数Kを表し、
 前記水蒸気バリア性評価試験では、厚み30μmのアルミニウム箔及び厚み25μmのポリエチレンテレフタレートフィルムを備える支持フィルムと、前記支持フィルムの前記アルミニウム箔上に形成された前記封止剤の層と、を備える第二試験用シートを、乾燥すること;無アルカリガラスで形成された50mm角のガラス板を、煮沸したイソプロピルアルコールで5分間洗浄し、乾燥すること;前記ガラス板の片面の、前記ガラス板の端部からの距離0mm~2mmのエリアを除く部分に、カルシウムを蒸着して、厚さ200nmのカルシウム膜を形成すること;窒素雰囲気内で、前記第二試験用シートの前記封止剤の層と、前記ガラス板の前記カルシウム膜側の面と、を貼り合わせ、評価サンプルを得ること;前記評価サンプルの端部と前記カルシウム膜の端部との間の距離X2[mm]を測定すること;前記評価サンプルを、温度85℃、湿度85%RHの恒温恒湿槽に収納すること;前記評価サンプルを前記恒温恒湿槽に収納した時点から、前記恒温恒湿槽に収納された前記評価サンプルの端部と前記カルシウム膜の端部との間の距離X1[mm]が「X2+0.1mm」となる時点までの時間t[時間]を測定すること;及び、下記式(1)に基づいて、定数Kを計算すること、を行う、封止剤。
Figure JPOXMLDOC01-appb-M000002
 〔2〕 前記水蒸気バリア性評価試験における第二試験用シートの乾燥を、130℃60分の条件、及び、100℃5分の条件の、少なくとも一方で行う、〔1〕に記載の封止剤。
 〔3〕 前記無機フィラーが、半焼成ハイドロタルサイト、焼成ハイドロタルサイト、酸化カルシウム、及び、ゼオライトからなる群より選ばれる1種類以上を含む、〔1〕又は〔2〕に記載の封止剤。
 〔4〕 鉛含有部を備える電子デバイス用の封止剤であって、
 半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含む無機フィラーと、樹脂とを含む、封止剤。
 〔5〕 前記無機フィラーが、半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含み、
 前記樹脂が、ポリオレフィン系樹脂を含む、〔3〕又は〔4〕に記載の封止剤。
 〔6〕 前記無機フィラーが、半焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含み、
 前記樹脂が、エポキシ樹脂を含む、〔3〕~〔5〕のいずれか一項に記載の封止剤。
 〔7〕 前記封止剤の不揮発成分100質量%に対する、前記無機フィラーの量が、5質量%以上80質量%以下である、〔1〕~〔6〕のいずれか一項に記載の封止剤。
 〔8〕 支持体と、前記支持体上に形成された〔1〕~〔7〕のいずれか一項に記載の封止剤の層と、を備える、封止シート。
 〔9〕 鉛含有部と、前記鉛含有部を封止する封止部とを備え、
 前記封止部が、〔1〕~〔7〕のいずれか一項に記載の封止剤を含む、電子デバイス。
 〔10〕 第一電極と、鉛原子を含むペロブスカイト層と、第二電極と、前記ペロブスカイト層を封止する封止部とを備え、
 前記封止部が、〔1〕~〔7〕のいずれか一項に記載の封止剤を含む、ペロブスカイト型太陽電池。
[1] A sealant for an electronic device including a lead-containing portion.
The encapsulant contains an inorganic filler and a resin.
The lead adsorption parameter of the sealant is 10 μg / m 2 or more.
The water vapor penetration barrier parameter of the sealant is less than 0.025 cm / h 0.5.
The lead adsorption parameter represents the mass of lead adsorbed per 1 m 2 of the sealant layer when the lead adsorption capacity evaluation test is performed.
In the lead adsorption capacity evaluation test, a first test sheet having a length of 16 cm and a width of 24 cm, comprising a polyethylene terephthalate film and a layer of the sealant having a thickness of 20 μm formed on the polyethylene terephthalate film is provided. To prepare; a nylon mesh cloth is attached to the layer side of the sealant of the first test sheet; the first test sheet to which the mesh cloth is attached is cut into 1 cm squares. The cut first test sheet is immersed in 50 ml of a lead ion-containing aqueous solution having a lead ion concentration of 20 μg / L adjusted to 20 ° C to 25 ° C, and stirred for 15 minutes.
The water vapor infiltration barrier property parameter represents a constant K obtained from the following formula (1) when the water vapor barrier property evaluation test is performed.
In the water vapor barrier property evaluation test, a second support film including an aluminum foil having a thickness of 30 μm and a polyethylene terephthalate film having a thickness of 25 μm, and a layer of the sealant formed on the aluminum foil of the support film are provided. Drying the test sheet; washing a 50 mm square glass plate made of non-alkali glass with boiling isopropyl alcohol for 5 minutes and drying; one side of the glass plate, the end of the glass plate. Calcium is vapor-deposited on a portion excluding an area having a distance of 0 mm to 2 mm to form a calcium film having a thickness of 200 nm; in a nitrogen atmosphere, the sealant layer of the second test sheet and the sealant layer. The surface of the glass plate on the calcium film side is bonded to obtain an evaluation sample; the distance X2 [mm] between the end of the evaluation sample and the end of the calcium film is measured; The evaluation sample is stored in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85% RH; from the time when the evaluation sample is stored in the constant temperature and humidity chamber, the evaluation sample stored in the constant temperature and humidity chamber is used. To measure the time t [time] until the distance X1 [mm] between the end and the end of the calcium film becomes "X2 + 0.1 mm"; and based on the following formula (1). Calculating the constant K, the encapsulant.
Figure JPOXMLDOC01-appb-M000002
[2] The sealant according to [1], wherein the drying of the second test sheet in the water vapor barrier property evaluation test is performed under the conditions of 130 ° C. for 60 minutes and 100 ° C. for 5 minutes at least one of them. ..
[3] The sealant according to [1] or [2], wherein the inorganic filler contains at least one selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite, calcium oxide, and zeolite. ..
[4] A sealant for an electronic device provided with a lead-containing portion.
A sealant containing a resin and an inorganic filler containing at least one selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide.
[5] The inorganic filler contains one or more selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide.
The encapsulant according to [3] or [4], wherein the resin contains a polyolefin-based resin.
[6] The inorganic filler contains one or more selected from the group consisting of semi-calcined hydrotalcite and calcium oxide.
The sealant according to any one of [3] to [5], wherein the resin contains an epoxy resin.
[7] The sealing according to any one of [1] to [6], wherein the amount of the inorganic filler is 5% by mass or more and 80% by mass or less with respect to 100% by mass of the non-volatile component of the sealing agent. Agent.
[8] A sealing sheet comprising a support and a layer of a sealing agent according to any one of [1] to [7] formed on the support.
[9] A lead-containing portion and a sealing portion for sealing the lead-containing portion are provided.
An electronic device in which the sealing portion contains the sealing agent according to any one of [1] to [7].
[10] A first electrode, a perovskite layer containing a lead atom, a second electrode, and a sealing portion for sealing the perovskite layer are provided.
A perovskite-type solar cell in which the sealing portion contains the sealing agent according to any one of [1] to [7].
 本発明によれば、水分の浸入を抑制でき、且つ、鉛含有部から電子デバイスの外部への鉛の漏出を抑制できる、電子デバイス用の封止剤;前記封止剤を含む封止シート;並びに、前記封止剤を封止に用いた電子デバイスおよびペロブスカイト型太陽電池;を提供できる。 According to the present invention, a sealing agent for an electronic device capable of suppressing the infiltration of water and suppressing the leakage of lead from the lead-containing portion to the outside of the electronic device; a sealing sheet containing the sealing agent; In addition, an electronic device and a perovskite type solar cell using the sealing agent for sealing can be provided.
図1は、水蒸気バリア性評価試験で製造される評価サンプルを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an evaluation sample produced in the water vapor barrier property evaluation test. 図2は、恒温恒湿槽に収納される前の評価サンプルを、ガラス板側から見た様子を模式的に示す平面図である。FIG. 2 is a plan view schematically showing a state in which the evaluation sample before being stored in the constant temperature and humidity chamber is viewed from the glass plate side. 図3は、恒温恒湿槽に収納された後の評価サンプルを、ガラス板側から見た様子を模式的に示す平面図である。FIG. 3 is a plan view schematically showing a state in which the evaluation sample after being stored in the constant temperature and humidity chamber is viewed from the glass plate side. 図4は、本発明の一実施形態に係るペロブスカイト型太陽電池の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a perovskite type solar cell according to an embodiment of the present invention.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は、以下に説明する実施形態及び例示物に限定されるものではなく、請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples described below, and may be arbitrarily modified and implemented without departing from the claims and the equivalent scope thereof.
[1.第一実施形態に係る封止剤の概要]
 本発明の第一実施形態に係る封止剤は、無機フィラー及び樹脂を含む。前記の樹脂は、通常、無機フィラーを結着して保持する役割を果たすので、適宜「バインダ樹脂」と呼ぶことがある。本実施形態に係る封止剤は、無機フィラー及びバインダ樹脂以外に、更に任意の成分を含んでいてもよい。また、本実施形態に係る封止剤は、特定の範囲の鉛吸着性パラメータを有する。さらに、本実施形態に係る封止剤は、特定の範囲の水蒸気浸入バリア性パラメータを有する。この封止剤は、鉛含有部を備える電子デバイスの封止用途に用いた場合に、鉛含有部への水分の浸入を抑制でき、且つ、鉛含有部から電子デバイスの外部への鉛の漏出を抑制できる。
[1. Outline of the encapsulant according to the first embodiment]
The encapsulant according to the first embodiment of the present invention contains an inorganic filler and a resin. Since the resin usually plays a role of binding and holding an inorganic filler, it may be appropriately referred to as a "binder resin". The encapsulant according to the present embodiment may further contain an arbitrary component in addition to the inorganic filler and the binder resin. In addition, the encapsulant according to this embodiment has a specific range of lead adsorption parameters. Further, the encapsulant according to this embodiment has a specific range of water vapor infiltration barrier parameters. When this sealant is used for sealing an electronic device having a lead-containing portion, it can suppress the infiltration of water into the lead-containing portion and lead leakage from the lead-containing portion to the outside of the electronic device. Can be suppressed.
[2.第一実施形態に係る封止剤の鉛吸着性パラメータ]
 本発明の第一実施形態に係る封止剤の鉛吸着性パラメータは、通常10μg/m以上、好ましくは11μg/m以上、更に好ましくは12μg/m以上、特に好ましくは13μg/m以上である。鉛吸着性パラメータの上限は、大きいほど好ましく、例えば、200μg/m以下、100μg/m以下、50μg/m以下などでありうる。
[2. Lead Adsorption Parameter of Encapsulant According to First Embodiment]
Lead adsorption parameter encapsulant according to a first embodiment of the present invention is usually 10 [mu] g / m 2 or more, preferably 11μg / m 2 or more, more preferably 12 [mu] g / m 2 or more, particularly preferably 13 ug / m 2 That is all. The larger the upper limit of the lead adsorption parameter is, the more preferable it is. For example, it may be 200 μg / m 2 or less, 100 μg / m 2 or less, 50 μg / m 2 or less, and the like.
 鉛吸着性パラメータは、下記の鉛吸着能評価試験を行った場合に、封止剤の層1m当たりに吸着される鉛の質量を表す。 The lead adsorption parameter represents the mass of lead adsorbed per 1 m 2 of the sealant layer when the following lead adsorption capacity evaluation test is performed.
 前記の鉛吸着能評価試験では、第一試験用シートを用意すること;第一試験用シートの封止剤の層側に、ナイロン製のメッシュ布を貼合すること;メッシュ布を貼合された前記第一試験用シートを、1cm角に切断すること;切断された第一試験用シートを、20℃~25℃に調整した鉛イオン濃度20μg/Lの鉛イオン含有水溶液50mlに浸漬し、15分撹拌することを行う。第一試験用シートとは、ポリエチレンテレフタレートフィルムと、このポリエチレンテレフタレートフィルム上に形成された厚さ20μmの封止剤の層と、を備える、長さ16cm、幅24cmのシートを表す。鉛吸着能評価試験において第一試験用シートとメッシュ布との貼合を行う理由は、鉛イオン含有水溶液中で第一試験用シート同士が密着することを抑制するためである。また、封止剤が熱硬化型封止剤の場合、通常は、メッシュ布貼合後に100℃60分の条件で封止剤を熱硬化させ、その後で、第一試験用シートの切断を行う。 In the lead adsorption capacity evaluation test, a first test sheet is prepared; a nylon mesh cloth is attached to the layer side of the sealant of the first test sheet; the mesh cloth is attached. The first test sheet was cut into 1 cm squares; the cut first test sheet was immersed in 50 ml of a lead ion-containing aqueous solution having a lead ion concentration of 20 μg / L adjusted to 20 ° C to 25 ° C. Stir for 15 minutes. The first test sheet represents a sheet having a length of 16 cm and a width of 24 cm, comprising a polyethylene terephthalate film and a layer of a sealant having a thickness of 20 μm formed on the polyethylene terephthalate film. The reason why the first test sheet and the mesh cloth are bonded in the lead adsorption capacity evaluation test is to prevent the first test sheets from adhering to each other in the lead ion-containing aqueous solution. When the encapsulant is a thermosetting encapsulant, the encapsulant is usually thermoset at 100 ° C. for 60 minutes after the mesh cloth is attached, and then the first test sheet is cut. ..
 よって、例えば、封止剤が粘着型封止剤である場合、鉛吸着能評価試験では、第一試験用シートを用意すること;第一試験用シートの封止剤の層側に、ナイロン製のメッシュ布を貼合すること;メッシュ布を貼合された第一試験用シートを、1cm角に切断すること;切断された第一試験用シートを、20℃~25℃に調整した鉛イオン濃度20μg/Lの鉛イオン含有水溶液50mlに浸漬し、15分撹拌することを行いうる。 Therefore, for example, when the encapsulant is an adhesive type encapsulant, a first test sheet should be prepared in the lead adsorption capacity evaluation test; the layer side of the encapsulant of the first test sheet is made of nylon. The first test sheet to which the mesh cloth is attached is cut into 1 cm squares; the cut first test sheet is adjusted to 20 ° C to 25 ° C for lead ions. It can be immersed in 50 ml of a lead ion-containing aqueous solution having a concentration of 20 μg / L and stirred for 15 minutes.
 また、例えば、封止剤が熱硬化型封止剤である場合、鉛吸着能評価試験では、第一試験用シートを用意すること;第一試験用シートの封止剤の層側に、ナイロン製のメッシュ布を貼合し、100℃60分の条件で封止剤を熱硬化すること;メッシュ布を貼合された第一試験用シートを、1cm角に切断すること;切断された第一試験用シートを、20℃~25℃に調整した鉛イオン濃度20μg/Lの鉛イオン含有水溶液50mlに浸漬し、15分撹拌することを行いうる。 Further, for example, when the encapsulant is a thermosetting encapsulant, a first test sheet should be prepared in the lead adsorption capacity evaluation test; nylon is placed on the layer side of the encapsulant of the first test sheet. The sealant is heat-cured at 100 ° C. for 60 minutes by laminating a mesh cloth made of the same material; the first test sheet to which the mesh cloth is bonded is cut into 1 cm squares; (1) The test sheet can be immersed in 50 ml of a lead ion-containing aqueous solution having a lead ion concentration of 20 μg / L adjusted to 20 ° C. to 25 ° C. and stirred for 15 minutes.
 鉛吸着能評価試験を行った場合に封止剤の層に吸着される鉛の質量は、鉛イオン含有水溶液に含まれる鉛イオンの濃度を用いて測定できる。鉛イオンの濃度は、ポータブル走査型鉛測定器(型名HSA-1000、HACH社製)を用いて測定できる。具体的な測定方法は、実施例で後述する方法を採用しうる。 The mass of lead adsorbed on the sealant layer when the lead adsorption capacity evaluation test is performed can be measured by using the concentration of lead ions contained in the lead ion-containing aqueous solution. The lead ion concentration can be measured using a portable scanning lead measuring device (model name HSA-1000, manufactured by HACH). As a specific measurement method, the method described later in the examples can be adopted.
 鉛吸着性パラメータは、封止剤が鉛を吸着する能力の大きさを表す。具体的には、鉛吸着性パラメータが大きいほど、封止剤が鉛を吸着する能力が大きいことを表す。前記範囲の鉛吸着性パラメータを有する封止剤は、電子デバイスにおいて鉛含有部の封止に用いた場合に、その鉛含有部から流出する鉛を効果的に吸着できる。よって、電子デバイスからの外部への鉛の漏出を抑制できる。前記のように鉛の漏出を抑制できる効果は、電子デバイスの保管時、運搬時、使用時、破損時など、様々な場面において有益である。 The lead adsorption parameter represents the magnitude of the ability of the encapsulant to adsorb lead. Specifically, the larger the lead adsorption parameter, the greater the ability of the encapsulant to adsorb lead. A sealant having a lead adsorption parameter in the above range can effectively adsorb lead flowing out from the lead-containing portion when used for sealing the lead-containing portion in an electronic device. Therefore, it is possible to suppress the leakage of lead from the electronic device to the outside. The effect of suppressing lead leakage as described above is beneficial in various situations such as storage, transportation, use, and damage of electronic devices.
 鉛吸着性パラメータは、例えば、無機フィラーの種類及び量によって調整しうる。 The lead adsorption parameter can be adjusted, for example, by the type and amount of the inorganic filler.
[3.第一実施形態に係る封止剤の水蒸気浸入バリア性パラメータ]
 本発明の第一実施形態に係る封止剤の水蒸気浸入バリア性パラメータは、通常0.025cm/h0.5未満、好ましくは0.024cm/h0.5未満、より好ましくは0.0230cm/h0.5未満、更に好ましくは0.022cm/h0.5未満、特に好ましくは0.021cm/h0.5未満である。水蒸気浸入バリア性パラメータの下限は、理想的には0.000cm/h0.5以上であるが、0.001cm/h0.5以上であってもよい。
[3. Water vapor infiltration barrier parameter of the sealant according to the first embodiment]
The water vapor infiltration barrier parameter of the encapsulant according to the first embodiment of the present invention is usually less than 0.025 cm / h 0.5 , preferably less than 0.024 cm / h 0.5 , more preferably 0.0230 cm / h. h less than 0.5, more preferably less than 0.022Cm / h 0.5, particularly preferably less than 0.021cm / h 0.5. The lower limit of the water vapor penetration barrier parameter is ideally is 0.000cm / h 0.5 or more, it may be 0.001 cm / h 0.5 or more.
 水蒸気浸入バリア性パラメータは、下記の水蒸気バリア性評価試験を行った場合に、式(1)から求められる定数Kを表す。 The water vapor infiltration barrier property parameter represents the constant K obtained from the equation (1) when the following water vapor barrier property evaluation test is performed.
 前記の水蒸気バリア性評価試験では、第二試験用シートを、乾燥すること;無アルカリガラスで形成された50mm角のガラス板を、煮沸したイソプロピルアルコールで5分間洗浄し、乾燥すること;ガラス板の片面の中央部分に、カルシウムを蒸着して、厚さ200nmのカルシウム膜を形成すること;窒素雰囲気内で、第二試験用シートの封止剤の層と、ガラス板の前記カルシウム膜側の面と、を貼り合わせ、評価サンプルを得ること;評価サンプルの封止距離X2[mm]を測定すること;評価サンプルを、温度85℃、湿度85%RHの恒温恒湿槽に収納すること;評価サンプルを恒温恒湿槽に収納した時点TP1から、恒温恒湿槽に収納された評価サンプルの封止距離X1[mm]が「X2+0.1mm」となる時点TP2までの時間t[時間]を測定すること;及び、下記式(1)に基づいて、定数Kを計算すること、を行う。以下の説明では、前記の時間tを、「減少開始時間t」と呼ぶことがある。封止剤が硬化可能である場合には、通常、第二試験用シートの封止剤の層とガラス板のカルシウム膜側の面とを貼り合わせた後、封止剤の層を硬化させて、評価サンプルを得る。前記の硬化の条件は、例えば、実施例で後述する条件を採用しうる。具体的な硬化の条件は、例えば、100℃60分でありうる。また、水蒸気バリア性評価試験で行う第二試験用シートの乾燥は、十分に行うことが好ましい。具体的な乾燥条件は、130℃60分の条件、及び、100℃5分の条件の、少なくとも一方でありうる。130℃60分の条件、及び、100℃5分の条件の、少なくとも一方の条件での乾燥を含む水蒸気バリア性評価試験において、上述した範囲の水蒸気浸入バリア性パラメータが得られる場合、封止剤は、水分の浸入を抑制でき、且つ、鉛含有部から電子デバイスの外部への鉛の漏出を抑制できる。通常は、封止剤が粘着型封止剤である場合、130℃60分の条件で乾燥を行う。また、通常は、封止剤が熱硬化型封止剤の場合、100℃5分の条件で乾燥を行う。 In the water vapor barrier evaluation test, the second test sheet is dried; a 50 mm square glass plate made of non-alkali glass is washed with boiling isopropyl alcohol for 5 minutes and dried; the glass plate. To form a 200 nm-thick calcium film on the central portion of one side of the glass; in a nitrogen atmosphere, the sealant layer of the second test sheet and the calcium film side of the glass plate. The surface and the surface are bonded together to obtain an evaluation sample; the sealing distance X2 [mm] of the evaluation sample is measured; the evaluation sample is stored in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85% RH; Time t [hours] from T P1 when the evaluation sample is stored in the constant temperature and humidity chamber to T P2 when the sealing distance X1 [mm] of the evaluation sample stored in the constant temperature and humidity chamber becomes "X2 + 0.1 mm". ], And the constant K is calculated based on the following equation (1). In the following description, the time t may be referred to as a “decrease start time t”. When the sealant is curable, usually, the sealant layer of the second test sheet and the surface of the glass plate on the calcium film side are bonded together, and then the sealant layer is cured. , Get an evaluation sample. As the curing conditions, for example, the conditions described later in the examples can be adopted. Specific curing conditions can be, for example, 100 ° C. for 60 minutes. Further, it is preferable that the second test sheet performed in the water vapor barrier property evaluation test is sufficiently dried. Specific drying conditions may be at least one of a condition of 130 ° C. for 60 minutes and a condition of 100 ° C. for 5 minutes. When the water vapor infiltration barrier property parameter in the above range can be obtained in the water vapor barrier property evaluation test including drying under at least one of the conditions of 130 ° C. for 60 minutes and the condition of 100 ° C. for 5 minutes, the sealant Can suppress the infiltration of water and also suppress the leakage of lead from the lead-containing portion to the outside of the electronic device. Normally, when the encapsulant is an adhesive encapsulant, it is dried under the condition of 130 ° C. for 60 minutes. In addition, when the sealant is a thermosetting type sealant, it is usually dried under the condition of 100 ° C. for 5 minutes.
 よって、例えば、封止剤が粘着型封止剤である場合、水蒸気バリア性評価試験では、第二試験用シートを、130℃60分の条件で乾燥すること;無アルカリガラスで形成された50mm角のガラス板を、煮沸したイソプロピルアルコールで5分間洗浄し、乾燥すること;ガラス板の片面の中央部分に、カルシウムを蒸着して、厚さ200nmのカルシウム膜を形成すること;窒素雰囲気内で、第二試験用シートの封止剤の層と、ガラス板の前記カルシウム膜側の面と、を貼り合わせ、評価サンプルを得ること;評価サンプルの封止距離X2[mm]を測定すること;評価サンプルを、温度85℃、湿度85%RHの恒温恒湿槽に収納すること;評価サンプルを恒温恒湿槽に収納した時点TP1から、恒温恒湿槽に収納された評価サンプルの封止距離X1[mm]が「X2+0.1mm」となる時点TP2までの減少開始時間t[時間]を測定すること;及び、下記式(1)に基づいて、定数Kを計算すること、を行いうる。 So, for example, when the encapsulant is an adhesive encapsulant, in the steam barrier property evaluation test, the second test sheet is dried under the condition of 130 ° C. for 60 minutes; 50 mm formed of non-alkali glass. The corner glass plate is washed with boiling isopropyl alcohol for 5 minutes and dried; calcium is deposited on the central part of one side of the glass plate to form a calcium film with a thickness of 200 nm; in a nitrogen atmosphere. , The sealant layer of the second test sheet and the surface of the glass plate on the calcium film side are bonded to obtain an evaluation sample; the sealing distance X2 [mm] of the evaluation sample is measured; the evaluation sample, temperature 85 ° C., it is housed in a thermo-hygrostat RH 85% humidity; the evaluation sample from the time T P1 housed in a thermo-hygrostat, the evaluation sample accommodated in the thermostat-humidistat chamber sealing Measure the decrease start time t [time] up to the time point T P2 when the distance X1 [mm] becomes "X2 + 0.1 mm"; and calculate the constant K based on the following equation (1). sell.
 また、例えば、封止剤が熱硬化型封止剤である場合、水蒸気バリア性評価試験では、第二試験用シートを、100℃5分の条件で乾燥すること;無アルカリガラスで形成された50mm角のガラス板を、煮沸したイソプロピルアルコールで5分間洗浄し、乾燥すること;ガラス板の片面の中央部分に、カルシウムを蒸着して、厚さ200nmのカルシウム膜を形成すること;窒素雰囲気内で、第二試験用シートの封止剤の層と、ガラス板の前記カルシウム膜側の面と、を貼り合わせ、100℃60分の条件で硬化させて、評価サンプルを得ること;評価サンプルの封止距離X2[mm]を測定すること;評価サンプルを、温度85℃、湿度85%RHの恒温恒湿槽に収納すること;評価サンプルを恒温恒湿槽に収納した時点TP1から、恒温恒湿槽に収納された評価サンプルの封止距離X1[mm]が「X2+0.1mm」となる時点TP2までの減少開始時間t[時間]を測定すること;及び、下記式(1)に基づいて、定数Kを計算すること、を行いうる。 Further, for example, when the encapsulant is a heat-curable encapsulant, in the steam barrier property evaluation test, the second test sheet is dried under the condition of 100 ° C. for 5 minutes; it is formed of non-alkali glass. A 50 mm square glass plate is washed with boiling isopropyl alcohol for 5 minutes and dried; calcium is deposited on the central part of one side of the glass plate to form a calcium film with a thickness of 200 nm; in a nitrogen atmosphere. Then, the sealant layer of the second test sheet and the surface of the glass plate on the calcium film side are laminated and cured under the condition of 100 ° C. for 60 minutes to obtain an evaluation sample; the evaluation sample, temperature 85 ° C., it is housed in a thermo-hygrostat RH 85% humidity; measuring the sealing distance X2 [mm] evaluation samples from the time T P1 housed in a thermo-hygrostat, a thermostat To measure the reduction start time t [time] up to the time point T P2 when the sealing distance X1 [mm] of the evaluation sample stored in the constant humidity bath becomes "X2 + 0.1 mm"; and to the following formula (1) Based on this, the constant K can be calculated.
 第二試験用シートとは、厚み30μmのアルミニウム箔及び厚み25μmのポリエチレンテレフタレートフィルムを備える支持フィルムと、この支持フィルムのアルミニウム箔上に形成された封止剤の層と、を備えるシートを表す。封止剤の層の厚さは、例えば、20μmでありうる。また、ガラス板の片面の中央部分とは、ガラス板の片面の、周縁エリアを除く部分を表す。さらに、ガラス板の片面の周縁エリアとは、ガラス板の片面の、ガラス板の端部からの距離0mm~2mmのエリアを表す。また、評価サンプルの封止距離とは、評価サンプルの端部とカルシウム膜の端部との間の距離を表す。封止距離は、通常、封止剤の層の端部とカルシウム膜の端部との間の距離に一致する。 The second test sheet represents a sheet including a support film including an aluminum foil having a thickness of 30 μm and a polyethylene terephthalate film having a thickness of 25 μm, and a sealant layer formed on the aluminum foil of the support film. The thickness of the sealant layer can be, for example, 20 μm. Further, the central portion of one side of the glass plate represents a portion of one side of the glass plate excluding the peripheral area. Further, the peripheral area on one side of the glass plate represents an area on one side of the glass plate having a distance of 0 mm to 2 mm from the end portion of the glass plate. The sealing distance of the evaluation sample represents the distance between the end of the evaluation sample and the end of the calcium film. The sealing distance usually corresponds to the distance between the edge of the sealant layer and the edge of the calcium membrane.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
(式(1)において、
 X1は、恒温恒湿槽への投入後の評価サンプルの端部からカルシウム膜の端部までの封止距離[mm]であり、
 tは、X1=X2+0.1となる減少開始時間[時間]であり、
 X2は、恒温恒湿槽への投入前の評価サンプルの端部からカルシウム膜の端部までの封止距離[mm]である。)
(In equation (1)
X1 is the sealing distance [mm] from the end of the evaluation sample to the end of the calcium film after being put into the constant temperature and humidity chamber.
t is the decrease start time [time] at which X1 = X2 + 0.1.
X2 is the sealing distance [mm] from the end of the evaluation sample to the end of the calcium film before being put into the constant temperature and humidity chamber. )
 以下、図面を示して、前記の水蒸気バリア性評価試験の仕組みと、その試験により求められる水蒸気浸入バリア性パラメータとしての定数Kの意義について、説明する。 Hereinafter, the drawings will be shown to explain the mechanism of the water vapor barrier property evaluation test and the significance of the constant K as the water vapor infiltration barrier property parameter required by the test.
 図1は、水蒸気バリア性評価試験で製造される評価サンプル10を模式的に示す断面図である。図1に示すように、水蒸気バリア性評価試験で製造される評価サンプル10は、煮沸したイソプロピルアルコールで洗浄された正方形のガラス板100と、このガラス板100の片方の面100Uに形成されたカルシウム膜200と、ガラス板100の面100Uに貼り合わせられた第二試験用シート300と、を備える。ガラス板100の面100Uの、ガラス板100の端部100Eからの距離Lが0mm~2mmの周縁エリア110Uには、カルシウム膜200が形成されていない。他方、ガラス板100の面100Uの、周縁エリア110Uを除く中央部分120Uには、カルシウム膜200が形成されている。カルシウム膜200は、通常、周縁エリア110Uを覆うマスク(図示せず。)を用いた蒸着により形成され、高い純度(例えば、99.8%以上の純度)を有する。さらに、第二試験用シート300は、封止剤の層310と、ポリエチレンテレフタレートフィルム321及びアルミニウム箔322を備える支持フィルム320とを備えており、前記の封止剤の層310が、ガラス板100の面100Uに貼り合わせられている。よって、カルシウム膜200は、封止剤の層310によって封止されている。 FIG. 1 is a cross-sectional view schematically showing an evaluation sample 10 manufactured in a water vapor barrier property evaluation test. As shown in FIG. 1, the evaluation sample 10 produced in the water vapor barrier property evaluation test includes a square glass plate 100 washed with boiling isopropyl alcohol and calcium formed on one side 100U of the glass plate 100. A film 200 and a second test sheet 300 attached to the surface 100U of the glass plate 100 are provided. The calcium film 200 is not formed on the peripheral area 110U of the surface 100U of the glass plate 100 at a distance L from the end 100E of the glass plate 100 of 0 mm to 2 mm. On the other hand, a calcium film 200 is formed on the central portion 120U of the surface 100U of the glass plate 100 excluding the peripheral area 110U. The calcium film 200 is usually formed by thin film deposition using a mask (not shown) covering the peripheral area 110U, and has a high purity (for example, a purity of 99.8% or more). Further, the second test sheet 300 includes a sealant layer 310 and a support film 320 including a polyethylene terephthalate film 321 and an aluminum foil 322, and the sealant layer 310 is a glass plate 100. It is attached to the surface 100U of. Therefore, the calcium film 200 is sealed by the sealant layer 310.
 前記の評価サンプル10が備えるガラス板100及び支持フィルム320は、水分を遮断する能力が十分に高い。よって、評価サンプル10の周囲にある水分は、矢印A1で示すように、封止剤の層310の端部310Eを通り、封止剤の層310内を面内方向(厚み方向に垂直な方向)に移動して、カルシウム膜200に浸入しうる。したがって、恒温恒湿槽に収納された評価サンプル10のカルシウム膜200は、端部200Eから中央部200Cへ向かって次第に酸化されうる。 The glass plate 100 and the support film 320 included in the evaluation sample 10 have a sufficiently high ability to block water. Therefore, as shown by the arrow A1, the moisture around the evaluation sample 10 passes through the end portion 310E of the sealant layer 310 and passes through the sealant layer 310 in the in-plane direction (direction perpendicular to the thickness direction). ) And can infiltrate the calcium membrane 200. Therefore, the calcium film 200 of the evaluation sample 10 housed in the constant temperature and humidity chamber can be gradually oxidized from the end portion 200E toward the central portion 200C.
 図2は、恒温恒湿槽に収納される前の評価サンプル10を、ガラス板100側から見た様子を模式的に示す平面図である。また、図3は、恒温恒湿槽に収納された後の評価サンプル10を、ガラス板100側から見た様子を模式的に示す平面図である。
 図2に示すように、恒温恒湿槽に収納される前の評価サンプル10では、水分の浸入によるカルシウム膜200の酸化は生じていない。よって、評価サンプル10の端部10Eとカルシウム膜200の端部200Eとの間の封止距離X2は、通常、カルシウム膜200の形成直後の寸法を維持しうる。しかし、評価サンプル10が恒温恒湿槽に収納されると、封止剤の層310(図1参照。)を通ってカルシウム膜200に水分が浸入し、その水と接触したカルシウムが酸化されて、透明な酸化カルシウムになりうる。よって、図3に示すように、カルシウム膜200は、端部200Eから中央部200Cへ向かって、水分の浸入による透明な酸化カルシウム膜210への変化が次第に進行しうる。この変化は、カルシウム膜200の縮小として観察される。したがって、評価サンプル10が恒温恒湿槽に収納された後には、評価サンプル10の端部10Eとカルシウム膜200の端部200Eとの間の封止距離X1が、時間の経過により次第に大きくなりうる。
FIG. 2 is a plan view schematically showing a state in which the evaluation sample 10 before being stored in the constant temperature and humidity chamber is viewed from the glass plate 100 side. Further, FIG. 3 is a plan view schematically showing a state in which the evaluation sample 10 after being stored in the constant temperature and humidity chamber is viewed from the glass plate 100 side.
As shown in FIG. 2, in the evaluation sample 10 before being stored in the constant temperature and humidity chamber, the calcium film 200 was not oxidized due to the infiltration of water. Therefore, the sealing distance X2 between the end portion 10E of the evaluation sample 10 and the end portion 200E of the calcium film 200 can usually maintain the dimension immediately after the formation of the calcium film 200. However, when the evaluation sample 10 is stored in the constant temperature and humidity chamber, water penetrates into the calcium film 200 through the sealant layer 310 (see FIG. 1), and the calcium in contact with the water is oxidized. , Can be transparent calcium oxide. Therefore, as shown in FIG. 3, the calcium film 200 can gradually change from the end portion 200E to the central portion 200C to the transparent calcium oxide film 210 due to the infiltration of water. This change is observed as a shrinkage of the calcium membrane 200. Therefore, after the evaluation sample 10 is stored in the constant temperature and humidity chamber, the sealing distance X1 between the end portion 10E of the evaluation sample 10 and the end portion 200E of the calcium film 200 may gradually increase with the passage of time. ..
 封止剤の層310を通る水分の移動は、一般に、フィックの拡散式に従う。そこで、前記の水蒸気バリア性評価試験では、封止剤の層310内を水分が封止距離X1移動するのに要する時間としての減少開始時間t(即ち、評価サンプル10を恒温恒湿槽に収納した時点TP1から、恒温恒湿槽に収納された評価サンプル10の封止距離X1[mm]が「X2+0.1mm」となる時点TP2までの時間)と、その移動した封止距離X1とを、式(1)で表されるフィックの拡散式に当て嵌めて、水蒸気浸入バリア性パラメータとしての定数Kを導出している。 The movement of water through the sealant layer 310 generally follows Fick's diffusion formula. Therefore, in the above-mentioned water vapor barrier property evaluation test, the reduction start time t (that is, the evaluation sample 10 is stored in a constant temperature and humidity chamber) as the time required for the moisture to move within the sealing agent layer 310 by the sealing distance X1. from the time T P1 that, with time) to the time T P2 the sealing distance X1 [mm] of the evaluation sample 10 stored in a thermo-hygrostat is "X2 + 0.1 mm", a sealing distance X1 which is the movement Is applied to the diffusion equation of Fick represented by the equation (1) to derive the constant K as the water vapor infiltration barrier property parameter.
 よって、前記の評価サンプル10は、電子デバイスのモデルに相当し、カルシウム膜200は、封止剤によって封止されるべき鉛含有部に相当しうる。そして、水蒸気浸入バリア性パラメータは、電子デバイスに設けられた封止剤が面内方向への水分の浸入を抑制する能力の大きさを表す。具体的には、水蒸気浸入バリア性パラメータが小さいほど、封止剤が水分の浸入を抑制する能力に優れることを表す。前記範囲の水蒸気浸入バリア性パラメータを有する封止剤は、電子デバイスにおいて鉛含有部の封止に用いた場合に、鉛含有部への水分の浸入を抑制できる。よって、鉛含有部に含まれる成分の酸化を抑制したり、鉛含有部からの鉛の流出を抑制したりできる。 Therefore, the evaluation sample 10 can correspond to a model of an electronic device, and the calcium film 200 can correspond to a lead-containing portion to be sealed by a sealant. The water vapor infiltration barrier property parameter represents the magnitude of the ability of the sealant provided in the electronic device to suppress the infiltration of water in the in-plane direction. Specifically, the smaller the water vapor infiltration barrier parameter, the better the ability of the sealant to suppress the infiltration of water. A sealant having a water vapor infiltration barrier parameter in the above range can suppress the infiltration of water into the lead-containing portion when used for sealing the lead-containing portion in an electronic device. Therefore, it is possible to suppress the oxidation of the components contained in the lead-containing portion and suppress the outflow of lead from the lead-containing portion.
 水蒸気浸入バリア性パラメータは、例えば、無機フィラーの種類及び量;バインダ樹脂の種類及び量;によって調整しうる。 The water vapor infiltration barrier property parameter can be adjusted by, for example, the type and amount of the inorganic filler; the type and amount of the binder resin;
[4.第一実施形態に係る封止剤が含みうる無機フィラー]
 本発明の第一実施形態に係る封止剤は、無機フィラーを含む。無機フィラーの一部又は全部は、当該無機フィラー及びバインダ樹脂を含む樹脂組成物としての封止剤中において、吸湿性及び鉛吸着性を発揮しうる。無機フィラーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。例えば、封止剤中で吸湿性を発揮できる無機フィラーと、封止剤中で鉛吸着性を発揮できる別の無機フィラーとを、組み合わせて用いてもよい。このようにバインダ樹脂を含む樹脂組成物としての封止剤中において、鉛吸着性の無機フィラーが鉛吸着性を発揮できることは、本発明者が初めて見出した現象である。
[4. Inorganic filler that can be contained in the sealant according to the first embodiment]
The encapsulant according to the first embodiment of the present invention contains an inorganic filler. Part or all of the inorganic filler can exhibit hygroscopicity and lead adsorption in the sealing agent as a resin composition containing the inorganic filler and the binder resin. One type of inorganic filler may be used alone, or two or more types may be used in combination at any ratio. For example, an inorganic filler capable of exhibiting hygroscopicity in the encapsulant and another inorganic filler capable of exhibiting lead adsorption in the encapsulant may be used in combination. It is a phenomenon that the present inventor has found for the first time that a lead-adsorbing inorganic filler can exhibit lead-adsorbing property in a sealing agent as a resin composition containing a binder resin as described above.
 (4.1.ハイドロタルサイト)
 無機フィラーの例としては、ハイドロタルサイトが挙げられる。ハイドロタルサイトは、未焼成ハイドロタルサイト、半焼成ハイドロタルサイト、及び、焼成ハイドロタルサイトに分類しうる。
(4.1. Hydrotalcite)
Examples of inorganic fillers include hydrotalcite. Hydrotalcite can be classified into uncalcined hydrotalcite, semi-calcined hydrotalcite, and calcined hydrotalcite.
 未焼成ハイドロタルサイトは、例えば、天然ハイドロタルサイト(MgAl(OH)16CO・4HO)に代表されるような、層状の結晶構造を有する金属水酸化物である。未焼成ハイドロタルサイトは、例えば、基本骨格となる層[Mg1-XaAlXa(OH)Xa+と中間層[(COXa/2・mO]Xa-とからなる。ここで、xaは、0<xa<1を満たす数を表し、mは、正の数を表す。別に断らない限り、未焼成ハイドロタルサイトは、合成ハイドロタルサイト等のハイドロタルサイト様化合物を包含する概念である。ハイドロタルサイト様化合物としては、例えば、下記式(I)又は下記式(II)で表される化合物が挙げられる。 Unfired hydrotalcites, e.g., as typified by natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O), a metal hydroxide having a layered crystal structure. Unfired hydrotalcite, for example, consists of a composed layer [Mg 1-Xa Al Xa ( OH) 2] Xa + basic skeleton intermediate layer [(CO 3) Xa / 2 · m a H 2 O] Xa- and .. Here, xa represents a number satisfying 0 <xa <1, and ma represents a positive number. Unless otherwise noted, uncalcined hydrotalcite is a concept that includes hydrotalcite-like compounds such as synthetic hydrotalcite. Examples of the hydrotalcite-like compound include compounds represented by the following formula (I) or the following formula (II).
 [Mi2+ 1-xiMi3+ xi(OH)xi+・[(Aini-xi/ni・mO]xi-   (I)
(式(I)において、
 Mi2+は、Mg2+、Zn2+などの、2価の金属イオンを表し、
 Mi3+は、Al3+、Fe3+などの、3価の金属イオンを表し、
 Aini-は、CO 2-、Cl、NO などの、ni価のアニオンを表し、
 xiは、0<xi<1を満たす数を表し、
 mは、0≦m<1を満たす数を表し、
 niは、正の数を表す。)
[Mi 2+ 1-xi Mi 3+ xi (OH) 2] xi + · [(Ai ni-) xi / ni · m i H 2 O] xi- (I)
(In formula (I)
Mi 2+ represents divalent metal ions such as Mg 2+ and Zn 2+.
Mi 3+ represents trivalent metal ions such as Al 3+ and Fe 3+.
Ai Ni- is, CO 3 2-, Cl -, NO 3 - , such as, represent ni-valent anion,
xi represents a number satisfying 0 <xi <1.
m i represents a number satisfying 0 ≦ m i <1,
ni represents a positive number. )
 式(I)において、Mi2+は、好ましくはMg2+を表す。また、Mi3+は、好ましくはAl3+を表す。さらに、Aini-は、好ましくはCO 2-を表す。 In formula (I), Mi 2+ preferably represents Mg 2+. Further, Mi 3+ preferably represents Al 3+. Furthermore, Ai ni- preferably represents CO 3 2-.
 Mii2+ xiiAl(OH)2xii+6-niizii(Aiinii-zii・miiO   (II)
(式(II)において、
 Mii2+は、Mg2+、Zn2+などの、2価の金属イオンを表し、
 Aiinii-は、CO 2-、Cl、NO3-などの、nii価のアニオンを表し、
 xiiは、2以上の正の数を表し、
 ziiは、2以下の正の数を表し、
 miiは、正の数を表し、
 niiは、正の数を表す。)
Mii 2+ xii Al 2 (OH) 2xii + 6-niizii (Aii nii-) zii · m ii H 2 O (II)
(In formula (II)
Mii 2+ represents divalent metal ions such as Mg 2+ and Zn 2+.
Aii Nii- is, CO 3 2-, Cl -, such as NO 3-, represent nii-valent anion,
xii represents a positive number greater than or equal to 2
zii represents a positive number less than or equal to 2.
m ii represents a positive number
nii represents a positive number. )
 式(II)において、Mii2+は、好ましくはMg2+を表す。また、Aiinii-は、好ましくはCO 2-を表す。 In formula (II), Mii 2+ preferably represents Mg 2+. In addition, Aii nii- preferably represents CO 3 2-.
 未焼成ハイドロタルサイトは、封止剤中において、優れた鉛吸着性を発揮できる。よって、例えば、未焼成ハイドロタルサイトと、封止剤中において吸湿性を発揮できる無機フィラーとを適切に組み合わせて用いる場合、上述した範囲の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを有する封止剤を得ることができる。 Unfired hydrotalcite can exhibit excellent lead adsorption in the encapsulant. Therefore, for example, when unfired hydrotalcite and an inorganic filler capable of exhibiting hygroscopicity in the sealing agent are used in an appropriate combination, the sealing having the lead adsorption parameter and the water vapor infiltration barrier property parameter in the above range is used. The agent can be obtained.
 未焼成ハイドロタルサイトの飽和吸水率は、通常1質量%未満であり、0.8質量%未満又は0.6質量%未満であってもよい。未焼成ハイドロタルサイト等のハイドロタルサイトの「飽和吸水率」は、ハイドロタルサイトを大気圧下、60℃、90%RH(相対湿度)の環境に200時間静置した場合の、初期質量に対する質量増加率をいう。この飽和吸水率は、下記の方法で測定できる。 The saturated water absorption rate of uncalcined hydrotalcite is usually less than 1% by mass, and may be less than 0.8% by mass or less than 0.6% by mass. The "saturated water absorption rate" of hydrotalcite such as unfired hydrotalcite is based on the initial mass when hydrotalcite is allowed to stand in an environment of 60 ° C. and 90% RH (relative humidity) under atmospheric pressure for 200 hours. The rate of mass increase. This saturated water absorption rate can be measured by the following method.
 ハイドロタルサイトを天秤にて1.5g秤取して、初期質量を測定する。秤取したハイドロタルサイトを、大気圧下、60℃、90%RH(相対湿度)に設定した小型環境試験器(エスペック社製SH-222)に200時間静置して吸湿させ、吸湿後の質量を測定する。そして、下記式(i)により、飽和吸水率を計算する。
 飽和吸水率(質量%)=100×(吸湿後の質量-初期質量)/初期質量   (i)
Weigh 1.5 g of hydrotalcite with a balance and measure the initial mass. The weighed hydrotalcite is allowed to stand for 200 hours in a small environmental tester (SH-222 manufactured by ESPEC) set at 60 ° C. and 90% RH (relative humidity) under atmospheric pressure to absorb moisture, and after absorbing moisture. Measure the mass. Then, the saturated water absorption rate is calculated by the following formula (i).
Saturated water absorption rate (mass%) = 100 × (mass after moisture absorption-initial mass) / initial mass (i)
 未焼成ハイドロタルサイトの280℃における熱重量減少率は、通常15質量%以上、好ましくは15.1質量%以上、特に好ましくは15.2質量%以上である。 The thermogravimetric reduction rate of uncalcined hydrotalcite at 280 ° C. is usually 15% by mass or more, preferably 15.1% by mass or more, and particularly preferably 15.2% by mass or more.
 未焼成ハイドロタルサイト等のハイドロタルサイトの熱重量減少率は、熱重量分析によって測定できる。熱重量分析は、熱分析装置(TG/DTA EXSTAR6300、日立ハイテクサイエンス社製)を用いて、アルミニウム製のサンプルパンにハイドロタルサイトを5mg秤量し、蓋をせずオープンの状態で、窒素流量200mL/分の雰囲気下、30℃から550℃まで昇温速度10℃/分の条件で行いうる。熱重量減少率は、前記の熱重量分析の結果を用いて、下記式(ii)により計算できる。
 熱重量減少率(質量%)=100×(加熱前の質量-所定温度に達した時の質量)/加熱前の質量   (ii)
The rate of decrease in thermal weight of hydrotalcite such as uncalcined hydrotalcite can be measured by thermogravimetric analysis. For thermogravimetric analysis, 5 mg of hydrotalcite was weighed in an aluminum sample pan using a thermal analyzer (TG / DTA EXSTAR6300, manufactured by Hitachi High-Tech Science Co., Ltd.), and the nitrogen flow rate was 200 mL in an open state without a lid. It can be carried out under the condition of a heating rate of 10 ° C./min from 30 ° C. to 550 ° C. in an atmosphere of / min. The thermogravimetric reduction rate can be calculated by the following formula (ii) using the result of the above thermogravimetric analysis.
Thermogravimetric reduction rate (mass%) = 100 × (mass before heating-mass when a predetermined temperature is reached) / mass before heating (ii)
 未焼成ハイドロタルサイトの粉末X線回折を測定した場合、通常、2θが8°~18°付近で一つのピークだけを有するか、又は、低角側回折強度と高角側回折強度との相対強度比(低角側回折強度/高角側回折強度)が0.001~1,000の範囲外である。低角側回折強度とは、低角側(2θが小さい側)に現れるピークまたはショルダーの回折強度を表す。高角側回折強度とは、高角側(2θが大きい側)に現れるピークまたはショルダーの回折強度を表す。 When powder X-ray diffraction of unfired hydrotalcite is measured, 2θ usually has only one peak near 8 ° to 18 °, or the relative intensity between the low-angle side diffraction intensity and the high-angle side diffraction intensity. The ratio (low-angle side diffraction intensity / high-angle side diffraction intensity) is out of the range of 0.001 to 1,000. The low-angle side diffraction intensity represents the diffraction intensity of the peak or shoulder that appears on the low-angle side (the side where 2θ is small). The high-angle side diffraction intensity represents the diffraction intensity of the peak or shoulder that appears on the high-angle side (the side where 2θ is large).
 未焼成ハイドロタルサイト等のハイドロタルサイトの粉末X線回折の測定は、粉末X線回折装置(Empyrean、PANalytical社製)を用いて行いうる。粉末X線回折の測定は、対陰極CuKα(1.5405Å)、電圧:45V、電流:40mA、サンプリング幅:0.0260°、走査速度:0.0657°/s、測定回折角範囲(2θ):5.0131°~79.9711°の条件で行いうる。ピークサーチは、回折装置付属のソフトウエアのピークサーチ機能を利用し、「最小有意度:0.50、最小ピークチップ:0.01°、最大ピークチップ:1.00°、ピークベース幅:2.00°、方法:2次微分の最小値」の条件で行いうる。 Measurement of powder X-ray diffraction of hydrotalcite such as uncalcined hydrotalcite can be performed using a powder X-ray diffractometer (Empylean, manufactured by PANalytical). For powder X-ray diffraction measurement, anti-cathode CuKα (1.5405 Å), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: 0.0657 ° / s, measurement diffraction angle range (2θ). : Can be performed under the conditions of 5.0131 ° to 79.9711 °. The peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It can be performed under the condition of "0.00 °, method: minimum value of second derivative".
 未焼成ハイドロタルサイトの例としては、「アルマカイザー1」(平均粒子径:620nm)、「マグセラー1」(平均粒子径:470nm)、「DHT-4A」(協和化学工業社製、平均粒子径:400nm)、「STABIACE HT-1」、「STABIACE HT-7」、「STABIACE HT-P」(堺化学工業株式会社)等が挙げられる。未焼成ハイドロタルサイトは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of unfired hydrotalcites are "Almakaiser 1" (average particle size: 620 nm), "Magceller 1" (average particle size: 470 nm), and "DHT-4A" (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size). : 400 nm), "STABIACE HT-1", "STABIACE HT-7", "STABIACE HT-P" (Sakai Chemical Industry Co., Ltd.) and the like. One type of uncalcined hydrotalcite may be used alone, or two or more types may be used in combination at any ratio.
 半焼成ハイドロタルサイトは、未焼成ハイドロタルサイトを焼成して得られる、層間水の量が減少または消失した層状の結晶構造を有する金属水酸化物をいう。「層間水」とは、組成式を用いて説明すれば、上述した未焼成の天然ハイドロタルサイト及びハイドロタルサイト様化合物の組成式に記載の「HO」を指す。 Semi-calcined hydrotalcite refers to a metal hydroxide having a layered crystal structure in which the amount of interlayer water is reduced or eliminated, which is obtained by calcining uncalcined hydrotalcite. The term "interlayer water" refers to "H 2 O" described in the above-mentioned composition formulas of uncalcined natural hydrotalcite and hydrotalcite-like compounds, if it is described using a composition formula.
 半焼成ハイドロタルサイトは、封止剤中において、優れた鉛吸着性及び吸湿性を発揮できる。よって、半焼成ハイドロタルサイトを適切に用いる場合、上述した範囲の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを有する封止剤を得ることができる。半焼成ハイドロタルサイトが鉛吸着性を示すことは、本発明者が初めて見い出したことである。 Semi-fired hydrotalcite can exhibit excellent lead adsorption and hygroscopicity in the encapsulant. Therefore, when semi-baked hydrotalcite is appropriately used, a sealant having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained. It was first discovered by the present inventor that semi-calcined hydrotalcite exhibits lead adsorption.
 半焼成ハイドロタルサイトは、通常、未焼成ハイドロタルサイトと異なる飽和吸水率を有するので、それらは飽和吸水率により区別できる。半焼成ハイドロタルサイトの飽和吸水率は、通常1質量%以上、好ましくは3質量%以上、より好ましくは5質量%以上であり、通常20質量%未満である。半焼成ハイドロタルサイトの飽和吸水率は、未焼成ハイドロタルサイトの飽和吸水率と同じ方法で測定できる。 Since semi-fired hydrotalcite usually has a saturated water absorption rate different from that of unfired hydrotalcite, they can be distinguished by the saturated water absorption rate. The saturated water absorption of the semi-baked hydrotalcite is usually 1% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more, and usually less than 20% by mass. The saturated water absorption rate of semi-fired hydrotalcite can be measured by the same method as the saturated water absorption rate of unfired hydrotalcite.
 半焼成ハイドロタルサイトは、通常、未焼成ハイドロタルサイトと異なる熱重量減少率を有するので、それらは熱重量減少率により区別できる。半焼成ハイドロタルサイトの280℃における熱重量減少率は、通常15質量%未満、好ましくは14質量%未満、特に好ましくは13質量%未満である。また、半焼成ハイドロタルサイトの380℃における熱重量減少率は、通常12質量%以上、好ましくは15質量%以上、特に好ましくは16質量%以上である。半焼成ハイドロタルサイトの熱重量減少率は、未焼成ハイドロタルサイトの熱重量減少率と同じ方法で測定できる。 Since semi-calcined hydrotalcite usually has a different thermogravimetric reduction rate from uncalcined hydrotalcite, they can be distinguished by the thermogravimetric reduction rate. The thermogravimetric reduction rate of the semi-calcined hydrotalcite at 280 ° C. is usually less than 15% by mass, preferably less than 14% by mass, and particularly preferably less than 13% by mass. The thermogravimetric reduction rate of the semi-baked hydrotalcite at 380 ° C. is usually 12% by mass or more, preferably 15% by mass or more, and particularly preferably 16% by mass or more. The thermogravimetric reduction rate of semi-baked hydrotalcite can be measured by the same method as the thermogravimetric loss rate of uncalcined hydrotalcite.
 半焼成ハイドロタルサイトは、通常、粉末X線回折で測定されるピーク及び相対強度比が、未焼成ハイドロタルサイトと異なるので、それらは粉末X線回折で測定されるピーク及び相対強度比により区別できる。半焼成ハイドロタルサイトの粉末X線回折を測定した場合、通常、2θが8°~18°付近に二つにスプリットしたピーク、または二つのピークの合成によりショルダーを有するピークを示し、低角側回折強度と高角側回折強度との相対強度比(低角側回折強度/高角側回折強度)は0.001~1,000である。半焼成ハイドロタルサイトの粉末X線回折の測定は、未焼成ハイドロタルサイトの粉末X線回折の測定と同じ方法で行いうる。 Semi-calcined hydrotalcites usually differ in peak and relative intensity ratios measured by powder X-ray diffraction from uncalcined hydrotalcites, so they are distinguished by peaks and relative intensity ratios measured by powder X-ray diffraction. it can. When the powder X-ray diffraction of semi-baked hydrotalcite is measured, it usually shows a peak in which 2θ is split into two in the vicinity of 8 ° to 18 °, or a peak having a shoulder due to the combination of the two peaks, and the low angle side. The relative intensity ratio (low-angle side diffraction intensity / high-angle side diffraction intensity) between the diffraction intensity and the high-angle side diffraction intensity is 0.001 to 1,000. The measurement of the powder X-ray diffraction of the semi-fired hydrotalcite can be performed by the same method as the measurement of the powder X-ray diffraction of the unfired hydrotalcite.
 半焼成ハイドロタルサイトの例としては、「DHT-4C」(協和化学工業社製、平均粒子径:400nm);「DHT-4A-2」(協和化学工業社製、平均粒子径:400nm);等が挙げられる。半焼成ハイドロタルサイトは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of semi-baked hydrotalcite are "DHT-4C" (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size: 400 nm); "DHT-4A-2" (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size: 400 nm); And so on. One type of semi-baked hydrotalcite may be used alone, or two or more types may be used in combination at any ratio.
 焼成ハイドロタルサイトは、未焼成ハイドロタルサイト又は半焼成ハイドロタルサイトを焼成して得られ、層間水だけでなく水酸基も縮合脱水によって消失した、アモルファス構造を有する金属酸化物をいう。 Calcined hydrotalcite refers to a metal oxide having an amorphous structure obtained by calcining uncalcined hydrotalcite or semi-calcined hydrotalcite, in which not only interlayer water but also hydroxyl groups are eliminated by condensation dehydration.
 焼成ハイドロタルサイトは、封止剤中において、優れた鉛吸着性及び吸湿性を発揮できる。よって、焼成ハイドロタルサイトを適切に用いる場合、上述した範囲の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを有する封止剤を得ることができる。焼成ハイドロタルサイトが鉛吸着性を示すことは、本発明者が初めて見い出したことである。 The calcined hydrotalcite can exhibit excellent lead adsorption and hygroscopicity in the encapsulant. Therefore, when the calcined hydrotalcite is appropriately used, a sealing agent having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained. The fact that calcined hydrotalcite exhibits lead adsorption is the first discovery by the present inventor.
 焼成ハイドロタルサイトは、通常、未焼成ハイドロタルサイト及び半焼成ハイドロタルサイトと異なる飽和吸水率を有するので、それらは飽和吸水率により区別できる。焼成ハイドロタルサイトの飽和吸水率は、通常20質量%以上、好ましくは30質量%以上、特に好ましくは40質量%以上である。焼成ハイドロタルサイトの飽和吸水率は、未焼成ハイドロタルサイトの飽和吸水率と同じ方法で測定できる。 Since calcined hydrotalcite usually has a saturated water absorption rate different from that of uncalcined hydrotalcite and semi-fired hydrotalcite, they can be distinguished by the saturated water absorption rate. The saturated water absorption of the calcined hydrotalcite is usually 20% by mass or more, preferably 30% by mass or more, and particularly preferably 40% by mass or more. The saturated water absorption rate of calcined hydrotalcite can be measured by the same method as the saturated water absorption rate of uncalcined hydrotalcite.
 焼成ハイドロタルサイトは、通常、未焼成ハイドロタルサイト及び半焼成ハイドロタルサイトと異なる熱重量減少率を有するので、それらは熱重量減少率により区別できる。焼成ハイドロタルサイトの380℃における熱重量減少率は、通常12質量%未満、好ましくは10質量%未満、特に好ましくは7質量%未満である。焼成ハイドロタルサイトの熱重量減少率は、未焼成ハイドロタルサイトの熱重量減少率と同じ方法で測定できる。 Since calcined hydrotalcite usually has a different thermogravimetric reduction rate from uncalcined hydrotalcite and semi-calcined hydrotalcite, they can be distinguished by the thermogravimetric reduction rate. The thermogravimetric reduction rate of calcined hydrotalcite at 380 ° C. is usually less than 12% by mass, preferably less than 10% by mass, and particularly preferably less than 7% by mass. The thermogravimetric reduction rate of calcined hydrotalcite can be measured by the same method as the thermogravimetric loss rate of uncalcined hydrotalcite.
 焼成ハイドロタルサイトは、通常、粉末X線回折で測定されるピーク及び相対強度比が、未焼成ハイドロタルサイト及び半焼成ハイドロタルサイトと異なるので、それらは粉末X線回折で測定されるピーク及び相対強度比により区別できる。焼成ハイドロタルサイトの粉末X線回折を測定した場合、通常、2θが8°~18°の領域に特徴的ピークを有さず、2θが43°に特徴的なピークを有する。焼成ハイドロタルサイトの粉末X線回折の測定は、未焼成ハイドロタルサイトの粉末X線回折の測定と同じ方法で行いうる。 Since calcined hydrotalcites usually differ in peaks and relative intensity ratios measured by powder X-ray diffraction from uncalcined hydrotalcites and semi-calcined hydrotalcites, they are the peaks and peaks measured by powder X-ray diffraction. It can be distinguished by the relative strength ratio. When the powder X-ray diffraction of calcined hydrotalcite is measured, 2θ usually has no characteristic peak in the region of 8 ° to 18 °, and 2θ has a characteristic peak in 43 °. The measurement of the powder X-ray diffraction of the calcined hydrotalcite can be performed by the same method as the measurement of the powder X-ray diffraction of the uncalcined hydrotalcite.
 焼成ハイドロタルサイトの例としては、「KW-2200」(協和化学工業社製、平均粒子径:400nm)等が挙げられる。焼成ハイドロタルサイトは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of calcined hydrotalcite include "KW-2200" (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size: 400 nm) and the like. One type of calcined hydrotalcite may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 (4.2.酸化カルシウム)
 無機フィラーの別の例としては、酸化カルシウムが挙げられる。酸化カルシウムは、封止剤中において、優れた鉛吸着性及び吸湿性を発揮できる。よって、酸化カルシウムを適切に用いる場合、上述した範囲の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを有する封止剤を得ることができる。酸化カルシウムが鉛吸着性を示すことは、本発明者が初めて見い出したことである。酸化カルシウムは、他の無機フィラーとの混合物に含まれる状態で用いてもよい。そのような混合物としては、例えば、焼成ドロマイト(酸化カルシウム及び酸化マグネシウムを含む混合物)が挙げられる。
(4.2. Calcium oxide)
Another example of an inorganic filler is calcium oxide. Calcium oxide can exhibit excellent lead adsorption and hygroscopicity in the encapsulant. Therefore, when calcium oxide is appropriately used, a sealing agent having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained. It was first discovered by the present inventor that calcium oxide exhibits lead adsorption. Calcium oxide may be used in a state of being contained in a mixture with other inorganic fillers. Examples of such a mixture include calcined dolomite (a mixture containing calcium oxide and magnesium oxide).
 (4.3.ゼオライト)
 無機フィラーの更に別の例としては、ゼオライトが挙げられる。ゼオライトは、封止剤中において優れた鉛吸着性を発揮できる。また、ゼオライトは、例えば組成を適切に調整されることにより、封止剤中において優れた吸湿性を発揮できる。よって、ゼオライトを適切に用いる場合、上述した範囲の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを有する封止剤を得ることができる。
(4.3. Zeolite)
Yet another example of an inorganic filler is zeolite. Zeolites can exhibit excellent lead adsorption in the encapsulant. In addition, zeolite can exhibit excellent hygroscopicity in a sealing agent, for example, by appropriately adjusting the composition. Therefore, when zeolite is used appropriately, a sealing agent having the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range can be obtained.
 ゼオライトの吸湿性を高める観点から、ゼオライトは高い親水性を有することが好ましい。ゼオライトの親水性は、例えば、ゼオライトが含むシリカとアルミナとのモル比によって調整できる。ゼオライトの具体的なシリカとアルミナとのモル比(シリカ/アルミナ)は、好ましくは100未満、より好ましくは50未満、さらに好ましくは25未満である。 From the viewpoint of enhancing the hygroscopicity of zeolite, it is preferable that zeolite has high hydrophilicity. The hydrophilicity of zeolite can be adjusted, for example, by the molar ratio of silica and alumina contained in zeolite. The specific molar ratio of silica to alumina (silica / alumina) of the zeolite is preferably less than 100, more preferably less than 50, still more preferably less than 25.
 ゼオライトは、通常、細孔を有する。ゼオライトの細孔径は、高い鉛吸着性及び吸湿性が得られるように調整することが好ましい。ゼオライトの細孔径は、好ましくは6Å以下、より好ましくは5Å以下、さらに好ましくは4Å以下である。「Å」は、1.0×10-10mを表す。ゼオライトの細孔径は、ガス吸着法、水銀圧入法によって測定できる。 Zeolites usually have pores. The pore size of the zeolite is preferably adjusted so that high lead adsorption and hygroscopicity can be obtained. The pore size of the zeolite is preferably 6 Å or less, more preferably 5 Å or less, still more preferably 4 Å or less. “Å” represents 1.0 × 10-10 m. The pore size of zeolite can be measured by a gas adsorption method or a mercury intrusion method.
 (4.4.その他の無機フィラーの例)
 無機フィラーの更に別の例としては、上述した以外の吸湿性金属酸化物が挙げられる。このような吸湿性金属酸化物としては、例えば、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム、酸化バリウムなどが挙げられる。吸湿性金属酸化物は、封止剤中において、優れた吸湿性を発揮できる。よって、例えば、吸湿性金属酸化物と、封止剤中において鉛吸着性を発揮できる無機フィラーとを適切に組み合わせて用いる場合、上述した範囲の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを有する封止剤を得ることができる。
(4.4. Examples of other inorganic fillers)
Yet another example of the inorganic filler is a hygroscopic metal oxide other than those described above. Examples of such a hygroscopic metal oxide include magnesium oxide, strontium oxide, aluminum oxide, barium oxide and the like. The hygroscopic metal oxide can exhibit excellent hygroscopicity in the sealant. Therefore, for example, when a hygroscopic metal oxide and an inorganic filler capable of exhibiting lead adsorption in a sealing agent are used in an appropriate combination, a seal having the lead adsorption parameter and the water vapor infiltration barrier property parameter in the above range is used. A stop can be obtained.
 (4.5.好ましい無機フィラー)
 上述した例の中でも、無機フィラーとしては、半焼成ハイドロタルサイト、焼成ハイドロタルサイト、酸化カルシウム、及び、ゼオライトが好ましい。これらは、封止剤中において優れた鉛吸着性及び吸湿性を発揮できるので、封止剤の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを容易に上述した範囲に調整できる。よって、封止剤は、半焼成ハイドロタルサイト、焼成ハイドロタルサイト、酸化カルシウム、及び、ゼオライトからなる群より選ばれる1種類以上の無機フィラーを含むことが好ましい。
(4.5. Preferred inorganic filler)
Among the above-mentioned examples, as the inorganic filler, semi-calcined hydrotalcite, calcined hydrotalcite, calcium oxide, and zeolite are preferable. Since these can exhibit excellent lead adsorption and hygroscopicity in the sealant, the lead adsorption parameter and the water vapor infiltration barrier parameter of the sealant can be easily adjusted within the above-mentioned ranges. Therefore, the encapsulant preferably contains one or more kinds of inorganic fillers selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite, calcium oxide, and zeolite.
 (4.6.無機フィラーの表面処理)
 無機フィラーは、適切な表面処理剤で表面処理したものを用いてもよい。別に断らない限り、表面処理を施されたものも、用語「無機フィラー」に包含する。表面処理剤としては、例えば、高級脂肪酸、アルキルシラン化合物、シランカップリング剤が挙げられ、高級脂肪酸及びアルキルシラン化合物が好適である。表面処理剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(4.6. Surface treatment of inorganic filler)
As the inorganic filler, one that has been surface-treated with an appropriate surface treatment agent may be used. Unless otherwise specified, surface-treated ones are also included in the term "inorganic filler". Examples of the surface treatment agent include higher fatty acids, alkylsilane compounds and silane coupling agents, and higher fatty acids and alkylsilane compounds are suitable. One type of surface treatment agent may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 高級脂肪酸としては、例えば、ステアリン酸、モンタン酸、ミリスチン酸、パルミチン酸などの、炭素数18以上の高級脂肪酸が挙げられる。中でも、ステアリン酸が好ましい。 Examples of higher fatty acids include higher fatty acids having 18 or more carbon atoms, such as stearic acid, montanic acid, myristic acid, and palmitic acid. Of these, stearic acid is preferable.
 アルキルシラン化合物としては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ジメチルジメトキシシラン、オクチルトリエトキシシラン、n-オクタデシルジメチル(3-(トリメトキシシリル)プロピル)アンモニウムクロライド等が挙げられる。 Examples of the alkylsilane compound include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltrimethoxysilane, and n-octadecyl. Examples thereof include dimethyl (3- (trimethoxysilyl) propyl) ammonium chloride.
 シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン及び2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどの、エポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン及び11-メルカプトウンデシルトリメトキシシランなどの、メルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン及びN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどの、アミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどの、ウレイド系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン及びビニルメチルジエトキシシランなどの、ビニル系シランカップリング剤;p-スチリルトリメトキシシランなどの、スチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシラン及び3-メタクリルオキシプロピルトリメトキシシランなどの、アクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどの、イソシアネート系シランカップリング剤;ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどの、スルフィド系シランカップリング剤;フェニルトリメトキシシラン;メタクリロキシプロピルトリメトキシシラン;イミダゾールシラン;トリアジンシラン;等を挙げることができる。 Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy. Epoxy silane coupling agents such as silane; mercapto silane cups such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane Ring agent; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N- Amino-based silane coupling agents such as (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane; such as 3-ureidopropyltriethoxysilane. , Ureido-based silane coupling agent; vinyl-based silane coupling agent such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; styryl-based silane coupling agent such as p-styryltrimethoxysilane; 3 -Acrylate-based silane coupling agents such as acrylicoxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane; isocyanate-based silane coupling agents such as 3-isocyanoxidetrimethoxysilane; bis (triethoxysilylpropyl) Examples thereof include sulfide-based silane coupling agents such as disulfide and bis (triethoxysilylpropyl) tetrasulfide; phenyltrimethoxysilane; metharoxypropyltrimethoxysilane; imidazolesilane; triazinesilane; and the like.
 表面処理剤の量は、無機フィラー及び表面処理剤の種類によって異なりうる。表面処理を施されていない無機フィラー100質量部に対する表面処理に用いられる表面処理剤の量は、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、特に好ましくは1.0質量部以上であり、好ましくは10質量部以下、より好ましくは8質量部以下、特に好ましくは6質量部以下である。前記範囲の量の表面処理剤で表面処理を行った場合、凝集を抑制して無機フィラーの表面積を大きくできるので、無機フィラーの鉛吸着性及び吸湿性を発揮し易くできる。 The amount of surface treatment agent may vary depending on the type of inorganic filler and surface treatment agent. The amount of the surface treatment agent used for the surface treatment with respect to 100 parts by mass of the inorganic filler not subjected to the surface treatment is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and particularly preferably 1.0. It is 5 parts by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and particularly preferably 6 parts by mass or less. When the surface treatment is performed with an amount of the surface treatment agent in the above range, aggregation can be suppressed and the surface area of the inorganic filler can be increased, so that the lead adsorption property and hygroscopic property of the inorganic filler can be easily exhibited.
 無機フィラーの表面処理方法に制限は無く、例えば、無機フィラーと表面処理剤とを混合して表面処理を行ってもよい。特に、無機フィラーとして半焼成ハイドロタルサイト等のハイドロタルサイトを用いる場合、表面処理は、例えば、未処理のハイドロタルサイトを混合機で攪拌しながら、表面処理剤を噴霧して行うことが好ましい。処理温度は、常温が好ましい。また、撹拌は、5分~60分行うことが好ましい。混合機としては、例えば、Vブレンダー、リボンブレンダー、バブルコーンブレンダー等のブレンダー;ヘンシェルミキサー、コンクリートミキサー等のミキサー;ボールミル、カッターミル等のミル;が挙げられる。また、例えば、ハイドロタルサイトを粉砕すると同時に当該ハイドロタルサイトと表面処理剤とを混合することで、表面処理を行ってもよい。 There is no limitation on the surface treatment method of the inorganic filler, and for example, the surface treatment may be performed by mixing the inorganic filler and the surface treatment agent. In particular, when hydrotalcite such as semi-baked hydrotalcite is used as the inorganic filler, the surface treatment is preferably performed by spraying a surface treatment agent while stirring the untreated hydrotalcite with a mixer, for example. .. The treatment temperature is preferably room temperature. Further, the stirring is preferably performed for 5 to 60 minutes. Examples of the mixer include blenders such as V blenders, ribbon blenders and bubble cone blenders; mixers such as Henshell mixers and concrete mixers; mills such as ball mills and cutter mills; Further, for example, the surface treatment may be performed by crushing the hydrotalcite and at the same time mixing the hydrotalcite with the surface treatment agent.
 (4.7.無機フィラーの粒子径)
 無機フィラーの平均粒子径は、好ましくは1nm以上、より好ましくは10nm以上、更に好ましくは100nm以上、特に好ましくは200nm以上であり、好ましくは10μm未満、より好ましくは5μm未満、更に好ましくは1μm以下、特に好ましくは800nm以下である。特に、無機フィラーとして半焼成ハイドロタルサイト等のハイドロタルサイトを用いる場合、ハイドロタルサイトの平均粒子径は、1nm以上が好ましく、10nm以上が特に好ましく、また、1,000nm以下が好ましく、800nm以下が特に好ましい。さらに、特に無機フィラーとしてゼオライトを用いる場合、ゼオライトの平均粒子径は、100nm以上が好ましく、200nm以上がより好ましく、また、10μm未満が好ましく、5μm未満が特に好ましい。このような範囲の平均粒子径を有する無機フィラーを用いる場合、封止剤の加工性が良好となり、封止シートを容易に製造できる。
(4.7. Particle size of inorganic filler)
The average particle size of the inorganic filler is preferably 1 nm or more, more preferably 10 nm or more, further preferably 100 nm or more, particularly preferably 200 nm or more, preferably less than 10 μm, more preferably less than 5 μm, still more preferably 1 μm or less. Especially preferably, it is 800 nm or less. In particular, when hydrotalcite such as semi-baked hydrotalcite is used as the inorganic filler, the average particle size of hydrotalcite is preferably 1 nm or more, particularly preferably 10 nm or more, and preferably 1,000 nm or less, preferably 800 nm or less. Is particularly preferable. Further, particularly when zeolite is used as the inorganic filler, the average particle size of the zeolite is preferably 100 nm or more, more preferably 200 nm or more, preferably less than 10 μm, and particularly preferably less than 5 μm. When an inorganic filler having an average particle size in such a range is used, the processability of the encapsulant becomes good, and the encapsulating sheet can be easily produced.
 無機フィラーの平均粒子径は、レーザー回折散乱式粒度分布測定(JIS Z 8825)により粒子径分布を体積基準で測定し、その粒子径分布のメディアン径として求めうる。 The average particle size of the inorganic filler can be obtained as the median size of the particle size distribution by measuring the particle size distribution on a volume basis by laser diffraction scattering type particle size distribution measurement (JIS Z 8825).
 (4.8.無機フィラーの比表面積)
 無機フィラーのBET比表面積は、好ましくは1m/g以上、より好ましくは5m/g以上であり、好ましくは250m/g以下、より好ましくは200m/g以下である。特に、無機フィラーが半焼成ハイドロタルサイト等のハイドロタルサイトを含む場合、そのハイドロタルサイトが前記範囲のBET比表面積を有することが好ましい。このような範囲のBET比表面積を有する無機フィラーを用いる場合、封止剤の加工性が良好となり、封止シートを容易に製造できる。
(4.8. Specific surface area of inorganic filler)
The BET specific surface area of the inorganic filler is preferably 1 m 2 / g or more, more preferably 5 m 2 / g or more, preferably 250 m 2 / g or less, and more preferably 200 m 2 / g or less. In particular, when the inorganic filler contains hydrotalcite such as semi-baked hydrotalcite, it is preferable that the hydrotalcite has a BET specific surface area in the above range. When an inorganic filler having a BET specific surface area in such a range is used, the processability of the encapsulant becomes good, and the encapsulating sheet can be easily manufactured.
 無機フィラーのBET比表面積は、BET法に従って、比表面積測定装置(Macsorb HM Model 1210、マウンテック社製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて算出できる。 The BET specific surface area of the inorganic filler can be calculated by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM Model 1210, manufactured by Mountech) according to the BET method, and using the BET multipoint method.
 (4.9.無機フィラーの量)
 封止剤の不揮発成分100質量%に対して、無機フィラーの量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上、特に好ましくは25質量%以上であり、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下であり、例えば65質量%以下、60質量%以下であってもよい。無機フィラーの量が、前記範囲の下限値以上である場合、無機フィラーの鉛吸着性及び吸湿性が大きく発揮されるので、封止剤の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを上述した範囲に調整することが容易になる。また、無機フィラーの量が、前記範囲の上限値以下である場合、封止剤の粘度及び濡れ性を良好にできるので、鉛含有部、電極等の封止対象と封止剤との密着性を向上させることができる。よって、封止対象と封止剤との間の間隙の形成を効果的に抑制でき、よって封止性を向上させられるので、水分の浸入及び鉛の漏出を特に効果的に抑制できる。
(4.9. Amount of inorganic filler)
The amount of the inorganic filler is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and particularly preferably 25% by mass or more, based on 100% by mass of the non-volatile component of the sealant. It is preferably 80% by mass or less, more preferably 75% by mass or less, still more preferably 70% by mass or less, and may be, for example, 65% by mass or less and 60% by mass or less. When the amount of the inorganic filler is equal to or higher than the lower limit of the above range, the lead adsorption property and hygroscopic property of the inorganic filler are largely exhibited. Therefore, the lead adsorption property parameter and the water vapor penetration barrier property parameter of the sealant are set in the above range. It becomes easy to adjust to. Further, when the amount of the inorganic filler is not more than the upper limit value in the above range, the viscosity and wettability of the sealant can be improved, so that the adhesion between the sealant and the object to be sealed such as the lead-containing part and the electrode Can be improved. Therefore, the formation of a gap between the sealing target and the sealing agent can be effectively suppressed, and thus the sealing property can be improved, so that the infiltration of water and the leakage of lead can be particularly effectively suppressed.
[5.第一実施形態に係る封止剤が含みうる無機フィラー以外の成分の概要]
 本発明の第一実施形態に係る封止剤は、上述した無機フィラーに組み合わせて、バインダ樹脂を含む。バインダ樹脂は、塵等の異物の電子デバイスへの進入を抑制する機能、無機フィラーを封止部から離脱しないように保持する機能、鉛吸着部等の封止対象に封止剤を密着させる機能、水分の浸入を抑制する機能、などの機能の一部又は全てを発揮しうる。
[5. Outline of components other than the inorganic filler that can be contained in the encapsulant according to the first embodiment]
The encapsulant according to the first embodiment of the present invention contains a binder resin in combination with the above-mentioned inorganic filler. The binder resin has a function of suppressing foreign substances such as dust from entering the electronic device, a function of holding the inorganic filler so as not to separate from the sealing portion, and a function of adhering the sealing agent to the sealing target such as the lead adsorption portion. , A function of suppressing the infiltration of water, and some or all of the functions can be exerted.
 また、本発明の第一実施形態に係る封止剤は、無機フィラー及びバインダ樹脂に組み合わせて、任意の成分を含んでいてもよい。バインダ樹脂及び任意の成分の種類及び比率は、無機フィラーの種類及び量、並びに、封止剤に求められる特性に応じて適切に選択しうる。 Further, the encapsulant according to the first embodiment of the present invention may contain an arbitrary component in combination with an inorganic filler and a binder resin. The type and ratio of the binder resin and any component can be appropriately selected depending on the type and amount of the inorganic filler and the properties required for the encapsulant.
 以下、粘着型封止剤、及び、熱硬化型封止剤に適した成分を例に挙げて、バインダ樹脂及び任意の成分について説明する。粘着型封止剤とは、粘着性を示し、圧着によって封止対象を封止できるタイプの封止剤を表す。粘着型封止剤は、通常、常温で比較的短時間圧力を加えるだけで接着が可能であるので、感圧性接着剤として機能できる。また、熱硬化型封止剤とは、封止対象に接触した状態で熱硬化させることにより封止を達成できるタイプの封止剤を表す。ただし、封止剤が含む成分は、以下に説明する例に限定されない。よって、粘着型封止剤に適した例として示した成分を、それ以外の封止剤(例えば、熱硬化型封止剤)に用いてもよい。また、熱硬化型封止剤に適した例として示した成分を、それ以外の封止剤(例えば、粘着型封止剤)に用いてもよい。 Hereinafter, the binder resin and arbitrary components will be described by taking as an example the components suitable for the adhesive type encapsulant and the thermosetting type encapsulant. The adhesive type sealant represents a type of sealant that exhibits adhesiveness and can seal the object to be sealed by crimping. Since the adhesive type adhesive can usually be adhered only by applying pressure at room temperature for a relatively short time, it can function as a pressure-sensitive adhesive. Further, the thermosetting type sealant represents a type of sealant that can achieve sealing by heat-curing in contact with the object to be sealed. However, the components contained in the sealant are not limited to the examples described below. Therefore, the components shown as examples suitable for the adhesive type encapsulant may be used for other encapsulants (for example, thermosetting type encapsulant). Moreover, the component shown as an example suitable for a thermosetting type sealant may be used for other sealants (for example, an adhesive type sealant).
[6.第一実施形態に係る粘着型封止剤に適した成分の説明]
 (6.1.バインダ樹脂としての熱可塑性樹脂)
 封止剤が無機フィラーに組み合わせて含みうる成分の例としては、熱可塑性樹脂が挙げられる。熱可塑性樹脂は、粘着型封止剤のバインダ樹脂として好ましい。熱可塑性樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[6. Description of components suitable for the adhesive type encapsulant according to the first embodiment]
(6.1. Thermoplastic resin as binder resin)
An example of a component that the sealant can contain in combination with an inorganic filler is a thermoplastic resin. The thermoplastic resin is preferable as the binder resin for the adhesive type encapsulant. As the thermoplastic resin, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 熱可塑性樹脂としては、特に制限は無く、例えば、熱硬化型封止剤に適したバインダ樹脂として後述する熱可塑性樹脂を用いてもよい。中でも、熱可塑性樹脂の好ましい例としては、ポリオレフィン系樹脂が挙げられる。ポリオレフィン系樹脂は、半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含む無機フィラーと組み合わせた場合に、透明性に優れる封止剤を得ることができる。 The thermoplastic resin is not particularly limited, and for example, a thermoplastic resin described later may be used as a binder resin suitable for a thermosetting encapsulant. Among them, a polyolefin-based resin is mentioned as a preferable example of the thermoplastic resin. When the polyolefin resin is combined with an inorganic filler containing at least one selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide, a sealing agent having excellent transparency can be obtained.
 ポリオレフィン系樹脂としては、オレフィンモノマー由来の骨格を有する樹脂を用いうる。ポリオレフィン系樹脂としては、例えば、国際公開2011/62167号、国際公開2013/108731号に記載のポリオレフィン系樹脂が挙げられる。中でも、国際公開2011/62167号に記載のイソブチレン変性樹脂、及び、国際公開2013/108731号に記載のスチレン-イソブチレン変性樹脂が好ましい。さらに、好ましいポリオレフィン系樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリイソブチレン系樹脂が挙げられる。ポリオレフィン系樹脂は、単独重合体でもよく、共重合体でもよい。また、共重合体としては、ランダム共重合体でもよく、ブロック共重合体でもよい。 As the polyolefin-based resin, a resin having a skeleton derived from an olefin monomer can be used. Examples of the polyolefin-based resin include the polyolefin-based resins described in International Publication No. 2011/62167 and International Publication No. 2013/108731. Of these, the isobutylene-modified resin described in International Publication No. 2011/62167 and the styrene-isobutylene-modified resin described in International Publication No. 2013/108731 are preferable. Further, preferred polyolefin-based resins include, for example, polyethylene-based resins, polypropylene-based resins, polybutene-based resins, and polyisobutylene-based resins. The polyolefin-based resin may be a homopolymer or a copolymer. Further, the copolymer may be a random copolymer or a block copolymer.
 共重合体としては、2種類以上のオレフィンの共重合体;オレフィンと、非共役ジエン、スチレン等のオレフィン以外のモノマーとの共重合体;が挙げられる。好ましい共重合体の例としては、エチレン-非共役ジエン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン共重合体、プロピレン-ブテン共重合体、プロピレン-ブテン-非共役ジエン共重合体、スチレン-イソブチレン共重合体、スチレン-イソブチレン-スチレン共重合体等が挙げられる。 Examples of the copolymer include copolymers of two or more types of olefins; copolymers of olefins and monomers other than olefins such as non-conjugated diene and styrene; Examples of preferred copolymers include ethylene-non-conjugated diene copolymers, ethylene-propylene copolymers, ethylene-propylene-non-conjugated diene copolymers, ethylene-butene copolymers, propylene-butene copolymers, Examples thereof include a propylene-butene-non-conjugated diene copolymer, a styrene-isobutylene copolymer, and a styrene-isobutylene-styrene copolymer.
 ポリオレフィン系樹脂は、酸無水物基(即ち、カルボニルオキシカルボニル基(-CO-O-CO-))を有するポリオレフィン系樹脂を含んでいてもよい。酸無水物基を有するポリオレフィン系樹脂を用いる場合、封止剤の接着性及び耐湿熱性を向上させることができる。 The polyolefin-based resin may contain a polyolefin-based resin having an acid anhydride group (that is, a carbonyloxycarbonyl group (-CO-O-CO-)). When a polyolefin resin having an acid anhydride group is used, the adhesiveness and moisture heat resistance of the sealant can be improved.
 酸無水物基としては、例えば、無水コハク酸に由来する基、無水マレイン酸に由来する基、無水グルタル酸に由来する基、等が挙げられる。酸無水物基の種類は、1種類でもよく、2種類以上でもよい。酸無水物基を有するポリオレフィン系樹脂は、例えば、酸無水物基を有する不飽和化合物によって、ポリオレフィン系樹脂を、ラジカル反応条件下にてグラフト変性して製造しうる。また、酸無水物基を有するポリオレフィン系樹脂は、例えば、酸無水物基を有する不飽和化合物を、オレフィンとラジカル共重合して製造しうる。 Examples of the acid anhydride group include a group derived from succinic anhydride, a group derived from maleic anhydride, a group derived from glutaric anhydride, and the like. The type of the acid anhydride group may be one type or two or more types. The polyolefin-based resin having an acid anhydride group can be produced, for example, by graft-modifying the polyolefin-based resin with an unsaturated compound having an acid anhydride group under radical reaction conditions. Further, the polyolefin-based resin having an acid anhydride group can be produced, for example, by radically copolymerizing an unsaturated compound having an acid anhydride group with an olefin.
 酸無水物基を有するポリオレフィン系樹脂中の酸無水物基の濃度は、好ましくは0.05mmol/g以上、より好ましくは0.1mmol/g以上であり、好ましくは10mmol/g以下、より好ましくは5mmol/g以下である。酸無水物基の濃度は、JIS K 2501の記載に従い、樹脂1g中に存在する酸を中和するのに必要な水酸化カリウムのmg数として定義される酸価の値より得られる。 The concentration of the acid anhydride group in the polyolefin resin having an acid anhydride group is preferably 0.05 mmol / g or more, more preferably 0.1 mmol / g or more, preferably 10 mmol / g or less, more preferably. It is 5 mmol / g or less. The concentration of the acid anhydride group is obtained from the value of the acid value defined as the number of mg of potassium hydroxide required to neutralize the acid present in 1 g of the resin according to the description of JIS K2501.
 ポリオレフィン系樹脂の全量100質量%に対して、酸無水物基を有するポリオレフィン系樹脂の量は、好ましくは0質量%以上、より好ましくは10質量%以上、特に好ましくは11質量%以上であり、好ましくは70質量%以下、より好ましくは50質量%以下、特に好ましくは40質量%以下である。 The amount of the polyolefin-based resin having an acid anhydride group is preferably 0% by mass or more, more preferably 10% by mass or more, and particularly preferably 11% by mass or more, based on 100% by mass of the total amount of the polyolefin-based resin. It is preferably 70% by mass or less, more preferably 50% by mass or less, and particularly preferably 40% by mass or less.
 ポリオレフィン系樹脂は、エポキシ基を有するポリオレフィン系樹脂を含んでいてもよい。エポキシ基を有するポリオレフィン系樹脂を用いる場合、封止剤の接着性及び耐湿熱性を向上させることができる。 The polyolefin-based resin may contain a polyolefin-based resin having an epoxy group. When a polyolefin resin having an epoxy group is used, the adhesiveness and moisture heat resistance of the sealant can be improved.
 エポキシ基を有するポリオレフィン系樹脂は、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、アリルグリシジルエーテル等のエポキシ基を有する不飽和化合物によって、ポリオレフィン系樹脂を、ラジカル反応条件下にてグラフト変性して製造しうる。ここで、用語「グリシジル(メタ)アクリレート」は、グリシジルアクリレート及びグリシジルメタクリレートの両方を包含する。また、エポキシ基を有するポリオレフィン系樹脂は、例えば、エポキシ基を有する不飽和化合物を、オレフィンとラジカル共重合して製造しうる。 The polyolefin-based resin having an epoxy group is an unsaturated compound having an epoxy group such as glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether, and allyl glycidyl ether, and the polyolefin-based resin is subjected to radical reaction conditions. It can be manufactured by graft modification. Here, the term "glycidyl (meth) acrylate" includes both glycidyl acrylate and glycidyl methacrylate. Further, the polyolefin-based resin having an epoxy group can be produced, for example, by radically copolymerizing an unsaturated compound having an epoxy group with an olefin.
 エポキシ基を有するポリオレフィン系樹脂中のエポキシ基の濃度は、好ましくは0.05mmol/g以上、より好ましくは0.1mmol/g以上であり、好ましくは10mmol/g以下、より好ましくは5mmol/g以下である。エポキシ基濃度は、JIS K 7236-1995に基づいて得られるエポキシ当量から求められる。 The concentration of the epoxy group in the polyolefin resin having an epoxy group is preferably 0.05 mmol / g or more, more preferably 0.1 mmol / g or more, preferably 10 mmol / g or less, more preferably 5 mmol / g or less. Is. The epoxy group concentration is determined from the epoxy equivalent obtained based on JIS K 7236-1995.
 ポリオレフィン系樹脂の全量100質量%に対して、エポキシ基を有するポリオレフィン系樹脂の量は、好ましくは0質量%以上、より好ましくは10質量%以上、特に好ましくは11質量%以上であり、好ましくは70質量%以下、より好ましくは50質量%以下、特に好ましくは30質量%以下である。 The amount of the polyolefin resin having an epoxy group is preferably 0% by mass or more, more preferably 10% by mass or more, particularly preferably 11% by mass or more, and preferably 11% by mass or more, based on 100% by mass of the total amount of the polyolefin resin. It is 70% by mass or less, more preferably 50% by mass or less, and particularly preferably 30% by mass or less.
 ポリオレフィン系樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。特に、酸無水物基を有するポリオレフィン系樹脂とエポキシ基を有するポリオレフィン系樹脂とを組み合わせて用いることが好ましい。酸無水物基を有するポリオレフィン系樹脂とエポキシ基を有するポリオレフィン系樹脂とを組み合わせて用いる場合、酸無水物基とエポキシ基との反応による架橋構造を形成できるので、水分の浸入を抑制する封止剤の能力を効果的に高めることができる。この場合、エポキシ基と酸無水物基とのモル比(エポキシ基:酸無水物基)は、好ましくは100:10~100:400、より好ましくは100:50~100:200、特に好ましくは100:90~100:150である。 One type of polyolefin resin may be used alone, or two or more types may be used in combination at any ratio. In particular, it is preferable to use a polyolefin-based resin having an acid anhydride group and a polyolefin-based resin having an epoxy group in combination. When a polyolefin resin having an acid anhydride group and a polyolefin resin having an epoxy group are used in combination, a crosslinked structure can be formed by the reaction of the acid anhydride group and the epoxy group, so that a sealing that suppresses the infiltration of water can be formed. The ability of the agent can be effectively enhanced. In this case, the molar ratio of the epoxy group to the acid anhydride group (epoxide group: acid anhydride group) is preferably 100:10 to 100: 400, more preferably 100: 50 to 100: 200, and particularly preferably 100. : 90 to 100: 150.
 以下、ポリオレフィン系樹脂の具体例を説明する。
 ポリイソブチレン樹脂の具体例としては、BASF社製「オパノールB100」(粘度平均分子量:1,110,000)、BASF社製「B50SF」(粘度平均分子量:400,000)が挙げられる。
Hereinafter, specific examples of the polyolefin resin will be described.
Specific examples of the polyisobutylene resin include "Opanol B100" manufactured by BASF (viscosity average molecular weight: 1,110,000) and "B50SF" manufactured by BASF (viscosity average molecular weight: 400,000).
 ポリブテン系樹脂の具体例としては、JXエネルギー社製「HV-1900」(ポリブテン、数平均分子量:2,900)、東邦化学工業社製「HV-300M」(無水マレイン酸変性液状ポリブテン(「HV-300」(数平均分子量:1,400)の変性品)、数平均分子量:2,100、酸無水物基を構成するカルボキシ基の数:3.2個/1分子、酸価:43.4mgKOH/g、酸無水物基濃度:0.77mmol/g)が挙げられる。 Specific examples of the polybutene resin include "HV-1900" (polybutene, number average molecular weight: 2,900) manufactured by JX Energy Co., Ltd. and "HV-300M" (male anhydride-modified liquid polybutene) manufactured by Toho Chemical Industry Co., Ltd. ("HV"). -300 "(modified product with number average molecular weight: 1,400), number average molecular weight: 2,100, number of carboxy groups constituting the acid anhydride group: 3.2 / 1 molecule, acid value: 43. 4 mgKOH / g, acid anhydride group concentration: 0.77 mmol / g).
 スチレン-イソブチレン共重合体の具体例としては、カネカ社製「SIBSTAR T102」(スチレン-イソブチレン-スチレンブロック共重合体、数平均分子量:100,000、スチレン含量:30質量%)、星光PMC社製「T-YP757B」(無水マレイン酸変性スチレン-イソブチレン-スチレンブロック共重合体、酸無水物基濃度:0.464mmol/g、数平均分子量:100,000)、星光PMC社製「T-YP766」(グリシジルメタクリレート変性スチレン-イソブチレン-スチレンブロック共重合体、エポキシ基濃度:0.638mmol/g、数平均分子量:100,000)、星光PMC社製「T-YP8920」(無水マレイン酸変性スチレン-イソブチレン-スチレン共重合体、酸無水物基濃度:0.464mmol/g、数平均分子量:35,800)、星光PMC社製「T-YP8930」(グリシジルメタクリレート変性スチレン-イソブチレン-スチレン共重合体、エポキシ基濃度:0.638mmol/g、数平均分子量:48,700)が挙げられる。 Specific examples of the styrene-isobutylene copolymer include "SIBSTAR T102" manufactured by Kaneka (styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass), manufactured by Seikou PMC. "T-YP757B" (maleic anhydride-modified styrene-isobutylene-styrene block copolymer, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 100,000), "T-YP766" manufactured by Seikou PMC. (Glysidyl methacrylate-modified styrene-isobutylene-styrene block copolymer, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 100,000), "T-YP8920" manufactured by Seikou PMC (maleic anhydride-modified styrene-isobutylene anhydride) -Styrene copolymer, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 35,800), "T-YP8930" manufactured by Seikou PMC (glycidyl methacrylate-modified styrene-isobutylene-styrene copolymer, epoxy Group concentration: 0.638 mmol / g, number average molecular weight: 48,700).
 ポリエチレン系樹脂またはポリプロピレン系樹脂の具体例としては、三井化学社製「EPT X-3012P」(エチレン-プロピレン-5-エチリデン-2-ノルボルネン共重合体、三井化学社製「EPT1070」(エチレン-プロピレン-ジシクロペンタジエン共重合体)、三井化学社製「タフマーA4085」(エチレン-ブテン共重合体)が挙げられる。 Specific examples of the polyethylene-based resin or polypropylene-based resin include "EPT X-3012P" manufactured by Mitsui Chemicals, Inc. (ethylene-propylene-5-ethylidene-2-norbornene copolymer, "EPT1070" manufactured by Mitsui Chemicals, Ltd. (ethylene-propylene). -Dicyclopentadiene copolymer), "Toughmer A4085" (ethylene-butene copolymer) manufactured by Mitsui Chemicals, Inc. can be mentioned.
 プロピレン-ブテン系共重合体の具体例としては、星光PMC社製「T-YP341」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)、星光PMC社製「T-YP279」(無水マレイン酸変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:35,000)、星光PMC社製「T-YP276」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:57,000)、星光PMC社製「T-YP312」(無水マレイン酸変性プロピレン-ブテンランダム共共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:60,900)、星光PMC社製「T-YP313」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)、星光PMC社製「T-YP429」(無水マレイン酸変性エチレン-メチルメタクリレート共重合体、エチレン単位とメチルメタクリレート単位の合計100質量%あたりのメチルメタクリレート単位の量:32質量%、酸無水物基濃度:0.46mmol/g、数平均分子量:2,300)、星光PMC社製「T-YP430」(無水マレイン酸変性エチレン-メチルメタクリレート共重合体、エチレン単位とメチルメタクリレート単位の合計100質量%あたりのメチルメタクリレート単位の量:32質量%、酸無水物基濃度:1.18mmol/g、数平均分子量:4,500)、星光PMC社製「T-YP431」(グリシジルメタクリレート変性エチレン-メチルメタクリレート共重合体、エポキシ基濃度:0.64mmol/g、数平均分子量:2,400)、星光PMC社製「T-YP432」(グリシジルメタクリレート変性エチレン-メチルメタクリレート共重合体、エポキシ基濃度:1.63mmol/g、数平均分子量:3,100)が挙げられる。 As a specific example of the propylene-butene copolymer, "T-YP341" manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer, amount of butene unit per 100% by mass of propylene unit and butene unit in total). : 29% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 155,000), "T-YP279" manufactured by Seikou PMC (maleic anhydride-modified propylene-butene random copolymer, propylene unit and butene) Amount of butene unit per 100% by mass of total units: 36% by mass, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 35,000), "T-YP276" (glycidyl methacrylate) manufactured by Seikou PMC. Modified propylene-butene random copolymer, amount of butene unit per 100% by mass of propylene unit and butene unit: 36% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 57,000), starlight PMC "T-YP312" (maleic anhydride-modified propylene-butene random copolymer, amount of butene units per 100% by mass of propylene units and butene units in total: 29% by mass, acid anhydride group concentration: 0 .464 mmol / g, number average molecular weight: 60,900), "T-YP313" manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer, butene units per 100% by mass of propylene units and butene units in total Amount: 29% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 155,000), "T-YP429" manufactured by Seikou PMC (maleic anhydride-modified ethylene-methyl methacrylate copolymer, ethylene unit) Amount of methyl methacrylate unit per 100% by mass of total methyl methacrylate unit: 32% by mass, acid anhydride group concentration: 0.46 mmol / g, number average molecular weight: 2,300), "T-YP430" manufactured by Seikou PMC. (Maleic anhydride-modified ethylene-methylmethacrylate copolymer, amount of methylmethacrylate units per 100% by mass of ethylene units and methylmethacrylate units: 32% by mass, acid anhydride group concentration: 1.18 mmol / g, number average Molecular weight: 4,500), "T-YP431" manufactured by Starlight PMC (glycidyl methacrylate-modified ethylene-methylmethacrylate copolymer, epoxy group concentration: 0.64 mmol / g, number average molecular weight: 2,400), Starlight PMC Made by "T-YP432" (Glysidyl methacrylate-modified ethylene-methyl methacrylate copolymer, epoxy group concentration: 1.63 mmol / g, number average molecular weight: 3,100).
 熱可塑性樹脂の数平均分子量は、1,000以上が好ましく、3,000以上がより好ましく、5,000以上が更に好ましく、10,000以上が更に好ましく、30,000以上が更に好ましく、50,000以上が特に好ましい。このような範囲の数平均分子量を有する熱可塑性樹脂を用いる場合、封止剤のワニスの塗布時のハジキを抑制できるので、水分の浸入を抑制する封止部の能力を効果的に高めたり、封止部の機械的強度を高めたりできる。また、熱可塑性樹脂の数平均分子量は、1,000,000以下が好ましく、800,000以下がより好ましく、700,000以下が更に好ましく、600,000以下が更に好ましく、500,000以下が更に好ましく、450,000以下が更に好ましく、400,000以下が特に好ましい。このような範囲の数平均分子量を有する熱可塑性樹脂を用いる場合、封止剤のワニスの塗布性を向上させたり、熱可塑性樹脂と他の成分との相溶性を向上させたりできる。 The number average molecular weight of the thermoplastic resin is preferably 1,000 or more, more preferably 3,000 or more, further preferably 5,000 or more, further preferably 10,000 or more, further preferably 30,000 or more, 50, 000 or more is particularly preferable. When a thermoplastic resin having a number average molecular weight in such a range is used, repelling during application of the varnish of the sealing agent can be suppressed, so that the ability of the sealing portion for suppressing the infiltration of water can be effectively enhanced. The mechanical strength of the sealing part can be increased. The number average molecular weight of the thermoplastic resin is preferably 1,000,000 or less, more preferably 800,000 or less, further preferably 700,000 or less, further preferably 600,000 or less, further preferably 500,000 or less. It is preferable, more preferably 450,000 or less, and particularly preferably 400,000 or less. When a thermoplastic resin having a number average molecular weight in such a range is used, the applicability of the varnish as a sealing agent can be improved, and the compatibility between the thermoplastic resin and other components can be improved.
 数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算で測定できる。GPC法による数平均分子量は、具体的には、測定装置として島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてトルエン等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The number average molecular weight can be measured in polystyrene conversion by the gel permeation chromatography (GPC) method. Specifically, the number average molecular weight by the GPC method is determined by using Shimadzu LC-9A / RID-6A as a measuring device and Showa Denko Shodex K-800P / K-804L / K-804L as a column. It can be measured at a column temperature of 40 ° C. using toluene or the like, and calculated using a standard polystyrene calibration curve.
 熱可塑性樹脂の重量平均分子量は、通常は5,000より大きく、好ましくは8,000以上、より好ましくは10,000以上、更に好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは1,000,000以下、より好ましくは800,000以下、更に好ましくは600,000以下、特に好ましくは500,000以下である。 The weight average molecular weight of the thermoplastic resin is usually larger than 5,000, preferably 8,000 or more, more preferably 10,000 or more, still more preferably 15,000 or more, and particularly preferably 20,000 or more. It is preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably 600,000 or less, and particularly preferably 500,000 or less.
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算で測定できる。GPC法による重量平均分子量は、具体的には、測定装置として島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The weight average molecular weight can be measured in polystyrene conversion by the gel permeation chromatography (GPC) method. Specifically, the weight average molecular weight by the GPC method is determined by using Shimadzu LC-9A / RID-6A as a measuring device and Showa Denko Shodex K-800P / K-804L / K-804L as a column. It can be measured at a column temperature of 40 ° C. using chloroform or the like, and calculated using a standard polystyrene calibration curve.
 熱可塑性樹脂は、非晶性を有することが好ましい。非晶性とは、樹脂が明確な融点を有しないことを表す。具体的には、非晶性とは、DSC(示差走査熱量測定)で融点を測定した場合に、明確なピークが観察されないことを表す。非晶性を有する熱可塑性樹脂を用いる場合、封止剤のワニスの増粘を抑制できるので、ワニスの流動性を良好にできる。 The thermoplastic resin preferably has amorphous properties. Amorphous means that the resin does not have a definite melting point. Specifically, amorphous means that no clear peak is observed when the melting point is measured by DSC (differential scanning calorimetry). When an amorphous thermoplastic resin is used, the thickening of the varnish of the sealing agent can be suppressed, so that the fluidity of the varnish can be improved.
 熱可塑性樹脂の量は、封止剤の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上、更に好ましくは7質量%以上、更に好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは20質量%以上である。熱可塑性樹脂の量がこのような範囲にある場合、水分の浸入を抑制する封止剤の能力を効果的に高めることができ、また、封止剤の透明性を向上させることができる。さらに、封止剤の不揮発成分100質量%に対して、熱可塑性樹脂の量は、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下、更に好ましくは60質量%以下、更に好ましくは55質量%以下、特に好ましくは50質量%以下である。熱可塑性樹脂の量がこのような範囲にある場合、封止剤のワニスの塗布性及び相溶性が向上するので、水分の浸入を抑制する封止剤の能力を効果的に高めたり、封止剤の取り扱い性の向上(例えば、タックの抑制)を達成したりできる。 The amount of the thermoplastic resin is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, still more preferably 7% by mass or more, based on 100% by mass of the non-volatile component of the encapsulant. , More preferably 10% by mass or more, further preferably 15% by mass or more, and particularly preferably 20% by mass or more. When the amount of the thermoplastic resin is in such a range, the ability of the sealant to suppress the infiltration of water can be effectively enhanced, and the transparency of the sealant can be improved. Further, the amount of the thermoplastic resin is preferably 80% by mass or less, more preferably 75% by mass or less, still more preferably 70% by mass or less, still more preferably 60% by mass, based on 100% by mass of the non-volatile component of the encapsulant. % Or less, more preferably 55% by mass or less, and particularly preferably 50% by mass or less. When the amount of the thermoplastic resin is in such a range, the applicability and compatibility of the varnish of the sealant are improved, so that the ability of the sealant to suppress the infiltration of water is effectively enhanced or the sealant is sealed. It is possible to improve the handleability of the agent (for example, suppress the tack).
 熱可塑性樹脂の量は、無機フィラー100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、特に好ましくは30質量部以上であり、好ましくは300質量部以下、より好ましくは200質量部以下、特に好ましくは150質量部以下である。特に、熱可塑性樹脂が酸無水物基を有するポリオレフィン系樹脂を含む場合、その酸無水物基を有するポリオレフィン系樹脂の量は、無機フィラー100質量部に対して、好ましくは1質量部以上、好ましくは3質量部以上、特に好ましくは5質量部以上であり、好ましくは30質量部以下、より好ましくは25質量部以下、特に好ましくは23質量部以下である。また、熱可塑性樹脂がエポキシ基を有するポリオレフィン系樹脂を含む場合、そのエポキシ基を有するポリオレフィン系樹脂の量は、無機フィラー100質量部に対して、好ましくは1質量部以上、好ましくは2質量部以上、特に好ましくは3質量部以上であり、好ましくは30質量部以下、より好ましくは28質量部以下、特に好ましくは26質量部以下である。特に、無機フィラーが半焼成ハイドロタルサイトである場合に、その半焼成ハイドロタルサイトと熱可塑性樹脂との質量比が前記の要件を満たすことが望ましい。このような量で熱可塑性樹脂を用いた場合、封止剤が、水分の浸入及び鉛の漏出を特に効果的に抑制できる。 The amount of the thermoplastic resin is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and preferably 300 parts by mass or less, more preferably, with respect to 100 parts by mass of the inorganic filler. Is 200 parts by mass or less, particularly preferably 150 parts by mass or less. In particular, when the thermoplastic resin contains a polyolefin resin having an acid anhydride group, the amount of the polyolefin resin having an acid anhydride group is preferably 1 part by mass or more, preferably 1 part by mass or more, based on 100 parts by mass of the inorganic filler. Is 3 parts by mass or more, particularly preferably 5 parts by mass or more, preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and particularly preferably 23 parts by mass or less. When the thermoplastic resin contains a polyolefin resin having an epoxy group, the amount of the polyolefin resin having an epoxy group is preferably 1 part by mass or more, preferably 2 parts by mass with respect to 100 parts by mass of the inorganic filler. As mentioned above, it is particularly preferably 3 parts by mass or more, preferably 30 parts by mass or less, more preferably 28 parts by mass or less, and particularly preferably 26 parts by mass or less. In particular, when the inorganic filler is semi-firing hydrotalcite, it is desirable that the mass ratio of the semi-firing hydrotalcite to the thermoplastic resin satisfies the above requirements. When the thermoplastic resin is used in such an amount, the encapsulant can particularly effectively suppress the infiltration of water and the leakage of lead.
 (6.2.粘着付与剤)
 封止剤が無機フィラーに組み合わせて含みうる成分の例としては、粘着付与剤が挙げられる。粘着付与剤は、可塑性樹脂と組み合わせて用いた場合に封止剤の粘着性を向上させうる化合物であり、「タッキファイヤー」とも呼ばれる。粘着付与剤は、粘着型封止剤に好適であり、よって熱可塑性樹脂と組み合わせて用いることが好ましい。粘着付与剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(6.2. Adhesive imparting agent)
An example of a component that the sealant can contain in combination with the inorganic filler is a tackifier. The tackifier is a compound that can improve the tackiness of the sealant when used in combination with a plastic resin, and is also called "tack fire". The tackifier is suitable for a tacky sealant, and is therefore preferably used in combination with a thermoplastic resin. As the tackifier, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 粘着付与樹脂としては、例えば、テルペン樹脂、変性テルペン樹脂(水素添加テルペン樹脂、テルペンフェノール共重合樹脂、芳香族変性テルペン樹脂等)、クマロン樹脂、インデン樹脂、石油樹脂(脂肪族系石油樹脂、水添炭化水素石油樹脂、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、ジシクロペンタジエン系石油樹脂およびその水素化物等)が挙げられる。 Examples of the tackifying resin include terpene resin, modified terpene resin (hydrocarboned terpene resin, terpene phenol copolymer resin, aromatic modified terpene resin, etc.), kumaron resin, inden resin, petroleum resin (aliphatic petroleum resin, water). Hydrocarbon petroleum resins, aromatic petroleum resins, aliphatic aromatic copolymer petroleum resins, dicyclopentadiene petroleum resins and their hydrides, etc.) can be mentioned.
 前記の例の中でも、封止剤の接着性、水分の浸入を抑制する能力、透明性等の観点から、石油樹脂が好ましい。石油樹脂としては、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、水添炭化水素石油樹脂等が挙げられる。接着性、水分の浸入を抑制する能力、及び相溶性の観点から、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、水添炭化水素石油樹脂、ジシクロペンタジエン系石油樹脂及びその水素化物がより好ましい。また、透明性の観点から、水添炭化水素石油樹脂、ジシクロペンタジエン系石油樹脂の水素化物が特に好ましい。 Among the above examples, petroleum resin is preferable from the viewpoints of adhesiveness of the sealant, ability to suppress the infiltration of water, transparency and the like. Examples of petroleum resins include aliphatic petroleum resins, aromatic petroleum resins, aliphatic aromatic copolymer petroleum resins, and hydrogenated hydrocarbon petroleum resins. Aromatic petroleum resin, aliphatic aromatic copolymer petroleum resin, hydrogenated hydrocarbon petroleum resin, dicyclopentadiene petroleum resin and its hydrogen from the viewpoint of adhesiveness, ability to suppress water infiltration, and compatibility. The compound is more preferable. Further, from the viewpoint of transparency, hydrogenated hydrocarbon petroleum resins and hydrides of dicyclopentadiene petroleum resins are particularly preferable.
 水添炭化水素石油樹脂としては、芳香族系石油樹脂を水素添加処理したものを用いてもよい。この場合、水添炭化水素石油樹脂の水素化率は、30%~99%が好ましく、40%~97%がより好ましく、50%~90%がさらに好ましい。前記範囲の水素化率を有する水添炭化水素石油樹脂は、着色が小さく、透明性に優れ、且つ、低い生産コストでの製造が可能である。水素化率は、水添前と水素添加後の芳香環の水素のH-NMRのピーク強度の比から求めることができる。 As the hydrogenated hydrocarbon petroleum resin, one obtained by hydrogenating an aromatic petroleum resin may be used. In this case, the hydrogenation rate of the hydrogenated hydrocarbon petroleum resin is preferably 30% to 99%, more preferably 40% to 97%, still more preferably 50% to 90%. The hydrogenated hydrocarbon petroleum resin having a hydrogenation rate in the above range is less colored, has excellent transparency, and can be produced at a low production cost. The hydrogenation rate can be determined from the ratio of the peak intensities of 1 H-NMR of hydrogen in the aromatic ring before hydrogenation and after hydrogenation.
 水添炭化水素石油樹脂としては、特に、シクロヘキサン環含有水素化石油樹脂、ジシクロペンタジエン系水素化石油樹脂が好ましい。 As the hydrogenated hydrocarbon petroleum resin, a cyclohexane ring-containing hydrogenated petroleum resin and a dicyclopentadiene-based hydrogenated petroleum resin are particularly preferable.
 以下、石油樹脂の具体例を説明する。
 テルペン樹脂としては、例えば、YSレジンPX1000、YSレジンPX1150,YSレジンPX1150N、YSレジンPX1250、YSレジンTH130、YSレジンTR105(いずれもヤスハラケミカル社製)等が挙げられる。
 芳香族変性テルペン樹脂としては、例えば、YSレジンTO85、YSレジンTO105、YSレジンTO115、YSレジンTO125(いずれもヤスハラケミカル社製)等が挙げられる。
 水素添加テルペン樹脂としては、例えば、クリアロンP、クリアロンM、クリアロンKシリーズ(いずれもヤスハラケミカル社製)等が挙げられる。
 テルペンフェノール共重合樹脂としては、例えば、YSポリスター2000、ポリスターU、ポリスターT、ポリスターS、マイティエースG(いずれもヤスハラケミカル社製)等が挙げられる。
 液状樹脂としては、例えば、YSレジンLP、YSレジンCP(いずれもヤスハラケミカル社製)等が挙げられる。
 炭化水素樹脂としては、例えば、T-REZ RB093、T-REZ RC100、T-REZ RC115、T-REZ RC093,T-REZ RE100(いずれもJXTGエネルギー社製);ペトロタック60、ペトロタック70、ペトロタック 90、ペトロタック90HS、ペトロタック 90V、ペトロタック100V、(いずれも東ソー社製)等が挙げられる。
 水添炭化水素石油樹脂としては、例えば、Escorez5300シリーズ、5600シリーズ(いずれもエクソンモービル社製);T-REZ OP501、T-REZ PR801、T-REZ PR803、T-REZ HA085、T-REZ HA103、T-REZ HA105、T-REZ HA125、T-REZ HB103、T-REZ HB125、(いずれも水添ジシクロペンタジエン系石油樹脂、JXTGエネルギー社製);Quintone1325、Quintone1345(いずれも日本ゼオン社製);アイマーブS-100、アイマーブS-110、アイマーブP-100、アイマーブP-125、アイマーブP-140(いずれも水添ジシクロペンタジエン系石油樹脂、出光興産社製)等が挙げられる。
 芳香族系石油樹脂としては、例えば、ENDEX155(イーストマン社製);ネオポリマー L-90、ネオポリマー120、ネオポリマー130、ネオポリマー140、ネオポリマー150、ネオポリマー170S、ネオポリマー160、ネオポリマー E-100,ネオポリマー E-130,ネオポリマー M-1、ネオポリマー S,ネオポリマー S100、ネオポリマー 120S,ネオポリマー 130S、ネオポリマー EP-140(いずれもJXTGエネルギー社製)、ペトコール LX、ペトコール 120、ペトコール130、ペトコール140(いずれも東ソー社製)等が挙げられる。
 脂肪族芳香族共重合系石油樹脂としては、例えば、QuintoneD100(日本ゼオン社製)、T-REZ RD104、T-REZ PR802(JXTGエネルギー社製)等が挙げられる。
 シクロヘキサン環含有水素化石油樹脂としては、例えば、アルコン P-90、アルコン P-100、アルコン P-115、アルコンP-125、アルコン P-140、アルコン M-90、アルコン M-100、アルコン M-115、アルコン M-135(いずれも荒川化学社製)等が挙げられる。
 シクロヘキサン環含有飽和炭化水素樹脂としては、例えば、TFS13-030(荒川化学社製)等が挙げられる。
 超淡色ロジン樹脂としては、例えば、パインクリスタル ME-H、パインクリスタルME-D、パインクリスタル ME-G、パインクリスタル KR-85、パインクリスタル KE-311、パインクリスタル KE-359、パインクリスタル D-6011、パインクリスタル PE-590、パインクリスタル KE-604、パインクリスタル PR-580(いずれも荒川化学社製)等が挙げられる。
Hereinafter, specific examples of petroleum resins will be described.
Examples of the terpene resin include YS resin PX1000, YS resin PX1150, YS resin PX1150N, YS resin PX1250, YS resin TH130, and YS resin TR105 (all manufactured by Yasuhara Chemical Co., Ltd.).
Examples of the aromatic-modified terpene resin include YS resin TO85, YS resin TO105, YS resin TO115, and YS resin TO125 (all manufactured by Yasuhara Chemical Co., Ltd.).
Examples of the hydrogenated terpene resin include Clearon P, Clearon M, and Clearon K series (all manufactured by Yasuhara Chemical Co., Ltd.).
Examples of the terpene phenol copolymer resin include YS Polystar 2000, Polystar U, Polystar T, Polystar S, and Mighty Ace G (all manufactured by Yasuhara Chemical Co., Ltd.).
Examples of the liquid resin include YS resin LP and YS resin CP (both manufactured by Yasuhara Chemical Co., Ltd.).
Examples of the hydrocarbon resin include T-REZ RB093, T-REZ RC100, T-REZ RC115, T-REZ RC093, and T-REZ RE100 (all manufactured by JXTG Energy Co., Ltd.); Examples thereof include tack 90, petrotac 90HS, petrotac 90V, petrotac 100V (all manufactured by Tosoh Corporation).
Examples of hydrogenated hydrocarbon petroleum resins include Escorez 5300 series and 5600 series (all manufactured by Exxon Mobile Co., Ltd.); T-REZ OP501, T-REZ PR801, T-REZ PR803, T-REZ HA085, T-REZ HA103, T-REZ HA105, T-REZ HA125, T-REZ HB103, T-REZ HB125, (hydrocarbonated dicyclopentadiene petroleum resin, manufactured by JXTG Energy Co., Ltd.); Quintone1325, Quintone1345 (all manufactured by Nippon Zeon Co., Ltd.); Examples thereof include Imarb S-100, Imarb S-110, Imarb P-100, Imarb P-125, and Imarb P-140 (hydrocarbonated dicyclopentadiene petroleum resin, manufactured by Idemitsu Kosan Co., Ltd.).
Examples of the aromatic petroleum resin include ENDEX155 (manufactured by Eastman); neopolymer L-90, neopolymer 120, neopolymer 130, neopolymer 140, neopolymer 150, neopolymer 170S, neopolymer 160, neopolymer. E-100, Neopolymer E-130, Neopolymer M-1, Neopolymer S, Neopolymer S100, Neopolymer 120S, Neopolymer 130S, Neopolymer EP-140 (all manufactured by JXTG Energy Co., Ltd.), Petcol LX, Petcol Examples include 120, polymer 130, and polymer 140 (all manufactured by Toso Co., Ltd.).
Examples of the aliphatic aromatic copolymer petroleum resin include Quintone D100 (manufactured by Zeon Corporation), T-REZ RD104, and T-REZ PR802 (manufactured by JXTG Energy Co., Ltd.).
Examples of the cyclohexane ring-containing hydrogenated petroleum resin include Alcon P-90, Alcon P-100, Alcon P-115, Alcon P-125, Alcon P-140, Alcon M-90, Alcon M-100, and Alcon M-. 115, Alcon M-135 (both manufactured by Arakawa Chemical Co., Ltd.) and the like can be mentioned.
Examples of the cyclohexane ring-containing saturated hydrocarbon resin include TFS13-030 (manufactured by Arakawa Chemical Industries, Ltd.).
Examples of the ultra-light rosin resin include pine crystal ME-H, pine crystal ME-D, pine crystal ME-G, pine crystal KR-85, pine crystal KE-311, pine crystal KE-359, and pine crystal D-6011. , Pine Crystal PE-590, Pine Crystal KE-604, Pine Crystal PR-580 (all manufactured by Arakawa Chemical Co., Ltd.) and the like.
 粘着付与剤の数平均分子量は、100~2,000が好ましく、700~1,500がより好ましく、500~1,000がさらに好ましい。 The number average molecular weight of the tackifier is preferably 100 to 2,000, more preferably 700 to 1,500, and even more preferably 500 to 1,000.
 粘着付与剤の軟化点は、50℃~200℃が好ましく、90℃~180℃がより好ましく、100℃~150℃がさらに好ましい。軟化点は、JIS K2207に従い環球法により測定しうる。このような軟化点を有する粘着付与剤を用いる場合、封止剤による封止シートを用いた封止を容易にでき、また、封止剤の耐熱性を高めることができる。 The softening point of the tackifier is preferably 50 ° C. to 200 ° C., more preferably 90 ° C. to 180 ° C., and even more preferably 100 ° C. to 150 ° C. The softening point can be measured by the ring-and-ball method according to JIS K2207. When a tackifier having such a softening point is used, sealing using a sealing sheet with a sealing agent can be easily performed, and the heat resistance of the sealing agent can be improved.
 粘着付与剤の量は、封止剤の不揮発成分100質量%に対して、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。粘着付与剤の量がこのような範囲にある場合、封止剤の接着性を効果的に高めることができる。また、封止剤の不揮発成分100質量%に対して、粘着付与剤の量は、80質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましく、40質量%以下が特に好ましい。粘着付与剤の量がこのような範囲にある場合、水分の浸入を抑制する封止剤の能力を効果的に高くできる。 The amount of the tackifier is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, based on 100% by mass of the non-volatile component of the encapsulant. When the amount of the tackifier is in such a range, the adhesiveness of the sealant can be effectively enhanced. Further, the amount of the tackifier is preferably 80% by mass or less, more preferably 60% by mass or less, further preferably 50% by mass or less, and 40% by mass or less with respect to 100% by mass of the non-volatile component of the encapsulant. Especially preferable. When the amount of the tackifier is in such a range, the ability of the sealant to suppress the infiltration of water can be effectively increased.
 (6.3.架橋剤および架橋促進剤)
 封止剤が無機フィラーに組み合わせて含みうる成分の例としては、架橋剤及び架橋促進剤が挙げられる。架橋剤及び架橋促進剤は、他の成分が有する反応性基と反応して、架橋構造を形成しうる。例えば、熱可塑性樹脂が酸無水物基及びエポキシ基等の反応性基を有する場合、架橋剤及び架橋促進剤は、その反応性基と反応して架橋構造を形成しうる。ただし、架橋剤及び架橋促進剤には、上述した熱可塑性樹脂及び粘着付与剤は含めない。架橋剤及び架橋促進剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(6.3. Crosslinking agent and crosslinking accelerator)
Examples of components that the encapsulant can contain in combination with the inorganic filler include cross-linking agents and cross-linking accelerators. The cross-linking agent and the cross-linking accelerator can react with the reactive groups of other components to form a cross-linked structure. For example, when the thermoplastic resin has a reactive group such as an acid anhydride group and an epoxy group, the cross-linking agent and the cross-linking accelerator can react with the reactive group to form a cross-linked structure. However, the above-mentioned thermoplastic resin and tackifier are not included in the cross-linking agent and the cross-linking accelerator. As the cross-linking agent and the cross-linking accelerator, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 架橋剤及び架橋促進剤としては、例えば、アミン系化合物、グアニジン系化合物、イミダゾール系化合物、ホスホニウム系化合物、フェノール系化合物などが挙げられる。 Examples of the cross-linking agent and the cross-linking accelerator include amine compounds, guanidine compounds, imidazole compounds, phosphonium compounds, and phenol compounds.
 アミン系化合物としては、例えば、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;DBU(1,8-ジアザビシクロ[5.4.0]ウンデセン-7)、DBN(1,5-ジアザビシクロ[4.3.0]ノネン-5)、DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、DBU-ギ酸塩、DBU-フェノールノボラック樹脂塩等のジアザビシクロ化合物;ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアミノメチル)フェノール等の3級アミンおよびそれらの塩;芳香族ジメチルウレア、脂肪族ジメチルウレア、芳香族ジメチルウレア等のジメチルウレア化合物;等が挙げられる。 Examples of the amine compound include quaternary ammonium salts such as tetramethylammonium bromide and tetrabutylammonium bromide; DBU (1,8-diazabicyclo [5.4.0] undecene-7), DBN (1,5-diazabicyclo). [4.3.0] Nonen-5), DBU-phenol salt, DBU-octylate, DBU-p-toluenesulfonate, DBU-gerate, DBU-phenolnovolac resin salt and other diazabicyclo compounds; benzyldimethyl Tertiary amines such as amines, 2- (dimethylaminomethyl) phenols, 2,4,6-tris (diaminomethyl) phenols and salts thereof; dimethyls such as aromatic dimethylurea, aliphatic dimethylurea and aromatic dimethylurea. Urea compounds; etc.
 グアニジン系化合物としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。 Examples of the guanidine compound include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine and tetramethyl. Guanidin, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] deca- 5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadesylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1-allyl Biguanides, 1-phenylbiguanides, 1- (o-tolyl) biguanides and the like can be mentioned.
 イミダゾール系化合物としては、例えば、1H-イミダゾール、2-メチル-イミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチルー2-エチル-4-メチル-イミダゾール、2-フェニル-4,5-ビス(ヒドロキシメチル)-イミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-イミダゾール、2-ドデシル-イミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチル-イミダゾール等が挙げられる。 Examples of the imidazole compound include 1H-imidazole, 2-methyl-imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl-imidazole, 2-phenyl-4,5-bis ( Hydroxymethyl) -imidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-imidazole, 2-dodecyl-imidazole, 2-heptadecylimidazole , 1,2-dimethyl-imidazole and the like.
 ホスホニウム系化合物としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。 Examples of the phosphonium compound include triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl) triphenylphosphonium thiocyanate, and tetra. Examples thereof include phenylphosphonium thiocyanate and butyltriphenylphosphonium thiocyanate.
 フェノール系化合物の種類は、例えば、MEH-7700、MEH-7810、MEH-7851(明和化成社製)、NHN、CBN、GPH(日本化薬社製)、SN170、SN180、SN190、SN475、SN485、SN495、SN375、SN395(東都化成社製)、TD2090(DIC社製)等が挙げられる。特に、トリアジン骨格含有フェノール系化合物の具体例としては、LA3018(DIC社製)等が挙げられる。トリアジン骨格含有フェノールノボラック化合物の具体例としては、LA7052、LA7054、LA1356(DIC社製)等が挙げられる。 Types of phenolic compounds include, for example, MEH-7700, MEH-7810, MEH-7851 (manufactured by Meiwa Kasei Co., Ltd.), NHN, CBN, GPH (manufactured by Nippon Kayaku Co., Ltd.), SN170, SN180, SN190, SN475, SN485, Examples thereof include SN495, SN375, SN395 (manufactured by Toto Kasei Co., Ltd.) and TD2090 (manufactured by DIC Corporation). In particular, specific examples of the triazine skeleton-containing phenolic compound include LA3018 (manufactured by DIC Corporation) and the like. Specific examples of the triazine skeleton-containing phenol novolac compound include LA7052, LA7054, LA1356 (manufactured by DIC Corporation) and the like.
 架橋剤としては、例えば、酸無水物基と反応し得る官能基を有する樹脂が挙げられる。酸無水物基と反応し得る官能基としては、例えば、水酸基、1級または2級のアミノ基、チオール基、エポキシ基、オキセタン基等が挙げられ、エポキシ基が好ましい。酸無水物基と反応し得る官能基を有する樹脂としては、例えば、国際公開第2017/057708号に記載の樹脂を用いうる。 Examples of the cross-linking agent include a resin having a functional group capable of reacting with an acid anhydride group. Examples of the functional group capable of reacting with the acid anhydride group include a hydroxyl group, a primary or secondary amino group, a thiol group, an epoxy group, an oxetane group and the like, and an epoxy group is preferable. As the resin having a functional group capable of reacting with the acid anhydride group, for example, the resin described in International Publication No. 2017/057708 can be used.
 架橋剤としては、例えば、エポキシ基と反応し得る官能基を有する樹脂が挙げられる。エポキシ基と反応し得る官能基としては、例えば、水酸基、フェノール性水酸基、アミノ基、カルボキシ基および酸無水物基等が挙げられ、酸無水物基が好ましい。酸無水物基としては、例えば、無水コハク酸に由来する基、無水マレイン酸に由来する基、無水グルタル酸に由来する基等が挙げられる。エポキシ基と反応し得る官能基を有する樹脂としては、例えば、国際公開第2017/057708号に記載の樹脂を用いうる。 Examples of the cross-linking agent include a resin having a functional group capable of reacting with an epoxy group. Examples of the functional group capable of reacting with the epoxy group include a hydroxyl group, a phenolic hydroxyl group, an amino group, a carboxy group, an acid anhydride group and the like, and an acid anhydride group is preferable. Examples of the acid anhydride group include a group derived from succinic anhydride, a group derived from maleic anhydride, a group derived from glutaric anhydride and the like. As the resin having a functional group capable of reacting with the epoxy group, for example, the resin described in International Publication No. 2017/057708 can be used.
 また、後述する硬化剤の中に、封止剤が含む成分が有する反応性基と反応できるものがあれば、その硬化剤を架橋剤又は架橋促進剤として用いてもよい。 Further, if some of the curing agents described later can react with the reactive group of the component contained in the sealing agent, the curing agent may be used as a cross-linking agent or a cross-linking accelerator.
 架橋剤及び架橋促進剤の量は、封止剤の不揮発成分100質量%に対して、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が特に好ましい。架橋剤及び架橋促進剤の量がこのような範囲にある場合、封止剤の取り扱い性の向上(例えば、タックの抑制)ができる。また、封止剤の不揮発成分100質量%に対して、架橋剤及び架橋促進剤の量は、5質量%以下が好ましく、2.5質量%以下がより好ましい。架橋剤及び架橋促進剤の量がこのような範囲にある場合、水分の浸入を抑制する封止剤の能力を効果的に高めることができる。 The amount of the cross-linking agent and the cross-linking accelerator is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and particularly 0.02% by mass or more, based on 100% by mass of the non-volatile component of the sealing agent. preferable. When the amounts of the cross-linking agent and the cross-linking accelerator are in such a range, the handleability of the sealing agent can be improved (for example, tack suppression). The amount of the cross-linking agent and the cross-linking accelerator is preferably 5% by mass or less, more preferably 2.5% by mass or less, based on 100% by mass of the non-volatile component of the sealant. When the amount of the cross-linking agent and the cross-linking accelerator is in such a range, the ability of the sealing agent to suppress the infiltration of water can be effectively enhanced.
 (6.4.粘着型封止剤に適したその他の成分)
 封止剤が含みうる成分のうち、粘着型封止剤に適した成分の例としては、可塑剤が挙げられる。可塑剤により、封止剤の柔軟性及び成形性を向上させることができる。可塑剤としては、室温(25℃)で液状の材料が好ましい。可塑剤の例としては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、流動パラフィン、ポリエチレンワックス、ポリプロピレンワックス、ワセリン等の鉱物油、ヒマシ油、綿実油、菜種油、大豆油、パーム油、ヤシ油、オリーブ油等の植物油、液状ポリブテン、水添液状ポリブテン、液状ポリブタジエン、水添液状ポリブタジエン等の液状ポリαオレフィン化合物等が挙げられる。可塑剤の重量平均分子量は、接着性の観点から、好ましくは500~5,000、さらに好ましくは1,000~3,000である。可塑剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。可塑剤の量は、封止剤中の不揮発成分100質量%に対して、50質量%以下が好ましい。
(6.4. Other ingredients suitable for adhesive type sealants)
Among the components that can be contained in the encapsulant, an example of a component suitable for the adhesive type encapsulant is a plasticizer. The plasticizer can improve the flexibility and moldability of the sealant. As the plasticizer, a material that is liquid at room temperature (25 ° C.) is preferable. Examples of plasticizers include paraffinic process oils, naphthenic process oils, liquid paraffins, polyethylene waxes, polypropylene waxes, mineral oils such as vaseline, castor oil, cottonseed oil, rapeseed oil, soybean oil, palm oil, palm oil, olive oil, etc. Examples thereof include liquid polyα-olefin compounds such as vegetable oils, liquid polybutene, hydrogenated liquid polybutene, liquid polybutadiene, and hydrogenated liquid polybutadiene. The weight average molecular weight of the plasticizer is preferably 500 to 5,000, more preferably 1,000 to 3,000, from the viewpoint of adhesiveness. One type of plasticizer may be used alone, or two or more types may be used in combination at any ratio. The amount of the plasticizer is preferably 50% by mass or less with respect to 100% by mass of the non-volatile component in the encapsulant.
 封止剤が含みうる成分のうち、粘着型封止剤に適した成分の例としては、上述した以外の樹脂(例えば、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、ポリアミド樹脂等);ゴム粒子、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等の有機充填剤;オルベン、ベントン等の増粘剤;シリコン系、フッ素系、高分子系の消泡剤またはレベリング剤;トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤;酸化防止剤;等を挙げることができる。さらに、熱硬化型封止剤が含みうる成分として後述する成分を、粘着型封止剤が含んでいてもよい。 Among the components that can be contained in the sealant, examples of the components suitable for the adhesive type sealant include resins other than those described above (for example, epoxy resin, urethane resin, acrylic resin, polyamide resin, etc.); rubber particles, silicone. Organic fillers such as powders, nylon powders and fluororesin powders; thickeners such as olben and benton; silicone-based, fluorine-based and polymer-based defoaming agents or leveling agents; triazole compounds, thiazole compounds, triazine compounds, porphyrin Adhesion-imparting agents such as compounds; antioxidants; etc. can be mentioned. Further, the adhesive type sealant may contain a component described later as a component that can be contained in the thermosetting type sealant.
[7.第一実施形態に係る熱硬化型封止剤に適した成分の説明]
 (7.1.バインダ樹脂としての熱硬化性樹脂)
 封止剤が無機フィラーに組み合わせて含みうる成分の例としては、熱硬化性樹脂が挙げられる。熱硬化性樹脂は、熱硬化型封止剤のバインダ樹脂として好ましい。熱硬化性樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[7. Description of components suitable for thermosetting sealants according to the first embodiment]
(7.1. Thermosetting resin as a binder resin)
Examples of components that the sealant can contain in combination with the inorganic filler include thermosetting resins. The thermosetting resin is preferable as a binder resin for a thermosetting type sealing agent. One type of thermosetting resin may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 熱硬化性樹脂の例としては、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等が挙げられ、エポキシ樹脂が好ましい。エポキシ樹脂は、半焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含む無機フィラーと組み合わせた場合に、透明性に優れる封止剤を得ることができる。 Examples of the thermosetting resin include epoxy resin, cyanate ester resin, phenol resin, bismaleimide-triazine resin, polyimide resin, acrylic resin, vinylbenzyl resin and the like, and epoxy resin is preferable. When the epoxy resin is combined with an inorganic filler containing at least one selected from the group consisting of semi-baked hydrotalcite and calcium oxide, a sealing agent having excellent transparency can be obtained.
 エポキシ樹脂は、平均して1分子当り2個以上のエポキシ基を有することが好ましい。エポキシ樹脂の例としては、水素添加エポキシ樹脂(水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂等)、フッ素含有エポキシ樹脂、鎖状脂肪族型エポキシ樹脂、環状脂肪族型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のジグリシジルエーテル化物、およびアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体等が挙げられる。 The epoxy resin preferably has two or more epoxy groups per molecule on average. Examples of epoxy resins include hydrogenated epoxy resins (hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, etc.), fluorine-containing epoxy resins, chain aliphatic epoxy resins, cyclic aliphatic epoxy resins, etc. Bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, fragrance Group glycidylamine type epoxy resin (for example, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyltoluidine, diglycidylaniline, etc.), alicyclic epoxy resin, phenol novolac type epoxy resin, alkylphenol type epoxy resin, cresol Novolak type epoxy resin, bisphenol A Novolak type epoxy resin, epoxy resin having a butadiene structure, diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalenediol, diglycidyl etherified product of phenols, and diglycidyl etherified product of alcohols , And alkyl substituents of these epoxy resins.
 エポキシ樹脂は、液状エポキシ樹脂を用いてもよく、固体状エポキシ樹脂を用いてもよく、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いてもよい。「液状エポキシ樹脂」とは、常温(25℃)および常圧(1atm)で液状のエポキシ樹脂を表す。また、「固体状エポキシ樹脂」とは、常温(25℃)および常圧(1atm)で固体状のエポキシ樹脂を表す。塗布性、加工性及び接着性の観点から、エポキシ樹脂全体の10質量%以上が液状エポキシ樹脂であることが好ましい。また、無機フィラーとの混練性およびワニス粘度の観点から、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いることが特に好ましい。液状エポキシ樹脂と固体状エポキシ樹脂との質量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、1:2~1:0が好ましく、1:1.5~1:0がより好ましい。 As the epoxy resin, a liquid epoxy resin may be used, a solid epoxy resin may be used, or a liquid epoxy resin and a solid epoxy resin may be used in combination. The "liquid epoxy resin" represents an epoxy resin that is liquid at normal temperature (25 ° C.) and atmospheric pressure (1 atm). Further, the "solid epoxy resin" represents a solid epoxy resin at normal temperature (25 ° C.) and atmospheric pressure (1 atm). From the viewpoint of coatability, processability and adhesiveness, it is preferable that 10% by mass or more of the total epoxy resin is a liquid epoxy resin. Further, from the viewpoint of kneadability with the inorganic filler and viscosity of the varnish, it is particularly preferable to use the liquid epoxy resin and the solid epoxy resin in combination. The mass ratio of the liquid epoxy resin to the solid epoxy resin (liquid epoxy resin: solid epoxy resin) is preferably 1: 2 to 1: 0, more preferably 1: 1.5 to 1: 0.
 エポキシ樹脂としては、水素添加エポキシ樹脂、フッ素含有エポキシ樹脂、鎖状脂肪族型エポキシ樹脂、環状脂肪族型エポキシ樹脂、及び、アルキルフェノール型エポキシ樹脂が好ましい。中でも、水素添加エポキシ樹脂、フッ素含有エポキシ樹脂、鎖状脂肪族型エポキシ樹脂、及び、環状脂肪族型エポキシ樹脂がより好ましい。これらのエポキシ樹脂を用いる場合、封止剤の透明性を高めることができる。 As the epoxy resin, hydrogenated epoxy resin, fluorine-containing epoxy resin, chain aliphatic type epoxy resin, cyclic aliphatic type epoxy resin, and alkylphenol type epoxy resin are preferable. Of these, hydrogenated epoxy resins, fluorine-containing epoxy resins, chain aliphatic epoxy resins, and cyclic aliphatic epoxy resins are more preferable. When these epoxy resins are used, the transparency of the encapsulant can be enhanced.
 「水素添加エポキシ樹脂」とは、芳香環含有エポキシ樹脂を水素添加して得られるエポキシ樹脂を意味する。水素添加エポキシ樹脂の水添化率は、好ましくは50%以上、より好ましくは70%以上である。水素添加エポキシ樹脂としては、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂が好ましい。水添ビスフェノールA型エポキシ樹脂としては、例えば、液状水添ビスフェノールA型エポキシ樹脂(例えば、「YX8000」(三菱ケミカル社製、エポキシ当量:約205)、「デナコールEX-252」(ナガセケムテックス社製、エポキシ当量:約213))、固体状水添ビスフェノールA型エポキシ樹脂(例えば、「YX8040」(三菱ケミカル社製、エポキシ当量:約1000))が挙げられる。 "Hydrogenated epoxy resin" means an epoxy resin obtained by hydrogenating an aromatic ring-containing epoxy resin. The hydrogenation rate of the hydrogenated epoxy resin is preferably 50% or more, more preferably 70% or more. As the hydrogenated epoxy resin, hydrogenated bisphenol A type epoxy resin and hydrogenated bisphenol F type epoxy resin are preferable. Examples of the hydrogenated bisphenol A type epoxy resin include liquid hydrogenated bisphenol A type epoxy resin (for example, "YX8000" (manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent: about 205)) and "Denacol EX-252" (Nagase Chemtex Co., Ltd.). , Epoxy equivalent: about 213)), solid hydrogenated bisphenol A type epoxy resin (for example, "YX8040" (manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent: about 1000)).
 フッ素含有エポキシ樹脂としては、例えば、国際公開第2011/089947号に記載のフッ素含有エポキシ樹脂が挙げられる。 Examples of the fluorine-containing epoxy resin include the fluorine-containing epoxy resin described in International Publication No. 2011/089947.
 「鎖状脂肪族型エポキシ樹脂」とは、直鎖状または分岐状のアルキル鎖、またはアルキルエーテル鎖を持つエポキシ樹脂を意味する。鎖状脂肪族型エポキシ樹脂としては、例えば、ポリグリセロールポリグリシジルエーテル(例えば、「デナコールEX-512」、「デナコールEX-521」、ナガセケムテックス社製)、ペンタエリスリトールポリグリシジルエーテル(例えば、「デナコールEX-411」、ナガセケムテックス社製)、ジグリセロールポリグリシジルエーテル(例えば、「デナコールEX-421」、ナガセケムテックス社製)、グリセロールポリグリシジルエーテル(例えば、「デナコールEX-313」、「デナコールEX-314」、ナガセケムテックス社製)、トリメチロールプロパンポリグリシジルエーテル(例えば、「デナコールEX-321」、ナガセケムテックス社製)、ネオペンチルグリコールジグリシジルエーテル(例えば、「デナコールEX-211」、ナガセケムテックス社製)、1,6-ヘキサンジオールジグリシジルエーテル(例えば、「デナコールEX-212」、ナガセケムテックス社製)、エチレングリコールジグリシジルエーテル(例えば、「デナコールEX-810」、「デナコールEX-811」、ナガセケムテックス社製)、ジエチレングリコールジグリシジルエーテル(例えば、「デナコールEX-850」、「デナコールEX-851」、ナガセケムテックス社製)、ポリエチレングリコールジグリシジルエーテル(例えば、「デナコールEX-821」、「デナコールEX-830」、「デナコールEX-832」、「デナコールEX-841」、「デナコールEX-861」、ナガセケムテックス社製)、プロピレングリコールジグリシジルエーテル(例えば、「デナコールEX-911」、ナガセケムテックス社製)、ポリプロピレングリコールジグリシジルエーテル(例えば、「デナコールEX-941」、「デナコールルEX-920」、「デナコールEX-931」、ナガセケムテックス社製)等が挙げられる。 "Chain-aliphatic epoxy resin" means an epoxy resin having a linear or branched alkyl chain or an alkyl ether chain. Examples of the chain aliphatic epoxy resin include polyglycerol polyglycidyl ether (for example, "Denacol EX-512", "Denacol EX-521", manufactured by Nagase ChemteX Corporation), pentaerythritol polyglycidyl ether (for example, "Denacol EX-521"). Denacol EX-411 ", manufactured by Nagase ChemteX), diglycerol polyglycidyl ether (for example," Denacol EX-421 ", manufactured by Nagase Chemtex), glycerol polyglycidyl ether (for example," Denacol EX-313 "," Denacol EX-314 ", Nagase ChemteX, Trimethylol Propanepolyglycidyl Ether (for example," Denacol EX-321 ", Nagase Chemtex), Neopentyl glycol diglycidyl ether (for example," Denacol EX-211 " , Nagasechemtex, 1,6-hexanediol diglycidyl ether (eg, "Denacol EX-212", Nagasechemtex), ethylene glycol diglycidyl ether (eg, "Denacol EX-810", "Denacol EX-811", manufactured by Nagase ChemteX, diethylene glycol diglycidyl ether (for example, "Denacol EX-850", "Denacol EX-851", manufactured by Nagase Chemtex), polyethylene glycol diglycidyl ether (for example, manufactured by Nagase ChemteX). "Denacol EX-821", "Denacol EX-830", "Denacol EX-832", "Denacol EX-841", "Denacol EX-861", manufactured by Nagase ChemteX Corporation), propylene glycol diglycidyl ether (for example, "Denacol EX-911", manufactured by Nagase ChemteX), polypropylene glycol diglycidyl ether (for example, "Denacol EX-941", "Denacol EX-920", "Denacol EX-931", manufactured by Nagase ChemteX), etc. Can be mentioned.
 「環状脂肪族型エポキシ樹脂」とは、分子内に環状脂肪族骨格(例えばシクロアルカン骨格)を有するエポキシ樹脂を意味する。環状脂肪族型エポキシ樹脂としては、例えば、ダイセル化学工業社製「EHPE-3150」、日鉄ケミカル&マテリアル社製「TOPR-300」、等が挙げられる。 The "cyclic aliphatic epoxy resin" means an epoxy resin having a cyclic aliphatic skeleton (for example, a cycloalkane skeleton) in the molecule. Examples of the cyclic aliphatic epoxy resin include "EHPE-3150" manufactured by Daicel Chemical Industries, Ltd., "TOPR-300" manufactured by Nittetsu Chemical & Materials Co., Ltd., and the like.
 「アルキルフェノール型エポキシ樹脂」とは、置換基として1以上のアルキル基および1以上のヒドロキシ基を有するベンゼン環骨格を有し、前記ヒドロキシ基がグリシジルエーテル基に変換されているエポキシ樹脂を意味する。アルキルフェノール型エポキシ樹脂としては、例えば、DIC社製「HP-820」;新日鉄住金化学工業社製「YDC-1312」;ナガセケムテックス社製「EX-146」等が挙げられる。 The "alkylphenol type epoxy resin" means an epoxy resin having a benzene ring skeleton having one or more alkyl groups and one or more hydroxy groups as a substituent, and the hydroxy groups are converted into glycidyl ether groups. Examples of the alkylphenol type epoxy resin include "HP-820" manufactured by DIC; "YDC-1312" manufactured by Nippon Steel & Sumitomo Metal Chemical Industries, Ltd .; "EX-146" manufactured by Nagase ChemteX Corporation.
 一態様において、熱硬化性樹脂は、芳香環含有エポキシ樹脂を含むことが好ましい。芳香環含有エポキシ樹脂とは、分子内に芳香環を含有するエポキシ樹脂を表す。芳香環含有エポキシ樹脂を用いると、封止剤の反応性、硬化後の封止剤のガラス転移温度、密着性のいずれかまたは全てが向上する傾向がある。芳香環含有エポキシ樹脂としては、例えば、アルキルフェノール型エポキシ樹脂、フッ素含有芳香族型エポキシ樹脂等が挙げられる。 In one embodiment, the thermosetting resin preferably contains an aromatic ring-containing epoxy resin. The aromatic ring-containing epoxy resin represents an epoxy resin containing an aromatic ring in the molecule. The use of aromatic ring-containing epoxy resins tends to improve the reactivity of the encapsulant, the glass transition temperature of the encapsulant after curing, or any or all of the adhesions. Examples of the aromatic ring-containing epoxy resin include an alkylphenol type epoxy resin and a fluorine-containing aromatic epoxy resin.
 芳香環含有エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、フッ素含有芳香族型エポキシ樹脂が挙げられる。中でも、ビスフェノール型エポキシ樹脂及びフッ素含有芳香族型エポキシ樹脂が好ましく、ビスフェノール型エポキシ樹脂がより好ましく、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂が更に好ましい。 Examples of the aromatic ring-containing epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene type epoxy resin, and fluorine-containing aromatic epoxy resin. Among them, bisphenol type epoxy resin and fluorine-containing aromatic epoxy resin are preferable, bisphenol type epoxy resin is more preferable, and bisphenol A type epoxy resin and bisphenol F type epoxy resin are further preferable.
 ビスフェノールA型エポキシ樹脂としては、例えば、三菱ケミカル社製「828EL」、「1001」および「1004AF」;DIC社製「840」および「850-S」;新日鉄住金化学工業社製「YD-128」等が挙げられる。また、液状ビスフェノールA型エポキシ樹脂および液状ビスフェノールF型エポキシ樹脂の混合物としては、例えば、新日鐵化学工業社製「ZX-1059」(エポキシ当量:約165)が挙げられる。 Examples of the bisphenol A type epoxy resin include "828EL", "1001" and "1004AF" manufactured by Mitsubishi Chemical Corporation; "840" and "850-S" manufactured by DIC Corporation; "YD-128" manufactured by Nippon Steel & Sumitomo Metal Chemical Corporation. And so on. Examples of the mixture of the liquid bisphenol A type epoxy resin and the liquid bisphenol F type epoxy resin include "ZX-1059" (epoxy equivalent: about 165) manufactured by Nippon Steel Chemical Industries, Ltd.
 ビスフェノールF型エポキシ樹脂としては、例えば、三菱ケミカル社製「807」;DIC社製「830」;新日鉄住金化学工業社製「YDF-170」等が挙げられる。 Examples of the bisphenol F type epoxy resin include "807" manufactured by Mitsubishi Chemical Corporation; "830" manufactured by DIC Corporation; and "YDF-170" manufactured by Nippon Steel & Sumitomo Metal Chemical Corporation.
 フェノールノボラック型エポキシ樹脂としては、例えば、DIC社製「N-730A」、「N-740」、「N-770」および「N-775」;三菱ケミカル社製「152」および「154」等が挙げられる。 Examples of the phenol novolac type epoxy resin include "N-730A", "N-740", "N-770" and "N-775" manufactured by DIC; "152" and "154" manufactured by Mitsubishi Chemical Corporation. Can be mentioned.
 「ビフェニルアラルキル型エポキシ樹脂」とは、ノボラック構造および2価のビフェニル構造が結合した主鎖を持つエポキシ樹脂を意味する。ビフェニルアラルキル型エポキシ樹脂としては、例えば、日本化薬社製「NC-3000」、「NC-3000L」および「NC-3100」等が挙げられる。 "Biphenyl aralkyl type epoxy resin" means an epoxy resin having a main chain in which a novolak structure and a divalent biphenyl structure are bonded. Examples of the biphenyl aralkyl type epoxy resin include "NC-3000", "NC-3000L" and "NC-3100" manufactured by Nippon Kayaku Co., Ltd.
 「フルオレン型エポキシ樹脂」とは、フルオレン骨格を持つエポキシ樹脂を意味する。フルオレン型エポキシ樹としては、例えば、大阪ガスケミカル社製「OGSOL PG-100」、「CG-500EG-200」および「EG-280」等が挙げられる。 "Fluorene type epoxy resin" means an epoxy resin having a fluorene skeleton. Examples of the fluorene type epoxy tree include "OGSOL PG-100", "CG-500EG-200" and "EG-280" manufactured by Osaka Gas Chemical Co., Ltd.
 「フッ素含有芳香族型エポキシ樹脂」とは、芳香環を有するフッ素含有エポキシ樹脂を意味する。フッ素含有芳香族型エポキシ樹脂としては、例えば、国際公開第2011/089947号に記載のフッ素含有芳香族型エポキシ樹脂が挙げられる。 "Fluorine-containing aromatic epoxy resin" means a fluorine-containing epoxy resin having an aromatic ring. Examples of the fluorine-containing aromatic epoxy resin include the fluorine-containing aromatic epoxy resin described in International Publication No. 2011/089947.
 芳香環含有エポキシ樹脂は、一般に、高い屈折率を有する。よって、樹脂と無機フィラーとの屈折率を近づけて封止剤の透明性を高める観点から、芳香環含有エポキシ樹脂と芳香環構造を含まないエポキシ樹脂とを組み合わせて、エポキシ樹脂全体の屈折率を調整してもよい。芳香環構造を含まないエポキシ樹脂のうち、芳香環含有エポキシ樹脂と組み合わせるのに適した例としては、水素添加エポキシ樹脂、フッ素含有エポキシ樹脂、鎖状脂肪族型エポキシ樹脂、及び、環状脂肪族型エポキシ樹脂が挙げられる。中でも、水素添加エポキシ樹脂、フッ素含有エポキシ樹脂、及び、環状脂肪族型エポキシ樹脂が好ましい。さらには、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、及び、フッ素含有エポキシ樹脂が好ましく、水添ビスフェノールA型エポキシ樹脂及び水添ビスフェノールF型エポキシ樹脂が更に好ましく、水添ビスフェノールA型エポキシ樹脂が特に好ましい。この際、芳香環含有エポキシ樹脂と芳香環構造を含まないエポキシ樹脂との合計100質量%に対して、芳香環含有エポキシ樹脂の量は、0.5質量%~40質量%が好ましく、1質量%~35質量%がより好ましく、2質量%~30質量%が特に好ましい。 Aromatic ring-containing epoxy resins generally have a high refractive index. Therefore, from the viewpoint of increasing the transparency of the encapsulant by bringing the refractive indexes of the resin and the inorganic filler closer to each other, the refractive index of the entire epoxy resin can be adjusted by combining the epoxy resin containing an aromatic ring and the epoxy resin not containing an aromatic ring structure. You may adjust. Among the epoxy resins that do not contain an aromatic ring structure, examples suitable for combination with an aromatic ring-containing epoxy resin include a hydrogenated epoxy resin, a fluorine-containing epoxy resin, a chain aliphatic type epoxy resin, and a cyclic aliphatic type. Epoxy resin can be mentioned. Of these, hydrogenated epoxy resins, fluorine-containing epoxy resins, and cyclic aliphatic epoxy resins are preferable. Further, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, and fluorine-containing epoxy resin are preferable, and hydrogenated bisphenol A type epoxy resin and hydrogenated bisphenol F type epoxy resin are more preferable. A type epoxy resin is particularly preferable. At this time, the amount of the aromatic ring-containing epoxy resin is preferably 0.5% by mass to 40% by mass, and 1% by mass, based on 100% by mass of the total of the aromatic ring-containing epoxy resin and the epoxy resin not containing the aromatic ring structure. % To 35% by mass is more preferable, and 2% by mass to 30% by mass is particularly preferable.
 エポキシ樹脂のエポキシ当量は、反応性の観点から、好ましくは50~5,000、より好ましくは50~3,000、さらに好ましくは80~2,000、特に好ましくは100~1,500である。「エポキシ当量」とは、1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法に従って測定されうる。 From the viewpoint of reactivity, the epoxy equivalent of the epoxy resin is preferably 50 to 5,000, more preferably 50 to 3,000, still more preferably 80 to 2,000, and particularly preferably 100 to 1,500. The "epoxy equivalent" is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and can be measured according to the method specified in JIS K 7236.
 熱硬化性樹脂の重量平均分子量は、好ましくは100~5,000、より好ましくは250~3,000、さらに好ましくは400~1,500である。熱硬化性樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 The weight average molecular weight of the thermosetting resin is preferably 100 to 5,000, more preferably 250 to 3,000, and even more preferably 400 to 1,500. The weight average molecular weight of the thermosetting resin can be measured as a polystyrene-equivalent value by the gel permeation chromatography (GPC) method.
 熱硬化性樹脂の量は、封止剤の不揮発成分100質量%に対して、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、特に好ましくは45質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下、特に好ましくは85質量%以下である。 The amount of the thermosetting resin is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably 45% by mass, based on 100% by mass of the non-volatile component of the encapsulant. The above is preferably 95% by mass or less, more preferably 90% by mass or less, and particularly preferably 85% by mass or less.
 熱硬化性樹脂の量は、無機フィラー100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上、特に好ましくは160質量部以上であり、好ましくは300質量部以下、より好ましくは250質量部以下、特に好ましくは200質量部以下である。 The amount of the thermosetting resin is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, particularly preferably 160 parts by mass or more, and preferably 300 parts by mass or less, based on 100 parts by mass of the inorganic filler. It is preferably 250 parts by mass or less, and particularly preferably 200 parts by mass or less.
 (7.2.バインダ樹脂としての熱可塑性樹脂)
 熱硬化型封止剤は、バインダ樹脂として、熱硬化性樹脂に組み合わせて熱可塑性樹脂を含んでいてもよい。バインダ樹脂が熱硬化性樹脂と熱可塑性樹脂とを組み合わせて含む場合、封止剤の可撓性の向上、封止剤のワニスの塗布性(はじき抑制)の向上が可能である。熱可塑性樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(7.2. Thermoplastic resin as binder resin)
The thermosetting sealant may contain a thermoplastic resin as a binder resin in combination with the thermosetting resin. When the binder resin contains a thermosetting resin and a thermoplastic resin in combination, it is possible to improve the flexibility of the sealing agent and the varnish coating property (repelling suppression) of the sealing agent. As the thermoplastic resin, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエステル樹脂、(メタ)アクリル系樹脂等を挙げることができる。ここで、用語「(メタ)アクリル系樹脂」は、アクリル系樹脂及びメタクリル系樹脂の両方を包含する。熱硬化性樹脂に組み合わせる熱可塑性樹脂として、粘着型封止剤に適したバインダ樹脂として上述した熱可塑性樹脂を用いてもよい。 Examples of the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, polysulfone resin, polyester resin, (meth) acrylic resin and the like. Here, the term "(meth) acrylic resin" includes both acrylic resin and methacrylic resin. As the thermoplastic resin to be combined with the thermosetting resin, the above-mentioned thermoplastic resin may be used as the binder resin suitable for the adhesive type encapsulant.
 熱硬化性樹脂に組み合わせる熱可塑性樹脂としては、フェノキシ樹脂が好ましい。フェノキシ樹脂は、熱硬化性樹脂(特にエポキシ樹脂)との相溶性が良い。また、フェノキシ樹脂を用いる場合、水分の浸入を抑制する封止剤の能力を効果的に高めることができる。フェノキシ樹脂としては、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、およびノルボルネン骨格から選択される1種類以上の骨格を有するフェノキシ樹脂が好ましい。 Phenoxy resin is preferable as the thermoplastic resin to be combined with the thermosetting resin. The phenoxy resin has good compatibility with a thermosetting resin (particularly an epoxy resin). Further, when the phenoxy resin is used, the ability of the sealing agent for suppressing the infiltration of water can be effectively enhanced. The phenoxy resin has one or more skeletons selected from bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolak skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, and norbornene skeleton. Resin is preferred.
 フェノキシ樹脂の市販品としては、例えば、YX7200B35(三菱ケミカル社製:ビフェニル骨格含有フェノキシ樹脂)、1256(三菱ケミカル社製:ビスフェノールA骨格含有フェノキシ樹脂)、YX6954BH35(三菱ケミカル社製:ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)等が挙げられる。 Commercially available phenoxy resins include, for example, YX7200B35 (Mitsubishi Chemical: biphenyl skeleton-containing phenoxy resin), 1256 (Mitsubishi Chemical: bisphenol A skeleton-containing phenoxy resin), YX6954BH35 (Mitsubishi Chemical: bisphenol acetophenone skeleton included). Phenoxy resin) and the like.
 熱硬化性樹脂に組み合わせる熱可塑性樹脂の重量平均分子量の範囲は、粘着型封止剤に適したバインダ樹脂として上述した熱可塑性樹脂の重量平均分子量と同じ範囲でありうる。このような範囲の重量平均分子量を有する熱可塑性樹脂は、封止剤の可撓性、封止剤のワニスの塗布性(はじき抑制)、及び、熱硬化性樹脂と熱可塑性樹脂との相溶性を、いずれも向上させることができる。中でも、特にフェノキシ樹脂の重量平均分子量は、好ましくは10,000~500,000であり、より好ましくは20,000~300,000である。重量平均分子量の測定方法は、上述した通りである。 The range of the weight average molecular weight of the thermoplastic resin to be combined with the thermosetting resin may be the same range as the weight average molecular weight of the thermoplastic resin described above as a binder resin suitable for the adhesive type encapsulant. A thermoplastic resin having a weight average molecular weight in such a range has flexibility of the sealant, applicability of the varnish of the sealant (suppression of repelling), and compatibility between the thermosetting resin and the thermoplastic resin. Can be improved. Among them, the weight average molecular weight of the phenoxy resin is preferably 10,000 to 500,000, more preferably 20,000 to 300,000. The method for measuring the weight average molecular weight is as described above.
 熱硬化性樹脂に組み合わせる熱可塑性樹脂の量は、封止剤の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは3質量%以上、特に好ましくは5質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは25質量%以下、特に好ましくは15質量%以下である。 The amount of the thermoplastic resin to be combined with the thermosetting resin is preferably 0.1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more, based on 100% by mass of the non-volatile component of the encapsulant. It is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 25% by mass or less, and particularly preferably 15% by mass or less.
 熱硬化性樹脂に組み合わせる熱可塑性樹脂の量は、無機フィラー100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、特に好ましくは10質量部以上であり、好ましくは90質量部以下、より好ましくは70質量部以下、特に好ましくは50質量部以下である。 The amount of the thermoplastic resin to be combined with the thermosetting resin is preferably 1 part by mass or more, more preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more, and preferably 90 parts by mass with respect to 100 parts by mass of the inorganic filler. It is less than or equal to parts by mass, more preferably 70 parts by mass or less, and particularly preferably 50 parts by mass or less.
 熱硬化性樹脂に組み合わせる熱可塑性樹脂の量は、熱硬化性樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、特に好ましくは10質量部以上であり、好ましくは80質量部以下、より好ましくは60質量部以下、特に好ましくは40質量部以下である。 The amount of the thermoplastic resin to be combined with the thermosetting resin is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more, based on 100 parts by mass of the thermosetting resin. Is 80 parts by mass or less, more preferably 60 parts by mass or less, and particularly preferably 40 parts by mass or less.
 (7.3.硬化剤及び硬化促進剤)
 封止剤が無機フィラーに組み合わせて含みうる成分の例としては、硬化剤が挙げられる。硬化剤は、熱硬化性樹脂と組み合わせて用いた場合に、熱硬化性樹脂と反応して封止剤を硬化させる機能を有する。封止剤の硬化時における電子デバイスの熱劣化を抑制する観点から、硬化剤としては、140℃以下(好ましくは120℃以下)の温度で熱硬化性樹脂と反応しうるものが好ましい。硬化剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(7.3. Curing agent and curing accelerator)
Examples of components that the sealant can contain in combination with the inorganic filler include a curing agent. When used in combination with a thermosetting resin, the curing agent has a function of reacting with the thermosetting resin to cure the encapsulant. From the viewpoint of suppressing thermal deterioration of the electronic device during curing of the encapsulant, the curing agent is preferably one that can react with the thermosetting resin at a temperature of 140 ° C. or lower (preferably 120 ° C. or lower). One type of curing agent may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 硬化剤の種類は、熱硬化性樹脂の種類に応じて選択しうる。以下、好ましい熱硬化性樹脂としてのエポキシ樹脂に対応した硬化剤について説明する。エポキシ樹脂に対応した硬化剤としては、例えば、イオン液体、酸無水物化合物、イミダゾール化合物、3級アミン系化合物、ジメチルウレア化合物、アミンアダクト化合物、有機酸ジヒドラジド化合物、有機ホスフィン化合物、ジシアンジアミド化合物、1級・2級アミン系化合物等が挙げられる。中でも、イオン液体、酸無水物化合物、イミダゾール化合物、3級アミン系化合物、ジメチルウレア化合物及びアミンアダクト化合物が好ましい。さらには、イオン液体、酸無水物化合物、イミダゾール化合物、3級アミン系化合物、及びジメチルウレア化合物がより好ましい。 The type of curing agent can be selected according to the type of thermosetting resin. Hereinafter, a curing agent corresponding to an epoxy resin as a preferable thermosetting resin will be described. Examples of the curing agent corresponding to the epoxy resin include ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, dimethylurea compounds, amine adduct compounds, organic acid dihydrazide compounds, organic phosphine compounds, dicyandiamide compounds, 1 Examples thereof include secondary and secondary amine compounds. Of these, ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, dimethylurea compounds and amine adduct compounds are preferable. Further, ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, and dimethylurea compounds are more preferable.
 封止剤は、硬化剤に組み合わせて、硬化促進剤を含んでいてもよい。硬化促進剤は、1種のみを使用してもよく、2種類以上を併用してもよい。硬化促進剤の種類は、熱硬化性樹脂の種類に応じて選択しうる。以下、好ましい熱硬化性樹脂としてのエポキシ樹脂に対応した硬化促進剤について説明する。エポキシ樹脂に対応した硬化促進剤としては、例えば、イミダゾール化合物、3級アミン系化合物、ジメチルウレア化合物、およびアミンアダクト化合物等が挙げられる。中でも、イミダゾール化合物、3級アミン系化合物、およびジメチルウレア化合物が好ましい。 The encapsulant may contain a curing accelerator in combination with the curing agent. Only one type of curing accelerator may be used, or two or more types may be used in combination. The type of curing accelerator can be selected according to the type of thermosetting resin. Hereinafter, a curing accelerator corresponding to an epoxy resin as a preferable thermosetting resin will be described. Examples of the curing accelerator compatible with the epoxy resin include imidazole compounds, tertiary amine compounds, dimethylurea compounds, and amine adduct compounds. Of these, imidazole compounds, tertiary amine compounds, and dimethylurea compounds are preferable.
 硬化剤としてのイオン液体は、140℃以下(好ましくは120℃以下)の温度下で熱硬化性樹脂(特にエポキシ樹脂)を硬化し得るイオン液体が好ましい。すなわち、イオン液体は、140℃以下(好ましくは120℃以下)の温度領域で融解しうる塩であって、熱硬化性樹脂(特に、エポキシ樹脂)の硬化作用を有する塩が好ましい。イオン液体は、熱硬化性樹脂(特にエポキシ樹脂)に均一に溶解している状態で使用されることが好ましい。イオン液体は、通常、水分の浸入を抑制する封止剤の能力を効果的に高めることができる。 The ionic liquid as a curing agent is preferably an ionic liquid capable of curing a thermosetting resin (particularly an epoxy resin) at a temperature of 140 ° C. or lower (preferably 120 ° C. or lower). That is, the ionic liquid is a salt that can be melted in a temperature range of 140 ° C. or lower (preferably 120 ° C. or lower), and a salt having a curing action of a thermosetting resin (particularly an epoxy resin) is preferable. The ionic liquid is preferably used in a state of being uniformly dissolved in a thermosetting resin (particularly an epoxy resin). Ionic liquids can usually effectively enhance the ability of the sealant to suppress the ingress of water.
 硬化剤としてのイオン液体を構成するカチオンとしては、例えば、イミダゾリウムイオン、ピペリジニウムイオン、ピロリジニウムイオン、ピラゾニウムイオン、グアニジニウムイオン、ピリジニウムイオン等のアンモニウム系カチオン;テトラアルキルホスホニウムカチオン(例えば、テトラブチルホスホニウムイオン、トリブチルヘキシルホスホニウムイオン等)等のホスホニウム系カチオン;トリエチルスルホニウムイオン等のスルホニウム系カチオン等が挙げられる。 Examples of the cation constituting the ionic liquid as a curing agent include ammonium cations such as imidazolium ion, piperidinium ion, pyrrolidinium ion, pyrazonium ion, guanidinium ion and pyridinium ion; and tetraalkylphosphonium cation (for example, tetraalkylphosphonium cation). Phosphonium-based cations such as tetrabutylphosphonium ion, tributylhexylphosphonium ion, etc .; sulfonium-based cations such as triethylsulfonium ion and the like can be mentioned.
 硬化剤としてのイオン液体を構成するアニオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物系アニオン;メタンスルホン酸イオン等のアルキル硫酸系アニオン;トリフルオロメタンスルホン酸イオン、ヘキサフルオロホスホン酸イオン、トリフルオロトリス(ペンタフルオロエチル)ホスホン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、トリフルオロ酢酸イオン、テトラフルオロホウ酸イオン等の含フッ素化合物系アニオン;フェノールイオン、2-メトキシフェノールイオン、2,6-ジ-tert-ブチルフェノールイオン等のフェノール系アニオン;アスパラギン酸イオン、グルタミン酸イオン等の酸性アミノ酸イオン;グリシンイオン、アラニンイオン、フェニルアラニンイオン等の中性アミノ酸イオン;N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオン等の下記式(A)で示されるN-アシルアミノ酸イオン;ギ酸イオン、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン、安息香酸イオン等のカルボン酸系アニオンが挙げられる。 Examples of the anion constituting the ionic liquid as a curing agent include halide-based anions such as fluoride ion, chloride ion, bromide ion and iodide ion; alkylsulfate-based anion such as methanesulfonate ion; trifluoromethanesulfone. Fluorine-containing compound anions such as acid ion, hexafluorophosphonate ion, trifluorotris (pentafluoroethyl) phosphonate ion, bis (trifluoromethanesulfonyl) imide ion, trifluoroacetate ion, tetrafluoroborate ion; phenol ion, Phenolic anions such as 2-methoxyphenol ion, 2,6-di-tert-butylphenol ion; acidic amino acid ions such as aspartate ion and glutamate ion; neutral amino acid ions such as glycine ion, alanine ion and phenylalanine ion; N N-acylamino acid ion represented by the following formula (A) such as -benzoylalanine ion, N-acetylphenylalanine ion, N-acetylglycine ion; formate ion, acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylic acid Examples thereof include carboxylic acid-based anions such as ions, α-lipoate ions, lactate ions, tartrate ions, horse urate ions, N-methyl horse urate ions and benzoate ions.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(A)において、Rは、炭素数1~5の直鎖または分岐鎖のアルキル基、或いは、置換または無置換のフェニル基を表し、Xは、アミノ酸の側鎖を表す。式(A)におけるアミノ酸としては、例えば、アスパラギン酸、グルタミン酸、グリシン、アラニン、フェニルアラニン等が挙げられ、中でも、グリシンが好ましい。 In the formula (A), RA represents a linear or branched alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenyl group, and X A represents a side chain of an amino acid. Examples of the amino acid in the formula (A) include aspartic acid, glutamic acid, glycine, alanine, phenylalanine and the like, and glycine is preferable.
 上述した中でも、カチオンは、アンモニウム系カチオン及びホスホニウム系カチオンが好ましく、イミダゾリウムイオン及びホスホニウムイオンがより好ましい。イミダゾリウムイオンとしては、例えば、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-プロピル-3-メチルイミダゾリウムイオン等が挙げられる。 Among the above-mentioned cations, ammonium-based cations and phosphonium-based cations are preferable, and imidazolium ions and phosphonium ions are more preferable. Examples of the imidazolium ion include 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-propyl-3-methylimidazolium ion and the like.
 また、アニオンは、フェノール系アニオン、式(A)で示されるN-アシルアミノ酸イオン、及び、カルボン酸系アニオンが好ましく、N-アシルアミノ酸イオン及びカルボン酸系アニオンがより好ましい。 Further, as the anion, a phenol-based anion, an N-acylamino acid ion represented by the formula (A), and a carboxylic acid-based anion are preferable, and an N-acylamino acid ion and a carboxylic acid-based anion are more preferable.
 フェノール系アニオンの具体例としては、2,6-ジ-tert-ブチルフェノールイオンが挙げられる。
 カルボン酸系アニオンの具体例としては、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン等が挙げられ、中でも、酢酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオンが好ましく、酢酸イオン、デカン酸イオン、N-メチル馬尿酸イオン、ギ酸イオンが更に好ましい。
 式(A)で示されるN-アシルアミノ酸イオンの具体例としては、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、アスパラギン酸イオン、グリシンイオン、N-アセチルグリシンイオン等が挙げられ、中でも、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオンが好ましく、N-アセチルグリシンイオンが更に好ましい。
Specific examples of the phenolic anion include 2,6-di-tert-butylphenol ion.
Specific examples of carboxylic acid-based anions include acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylic acid ion, formate ion, α-lipoate ion, lactate ion, tartrate ion, horse urate ion, and N-methyl horse. Examples thereof include acetate ion, 2-pyrrolidone-5-carboxylic acid ion, formate ion, lactate ion, tartrate ion, horse urate ion, N-methyl horse urate ion, and acetate ion and decanoate ion. , N-methylhorseurate ion, formate ion is more preferable.
Specific examples of the N-acylamino acid ion represented by the formula (A) include N-benzoylalanine ion, N-acetylphenylalanine ion, aspartate ion, glycine ion, N-acetylglycine ion and the like. -Benzoylalanine ion, N-acetylphenylalanine ion, N-acetylglycine ion are preferable, and N-acetylglycine ion is more preferable.
 イオン液体としては、例えば、1-ブチル-3-メチルイミダゾリウムラクテート、テトラブチルホスホニウム-2-ピロリドン-5-カルボキシレート、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムトリフルオロアセテート、テトラブチルホスホニウムα-リポエート、ギ酸テトラブチルホスホニウム塩、テトラブチルホスホニウムラクテート、酒石酸ビス(テトラブチルホスホニウム)塩、馬尿酸テトラブチルホスホニウム塩、N-メチル馬尿酸テトラブチルホスホニウム塩、ベンゾイル-DL-アラニンテトラブチルホスホニウム塩、N-アセチルフェニルアラニンテトラブチルホスホニウム塩、2,6-ジ-tert-ブチルフェノールテトラブチルホスホニウム塩、L-アスパラギン酸モノテトラブチルホスホニウム塩、グリシンテトラブチルホスホニウム塩、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムラクテート、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩、酒石酸ビス(1-エチル-3-メチルイミダゾリウム)塩、N-アセチルグリシン1-エチル-3-メチルイミダゾリウム塩が好ましく、テトラブチルホスホニウムデカノエート、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩が更に好ましい。 Examples of the ionic liquid include 1-butyl-3-methylimidazolium lactate, tetrabutylphosphonium-2-pyrrolidone-5-carboxylate, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium trifluoroacetate, and the like. Tetrabutylphosphonium α-lipoate, tetrabutylphosphonium formate salt, tetrabutylphosphonium lactate, bis (tetrabutylphosphonium) tartrate, tetrabutylphosphonium horseurate, tetrabutylphosphonium salt N-methylumaurate, benzoyl-DL-alaninetetra Butylphosphonium salt, N-acetylphenylalanine tetrabutylphosphonium salt, 2,6-di-tert-butylphenol tetrabutylphosphonium salt, L-aspartate monotetrabutylphosphonium salt, glycinetetrabutylphosphonium salt, N-acetylglycinetetrabutylphosphonium Salt, 1-ethyl-3-methylimidazolium lactate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium formate salt, 1-ethyl-3-methylimidazolium salt horseurate, N -Methyl horseurate 1-ethyl-3-methylimidazolium salt, bis tartrate (1-ethyl-3-methylimidazolium) salt, N-acetylglycine 1-ethyl-3-methylimidazolium salt are preferable, and tetrabutylphosphonium. Decanoate, N-Acetylglycine tetrabutylphosphonium salt, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium formate, 1-ethyl-3-methylimidazolium salt horseuriate, N -Methylhorseurate 1-ethyl-3-methylimidazolium salt is more preferred.
 イオン液体の合成法としては、例えば、アルキルイミダゾリウム、アルキルピリジニウム、アルキルアンモニウム及びアルキルスルホニウムイオン等のカチオン部位と、ハロゲンを含むアニオン部位とから構成される前駆体に、NaBF、NaPF、CFSONa、LiN(SOCF等を反応させるアニオン交換法が挙げられる。また、イオン液体の別の合成法としては、例えば、アミン系物質と酸エステルとを反応させてアルキル基を導入しつつ、有機酸残基が対アニオンになるような酸エステル法が挙げられる。さらに、イオン液体の別の合成法としては、例えば、アミン類を有機酸で中和して塩を得る中和法が挙げられる。アニオンとカチオンと溶媒による中和法では、アニオンとカチオンとを等量使用し、得られた反応液中の溶媒を留去して、そのまま用いてもよい。又は、得られた反応液と有機溶媒(メタノール、トルエン、酢酸エチル、アセトン等)とを混合した後で、濃縮して用いてもよい。 As a method for synthesizing an ionic liquid, for example, NaBF 4 , NaPF 6 , and CF are used as a precursor composed of a cation moiety such as alkylimidazolium, alkylpyridinium, alkylammonium, and alkylsulfonium ion and an anion moiety containing halogen. 3 An anion exchange method in which SO 3 Na, LiN (SO 2 CF 3 ) 2, etc. are reacted can be mentioned. Further, as another method for synthesizing an ionic liquid, for example, there is an acid ester method in which an amine-based substance is reacted with an acid ester to introduce an alkyl group and an organic acid residue becomes a counter anion. Further, as another method for synthesizing an ionic liquid, for example, a neutralization method in which amines are neutralized with an organic acid to obtain a salt can be mentioned. In the neutralization method using an anion, cation and solvent, the anion and cation may be used in equal amounts, the solvent in the obtained reaction solution may be distilled off, and the solvent may be used as it is. Alternatively, the obtained reaction solution may be mixed with an organic solvent (methanol, toluene, ethyl acetate, acetone, etc.) and then concentrated for use.
 硬化剤としての酸無水物化合物としては、例えば、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物等が挙げられる。酸無水物化合物の具体例としては、リカシッドTH、TH-1A、HH、MH、MH-700、MH-700G(いずれも新日本理化社製)等が挙げられる。 Examples of the acid anhydride compound as a curing agent include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, and dodecenyl succinic anhydride. Things etc. can be mentioned. Specific examples of the acid anhydride compound include Ricacid TH, TH-1A, HH, MH, MH-700, MH-700G (all manufactured by New Japan Chemical Co., Ltd.) and the like.
 硬化剤又は硬化促進剤としてのイミダゾール化合物としては、例えば、1H-イミダゾール、2-メチル-イミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチル-イミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2-フェニル-4,5-ビス(ヒドロキシメチル)-イミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニル-イミダゾール、2-ドデシル-イミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチル-イミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’)-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。イミダゾール化合物の具体例としては、キュアゾール2MZ、2P4MZ、2E4MZ、2E4MZ-CN、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2PHZ、1B2MZ、1B2PZ、2PZ、C17Z、1.2DMZ、2P4MHZ-PW、2MZ-A、2MA-OK(いずれも四国化成工業社製)等が挙げられる。 Examples of the imidazole compound as a curing agent or curing accelerator include 1H-imidazole, 2-methyl-imidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, and 1-cyanoethyl-2-ethyl. -4-Methyl-imidazole, 2-undecylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 2,4-diamino-6- (2'-un) Decylimidazolyl- (1'))-ethyl-s-triazine, 2-phenyl-4,5-bis (hydroxymethyl) -imidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2 -Phenyl-imidazole, 2-dodecyl-imidazole, 2-heptadecylimidazole, 1,2-dimethyl-imidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6- (2') -Methylimidazolyl- (1') -ethyl-s-triazine, 2,4-diamino-6- (2'-methylimidazolyl- (1'))-ethyl-s-triazine isocyanuric acid adduct and the like can be mentioned. Specific examples of the imidazole compound include curesol 2MZ, 2P4MZ, 2E4MZ, 2E4MZ-CN, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2PHZ, 1B2MZ, 1B2PZ, 2PZ, C17Z, 1.2DMZ, 2P4MHZ-PW. , 2MZ-A, 2MA-OK (both manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like.
 硬化剤又は硬化促進剤としての3級アミン系化合物の具体例としては、DBN(1,5-diazabicyclo[4.3.0]non-5-ene)、DBU(1,8-diazabicyclo[5.4.0]undec-7-ene)、DBUの2-エチルヘキサン酸塩、DBUのフェノール塩、DBUのp-トルエンスルホン酸塩、U-CAT SA 102(サンアプロ社製:DBUのオクチル酸塩)、DBUのギ酸塩等のDBU-有機酸塩、トリス(ジメチルアミノメチル)フェノール(TAP)などが挙げられる。 Specific examples of the tertiary amine-based compound as a curing agent or curing accelerator include DBN (1,5-diazabicyclo [4.3.0] non-5-ene) and DBU (1,8-diazabiclo [5. 4.0] undec-7-ene), DBU 2-ethylhexanate, DBU phenol salt, DBU p-toluenesulfonate, U-CAT SA 102 (manufactured by San-Apro: DBU octylate) , DBU-organic acid salt such as DBU formate, tris (dimethylaminomethyl) phenol (TAP) and the like.
 硬化剤又は硬化促進剤としてのジメチルウレア化合物の具体例としては、DCMU(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)、U-CAT3512T(サンアプロ社製)等の芳香族ジメチルウレア;U-CAT3503N(サンアプロ社製)等の脂肪族ジメチルウレア等が挙げられる。中でも硬化性の点から、芳香族ジメチルウレアが好ましい。 Specific examples of the dimethylurea compound as a curing agent or curing accelerator include aromatic dimethyls such as DCMU (3- (3,4-dichlorophenyl) -1,1-dimethylurea) and U-CAT3512T (manufactured by San-Apro). Urea; Examples thereof include aliphatic dimethyl urea such as U-CAT3503N (manufactured by San-Apro). Of these, aromatic dimethylurea is preferable from the viewpoint of curability.
 硬化剤又は硬化促進剤としてのアミンアダクト化合物としては、例えば、エポキシ樹脂への3級アミンの付加反応を途中で止めることによって得られるエポキシアダクト化合物等が挙げられる。アミンアダクト系化合物の具体例としては、アミキュアPN-23、アミキュアMY-24、アミキュアPN-D、アミキュアMY-D、アミキュアPN-H、アミキュアMY-H、アミキュアPN-31、アミキュアPN-40、アミキュアPN-40J(いずれも味の素ファインテクノ社製)等が挙げられる。 Examples of the amine adduct compound as a curing agent or curing accelerator include an epoxy adduct compound obtained by stopping the addition reaction of a tertiary amine to an epoxy resin in the middle. Specific examples of amine adduct compounds include Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Examples thereof include Amicure PN-40J (both manufactured by Ajinomoto Fine Techno Co., Ltd.).
 硬化剤としての有機酸ジヒドラジド化合物の具体例としては、アミキュアVDH-J、アミキュアUDH、アミキュアLDH(いずれも味の素ファインテクノ社製)等が挙げられる。 Specific examples of the organic acid dihydrazide compound as a curing agent include Amicure VDH-J, Amicure UDH, Amicure LDH (all manufactured by Ajinomoto Fine-Techno Co., Ltd.) and the like.
 硬化剤又は硬化促進剤としての有機ホスフィン化合物としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、トリ-tert-ブチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート、トリフェニルホスフィントリフェニルボラン等が挙げられる。有機ホスフィン化合物の具体例としては、TPP、TPP-MK、TPP-K、TTBuP-K、TPP-SCN、TPP-S(北興化学工業社製)等が挙げられる。 Examples of the organic phosphine compound as a curing agent or curing accelerator include triphenylphosphine, tetraphenylphosphonium tetra-p-tolylbolate, tetraphenylphosphonium tetraphenylborate, tri-tert-butylphosphonium tetraphenylborate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, triphenylphosphine triphenylborane and the like can be mentioned. Specific examples of the organic phosphine compound include TPP, TPP-MK, TPP-K, TTBuP-K, TPP-SCN, TPP-S (manufactured by Hokuko Chemical Industry Co., Ltd.) and the like.
 硬化剤としてのジシアンジアミド化合物としては、例えば、ジシアンジアミドが挙げられる。ジシアンジアミド化合物の具体例としては、ジシアンジアミド微粉砕品であるDICY7、DICY15(いずれも三菱ケミカル社製)等が挙げられる。 Examples of the dicyandiamide compound as a curing agent include dicyandiamide. Specific examples of the dicyandiamide compound include DICY7 and DICY15 (both manufactured by Mitsubishi Chemical Corporation), which are dicyandiamide finely pulverized products.
 硬化剤としての1級・2級アミン系化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、1,3-ビスアミノメチルシクロヘキサン、ジプロプレンジアミン、ジエチルアミノプロピルアミン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン等の脂肪族アミン;N-アミノエチルピベラジン、1,4-ビス(3-アミノプロピル)ピペラジン等の脂環式アミン;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン等の芳香族アミン;が挙げられる。1級・2級アミン系化合物の具体例としては、カヤハードA-A(日本化薬社製:4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン)等が挙げられる。 Examples of the primary and secondary amine compounds as the curing agent include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, 1,3-bisaminomethylcyclohexane, and the like. Aliper amines such as diproprenedamines, diethylaminopropylamines, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane; N-aminoethylpyverazine, 1,4-bis (3-aminopropyl) ) Alicyclic amines such as piperazine; aromatic amines such as diaminodiphenylmethane, m-phenylenediamine, m-xylene diamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diethyltoluenediamine; Specific examples of the primary and secondary amine compounds include Kayahard AA (manufactured by Nippon Kayaku Co., Ltd .: 4,4'-diamino-3,3'-dimethyldiphenylmethane).
 また、前述した架橋剤及び架橋促進剤の中に、熱硬化性樹脂と反応して封止剤を硬化させうるものがあれば、その架橋剤及び架橋促進剤を硬化剤として用いてもよい。 Further, if any of the above-mentioned cross-linking agents and cross-linking accelerators can react with the thermosetting resin to cure the sealing agent, the cross-linking agent and the cross-linking accelerator may be used as the curing agent.
 硬化剤と硬化促進剤とは組み合わせて使用することが好ましい。硬化剤及び硬化促進剤の好ましい組み合わせとして、イオン液体、酸無水物化合物、イミダゾール化合物、3級アミン系化合物、ジメチルウレア化合物、およびアミンアダクト化合物から選ばれる2種類以上が挙げられる。 It is preferable to use the curing agent and the curing accelerator in combination. Preferred combinations of the curing agent and the curing accelerator include two or more selected from ionic liquids, acid anhydride compounds, imidazole compounds, tertiary amine compounds, dimethyl urea compounds, and amine adduct compounds.
 硬化剤の量は、封止剤の不揮発成分100質量%に対して、0.1質量%~40質量%が好ましく、0.5質量%~38質量部がより好ましく、1質量%~35質量部がさらに好ましい。硬化剤の量が前記範囲の下限値以上である場合、封止剤の硬化を充分に進行させることができる。また、硬化剤の量が前記範囲の上限値以下である場合、封止剤の保存安定性を高めることができる。特に、硬化剤としてのイオン液体の量は、封止剤の不揮発成分100質量%に対して、20質量%以下が好ましく、18質量%以下がより好ましく、15質量%以下が特に好ましい。イオン液体の量が前記範囲にある場合、水分の浸入を抑制する封止剤の能力を効果的に高めることができる。 The amount of the curing agent is preferably 0.1% by mass to 40% by mass, more preferably 0.5% by mass to 38 parts by mass, and 1% by mass to 35% by mass with respect to 100% by mass of the non-volatile component of the encapsulant. The portion is more preferable. When the amount of the curing agent is not more than the lower limit of the above range, the curing of the encapsulant can be sufficiently advanced. Further, when the amount of the curing agent is not more than the upper limit value in the above range, the storage stability of the sealing agent can be enhanced. In particular, the amount of the ionic liquid as the curing agent is preferably 20% by mass or less, more preferably 18% by mass or less, and particularly preferably 15% by mass or less, based on 100% by mass of the non-volatile component of the encapsulant. When the amount of ionic liquid is in the above range, the ability of the sealant to suppress the infiltration of water can be effectively enhanced.
 硬化促進剤の量は、封止剤の不揮発成分100質量%に対して、0.05質量%~10質量%が好ましく、0.1質量%~8質量%がより好ましく、0.5質量%~5質量%がさらに好ましい。硬化促進剤の量が前記範囲の下限値以上である場合、封止剤の硬化を速やかに進行させることができる。また、硬化促進剤の量が前記範囲の上限値以下である場合、封止剤の保存安定性を高めることができる。 The amount of the curing accelerator is preferably 0.05% by mass to 10% by mass, more preferably 0.1% by mass to 8% by mass, and 0.5% by mass with respect to 100% by mass of the non-volatile component of the encapsulant. It is more preferably to 5% by mass. When the amount of the curing accelerator is not more than the lower limit of the above range, the curing of the encapsulant can be rapidly advanced. Further, when the amount of the curing accelerator is not more than the upper limit of the above range, the storage stability of the encapsulant can be enhanced.
 (7.4.熱硬化型封止剤に適したその他の成分)
 封止剤が含みうる成分のうち、熱硬化型封止剤に適した成分の例としては、カップリング剤が挙げられる。封止剤がカップリング剤を含む場合、無機フィラーの凝集が抑制されて無機フィラーの表面積を大きくできるので、無機フィラーの鉛吸着性及び吸湿性を発揮し易くできる。カップリング剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(7.4. Other components suitable for thermosetting encapsulants)
Among the components that can be contained in the encapsulant, an example of a component suitable for the thermosetting encapsulant is a coupling agent. When the sealing agent contains a coupling agent, the aggregation of the inorganic filler is suppressed and the surface area of the inorganic filler can be increased, so that the lead adsorption property and the hygroscopic property of the inorganic filler can be easily exhibited. One type of coupling agent may be used alone, or two or more types may be used in combination at any ratio.
 カップリング剤としては、例えば、シランカップリング剤、アルミネートカップリング剤、チタネートカップリング剤が挙げられる。 Examples of the coupling agent include a silane coupling agent, an aluminate coupling agent, and a titanate coupling agent.
 シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシランおよび11-メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランおよびN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシランおよび3-メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤;ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらの中でも、ビニル系シランカップリング剤、エポキシ系シランカップリング剤が好ましく、エポキシ系シランカップリング剤が特に好ましい。 Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy. Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane 3-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N- (2) Amino-based silane coupling agents such as -aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane; ureido-based silanes such as 3-ureidopropyltriethoxysilane Coupling agent; Vinyl-based silane coupling agent such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; Styryl-based silane coupling agent such as p-styryltrimethoxysilane; 3-acrylicoxypropyltrimethoxy Acrylate-based silane coupling agents such as silane and 3-methacryloxypropyltrimethoxysilane; isocyanate-based silane coupling agents such as 3-isocyanoxidetrimethoxysilane; bis (triethoxysilylpropyl) disulfide, bis (triethoxysilylpropyl) ) A sulfide-based silane coupling agent such as tetrasulfide; phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, imidazole silane, triazinesilane and the like can be mentioned. Among these, vinyl-based silane coupling agents and epoxy-based silane coupling agents are preferable, and epoxy-based silane coupling agents are particularly preferable.
 アルミネートカップリング剤としては、例えば、アルキルアセトアセテートアルミニウムジイソプロピレート(例えば、「プレンアクトAL-M」味の素ファインテクノ社製)が挙げられる。 Examples of the aluminate coupling agent include alkylacetoacetate aluminum diisopropylate (for example, "Plenact AL-M" manufactured by Ajinomoto Fine-Techno Co., Ltd.).
 チタネート系カップリング剤の具体例としては、プレンアクトTTS、プレンアクト46B、プレンアクト55、プレンアクト41B、プレンアクト38S、プレンアクト138S、プレンアクト238S、プレンアクト338X、プレンアクト44、プレンアクト9SA(いずれも味の素ファインテクノ社製)等が挙げられる。 Specific examples of titanate-based coupling agents include Plenact TTS, Plenact 46B, Plenact 55, Plenact 41B, Plenact 38S, Plenact 138S, Plenact 238S, Plenact 338X, Plenact 44, and Plenact 9SA (all manufactured by Ajinomoto Fine-Techno). Can be mentioned.
 カップリング剤の量は、封止剤の不揮発成分100質量%に対して、0質量%~15質量%が好ましく、0.5質量%~10質量%がより好ましい。 The amount of the coupling agent is preferably 0% by mass to 15% by mass, more preferably 0.5% by mass to 10% by mass, based on 100% by mass of the non-volatile component of the encapsulant.
 カップリング剤の量は、無機フィラー100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、特に好ましくは1質量部以上であり、好ましくは20質量部以下、より好ましくは15質量部以下、特に好ましくは10質量部以下である。 The amount of the coupling agent is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, particularly preferably 1 part by mass or more, and preferably 20 parts by mass with respect to 100 parts by mass of the inorganic filler. Hereinafter, it is more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less.
 封止剤が含みうる成分のうち、熱硬化型封止剤に適した成分の例としては、ゴム粒子、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等の有機充填材;オルベン、ベントン等の増粘剤;シリコーン系、フッ素系、高分子系の消泡剤またはレベリング剤;トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤;等を挙げることができる。さらに、粘着型封止剤が含みうる成分として上述した成分を、熱硬化型封止剤が含んでいてもよい。 Among the components that can be contained in the encapsulant, examples of the components suitable for the thermosetting encapsulant are organic fillers such as rubber particles, silicone powder, nylon powder, and fluororesin powder; and thickening such as Orben and Benton. Agents: Silicone-based, fluoro-based, polymer-based defoaming agents or leveling agents; adhesion-imparting agents such as triazole compounds, thiazole compounds, triazine compounds, and porphyrin compounds; and the like. Further, the thermosetting type encapsulant may contain the above-mentioned components as the components that the adhesive type encapsulant can contain.
[8.第一実施形態に係る封止剤の透明性]
 本発明の第一実施形態に係る封止剤は、高い透明性を有することが好ましい。封止剤の透明性は、D65光に対する平行線透過率で表しうる。具体的には、厚さ20μmの封止剤の層の平行線透過率は、好ましくは80%~100%であり、より好ましくは85%~100%である。封止剤の平行線透過率は、ガラス板上に封止剤を積層した積層体を形成し、空気をリファレンスとすることによって算出される。平行線透過率は、具体的には、下記の方法によって測定できる。
[8. Transparency of Encapsulant According to First Embodiment]
The encapsulant according to the first embodiment of the present invention preferably has high transparency. The transparency of the sealant can be expressed by the parallel line transmittance with respect to D65 light. Specifically, the parallel line transmittance of the 20 μm-thick sealant layer is preferably 80% to 100%, more preferably 85% to 100%. The parallel line transmittance of the sealant is calculated by forming a laminate in which the sealant is laminated on a glass plate and using air as a reference. Specifically, the parallel line transmittance can be measured by the following method.
 厚さ20μmの封止剤の層を備える封止シートを用意する。この封止シートを、長さ70mm及び幅25mmにカットし、その封止用シートをガラス板(長さ76mm、幅26mmおよび厚さ1.2mmのマイクロスライドガラス、松浪ガラス工業社製白スライドグラスS1112 縁磨No.2)にバッチ式真空ラミネーター(ニチゴー・モートン社製、V-160)を用いてラミネートして、積層体を得る。ラミネート条件は、温度80℃、減圧時間30秒の後、圧力0.3MPaにて30秒加圧とする。熱硬化型封止剤の場合は、この積層体を、熱循環式オーブンで100℃60分間加熱し、サンプルを得る。スガ試験機社製ヘーズメーター HZ-V3(ハロゲンランプ)を用いて、空気をリファレンスとして、D65光にて、サンプルの平行線透過率(%)を測定する。 Prepare a sealing sheet with a layer of sealing agent with a thickness of 20 μm. This sealing sheet is cut into a length of 70 mm and a width of 25 mm, and the sealing sheet is a glass plate (microslide glass having a length of 76 mm, a width of 26 mm and a thickness of 1.2 mm, a white slide glass manufactured by Matsunami Glass Industry Co., Ltd.). A laminated body is obtained by laminating S1112 edge polishing No. 2) with a batch type vacuum laminator (manufactured by Nichigo Morton, V-160). Laminating conditions are a temperature of 80 ° C., a depressurization time of 30 seconds, and then a pressure of 0.3 MPa for 30 seconds. In the case of a thermosetting sealant, this laminate is heated in a thermodynamic oven at 100 ° C. for 60 minutes to obtain a sample. Using a haze meter HZ-V3 (halogen lamp) manufactured by Suga Test Instruments Co., Ltd., measure the parallel line transmittance (%) of the sample with D65 light using air as a reference.
[9.第二実施形態に係る封止剤]
 本発明の第二実施形態に係る封止剤は、半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含む無機フィラーと、バインダ樹脂とを含む。半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムが、封止剤中において、優れた鉛吸着性及び吸湿性を発揮できるので、その封止剤は、鉛含有部を備える電子デバイスの封止用途に用いた場合に、鉛含有部への水分の浸入を抑制でき、且つ、鉛含有部から電子デバイスの外部への鉛の漏出を抑制できる。
[9. Encapsulant according to the second embodiment]
The encapsulant according to the second embodiment of the present invention contains an inorganic filler containing at least one selected from the group consisting of semi-baked hydrotalcite, calcined hydrotalcite and calcium oxide, and a binder resin. Since semi-fired hydrotalcite, fired hydrotalcite and calcium oxide can exhibit excellent lead adsorption and hygroscopicity in the sealant, the sealant can be used to seal an electronic device having a lead-containing portion. When used in an application, it is possible to suppress the infiltration of water into the lead-containing portion and to suppress the leakage of lead from the lead-containing portion to the outside of the electronic device.
 本発明の第二実施形態に係る封止剤は、上述した範囲の鉛吸着性パラメータ及び水蒸気浸入バリア性パラメータを、有してもよく、有さなくてもよい。また、本発明の第二実施形態に係る封止剤は、半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上の無機フィラーを含む。以上の事項以外は、本発明の第二実施形態に係る封止剤は、第一実施形態に係る封止剤と同じ組成及び物性を有しうるので、第一実施形態に係る封止剤と同じ利点を得ることができる。 The encapsulant according to the second embodiment of the present invention may or may not have the lead adsorption parameter and the water vapor infiltration barrier parameter in the above range. In addition, the encapsulant according to the second embodiment of the present invention contains one or more kinds of inorganic fillers selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide. Except for the above items, the encapsulant according to the second embodiment of the present invention may have the same composition and physical properties as the encapsulant according to the first embodiment. You can get the same benefits.
[10.封止剤の製造方法]
 封止剤の製造方法は、特に制限されない。封止剤は、配合成分を、混練ローラー及び回転ミキサー等の混合装置を用いて混合する方法により、製造できる。また、前記の混合の際、配合成分に組み合わせて、溶媒を混合してもよい。
[10. Manufacturing method of sealant]
The method for producing the sealant is not particularly limited. The sealant can be produced by a method of mixing the compounding components using a mixing device such as a kneading roller and a rotary mixer. Further, at the time of the above mixing, the solvent may be mixed in combination with the compounding ingredients.
[11.封止剤の用途]
 封止剤は、封止用途に用いた場合に、水分の浸入を抑制でき、且つ、鉛の漏出を抑制できる。よって、鉛含有部を備える電子デバイスの封止に用いることが好ましい。このような電子デバイスの種類に制限は無い。電子デバイスとしては、例えば、ペロブスカイト型太陽電池等の太陽電池;鉛蓄電池等の二次電池;有鉛ハンダを含む電子部品;などが挙げられる。
[11. Use of sealant]
When used for sealing purposes, the sealing agent can suppress the infiltration of water and the leakage of lead. Therefore, it is preferable to use it for sealing an electronic device including a lead-containing portion. There are no restrictions on the types of such electronic devices. Examples of the electronic device include a solar cell such as a perovskite type solar cell; a secondary battery such as a lead storage battery; and an electronic component containing lead solder.
[12.封止シート]
 (12.1.封止シートの構成)
 本発明の一実施形態に係る封止シートは、支持体と、この支持体上に形成され前記封止剤の層とを備える。封止剤の層は、封止剤で形成された層であるので、上述した封止剤を含む。このような封止シートは、封止剤の層が封止対象に接するようにラミネートされることにより、前記封止剤による封止対象の封止を達成することができる。通常、ラミネートは、封止対象と封止剤の層とが直接に接するように行われる。2つの部材が「直接」に接するとは、それらの部材の間に他の部材が無いことをいう。
[12. Sealing sheet]
(12.1. Composition of sealing sheet)
A sealing sheet according to an embodiment of the present invention includes a support and a layer of the sealing agent formed on the support. Since the sealant layer is a layer formed of the sealant, it contains the above-mentioned sealant. By laminating such a sealing sheet so that the layer of the sealing agent is in contact with the sealing target, the sealing of the sealing target by the sealing agent can be achieved. Laminating is usually performed so that the object to be sealed and the layer of the sealant are in direct contact with each other. When two members are in "direct" contact, it means that there is no other member between them.
 封止剤の層の厚みは、封止対象に応じて設定しうる。封止剤の層の具体的な厚さは、通常3μm~200μm、好ましくは5μm~175μm、さらに好ましくは5μm~150μmの範囲である。封止剤の層の厚さが、前記範囲の下限値以上である場合、封止シートとのラミネートによる封止対象へのダメージを抑制したり、ラミネート後に封止剤の層として得られる封止部の厚さの均一性を高くできる。また、封止剤の層の厚さが、前記範囲の上限値以下である場合、電子デバイスへの水分の浸入を効果的に抑制できる。例えば、第一基材及び第二基材を備えるペロブスカイト型太陽電池では、封止剤の層としての封止部が薄いほど、外気と封止部とが接する側部の面積を小さくできるので、水分の浸入を効果的に抑制できる(後述する図4参照)。 The thickness of the sealant layer can be set according to the object to be sealed. The specific thickness of the sealant layer is usually in the range of 3 μm to 200 μm, preferably 5 μm to 175 μm, and more preferably 5 μm to 150 μm. When the thickness of the sealant layer is equal to or greater than the lower limit of the above range, damage to the sealing target due to lamination with the sealing sheet can be suppressed, or sealing obtained as a sealant layer after lamination can be suppressed. The uniformity of the thickness of the part can be increased. Further, when the thickness of the sealant layer is not more than the upper limit of the above range, the infiltration of water into the electronic device can be effectively suppressed. For example, in a perovskite type solar cell provided with a first base material and a second base material, the thinner the sealing portion as the sealing agent layer, the smaller the area of the side portion where the outside air and the sealing portion are in contact with each other. The infiltration of water can be effectively suppressed (see FIG. 4 described later).
 支持体としては、通常、適切な材料で形成されたフィルムを用いる。支持体としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、シクロオレフィンポリマー、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどのプラスチックフィルム;アルミニウム箔、ステンレス箔、銅箔等の金属箔;などが挙げられる。また、金属箔とプラスチックフィルムとをラミネートした複合フィルムを支持体として用いてもよい。 As the support, a film formed of an appropriate material is usually used. Examples of the support include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, cycloolefin polymers, polyethylene terephthalate (hereinafter sometimes abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate and polyimide. Plastic film; metal foil such as aluminum foil, stainless foil, copper foil; and the like. Further, a composite film obtained by laminating a metal foil and a plastic film may be used as a support.
 支持体は、耐透湿性を高める観点から、バリア層を備えていてもよい。特に、支持体がプラスチックフィルムを備える場合、そのプラスチックフィルムに組み合わせて適切なバリア層を備える支持体を用いることが好ましい。バリア層の材料としては、例えば、無機物が挙げられる。このような無機物としては、例えば、窒化ケイ素、SiCN等の窒化物;酸化ケイ素、酸化アルミニウム等の酸化物;アモルファスシリコン;ステンレス、アルミニウムの金属;などが挙げられる。バリア層は、例えば、前記の材料を蒸着することによって形成できる。 The support may be provided with a barrier layer from the viewpoint of enhancing moisture permeability. In particular, when the support includes a plastic film, it is preferable to use a support having an appropriate barrier layer in combination with the plastic film. Examples of the material of the barrier layer include inorganic substances. Examples of such an inorganic substance include nitrides such as silicon nitride and SiCN; oxides such as silicon oxide and aluminum oxide; amorphous silicon; stainless steel and metal of aluminum; and the like. The barrier layer can be formed, for example, by depositing the above-mentioned material.
 支持体には、表面処理が施されていてもよい。表面処理としては、例えば、マット処理、コロナ処理、離型処理等が挙げられる。離型処理としては、例えば、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤による離型処理が挙げられる。 The support may be surface-treated. Examples of the surface treatment include a matte treatment, a corona treatment, and a mold release treatment. Examples of the mold release treatment include a mold release treatment using a mold release agent such as a silicone resin-based mold release agent, an alkyd resin-based mold release agent, and a fluororesin-based mold release agent.
 支持体の具体例としては、アルミニウム箔付きポリエチレンテレフタレートフィルムの市販品として、東海東洋アルミ販売社製「PETツキAL1N30」、福田金属社製「PETツキAL3025」、パナック社製「アルペット」等が挙げられる。支持体の別の具体例としては、テックバリアHX、AX、LX、Lシリーズ(三菱樹脂社製);該テックバリアHX、AX、LX、Lシリーズよりもさらに防湿効果を高めたX-BARRIER(三菱樹脂社製);等が挙げられる。 Specific examples of the support include "PET Tsuki AL1N30" manufactured by Tokai Toyo Aluminum Sales Co., Ltd., "PET Tsuki AL3025" manufactured by Fukuda Metal Co., Ltd., and "Alpet" manufactured by Panac Co., Ltd. as commercially available polyethylene terephthalate films with aluminum foil. Can be mentioned. As another specific example of the support, Tech Barrier HX, AX, LX, L series (manufactured by Mitsubishi Plastics); X-BARRIER (manufactured by Mitsubishi Plastics), which has a higher moisture-proof effect than the Tech Barrier HX, AX, LX, L series. Mitsubishi Plastics); etc.
 支持体の厚さは、特に限定されないが、取扱い性等の観点から、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは125μm以下、特に好ましくは100μm以下である。 The thickness of the support is not particularly limited, but from the viewpoint of handleability and the like, it is preferably 10 μm or more, more preferably 20 μm or more, preferably 200 μm or less, more preferably 150 μm or less, still more preferably 125 μm or less, in particular. It is preferably 100 μm or less.
 封止シートは、必要に応じて、保護フィルムを備えていてもよい。例えば、封止シートは、支持体、封止剤の層、及び、保護フィルムをこの順で備えることにより、保護フィルムによって封止剤の層を保護してもよい。保護フィルムで保護することにより、封止剤の層の表面へのゴミの付着及び傷付きを抑制できる。 The sealing sheet may be provided with a protective film, if necessary. For example, the sealing sheet may be provided with a support, a layer of a sealing agent, and a protective film in this order, so that the layer of the sealing agent may be protected by the protective film. By protecting with a protective film, it is possible to prevent dust from adhering to and scratching the surface of the sealant layer.
 保護フィルムとしては、例えば、支持体と同様のプラスチックフィルムを用いうる。保護フィルムには、支持体と同じく、表面処理が施されていてもよい。保護フィルムの厚さは、特に制限されず、通常1μm以上、好ましくは10μm以上であり、通常150μm以下、好ましくは100μm以下、より好ましくは40μm以下、更に好ましくは30μm以下でありうる。 As the protective film, for example, a plastic film similar to the support can be used. The protective film may be surface-treated like the support. The thickness of the protective film is not particularly limited and may be usually 1 μm or more, preferably 10 μm or more, usually 150 μm or less, preferably 100 μm or less, more preferably 40 μm or less, still more preferably 30 μm or less.
 (12.2.封止シートの製造方法)
 前記の封止シートは、支持体上に封止剤の層を形成することを含む製造方法によって、製造できる。封止剤の層は、例えば、封止剤及び溶媒を含むワニスを用意することと、このワニスを支持体上に塗布することと、塗布されたワニスを乾燥させることと、を含む方法によって形成しうる。
(12.2. Manufacturing method of sealing sheet)
The sealing sheet can be manufactured by a manufacturing method comprising forming a layer of a sealing agent on a support. The sealant layer is formed by, for example, preparing a varnish containing a sealant and a solvent, applying the varnish onto a support, and drying the applied varnish. Can be done.
 溶媒としては、通常、有機溶媒を用いる。有機溶媒としては、例えば、アセトン、メチルエチルケトン(以下、「MEK」とも略称する)、シクロヘキサノン等のケトン溶媒;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒;セロソルブ、ブチルカルビトール等のカルビトール溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒;ソルベントナフサ等の芳香族系混合溶媒;が挙げられる。芳香族系混合溶媒としては、例えば、「スワゾール」(丸善石油社製、商品名)、「イプゾール」(出光興産社製、商品名)が挙げられる。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the solvent, an organic solvent is usually used. Examples of the organic solvent include ketone solvents such as acetone, methyl ethyl ketone (hereinafter, also abbreviated as “MEK”) and cyclohexanone; acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate. Carbitol solvents such as cellosolve and butylcarbitol; aromatic hydrocarbon solvents such as toluene and xylene; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; aromatic mixed solvents such as solventnaphtha; Be done. Examples of the aromatic mixed solvent include "Swazole" (manufactured by Maruzen Petroleum Co., Ltd., trade name) and "Ipsol" (manufactured by Idemitsu Kosan Co., Ltd., trade name). As the solvent, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 ワニスの乾燥は、例えば、加熱法、熱風吹き付け法などを用いうる。乾燥条件は、特に制限はなく、温度は、例えば50℃~100℃でありうる。また、乾燥時間は、好ましくは1分以上、より好ましくは3分以上であり、好ましくは60分以下、より好ましくは15分以下である。支持体上にワニスを塗布後、その塗布されたワニスを乾燥することにより、溶媒が除去されて封止剤の層が支持体上に得られる。 For drying the varnish, for example, a heating method, a hot air blowing method, or the like can be used. The drying conditions are not particularly limited, and the temperature can be, for example, 50 ° C. to 100 ° C. The drying time is preferably 1 minute or more, more preferably 3 minutes or more, preferably 60 minutes or less, and more preferably 15 minutes or less. After applying the varnish on the support, the applied varnish is dried to remove the solvent and obtain a layer of the sealant on the support.
 封止シートの製造方法は、必要に応じて、封止剤の層を加熱することを含んでいてもよい。加熱により、封止剤に含まれる反応性基の反応を進行させることができるので、架橋反応及び重合反応等の反応を適切な程度に進行させて、封止剤の層の硬度を高めることができる。この加熱は、粘着型封止剤を用いる場合に好適である。特に、酸無水物基及びエポキシ基等の反応性基を有するポリオレフィン系樹脂を含む粘着型封止剤を用いる場合に、前記の加熱を行うことが好ましい。このような封止前の加熱によっては、封止対象に含まれる成分の熱劣化を避けることができる。加熱条件は、特に制限はない。加熱温度は、50℃~200℃が好ましく、100℃~180℃がより好ましく、120℃~160℃がさらに好ましい。加熱時間は、15分~120分が好ましく、30分~100分がより好ましい。 The method for producing the sealing sheet may include heating the layer of the sealing agent, if necessary. Since the reaction of the reactive groups contained in the encapsulant can be allowed to proceed by heating, the hardness of the encapsulant layer can be increased by advancing the reaction such as the crosslinking reaction and the polymerization reaction to an appropriate degree. it can. This heating is suitable when an adhesive type sealant is used. In particular, when a pressure-sensitive adhesive containing a polyolefin resin having a reactive group such as an acid anhydride group and an epoxy group is used, it is preferable to carry out the above heating. By such heating before sealing, it is possible to avoid thermal deterioration of the components contained in the sealing target. The heating conditions are not particularly limited. The heating temperature is preferably 50 ° C. to 200 ° C., more preferably 100 ° C. to 180 ° C., and even more preferably 120 ° C. to 160 ° C. The heating time is preferably 15 minutes to 120 minutes, more preferably 30 minutes to 100 minutes.
 封止シートの製造方法は、必要に応じて、保護フィルムを設けることを含んでいてもよい。保護フィルムは、例えば、保護フィルムと、封止剤の層とを貼り合わせることによって設けうる。封止剤の層の加熱を行う場合、保護フィルムは、封止剤の層の加熱前に設けてもよく、封止剤の層の加熱後に設けてもよい。 The method for manufacturing the sealing sheet may include providing a protective film, if necessary. The protective film can be provided, for example, by laminating the protective film and the layer of the sealant. When heating the encapsulant layer, the protective film may be provided before heating the encapsulant layer or after heating the encapsulant layer.
 (12.3.封止シートの使い方)
 前記の封止シートは、鉛含有部、電極等の封止対象の封止のために用いることができる。封止シートを用いた封止方法は、通常、封止シートの封止剤の層を封止対象にラミネートすることを含む。封止シートが保護フィルムを備える場合、通常は、保護フィルムを剥離した後で、前記のラミネートが行われる。ラミネートの方法は、バッチ式であってもよく、ロールを用いた連続式であってもよい。
(12.3. How to use the sealing sheet)
The sealing sheet can be used for sealing a lead-containing part, an electrode, or the like to be sealed. The sealing method using a sealing sheet usually involves laminating a layer of a sealing agent on the sealing sheet on the sealing target. When the sealing sheet includes a protective film, the above-mentioned lamination is usually performed after the protective film is peeled off. The laminating method may be a batch method or a continuous method using a roll.
 通常、前記のラミネートによれば、封止対象上に封止剤の層及び支持体がこの順に設けられる。よって、ラミネート後の封止対象は、封止剤の層及び支持体によって被覆されうる。封止シートを用いた封止方法においては、支持体の剥離を行わずに、封止剤の層及び支持体で封止対象を被覆した状態を得てもよい。この状態においては、封止対象は、封止剤の層だけでなく支持体によっても封止されるので、水分の浸入を効果的に抑制することができる。例えば、バリア層を備える支持体、金属箔を備える支持体などのように、耐透湿性の高い支持体を備える封止シートを用いる場合、前記のように封止剤の層及び支持体による封止を行うことが好ましい。 Normally, according to the above-mentioned laminate, a layer of a sealant and a support are provided in this order on the object to be sealed. Therefore, the object to be sealed after lamination can be covered with a layer of a sealing agent and a support. In the sealing method using a sealing sheet, a state in which the sealing target is covered with a layer of a sealing agent and a support may be obtained without peeling the support. In this state, the object to be sealed is sealed not only by the layer of the sealing agent but also by the support, so that the infiltration of water can be effectively suppressed. For example, when a sealing sheet having a highly moisture-permeable support such as a support having a barrier layer or a support having a metal foil is used, sealing with a layer of a sealing agent and the support as described above is used. It is preferable to stop.
 封止シートを用いた封止方法は、例えば、前記のラミネートの後で支持体を剥離して、封止剤の層で封止対象を被覆した状態を得てもよい。この状態においても、封止対象を封止する封止剤の層によって、水分の浸入を効果的に抑制することができる。例えば、バリア層を備えない支持体、金属箔を備えない支持体などのように、高い耐透湿性を有さない支持体を備える封止シートを用いる場合、前記のように封止剤の層による封止を行うことが好ましい。 In the sealing method using a sealing sheet, for example, the support may be peeled off after the above-mentioned lamination to obtain a state in which the sealing target is covered with a layer of a sealing agent. Even in this state, the infiltration of water can be effectively suppressed by the layer of the sealing agent that seals the object to be sealed. For example, when a sealing sheet having a support that does not have high moisture permeability, such as a support that does not have a barrier layer and a support that does not have a metal foil, is used, the sealant layer is used as described above. It is preferable to perform sealing with.
 封止シートを用いた封止方法は、例えば、更に封止基材を設けることを含んでいてもよい。特に、前記のように支持体の剥離を行う場合、支持体の剥離によって露出した封止剤の層の面に、適切な封止基材を設けることが好ましい。このような封止基材としては、例えば、上述した支持体と同じフィルムを用いてもよく、ガラス板、金属板、鋼板等の剛直な板材を用いてもよい。封止基材を設けることにより、水分の浸入を更に効果的に抑制できる。 The sealing method using the sealing sheet may include, for example, further providing a sealing base material. In particular, when the support is peeled off as described above, it is preferable to provide an appropriate sealing base material on the surface of the sealant layer exposed by the peeling of the support. As such a sealing base material, for example, the same film as the above-mentioned support may be used, or a rigid plate material such as a glass plate, a metal plate, or a steel plate may be used. By providing the sealing base material, the infiltration of water can be suppressed more effectively.
 封止シートを用いた封止方法は、例えば、ラミネート後に、封止剤の層を硬化させることを含んでいてもよい。通常は、封止剤の層に熱を加えることにより、封止剤に含まれる反応性基の架橋反応及び重合反応等の反応を進行させて、封止剤の層を熱硬化させる。これにより、封止対象と封止剤との密着性を向上させたり、封止剤の層の機械的強度を向上させたりできるので、封止剤による封止能力が高められる。よって、水分の浸入及び鉛の漏出を特に効果的に抑制できる。このようなラミネート後の熱硬化は、熱硬化型封止剤を用いる場合に好適である。 The sealing method using the sealing sheet may include, for example, curing the sealing agent layer after laminating. Usually, by applying heat to the sealant layer, reactions such as a cross-linking reaction and a polymerization reaction of reactive groups contained in the sealant are allowed to proceed, and the sealant layer is thermoset. As a result, the adhesion between the sealing target and the sealing agent can be improved, and the mechanical strength of the sealing agent layer can be improved, so that the sealing ability of the sealing agent can be enhanced. Therefore, the infiltration of water and the leakage of lead can be suppressed particularly effectively. Such thermosetting after lamination is suitable when a thermosetting type sealant is used.
 前記の熱硬化の際、通常は、適切な熱処理装置によって封止剤の層を加熱する。熱処理装置としては、例えば、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置などが挙げられる。また、例えば、ヒートツールを封止剤の層に圧着することにより、封止剤の層を加熱してもよい。封止対象と封止剤の層との密着性を高める観点から、硬化温度は、50℃以上が好ましく、55℃以上がより好ましく、60℃以上が特に好ましい。また、封止対象に含まれる成分の熱劣化を抑制する観点から、硬化温度は、150℃以下が好ましく、100℃以下がより好ましく、80℃以下がさらに好ましい。硬化時間は、10分以上が好ましく、20分以上がより好ましい。 During the above-mentioned thermosetting, the sealant layer is usually heated by an appropriate heat treatment device. Examples of the heat treatment apparatus include a hot air circulation type oven, an infrared heater, a heat gun, and a high frequency induction heating apparatus. Alternatively, the sealant layer may be heated, for example, by pressure-bonding the heat tool to the sealant layer. From the viewpoint of enhancing the adhesion between the object to be sealed and the layer of the sealant, the curing temperature is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, and particularly preferably 60 ° C. or higher. Further, from the viewpoint of suppressing thermal deterioration of the components contained in the sealing target, the curing temperature is preferably 150 ° C. or lower, more preferably 100 ° C. or lower, and even more preferably 80 ° C. or lower. The curing time is preferably 10 minutes or more, more preferably 20 minutes or more.
 上述したいずれの封止方法でも、封止剤の層による封止が達成される。よって、封止対象に鉛含有部が含まれる場合、鉛含有部への水分の浸入だけでなく、鉛含有部からの鉛の漏出も抑制することができる。 With any of the above-mentioned sealing methods, sealing with a layer of a sealing agent is achieved. Therefore, when the target to be sealed contains a lead-containing portion, not only the infiltration of water into the lead-containing portion but also the leakage of lead from the lead-containing portion can be suppressed.
[13.電子デバイス]
 本発明の一実施形態に係る電子デバイスは、鉛含有部と、この鉛含有部を封止する封止部とを備える。封止部は、上述した封止剤を含む。この際、封止部に含まれる封止剤は、硬化していてもよい。このように硬化した封止剤を含む封止部は、「封止剤を含む封止部」に包含される。このような電子デバイスでは、鉛含有部への水分の浸入を、封止部によって抑制できる。また、鉛含有部から電子デバイスの外部への鉛の漏出を、封止部によって抑制できる。
[13. Electronic device]
An electronic device according to an embodiment of the present invention includes a lead-containing portion and a sealing portion for sealing the lead-containing portion. The sealing portion contains the above-mentioned sealing agent. At this time, the sealing agent contained in the sealing portion may be cured. The sealing portion containing the sealing agent cured in this way is included in the "sealing portion containing the sealing agent". In such an electronic device, the infiltration of water into the lead-containing portion can be suppressed by the sealing portion. Further, the leakage of lead from the lead-containing portion to the outside of the electronic device can be suppressed by the sealing portion.
 鉛含有部は、鉛原子を含む部分であり、電子デバイスの種類に応じて広範な範囲のものが包含されうる。以下、この鉛含有部としてペロブスカイト層を含むペロブスカイト型太陽電池を例に挙げて、電子デバイスについて具体的に説明する。 The lead-containing part is a part containing a lead atom, and can include a wide range of parts depending on the type of electronic device. Hereinafter, the electronic device will be specifically described by taking as an example a perovskite type solar cell including a perovskite layer as the lead-containing portion.
 図4は、本発明の一実施形態に係るペロブスカイト型太陽電池400の一例を模式的に示す断面図である。図4に示すように、一例としてのペロブスカイト型太陽電池400は、第一電極410と、鉛原子を含むペロブスカイト層420と、第二電極430と、硬化していてもよい封止剤を含む封止部440とを備える。この太陽電池400では、光電変換層としてのペロブスカイト層420で発生した電荷を第一電極410及び第二電極430を通して取り出せるように、第一電極410と第二電極430との間にペロブスカイト層420が設けられている。 FIG. 4 is a cross-sectional view schematically showing an example of a perovskite type solar cell 400 according to an embodiment of the present invention. As shown in FIG. 4, the perovskite type solar cell 400 as an example includes a first electrode 410, a perovskite layer 420 containing a lead atom, a second electrode 430, and a seal containing a sealant which may be cured. A stop portion 440 is provided. In this solar cell 400, a perovskite layer 420 is provided between the first electrode 410 and the second electrode 430 so that the electric charge generated in the perovskite layer 420 as the photoelectric conversion layer can be taken out through the first electrode 410 and the second electrode 430. It is provided.
 第一電極410及び第二電極430は、導電性材料で形成されている。導電性材料の種類に制限はないが、第一電極410及び第二電極430の一方又は両方が、透明な導電性材料で形成されていることが好ましい。そのような材料としては、例えば、ITO(インジウムスズ酸化物)、SnO、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性酸化物;導電性ポリマー;などが挙げられる。 The first electrode 410 and the second electrode 430 are made of a conductive material. The type of the conductive material is not limited, but it is preferable that one or both of the first electrode 410 and the second electrode 430 are formed of a transparent conductive material. Examples of such materials include conductive oxides such as ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), and GZO (gallium zinc oxide). Conductive polymer; and the like.
 ペロブスカイト層420は、ペロブスカイト化合物を含み、このペロブスカイト層420が光の照射を受けて電荷を発生しうる。ペロブスカイト化合物としては、例えば、下記式(P)で表される化合物が挙げられる。
  A (k+2)   (P)
The perovskite layer 420 contains a perovskite compound, and the perovskite layer 420 can be irradiated with light to generate an electric charge. Examples of the perovskite compound include a compound represented by the following formula (P).
A P k M P XP (k + 2) (P)
 式(P)において、kは、1又は2の整数を表わす。 In formula (P), k represents an integer of 1 or 2.
 式(P)において、Aは、1価の有機分子又はそのイオンを表す。1価の有機分子は、特段の制限はないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジメチルアミン、ジプロピルアミンジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、アゾール、イミダゾリン、カルバゾール等が挙げられる。また、1価の有機分子のイオンとしては、メチルアンモニウム(CHNH)、フェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン及びこれらのイオン、並びにフェネチルアンモニウムが好ましく、メチルアミン、エチルアミン、プロピルアミン及びこれらのイオンがより好ましい。 In formula (P), Ap represents a monovalent organic molecule or an ion thereof. The monovalent organic molecule is not particularly limited, but for example, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, dimethylamine, dipropylamine dibutylamine, dipentylamine, dihexylamine, etc. Trimethylamine, triethylamine, tripropylamine, tributylamine, trypentylamine, trihexylamine, ethylmethylamine, methylpropylamine, butylmethylamine, methylpentylamine, hexylmethylamine, ethylpropylamine, ethylbutylamine, imidazole, azole, Examples thereof include pyrrole, aziridine, azirin, azetidine, azeto, azole, imidazoline, carbazole and the like. Examples of monovalent organic molecule ions include methylammonium (CH 3 NH 3 ), phenethylammonium and the like. Of these, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine and their ions, and phenethylammine are preferable, and methylamine, ethylamine, propylamine and these ions are more preferable.
 式(P)において、Mは、2価の金属原子を表す。Mは、2価の金属原子として鉛を含むことが好ましい。また、Mは、鉛に組み合わせて鉛以外の金属原子を含んでもよい。鉛以外の金属原子としては、例えば、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。これらの金属原子は、1種類が単独で用いられてもよく、2種類以上が組み合わせて用いられてもよい。 In formula (P), M p represents a divalent metal atom. M p preferably includes lead as divalent metal atom. Further, M p may comprise a metal atom other than lead in combination with lead. Examples of metal atoms other than lead include tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, and europium. Can be mentioned. One type of these metal atoms may be used alone, or two or more types may be used in combination.
 式(P)において、Xは、ハロゲン原子又はカルコゲン原子を表す。ハロゲン原子は、特段の制限はないが、例えば、塩素、臭素、ヨウ素、硫黄が挙げられる。また、カルコゲン原子は、特段の制限はないが、セレンが挙げられる。これらは、1種類が単独で用いられてもよく、2種類以上が組み合わせて用いられてもよい。 In formula (P), X p represents a halogen atom or a chalcogen atom. The halogen atom is not particularly limited, and examples thereof include chlorine, bromine, iodine, and sulfur. The chalcogen atom is not particularly limited, but selenium can be mentioned. One of these may be used alone, or two or more of them may be used in combination.
 前記のペロブスカイト化合物の具体例としては、例えば、国際公開第2014/045021号、日本国特開2014-49596号公報、日本国特開2016-82003号公報等に記載のペロブスカイト化合物が挙げられる。 Specific examples of the perovskite compound include the perovskite compounds described in International Publication No. 2014/045021, Japanese Patent Application Laid-Open No. 2014-49596, Japanese Patent Application Laid-Open No. 2016-82003, and the like.
 上述したものの中でも、ペロブスカイト化合物としては、CHNHPbI等の鉛原子を含む化合物が好ましい。ペロブスカイト化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、ペロブスカイト層420は、ペロブスカイト化合物に組み合わせて、酸化物半導体等の任意の成分を含んでいてもよい。 Among the above-mentioned compounds, as the perovskite compound, a compound containing a lead atom such as CH 3 NH 3 PbI 3 is preferable. One type of perovskite compound may be used alone, or two or more types may be used in combination at any ratio. Further, the perovskite layer 420 may contain an arbitrary component such as an oxide semiconductor in combination with the perovskite compound.
 封止部440は、ペロブスカイト層420を封止するように設けられている。したがって、ペロブスカイト層420の表面の一部又は全部は、封止部440に被覆されており、ペロブスカイト層420の表面は露出していない。図4に示す例では、ペロブスカイト層420の表面のうち、第一電極410又は第二電極430と接触していない部分が、封止部440に被覆されている例を示して説明する。このようなペロブスカイト層は、外気とペロブスカイト層420との間が封止部440によって封止されている。よって、外気中の水分がペロブスカイト層420へ浸入することを抑制できる。また、ペロブスカイト層420に含まれる鉛が、太陽電池400の外部への漏出することを、抑制できる。通常は、ペロブスカイト層420だけでなく第一電極410及び第二電極430も封止部440によって封止され、水からの保護が達成される。 The sealing portion 440 is provided so as to seal the perovskite layer 420. Therefore, part or all of the surface of the perovskite layer 420 is covered with the sealing portion 440, and the surface of the perovskite layer 420 is not exposed. In the example shown in FIG. 4, a portion of the surface of the perovskite layer 420 that is not in contact with the first electrode 410 or the second electrode 430 is covered with the sealing portion 440. In such a perovskite layer, the space between the outside air and the perovskite layer 420 is sealed by a sealing portion 440. Therefore, it is possible to suppress the infiltration of moisture in the outside air into the perovskite layer 420. Further, it is possible to prevent lead contained in the perovskite layer 420 from leaking to the outside of the solar cell 400. Normally, not only the perovskite layer 420 but also the first electrode 410 and the second electrode 430 are sealed by the sealing portion 440 to achieve protection from water.
 太陽電池400は、更に、第一基材450及び第二基材460を備えることが好ましい。通常は、第一基材450及び第二基材460の一方は、製造時及び使用時に太陽電池400又はその製造中間体を支持するための支持基材として用いられる。また、第一基材450及び第二基材460の他方は、通常、太陽電池400の主面を広範囲に封止するための封止基材として用いられる。第一電極410、ペロブスカイト層420及び第二電極430は、一般に、第一基材450及び第二基材460の間の空間に設けられる。したがって、図4に示すように、封止部440は、第一基材450及び第二基材460の間の空間を充填するように設けられうるので、第一基材450及び第二基材460の間に設けられた第一電極410、ペロブスカイト層420及び第二電極430等の部材は、いずれも封止部440によって封止されることができる。 It is preferable that the solar cell 400 further includes a first base material 450 and a second base material 460. Usually, one of the first base material 450 and the second base material 460 is used as a supporting base material for supporting the solar cell 400 or its manufacturing intermediate during manufacturing and use. The other of the first base material 450 and the second base material 460 is usually used as a sealing base material for sealing the main surface of the solar cell 400 in a wide range. The first electrode 410, the perovskite layer 420 and the second electrode 430 are generally provided in the space between the first base material 450 and the second base material 460. Therefore, as shown in FIG. 4, since the sealing portion 440 can be provided so as to fill the space between the first base material 450 and the second base material 460, the first base material 450 and the second base material 450 and the second base material Members such as the first electrode 410, the perovskite layer 420, and the second electrode 430 provided between the 460s can all be sealed by the sealing portion 440.
 一般に、第一基材450及び第二基材460は、水分を透過させにくい材料で形成されたり、大きな厚みを有したりするので、水分の浸入を高度に抑制できる。よって、前記の例に係る太陽電池400では、ペロブスカイト層420への水分の浸入経路は、封止部440の側部440Sを通った面内方向の浸入経路A4に限定されうる。上述した封止剤は、このような浸入経路A4における水分の浸入を、特に効果的に抑制できる。よって、第一基材450及び第二基材460の間に設けられたペロブスカイト層420の封止に用いた場合に、上述した封止剤は、水分の浸入の抑制及び鉛の漏出の抑制という効果を、特に顕著に発揮することが可能である。 In general, the first base material 450 and the second base material 460 are made of a material that does not easily allow water to permeate or have a large thickness, so that the infiltration of water can be highly suppressed. Therefore, in the solar cell 400 according to the above example, the infiltration route of water into the perovskite layer 420 can be limited to the in-plane infiltration route A4 passing through the side portion 440S of the sealing portion 440. The above-mentioned sealant can particularly effectively suppress the infiltration of water in such an infiltration route A4. Therefore, when used for sealing the perovskite layer 420 provided between the first base material 450 and the second base material 460, the above-mentioned sealing agent is said to suppress the infiltration of water and the leakage of lead. It is possible to exert the effect particularly remarkably.
 ペロブスカイト型太陽電池400は、更に変更して実施してもよい。例えば、ペロブスカイト型太陽電池400は、第一電極410とペロブスカイト層420との間に、任意の層を備えていてもよい。また、例えば、ペロブスカイト型太陽電池400は、ペロブスカイト層420と第二電極430との間に、任意の層を備えていてもよい。任意の層としては、電子輸送層、正孔輸送層などが挙げられる。 The perovskite type solar cell 400 may be further modified and implemented. For example, the perovskite type solar cell 400 may include an arbitrary layer between the first electrode 410 and the perovskite layer 420. Further, for example, the perovskite type solar cell 400 may include an arbitrary layer between the perovskite layer 420 and the second electrode 430. Examples of the optional layer include an electron transport layer and a hole transport layer.
 電子デバイスの製造方法に制限は無い。例えば、鉛含有層を形成することと、その鉛含有層を封止する封止部を形成することとを含む方法によって、製造できる。封止部は、例えば、封止シートを用いた封止剤の層のラミネートにより、鉛含有部を被覆する封止剤の層として形成できる。具体例を挙げると、第一基材450上に第一電極410、ペロブスカイト層420及び第二電極430を形成した後で、それら第一電極410、ペロブスカイト層420及び第二電極430の一部又は全体を被覆するように封止シート(図示せず)の封止剤の層をラミネートすることを含む方法により、封止剤の層としての封止部440を備えるペロブスカイト型太陽電池400を製造できる。この際、封止シートの支持体を、第二基材460として用いてもよい。また、封止シートの支持体を剥離した後で、別の第二基材460を封止部440上に設けてもよい。 There are no restrictions on the manufacturing method of electronic devices. For example, it can be produced by a method including forming a lead-containing layer and forming a sealing portion for sealing the lead-containing layer. The sealing portion can be formed as a layer of a sealing agent that covers the lead-containing portion, for example, by laminating a layer of a sealing agent using a sealing sheet. To give a specific example, after forming the first electrode 410, the perovskite layer 420 and the second electrode 430 on the first base material 450, a part of the first electrode 410, the perovskite layer 420 and the second electrode 430, or A perovskite-type solar cell 400 having a sealing portion 440 as a sealing agent layer can be manufactured by a method including laminating a sealing agent layer of a sealing sheet (not shown) so as to cover the whole. .. At this time, the support of the sealing sheet may be used as the second base material 460. Further, after the support of the sealing sheet is peeled off, another second base material 460 may be provided on the sealing portion 440.
 以下、実施例を挙げて、本発明をより具体的に説明する。ただし、本発明は、以下の実施例によって制限を受けるものではない。以下の説明において、量を示す「部」及び「%」は、別に断らない限り、「質量部」及び「質量%」を表す。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples. In the following description, "parts" and "%" indicating quantities represent "parts by mass" and "% by mass" unless otherwise specified.
[評価方法]
 [封止剤の鉛吸着能力の評価方法]
 水500mLに、鉛標準溶液10μL加え、精製して、水温20℃~25℃の鉛イオン濃度20μg/Lの鉛イオン含有水溶液を調整した。
[Evaluation method]
[Evaluation method of lead adsorption capacity of sealant]
To 500 mL of water, 10 μL of a lead standard solution was added and purified to prepare a lead ion-containing aqueous solution having a lead ion concentration of 20 μg / L at a water temperature of 20 ° C. to 25 ° C.
 実施例及び比較例で製造した封止シートを、長さ16cm及び幅24cmmにカットして、第一試験用シートを得た。この第一試験用シートの封止剤の層側にメッシュ布(ボルティングクロス(ナイロン)メッシュ40 NB-40、アズワン社製)を貼合したのち、1cm角に細かく刻んで、鉛イオン含有水溶液50mlに入れ、高速回転ミキサー(練太郎ARE-310、回転数2000rpm)で15分攪拌した(鉛吸着能評価試験)。このとき、熱硬化型封止剤に係る実施例5~6及び比較例4では、メッシュ布の貼合後に、100℃60分の条件で封止剤を熱硬化した後で、第一試験用シートを細かく刻んだ。撹拌後の鉛イオン含有水溶液の鉛イオン濃度M1を測定した。 The sealing sheets produced in Examples and Comparative Examples were cut into a length of 16 cm and a width of 24 cm to obtain a first test sheet. A mesh cloth (bolting cloth (nylon) mesh 40 NB-40, manufactured by AS ONE Corporation) is attached to the layer side of the sealant of this first test sheet, and then finely chopped into 1 cm squares to form a lead ion-containing aqueous solution. The mixture was placed in 50 ml and stirred with a high-speed rotary mixer (Kentaro ARE-310, rotation speed 2000 rpm) for 15 minutes (lead adsorption capacity evaluation test). At this time, in Examples 5 to 6 and Comparative Example 4 relating to the thermosetting type sealant, after the sealant was heat-cured under the condition of 100 ° C. for 60 minutes after the mesh cloth was attached, it was used for the first test. I chopped the sheet into small pieces. The lead ion concentration M1 of the lead ion-containing aqueous solution after stirring was measured.
 第一試験用シートを浸漬する前の鉛イオン含有水溶液の鉛イオン濃度20μg/Lから、第一試験用シートを浸漬した後の鉛イオン含有水溶液の鉛イオン濃度M1を差し引いて、鉛イオン濃度の変化量を得た。この変化量に、鉛イオン含有水溶液の体積50mLを掛け算して、鉛吸着量を算出した。算出した鉛吸着量を、使用した第一試験用シートが備える封止剤の層の面積384cmで割り算して、封止剤の層1m当たりに吸着された鉛の質量X(μg/m)を算出した。この吸着された鉛の質量Xは、鉛吸着性パラメータに相当する。吸着された鉛の質量Xに基づいて、下記の基準により、封止剤の鉛吸着能力を評価した。 The lead ion concentration of the lead ion-containing aqueous solution before immersing the first test sheet is 20 μg / L, minus the lead ion concentration M1 of the lead ion-containing aqueous solution after immersing the first test sheet. The amount of change was obtained. The amount of lead adsorption was calculated by multiplying this amount of change by the volume of the lead ion-containing aqueous solution of 50 mL. The calculated lead adsorption amount is divided by the area of the sealant layer of the first test sheet used, which is 384 cm 2 , and the mass of lead adsorbed per 1 m 2 of the sealant layer X (μg / m). 2 ) was calculated. The mass X of the adsorbed lead corresponds to the lead adsorbability parameter. Based on the mass X of adsorbed lead, the lead adsorption capacity of the encapsulant was evaluated according to the following criteria.
 (鉛吸着能力の基準)
 「良」:吸着された鉛の質量Xが、10μg/m以上。
 「不良」:吸着された鉛の質量Xが、10μg/m未満。
(Standard of lead adsorption capacity)
"Good": The mass X of adsorbed lead is 10 μg / m 2 or more.
"Defective": The mass X of adsorbed lead is less than 10 μg / m 2.
 鉛イオン含有水溶液の鉛イオン濃度は、下記の方法で測定した。
 鉛イオン含有水溶液5mlを鉛センサーパック(HACH社製)中のテストチューブに入れ、試薬タブレット(前記鉛センサーパックに付属する測定用試薬)を溶解させた。その後、鉛イオン含有水溶液に試験電極を浸し、ポータブル走査型鉛測定器(型名HSA-1000、HACH社製)を用いて、鉛イオン濃度を測定した。
The lead ion concentration of the lead ion-containing aqueous solution was measured by the following method.
5 ml of a lead ion-containing aqueous solution was placed in a test tube in a lead sensor pack (manufactured by HACH), and a reagent tablet (a reagent for measurement attached to the lead sensor pack) was dissolved. Then, the test electrode was immersed in a lead ion-containing aqueous solution, and the lead ion concentration was measured using a portable scanning lead measuring device (model name HSA-1000, manufactured by HACH).
 [封止剤の水蒸気浸入バリア性の評価方法]
 支持フィルムとして、アルミニウム箔及びポリエチレンテレフタレートフィルムを備える複合フィルム「PETツキAL1N30」(アルミニウム箔の厚さ30μm、ポリエチレンテレフタレートフィルムの厚さ25μm、東海東洋アルミ販売社製)を用意した。この支持フィルムを支持体の代わりに用いたこと以外は、各実施例及び比較例における封止シートの製造方法と同様にして、支持フィルムのアルミニウム箔側の面に、封止剤の層を形成した。これにより、支持フィルム及び封止剤の層を備える第二試験用シートを得た。得られた第二試験用シートは、封止剤の層に含まれる吸着水を除去するため、窒素雰囲気下で乾燥した。乾燥は、粘着型封止剤を用いた実施例1~4及び比較例1~3では、130℃で60分行った。また、乾燥は、熱硬化型封止剤を用いた実施例5~6及び比較例4では、100℃で5分行った。
[Evaluation method of water vapor infiltration barrier property of sealant]
As a support film, a composite film "PET Tsuki AL1N30" (aluminum foil thickness 30 μm, polyethylene terephthalate film thickness 25 μm, manufactured by Tokai Toyo Aluminum Sales Co., Ltd.) including an aluminum foil and a polyethylene terephthalate film was prepared. A layer of a sealant was formed on the aluminum foil side surface of the support film in the same manner as in the manufacturing method of the sealing sheet in each Example and Comparative Example except that this support film was used instead of the support. did. As a result, a second test sheet provided with a support film and a layer of a sealant was obtained. The obtained second test sheet was dried in a nitrogen atmosphere in order to remove the adsorbed water contained in the sealant layer. Drying was carried out at 130 ° C. for 60 minutes in Examples 1 to 4 and Comparative Examples 1 to 3 using the adhesive type sealant. Further, the drying was carried out at 100 ° C. for 5 minutes in Examples 5 to 6 and Comparative Example 4 using the thermosetting type sealant.
 無アルカリガラスで形成された50mm×50mm角のガラス板を用意した。このガラス板を、煮沸したイソプロピルアルコールで5分間洗浄し、150℃において30分以上乾燥した。 A 50 mm x 50 mm square glass plate made of non-alkali glass was prepared. The glass plate was washed with boiling isopropyl alcohol for 5 minutes and dried at 150 ° C. for 30 minutes or more.
 このガラス板の片面に、当該ガラス板の端部からの距離0mm~2mmの周縁エリアを覆うマスクを用いて、カルシウムを蒸着した。これにより、ガラス板の片面の、前記ガラス板の端部からの距離0mm~2mmの周縁エリアを除く中央部分に、厚さ200nmのカルシウム膜(純度99.8%)が形成された。 Calcium was vapor-deposited on one side of this glass plate using a mask covering the peripheral area at a distance of 0 mm to 2 mm from the end of the glass plate. As a result, a calcium film (purity 99.8%) having a thickness of 200 nm was formed on one side of the glass plate in the central portion excluding the peripheral area having a distance of 0 mm to 2 mm from the edge of the glass plate.
 窒素雰囲気内で、上述した第二試験用シートの封止剤の層と、前記ガラス板のカルシウム膜側の面とを、熱ラミネーター(フジプラ社製 ラミパッカーDAiSY A4(LPD2325))を用いて貼り合わせて、積層体を得た。粘着型封止剤に係る実施例1~4及び比較例1~3では、得られた積層体を、評価サンプルとして得た。また、熱硬化型封止剤に係る実施例5~6及び比較例4では、得られた積層体を、温度100℃で60分間加熱し、封止剤の層を硬化して、評価サンプルを得た。 In a nitrogen atmosphere, the sealant layer of the second test sheet described above and the surface of the glass plate on the calcium film side are bonded together using a thermal laminator (Lamipacker DAiSY A4 (LPD2325) manufactured by Fujipla Co., Ltd.). To obtain a laminate. In Examples 1 to 4 and Comparative Examples 1 to 3 relating to the pressure-sensitive adhesive, the obtained laminate was obtained as an evaluation sample. Further, in Examples 5 to 6 and Comparative Example 4 relating to the thermosetting type sealant, the obtained laminate was heated at a temperature of 100 ° C. for 60 minutes to cure the sealant layer, and an evaluation sample was prepared. Obtained.
 一般に、カルシウムが水と接触して酸化カルシウムになると、透明になる。また、前記の評価サンプルでは、ガラス板及びアルミニウム箔が充分に高い水蒸気浸入バリア性を有するので、水分は、通常、封止剤の層の端部を通って面内方向(厚み方向に垂直な方向)に移動して、カルシウム膜に到達しうる。よって、評価サンプルに水分が浸入すると、カルシウム膜は端部から次第に酸化されて透明になるので、カルシウム膜の縮小が観察される。したがって、評価サンプルへの水分侵入は、評価サンプルの端部からカルシウム膜までの封止距離[mm]を測定することによって、評価できる。そのため、カルシウム膜を含む評価サンプルを、鉛を含む電子デバイスのモデルとして使用できる。 Generally, when calcium comes into contact with water and becomes calcium oxide, it becomes transparent. Further, in the above evaluation sample, since the glass plate and the aluminum foil have a sufficiently high water vapor infiltration barrier property, the moisture usually passes through the end portion of the sealant layer and is perpendicular to the in-plane direction (vertical to the thickness direction). Can move in the direction) to reach the calcium membrane. Therefore, when water penetrates into the evaluation sample, the calcium film is gradually oxidized from the end and becomes transparent, so that shrinkage of the calcium film is observed. Therefore, the intrusion of water into the evaluation sample can be evaluated by measuring the sealing distance [mm] from the end of the evaluation sample to the calcium film. Therefore, the evaluation sample containing the calcium film can be used as a model of the electronic device containing lead.
 まず、評価サンプルの端部からカルシウム膜の端部までの封止距離X2[mm]を、顕微鏡(Measuring Microscope MF-U、ミツトヨ社製)により測定した。以下、この封止距離X2を、当初封止距離X2ということがある。 First, the sealing distance X2 [mm] from the end of the evaluation sample to the end of the calcium film was measured with a microscope (Measuring Microscope MF-U, manufactured by Mitutoyo). Hereinafter, this sealing distance X2 may be referred to as an initial sealing distance X2.
 次いで、温度85℃湿度85%RHに設定した恒温恒湿槽に、評価サンプルを収納した。恒温恒湿槽に収納された評価サンプルの端部からカルシウム膜の端部までの間の封止距離X1(mm)が、当初封止距離X2よりも0.1mm増加した時点で、評価サンプルを恒温恒湿槽から取り出した。評価サンプルを恒温恒湿槽へ収納した時点から、評価サンプルを恒温恒湿槽から取り出した時点までの時間を、減少開始時間t[時間]として求めた。この減少開始時間tは、評価サンプルを恒温恒湿槽に収納した時点TP1から、恒温恒湿槽に収納された評価サンプルの端部とカルシウム膜の端部との間の封止距離X1[mm]が「X2+0.1mm」となる時点TP2までの時間に相当する。 Next, the evaluation sample was stored in a constant temperature and humidity chamber set to a temperature of 85 ° C. and a humidity of 85% RH. When the sealing distance X1 (mm) from the end of the evaluation sample stored in the constant temperature and humidity chamber to the end of the calcium film increases by 0.1 mm from the initial sealing distance X2, the evaluation sample is prepared. It was taken out from a constant temperature and humidity chamber. The time from the time when the evaluation sample was stored in the constant temperature and humidity chamber to the time when the evaluation sample was taken out from the constant temperature and humidity chamber was determined as the decrease start time t [hour]. This decrease start time t is the sealing distance X1 [from the time point T P1 when the evaluation sample is stored in the constant temperature and humidity chamber to the end of the evaluation sample stored in the constant temperature and humidity chamber and the end of the calcium film. mm] corresponds to the time until the time point T P2 when it becomes “X2 + 0.1 mm”.
 前記の封止距離X1及び減少開始時間tを、式(1)のフィックの拡散式に当て嵌めて、水蒸気浸入バリア性パラメータとしての定数Kを算出した。 The sealing distance X1 and the reduction start time t were applied to the diffusion equation of Fick in the equation (1) to calculate the constant K as the water vapor infiltration barrier parameter.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 得られた定数Kを用いて、封止剤が水分の浸入を抑制する能力としての水蒸気浸入バリア性を、下記の基準で評価した。定数Kの値が小さいほど、水蒸気浸入バリア性が高いことを意味する。「h」は、「時間」を意味する。 Using the obtained constant K, the water vapor infiltration barrier property as the ability of the encapsulant to suppress the infiltration of water was evaluated according to the following criteria. The smaller the value of the constant K, the higher the water vapor infiltration barrier property. "H" means "time".
 (水蒸気浸入バリア性の基準)
 「良」:定数Kが、0.025cm/h0.5未満。
 「不良」:定数Kが、0.025cm/h0.5以上。
(Standard for water vapor infiltration barrier)
"Good": The constant K is less than 0.025 cm / h 0.5.
"Defective": The constant K is 0.025 cm / h 0.5 or more.
[合成例1:イオン液体硬化剤の合成]
 イオン液体硬化剤であるN-アセチルグリシンテトラブチルホスホニウム塩を、以下の手順にて合成した。
 41.4%のテトラブチルホスホニウムハイドロキサイド水溶液(北興化学工業社製)20.0gに対し、0℃にて、N-アセチルグリシン(東京化成工業社製)3.54gを加え、10分間攪拌した。撹拌後に、エバポレーターを用いて40mmHg~50mmHgの圧力で、60℃~80℃にて2時間、90℃にて5時間、反応溶液を濃縮した。得られた濃縮物を、室温にて酢酸エチル(純正化学社製)14.2mlに溶解して溶液を調製した。得られた溶液を、エバポレーターを用いて40mmHg~50mmHgの圧力で、70℃~90℃にて3時間濃縮して、N-アセチルグリシンテトラブチルホスホニウム塩11.7g(純度:96.9%)をオイル状化合物として得た。
[Synthesis Example 1: Synthesis of ionic liquid curing agent]
The N-acetylglycine tetrabutylphosphonium salt, which is an ionic liquid curing agent, was synthesized by the following procedure.
To 20.0 g of a 41.4% tetrabutylphosphonium hydroxide aqueous solution (manufactured by Hokuko Chemical Industry Co., Ltd.), 3.54 g of N-acetylglycine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added at 0 ° C. and stirred for 10 minutes. did. After stirring, the reaction solution was concentrated using an evaporator at a pressure of 40 mmHg to 50 mmHg at 60 ° C. to 80 ° C. for 2 hours and 90 ° C. for 5 hours. The obtained concentrate was dissolved in 14.2 ml of ethyl acetate (manufactured by Junsei Chemical Co., Ltd.) at room temperature to prepare a solution. The obtained solution was concentrated using an evaporator at a pressure of 40 mmHg to 50 mmHg at 70 ° C. to 90 ° C. for 3 hours to obtain 11.7 g (purity: 96.9%) of N-acetylglycine tetrabutylphosphonium salt. Obtained as an oily compound.
[I.粘着型封止剤に係る実施例及び比較例]
[実施例1]
 (ワニスの製造)
 粘着付与剤としてのジシクロペンタジエン系石油樹脂(T-REZ HA105、JXTGエネルギー社製、軟化点105℃)のスワゾール溶液(不揮発成分60%)を、不揮発成分の量で77.5部用意した後、酸化防止剤(Irganox1010 BASF社製)を2.3部加え、溶解した。この溶液に、無水マレイン酸変性液状ポリブテン(HV-300M、東邦化学工業社製、酸無水物基濃度:0.77mmol/g、数平均分子量:2,100)21部、ポリブテン(HV-1900、JXエネルギー社製、数平均分子量:2,900)94部、及び、無機フィラーとしての市販の半焼成ハイドロタルサイトA(半焼成ハイドロタルサイト、BET比表面積:13m/g、平均粒子径:400nm)100部を、3本ロールミルで分散させて、混合物を得た。
[I. Examples and Comparative Examples of Adhesive Sealants]
[Example 1]
(Manufacturing of varnish)
After preparing 77.5 parts of a swazole solution (60% non-volatile component) of a dicyclopentadiene petroleum resin (T-REZ HA105, manufactured by JXTG Energy Co., Ltd., softening point 105 ° C.) as a tackifier. , 2.3 parts of an antioxidant (manufactured by Irganox 1010 BASF) was added and dissolved. In this solution, 21 parts of maleic anhydride-modified liquid polybutene (HV-300M, manufactured by Toho Chemical Industry Co., Ltd., acid anhydride group concentration: 0.77 mmol / g, number average molecular weight: 2,100), polybutene (HV-1900, JX Energy Co., Ltd., number average molecular weight: 2,900) 94 parts, and commercially available semi-firing hydrotalcite A (semi-firing hydrotalcite, BET specific surface area: 13 m 2 / g, average particle size: as an inorganic filler: 100 parts (400 nm) were dispersed with a three-roll mill to obtain a mixture.
 得られた混合物に、グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体(T-YP341、星光PMC社製、プロピレン単位/ブテン単位:71%/29%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)のスワゾール溶液(不揮発成分20%)を不揮発成分の量で20部、アミン系化合物(2,4,6-トリス(ジアミノメチル)フェノール、以下「TAP」と略記することがある。化薬アクゾ社製)0.1部、及びトルエン210部を配合し、高速回転ミキサーで均一に分散して、封止剤を含むワニスを得た。 In the obtained mixture, a glycidyl methacrylate-modified propylene-butene random copolymer (T-YP341, manufactured by Starlight PMC), propylene unit / butene unit: 71% / 29%, epoxy group concentration: 0.638 mmol / g, number average. 20 parts of a swazole solution (20% non-volatile component) having a molecular weight of 155,000), an amine compound (2,4,6-tris (diaminomethyl) phenol, hereinafter abbreviated as "TAP". 0.1 part and 210 parts of toluene were blended and uniformly dispersed with a high-speed rotary mixer to obtain a varnish containing a sealant.
 (封止シートの製造)
 支持体として、シリコーン系離型剤で処理された表面(離型処理面)を有するポリエチレンテレフタレートフィルム(PETの厚み50μm;SP3000、東洋クロス社製)を用意した。この支持体の離型処理面上に、前記のワニスをダイコーターにて均一に塗布し、140℃で30分間加熱することにより、厚さ20μmの封止剤の層を備える封止シートを得た。
(Manufacturing of sealing sheet)
As a support, a polyethylene terephthalate film (PET thickness 50 μm; SP3000, manufactured by Toyo Cloth Co., Ltd.) having a surface treated with a silicone-based mold release agent (release treated surface) was prepared. The varnish is uniformly applied on the mold release surface of the support with a die coater and heated at 140 ° C. for 30 minutes to obtain a sealing sheet having a layer of a sealing agent having a thickness of 20 μm. It was.
[実施例2]
 無機フィラーの種類を、半焼成ハイドロタルサイトAから、市販の焼成ハイドロタルサイトC(焼成ハイドロタルサイト、BET比表面積:190m/g、平均粒子径:400nm)に変更した。以上の事項以外は、実施例1と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Example 2]
The type of inorganic filler was changed from semi-calcined hydrotalcite A to commercially available calcined hydrotalcite C (calcined hydrotalcite, BET specific surface area: 190 m 2 / g, average particle size: 400 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 1.
[実施例3]
 無機フィラーの種類を、半焼成ハイドロタルサイトAから、市販の酸化カルシウム(BET比表面積:5m/g、平均粒子径:4000nm)に変更した。以上の事項以外は、実施例1と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Example 3]
The type of inorganic filler was changed from semi-calcined hydrotalcite A to commercially available calcium oxide (BET specific surface area: 5 m 2 / g, average particle size: 4000 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 1.
[実施例4]
 無機フィラーの種類を、半焼成ハイドロタルサイトAから、ナノゼオライト(Zeoal 4A、中村超硬社製、平均粒子径300nm、細孔径4Å)に変更した。以上の事項以外は、実施例1と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Example 4]
The type of inorganic filler was changed from semi-calcined hydrotalcite A to nanozeolite (Zeoal 4A, manufactured by Nakamura Choukousha, average particle size 300 nm, pore diameter 4 Å). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 1.
[比較例1]
 無機フィラーとしての半焼成ハイドロタルサイトAを使用しなかった。以上の事項以外は、実施例1と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Comparative Example 1]
Semi-baked hydrotalcite A as an inorganic filler was not used. Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 1.
[比較例2]
 無機フィラーの種類を、半焼成ハイドロタルサイトAから、市販の未焼成ハイドロタルサイトD(BET比表面積:10m/g、平均粒子径:400nm)に変更した。以上の事項以外は、実施例1と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Comparative Example 2]
The type of inorganic filler was changed from semi-fired hydrotalcite A to commercially available unfired hydrotalcite D (BET specific surface area: 10 m 2 / g, average particle size: 400 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 1.
[比較例3]
 無機フィラーの種類を、半焼成ハイドロタルサイトAから、合成マイカ(PDM-5B、トピー工業社製、平均粒子径:6.0μm)に変更した。以上の事項以外は、実施例1と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Comparative Example 3]
The type of inorganic filler was changed from semi-baked hydrotalcite A to synthetic mica (PDM-5B, manufactured by Topy Industries, Ltd., average particle size: 6.0 μm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 1.
[評価]
 各実施例及び比較例で得たワニス及び封止シートを用いて、上述した評価方法によって、封止剤の鉛吸着能力及び水蒸気浸入バリア性の評価を行った。評価結果を、下記の表1に示す。
[Evaluation]
Using the varnish and the sealing sheet obtained in each Example and Comparative Example, the lead adsorption capacity and the water vapor infiltration barrier property of the sealing agent were evaluated by the above-mentioned evaluation method. The evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[II.熱硬化型封止剤に係る実施例及び比較例]
[実施例5]
 (ワニスの製造)
 ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との混合品(日鉄ケミカル&マテリアル社製「ZX1059」)162部と、無機フィラーとしての市販の半焼成ハイドロタルサイトA(半焼成ハイドロタルサイト、BET比表面積:13m/g、平均粒子径:400nm)150部と、シランカップリング剤(信越化学工業社製「KMB403」、3-グリシジルオキシプロピルトリエトキシシラン)7.5部とを混練後、3本ロールミルにて分散させて、混合物を得た。
[II. Examples and Comparative Examples of Thermosetting Encapsulants]
[Example 5]
(Manufacturing of varnish)
162 parts of a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin ("ZX1059" manufactured by Nittetsu Chemical & Materials Co., Ltd.) and commercially available semi-fired hydrotalcite A (semi-fired hydrotalcite," as an inorganic filler. After kneading 150 parts of BET specific surface area: 13 m 2 / g, average particle size: 400 nm) and 7.5 parts of a silane coupling agent (“KMB403” manufactured by Shin-Etsu Chemical Industry Co., Ltd., 3-glycidyloxypropyltriethoxysilane). The mixture was dispersed with a 3-roll mill to obtain a mixture.
 硬化促進剤(サンアプロ社製「U-CAT3512T」)7.5部を、フェノキシ樹脂溶液(三菱ケミカル社製「YX7200B35」、溶媒:メチルエチルケトン、不揮発成分:35%)163部(樹脂57部)に溶解させた溶液に、脂環骨格含有エポキシ樹脂(日鉄ケミカル&マテリアル社製「TOPR-300」)108部と、先に調製した混合物と、合成例1にて合成したイオン液体硬化剤(N-アセチルグリシンテトラブチルホスホニウム塩)9部とを配合し、高速回転ミキサーで均一に分散して、封止剤を含むワニスを得た。 Dissolve 7.5 parts of the curing accelerator ("U-CAT3512T" manufactured by San-Apro) in 163 parts (57 parts of resin) of a phenoxy resin solution ("YX7200B35" manufactured by Mitsubishi Chemical Co., Ltd., solvent: methyl ethyl ketone, non-volatile component: 35%). 108 parts of an alicyclic skeleton-containing epoxy resin (“TOPR-300” manufactured by Nittetsu Chemical & Materials Co., Ltd.), the mixture prepared above, and the ionic liquid curing agent (N-) synthesized in Synthesis Example 1 were added to the prepared solution. A varnish containing 9 parts of acetylglycine tetrabutylphosphonium salt) was mixed and uniformly dispersed with a high-speed rotary mixer to obtain a varnish containing a sealant.
 (封止シートの製造)
 支持体として、アルキッド系離型剤で処理された表面(離型処理面)を有するポリエチレンテレフタレートフィルム(厚さ38μm、以下「離型PETフィルム」ということがある。)を用意した。この支持体の離型処理面上に、前記のワニスを、乾燥後の封止剤の層の厚さが20μmとなるようにダイコーターにて均一に塗布し、80℃で5分間乾燥させて、封止剤の層を形成した。その後、封止剤の層の表面に、保護フィルムとして離型PETフィルムを載せ、支持体、封止剤の層及び離型PETフィルムをこの順で備える封止シートを得た。
(Manufacturing of sealing sheet)
As a support, a polyethylene terephthalate film (thickness 38 μm, hereinafter sometimes referred to as “release PET film”) having a surface (release treated surface) treated with an alkyd-based mold release agent was prepared. The above varnish is uniformly applied on the release-treated surface of the support with a die coater so that the thickness of the sealing agent layer after drying is 20 μm, and dried at 80 ° C. for 5 minutes. , Formed a layer of sealant. Then, a release PET film was placed on the surface of the sealant layer as a protective film, and a seal sheet having a support, a sealant layer and a release PET film in this order was obtained.
[実施例6]
 無機フィラーの種類を、半焼成ハイドロタルサイトAから、市販の酸化カルシウム(BET比表面積:5m/g、平均粒子径:4000nm)に変更した。以上の事項以外は、実施例5と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Example 6]
The type of inorganic filler was changed from semi-calcined hydrotalcite A to commercially available calcium oxide (BET specific surface area: 5 m 2 / g, average particle size: 4000 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 5.
[比較例4]
 無機フィラーの種類を、半焼成ハイドロタルサイトAから、市販の未焼成ハイドロタルサイトD(BET比表面積:10m/g、平均粒子径:400nm)に変更した。以上の事項以外は、実施例5と同様の方法にて、封止剤を含むワニス、及び、厚さ20μmの封止剤の層を備える封止シートを製造した。
[Comparative Example 4]
The type of inorganic filler was changed from semi-fired hydrotalcite A to commercially available unfired hydrotalcite D (BET specific surface area: 10 m 2 / g, average particle size: 400 nm). Except for the above items, a varnish containing a sealant and a sealing sheet provided with a layer of the sealant having a thickness of 20 μm were produced by the same method as in Example 5.
[評価]
 各実施例及び比較例で得たワニス及び封止シートを用いて、上述した評価方法によって、封止剤の鉛吸着能力及び水蒸気浸入バリア性の評価を行った。
 ただし、鉛吸着能力の評価方法においては、封止フィルムをカット後、保護フィルムとしての離型PETフィルムを剥離して、第一試験用シートを得た。よって、鉛吸着能力の評価方法は、一方の面が露出した封止剤の層を備える第一試験用シートを用いて行われた。
 また、水蒸気浸入バリア性の評価方法では、第二試験用シートから保護フィルムとしての離型PETフィルムを剥離した後で、その第二試験用シートを乾燥した。
 評価結果を、下記の表2に示す。
[Evaluation]
Using the varnish and the sealing sheet obtained in each Example and Comparative Example, the lead adsorption capacity and the water vapor infiltration barrier property of the sealing agent were evaluated by the above-mentioned evaluation method.
However, in the method for evaluating the lead adsorption capacity, after cutting the sealing film, the release PET film as a protective film was peeled off to obtain a first test sheet. Therefore, the method for evaluating the lead adsorption capacity was carried out using a first test sheet provided with a layer of a sealant having one surface exposed.
Further, in the method for evaluating the water vapor infiltration barrier property, the release PET film as a protective film was peeled off from the second test sheet, and then the second test sheet was dried.
The evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[III.水蒸気透過率試験法(WVTR測定法)による水蒸気透過率の測定]
[参考例1:実施例1の封止シートについての評価]
 実施例1で製造した封止シートの封止剤の層と、水蒸気透過率P2が判明している基準フィルム(ポリエチレンテレフタレートフィルム「ルミラー38 R80」、厚み35μm、東レ販売社製)とを、バッチ式真空ラミネーター(V-160、ニチゴー・モートン社製)を用いてラミネートした。ラミネート条件は、温度80℃、減圧時間30秒の後、圧力0.3MPaにて30秒加圧であった。その後、支持体を剥離して、封止剤の層及び基準フィルムを備える樹脂シートを得た。
[III. Measurement of water vapor permeability by water vapor permeability test method (WVTR measurement method)]
[Reference Example 1: Evaluation of the sealing sheet of Example 1]
A batch of the sealant layer of the sealing sheet produced in Example 1 and a reference film (polyethylene terephthalate film "Lumirror 38 R80", thickness 35 μm, manufactured by Toray Industries, Inc.) whose water vapor transmittance P2 is known. Laminated using a type vacuum laminator (V-160, manufactured by Nichigo Morton). The laminating conditions were a temperature of 80 ° C., a depressurization time of 30 seconds, and then a pressure of 0.3 MPa for 30 seconds. Then, the support was peeled off to obtain a resin sheet provided with a layer of a sealing agent and a reference film.
 得られた樹脂シートの水蒸気透過率P0を、JIS K7129Bに準じた赤外線センサ法により求めた。水蒸気透過率(g/m・24時間)は、水蒸気透過率測定装置(モコン(MOCON)社製、PERMATRAN-W 3/34)を使用して、温度40℃、相対湿度90%の雰囲気下で測定した。 The water vapor transmittance P0 of the obtained resin sheet was determined by an infrared sensor method according to JIS K7129B. Water vapor permeability (g / m 2 · 24 hours), the water vapor transmission rate measurement device (MOCON (MOCON) Co., PERMATRAN-W 3/34) using a temperature of 40 ° C., a relative humidity of 90% Measured in.
 樹脂シートの水蒸気透過率P0と、基準フィルムの水蒸気透過率P2とを、下記の式(2)に当て嵌めて、封止剤の層の水蒸気透過率P1を算出した。ここで、基準フィルムの水蒸気透過率P2は、15g/m・24時間とした。
  1/P0=1/P1+1/P2   (2)
The water vapor transmittance P0 of the resin sheet and the water vapor transmittance P2 of the reference film were applied to the following formula (2) to calculate the water vapor transmittance P1 of the sealant layer. Here, the water vapor transmission rate P2 of the reference film was set to 15g / m 2 · 24 hours.
1 / P0 = 1 / P1 + 1 / P2 (2)
[参考例2:比較例1の封止シートについての評価]
 実施例1で製造した封止シートの代わりに、比較例1で製造した封止シートを用いたこと以外は、参考例1と同様にして、封止剤の層の水蒸気透過率P1を測定した。
[Reference Example 2: Evaluation of the Sealing Sheet of Comparative Example 1]
The water vapor transmittance P1 of the sealant layer was measured in the same manner as in Reference Example 1 except that the sealing sheet produced in Comparative Example 1 was used instead of the sealing sheet produced in Example 1. ..
[参考例3:比較例3の封止シートについての評価]
 実施例1で製造した封止シートの代わりに、比較例3で製造した封止シートを用いたこと以外は、参考例1と同様にして、封止剤の層の水蒸気透過率P1を測定した。
[Reference Example 3: Evaluation of the Sealing Sheet of Comparative Example 3]
The water vapor transmittance P1 of the sealant layer was measured in the same manner as in Reference Example 1 except that the sealing sheet produced in Comparative Example 3 was used instead of the sealing sheet produced in Example 1. ..
[結果]
 参考例1~3の結果を、下記の表3に示す。また、表3には、参考例1~3に対応する実施例1並びに比較例1及び3での水蒸気浸入バリア性の評価も、併せて示す。
[result]
The results of Reference Examples 1 to 3 are shown in Table 3 below. Table 3 also shows the evaluation of the water vapor infiltration barrier property in Examples 1 and Comparative Examples 1 and 3 corresponding to Reference Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 参考例1~3で採用したWVTR測定法では、封止剤の層を厚み方向に透過する水蒸気の透過率が測定される。参考例1~3の結果から分かるように、厚み方向において水分の浸入を抑制する能力については、参考例1は参考例2よりも優れるが、参考例3の方が更に優れている。しかし、実施例1並びに比較例1及び3の水蒸気浸入バリア性の結果から分かるように、厚み方向に垂直な面内方向において水分の浸入を抑制する能力については、参考例1に対応する実施例1は、参考例2及び3に対応する比較例1及び3よりも優れている。したがって、封止剤が水分の浸入を抑制する能力は、当該水蒸気の浸入方向に応じて異なりうることが分かる。また、実施例にかかる封止剤が、面内方向において特異的に高い水蒸気浸入バリア性を発揮していることが分かる。 In the WVTR measurement method adopted in Reference Examples 1 to 3, the transmittance of water vapor that permeates the sealant layer in the thickness direction is measured. As can be seen from the results of Reference Examples 1 to 3, Reference Example 1 is superior to Reference Example 2 in the ability to suppress the infiltration of water in the thickness direction, but Reference Example 3 is further superior. However, as can be seen from the results of the water vapor infiltration barrier properties of Example 1 and Comparative Examples 1 and 3, the ability to suppress the infiltration of water in the in-plane direction perpendicular to the thickness direction is the example corresponding to Reference Example 1. 1 is superior to Comparative Examples 1 and 3 corresponding to Reference Examples 2 and 3. Therefore, it can be seen that the ability of the sealant to suppress the infiltration of water may differ depending on the infiltration direction of the water vapor. Further, it can be seen that the encapsulant according to the examples exhibits a specifically high water vapor infiltration barrier property in the in-plane direction.
[IV.ハイドロタルサイトの物性の評価]
[参考例4~6]
 (ハイドロタルサイトの吸水率の測定)
 上述した実施例及び比較例で用いた各ハイドロタルサイトを天秤にて1.5g秤取して、初期質量を測定した。秤取した各ハイドロタルサイトを、大気圧下、60℃、90%RH(相対湿度)に設定した小型環境試験器(エスペック社製 SH-222)に200時間静置して吸湿させた後、吸湿後の質量を測定した。測定された質量から、下記式(i)により、飽和吸水率を計算した。
 飽和吸水率[質量%]=100×(吸湿後の質量-初期質量)/初期質量   (i)
[IV. Evaluation of physical properties of hydrotalcite]
[Reference Examples 4 to 6]
(Measurement of water absorption rate of hydrotalcite)
1.5 g of each hydrotalcite used in the above-mentioned Examples and Comparative Examples was weighed with a balance, and the initial mass was measured. Each of the weighed hydrotalcites was allowed to stand in a small environmental tester (SH-222 manufactured by ESPEC) set at 60 ° C. and 90% RH (relative humidity) under atmospheric pressure for 200 hours to absorb moisture. The mass after moisture absorption was measured. From the measured mass, the saturated water absorption rate was calculated by the following formula (i).
Saturated water absorption rate [mass%] = 100 × (mass after moisture absorption-initial mass) / initial mass (i)
 (ハイドロタルサイトの熱重量減少率の測定)
 熱分析装置(TG/DTA EXSTAR6300、日立ハイテクサイエンス社製)を用いて、上述した実施例及び比較例で用いた各ハイドロタルサイトの熱重量分析を行った。アルミニウム製のサンプルパンにハイドロタルサイトを10mg秤量し、蓋をせずオープンの状態で、窒素流量200mL/分の雰囲気下で、30℃から550℃まで10℃/分で昇温した。下記式(ii)を用いて、280℃および380℃における熱重量減少率を求めた。
 熱重量減少率[質量%]=100×(加熱前の質量-所定温度に達した時の質量)/加熱前の質量   (ii)
(Measurement of thermogravimetric reduction rate of hydrotalcite)
Using a thermal analyzer (TG / DTA EXSTAR6300, manufactured by Hitachi High-Tech Science Corporation), thermogravimetric analysis of each hydrotalcite used in the above-mentioned Examples and Comparative Examples was performed. 10 mg of hydrotalcite was weighed in an aluminum sample pan, and the temperature was raised from 30 ° C. to 550 ° C. at 10 ° C./min under an atmosphere of a nitrogen flow rate of 200 mL / min in an open state without a lid. The thermogravimetric reduction rate at 280 ° C and 380 ° C was determined using the following formula (ii).
Thermogravimetric reduction rate [mass%] = 100 × (mass before heating-mass when a predetermined temperature is reached) / mass before heating (ii)
 (ハイドロタルサイトの粉末X線回折の測定)
 上述した実施例及び比較例で用いた各ハイドロタルサイトの粉末X線回折の測定を行った。粉末X線回折の測定は、粉末X線回折装置(Empyrean、PANalytical社製)により、対陰極CuKα(1.5405Å)、電圧:45V、電流:40mA、サンプリング幅:0.0260°、走査速度:0.0657°/s、測定回折角範囲(2θ):5.0131~79.9711°の条件で行った。ピークサーチは、回折装置付属のソフトウエアのピークサーチ機能を利用し、「最小有意度:0.50、最小ピークチップ:0.01°、最大ピークチップ:1.00°、ピークベース幅:2.00°、方法:2次微分の最小値」の条件で行った。2θが8°~18°の範囲内で現れたスプリットした二つのピーク、または二つのピークの合成によりショルダーを有するピークを検出し、低角側に現れたピークまたはショルダーの回折強度(=低角側回折強度)と、高角側に現れるピークまたはショルダーの回折強度(=高角側回折強度)を測定し、相対強度比(=低角側回折強度/高角側回折強度)を算出した。
(Measurement of powder X-ray diffraction of hydrotalcite)
The powder X-ray diffraction of each hydrotalcite used in the above-mentioned Examples and Comparative Examples was measured. Powder X-ray diffraction is measured by a powder X-ray diffractometer (Empylean, manufactured by PANalytical), anti-cathode CuKα (1.5405 Å), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: The measurement was performed under the conditions of 0.0657 ° / s and the measurement diffraction angle range (2θ): 5.0131 to 79.9711 °. The peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It was carried out under the condition of "0.00 °, method: minimum value of second derivative". Two split peaks in which 2θ appears in the range of 8 ° to 18 °, or a peak with a shoulder is detected by combining the two peaks, and the peak appearing on the low angle side or the diffraction intensity of the shoulder (= low angle) The side diffraction intensity) and the diffraction intensity of the peak or shoulder appearing on the high angle side (= high angle side diffraction intensity) were measured, and the relative intensity ratio (= low angle side diffraction intensity / high angle side diffraction intensity) was calculated.
 (結果)
 各ハイドロタルサイトの評価結果を、下記の表4に示す。
(result)
The evaluation results of each hydrotalcite are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 前記の飽和吸水率、熱重量減少率及び粉末X線回折の結果より、ハイドロタルサイトAは「半焼成ハイドロタルサイト」であり、ハイドロタルサイトCは「焼成ハイドロタルサイト」であり、ハイドロタルサイトDは「未焼成ハイドロタルサイト」である。 From the results of the saturated water absorption rate, the thermal weight reduction rate and the powder X-ray diffraction, hydrotalcite A is "semi-calcined hydrotalcite" and hydrotalcite C is "calcined hydrotalcite". Site D is "unfired hydrotalcite".
 10 評価サンプル
 100 ガラス板
 200 カルシウム膜
 300 第二試験用シート
 310 封止剤の層
 320 支持フィルム
 321 アルミニウム箔
 322 ポリエチレンテレフタレートフィルム
 400 ペロブスカイト型太陽電池
 410 第一電極
 420 ペロブスカイト層
 430 第二電極
 440 封止部
 450 第一基材
 460 第二基材
10 Evaluation sample 100 Glass plate 200 Calcium film 300 Second test sheet 310 Encapsulant layer 320 Support film 321 Aluminum foil 322 Polyethylene terephthalate film 400 Perovskite type solar cell 410 First electrode 420 Perovskite layer 430 Second electrode 440 Sealing Part 450 First base material 460 Second base material

Claims (10)

  1.  鉛含有部を備える電子デバイス用の封止剤であって、
     前記封止剤が、無機フィラー及び樹脂を含み、
     前記封止剤の鉛吸着性パラメータが、10μg/m以上であり、
     前記封止剤の水蒸気侵入バリア性パラメータが、0.025cm/h0.5未満であり、
     前記鉛吸着性パラメータは、鉛吸着能評価試験を行った場合に、封止剤の層1m当たりに吸着される鉛の質量を表し、
     前記鉛吸着能評価試験では、ポリエチレンテレフタレートフィルムと、前記ポリエチレンテレフタレートフィルム上に形成された厚さ20μmの前記封止剤の層と、を備える、長さ16cm、幅24cmの第一試験用シートを用意すること;前記第一試験用シートの前記封止剤の層側に、ナイロン製のメッシュ布を貼合すること;メッシュ布を貼合された前記第一試験用シートを、1cm角に切断すること;切断された前記第一試験用シートを、20℃~25℃に調整した鉛イオン濃度20μg/Lの鉛イオン含有水溶液50mlに浸漬し、15分撹拌することを行い、
     前記水蒸気浸入バリア性パラメータは、水蒸気バリア性評価試験を行った場合に、下記式(1)から求められる定数Kを表し、
     前記水蒸気バリア性評価試験では、厚み30μmのアルミニウム箔及び厚み25μmのポリエチレンテレフタレートフィルムを備える支持フィルムと、前記支持フィルムの前記アルミニウム箔上に形成された前記封止剤の層と、を備える第二試験用シートを、乾燥すること;無アルカリガラスで形成された50mm角のガラス板を、煮沸したイソプロピルアルコールで5分間洗浄し、乾燥すること;前記ガラス板の片面の、前記ガラス板の端部からの距離0mm~2mmのエリアを除く部分に、カルシウムを蒸着して、厚さ200nmのカルシウム膜を形成すること;窒素雰囲気内で、前記第二試験用シートの前記封止剤の層と、前記ガラス板の前記カルシウム膜側の面と、を貼り合わせ、評価サンプルを得ること;前記評価サンプルの端部と前記カルシウム膜の端部との間の距離X2[mm]を測定すること;前記評価サンプルを、温度85℃、湿度85%RHの恒温恒湿槽に収納すること;前記評価サンプルを前記恒温恒湿槽に収納した時点から、前記恒温恒湿槽に収納された前記評価サンプルの端部と前記カルシウム膜の端部との間の距離X1[mm]が「X2+0.1mm」となる時点までの時間t[時間]を測定すること;及び、下記式(1)に基づいて、定数Kを計算すること、を行う、封止剤。
    Figure JPOXMLDOC01-appb-M000001
    A sealant for electronic devices that has a lead-containing part.
    The encapsulant contains an inorganic filler and a resin.
    The lead adsorption parameter of the sealant is 10 μg / m 2 or more.
    The water vapor penetration barrier parameter of the sealant is less than 0.025 cm / h 0.5.
    The lead adsorption parameter represents the mass of lead adsorbed per 1 m 2 of the sealant layer when the lead adsorption capacity evaluation test is performed.
    In the lead adsorption capacity evaluation test, a first test sheet having a length of 16 cm and a width of 24 cm, comprising a polyethylene terephthalate film and a layer of the sealant having a thickness of 20 μm formed on the polyethylene terephthalate film is provided. To prepare; a nylon mesh cloth is attached to the layer side of the sealant of the first test sheet; the first test sheet to which the mesh cloth is attached is cut into 1 cm squares. The cut first test sheet is immersed in 50 ml of a lead ion-containing aqueous solution having a lead ion concentration of 20 μg / L adjusted to 20 ° C to 25 ° C, and stirred for 15 minutes.
    The water vapor infiltration barrier property parameter represents a constant K obtained from the following formula (1) when the water vapor barrier property evaluation test is performed.
    In the water vapor barrier property evaluation test, a second support film including an aluminum foil having a thickness of 30 μm and a polyethylene terephthalate film having a thickness of 25 μm, and a layer of the sealant formed on the aluminum foil of the support film are provided. Drying the test sheet; washing a 50 mm square glass plate made of non-alkali glass with boiling isopropyl alcohol for 5 minutes and drying; one side of the glass plate, the end of the glass plate. Calcium is vapor-deposited on a portion excluding an area having a distance of 0 mm to 2 mm to form a calcium film having a thickness of 200 nm; in a nitrogen atmosphere, the sealant layer of the second test sheet and the sealant layer. The surface of the glass plate on the calcium film side is bonded to obtain an evaluation sample; the distance X2 [mm] between the end of the evaluation sample and the end of the calcium film is measured; The evaluation sample is stored in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85% RH; from the time when the evaluation sample is stored in the constant temperature and humidity chamber, the evaluation sample stored in the constant temperature and humidity chamber is used. To measure the time t [time] until the distance X1 [mm] between the end and the end of the calcium film becomes "X2 + 0.1 mm"; and based on the following formula (1). Calculating the constant K, the encapsulant.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記水蒸気バリア性評価試験における第二試験用シートの乾燥を、130℃60分の条件、及び、100℃5分の条件の、少なくとも一方で行う、請求項1に記載の封止剤。 The sealant according to claim 1, wherein the second test sheet in the water vapor barrier evaluation test is dried under the conditions of 130 ° C. for 60 minutes and 100 ° C. for 5 minutes at least one of them.
  3.  前記無機フィラーが、半焼成ハイドロタルサイト、焼成ハイドロタルサイト、酸化カルシウム、及び、ゼオライトからなる群より選ばれる1種類以上を含む、請求項1又は2に記載の封止剤。 The encapsulant according to claim 1 or 2, wherein the inorganic filler contains at least one selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite, calcium oxide, and zeolite.
  4.  鉛含有部を備える電子デバイス用の封止剤であって、
     半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含む無機フィラーと、樹脂とを含む、封止剤。
    A sealant for electronic devices that has a lead-containing part.
    A sealant containing a resin and an inorganic filler containing at least one selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide.
  5.  前記無機フィラーが、半焼成ハイドロタルサイト、焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含み、
     前記樹脂が、ポリオレフィン系樹脂を含む、請求項3又は4に記載の封止剤。
    The inorganic filler contains one or more selected from the group consisting of semi-calcined hydrotalcite, calcined hydrotalcite and calcium oxide.
    The sealant according to claim 3 or 4, wherein the resin contains a polyolefin-based resin.
  6.  前記無機フィラーが、半焼成ハイドロタルサイト及び酸化カルシウムからなる群より選ばれる1種類以上を含み、
     前記樹脂が、エポキシ樹脂を含む、請求項3~5のいずれか一項に記載の封止剤。
    The inorganic filler contains one or more selected from the group consisting of semi-calcined hydrotalcite and calcium oxide.
    The sealant according to any one of claims 3 to 5, wherein the resin contains an epoxy resin.
  7.  前記封止剤の不揮発成分100質量%に対する、前記無機フィラーの量が、5質量%以上80質量%以下である、請求項1~6のいずれか一項に記載の封止剤。 The sealing agent according to any one of claims 1 to 6, wherein the amount of the inorganic filler is 5% by mass or more and 80% by mass or less with respect to 100% by mass of the non-volatile component of the sealing agent.
  8.  支持体と、
     前記支持体上に形成された、請求項1~7のいずれか一項に記載の封止剤の層と、を備える、封止シート。
    With the support
    A sealing sheet comprising the layer of the sealing agent according to any one of claims 1 to 7, which is formed on the support.
  9.  鉛含有部と、前記鉛含有部を封止する封止部とを備え、
     前記封止部が、請求項1~7のいずれか一項に記載の封止剤を含む、電子デバイス。
    A lead-containing portion and a sealing portion for sealing the lead-containing portion are provided.
    An electronic device in which the sealing portion contains the sealing agent according to any one of claims 1 to 7.
  10.  第一電極と、鉛原子を含むペロブスカイト層と、第二電極と、前記ペロブスカイト層を封止する封止部とを備え、
     前記封止部が、請求項1~7のいずれか一項に記載の封止剤を含む、ペロブスカイト型太陽電池。
    A first electrode, a perovskite layer containing a lead atom, a second electrode, and a sealing portion for sealing the perovskite layer are provided.
    A perovskite-type solar cell in which the sealing portion contains the sealing agent according to any one of claims 1 to 7.
PCT/JP2020/042668 2019-12-03 2020-11-16 Sealing agent, sealing sheet, electronic device, and perovskite type solar cell WO2021111855A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227018553A KR20220107195A (en) 2019-12-03 2020-11-16 Sealants, sealing sheets, electronic devices and perovskite solar cells
DE112020005939.1T DE112020005939T5 (en) 2019-12-03 2020-11-16 PEROVSKITE TYPE SEALANT, SEALING FOIL, ELECTRONIC COMPONENT AND SOLAR CELL
CN202080083334.3A CN114762144A (en) 2019-12-03 2020-11-16 Sealing agent, sealing sheet, electronic device, and perovskite-type solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-218955 2019-12-03
JP2019218955A JP2021089946A (en) 2019-12-03 2019-12-03 Encapsulant, encapsulation sheet, electronic device, and perovskite solar cell

Publications (1)

Publication Number Publication Date
WO2021111855A1 true WO2021111855A1 (en) 2021-06-10

Family

ID=76220407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042668 WO2021111855A1 (en) 2019-12-03 2020-11-16 Sealing agent, sealing sheet, electronic device, and perovskite type solar cell

Country Status (6)

Country Link
JP (1) JP2021089946A (en)
KR (1) KR20220107195A (en)
CN (1) CN114762144A (en)
DE (1) DE112020005939T5 (en)
TW (1) TW202134387A (en)
WO (1) WO2021111855A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116096194A (en) * 2023-04-07 2023-05-09 合肥市旭熠科技有限公司 Novel method for preparing large-area perovskite film and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024034785A (en) 2022-09-01 2024-03-13 信越化学工業株式会社 Adhesive composition and film sealant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184726A (en) * 2015-03-25 2016-10-20 積水化学工業株式会社 Solar cell
WO2018066548A1 (en) * 2016-10-04 2018-04-12 味の素株式会社 Encapsulation resin composition and encapsulation sheet
JP2018162418A (en) * 2017-03-27 2018-10-18 味の素株式会社 Sealing resin composition and sealing sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031656B2 (en) 2012-08-31 2016-11-24 ペクセル・テクノロジーズ株式会社 Photoelectric conversion device using perovskite compound and method for producing the same
ES2924644T3 (en) 2012-09-18 2022-10-10 Univ Oxford Innovation Ltd optoelectronic device
JP2016082003A (en) 2014-10-14 2016-05-16 積水化学工業株式会社 Method for manufacturing thin-film solar battery
JP7074676B2 (en) 2016-09-23 2022-05-24 積水化学工業株式会社 Perovskite solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184726A (en) * 2015-03-25 2016-10-20 積水化学工業株式会社 Solar cell
WO2018066548A1 (en) * 2016-10-04 2018-04-12 味の素株式会社 Encapsulation resin composition and encapsulation sheet
JP2018162418A (en) * 2017-03-27 2018-10-18 味の素株式会社 Sealing resin composition and sealing sheet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJII, SATOSHI ET AL.: "Uptakes of Cu2+, Pb2+ and Zn2+ on synthetic hydrotalcite in aqueous solution", NIPPON KAGAKU KAISHI, no. 12, 1992, pages 1504 - 1507, XP055834817 *
ZHANG, ZHI-QING ET AL.: "Modification of MgAl hydrotalcite by ammonium sulfate for enhancement of lead adsorption", JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, vol. 60, 2016, pages 361 - 368, XP029432629, DOI: 10.1016/ j. jtice. 2015.10.03 4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116096194A (en) * 2023-04-07 2023-05-09 合肥市旭熠科技有限公司 Novel method for preparing large-area perovskite film and application
CN116096194B (en) * 2023-04-07 2023-08-18 合肥市旭熠科技有限公司 Novel method for preparing large-area perovskite film and application

Also Published As

Publication number Publication date
TW202134387A (en) 2021-09-16
JP2021089946A (en) 2021-06-10
CN114762144A (en) 2022-07-15
KR20220107195A (en) 2022-08-02
DE112020005939T5 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP6683204B2 (en) Sealing resin composition
JP6680295B2 (en) Sealing resin composition
JP6821985B2 (en) Resin composition for sealing
JP6903992B2 (en) Encapsulating resin composition and encapsulating sheet
WO2011062167A1 (en) Resin composition
JP7120017B2 (en) Encapsulating resin composition and encapsulating sheet
WO2021111855A1 (en) Sealing agent, sealing sheet, electronic device, and perovskite type solar cell
WO2020196826A1 (en) Resin composition and resin sheet
CN113646170B (en) Resin sheet with support
TW202128864A (en) Resin composition and resin sheet
WO2023182493A1 (en) Resin sheet and production method therefor
WO2022102733A1 (en) Sealing sheet
WO2021095792A1 (en) Method for manufacturing sealing sheet
CN115558342A (en) Sealing sheet
JPWO2020105707A1 (en) Adhesive composition
JP2022183745A (en) Adhesive composition, adhesive sheet and electronic device
JP2023138466A (en) Sealing composition and sealing sheet
CN113969083A (en) Sealing sheet and polymer composition layer
TW201900832A (en) Sheet for sealing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897170

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20897170

Country of ref document: EP

Kind code of ref document: A1