JPWO2019142848A1 - 肺炎球菌試料の培養用培地 - Google Patents

肺炎球菌試料の培養用培地 Download PDF

Info

Publication number
JPWO2019142848A1
JPWO2019142848A1 JP2019566497A JP2019566497A JPWO2019142848A1 JP WO2019142848 A1 JPWO2019142848 A1 JP WO2019142848A1 JP 2019566497 A JP2019566497 A JP 2019566497A JP 2019566497 A JP2019566497 A JP 2019566497A JP WO2019142848 A1 JPWO2019142848 A1 JP WO2019142848A1
Authority
JP
Japan
Prior art keywords
pneumococcal
sample
medium
evaluation test
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019566497A
Other languages
English (en)
Inventor
貞玉 朴
貞玉 朴
ゆか 古泉
ゆか 古泉
浩 宮武
浩 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Foundation for Microbial Diseases of Osaka University BIKEN
Original Assignee
Research Foundation for Microbial Diseases of Osaka University BIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Foundation for Microbial Diseases of Osaka University BIKEN filed Critical Research Foundation for Microbial Diseases of Osaka University BIKEN
Publication of JPWO2019142848A1 publication Critical patent/JPWO2019142848A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56944Streptococcus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/045Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/71Oxidoreductases (EC 1.)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/315Assays involving biological materials from specific organisms or of a specific nature from bacteria from Streptococcus (G), e.g. Enterococci
    • G01N2333/3156Assays involving biological materials from specific organisms or of a specific nature from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/20Detection of antibodies in sample from host which are directed against antigens from microorganisms

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

肺炎球菌抗体試料評価試験における検出値の絶対値及び/又は対照に対する比をより高め、またより多種の肺炎球菌株に対して肺炎球菌抗体試料の評価を行うことができる技術を提供することを課題とする。固体培地を含有する、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の調製用培地により解決する。

Description

本発明は、肺炎球菌試料の培養用培地等に関する。
現行の肺炎球菌ワクチンは、菌表層に存在する莢膜の合成成分であるポリサッカライド(Capsule polysaccharide)を抗原とする、ポリサッカライドベースワクチンである。ポリサッカライドベースワクチンには、小児用の7、10、13価肺炎球菌結合型ワクチン(PCV7、PCV10、PCV13)、及び23価ポリサッカライドワクチン(PPSV23)が存在する。肺炎球菌感染症においては、莢膜ポリサッカライドに対する抗体が示す血清型特異的な貪食殺菌能が主要な感染防御機構であることから、現行の肺炎球菌ワクチンは、ヒトの病原体となる血清型の肺炎球菌莢膜抗原を混合したワクチンとして実用化されている。小児に対する定期接種導入により、小児用ワクチンに含まれる血清型菌株による侵襲性肺炎球菌感染症(invasive pneumococcal disease, IPD)の顕著な減少がみられたが、ワクチンの普及により血清型置換が生じ、ワクチンでカバーできない血清型が増えつつある。これらの理由から、全ての肺炎球菌株に共通のタンパク質を抗原とする新規肺炎球菌ワクチンの開発が求められている。
Pneumococcal surface protein A (PspA)は病原因子として働き、菌体表面への補体C3沈着を阻害することで、生体の免疫を回避することが知られている。PspAは全ての肺炎球菌株で発現しており、異なるFamilyに対しても交差反応を示すことから新規肺炎球菌ワクチンの最も有力な共通抗原候補とされている。PspAのα‐へリックス及びプロリンリッチ領域には、肺炎球菌に対して感染防御作用を示す抗体が認識する抗原エピトープが存在することが知られている。PspAは、そのN末端に存在するclade definition領域のアミノ酸配列により、大きく3つのファミリーに分類され、さらに6つのクレードと呼ばれる亜群に分類される。臨床より分離される肺炎球菌のPspAファミリーは、ファミリー1及び2で98%以上を占める。抗PspA特異抗体は、PspAの持つ補体阻害活性に対して拮抗的に作用し、補体C3沈着を活性化させることで、オプソニン活性を誘導し、本菌に対する感染防御活性を示すと考えられる。この感染防御活性と関連性が高い有効性評価指標の開発は、PspAをベースとするワクチンの開発に非常に重要と考えられる。
莢膜抗原をベースとする現行ワクチンは、ELISA(enzyme linked immunosorbent assay)抗体価と感染防御能力に相関がないことが報告されている。現在は、白血球の貪食を促進する機能(オプソニン活性)を有する抗体量の測定がその有効性を評価するサロゲートマーカーとなっている。
上記の経緯から、PspAワクチンの有効性評価にもその機能性抗体を測定できる試験系の開発が望ましい。これまでに、PspAを含むタンパク質を抗原とするワクチンの評価は既存ワクチンの測定法を適用できず、一部の株においてその評価法の確立を試みた文献はある (非特許文献1及び2)が、臨床分離株の全ての株を用いて評価した報告はない。
Vaccine 29: 1634-1642,2011. Clin Vaccine Immunol 20:1549-1558,2013.
本発明は、肺炎球菌抗体試料評価試験における検出値の絶対値及び/又は対照に対する比をより高め、またより多種の肺炎球菌株に対して肺炎球菌抗体試料の評価を行うことができる技術を提供することを課題とする。好ましくは、本発明は、PspA等の肺炎球菌表層・細胞質内タンパク質を抗原とするワクチンの評価試験の感度をより高め、またより多種の肺炎球菌株に対して肺炎球菌抗体試料の評価を行うことができる技術を提供することを課題とする。
本発明者は、鋭意研究を進めた結果、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料として、肺炎球菌を固体培地で培養して得られた肺炎球菌試料を用いることにより、上記課題を解決できることを見出した。この知見に基づいてさらに研究を進めた結果、本発明が完成した。即ち、本発明は、下記の態様を包含する。
項1. 固体培地を含有する、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の調製用培地.
項2. 前記固体培地が寒天を含有する、項1に記載の培地.
項3. 前記固体培地が血液成分及び/又はカタラーゼを含有する、項1又は2に記載の培地.
項4. 前記肺炎球菌抗体試料が、肺炎球菌ワクチンが投与された被検体から採取された試料である、項1〜3のいずれかに記載の培地.
項5. 前記試料が血液試料である、項4に記載の培地.
項6. 前記肺炎球菌ワクチンが、抗原として肺炎球菌表層・細胞質内タンパク質及び肺炎球菌莢膜成分からなる群より選択される少なくとも1種を含有するワクチンである、項4又は5に記載の培地.
項7. 前記肺炎球菌ワクチンが、抗原として肺炎球菌表層・細胞質内タンパク質を含有するワクチンである、項4〜6のいずれかに記載の培地.
項8. 前記評価試験が前記肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性、該結合に基づく補体沈着能、及び該補体沈着に基づく殺菌性からなる群より選択される少なくとも1種の評価試験である、項1〜7のいずれかに記載の培地.
項9. 前記評価試験が前記補体沈着能、及び前記殺菌性からなる群より選択される少なくとも1種の評価試験である、項8に記載の培地.
項10. 前記評価試験が前記殺菌性の評価試験である、項8又は9に記載の培地.
項11. 培地の固体化成分を含有する、項1〜10のいずれかに記載の培地の調製用組成物.
項12. 培地の固体化成分を含有する、項1〜10のいずれかに記載の培地の調製用キット.
項13. 肺炎球菌を項1〜10のいずれかに記載の培地で培養して肺炎球菌試料を得る工程を含む、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の製造方法.
項13A.肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の調製用培地の製造のための、固体培地の使用。
項13B.肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の調製用培地としての、固体培地の使用。
項14. 前記評価試験が前記肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性、該結合に基づく補体沈着能、及び該補体沈着に基づく殺菌性からなる群より選択される少なくとも1種の評価試験である、項13に記載の製造方法.
項15. 項13又は14に記載の製造方法で得られた、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料.
項16. 項15に記載の肺炎球菌試料、及び肺炎球菌抗体試料を接触させる工程を含む、肺炎球菌抗体試料評価方法.
項17. さらに、前記肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性、該結合に基づく補体沈着能、及び該補体沈着に基づく殺菌性からなる群より選択される少なくとも1種を評価する工程を含む、項16に記載の評価方法.
本発明によれば、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料として、肺炎球菌を固体培地で培養して得られた肺炎球菌試料を用いることにより、肺炎球菌抗体試料評価試験における検出値の絶対値及び/又は対照に対する比をより高め、またより多種の肺炎球菌株に対して肺炎球菌抗体試料の評価を行うことができる。
ウサギのPspA3+2免疫血清中のPspA clade 1〜5 に対する抗PspA IgG 抗体価を示す(試験例1)。 ウサギの抗PspA3+2免疫血清を用いて成人のIPD由来の肺炎球菌株における抗体結合及び補体沈着を測定した結果を示す(試験例2)。 ウサギのPspA3+2免疫血清による、多種の成人のIPD由来株に対する補体沈着活性を測定した結果を示す(試験例3)。 ウサギの抗PspA3+2免疫血清を用いて成人のIPD由来の肺炎球菌株に対するオプソニン活性を測定した結果を示す(試験例4)。 ウサギの抗PCV13免疫血清中のワクチンに含まれる 各血清型の莢膜抗原に対する抗莢膜抗体価を示す(試験例5)。 ウサギの抗PCV13免疫血清を用いて成人のIPD由来の肺炎球菌株に対するオプソニン活性を測定した結果を示す(試験例6)。 ウサギの抗PspA3+2免疫血清を用いて成人のIPD由来の肺炎球菌株における抗体結合を測定した結果を示す(試験例7)。 ウサギの抗PspA3+2免疫血清を用いて成人のIPD由来の肺炎球菌株における補体沈着を測定した結果を示す(試験例7)。 ウサギの抗PspA3+2免疫血清を用いて成人のIPD由来の肺炎球菌株におけるオプソニン活性を測定した結果を示す(試験例7)。
本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
1.肺炎球菌試料の調製用培地
本発明は、その一態様において、固体培地を含有する、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の調製用培地(本明細書において、「本発明の培地」と示すこともある。)に関する。以下に、これについて説明する。
固体培地は、固体状の培地であって、肺炎球菌の培養が可能な培地である限りにおいて、特に制限されない。
固体培地は、必要に応じて培地を固体状に保つための固体化成分を含有する。固体化成分としては、例えば寒天、ゼラチン、コラーゲン、ゲランガム等が挙げられる。これらの中でも、好ましくは寒天が挙げられる。固体化成分は、1種単独であってもよいし、2種以上の組み合わせであってもよい。
固体培地中の固体化成分の含有量は、特に制限されず、固体化成分の種類に応じて異なり得る。該含有量は、例えば0.1〜5質量%、好ましくは0.2〜3質量%、より好ましくは0.5〜2.5質量%、さらに好ましくは1〜2質量%、よりさらに好ましくは1.2〜1.6質量%、よりさらに好ましくは1.3〜1.5質量%である。
固体培地は、通常、肺炎球菌の生育に使用される栄養成分を含有する。栄養成分としては、例えば炭素源、窒素源、硫黄源、アミノ酸、無機塩類、発育因子等が挙げられる。固体培地は、その栄養成分等の種類に応じて、合成培地、半合成培地、天然培地等であり得る。より具体的には、栄養成分としては、ペプトン(例えばカゼインペプトン、獣肉ペプトン、心筋ペプトン、ゼラチンペプトン、大豆ペプトン等)、エキス(例えば、酵母抽出物、肉抽出物、魚抽出物、心臓浸出液、麦芽エキス、ポテトエキス、トマトジュース等)、グリセロール、グルコース、フラクトース、シュクロース、糖蜜やでんぷんの加水分解物などの糖類;フマール酸、クエン酸、コハク酸等の有機酸類等;アラニン、アルギニン、アスパラギン、システイン、シスチン、グルタミン酸、グルタミン、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、ヒドロキシプロリン、セリン、トレオニン、トリプトファン、チロシン、バリン等のアミノ酸又はその誘導体;硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩;大豆加水分解物などの有機窒素源;アンモニアガス、アンモニア水等の無機窒素源;アデニン、グアニン、ウラシル等の塩基;塩化ナトリウム、塩化カリウム、塩化カルシウム、リン酸ナトリウム、リン酸カリウム、炭酸ナトリウム、炭酸カリウム、硫酸マグネシウム、鉄イオン(硫酸鉄、硝酸鉄等)、マンガンイオン(硫酸マンガン)等の無機塩;各種ビタミン等が挙げられる。これらの中でも、好ましくはペプトン及び/又はエキス、無機塩類、ビタミンが挙げられる。栄養成分は、1種単独であってもよいし、2種以上の組み合わせであってもよい。
固体培地中の栄養成分の含有量は、特に制限されず、固体化成分の種類に応じて異なり得る。例えばペプトン及び/又はエキスであれば、その総含有量は、例えば5〜40質量%、好ましくは10〜35質量%、より好ましくは15〜30質量%、さらに好ましくは17〜25質量%である。例えば、無機塩類であれば、その総含有量は、例えば1〜10質量%、好ましくは2〜8質量%、より好ましくは3〜7質量%、さらに好ましくは4〜6質量%、よりさらに好ましくは4.5〜5.5質量%である。
固体培地は、上記とは別に、カタラーゼ、血液成分等を含有することが好ましい。血液成分は、血液の全成分、又は血液における一部の成分(例えば血球成分、凝固因子等)が全部又は一部除去されてなる成分であり得る。血液成分としては、例えば全血成分、血清成分、血漿成分等が挙げられ、好ましくは全血成分が挙げられる。血液成分の由来動物としては、例えばヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ、ブタ、ウマ、ウシ、ヒツジ、ヤギ、シカ等の種々の哺乳類動物が挙げられ、好ましくはヒツジ、ウサギ、ウマ、ヒト等が挙げられ、より好ましくはヒツジが挙げられる。血液成分は、1種単独であってもよいし、2種以上の組み合わせであってもよい。
カタラーゼを使用する場合、その使用態様は特に制限されない。例えば、カタラーゼが混合された液体培地から得られた固体培地を使用してもよいし、固体培地表面上にカタラーゼを塗布して得られた固体培地を使用してもよい。例えば後者の場合、培地表面1 cm2当たり、例えば10〜500ユニット、好ましくは50〜200ユニットのカタラーゼを塗布することができる。
血液成分を使用する場合、その使用態様は特に制限されない。例えば、血液成分が混合された液体培地から得られた固体培地を使用してもよいし、固体培地表面上に血液成分を塗布して得られた固体培地を使用してもよい。例えば前者の場合、固体培地中の血液成分の含有量は、特に制限されないが、例えば0.5〜15質量%、好ましくは2〜10質量%、より好ましくは3〜8質量%、さらに好ましくは4〜6質量%、よりさらに好ましくは4.5〜5.5質量%である。
固体培地は、通常、水等の溶媒を含有する。固体培地中の溶媒の含有量は、特に制限されないが、例えば40〜97質量%、好ましくは70〜95質量%、より好ましくは80〜95質量%、さらに好ましくは90〜95質量%である。
固体培地は、上記以外にも、他の成分を含有していてもよい。他の成分は、肺炎球菌の生育を著しく阻害しない限りにおいて、特に制限されない。固体培地中の他の成分の含有量は、特に制限されないが、例えば0〜10質量%、好ましくは0〜5質量%、より好ましくは0〜2質量%、さらに好ましくは0〜1質量%である。
固体培地の形態としては、特に制限されず、例えば平板培地、斜面培地、半斜面培地、高層培地等が挙げられる。これらの中でも、好ましくは平面培地が挙げられる。
本発明の培地は、固体培地の公知の方法に従って、製造することができる。典型的には、各種成分を溶媒に溶解(通常、熱による)した後、所望の形状の容器に入れ、固化することにより死蔵することができる。なお、熱による分解を防ぐために、例えば血液成分等は、成分の溶解後に添加することが好ましい。また、製造工程中、必要に応じて、成分の溶解のための熱処理と一体的な処理として、或いはこれとは別に、滅菌処理(例えば、オートクレーブ処理等)が行われる。
本発明の培地は、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の調製に用いられる培地である。より具体的には、本発明の培地は、後述の「2.肺炎球菌試料」に記載の方法により肺炎球菌を培養して肺炎球菌試料を得るために、用いられる。
肺炎球菌抗体試料は、肺炎球菌抗体(肺炎球菌に対して結合性(好ましくは特異的な結合性)を有する抗体)を含有し得る試料であれば、特に制限されない。肺炎球菌抗体試料の具体例としては、肺炎球菌ワクチンが投与された被検体から採取された試料、肺炎球菌に感染した可能性のある被検体から採取された試料が挙げられる。
肺炎球菌ワクチンは、肺炎球菌の抗原性のある構成成分を抗原とするワクチンである限り特に制限されない。抗原としては、例えば肺炎球菌由来の抗原が挙げられ、好ましくは肺炎球菌表層・細胞質内タンパク質(例えば、PspA:Pnemococcal surface protein A、Pnuemococcal histine triad(Pht) family: PhtA, PhtB, PhtD, PhtE、pnuemococcal choline-biding protein A (CbpA)、pneumococcal surface adhesin A (PsaA)、Pilus family proteins、pneumolysin(Ply)、autolysin (lytA)neumoraminidase、IgA1 protease、protein required for cell wall separation(PcsB)、serine-threonine protein kinase(StkP)等)、肺炎球菌莢膜成分(例えば多糖)等が挙げられ、より好ましくは肺炎球菌表層・細胞質内タンパク質が挙げられ、さらに好ましくはPspAが挙げられる。肺炎球菌表層・細胞質内タンパク質は、内在性のタンパク質そのものであってもよいし、その改変タンパク質、例えば一部の領域が欠失してなる改変タンパク質、他のタンパク質と或いは肺炎球菌表層・細胞質内タンパク質同士で融合してなる改変タンパク質であってもよい。改変タンパク質の具体例としては、例えば国際公開第2014/045621号等に記載の融合タンパク質が挙げられる。肺炎球菌ワクチンの抗原は、1種単独であってもよいし、2種以上の組み合わせであってもよい。特に、肺炎球菌莢膜成分を抗原として含む場合、血清型に応じた多種の莢膜成分が抗原として採用され得る。
肺炎球菌ワクチンは、他の成分を含んでいてもよい。他の成分としては、水酸化アルミニウム、CpG等のアジュバント、他の病原体に対する抗原等が挙げられる。肺炎球菌ワクチンの投与形態としては、特に制限されず、例えば、腹腔内投与、皮下投与、皮内投与、筋肉内投与、静脈内投与、鼻腔内投与、経皮投与、経粘膜投与等の非経口投与の他に、経口投与等も挙げられる。
被検体としては、特に制限されず、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ、ブタ、ウマ、ウシ、ヒツジ、ヤギ、シカ等の種々の哺乳類動物が挙げられる。
被検体から採取される試料としては、肺炎球菌抗体を含有し得る生体試料である限り特に制限されないが、例えば血液に由来する試料(血液試料)、より具体的には全血、血漿、血清等が挙げられる。
肺炎球菌抗体試料評価試験は、肺炎球菌抗体試料に含有される肺炎球菌抗体の、肺炎球菌に対する作用を評価可能な試験である限りにおいて、特に制限されない。該評価試験としては、例えば肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性の評価試験、該結合に基づく補体沈着能の評価試験、該補体沈着に基づく殺菌性の評価試験等が挙げられる。補体沈着能の評価試験としては、具体的には、例えば補体沈着測定試験が挙げられ、殺菌性の評価試験としては、具体的には、例えばオプソニン活性測定試験が挙げられる。これらの中でも、好ましくは補体沈着能の評価試験、殺菌性の評価試験が挙げられ、より好ましくは殺菌性の評価試験が挙げられる。
肺炎球菌試料は、肺炎球菌抗体試料評価試験において使用される、肺炎球菌抗体の作用対象となる肺炎球菌の試料である限りにおいて、特に制限されない。つまり、肺炎球菌試料は、肺炎球菌抗体試料評価試験において他の試料(例えば、肺炎球菌抗体試料)と接触させる前の状態の試料のことである。また、肺炎球菌試料の調製の際に複数の培養工程が含まれる場合、本発明の培地は、最後の段階の培養工程、すなわち肺炎球菌抗体試料評価試験に他の実質的な培養工程を経ずに使用される肺炎球菌試料の調製に使用される培地である。なお、ここで、「他の実質的な培養工程」とは、肺炎球菌の培養に適した環境での培養工程であって、例えば培地中、培養に適した一定以上の温度(例えば15℃以上、好ましくは25℃以上、より好ましくは30℃以上、さらに好ましくは35℃以上)で、及び/又は培養に適した一定以上の時間(例えば30分間以上、好ましくは1時間以上、より好ましくは2時間以上)行う培養工程である。このため、「他の実質的な培養工程」には、肺炎球菌がわずかでも増殖し得るような工程、例えば溶液に懸濁する工程、遠心工程、冷凍保存試料作製工程等は包含されない。
肺炎球菌試料を構成する肺炎球菌としては、特に制限されず、多様な株、例えばASP332(3/1)、ASP365(3/1)、ASP162(10A/1)、ASP441(3/1)、ASP204(3/1)、ASP406(10A/1)、ASP164(3/1)、ASP110(20/1)、ASP286(3/1)、ASP458(7C/1)、ASP264(22F/1)、ASP242(6C/2)、ASP165(3/1)、ASP109(14/1)、ASP205(10A/1)、ASP402-1(22F/1)、ASP265(33F/1)、ASP336(14/1)、ASP116(6B/1)、ASP113(34/1)、ASP234(34/1)、ASP161(22F/1)、ASP460(23A/1)、ASP340(6A/2)、ASP407(6C/2)、ASP114(24F/2)、ASP337(24F/2)、ASP266(6A/2)、ASP334(19A/3)、ASP263(19A/3)、ASP206(11A/4)、ASP331(35B/4)、ASP338(35B/4)、ASP442(11A/4)、ASP123(19A/3)、ASP362(23F/5)、ASP108(19A/3)、ASP115(14/4)、ASP262(19A/3)、ASP111(19A/3)、ASP444(19A/3)、ASP335(35B/4)、ASP112(15A/4)、ASP443(23F/5)、ASP84(19A/3)、ASP363(35B/4)、ASP285(11A/4)、ASP64(7F/3)、ASP339(7F/3)、ASP364(9V/3)、ASP366(15A/4)、ASP240(18C/4)、ASP457(15B/3)、ASP107(6A/4)、ASP403(6A/5)、ASP163-2(37/6)、ASP114、BG9739、DBL6A、L81905、BG8743、AC94、BG6692、BG8838、DBL1、Rx1、E134、EF10197、EF6796、BG9163、DBL5、WU2、EF3296、BG8090、AC122、EF5668、BG7561、BG7817、BG11703、ATCC6303等が挙げられる。肺炎球菌試料を構成する肺炎球菌は、1種単独であってもよいし、2種以上の組み合わせであってもよい。
本発明は、その一態様において、培地の固体化成分を含有する、上記した本発明の培地の調製用組成物にも関する。該調製用組成物としては、例えば、溶媒以外の成分が混合された乾燥状態の組成物であってもよいし、溶媒も含まれるものの、成分が完全に溶解していない組成物、固体化していない組成物等が挙げられる。
本発明は、その一態様において、培地の固体化成分を含有する、上記した本発明の培地の調製用キットにも関する。該調製用キットには、例えば、溶媒以外の成分が、1つの容器中に含まれている乾燥状態の組成物が含まれていてもよいし、2つ以上の容器に分けて含まれている乾燥状態の組成物が含まれていてもよい。また、該調製用キットには、本発明の培地の調製に使用され得る試薬、器具類が含まれていてもよい。
2.肺炎球菌試料
本発明は、その一態様において、肺炎球菌を本発明の培地で培養して肺炎球菌試料を得る工程を含む、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の製造方法(本明細書において、「本発明の製造方法」と示すこともある。)に関する。さらに、本発明は、その一態様において、本発明の製造方法で得られた、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料(本明細書において、「本発明の肺炎球菌試料」と示すこともある。)に関する。以下に、これらについて説明する。
本発明の製造方法において培養される対象である肺炎球菌としては、特に制限されず、多様な株、例えば上記「1.肺炎球菌試料の調製用培地」で列挙した株が挙げられる。培養に供される該肺炎球菌は、冷凍保存されている状態の肺炎球菌であってもよいし、別の培養工程で培養された肺炎球菌であってもよい。該肺炎球菌は、1種単独であってもよいし、2種以上の組み合わせであってもよい。
培養方法としては、固体培地における培養法である限り特に限定されず、固体培地の形態に応じて適切な方法を採用すればよい。例えば、固体培地が平板培地である場合であれば、培地表面上に肺炎球菌をプレーティングし、培養に適した条件下で培養する方法が挙げられる。
培養温度は、肺炎球菌の生育が著しく阻害されない温度である限りにおいて特に制限されない。培養温度は、例えば20〜45℃、好ましくは30〜40℃、より好ましくは35〜39℃、さらに好ましくは36〜38℃である。
培養雰囲気は、肺炎球菌の生育が著しく阻害されない雰囲気である限りにおいて特に制限されない。培養雰囲気としては、例えば大気、大気に二酸化炭素を導入してその濃度が高められた(例えば3〜7%、好ましくは4〜6%、さらに好ましくは4.5〜5.5%)雰囲気等が挙げられる。
培養時間は、肺炎球菌の増殖が一定程度可能な時間である限りにおいて特に制限されない。培養時間は、例えば30分間〜48時間、好ましくは1〜24時間、より好ましくは2〜12時間、さらに好ましくは3〜8時間である。
培養により得られた肺炎球菌は、通常、集菌後、必要に応じてPBS等で洗浄して、そのまま、或いは他の処理(例えば、冷蔵保存)を経て、上記「1.肺炎球菌試料の調製用培地」で説明した「他の実質的な培養工程」を経ずに、本発明の肺炎球菌試料として、肺炎球菌抗体試料評価試験において他の試料(例えば、肺炎球菌抗体試料)との接触に使用される。
肺炎球菌抗体試料評価試験、肺炎球菌試料等については、上記「1.肺炎球菌試料の調製用培地」における定義と同様である。
3.肺炎球菌抗体試料評価方法
本発明は、その一態様において、本発明の肺炎球菌試料、及び肺炎球菌抗体試料を接触させる工程を含む、肺炎球菌抗体試料評価方法(本明細書において、「本発明の評価方法」と示すこともある。)に関する。以下に、これについて説明する。
本発明の評価方法は、肺炎球菌抗体試料に含有される肺炎球菌抗体の、肺炎球菌に対する作用を評価可能な方法である限りにおいて、特に制限されない。該評価方法は、例えば肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性の評価工程、該結合に基づく補体沈着能の評価工程、該補体沈着に基づく殺菌性の評価工程等を含み得る。補体沈着能の評価工程としては、具体的には、例えば補体沈着測定工程が挙げられ、殺菌性の評価工程としては、具体的には、例えばオプソニン活性測定工程が挙げられる。これらの中でも、好ましくは補体沈着能の評価工程、殺菌性の評価工程が挙げられ、より好ましくは殺菌性の評価工程が挙げられる。
本発明の評価方法に供される肺炎球菌試料は、冷凍保存状態である場合は、必要に応じて解凍処理を経てから、使用される。
本発明の評価方法に供される肺炎球菌抗体試料については、上記「1.肺炎球菌試料の調製用培地」における定義と同様である。
本発明の評価方法においては、本発明の肺炎球菌試料、及び肺炎球菌抗体試料を接触させる。換言すれば、本発明の肺炎球菌試料、及び肺炎球菌抗体試料を、これらが互いに接触できる条件下に置く。接触の具体的態様としては、特に制限されないが、例えば、本発明の肺炎球菌試料、及び肺炎球菌抗体試料の両者を混合することにより行われる。接触時には、必要に応じて、BSA、スキムミルク等のブロッキング剤を添加してもよい。
本発明の肺炎球菌試料、及び肺炎球菌抗体試料の接触時間は、両者が結合して複合体を形成可能な時間である限りにおいて、特に制限されない。該接触時間は、例えば5分間〜4時間、好ましくは15分間〜2時間、より好ましくは20分間〜1時間である。この際の温度は、特に制限されないが、例えば20〜45℃、好ましくは30〜40℃、より好ましくは35〜39℃、さらに好ましくは36〜38℃である。
肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性を評価する場合、上記接触工程により得られた複合体の量を、適当な標識物等を用いて測定する。複合体の量の測定は、より具体的には、標識二次抗体を用いた抗原抗体反応に基づいて行うことができる。
補体沈着能を評価する場合は、上記接触工程において補体成分も接触させ、或いは上記接触工程により得られた複合体にさらに補体成分を接触させ、得られた複合体の量を、適当な標識物等を用いて測定する。接触条件は、上記接触工程における接触条件と同様である。複合体の量の測定は、より具体的には、標識二次抗体を用いた抗原抗体反応に基づいて行うことができる。
殺菌性を評価する場合は、上記接触工程において補体成分及び食細胞も接触させ、或いは上記接触工程により得られた複合体にさらに補体成分及び食細胞を接触させ、一定時間インキュベートした後、生菌量を、公知の方法に従って測定する。接触時間は、食細胞が殺菌能を発揮し得る時間である限りにおいて特に制限されないが、例えば30分間〜5時間、好ましくは45分間〜2時間、より好ましくは1〜1.5時間である。その他の接触条件は、上記接触工程における接触条件と同様である。生菌量の測定は、より具体的には、例えば上記反応により得られた液を固体培地上にプレーティングし、得られたコロニーの数を計測することにより行うことができる。
補体成分としては特に制限されず、例えば市販の補体試薬を使用することができる。また、例えばProtocol for a multiplexed opsonophagocytic killing assay (UAB-MOPA, reference 2) for antibodies against Streptococcus pneumoniae Version E.02, December 2014 (www.vaccine.uab.edu)のプロトコールに従い、第16頁に示される補体成分を使用することができる。
食細胞とは、補体依存性殺菌能の測定に適用しうる貪食細胞であればよく、特に限定されない。汎用される貪食細胞としては貪食能を誘導させたヒト白血病由来HL-60由来の細胞が挙げられるが、これに限定されるものではない。食細胞は、好中球であることが好ましい。
斯かる本発明の評価方法によれば、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料として、肺炎球菌を固体培地で培養して得られた肺炎球菌試料を用いることにより、肺炎球菌抗体試料評価試験における検出値の絶対値及び/又は対照に対する比をより高め、またより多種の肺炎球菌株に対して肺炎球菌抗体試料の評価を行うことができる。
以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
試験例1.抗PspA3+2ウサギ免疫血清の抗体価測定
ウサギのPspA3+2免疫血清及び非免疫血清中の抗PspA IgG抗体価をELISA法で測定した。具体的には以下のようにして行った。
<試験例1-1.血清の調製>
既報(国際公開第2014/045621号)の方法に従って、PspA3+2抗原(肺炎球菌TIGR4株由来PspA(ファミリー2クレード3のPspA)と肺炎球菌WU2株由来PspA(ファミリー1クレード2のPspA)との融合タンパク質であり、N末端側からポリヒスチジンタグを含むベクター由来配列、TIGR4株のPspAのアミノ酸配列(Accession No. AAK74303, 744aa)の第32位〜第524位、EcoRI認識塩基配列由来配列、WU2株のPspAの部分アミノ酸配列(Accession No. AAF27710, 415aa)の第32位〜第409位が順に連結したアミノ酸配列からなるタンパク質)を調製した。PspA3+2抗原5.0μg及び水酸化アルミニウムゲル250μgを混合し、得られた混合物をニュージランド白種ウサギ(体重約2.5kg)に皮下接種した。接種は2週間ごとに計2回行った。最終免疫から2週間後に心採血を行い、免疫血清を得た。一方で、免疫する前にウサギの耳静脈から部分採血を行い、非免疫血清を採取した。
<試験例1-2.ELISA用PspA抗原の調製>
クレード1〜5の各PspAのα−ヘリックス領域およびプロリンリッチ領域からなるタンパク質を組み換えタンパク質として調製し、ELISA用PspA抗原とした。クレード1としてBG9739、クレード2としてD39、クレード3としてTIGR4、クレード4としてEF5668、クレード5としてATCC6303由来のPspAを使用した。具体的には、既報(国際公開第2014/045621号)の方法に従って調製した。
<試験例1-3.ELISA>
PspA抗原に対する抗原特異的なIgG量をELISA法で測定した。1μg/mlの各種ELISA用PspA抗原(試験例1-2)を96-wellマイクロプレートのウェルに100μl添加し、4℃で一晩インキュベートし、固相化した。ウェルをPBST(phosphate buffered saline containing 0.05% Tween20)で洗浄した。1%BSA-PBSTをウェルに100μl添加し、37℃で1時間静置し、ブロッキングした。マイクロプレートウオッシャーを用いてPBSTでウェルを洗浄した。血清(試験例1-1)を1%BSA-PBSTで2倍段階希釈して得られた希釈液を、ウェルに50μl添加し、37℃で30分間インキュベートした。ウェルをPBSTで洗浄した後、5000倍希釈したHorseradish peroxidase(HRP) conjugated affini pure goat anti-rabbit IgGをウェルに100μl添加し、37℃30分間インキュベートした。ウェルをPBSTで洗浄した後、発色基質をウェルに100μl添加し、室温、遮光下で45分間インキュベートした。1.5%のシュウ酸溶液をウェルに100μl添加し、測定まで遮光した。その後、各ウェルについてOD415nmの吸光度を測定した。該吸光度からブランクを差し引いた値が0.1以上である最高希釈倍率(2n)を抗体価とした。結果を図1に示す。
<試験例1-4.結果>
図1に示されるように、非免疫血清に比べて、免疫血清は各クレードのPspA抗原に対して高い抗体価を示した。
試験例2.抗PspA3+2ウサギ免疫血清の評価1
臨床分離株3株: ASP161(血清型22F/clade1)、ASP114(血清型24F/clade2)、ASP337(血清型24F/clade2)の肺炎球菌試料を用いて、血清(試験例1-1)を評価した。具体的には以下のようにして行った。
<試験例2-1.液体培地培養法による試験用肺炎球菌試料の調製>
-80℃で保存されていた肺炎球菌を血液寒天培地(日本ベクトンディッキンソン、ヒツジ血液寒天培地、252201 252202)にプレーティングし、37℃、5%CO2で、一晩、静置培養した。血液寒天培地に生えてきた肺炎球菌のシングルコロニーをTHY液体培地(Todd-Hewitt broth supplemented with 0.5% yeast extract)で培養し、指数増殖期の菌を遠心(7500g、4℃、10分間)して沈殿を得た。沈殿を、THY培地で一回洗浄した後、20%のグリセロールを含むTHY培地で懸濁した。懸濁液を、菌濃度測定後に液体窒素で瞬間凍結して、-80℃に保存した。
<試験例2-2.固体培地培養法による試験用肺炎球菌試料の調製>
試験例2-1で得られた‐80℃保存菌を、37℃で速やかに凍解し、血液寒天培地(日本ベクトンディッキンソン、ヒツジ血液寒天培地、252201 252202)にプレーティングし、37℃、5%CO2で、4〜5時間培養した。血液寒天培地に生えてきた肺炎球菌を白金耳でかき集めて、1mlのPBSが入っている氷上エッペンチューブに入れて、懸濁した。懸濁液を遠心(13500 g、4℃、2分間)し、上清を棄てた。20%のグリセロールを含む冷PBS 1mlを加え、ペレットを十分に懸濁した。懸濁液を、菌濃度測定後に液体窒素で瞬間凍結して、-80℃に保存した。
<試験例2-3.抗体結合試験>
‐80℃保存菌(試験例2-1、試験例2-2)を37℃の恒温槽で速やかに凍解した。得られた肺炎球菌試料(1 x 106 cfu)と血清(2μl、試験例1-1)とを混合し、トータルボリュームが100μlになるように1% BSA含有PBSで希釈した後、37℃で30分間インキュベーションした。遠心(13500 g、4℃、2分間)し、上清を棄てた。冷PBS 1mlを添加し、遠心(13500 g、4℃、2分間)して、上清を棄てた。PBSで100倍希釈したFITC-goat anti-rabbit IgGを100μl添加し、十分に懸濁した。4℃、遮光で、30分間、インキュベーションした。遠心(13500 g 、4℃、2分間)し、上清を棄てた。冷PBS 1mlを添加し、遠心(13500 g、4℃、2分間)し、上清を棄てた。100μlのPBSでペレットを懸濁し、そこへ2%ホルムアミド100μlをさらに添加して十分に懸濁した。得られた懸濁液をフローサイトメトリーで解析し、10000イベントの肺炎球菌の平均蛍光強度(MFI:mean fluorescent intensity)を測定した。有意差の評価は、統計ソフトGraphpad prismを用いて、unpaired t-testによって算出したp値に基づいて行った。結果を図2aに示す。
<試験例2-4.補体沈着試験>
‐80℃保存菌(試験例2-1、試験例2-2)を37℃の恒温槽で速やかに凍解した。得られた肺炎球菌試料(1 x 106 cfu)と血清(2μl、試験例1-1)とを混合し、トータルボリュームが100μlになるように1% BSA含有PBSで希釈した後、37℃で30分間インキュベーションした。遠心(13500 g 、4℃、2分間)し、上清を棄てた。冷PBS 1mlを添加し、遠心(13500 g、4℃、2分間)して、上清を棄てた。補体希釈液(CH50生研)で10倍希釈したベビーラビット血清(補体源)100μlを添加、混合し、37℃で30分間インキュベーションした。遠心(13500 g、4℃、2分間)し、上清を棄てた。冷PBS 1mlを添加し、遠心(13500 g、4℃、2分間)し、上清を棄てた。PBSで100倍希釈したFITC-goat anti-rabbit IgGを100μl添加し、十分に懸濁した。4℃、遮光で、30分間、インキュベーションした。遠心(13500 g、4℃、2分間)し、上清を棄てた。冷PBS 1mlを添加し、遠心(13500 g、4℃、2分間)し、上清を棄てた。100μlのPBSでペレットを懸濁し、そこへ2%ホルムアミド100μlをさらに添加して十分に懸濁した。得られた懸濁液をフローサイトメトリーで解析し、10000イベントの肺炎球菌の平均蛍光強度(MFI:mean fluorescent intensity)を測定した。有意差の評価は、統計ソフトGraphpad prismを用いて、unpaired t-testによって算出したp値に基づいて行った。結果を図2bに示す。
<試験例2-5.結果>
抗PspA3+2 IgGの肺炎球菌株への抗体結合において、免疫血清の場合、液体培地培養および固体培地培養のいずれの条件においても、非免疫血清に比較して高い抗体結合を示した(図2a)。固体培地の培養条件は液体培地培養条件に比べ、その差が大きくないが、ASP337、ASP161株においては高い傾向を示した(図2a)。抗PspA3+2抗体を介した肺炎球菌株への補体沈着レベルにおいても、免疫血清の場合、液体培地培養および固体培地培養のいずれの条件においても非免疫血清に比較して高い補体沈着活性を示した(図2b)。また、測定した3株のいずれにおいても、固体培地で培養した菌株の場合、液体培地で培養した菌株に比べ、その菌株における補体沈着活性は有意に高い結果を示した ( p<0.05)(図2b)。
試験例3.抗PspA3+2ウサギ免疫血清の評価2
多種の臨床分離の肺炎球菌株を試験例2-2と同様に培養して得られた肺炎球菌試料(固体培養法により得られた試料)を用いて、試験例2-4と同様にして血清の補体沈着活性を測定した。結果を図3に示す。
測定に用いた肺炎球菌株(56株)は、成人のIPD由来の肺炎球菌株であり、ワクチン型の血清型及び非ワクチン型の血清型を含んでおり、clade 1〜5の様々なPspAを発現する。これらの56株全てにおいて、抗PspA3+2ウサギ免疫血清は非免疫ウサギ血清に比べて高い補体沈着を示した。これらの結果から、固体培地培養法で得られた肺炎球菌試料を用いることにより、非常に多種の肺炎球菌株に対して免疫血清を評価できることが示された。
試験例4.抗PspA3+2ウサギ免疫血清の評価3
抗体結合及び補体沈着に使用した3株において、液体培地培養及び固体培地培養の試験用の菌株を用いて、抗PspA抗体を介したオプソニン活性を測定した。具体的には以下のようにして行った。
<試験例4-1.貪食細胞の調製>
ヒト白血病由来HL-60細胞をCM1培地(RPMI1640 500ml、非動化FBS 50ml、GlutaMax-1 5ml、penicillin/streptomycin 5ml)で、5% CO2存在下で、37℃で培養後、分化用培地(RPMI 1640 500ml、非動化FBS 50ml、GlutaMax-1 5ml、DMF(dimethyl formamide)4.55ml)に培地を交換し、分化誘導を行った。培養開始4-5日後のHL-60細胞をHBSS(without Ca++, Mg++)で洗浄し、その後、HBSS(with Ca++, Mg++)で洗浄した。得られた細胞を、OBB液(distilled water 32ml、10xHBSS (with Ca++, Mg++) 4ml, 1% gelatin 4ml, inactivated FBS 2.12ml)に1×107個/mlとなるよう懸濁したものを使用した。
<試験例4-2.オプソニン活性測定試験>
成人のIPD由来の肺炎球菌株を試験例2-1又は2-2と同様に培養して得られた肺炎球菌試料を用いた。肺炎球菌試料500CFUを96穴のマイクロプレートの各ウェルに播種した。そこへ、血清(試験例1-1)又はその段階希釈液を20μl加え、室温で30分間インキュベートした。補体成分(Pelfreez 3-4 week baby rabbit complement, sterile(Pelfreez製))10μl(終濃度0.75%)、及び貪食細胞(試験例4-1)4×105細胞をウェルに加え、5% CO2存在下で、37℃で75分間インキュベートした。ウェル内の反応溶液を寒天培地に添加して、5% CO2存在下で、37℃で16時間培養した。寒天培地に出現した肺炎球菌のコロニー数を計測し、50%の肺炎球菌が死滅する血清濃度を算出し、オプソニン活性を測定した。有意差の評価は、統計ソフトGraphpad prismを用いて、unpaired t-testによって算出したp値に基づいて行った。結果を図4に示す。
<試験例4-3.結果>
抗PspA3+2抗体を介した肺炎球菌株に対するオプソニン活性レベルにおいて、液体培地培養および固体培地培養のいずれの条件においても、免疫血清は非免疫血清に比較して高いオプソニン活性を示した(図4)。また、固体培地の培養条件は液体培地培養条件に比べ、有意に高いオプソニン活性を示し、ASP161株においては3.6倍 (p<0.05)、ASP114株においては7倍 (p<0.01)、ASP337株においては4倍高い活性を示した (p<0.01)(図4)。
試験例5.抗PCV13ウサギ免疫血清の抗体価測定
抗PCV13ウサギ免疫血清中の、PCV13に含まれる13種類の莢膜抗原に対する抗体価をELISA法で測定した。具体的には以下のようにして行った。
<試験例5-1.血清の調製>
市販の現行ワクチンPCV13を約2.5kgのニュージランド白種ウサギにヒューマンドーズの1/10量を2週間間隔で合計2回皮下免疫し、最終免疫から2週間後に心採血を行い、免疫血清の採取を行った。一方で、免疫する前にウサギの耳静脈から部分採血を行い、非免疫血清を採取した。
<試験例5-2.ELISA>
固相化用の抗原液として、各血清型の莢膜抗原(ATCCより入手)は5μg/mlに調製したものを用いる以外は、試験例1-3と同様にして行った。結果を図5に示す。
<試験例5-3.結果>
抗PCV13ウサギ免疫血清中には13種類の莢膜に対する高い抗体を含んでいる結果が示された(図5)。
試験例6.抗PCV13ウサギ免疫血清の評価
ASP165(血清型3/clade1)、ASP116(血清型6B/clade1)、ASP340(血清型6A/clade2)の3株を用い、且つ免疫血清として抗PCV13ウサギ免疫血清(試験例5-1)を用いる以外は、試験例4-2と同様にしてオプソニン活性を測定した。結果を図6に示す。
抗PCV13抗体を介した肺炎球菌株に対するオプソニン活性レベルにおいて、ASP165、ASP116株に対して、液体培地および固体培地のいずれの培養条件においても、免疫血清は非免疫血清に比較して高いオプソニン活性を示した。一方、ASP340に対しては、液体培地で培養すると免疫前後の血清の間でオプソニン活性の違いが認められなかったが、固体培地で培養すると、オプソニン活性において免疫血清は非免疫血清に比較して高い活性を示した。ASP340株は血清型6Aであり、抗PCV13免疫血清中の抗莢膜6A抗体価も免疫前に比べた顕著に高くなっているにも関わらず、オプソニン活性において、まったく差が見られないことは、評価法の効率に原因があると考えられる。また、抗PCV13抗体を介した肺炎球菌株に対するオプソニン活性レベルにおいて、ASP165 (p<0.01)、ASP116株 (p<0.05) に対して、固体培養の場合は液体培養の場合に比較して、有意に高いオプソニン活性を示した。これらの結果は、莢膜抗体の有効性評価においても、固体培地での培養法は液体培地での培養法より、効率の良い、適切な培養法と考えられる。
試験例7.抗PspA3+2ウサギ免疫血清の評価4
成分の異なる固体培地を用いて調製した試験用肺炎球菌試料を用いて、各評価試験を行った。具体的には、以下のようにして行った。
<試験例7-1.試験用肺炎球菌試料の調製>
試験例2-1で得られた-80℃保存菌を、37℃で速やかに凍解し、THYA 寒天培地(Todd-Hewitt-yeast extract agar、底面積約55cm2)にカタラーゼ(6,300 U/20ml)を表面に塗った培地、或いは5%の羊血液を添加した血液寒天培地にプレーティングし、37℃、5%CO2にて、4〜5時間培養した。これ以外の手順は、試験例2-2に準じて行った。
<試験例7-2.抗体結合試験>
血清(試験例1-1)は2μl、1μl、0.5μl、0.25μl、0.125μl、0.0625μl、0.03125μl、0μlを肺炎球菌試料(試験例7-1)(1 x 106 cfu)と混合した。これ以外の手順は、試験例2-3に準じて行った。
<試験例7-3.補体沈着試験>
血清(試験例1-1)は1μl、0.5μl、0.25μl、0μlを肺炎球菌試料(試験例7-1)(1 x 106 cfu)と混合した。これ以外の手順は、試験例2-4に準じて行った。
<試験例7-4.オプソニン活性測定試験>
肺炎球菌試料として試験例7-1で得られた肺炎球菌試料を使用する以外は、試験例4-2と同様にして行った。
<試験例7-5.結果>
試験例7-2の結果を図7Aに示し、試験例7-3の結果を図7Bに示し、試験例7-4の結果を図7Cに示す。図7A〜Cより、試験用肺炎球菌試料の調製時の寒天培地の成分の違いにより、抗体結合能、補体沈着活性、及びオプソニン活性に大きな影響が無いことが分かった。
試験例1〜6のまとめ
本発明において、固体培地での培養条件は液体培地での培養条件に比較して、補体沈着及びオプソニン活性測定系において有意に高い活性を示した。PspA免疫血清及びPCV13免疫血清においても、固体培地培養条件は、有意に高い活性を示した。また、補体沈着活性において、臨床分離の全ての株に対して、PspA抗体を介した補体沈着活性を測定することができた。測定効率を上げることで、ワクチンの効果が低いものから高いものまで正確に評価できると考えられる。
以上詳述したように、固体培地培養法により調製した肺炎球菌試料を用いれば、肺炎球菌抗体試料評価試験の感度をより高めることができ、またより多くの肺炎球菌株に対して肺炎球菌抗体試料の評価が可能になることが分かった。これは、肺炎球菌ワクチンの有効性を、より簡便且つ効率的に行うことに繋がる。

Claims (17)

  1. 固体培地を含有する、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の調製用培地。
  2. 前記固体培地が寒天を含有する、請求項1に記載の培地。
  3. 前記固体培地が血液成分及び/又はカタラーゼを含有する、請求項1又は2に記載の培地。
  4. 前記肺炎球菌抗体試料が、肺炎球菌ワクチンが投与された被検体から採取された試料である、請求項1〜3のいずれかに記載の培地。
  5. 前記試料が血液試料である、請求項4に記載の培地。
  6. 前記肺炎球菌ワクチンが、抗原として肺炎球菌表層・細胞質内タンパク質及び肺炎球菌莢膜成分からなる群より選択される少なくとも1種を含有するワクチンである、請求項4又は5に記載の培地。
  7. 前記肺炎球菌ワクチンが、抗原として肺炎球菌表層・細胞質内タンパク質を含有するワクチンである、請求項4〜6のいずれかに記載の培地。
  8. 前記評価試験が前記肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性、該結合に基づく補体沈着能、及び該補体沈着に基づく殺菌性からなる群より選択される少なくとも1種の評価試験である、請求項1〜7のいずれかに記載の培地。
  9. 前記評価試験が前記補体沈着能、及び前記殺菌性からなる群より選択される少なくとも1種の評価試験である、請求項8に記載の培地。
  10. 前記評価試験が前記殺菌性の評価試験である、請求項8又は9に記載の培地。
  11. 培地の固体化成分を含有する、請求項1〜10のいずれかに記載の培地の調製用組成物。
  12. 培地の固体化成分を含有する、請求項1〜10のいずれかに記載の培地の調製用キット。
  13. 肺炎球菌を請求項1〜10のいずれかに記載の培地で培養して肺炎球菌試料を得る工程を含む、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料の製造方法。
  14. 前記評価試験が前記肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性、該結合に基づく補体沈着能、及び該補体沈着に基づく殺菌性からなる群より選択される少なくとも1種の評価試験である、請求項13に記載の製造方法。
  15. 請求項13又は14に記載の製造方法で得られた、肺炎球菌抗体試料評価試験に用いられる肺炎球菌試料。
  16. 請求項15に記載の肺炎球菌試料、及び肺炎球菌抗体試料を接触させる工程を含む、肺炎球菌抗体試料評価方法。
  17. さらに、前記肺炎球菌抗体試料の前記肺炎球菌試料に対する結合性、該結合に基づく補体沈着能、及び該補体沈着に基づく殺菌性からなる群より選択される少なくとも1種を評価する工程を含む、請求項16に記載の評価方法。
JP2019566497A 2018-01-22 2019-01-17 肺炎球菌試料の培養用培地 Pending JPWO2019142848A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018007925 2018-01-22
JP2018007925 2018-01-22
PCT/JP2019/001197 WO2019142848A1 (ja) 2018-01-22 2019-01-17 肺炎球菌試料の培養用培地

Publications (1)

Publication Number Publication Date
JPWO2019142848A1 true JPWO2019142848A1 (ja) 2021-01-28

Family

ID=67301430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019566497A Pending JPWO2019142848A1 (ja) 2018-01-22 2019-01-17 肺炎球菌試料の培養用培地

Country Status (5)

Country Link
US (1) US20210062138A1 (ja)
EP (1) EP3744829A4 (ja)
JP (1) JPWO2019142848A1 (ja)
CN (1) CN111630153A (ja)
WO (1) WO2019142848A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022154094A1 (ja) 2021-01-15 2022-07-21

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531584A (ja) * 2000-03-16 2003-10-28 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィア ニューモコッカス莢膜多糖類の調整的製造
JP2008530037A (ja) * 2005-02-11 2008-08-07 エース バイオサイエンシズ エー/エス 表面に位置したStreptococcuspneumoniaeのポリペプチド
JP2009538116A (ja) * 2006-02-17 2009-11-05 ノバルティス アーゲー 細菌抗原の精製
WO2014045621A1 (ja) * 2012-09-19 2014-03-27 国立大学法人大阪大学 肺炎球菌表面タンパク質aを含む肺炎球菌ワクチン
WO2016204265A1 (ja) * 2015-06-18 2016-12-22 一般財団法人阪大微生物病研究会 肺炎球菌補体依存性殺菌能測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151426A (zh) * 2013-05-14 2014-11-19 北京天成新脉生物技术有限公司 肺炎链球菌十三种荚膜多糖单克隆抗体及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531584A (ja) * 2000-03-16 2003-10-28 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィア ニューモコッカス莢膜多糖類の調整的製造
JP2008530037A (ja) * 2005-02-11 2008-08-07 エース バイオサイエンシズ エー/エス 表面に位置したStreptococcuspneumoniaeのポリペプチド
JP2009538116A (ja) * 2006-02-17 2009-11-05 ノバルティス アーゲー 細菌抗原の精製
WO2014045621A1 (ja) * 2012-09-19 2014-03-27 国立大学法人大阪大学 肺炎球菌表面タンパク質aを含む肺炎球菌ワクチン
WO2016204265A1 (ja) * 2015-06-18 2016-12-22 一般財団法人阪大微生物病研究会 肺炎球菌補体依存性殺菌能測定方法

Also Published As

Publication number Publication date
US20210062138A1 (en) 2021-03-04
CN111630153A (zh) 2020-09-04
EP3744829A4 (en) 2021-10-27
WO2019142848A1 (ja) 2019-07-25
EP3744829A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
Zambon et al. Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease
Lancefield Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test
Romero-Steiner et al. Standardization of an opsonophagocytic assay for the measurement of functional antibody activity against Streptococcus pneumoniae using differentiated HL-60 cells
Håkansson et al. Characterization of binding of human lactoferrin to pneumococcal surface protein A
US8252546B2 (en) Diagnosing pneumococcal pneumonia
JPH11513371A (ja) 肺炎球菌遺伝子、その一部、それ由来の発現産物、ならびに該遺伝子、該遺伝子の一部分、および該遺伝子産物の使用
Norgren et al. Genetic diversity in T1M1 group A streptococci in relation to clinical outcome of infection
Sørensen et al. Cross-reactions between pneumococci and other streptococci due to C polysaccharide and F antigen
JP2009544279A (ja) 歯周病の予防に有用なポルフィロモナス・ジンジバリスポリペプチド
Gravekamp et al. Deletion of repeats in the alpha C protein enhances the pathogenicity of group B streptococci in immune mice
Perciani et al. Conjugation of polysaccharide 6B from Streptococcus pneumoniae with pneumococcal surface protein A: PspA conformation and its effect on the immune response
Argaman et al. Polyribitol-phosphate: an antigen of four gram-positive bacteria cross-reactive with the capsular polysaccharide of haemophilus influenzae type B
Ricci et al. The factor H-binding fragment of PspC as a vaccine antigen for the induction of protective humoral immunity against experimental pneumococcal sepsis
JPWO2019142848A1 (ja) 肺炎球菌試料の培養用培地
Kolybo et al. Immunobiology of diphtheria. Recent approaches for the prevention, diagnosis, and treatment of disease
Yang et al. Recombinant group B Streptococcus alpha-like protein 3 is an effective immunogen and carrier protein
CN112611864B (zh) 筛分病菌模型的系统及筛分方法
Senn et al. Monoclonal antibodies targeting different cell wall antigens of group B streptococcus mediate protection in both Fc-dependent and independent manner
Afshar et al. A study on Haemophilus influenzae type b growth rate and capsule production in different media
Gorzynski et al. Differences in Antibody Response of Rabbit to Enterobacterial Antigen After Intravenous and Subcutaneous Injection with Adjuvant.
CA2643355C (en) Methods and compositions for opsonophagocytic assays
Kolberg et al. Monoclonal antibodies that recognize a common pneumococcal protein with similarities to streptococcal group A surface glyceraldehyde-3-phosphate dehydrogenase
Cao et al. CD4+ T lymphocytes mediated protection against invasive pneumococcal infection induced by mucosal immunization with ClpP and CbpA
Wang et al. Immunizing mice using different combination antigens of the PI-2a fimbria subunit of Streptococcus agalactiae
JPH0664065B2 (ja) 菌体外膜保有菌の免疫学的測定法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231109

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240202