JPWO2019065504A1 - Decomposition material and decomposition method using it - Google Patents
Decomposition material and decomposition method using it Download PDFInfo
- Publication number
- JPWO2019065504A1 JPWO2019065504A1 JP2019545064A JP2019545064A JPWO2019065504A1 JP WO2019065504 A1 JPWO2019065504 A1 JP WO2019065504A1 JP 2019545064 A JP2019545064 A JP 2019545064A JP 2019545064 A JP2019545064 A JP 2019545064A JP WO2019065504 A1 JPWO2019065504 A1 JP WO2019065504A1
- Authority
- JP
- Japan
- Prior art keywords
- mass
- decomposition
- material according
- parts
- coating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 152
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims description 16
- 238000000576 coating method Methods 0.000 claims abstract description 197
- 239000011248 coating agent Substances 0.000 claims abstract description 195
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 186
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 74
- 239000002245 particle Substances 0.000 claims abstract description 57
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 51
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000005977 Ethylene Substances 0.000 claims abstract description 33
- 239000000126 substance Substances 0.000 claims abstract description 33
- 239000003054 catalyst Substances 0.000 claims abstract description 18
- 150000001299 aldehydes Chemical class 0.000 claims abstract description 7
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 7
- 239000000194 fatty acid Substances 0.000 claims abstract description 7
- 229930195729 fatty acid Natural products 0.000 claims abstract description 7
- 229910017464 nitrogen compound Inorganic materials 0.000 claims abstract description 7
- 150000002830 nitrogen compounds Chemical class 0.000 claims abstract description 7
- 150000003568 thioethers Chemical class 0.000 claims abstract description 7
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 6
- 239000003039 volatile agent Substances 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims description 64
- 239000004745 nonwoven fabric Substances 0.000 claims description 48
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 30
- 229910021485 fumed silica Inorganic materials 0.000 claims description 28
- 229920001225 polyester resin Polymers 0.000 claims description 25
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 239000004645 polyester resin Substances 0.000 claims description 22
- 239000004925 Acrylic resin Substances 0.000 claims description 15
- 229920000178 Acrylic resin Polymers 0.000 claims description 15
- 229920001577 copolymer Polymers 0.000 claims description 13
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 10
- 239000003112 inhibitor Substances 0.000 claims description 9
- 239000013008 thixotropic agent Substances 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 238000004062 sedimentation Methods 0.000 claims description 7
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 47
- 230000003197 catalytic effect Effects 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 description 83
- 239000000123 paper Substances 0.000 description 73
- 241000264877 Hippospongia communis Species 0.000 description 38
- 239000007789 gas Substances 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 238000001035 drying Methods 0.000 description 21
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 15
- 238000005303 weighing Methods 0.000 description 15
- 238000005470 impregnation Methods 0.000 description 14
- 239000000835 fiber Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229910002012 Aerosil® Inorganic materials 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 210000003746 feather Anatomy 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910000929 Ru alloy Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 150000003058 platinum compounds Chemical class 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 229910002011 hydrophilic fumed silica Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229940063746 oxygen 20 % Drugs 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/01—Deodorant compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Catalysts (AREA)
- Processing Of Solid Wastes (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
本開示の目的は、従来の粉体触媒よりも触媒活性及び耐久性が高い分解材を提供することである。本開示に係る分解材は、基材と、該基材の表面に設けられた塗膜とを有し、該塗膜は白金族元素を含む粒子を触媒として担持したメソポーラスシリカを含むことを特徴とする。この分解材は、アルデヒド類、脂肪酸類、硫化化合物、及び窒素化合物から選択される少なくとも1種の揮発性化合物を含む臭気物質、及び/またはエチレンを低温でも分解が可能である。An object of the present disclosure is to provide a decomposition material having higher catalytic activity and durability than conventional powder catalysts. The decomposition material according to the present disclosure is characterized by having a base material and a coating film provided on the surface of the base material, and the coating film contains mesoporous silica supporting particles containing platinum group elements as a catalyst. And. This decomposing material is capable of decomposing odorous substances containing at least one volatile compound selected from aldehydes, fatty acids, sulfide compounds, and nitrogen compounds, and / or ethylene even at low temperatures.
Description
本開示は、臭気物質の分解材及び鮮度を低下させるエチレンの分解材に関する。これらの分解材は、PGM(白金族金属)を含む微粒子を担持したメソポーラスシリカの粉体を基材に塗布した物品である。 The present disclosure relates to a decomposing material for odorous substances and a decomposing material for ethylene that reduces freshness. These decomposition materials are articles obtained by coating a base material with mesoporous silica powder carrying fine particles containing PGM (platinum group metal).
メソポーラスシリカは、ハニカム(蜂の巣)状の均一な1〜50nmの細孔直径を有する細孔(メソポア)を持ち、かつ、例えば300〜2000m2/gという大きな比表面積を持つシリカである。メソポーラスシリカは、X線回折のd間隔が2.0nmより大きい位置に少なくとも1つのピークを有する(例えば特許文献1を参照。)。Mesoporous silica is silica having honeycomb (honeycomb) -like pores (mesopores) having a uniform pore diameter of 1 to 50 nm and having a large specific surface area of, for example, 300 to 2000 m 2 / g. Mesoporous silica has at least one peak at a position where the d-interval of X-ray diffraction is larger than 2.0 nm (see, for example, Patent Document 1).
メソポーラスシリカに白金微粒子を担持した粉体は、エチレンや臭気物質を20℃以下で分解することが報告されている(例えば、特許文献1及び2、非特許文献1を参照。)。 It has been reported that a powder in which platinum fine particles are supported on mesoporous silica decomposes ethylene and odorous substances at 20 ° C. or lower (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
特許文献1及び2並びに非特許文献1に開示された触媒は、粉体等の形態をとるため(以降、粉体触媒ともいう。)、粉体の各粒子にガスが効率良くかつ均一に接触するとは限らなかった。 Since the catalysts disclosed in Patent Documents 1 and 2 and Non-Patent Document 1 take the form of powder or the like (hereinafter, also referred to as powder catalyst), the gas efficiently and uniformly contacts each particle of the powder. That was not always the case.
またメソポーラスシリカのメソポアの入口及び内部に不純物が存在すると、ガスを通気させるときに白金微粒子との接触が妨げられ、分解性能が低下する場合があった。したがって、分解の効率を高安定化させることが望まれていた。 Further, if impurities are present at the inlet and the inside of the mesoporous silica, the contact with the platinum fine particles may be hindered when the gas is aerated, and the decomposition performance may be deteriorated. Therefore, it has been desired to highly stabilize the efficiency of decomposition.
そこで本開示の目的は、従来の粉体触媒よりも触媒活性及び耐久性が高い分解材を提供することである。 Therefore, an object of the present disclosure is to provide a decomposition material having higher catalytic activity and durability than conventional powder catalysts.
本発明者らは、鋭意検討したところ、白金族元素を含む粒子を担持したメソポーラスシリカを均一な塗布液とし、当該塗布液を基材に塗布して塗膜化することで、上記課題が解決できることを見出し、本発明を完成させた。すなわち、本発明に係る分解材は、基材と、該基材の表面に設けられた塗膜とを有し、該塗膜は白金族元素を含む粒子を触媒として担持したメソポーラスシリカを含むことを特徴とする。 As a result of diligent studies, the present inventors have solved the above problems by using mesoporous silica carrying particles containing platinum group elements as a uniform coating liquid and applying the coating liquid to a substrate to form a coating film. We found what we could do and completed the present invention. That is, the decomposition material according to the present invention has a base material and a coating film provided on the surface of the base material, and the coating film contains mesoporous silica supporting particles containing platinum group elements as a catalyst. It is characterized by.
本発明に係る分解材では、前記基材が、不織布、セラミックハニカム、または、ペーパーハニカムのいずれか一つであることが好ましい。このような基材を用いることで分解材の単位体積当たりの塗膜面積を大きくすることができる。 In the decomposition material according to the present invention, it is preferable that the base material is any one of non-woven fabric, ceramic honeycomb, and paper honeycomb. By using such a base material, the coating film area per unit volume of the decomposition material can be increased.
本発明に係る分解材では、前記粒子が白金ナノ粒子であることが好ましい。 In the decomposition material according to the present invention, it is preferable that the particles are platinum nanoparticles.
本発明に係る分解材では、さらにバインダを含むことが好ましい。 The decomposition material according to the present invention preferably further contains a binder.
本発明に係る分解材では、さらに沈降防止剤を含むことが好ましい。 The decomposition material according to the present invention preferably further contains a sedimentation inhibitor.
本発明に係る分解材では、前記バインダが無機バインダおよび有機バインダの少なくとも1種であることが好ましく、無機バインダと有機バインダを併用することがさらに好ましい。 In the decomposition material according to the present invention, the binder is preferably at least one of an inorganic binder and an organic binder, and it is more preferable to use the inorganic binder and the organic binder together.
本発明に係る分解材では、前記沈降防止剤がヒュームドシリカおよびチキソ材の少なくとも1種であることが好ましく、ヒュームドシリカとチキソ材を併用することがさらに好ましい。 In the decomposition material according to the present invention, the sedimentation inhibitor is preferably at least one of fumed silica and thixotropy, and it is more preferable to use fumed silica and thixotropy in combination.
本発明に係る分解材では前記無機バインダがアルミナであることが好ましい。 In the decomposition material according to the present invention, it is preferable that the inorganic binder is alumina.
本発明に係る分解材では、前記塗膜は、前記メソポーラスシリカ100質量部に対して、前記沈降防止剤としてヒュームドシリカを5〜95質量部、前記バインダとしてアルミナを1〜95質量部含有することが好ましい。塗布液におけるこれら混合物の分散性がいっそう向上し、より均一な塗膜が得られる。 In the decomposition material according to the present invention, the coating film contains 5 to 95 parts by mass of fumed silica as the sedimentation inhibitor and 1 to 95 parts by mass of alumina as the binder with respect to 100 parts by mass of the mesoporous silica. Is preferable. The dispersibility of these mixtures in the coating liquid is further improved, and a more uniform coating film can be obtained.
本発明に係る分解材では、前記メソポーラスシリカ100質量部に対して、前記ヒュームドシリカが5〜80質量部、前記アルミナが1〜80質量部であることが好ましい。 In the decomposition material according to the present invention, it is preferable that the fumed silica is 5 to 80 parts by mass and the alumina is 1 to 80 parts by mass with respect to 100 parts by mass of the mesoporous silica.
本発明に係る分解材では、さらにチキソ剤を含むことが好ましい。 The decomposition material according to the present invention preferably further contains a thixotropic agent.
本発明に係る分解材では、前記塗膜は、前記メソポーラスシリカ100質量部に対して、前記バインダとして有機バインダを10〜50質量部、前記チキソ剤を、0質量部を超えて10質量部以下含有することが好ましい。 In the decomposition material according to the present invention, the coating film contains 10 to 50 parts by mass of an organic binder as the binder and 10 parts by mass or less of the thixo agent with respect to 100 parts by mass of the mesoporous silica. It is preferable to contain it.
本発明に係る分解材では、前記有機バインダがポリエステル系樹脂またはアクリル系樹脂であることが好ましい。 In the decomposition material according to the present invention, it is preferable that the organic binder is a polyester resin or an acrylic resin.
本発明に係る分解材では、前記チキソ剤が無水マレイン酸系の共重合体であることが好ましい。 In the decomposition material according to the present invention, it is preferable that the thixotropy is a maleic anhydride-based copolymer.
本発明に係る分解材では、前記メソポーラスシリカ100質量部に対して、前記有機バインダとしてポリエステル系樹脂またはアクリル系樹脂を10〜50質量部、前記チキソ剤として無水マレイン酸系の共重合体を1〜10質量部含有することが好ましい。 In the decomposition material according to the present invention, with respect to 100 parts by mass of the mesoporous silica, 10 to 50 parts by mass of a polyester resin or an acrylic resin as the organic binder and a maleic anhydride-based copolymer as the thixo agent are 1 part. It is preferably contained in an amount of 10 parts by mass.
本発明に係る分解材では、アルデヒド類、脂肪酸類、硫化化合物、及び窒素化合物から選択される少なくとも1種の揮発性化合物を含む臭気物質、及び/またはエチレンを分解することを含む。 The decomposing material according to the present invention comprises decomposing odorous substances including at least one volatile compound selected from aldehydes, fatty acids, sulfide compounds, and nitrogen compounds, and / or ethylene.
本発明に係る臭気物質及び/またはエチレンの分解方法は、本発明に係る分解材と、低温でアルデヒド類、脂肪酸類、硫化化合物、及び窒素化合物から選択される少なくとも1種の揮発性化合物を含む臭気物質、及び/またはエチレンを接触させることを特徴とする。 The method for decomposing odorous substances and / or ethylene according to the present invention includes the decomposing material according to the present invention and at least one volatile compound selected from aldehydes, fatty acids, sulfide compounds, and nitrogen compounds at low temperatures. It is characterized by contact with odorous substances and / or ethylene.
本開示によれば、従来の粉体触媒よりも触媒活性及び耐久性が高い分解材が得られる。この分解材は、アルデヒド類、脂肪酸類、硫化化合物、及び窒素化合物から選択される少なくとも1種の揮発性化合物を含む臭気物質、及び/またはエチレンを低温でも分解が可能である。 According to the present disclosure, a decomposition material having higher catalytic activity and durability than the conventional powder catalyst can be obtained. This decomposing material is capable of decomposing odorous substances containing at least one volatile compound selected from aldehydes, fatty acids, sulfide compounds, and nitrogen compounds, and / or ethylene even at low temperatures.
以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Hereinafter, the present invention will be described in detail by showing embodiments, but the present invention is not construed as being limited to these descriptions. The embodiments may be modified in various ways as long as the effects of the present invention are exhibited.
本実施形態に係る分解材は、基材と、該基材の表面に設けられた塗膜とを有し、該塗膜は白金族元素を含む粒子を触媒として担持したメソポーラスシリカを含む。 The decomposition material according to the present embodiment has a base material and a coating film provided on the surface of the base material, and the coating film contains mesoporous silica on which particles containing platinum group elements are supported as a catalyst.
本実施形態において、白金族元素を含む粒子を担持したメソポーラスシリカを含む塗膜を形成する基材としては、塗膜形成用の塗布液を塗布できるものであればよく、その形状は例えばフィルム状、シート状、柱状、ハニカム状等の形状や不織布状、織布状、紙状、フェルト状が例示でき、塗布する表面は平滑であっても、凹凸であってもよい。その材質は金属、樹脂、木材、紙、繊維、天然皮革、合成皮革等が例示でき、塗布面に均一に塗布できるように塗布液の粘度、塗布面と塗布液との親和性を調整すればよい。 In the present embodiment, the base material for forming the coating film containing mesoporous silica carrying particles containing platinum group elements may be any material to which a coating film for forming a coating film can be applied, and the shape thereof is, for example, a film. , Sheet shape, columnar shape, honeycomb shape and the like, non-woven fabric shape, woven cloth shape, paper shape and felt shape can be exemplified, and the surface to be applied may be smooth or uneven. Examples of the material are metal, resin, wood, paper, fiber, natural leather, synthetic leather, etc. If the viscosity of the coating liquid and the affinity between the coating surface and the coating liquid are adjusted so that the coating can be applied uniformly to the coating surface. Good.
本実施形態の分解材を各種装置、機械等と組み合わせて使用する際、表面積が大きい基材が好ましく、取り扱いの観点からハニカム状の基材、不織布または紙が好ましい。ここでいうハニカム状とは、広義の意味であり、正六角形に限らず、立体図形を間断なく並べた三次元空間充填形状のものであって連通孔を有するものであり、孔の形状は円形や三角形、四角形、五角形、六角形等の多角形が例示できる。孔の形状は全て同じであっても、これら形状の2以上を有するものであっても良い。 When the decomposition material of the present embodiment is used in combination with various devices, machines and the like, a base material having a large surface area is preferable, and a honeycomb-shaped base material, a non-woven fabric or paper is preferable from the viewpoint of handling. The "honeycomb shape" as used herein has a broad meaning, and is not limited to a regular hexagon, but is a three-dimensional space-filling shape in which three-dimensional figures are arranged without interruption and has a communication hole, and the shape of the hole is circular. Or polygons such as triangles, quadrangles, pentagons, and hexagons can be exemplified. The shapes of the holes may all be the same, or may have two or more of these shapes.
ハニカム状の基材としてはセラミックハニカムやペーパーハニカムが例示できる。セラミックハニカムの成分は、コージェライト、炭化珪素、窒化珪素、アルミナ、ムライト、アルミニウムチタネート、チタニア及びジルコニアからなる群から選ばれる成分からなるものが好ましい。 Examples of the honeycomb-shaped base material include ceramic honeycombs and paper honeycombs. The component of the ceramic honeycomb is preferably a component selected from the group consisting of cordierite, silicon carbide, silicon nitride, alumina, mullite, aluminum titanate, titania and zirconia.
ペーパーハニカムは、クラフト紙、Kライナー紙、強化中芯原紙、耐水中芯原紙、水酸化アルミ紙等からなる群から選ばれる紙からなるものが好ましい。またこれら紙の中でも絶縁性を有する紙が好ましく、不燃性または難燃性を有するものが好ましい。 The paper honeycomb is preferably made of paper selected from the group consisting of kraft paper, K liner paper, reinforced core base paper, water resistant core base paper, aluminum hydroxide paper and the like. Further, among these papers, paper having insulating properties is preferable, and paper having nonflammability or flame retardancy is preferable.
セラミックハニカムは上記成分を押出し成型により所定の形状に成型することで製造することができる。またペーパーハニカムは上記の紙を平板状、波形状、円柱状、蜂巣状等に連続成型積層することで製造することが出来る。これらを用途・環境に合わせて適宜選択し使用する。耐熱性の観点からセラミックハニカムが好ましく、軽量性の観点からペーパーハニカムが好ましい。 The ceramic honeycomb can be produced by molding the above components into a predetermined shape by extrusion molding. Further, the paper honeycomb can be produced by continuously molding and laminating the above-mentioned paper in a flat plate shape, a wavy shape, a columnar shape, a honeycomb shape or the like. Select and use these as appropriate according to the application and environment. Ceramic honeycomb is preferable from the viewpoint of heat resistance, and paper honeycomb is preferable from the viewpoint of light weight.
不織布は、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリオレフィン繊維、レーヨン繊維、低密度ポリエチレン樹脂、エチレン酢酸ビニル樹脂、共重合ポリアミド樹脂、共重合ポリエステル樹脂、ポリフェニレンスルフィド樹脂等の繊維からなるものであり、耐熱性の観点からアラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維が好ましく、難燃性や外気からの洗浄処理性に富んでいるという観点から、ポリエステル/モダアクリル樹脂の繊維がさらに好ましい。 Non-woven fabrics include aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyethylene fiber, polypropylene fiber, polyolefin fiber, rayon fiber, low density polyethylene resin, ethylene vinyl acetate resin, copolymerized polyamide resin, and copolymerization. It is made of fibers such as polyester resin and polyphenylene sulfide resin, and from the viewpoint of heat resistance, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, and polyester fiber are preferable, and they are flame-retardant and washable from the outside air. Polyester / modal acrylic resin fibers are more preferred from the standpoint of being rich in.
紙は、和紙、洋紙、紙と板紙(ボール紙)、新聞巻取紙(新聞用紙)、印刷・情報用紙(情報システム用)、非塗工印刷用紙(薄葉紙)、塗工印刷用紙(コート紙・コート紙・軽量コート紙)、微塗工印刷用紙、特殊印刷用紙(色上質紙・官製はがき)、情報用紙(コピー用紙、インクジェット用紙、ノーカーボン紙、感光紙、感熱紙)、包装用紙(包装紙や封筒)、衛生用紙(ティッシュペーパー、トイレットペーパー、紙おむつ、生理用品などの用途に使用される吸水性を持つ紙)、雑種紙(トレーシングペーパー、合成紙、絶縁紙、剥離紙、ライスペーパー(紙巻きたばこの巻紙)、書道用紙)等の紙からなるものであり、防水や耐水性に富んでいるという観点から包装材料が、また、油や脂質への耐性や難燃性に富んでいるという観点から食品包装用材料がさらにそれぞれ好ましい。 Paper is Japanese paper, Western paper, paper and paperboard (cardboard), newspaper roll paper (newspaper), printing / information paper (for information systems), non-coated printing paper (thin leaf paper), coated printing paper (coated paper / coat). Paper / lightweight coated paper), finely coated printing paper, special printing paper (high-quality color paper / government-made postcard), information paper (copy paper, inkjet paper, no-carbon paper, photosensitive paper, heat-sensitive paper), wrapping paper (wrapping paper) Paper (or envelope), sanitary paper (tissue paper, toilet paper, paper diapers, water-absorbent paper used for sanitary products, etc.), mixed paper (tracing paper, synthetic paper, insulating paper, release paper, rice paper (rice paper) It is made of paper such as paper rolls (paper rolls) and calligraphy paper), and the packaging material is said to be highly resistant to oils and lipids and flame retardant from the viewpoint of being highly waterproof and water resistant. From the viewpoint, each material for food packaging is further preferable.
本実施形態に係る分解材において、塗膜は、基材の表面に設けられる。基材の表面とは、基材が不織布である場合には不織布を構成する繊維の表面であり、基材がハニカム構造体である場合には、構造体の外壁の表面のみならず、連通孔の内壁の表面も含み、フィルム状またはシート状の構造体である場合には、フィルムまたはシートの片面または両面の表面である。さらに、基材が多孔質体である場合には、その孔内の表面も含まれる。 In the decomposition material according to the present embodiment, the coating film is provided on the surface of the base material. The surface of the base material is the surface of the fibers constituting the non-woven fabric when the base material is a non-woven fabric, and when the base material is a honeycomb structure, not only the surface of the outer wall of the structure but also the communication holes. In the case of a film-like or sheet-like structure including the surface of the inner wall of the film or sheet, it is the surface of one side or both sides of the film or sheet. Further, when the base material is a porous body, the surface inside the pores is also included.
塗膜は、白金族元素を含む粒子を担持したメソポーラスシリカを含む。塗膜は、白金族元素を含む粒子を担持したメソポーラスシリカの他に、バインダとして、例えば、アルミナ、ジルコニア、シリカ等の無機バインダ、ポリエチレン系樹脂、ポリプロピレン系樹脂、メタクリル酸メチル等のアクリル系樹脂、ABS樹脂、PET等のポリエステル系樹脂、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、酢酸ビニル系樹脂、ポリビニルアルコール、カルボキシメチルセルロース等のセルロース、アラビヤゴム、ウレタン、フェノール、ジエン等の有機バインダを含んでいてもよい。後述するように塗膜の形成を安定させるために塗布液に添加されるシリカ、フェームドシリカ等の沈降防止剤を含んでいてもよい。沈降防止剤はさらに塗布液に含まれる白金族元素を含む粒子を担持したメソポーラスシリカや無機バインダ等が経時と共に沈降することを防ぐ役割を有する。また塗膜には、上記に加えて後述する塗布工程を安定させる目的で添加されるチキソ剤を含んでいても良い。 The coating film contains mesoporous silica carrying particles containing platinum group elements. In addition to mesoporous silica carrying particles containing platinum group elements, the coating film can be used as a binder, for example, an inorganic binder such as alumina, zirconia, or silica, a polyethylene resin, a polypropylene resin, or an acrylic resin such as methyl methacrylate. , ABS resin, polyester resin such as PET, phenol resin, epoxy resin, urethane resin, vinyl acetate resin, polyvinyl alcohol, cellulose such as carboxymethyl cellulose, arabia rubber, urethane, phenol, diene and other organic binders. Good. As will be described later, a settling inhibitor such as silica or fame silica added to the coating liquid to stabilize the formation of the coating film may be contained. The settling inhibitor also has a role of preventing mesoporous silica, an inorganic binder, or the like carrying particles containing platinum group elements contained in the coating liquid from settling with time. Further, the coating film may contain a thixotropic agent added for the purpose of stabilizing the coating process described later in addition to the above.
白金族元素を含む粒子を担持したメソポーラスシリカを水またはエタノール等の溶媒に分散させた塗布液を基材の表面に塗布したとき、塗膜に無機バインダを含有させていると、塗布液を塗布した後の基材を昇温・減圧乾燥することによって、乾燥させることが促進される。このとき、メソ孔内の水分除去が容易となる。基材が無機物で形成されている場合は、500℃以上に加熱することで、メソ孔内の水分が除去される。基材が有機物で形成されている場合は、昇温・減圧乾燥とすることが好ましく、その条件としては、例えば、常圧下で30〜500℃、133Pa以下の減圧下で30〜200℃、保持時間0.1〜24時間である。なお、基材が無機物で形成されている場合においても昇温・減圧乾燥としてもよい。また、塗膜に無機バインダを含有させていると、乾燥後の塗膜の撥水性が向上し、分解材の使用時にメソポーラスシリカのメソポア内に水分が混入することを防止することができる。したがって、触媒が水分によって性能低下することを抑制することができる。さらに、塗膜に無機バインダを含有させていると、塗膜と基材との密着性が向上する。 When a coating solution in which mesoporous silica carrying particles containing platinum group elements is dispersed in a solvent such as water or ethanol is applied to the surface of the substrate, if the coating film contains an inorganic binder, the coating solution is applied. Drying is promoted by heating and depressurizing the substrate after the above. At this time, water removal in the mesopores becomes easy. When the base material is made of an inorganic substance, the water content in the mesopores is removed by heating to 500 ° C. or higher. When the base material is made of an organic substance, it is preferably heated and dried under reduced pressure, and the conditions thereof include, for example, holding at 30 to 500 ° C. under normal pressure and 30 to 200 ° C. under reduced pressure of 133 Pa or less. The time is 0.1 to 24 hours. Even when the base material is made of an inorganic substance, the temperature may be raised or the pressure may be reduced. Further, when the coating film contains an inorganic binder, the water repellency of the coating film after drying is improved, and it is possible to prevent water from being mixed into the mesopores of the mesoporous silica when the decomposition material is used. Therefore, it is possible to prevent the catalyst from deteriorating its performance due to moisture. Further, when the coating film contains an inorganic binder, the adhesion between the coating film and the base material is improved.
塗膜に無機バインダを含有させる場合は、無機バインダの質量部が白金族元素を含む粒子を担持したメソポーラスシリカの質量部を超えると、塗布液中の白金族元素を含む粒子を担持したメソポーラスシリカの分散性が低下し、また得られる触媒活性が低下する傾向があることに対し、有機バインダを含有させる場合は、これらの低下を抑えることができ、有機バインダの質量部がメソポーラスシリカの質量部を超えることが可能となる。さらに、乾燥後には、有機バインダにより塗膜と水との相溶性を低減することが可能となる。つまり、乾燥後の塗膜の撥水性が向上し、分解材の使用時にメソポーラスシリカのメソポア内に水分が混入することを防止することができる。したがって、触媒が水分によって性能低下することを抑制することができる。さらに、塗膜に有機バインダを含有させていると、無機バインダよりさらに塗膜と基材との密着性が向上する。 When the coating film contains an inorganic binder, if the mass portion of the inorganic binder exceeds the mass portion of the mesoporous silica supporting the particles containing the platinum group element, the mesoporous silica carrying the particles containing the platinum group element in the coating liquid is used. In contrast to the fact that the dispersibility of the organic binder tends to decrease and the resulting catalytic activity tends to decrease, when an organic binder is contained, these reductions can be suppressed, and the mass part of the organic binder is the mass portion of the mesoporous silica. Can be exceeded. Further, after drying, the organic binder makes it possible to reduce the compatibility between the coating film and water. That is, the water repellency of the coating film after drying is improved, and it is possible to prevent water from being mixed into the mesopores of the mesoporous silica when the decomposition material is used. Therefore, it is possible to prevent the catalyst from deteriorating its performance due to moisture. Further, when the coating film contains an organic binder, the adhesion between the coating film and the base material is further improved as compared with the inorganic binder.
塗膜の撥水性が向上し分解材の使用時にメソポーラスシリカのメソポア内に水分が混入することをさらに防止することができるという観点から、無機バインダと有機バインダを併用することがさらに好ましい。 It is more preferable to use the inorganic binder and the organic binder together from the viewpoint that the water repellency of the coating film is improved and water can be further prevented from being mixed into the mesopores of the mesoporous silica when the decomposition material is used.
無機バインダとしては撥水効果の観点からアルミナが好ましい。有機バインダとしては塗膜密着の観点からポリエステル系樹脂またはアクリル系樹脂が好ましい。 As the inorganic binder, alumina is preferable from the viewpoint of water repellent effect. As the organic binder, a polyester resin or an acrylic resin is preferable from the viewpoint of adhesion to the coating film.
沈降防止剤は、メソポーラスシリカを湿式分散するときに、添加され、水またはエタノール等の溶媒に分散させた塗布液としたとき、及び、塗布液を濃縮乾燥して粉体としたのち、水、溶媒等で乾燥粉体を再度分散させて塗膜用の塗布液としたとき、分散した粉体の沈降を抑制する。沈降防止剤は乾燥した塗膜となったときに塗膜中に存在する。塗布液の分散性が良好であると、均一な塗膜を形成することができ、この結果、塗膜におけるガスの透過性を向上させることができる。 The anti-sedimentation agent is added when the mesoporous silica is wet-dispersed and is dispersed in a solvent such as water or ethanol, and when the coating solution is concentrated and dried to form a powder, water is used. When the dry powder is redispersed with a solvent or the like to obtain a coating liquid for a coating film, precipitation of the dispersed powder is suppressed. The anti-settling agent is present in the coating when it becomes a dry coating. When the dispersibility of the coating liquid is good, a uniform coating film can be formed, and as a result, the gas permeability in the coating film can be improved.
チキソ剤(チクソ剤)は塗布液の増粘性の効果を有し、塗布性を向上するものであり、例えば無水マレイン酸とエチレンやプロピレン等のα−オレフィン、またはスチレンとの共重合体である無水マレイン酸系の共重合体が挙げられる。チキソ剤が塗膜に含まれると白金族元素を含む粒子を担持したメソポーラスシリカが塗膜から離脱すること(粉落ち)が抑制されて好ましい。 The thixo agent (thix agent) has the effect of thickening the coating liquid and improves the coating property. For example, it is a copolymer of maleic anhydride and α-olefin such as ethylene or propylene, or styrene. Maleic anhydride-based copolymers can be mentioned. When the thixotropy is contained in the coating film, it is preferable that the mesoporous silica carrying the particles containing the platinum group element is suppressed from being separated from the coating film (powder drop).
メソポーラスシリカに担持させた白金族元素を含む粒子は、白金、ロジウム、ルテニウム、パラジウム、イリジウムの単体粒子、または、これらの合金粒子である。合金粒子としては、ルテニウム/パラジウム合金、白金/ルテニウム合金が好ましい。粒子の粒子径は、0.5nm〜10nmであることが好ましく、より好ましくは0.5nm〜4nmである。 The particles containing a platinum group element carried on mesoporous silica are elemental particles of platinum, rhodium, ruthenium, palladium, and iridium, or alloy particles thereof. As the alloy particles, ruthenium / palladium alloy and platinum / ruthenium alloy are preferable. The particle size of the particles is preferably 0.5 nm to 10 nm, more preferably 0.5 nm to 4 nm.
メソポーラスシリカのメソポアの細孔直径は1〜50nm、好ましくは1〜10nmであることが好ましい。メソポーラスシリカのBET比表面積は300〜2000m2/g、好ましくは500〜1500m2/gである。The pore diameter of the mesopores of mesoporous silica is preferably 1 to 50 nm, preferably 1 to 10 nm. BET specific surface area of mesoporous silica 300~2000m 2 / g, preferably from 500 to 1500 2 / g.
白金族元素を含む粒子は、メソポーラスシリカの存在下で、白金族元素を含む溶液から核生成させて粒成長させることによって、メソポーラスシリカに担持させることが好ましい。こうすることによってメソポーラスシリカのメソポア内に粒子径が揃った粒子を担持させることができる。また、本実施形態ではメソポーラスシリカの外表面に白金族元素を含む粒子が担持されていてもよい。 The particles containing the platinum group element are preferably supported on the mesoporous silica by nucleating the particles from the solution containing the platinum group element and growing the particles in the presence of the mesoporous silica. By doing so, particles having a uniform particle size can be supported in the mesopores of mesoporous silica. Further, in the present embodiment, particles containing a platinum group element may be supported on the outer surface of the mesoporous silica.
本実施形態に係る分解材では、前記塗膜が、沈降防止剤としてヒュームドシリカと呼ばれる乾式シリカ及びアルミナをさらに含むことが好ましい。均一な塗布液となるという観点から、ヒュームドシリカと無機バインダを含有することが好ましく、ヒュームドシリカとしては親水性が好ましく、無機バインダとしてはアルミナが好ましい。特に親水性ヒュームドシリカと親水性のアルミナとが、白金族元素を担持したメソポーラスシリカと共に塗膜中に存在すると、基材と塗膜との密着性が高まるとともにガス透過性が向上しより好ましい。また、塗膜の撥水性も高まる。 In the decomposition material according to the present embodiment, it is preferable that the coating film further contains dry silica and alumina called fumed silica as a settling inhibitor. From the viewpoint of forming a uniform coating liquid, it is preferable to contain fumed silica and an inorganic binder, hydrophilicity is preferable as the fumed silica, and alumina is preferable as the inorganic binder. In particular, when hydrophilic fumed silica and hydrophilic alumina are present in the coating film together with mesoporous silica carrying a platinum group element, the adhesion between the base material and the coating film is improved and the gas permeability is improved, which is more preferable. .. In addition, the water repellency of the coating film is also enhanced.
塗膜は、白金族元素を含む粒子を担持させたメソポーラスシリカ100質量部に対して、ヒュームドシリカを100質量部以下、好ましくは5〜95質量部、アルミナを100質量部以下、好ましくは1〜95質量部含有することが好ましく、ヒュームドシリカを5〜80質量部、アルミナを1〜80質量部含有することがより好ましい。ヒュームドシリカを15〜30質量部、アルミナを1〜10質量部含有することがさらに好ましい。こうすることによって、実質的に粉体が沈降しない塗膜用塗布液を調製することが可能であり、さらに上述したガス透過性が向上し、塗膜の撥水性も高まる。 The coating film contains 100 parts by mass or less of fumed silica, preferably 5 to 95 parts by mass, and 100 parts by mass or less of alumina, preferably 1 with respect to 100 parts by mass of mesoporous silica carrying particles containing platinum group elements. It is preferably contained in an amount of ~ 95 parts by mass, more preferably 5 to 80 parts by mass of fumed silica and 1 to 80 parts by mass of alumina. It is more preferable to contain 15 to 30 parts by mass of fumed silica and 1 to 10 parts by mass of alumina. By doing so, it is possible to prepare a coating liquid for a coating film in which powder does not substantially settle, and further, the above-mentioned gas permeability is improved and the water repellency of the coating film is also enhanced.
本実施形態に係る分解材では、前記塗膜が有機バインダを含む場合、チキソ剤をさらに含むことが好ましい。均一な塗布液となるという観点から、チキソ剤と有機バインダを含有することが好ましく、チキソ剤としては無水マレイン酸系の共重合体が好ましく、有機バインダとしてはポリエステル系樹脂またはアクリル系樹脂が好ましい。特にチキソ剤と有機バインダであるポリエステル系樹脂またはアクリル系樹脂が白金族元素を担持したメソポーラスシリカと共に塗膜中に存在すると、基材と塗膜との密着性が高まるとともにガス透過性が向上してより好ましい。また、塗膜の撥水性も高まる。有機バインダとしてポリエステル系樹脂及びアクリル系樹脂の両方を含ませても良い。 In the decomposition material according to the present embodiment, when the coating film contains an organic binder, it is preferable that the thixotropic agent is further contained. From the viewpoint of providing a uniform coating liquid, it is preferable to contain a thixotropic agent and an organic binder, a maleic anhydride-based copolymer is preferable as the thixotropic agent, and a polyester resin or an acrylic resin is preferable as the organic binder. .. In particular, when a thixotropic agent and a polyester resin or an acrylic resin which is an organic binder are present in the coating film together with mesoporous silica carrying a platinum group element, the adhesion between the base material and the coating film is improved and the gas permeability is improved. More preferable. In addition, the water repellency of the coating film is also enhanced. Both polyester-based resin and acrylic-based resin may be contained as the organic binder.
有機バインダを用いた場合、塗膜は、白金族元素を含む粒子を担持させたメソポーラスシリカ100質量部に対して、有機バインダを100質量部以下、好ましく80質量部以下、チキソ剤を50質量部以下、好ましくは40質量部以下含有することが好ましく、有機バインダを1〜80質量部、チキソ剤を1〜40質量部含有することがより好ましい。有機バインダを10〜50質量部、チキソ剤を1〜10質量部含有することがさらに好ましい。こうすることによって、実質的に粉体が沈降しない塗膜用塗布液を調製しやすく、また得られる塗膜と基材との密着性が向上しガス透過性が向上すると共に、塗膜の撥水性が向上する。 When an organic binder is used, the coating film contains 100 parts by mass or less of the organic binder, preferably 80 parts by mass or less, and 50 parts by mass of the thixo agent with respect to 100 parts by mass of mesoporous silica carrying particles containing platinum group elements. Hereinafter, it is preferable to contain 40 parts by mass or less, and more preferably 1 to 80 parts by mass of the organic binder and 1 to 40 parts by mass of the thixo agent. It is more preferable to contain 10 to 50 parts by mass of the organic binder and 1 to 10 parts by mass of the thixotropic agent. By doing so, it is easy to prepare a coating liquid for a coating film in which powder does not substantially settle, and the adhesion between the obtained coating film and the base material is improved, gas permeability is improved, and the coating film is repellent. Water quality is improved.
本実施形態に係る分解材では、メソポーラスシリカ100質量部に対して、有機バインダとしてポリエステル系樹脂またはアクリル系樹脂を10〜50質量部、チキソ剤として無水マレイン酸系の共重合体を1〜10質量部含有することが好ましい。有機バインダとしてポリエステル系樹脂またはアクリル系樹脂を10〜25質量部、チキソ剤として無水マレイン酸系の共重合体を1〜5質量部含有することがより好ましい。この場合においても有機バインダとしてポリエステル系樹脂及びアクリル系樹脂の両方を含ませても良い。 In the decomposition material according to the present embodiment, with respect to 100 parts by mass of mesoporous silica, 10 to 50 parts by mass of a polyester resin or an acrylic resin as an organic binder and 1 to 10 parts of a maleic anhydride-based copolymer as a thixo agent. It is preferably contained in parts by mass. It is more preferable to contain 10 to 25 parts by mass of a polyester resin or an acrylic resin as an organic binder and 1 to 5 parts by mass of a maleic anhydride-based copolymer as a thixotropic agent. In this case as well, both the polyester resin and the acrylic resin may be included as the organic binder.
塗膜の厚みは塗布する基材の形状と分解材の性能により適宜設定されるが、白金族元素を含む粒子を担持させたメソポーラスシリカの粒子が塗膜の膜厚方向に1個〜20個積み重なった膜厚を有することが好ましく、1個〜10個積み重なった膜厚であることがより好ましい。分解材の分解性能と分解材の単位面積当たりの分解効率の観点から、膜厚は概ね0.1μm以上、好ましくは10μm以上、より好ましくは20μm以上であり、また、500μm以下、300μm以下が好ましく、200μm以下がより好ましい。例えば不織布のような繊維状物からなる基材の場合、塗膜の膜厚は1〜300μm程度であり、20〜200μm程度が好ましい。またフィルム状、シート状、柱状またはハニカム状のような比較的平坦な部分を有する基材の場合、塗膜の膜厚は10〜800μm程度であり、30〜600μm程度が好ましく、30〜100μmがより好ましい。 The thickness of the coating film is appropriately set depending on the shape of the base material to be applied and the performance of the decomposition material, and 1 to 20 mesoporous silica particles carrying particles containing platinum group elements are formed in the film thickness direction of the coating film. It is preferable to have a stacked film thickness, and it is more preferable that the film thickness is one to ten stacked. From the viewpoint of the decomposition performance of the decomposed material and the decomposition efficiency per unit area of the decomposed material, the film thickness is approximately 0.1 μm or more, preferably 10 μm or more, more preferably 20 μm or more, and preferably 500 μm or less and 300 μm or less. , 200 μm or less is more preferable. For example, in the case of a base material made of a fibrous material such as a non-woven fabric, the film thickness of the coating film is about 1 to 300 μm, preferably about 20 to 200 μm. Further, in the case of a base material having a relatively flat portion such as a film, a sheet, a columnar or a honeycomb, the film thickness of the coating film is about 10 to 800 μm, preferably about 30 to 600 μm, preferably 30 to 100 μm. More preferred.
例えば図1に示すように、セラミックハニカムに塗膜を設けた場合、塗膜の厚みは10個所あたりでの塗膜の厚みの範囲は50〜90μmであり、平均厚さは70μmと測定された。また図2及び図3では不織布に塗膜を設けた場合であり、塗膜の厚み範囲は35〜150μmである。図4及び図5はペーパーハニカムに塗膜を設けた場合であり、塗膜の厚み範囲は280〜500μmであった。図2及び3に示す10箇所あたりでの塗膜の平均厚さは90μm前後、図4及び5に示す10箇所あたりでの塗膜の平均厚さは400μm前後と測定された。 For example, as shown in FIG. 1, when the coating film was provided on the ceramic honeycomb, the thickness of the coating film was measured to be 50 to 90 μm and the average thickness was 70 μm per 10 places. .. Further, in FIGS. 2 and 3, a coating film is provided on the non-woven fabric, and the thickness range of the coating film is 35 to 150 μm. 4 and 5 show the case where the coating film is provided on the paper honeycomb, and the thickness range of the coating film is 280 to 500 μm. The average thickness of the coating film at about 10 locations shown in FIGS. 2 and 3 was measured to be around 90 μm, and the average thickness of the coating film at around 10 locations shown in FIGS. 4 and 5 was measured to be around 400 μm.
塗膜の膜厚に対して、無機バインダ粒子の粒子径が5〜95%であることが好ましい。無機バインダ粒子の粒子径がこの範囲であるとき、無機バインダ粒子の粒子径と、白金族元素を含む粒子を担持させたメソポーラスシリカの粒子の粒子径との差異が大きくなり過ぎないので、塗膜中にメソポーラスシリカの粒子と無機バインダ粒子とが均一に混ざった状態となりやすい。 The particle size of the inorganic binder particles is preferably 5 to 95% of the film thickness of the coating film. When the particle size of the inorganic binder particles is in this range, the difference between the particle size of the inorganic binder particles and the particle size of the mesoporous silica particles carrying particles containing platinum group elements does not become too large. Mesoporous silica particles and inorganic binder particles tend to be uniformly mixed inside.
塗膜に白金族元素を含む粒子を担持させたメソポーラスシリカの粒子と無機バインダ粒子の両方を含有させる場合、塗膜は、白金族元素を含む粒子を担持させたメソポーラスシリカの粒子または無機バインダ粒子が塗膜の膜厚方向に合計1個〜20個積み重なった膜厚を有することが好ましく、合計1個〜10個積み重なった膜厚であることがより好ましい。 When the coating film contains both mesoporous silica particles carrying platinum group element particles and inorganic binder particles, the coating film contains mesoporous silica particles or inorganic binder particles carrying platinum group element particles. It is preferable that the coating film has a total thickness of 1 to 20 particles stacked in the film thickness direction, and more preferably a total of 1 to 10 particles are stacked.
塗膜は上述した基材の表面に設けられるが、分解材の分解性能が所望の範囲となるのであれば表面全面に設ける必要はなく、基材表面の一部に設けられていてもよく、基材表面に塗膜が設けられていない部分があっても良い。また塗膜が基材表面上で不連続または断続的となっていても良く、塗膜が基材表面上で斑点状に設けられていても良い。 The coating film is provided on the surface of the base material described above, but it is not necessary to provide the coating film on the entire surface as long as the decomposition performance of the decomposition material is within a desired range, and the coating film may be provided on a part of the surface of the base material. There may be a portion where the coating film is not provided on the surface of the base material. Further, the coating film may be discontinuous or intermittent on the surface of the base material, or the coating film may be provided in a spot shape on the surface of the base material.
塗膜は後述するような塗布液を基材に塗布し乾燥することで形成することがきるが、基材上に白金族元素を含む粒子を担持したメソポーラスシリカを密着できるのであれば、特にその方法は限定されない。 The coating film can be formed by applying a coating liquid as described later to a base material and drying it, but especially if mesoporous silica carrying particles containing platinum group elements can be adhered to the base material. The method is not limited.
塗膜は通常、上記したとおり白金族元素を含む粒子を担持したメソポーラスシリカを水またはエタノール等の溶媒に分散させた塗布液を基材の表面に塗布し、乾燥することで形成することできる。必要に応じて、上述した無機バインダ、有機バインダ、沈降防止剤、チキソ剤等を塗布液に添加することで、これら成分を含有した塗膜を形成することができる。また塗布液の分散性、粘性、チキソトロピックス性を改良する目的で、種々の添加剤を塗布液に添加しても良い。 The coating film can usually be formed by applying a coating solution in which mesoporous silica carrying particles containing platinum group elements as described above is dispersed in a solvent such as water or ethanol to the surface of the base material and drying it. If necessary, the above-mentioned inorganic binder, organic binder, anti-sedimentant, thixotropy and the like can be added to the coating liquid to form a coating film containing these components. Further, various additives may be added to the coating liquid for the purpose of improving the dispersibility, viscosity and thixotropic property of the coating liquid.
白金族元素を含む粒子の粒子径は、メソポーラスシリカのメソポアの細孔直径の95%以下であることが好ましく、20〜50%であることがより好ましい。95%を超えると、メソポア内で白金族元素を含む粒子が異形に成長してしまうおそれがあり、また、メソポア内にガスが通過しづらくなる。 The particle size of the particles containing the platinum group element is preferably 95% or less, more preferably 20 to 50% of the pore diameter of the mesopores of mesoporous silica. If it exceeds 95%, particles containing platinum group elements may grow irregularly in the mesopore, and it becomes difficult for gas to pass through the mesopore.
塗膜中の白金族元素を含む粒子を担持させたメソポーラスシリカの粒子は、メソポアが破壊されていない粒子であり、かつ、粒子表面が破砕面であることが好ましい。粒子表面が破砕面でないと、塗布液としたときに接触する水または溶媒がメソポアに侵入したままとなりやすく、ガスのメソポアへの通気性が低下し、触媒活性が低下するおそれがある。一方、メソポアが破壊された粒子であると、触媒粒子とガスとの接触機会が減少し、触媒の性能が低下するおそれがある。 The mesoporous silica particles carrying particles containing platinum group elements in the coating film are preferably particles in which the mesopores are not destroyed and the particle surface is a crushed surface. If the particle surface is not a crushed surface, water or solvent that comes into contact with the coating liquid tends to remain invading the mesopore, and the air permeability of the gas to the mesopore may decrease, resulting in a decrease in catalytic activity. On the other hand, if the mesopore is a destroyed particle, the chance of contact between the catalyst particle and the gas is reduced, and the performance of the catalyst may be deteriorated.
本実施形態では、臭気物質としては、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類、蟻酸、酢酸等の脂肪酸類、硫化水素、メチルメルカプタン等の硫化化合物、及びトリメチルアミン、アンモニア等の窒素化合物から選択される少なくとも1種の揮発性化合物が例示される。 In the present embodiment, the odorous substance is at least one selected from aldehydes such as formaldehyde and acetaldehyde, fatty acids such as formic acid and acetic acid, sulfide compounds such as hydrogen sulfide and methyl mercaptan, and nitrogen compounds such as trimethylamine and ammonia. Species of volatile compounds are exemplified.
本実施形態の分解材は上記臭気物質やエチレンを低温、例えば30℃以下で分解する分解材として用いられる。分解の温度は通常−40℃以上であり、−30℃以上が好ましい。用いる方法としては例えば分解の対象となる臭気物質やエチレンをガスとして本実施形態の分解材と接触させればよい。密封空間内で臭気物質やエチレンが徐々に発生する環境下においては、密封空間内に当初より本実施形態の分解材を入れておけば、臭気物質やエチレンが発生したとしても分解されていくため、それらのガス濃度を常に低濃度に保つことができる。また、密封空間内で臭気物質やエチレンがすでに存在する環境下においては、密封空間に本実施形態の分解材を投入することで臭気物質やエチレンを分解し、密封空間内のそれらの濃度を低減させることができる。通常、本発明の分解材を使用する環境は臭気物質やエチレンガスが空気中で発生または存在する環境であり、臭気物質やエチレンガスは空気中の酸素により、酸化分解される。空気中の臭気物質やエチレンガスの濃度は、通常、1%以下、好ましくは500ppm以下、さらに好ましくは200ppm以下であるが、必要であれば、空気や窒素等の不活性ガスで希釈してもよい。なお、密封空間内での臭気物質やエチレンの分解は、バッチ式の分解法となる。また本発明の分解材を臭気物質やエチレンガスと強制的に接触させて臭気物質やエチレンガスを分解してもよい。強制的に分解する場合は、密閉空間内でも開放空間内でもよく、臭気物質やエチレンガスを循環させてもよい。また分解のために酸素共存させる。酸素の濃度は分解の対象となる物質を酸素分解するに必要な量論量かそれより若干(10%程度)多くすればよく、空気を共存させても良い。 The decomposition material of the present embodiment is used as a decomposition material that decomposes the odorous substance and ethylene at a low temperature, for example, 30 ° C. or lower. The decomposition temperature is usually −40 ° C. or higher, preferably −30 ° C. or higher. As a method to be used, for example, an odorous substance or ethylene to be decomposed may be brought into contact with the decomposition material of the present embodiment as a gas. In an environment where odorous substances and ethylene are gradually generated in the sealed space, if the decomposition material of the present embodiment is put in the sealed space from the beginning, even if odorous substances and ethylene are generated, they will be decomposed. , Their gas concentration can always be kept low. Further, in an environment where odorous substances and ethylene already exist in the sealed space, the decomposition materials of the present embodiment are put into the sealed space to decompose the odorous substances and ethylene, and their concentrations in the sealed space are reduced. Can be made to. Usually, the environment in which the decomposition material of the present invention is used is an environment in which an odorous substance or ethylene gas is generated or exists in the air, and the odorous substance or ethylene gas is oxidatively decomposed by oxygen in the air. The concentration of odorous substances and ethylene gas in the air is usually 1% or less, preferably 500 ppm or less, more preferably 200 ppm or less, but if necessary, it can be diluted with an inert gas such as air or nitrogen. Good. The decomposition of odorous substances and ethylene in the sealed space is a batch type decomposition method. Further, the decomposition material of the present invention may be forcibly brought into contact with an odorous substance or ethylene gas to decompose the odorous substance or ethylene gas. In the case of forced decomposition, it may be in a closed space or an open space, and an odorous substance or ethylene gas may be circulated. Also, oxygen is allowed to coexist for decomposition. The concentration of oxygen may be a stoichiometric amount required for oxygen decomposition of the substance to be decomposed or slightly higher (about 10%), and air may coexist.
分解材の量は用途により分解速度が適切となるように適宜設定する。通常は24時間以内に対象となるガスが50%以上分解されるように分解材の量を設定すればよく、ほぼ完全に分解、例えば85%以上、好ましくは90%以上、より好ましくは95%以上分解できるよう分解材の量を設定すればよい。 The amount of decomposition material is appropriately set so that the decomposition rate is appropriate depending on the application. Normally, the amount of the decomposition material may be set so that the target gas is decomposed by 50% or more within 24 hours, and the decomposition material is almost completely decomposed, for example, 85% or more, preferably 90% or more, more preferably 95%. The amount of the decomposition material may be set so that the decomposition material can be decomposed.
また分解の方法は分解の対象となるガスを本実施形態の分解材に連続的に接触させる連続式であってもよい。連続式の場合はガスの流速は用途、使用環境等により適宜設定され、ガスを循環させながら本実施形態の分解材と連続的に接触させてもよい。 Further, the decomposition method may be a continuous method in which the gas to be decomposed is continuously brought into contact with the decomposition material of the present embodiment. In the case of the continuous type, the flow velocity of the gas is appropriately set depending on the application, the usage environment, etc., and the decomposition material of the present embodiment may be continuously contacted while circulating the gas.
本実施形態では、塗布液の塗布方法として、特に限定されるものではなく、塗布液を基材表面に、はけ、ローラー等で塗布する方法、霧状にした塗布液を高圧空気で吹付ける方法、塗布液を高圧にして吹付ける方法、塗布液をエアブロー(スプレー)する方法、または基材を塗布液に浸漬する方法等が例示できる。これら方法のうちハニカム状、不織布状のような形状の場合、エアブロー(スプレー)する方法、または基材を塗布液に浸漬する方法が好ましく、塗布後、乾燥する前に、余分な塗布液をエアで吹き飛ばすことが好ましい。 In the present embodiment, the coating method of the coating liquid is not particularly limited, and the coating liquid is applied to the surface of the base material with a brush, a roller, or the like, or the atomized coating liquid is sprayed with high-pressure air. Examples thereof include a method, a method of spraying the coating liquid at a high pressure, a method of air blowing (spraying) the coating liquid, a method of immersing the base material in the coating liquid, and the like. Of these methods, in the case of a honeycomb shape or a non-woven fabric shape, an air blow (spray) method or a method of immersing the base material in the coating liquid is preferable, and an excess coating liquid is aired after coating and before drying. It is preferable to blow it off with.
以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention will not be construed as being limited to Examples.
[白金担持メソポーラスシリカの合成]
特許文献1(特開2017‐23889号公報)に記載の実施例に基づいて、以下のとおり合成した。メソポーラスシリカ(太陽化学株式会社製 商品名TMPS−4アール 商標登録名TMPS)1gを50mLの水に懸濁し、Ptの担持量が1質量%になるように白金化合物(H2PtCl6)水溶液を滴下し、その水溶液を室温にて一晩撹拌した。エバポレータを用いて50℃に加熱して溶媒を留去し、得られた粉体を60℃で16〜18時間真空乾燥させた後に水素ガスを、30mL/minで流通させながら、150℃で2時間の還元処理し、白金を担持したメソポーラスシリカ白金粉体(粉体1)を得た。さらに(粉体1)150gに60%硝酸を混合調製したイオン交換水1.35Lを加え、ジルコニアビーズミルを用いて、室温中で撹拌しながら、15分間粉砕分散した。得られた塗布液を濃縮乾燥して粉体(粉体2)を得た。[Synthesis of platinum-supported mesoporous silica]
Based on the examples described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-23889), the following was synthesized. Suspend 1 g of mesoporous silica (trade name TMPS-4 Earl trademark registered name TMPS manufactured by Taiyo Kagaku Co., Ltd.) in 50 mL of water, and add an aqueous solution of platinum compound (H 2 PtCl 6 ) so that the amount of Pt supported is 1% by mass. The mixture was added dropwise, and the aqueous solution was stirred at room temperature overnight. The solvent was distilled off by heating to 50 ° C. using an evaporator, and the obtained powder was vacuum dried at 60 ° C. for 16 to 18 hours, and then hydrogen gas was circulated at 30 mL / min at 150 ° C. for 2 The time was reduced to obtain mesoporous silica platinum powder (powder 1) carrying platinum. Further, 1.35 L of ion-exchanged water prepared by mixing 60% nitric acid with 150 g of (powder 1) was added, and the mixture was pulverized and dispersed for 15 minutes while stirring at room temperature using a zirconia bead mill. The obtained coating liquid was concentrated and dried to obtain a powder (powder 2).
粉体1においてPtの担持量が5質量%になるように白金化合物(H2PtCl6)水溶液を滴下した以外は粉体1と同様にして白金を担持したメソポーラスシリカ白金粉体(粉体3)を得た。Mesoporous silica platinum powder (powder 3) carrying platinum in the same manner as powder 1 except that an aqueous solution of platinum compound (H 2 PtCl 6 ) was dropped so that the amount of Pt supported in powder 1 was 5% by mass. ) Was obtained.
[塗布液1の調製]
粉体2に60%硝酸を混合調整したイオン交換水を加え濃度10質量%となるように添加した液を塗布液1とした。[Preparation of coating liquid 1]
Ion-exchanged water prepared by mixing and adjusting 60% nitric acid was added to the powder 2, and the solution added so as to have a concentration of 10% by mass was used as the coating solution 1.
[塗布液2の調製]
30mLの塗布液1に、ヒュームドシリカ(日本アエロジル株式会社製、AEROSIL(登録商標)200)とアルミナ(日本アエロジル株式会社製、AEROXIDE(登録商標)Alu C)を、粉体2、ヒュームドシリカ、アルミナの固形分換算の質量部比で、粉体2:ヒュームドシリカ:アルミナ=100:28.5:1.5となるように、ヒュームドシリカとアルミナを添加し、混合して、これを塗布液2とした。[Preparation of coating liquid 2]
Fumed silica (AEROSIL® 200 manufactured by Nippon Aerosil Co., Ltd.) and alumina (AEROXIDE® Alu C manufactured by Nippon Aerosil Co., Ltd.) are added to 30 mL of coating liquid 1, and powder 2 and fumed silica are added. , Fumed silica and alumina are added, mixed, and mixed so that powder 2: fumed silica: alumina = 100: 28.5: 1.5 in terms of mass ratio of alumina in terms of solid content. Was used as the coating liquid 2.
[塗布液3の調整]
塗布液2の調製において、粉体2、ヒュームドシリカ、アルミナの固形分換算の質量部比で、粉体2:ヒュームドシリカ:アルミナ=100:24:6となるように、ヒュームドシリカとアルミナを添加した以外は塗布液2の調整と同様にして塗布液3を得た。[Adjustment of coating liquid 3]
In the preparation of the coating liquid 2, the powder 2, fumed silica, and alumina were mixed with fumed silica so that the ratio of parts by mass in terms of solid content was powder 2: fumed silica: alumina = 100: 24: 6. A coating liquid 3 was obtained in the same manner as in the preparation of the coating liquid 2 except that alumina was added.
[塗布液4の調製]
30mLの塗布液1に、無水マレイン酸系の共重合体を主成分とするチキソ剤とポリエステル系樹脂(DIC社製 商品名ボンコートSFC−55)を、粉体2、チキソ剤、ポリエステル系樹脂の固形分換算の質量部比で、粉体2:チキソ剤:ポリエステル形樹脂=100:2:22となるように、チキソ剤とポリエステル系樹脂を添加し、混合して、これを塗布液4とした。[Preparation of coating liquid 4]
In 30 mL of the coating liquid 1, a thiox agent containing a maleic anhydride-based copolymer as a main component and a polyester-based resin (trade name: Boncoat SFC-55 manufactured by DIC) are added to powder 2, a texo agent, and a polyester-based resin. Add the thixo agent and the polyester resin so that the ratio of parts by mass in terms of solid content is powder 2: thixo agent: polyester resin = 100: 2: 22, mix them, and mix this with the coating liquid 4. did.
[塗布液5の調製]
30mLの塗布液1に、無水マレイン酸系の共重合体を主成分とするチキソ剤とアクリル系樹脂を、粉体2、チキソ剤、アクリル系樹脂の固形分換算の質量部比で、粉体2:チキソ剤:アクリル系樹脂=100:2:22となるように、チキソ剤とアクリル系樹脂を添加し、混合して、これを塗布液5とした。[Preparation of coating liquid 5]
In 30 mL of the coating liquid 1, a thiox agent containing a maleic anhydride-based copolymer as a main component and an acrylic resin are added to the powder in a solid content-equivalent mass ratio of the powder 2, the thiox agent, and the acrylic resin. 2: The thixo agent and the acrylic resin were added and mixed so that the ratio was 100: 2:22, and this was used as the coating liquid 5.
[塗布液6の調製]
30mLの塗布液1に、ヒュームドシリカ(日本アエロジル株式会社製、AEROSIL(登録商標)200)とアルミナ(日本アエロジル株式会社製、AEROXIDE(登録商標)Alu C)、無水マレイン酸系の共重合体を主成分とするチキソ剤、ポリエステル系樹脂(DIC社製 商品名ボンコートSFC−55)を、粉体2、ヒュームドシリカ、アルミナ、チキソ剤、ポリエステル系樹脂の固形分換算の質量部比で、粉体2:ヒュームドシリカ:アルミナ:チキソ剤:ポリエステル系樹脂=100:4.8:25.2:20:2となるように、ヒュームドシリカ、アルミナ、チキソ剤およびポリエステル系樹脂を添加し、混合して、これを塗布液6とした。[Preparation of coating liquid 6]
A copolymer of fumed silica (Aerosil Japan Co., Ltd., AEROSIL® 200), alumina (Aerosil Japan Co., Ltd., AEROXIDE® Alu C), and maleic anhydride in 30 mL of the coating liquid 1. Polyester resin (trade name: Boncoat SFC-55 manufactured by DIC), which is mainly composed of powder 2, fumed silica, alumina, nitrogen agent, polyester resin by mass ratio in terms of solid content. Powder 2: Fumed silica: Alumina: Tixo agent: Polyester resin = 100: 4.8: 25.2: 20: 2 Add fumed silica, alumina, Tixo agent and polyester resin. , And this was used as the coating liquid 6.
[塗布液7の調製]
粉体3に60%硝酸を混合調整したイオン交換水を加え濃度10質量%となるように添加した液を塗布液7とした。[Preparation of coating liquid 7]
Ion-exchanged water prepared by mixing 60% nitric acid with the powder 3 was added so as to have a concentration of 10% by mass, and the solution was used as a coating solution 7.
[塗布液8の調製]
30mLの塗布液7に、ヒュームドシリカ(日本アエロジル株式会社製、AEROSIL(登録商標)200)とアルミナ(日本アエロジル株式会社製、AEROXIDE(登録商標)Alu C)、無水マレイン酸系の共重合体を主成分とするチキソ剤、ポリエステル系樹脂(DIC社製 商品名ボンコートSFC−55)を、粉体4、ヒュームドシリカ、アルミナ、チキソ剤、ポリエステル系樹脂の固形分換算の質量部比で粉体2:ヒュームドシリカ:アルミナ:チキソ剤:ポリエステル系樹脂=100:4.8:25.2:20:2となるように、ヒュームドシリカ、アルミナ、チキソ剤およびポリエステル系樹脂を添加し、混合して、これを塗布液8とした。[Preparation of coating liquid 8]
A copolymer of fumed silica (Aerosil Japan Co., Ltd., AEROSIL® 200), alumina (Aerosil Japan Co., Ltd., AEROXIDE® Alu C), and maleic anhydride in 30 mL of the coating liquid 7. Polyester resin (Boncoat SFC-55, trade name manufactured by DIC), which is mainly composed of powder 4, fumed silica, alumina, nitrogen agent, polyester resin by mass ratio in terms of solid content. Body 2: Fumed silica: Alumina: Tixo agent: Polyester resin = 100: 4.8: 25.2: 20: 2 Add fumed silica, alumina, Tixo agent and polyester resin. It was mixed and used as a coating liquid 8.
[実施例1]<不織布への塗布液1の塗布>
塗布液1を予め質量を量った、厚さ1cm、縦×横が5cm×5cm、10cm×10cm、20cm×20cm、の3種類の形状を有する不織布(日本バイリーン製、アクリロニトリル/モダアクリル製)に含浸塗布し、エアースプレー(栗田製作所製)により余分な含浸液を吹き飛ばし、乾燥し塗膜を形成させ分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ0.6cm:0.15g
10cm×10cm、厚さ0.6cm:0.60g
20cm×20cm、厚さ0.6cm:2.4g[Example 1] <Application of coating liquid 1 to non-woven fabric>
The coating liquid 1 is pre-weighed into a non-woven fabric (manufactured by Japan Vilene, acrylonitrile / modaacrylic) having three types of shapes: thickness 1 cm, length x width 5 cm x 5 cm, 10 cm x 10 cm, and 20 cm x 20 cm. The impregnated coating was applied, and the excess impregnating liquid was blown off by an air spray (manufactured by Kurita Seisakusho), and dried to form a coating film to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 0.6 cm: 0.15 g
10 cm x 10 cm, thickness 0.6 cm: 0.60 g
20 cm x 20 cm, thickness 0.6 cm: 2.4 g
[実施例2]<セラミックハニカムへの塗布液1の塗布>
塗布液1を予め質量を量った、縦×横:5cm×5cm、厚さがそれぞれ3cm、5cm、8cmの3種類の形状を有するセラミックハニカム(岩尾磁器工業製、200メッシュ)に含浸塗布し、エアースプレー(栗田製作所製)により余分な含浸液を吹き飛ばし、乾燥させ塗膜を形成させ分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差からセラミックハニカムに担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ3cm:0.6g
5cm×5cm、厚さ5cm:1.0g
5cm×5cm、厚さ8cm:1.6g[Example 2] <Applying the coating liquid 1 to the ceramic honeycomb>
The coating liquid 1 is impregnated and coated on a ceramic honeycomb (manufactured by Iwao Ceramics Co., Ltd., 200 mesh) having three types of shapes, length x width: 5 cm x 5 cm and thicknesses of 3 cm, 5 cm, and 8 cm, respectively, which are weighed in advance. , The excess impregnating liquid was blown off by an air spray (manufactured by Kurita Seisakusho) and dried to form a coating film to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the ceramic honeycomb from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 3 cm: 0.6 g
5 cm x 5 cm, thickness 5 cm: 1.0 g
5 cm x 5 cm, thickness 8 cm: 1.6 g
[実施例3]<ペーパーハニカムへの塗布液1の塗布>
塗布液1を予め質量を量った厚さ1.0cm、縦×横が5cm×5cm、10cm×10cm、20cm×20cm、3種類の形状を有するペーパーハニカム(新日本フェザーコア製、セルサイズ0.85cm)に含浸塗布し、エアースプレー(栗田製作所製)により余分の含浸液を吹き飛ばし、乾燥させ塗膜を形成させ分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から、ペーパーハニカムに担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1.0cm:0.13g
10cm×10cm、厚さ1.0cm:0.52g
20cm×20cm、厚さ1.0cm:2.1g[Example 3] <Application of coating liquid 1 to paper honeycomb>
Paper honeycomb (manufactured by New Japan Feather Core, cell size 0) having a thickness of 1.0 cm, length x width 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm, and three types of coating liquid 1 weighed in advance. .85 cm) was impregnated and applied, and excess impregnated liquid was blown off by an air spray (manufactured by Kurita Seisakusho) and dried to form a coating film to obtain a decomposed material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the paper honeycomb from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1.0 cm: 0.13 g
10 cm x 10 cm, thickness 1.0 cm: 0.52 g
20 cm x 20 cm, thickness 1.0 cm: 2.1 g
[実施例4]<ペーパーハニカムへの塗布液2の塗布>
塗布液2を予め質量を量った、厚さ1cm、縦×横が5cm×5cm、10cm×10cm、20cm×20cmの形状を有するペーパーハニカム(新日本フェザーコア製、セルサイズ0.85cm)に含浸塗布し、エアースプレー(栗田製作所製)により余分な含浸液を吹き飛ばし、乾燥させ塗膜を形成させ分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から、ペーパーハニカムに担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1.0cm:0.04g
10cm×10cm、厚さ1.0cm:0.15g
20cm×20cm、厚さ1.0cm:0.60g[Example 4] <Applying the coating liquid 2 to the paper honeycomb>
Apply the coating liquid 2 to a paper honeycomb (manufactured by Shin Nihon Feather Core, cell size 0.85 cm) having a thickness of 1 cm, a length x width of 5 cm x 5 cm, a length of 10 cm x 10 cm, and a shape of 20 cm x 20 cm. The impregnated coating was applied, and the excess impregnating liquid was blown off by an air spray (manufactured by Kurita Seisakusho) and dried to form a coating film to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the paper honeycomb from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1.0 cm: 0.04 g
10 cm x 10 cm, thickness 1.0 cm: 0.15 g
20 cm x 20 cm, thickness 1.0 cm: 0.60 g
[実施例5]<ペーパーハニカムへの塗布液3の塗布>
塗布液3を、予め質量を量った、厚さ1cm、縦×横が5cm×5cm、10cm×10cm、20cm×20cmの形状を有するペーパーハニカム(新日本フェザーコア製、セルサイズ0.85cm)に含浸塗布し、エアースプレー(栗田製作所製)により余分の含浸液を吹き飛ばし、乾燥させ塗膜を形成させ分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から、ペーパーハニカムに担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1cm:0.07g
10cm×10cm、厚さ1cm:0.26g
20cm×20cm、厚さ1cm:1.0g[Example 5] <Applying the coating liquid 3 to the paper honeycomb>
A paper honeycomb (manufactured by Shin Nihon Feather Core, cell size 0.85 cm) having a thickness of 1 cm, a length of 5 cm x 5 cm, a length of 10 cm x 10 cm, and a shape of 20 cm x 20 cm, which is obtained by weighing the coating liquid 3 in advance. Was impregnated and applied, and an excess impregnating solution was blown off by an air spray (manufactured by Kurita Seisakusho) and dried to form a coating film to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the paper honeycomb from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1 cm: 0.07 g
10 cm x 10 cm, thickness 1 cm: 0.26 g
20 cm x 20 cm, thickness 1 cm: 1.0 g
[実施例6]<不織布への塗布液3の塗布>
実施例1と同様に不織布へ塗布液3を塗布し分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1cm:0.09g
10cm×10cm、厚さ1cm:0.35g
20cm×20cm、厚さ1cm:1.4g[Example 6] <Application of coating liquid 3 to non-woven fabric>
The coating liquid 3 was applied to the non-woven fabric in the same manner as in Example 1 to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1 cm: 0.09 g
10 cm x 10 cm, thickness 1 cm: 0.35 g
20 cm x 20 cm, thickness 1 cm: 1.4 g
[実施例7]<不織布への塗布液4の塗布>
実施例1と同様に不織布へ塗布液4を塗布し分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ0.6cm:0.08g
10cm×10cm、厚さ0.6cm:0.31g
20cm×20cm、厚さ0.6cm:1.2g[Example 7] <Application of coating liquid 4 to non-woven fabric>
The coating liquid 4 was applied to the non-woven fabric in the same manner as in Example 1 to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 0.6 cm: 0.08 g
10 cm x 10 cm, thickness 0.6 cm: 0.31 g
20 cm x 20 cm, thickness 0.6 cm: 1.2 g
[実施例8]<不織布への塗布液5の塗布>
実施例1と同様に不織布へ塗布液5を塗布し分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1cm:0.10g
10cm×10cm、厚さ1cm:0.40g
20cm×20cm、厚さ1cm:1.6g[Example 8] <Application of coating liquid 5 to non-woven fabric>
The coating liquid 5 was applied to the non-woven fabric in the same manner as in Example 1 to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1 cm: 0.10 g
10 cm x 10 cm, thickness 1 cm: 0.40 g
20 cm x 20 cm, thickness 1 cm: 1.6 g
[実施例9]<ペーパーハニカムへの塗布液6の塗布>
実施例3と同様にペーパーハニカムへ塗布液6を塗布し分解材を得た。
乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1cm:0.12g
10cm×10cm、厚さ1cm:0.45g
20cm×20cm、厚さ1cm:1.8g[Example 9] <Application of coating liquid 6 to paper honeycomb>
The coating liquid 6 was applied to the paper honeycomb in the same manner as in Example 3 to obtain a decomposition material.
The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1 cm: 0.12 g
10 cm x 10 cm, thickness 1 cm: 0.45 g
20 cm x 20 cm, thickness 1 cm: 1.8 g
[実施例10]<不織布への塗布液6の塗布>
実施例1と同様に不織布へ塗布液6を塗布し分解材を得た。
乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1cm:0.08g
10cm×10cm、厚さ1cm:0.35g
20cm×20cm、厚さ1cm:1.4g[Example 10] <Application of coating liquid 6 to non-woven fabric>
The coating liquid 6 was applied to the non-woven fabric in the same manner as in Example 1 to obtain a decomposition material.
The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1 cm: 0.08 g
10 cm x 10 cm, thickness 1 cm: 0.35 g
20 cm x 20 cm, thickness 1 cm: 1.4 g
[実施例11]<ペーパーハニカムへの塗布液7の塗布>
実施例3と同様にして、塗布液7をペーパーハニカムに塗布し分解材を得た。
乾燥後に秤量し、含浸塗布前の不織布の質量との差から、ペーパーハニカムに担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1cm:0.11g
10cm×10cm、厚さ1cm:0.44g
20cm×20cm、厚さ1cm:1.7g[Example 11] <Application of coating liquid 7 to paper honeycomb>
In the same manner as in Example 3, the coating liquid 7 was applied to the paper honeycomb to obtain a decomposition material.
The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the paper honeycomb from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1 cm: 0.11 g
10 cm x 10 cm, thickness 1 cm: 0.44 g
20 cm x 20 cm, thickness 1 cm: 1.7 g
[実施例12]<不織布への塗布液7の塗布>
実施例1と同様にして、塗布液7を不織布へ塗布し分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ0.6cm:0.12g
10cm×10cm、厚さ0.6cm:0.48g
20cm×20cm、厚さ0.6cm:1.9g[Example 12] <Application of coating liquid 7 to non-woven fabric>
In the same manner as in Example 1, the coating liquid 7 was applied to the non-woven fabric to obtain a decomposed material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 0.6 cm: 0.12 g
10 cm x 10 cm, thickness 0.6 cm: 0.48 g
20 cm x 20 cm, thickness 0.6 cm: 1.9 g
[実施例13]<ペーパーハニカムへの塗布液8の塗布>
実施例3と同様に不織布へ塗布液8を塗布し分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ1cm:0.11g
10cm×10cm、厚さ1cm:0.44g
20cm×20cm、厚さ1cm:1.8g[Example 13] <Application of coating liquid 8 to paper honeycomb>
The coating liquid 8 was applied to the non-woven fabric in the same manner as in Example 3 to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 1 cm: 0.11 g
10 cm x 10 cm, thickness 1 cm: 0.44 g
20 cm x 20 cm, thickness 1 cm: 1.8 g
[実施例14]<不織布への塗布液8の塗布>
実施例1と同様に不織布へ塗布液8を塗布し分解材を得た。乾燥後に秤量し、含浸塗布前の不織布の質量との差から不織布に担持された白金担持メソポーラスシリカの質量を求めた結果、以下のとおりであった。
5cm×5cm、厚さ0.6cm:0.09g
10cm×10cm、厚さ0.6cm:0.37g
20cm×20cm、厚さ0.6cm:1.5g[Example 14] <Application of coating liquid 8 to non-woven fabric>
The coating liquid 8 was applied to the non-woven fabric in the same manner as in Example 1 to obtain a decomposition material. The results of weighing after drying and determining the mass of platinum-supported mesoporous silica supported on the non-woven fabric from the difference from the mass of the non-woven fabric before impregnation coating were as follows.
5 cm x 5 cm, thickness 0.6 cm: 0.09 g
10 cm x 10 cm, thickness 0.6 cm: 0.37 g
20 cm x 20 cm, thickness 0.6 cm: 1.5 g
[比較例1、比較例3、比較例4及び比較例5]
粉体1を基材に塗布せず、粉体1を比較例1、比較例3、比較例4及び比較例5とした。[Comparative Example 1, Comparative Example 3, Comparative Example 4 and Comparative Example 5]
The powder 1 was not applied to the base material, and the powder 1 was designated as Comparative Example 1, Comparative Example 3, Comparative Example 4, and Comparative Example 5.
[比較例2]
粉体2を基材に塗布せず、粉体2を比較例2とした。[Comparative Example 2]
The powder 2 was not applied to the base material, and the powder 2 was used as Comparative Example 2.
塗布液1〜塗布液3に用いた白金担持メソポーラスシリカ及び比較例2の粉体を、比表面積(SBET)は窒素吸脱着測定より得られた吸着等温線を用いてBET法により、全細孔容積(Vtot)はBJH法により、平均細孔直径(Dmeso)はαSプロット法より、それぞれ得た。結果を表1に示す。なお、BET比表面積、平均細孔径及び全細孔容積は、比表面積/細孔分布測定装置(マイクロトラック・ベル株式会社製BELSORP−mini II)を用いて測定した。The platinum-supported mesoporous silica used in the coating liquids 1 to 3 and the powder of Comparative Example 2 were finely divided by the BET method using the adsorption isotherm obtained by the nitrogen adsorption / desorption measurement for the specific surface area ( SBET ). The pore volume (V tot ) was obtained by the BJH method, and the average pore diameter (D meso ) was obtained by the αS plot method. The results are shown in Table 1. The BET specific surface area, average pore diameter, and total pore volume were measured using a specific surface area / pore distribution measuring device (BELSORP-mini II manufactured by Microtrac Bell Co., Ltd.).
[エチレン分解試験]
実施例1〜14で得られた分解材及び粉体1、2の−20℃及び20℃におけるエチレン分解試験を行った。エチレンを含むガス(エチレン濃度100ppm、酸素20体積%、残部は窒素、大陽日酸株式会社製)2.6Lを入れた「におい袋」(袋容量3L、袋サイズ:250×250mm、材質:ポリエステルフィルム(厚さ16μm)/東京硝子器械株式会社製)に分解材を白金担持メソポーラスシリカ質量が1gとなるように投入した。具体的には実施例3〜5、9、11及び13では厚み1cm、縦×横が20cm×20cmの分解材から白金担持メソポーラスシリカ質量が1g以下となる大きさを切り出した。また、実施例2では厚み5cm、縦×横が5cm×5cmの分解材を使用した。さらに実施例1、6〜8、10、12及び14では厚み0.6cm、縦×横が20cm×20cmの分解材から白金担持メソポーラスシリカ質量が1g以下となる大きさを切り出した。比較例1は粉体1を質量で1g使用した。比較例2は粉体2を質量で1g使用した。−20℃および20℃で20時間静置後、ガス検知器(株式会社ガステック製)を用いて、におい袋内のヘッドスペースのエチレン濃度を測定した。結果を表2に示す。[Ethylene decomposition test]
Ethylene decomposition tests of the decomposition materials and powders 1 and 2 obtained in Examples 1 to 14 at −20 ° C. and 20 ° C. were performed. "Smell bag" containing 2.6 L of gas containing ethylene (ethylene concentration 100 ppm, oxygen 20% by volume, balance nitrogen, manufactured by Taiyo Nippon Sanso Co., Ltd.) (bag capacity 3 L, bag size: 250 x 250 mm, material: polyester A decomposition material was added to a film (thickness 16 μm) / manufactured by Tokyo Glass Instruments Co., Ltd. so that the mass of platinum-supported mesoporous silica was 1 g. Specifically, in Examples 3 to 5, 9, 11 and 13, a size having a platinum-supported mesoporous silica mass of 1 g or less was cut out from a decomposed material having a thickness of 1 cm and a length × width of 20 cm × 20 cm. Further, in Example 2, a decomposed material having a thickness of 5 cm and a length × width of 5 cm × 5 cm was used. Further, in Examples 1, 6 to 8, 10, 12 and 14, a size having a platinum-supported mesoporous silica mass of 1 g or less was cut out from a decomposed material having a thickness of 0.6 cm and a length × width of 20 cm × 20 cm. In Comparative Example 1, 1 g of powder 1 was used by mass. In Comparative Example 2, 1 g of powder 2 was used by mass. After allowing to stand at −20 ° C. and 20 ° C. for 20 hours, the ethylene concentration in the head space in the odor bag was measured using a gas detector (manufactured by Gastec Co., Ltd.). The results are shown in Table 2.
表2から明らかなように実施例1〜14の分解材は20時間後のエチレン残留濃度は比較例1〜2の粉体の触媒と比較していずれも低くなっている。この結果から本発明の分解材は粉体の触媒と比較して20℃〜−20℃で効率的かつ安定的にエチレンを分解していることが分かる。 As is clear from Table 2, the ethylene residual concentration of the decomposed materials of Examples 1 to 14 after 20 hours is lower than that of the powder catalyst of Comparative Examples 1 and 2. From this result, it can be seen that the decomposition material of the present invention decomposes ethylene efficiently and stably at 20 ° C. to −20 ° C. as compared with the powder catalyst.
[臭気成分分解試験]
実施例6で得られた分解材を用い、臭気成分としてホルムアルデヒド、アセトアルデヒド、トリメチルアミンに対して、分解試験を行った。実施例6で得られた分解材及び粉体1の20℃におけるホルムアルデヒドの分解試験を行った。グローブバック内でパラホルムアルデヒドを揮発させて、ホルムアルデヒドと空気を混合した気体(ホルムアルデヒドの濃度1000ppm)を調製した。グローブバックから試験用バック(材質:アルミ)にその気体を注入した。実施例1と同様にして、厚み1cm、縦×横25cm×25cmの分解材から白金担持メソポーラスシリカの質量が0.8gとなる大きさを切り出した。20℃で所定時間静置後、ガスクロマトグラフ(GC)(株式会社島津製作所)を用いて、試験バック内のヘッドスペースのホルムアルデヒド濃度を、ガスクロマトグラフィーにより測定した。GC分析の条件は表3のとおりである。なお、カラムはAgilent社製のものを用いた。比較例3〜5は粉体1を質量で1.0g使用した。[Odor component decomposition test]
Using the decomposition material obtained in Example 6, a decomposition test was conducted on formaldehyde, acetaldehyde, and trimethylamine as odor components. A formaldehyde decomposition test of the decomposition material and powder 1 obtained in Example 6 at 20 ° C. was performed. Paraformaldehyde was volatilized in the glove bag to prepare a gas (formaldehyde concentration 1000 ppm) in which formaldehyde and air were mixed. The gas was injected from the glove bag into the test bag (material: aluminum). In the same manner as in Example 1, a size having a mass of platinum-supported mesoporous silica of 0.8 g was cut out from a decomposed material having a thickness of 1 cm and a length × width of 25 cm × 25 cm. After allowing to stand at 20 ° C. for a predetermined time, the formaldehyde concentration in the head space in the test bag was measured by gas chromatography using a gas chromatograph (GC) (Shimadzu Corporation). The conditions for GC analysis are shown in Table 3. The column used was manufactured by Agilent. In Comparative Examples 3 to 5, 1.0 g of powder 1 was used by mass.
アセトアルデヒドの分解試験においては、パラホルムアルデヒドの代わりにアセトアルデヒドをそのまま用い、グローブバック内でアセトアルデヒドを揮発させて、アセトアルデヒドと空気を混合した気体(アセトアルデヒドの濃度100ppm)を調製した。GC分析は同じ条件で行った。 In the decomposition test of acetaldehyde, acetaldehyde was used as it was instead of paraformaldehyde, and acetaldehyde was volatilized in the glove bag to prepare a gas (acetaldehyde concentration 100 ppm) in which acetaldehyde and air were mixed. The GC analysis was performed under the same conditions.
トリエチルアミンの分解試験においては、パラホルムアルデヒドの代わりにトリエチルアミンのトルエン溶液(約8%)を用い、グローブバック内でトリエチルアミンを揮発させて、トリエチルアミンと空気を混合した気体(トリエチルアミンの濃度100ppm)を調製した。GC分析は同じ条件で行った。 In the triethylamine decomposition test, a toluene solution of triethylamine (about 8%) was used instead of paraformaldehyde, and triethylamine was volatilized in a globe bag to prepare a gas (triethylamine concentration 100 ppm) in which triethylamine and air were mixed. .. The GC analysis was performed under the same conditions.
ホルムアルデヒド、アセトアルデヒド、トリエチルアミンの分解試験の結果を表4に示した。 The results of the decomposition tests of formaldehyde, acetaldehyde and triethylamine are shown in Table 4.
上記結果より本実施例の分解材は室温以下でも、揮発性化合物として代表的なホルムアルデヒド、アセトアルデヒド、トリメチルアミンに対して顕著な分解効果を示すことがわかった。なお、実施例6の触媒重量が0.8gに対し、比較例4の触媒重量が1.0gであることから、実施例6は、比較例4よりも触媒単位質量あたりの触媒活性が高いと推察できる。 From the above results, it was found that the decomposing material of this example shows a remarkable decomposing effect on formaldehyde, acetaldehyde, and trimethylamine, which are typical volatile compounds, even at room temperature or lower. Since the catalyst weight of Example 6 is 0.8 g and the catalyst weight of Comparative Example 4 is 1.0 g, it is said that Example 6 has a higher catalytic activity per unit mass of catalyst than Comparative Example 4. I can guess.
本発明に係る分解材は、例えば、エアコンや空気清浄機のフィルタに適用することができ、室内の臭気物質、倉庫内のエチレンや臭気物質などを分解することができる。また、壁紙に適用することができ、室内の臭気物質、倉庫内のエチレンや臭気物質などを分解することができる。さらに、衣類に適用することができ、体内から発生する臭気物質を分解することができる。
The decomposition material according to the present invention can be applied to, for example, a filter of an air conditioner or an air purifier, and can decompose odorous substances in a room, ethylene or odorous substances in a warehouse, and the like. In addition, it can be applied to wallpaper, and can decompose indoor odorous substances, ethylene and odorous substances in warehouses, and the like. Furthermore, it can be applied to clothing and can decompose odorous substances generated from the body.
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017188355 | 2017-09-28 | ||
JP2017188355 | 2017-09-28 | ||
PCT/JP2018/035080 WO2019065504A1 (en) | 2017-09-28 | 2018-09-21 | Decomposing material and decomposition method using same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2019065504A1 true JPWO2019065504A1 (en) | 2020-11-05 |
Family
ID=65903298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019545064A Pending JPWO2019065504A1 (en) | 2017-09-28 | 2018-09-21 | Decomposition material and decomposition method using it |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2019065504A1 (en) |
CN (1) | CN111148569A (en) |
TW (1) | TWI783050B (en) |
WO (1) | WO2019065504A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021153713A1 (en) * | 2020-01-30 | 2021-08-05 | リンテック株式会社 | Sheet and method for producing sheet |
WO2021153714A1 (en) * | 2020-01-30 | 2021-08-05 | リンテック株式会社 | Sheet member and method for manufacturing sheet |
JPWO2022071379A1 (en) * | 2020-10-02 | 2022-04-07 | ||
WO2022230343A1 (en) * | 2021-04-27 | 2022-11-03 | 株式会社フルヤ金属 | Decomposer for odorous substance, article including decomposer for odorous substance, and method for decomposing odorous substance using same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09192205A (en) * | 1996-01-23 | 1997-07-29 | Matsushita Refrig Co Ltd | Deodorizing body |
WO2000030747A1 (en) * | 1998-11-20 | 2000-06-02 | Asahi Kasei Kabushiki Kaisha | Modified photocatalyst sol |
JP2005083950A (en) * | 2003-09-10 | 2005-03-31 | Yazaki Corp | Voc sensor and voc detector |
EP1832345A1 (en) * | 2006-03-10 | 2007-09-12 | Asahi Kasei Kabushiki Kaisha | Catalyst for exhaust gas purification |
JP2010507007A (en) * | 2006-10-19 | 2010-03-04 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Aqueous additive composition containing layered silicate |
JP2011121004A (en) * | 2009-12-11 | 2011-06-23 | Panasonic Corp | Dehumidification apparatus |
WO2011118781A1 (en) * | 2010-03-25 | 2011-09-29 | Toto株式会社 | Photocatalyst-coated body |
JP2013540831A (en) * | 2010-08-02 | 2013-11-07 | ロディア オペレーションズ | Anti-settling composition and method of use |
WO2017010472A1 (en) * | 2015-07-15 | 2017-01-19 | 太陽化学株式会社 | Odor reducing agent |
JP2017023889A (en) * | 2015-07-15 | 2017-02-02 | 太陽化学株式会社 | Ethylene decomposition agent |
JP2018134614A (en) * | 2017-02-23 | 2018-08-30 | 株式会社Nbcメッシュテック | Organic gas reducing device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278113A (en) * | 1991-03-08 | 1994-01-11 | Matsushita Electric Industrial Co., Ltd. | Catalytic body and process for producing the same |
MXPA05011649A (en) * | 2003-04-29 | 2005-12-15 | Johnson Matthey Plc | Manganese ozone decomposition catalysts and process for its preparation. |
US8475755B2 (en) * | 2009-08-21 | 2013-07-02 | Sub-Chemie Inc. | Oxidation catalyst and method for destruction of CO, VOC and halogenated VOC |
JP2012250134A (en) * | 2009-09-30 | 2012-12-20 | Toto Ltd | Photocatalyst-coated object, and photocatalyst coating liquid therefor |
-
2018
- 2018-09-21 CN CN201880060775.4A patent/CN111148569A/en active Pending
- 2018-09-21 WO PCT/JP2018/035080 patent/WO2019065504A1/en active Application Filing
- 2018-09-21 JP JP2019545064A patent/JPWO2019065504A1/en active Pending
- 2018-09-28 TW TW107134332A patent/TWI783050B/en not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09192205A (en) * | 1996-01-23 | 1997-07-29 | Matsushita Refrig Co Ltd | Deodorizing body |
WO2000030747A1 (en) * | 1998-11-20 | 2000-06-02 | Asahi Kasei Kabushiki Kaisha | Modified photocatalyst sol |
JP2005083950A (en) * | 2003-09-10 | 2005-03-31 | Yazaki Corp | Voc sensor and voc detector |
EP1832345A1 (en) * | 2006-03-10 | 2007-09-12 | Asahi Kasei Kabushiki Kaisha | Catalyst for exhaust gas purification |
JP2010507007A (en) * | 2006-10-19 | 2010-03-04 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Aqueous additive composition containing layered silicate |
JP2011121004A (en) * | 2009-12-11 | 2011-06-23 | Panasonic Corp | Dehumidification apparatus |
WO2011118781A1 (en) * | 2010-03-25 | 2011-09-29 | Toto株式会社 | Photocatalyst-coated body |
JP2013540831A (en) * | 2010-08-02 | 2013-11-07 | ロディア オペレーションズ | Anti-settling composition and method of use |
WO2017010472A1 (en) * | 2015-07-15 | 2017-01-19 | 太陽化学株式会社 | Odor reducing agent |
JP2017023889A (en) * | 2015-07-15 | 2017-02-02 | 太陽化学株式会社 | Ethylene decomposition agent |
JP2018134614A (en) * | 2017-02-23 | 2018-08-30 | 株式会社Nbcメッシュテック | Organic gas reducing device |
Non-Patent Citations (1)
Title |
---|
中島清隆、福岡淳: "いたるところに,触媒 メソポーラスシリカ担持白金触媒による低温エチレン酸化", 触媒, vol. 51, JPN6018041259, 31 January 2017 (2017-01-31), JP, pages 25 - 31, ISSN: 0004887542 * |
Also Published As
Publication number | Publication date |
---|---|
TWI783050B (en) | 2022-11-11 |
CN111148569A (en) | 2020-05-12 |
TW201919763A (en) | 2019-06-01 |
WO2019065504A1 (en) | 2019-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2019065504A1 (en) | Decomposition material and decomposition method using it | |
WO2009122975A1 (en) | Deodorant fibrous structure and air filter | |
JP5277534B2 (en) | Fiber sheet, method for producing the same, and air filter | |
CN106714964B (en) | Visible light active photocatalysis ceramic tile | |
JP2007167495A (en) | Aldehyde-containing air purifying agent and its manufacturing method | |
JP2009061445A (en) | Gas adsorbing sheet | |
JP4178656B2 (en) | Deodorant composition and deodorant product | |
WO2010101110A1 (en) | Moisture adsorbent, sheet-like material for dehumidification, and filter material for dehumidification | |
JP2010063963A (en) | Dehumidification element and dehumidifying apparatus using the same | |
WO2019156118A1 (en) | Antibacterial porous material, antibacterial product containing this, and antibacterial method using this | |
WO2019156122A1 (en) | Anti-mold porous material, anti-mold product containing this, and anti-mold method using this | |
JP2000126592A (en) | Member for removing environment polluting gas and liquid composition for the member | |
KR101061566B1 (en) | Manufacturing method of porous deodorization filter | |
JP2010174415A (en) | Method of production of moisture absorbing/releasing paper and moisture absorbing/releasing paper | |
JP2011206624A (en) | Adsorption sheet and structure | |
JP2004300648A (en) | Functional wallpaper | |
JPH07299893A (en) | Water retention material for humidifier | |
WO2009031944A2 (en) | Filtering material for gaseous medium | |
JP2009153670A (en) | Deodorant sheet | |
JP3503262B2 (en) | Deodorizing filter and method for producing deodorizing filter | |
CN110685183A (en) | Aldehyde-removing non-woven fabric and preparation method and application thereof | |
CN110523271B (en) | Building interior material and preparation method thereof | |
JP5351657B2 (en) | Water absorbent sheet and method for producing the same | |
JP2010125401A (en) | Aldehyde removing material | |
WO2023182153A1 (en) | Deodorizing material, production method therefor, and production method for deodorizing agent layer coating liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20201225 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230404 |