WO2021153713A1 - Sheet and method for producing sheet - Google Patents

Sheet and method for producing sheet Download PDF

Info

Publication number
WO2021153713A1
WO2021153713A1 PCT/JP2021/003150 JP2021003150W WO2021153713A1 WO 2021153713 A1 WO2021153713 A1 WO 2021153713A1 JP 2021003150 W JP2021003150 W JP 2021003150W WO 2021153713 A1 WO2021153713 A1 WO 2021153713A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
less
particles
mass
sheet
Prior art date
Application number
PCT/JP2021/003150
Other languages
French (fr)
Japanese (ja)
Inventor
翔 大高
有紀 河原田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2021153713A1 publication Critical patent/WO2021153713A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D15/00Preserving finished, partly finished or par-baked bakery products; Improving
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/40Coatings with pigments characterised by the pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/64Inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents

Definitions

  • the present invention relates to a sheet and a method for manufacturing the sheet.
  • Mesoporous silica is a porous silica made of silicon dioxide having uniform and regular pores (mesopores) having a pore diameter of 0.5 to 50 nm and a large specific surface area. It is known that the powder composed of particles in which platinum particles are supported on this mesoporous silica has a property of decomposing and adsorbing ethylene and odorous substances.
  • Patent Document 1 describes an ethylene decomposing agent obtained by supporting platinum or a platinum-containing compound on porous silica, and ethylene and the ethylene decomposing agent in the presence of oxygen and in an atmosphere of -1 to -40 ° C. Disclosed is a method for decomposing ethylene, which decomposes ethylene into carbon dioxide and water by contacting them.
  • the present invention is a sheet having a substrate and a particle-containing layer containing particles having a particle size adjusted to a specific range, which is mesoporous silica carrying a substance containing a polymer component and a platinum group atom.
  • a method for manufacturing the sheet is provided. Specific aspects of the present invention are as follows [1] to [15]. [1] A sheet having a base material and a particle-containing layer. The particle-containing layer contains a polymer component (A) and particles (B) which are mesoporous silica carrying a substance containing a platinum group atom. A sheet in which the particle size D 50 at an integrated value of 50% based on the volume in the particle size distribution of the particles (B) is 70 ⁇ m or less.
  • the ratio [D 90 / D 50 ] of the particle size D 90 to the particle size D 50 at an integrated value of 90% based on the volume in the particle size distribution of the particles (B) is 60.0 or less.
  • the ratio [D 10 / D 50 ] of the particle size D 10 at the integrated value of 10% based on the volume in the particle size distribution of the particles (B) to the particle size D 50 is 0.15 or more.
  • [4] The sheet according to any one of the above [1] to [3] , wherein the particle size D 90 at an integrated value of 90% based on the volume in the particle size distribution of the particles (B) is 300 ⁇ m or less.
  • Step (1) Mesoporous silica carrying a substance containing a polymer component (A) and a platinum group element, and having a particle size D 50 of 70 ⁇ m or less at a volume-based integrated value of 50% in the particle size distribution.
  • the sheet of the preferred embodiment of the present invention can suppress contamination of other articles existing in the system, and the sheet of the more preferred embodiment further enhances various performances of mesoporous silica. It can be expressed more effectively than when used in the body.
  • FIG. 1 is a schematic cross-sectional view of a sheet showing an example of the structure of a sheet according to one aspect of the present invention.
  • the sheet of the present invention may have a base material and a particle-containing layer.
  • the particle-containing layer 12 is laminated on one surface of the base material 11. It may have the same configuration.
  • the particle-containing layers 12a and 12b may be provided on both surfaces of the base material 11, respectively.
  • the sheet 1b has a structure in which the base material 11 is sandwiched between the two particle-containing layers 12a and 12b.
  • the sheet of one aspect of the present invention may have a layer other than the base material and the particle-containing layer.
  • a protective film may be laminated on the surface of the particle-containing layer.
  • the composition of the sheet 1a is protected on the surface of the particle-containing layer 12.
  • the sheet 1c in which the films 13 are laminated may be used.
  • the protective film 13a may be laminated on the surface of one particle-containing layer 12a, and the protective film 13b may be laminated on the surface of the other particle-containing layer 12b.
  • the protective films 13, 13a, and 13b are laminated during storage of the sheet 1c or sheet 1d, but are basically removed during use.
  • the protective film is a porous film having a large number of pores
  • the sheet having the porous film may be used as it is without removing the porous film.
  • the sheet of one aspect of the present invention may have another layer between the base material and the particle-containing layer.
  • a configuration in which a particle-containing layer is directly laminated on the surface of the base material is preferable.
  • each layer of the sheet of one aspect of the present invention will be described in detail.
  • Base material examples include high-quality paper, medium-quality paper, art paper, coated paper, kraft paper, glassin paper, cast-coated paper, imitation paper, matte paper, super art paper, and matte.
  • Paper base materials such as coated paper, recycled paper, synthetic paper, paperboard, thick paper, Japanese paper; polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene Telephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, polyurethane film, ethylene vinyl acetate film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, Resin base materials such as polystyrene films, polycarbonate films, polyimide films, fluororesin films; metal base materials made of aluminum, copper, silver, gold, iron, and alloys containing two or more of these; woven fabrics, non-woven fabrics; etc. Be done.
  • the base material used in one aspect of the present invention may be a base material composed of a single layer, or may be a base material composed of a plurality of layers in which two or more layers are laminated.
  • the base material composed of multiple layers include laminated paper obtained by laminating a thermoplastic resin such as polyethylene on a paper base material, aluminum, copper, silver, gold, iron and the like on a paper base material and a resin-based base material. Examples thereof include a base material with a vapor deposition film formed by depositing the metal of.
  • the base material used in one embodiment of the present invention preferably contains at least a paper base material or a resin-based base material from the viewpoint of strength, handleability, and versatility of use, and has air permeability, water absorption, and biodegradability. From the viewpoint of high recyclability, it is more preferable to contain at least a paper base material, and it is further preferable to use a paper base material.
  • the particle size D 50 of the particles (B) contained in the particle-containing layer is adjusted to be within a predetermined range.
  • the sheet contains a paper base material as a base material, it has water absorbency, can prevent contact with water with a substance containing a platinum group atom supported on the mesoporous silica, and has various performances of the mesoporous silica. It also has the effect of improving sustainability.
  • the base material used in one embodiment of the present invention from the viewpoint of making it easy for the particles (B) to be unevenly distributed on the surface layer side of the particle-containing layer in contact with air and making the sheet capable of more effectively exhibiting various performances of mesoporous silica.
  • the air permeation resistance is preferably more than 0 seconds, more preferably 5 seconds or more, further preferably 10 seconds or more, still more preferably 15 seconds or more, particularly preferably 20 seconds or more, and further 25 seconds or more. It may be 30 seconds or more, 40 seconds or more, 50 seconds or more, 60 seconds or more, 70 seconds or more, or 80 seconds or more.
  • the air permeability resistance of the base material is 100,000 seconds or less, 50,000 seconds or less, 20,000 seconds or less, 10,000 seconds or less, 8,000 seconds or less, 6000 seconds or less, 5,000 seconds or less, 4000 seconds or less, 3000 seconds or less, 2500 seconds or less. , 2000 seconds or less, 1800 seconds or less, 1700 seconds or less, 1600 seconds or less, 1500 seconds or less, 1400 seconds or less, 1300 seconds or less, or 1200 seconds or less. As will be described later, it may not be possible to specify the upper limit of the air permeability resistance of the base material.
  • the air permeation resistance of the base material is preferably more than 0 seconds and 5000 seconds or less, more preferably 5 to 4000 seconds, further preferably 10 to 3000 seconds, still more preferably 15 to 2500 seconds, and particularly preferably 20 to 20 to. It is 2000 seconds, and may be, for example, 25 to 1800 seconds, 30 to 1700 seconds, 40 to 1600 seconds, 50 to 1500 seconds, 60 to 1400 seconds, 70 to 1300 seconds, or 80 to 1200 seconds.
  • the air permeation resistance of the sheet of one aspect of the present invention is preferably more than 0 seconds, more preferably 5 seconds or more, still more preferably 10 seconds or more, still more preferably 15 seconds or more. It is particularly preferably 20 seconds or longer, and may be 25 seconds or longer, 30 seconds or longer, 40 seconds or longer, 50 seconds or longer, 60 seconds or longer, 70 seconds or longer, or 80 seconds or longer.
  • the air permeation resistance of the sheet according to one aspect of the present invention is 100,000 seconds or less, 50,000 seconds or less, 20,000 seconds or less, 10,000 seconds or less, 8,000 seconds or less, 6000 seconds or less, 5000 seconds or less, 4000 seconds or less, 3000 seconds or less.
  • the air permeation resistance of the sheet according to one aspect of the present invention is preferably more than 0 seconds and 5000 seconds or less, more preferably 5 to 4000 seconds, still more preferably 10 to 3000 seconds, still more preferably 15 to 2500 seconds. Particularly preferably, it is 20 to 2000 seconds, and for example, 25 to 1800 seconds, 30 to 1700 seconds, 40 to 1600 seconds, 50 to 1500 seconds, 60 to 1400 seconds, 70 to 1300 seconds, or 80 to 1200 seconds. May be good.
  • the air permeation resistance means the time (seconds) required for air having a volume of 100 mL to pass through the test sheet, which is measured by a method based on the JIS P8117: 2009 Wang Lab test method. ..
  • the air permeation resistance may be unmeasurable (infinite). .. Considering such a case, the upper limit of the air permeation resistance is not particularly limited.
  • the thickness of the base material used in one embodiment of the present invention is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 5 ⁇ m or more, from the viewpoint of facilitating roll-to-roll processing and improving productivity. It is 10 ⁇ m or more, more preferably 20 ⁇ m or more, and may be 25 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, or 40 ⁇ m or more. From the same viewpoint, the thickness of the base material is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, still more preferably 500 ⁇ m or less, still more preferably 300 ⁇ m or less, and further 270 ⁇ m or less, 250 ⁇ m or less, 220 ⁇ m or less.
  • the thickness of the base material is preferably 1 to 1000 ⁇ m, more preferably 5 to 800 ⁇ m, further preferably 10 to 500 ⁇ m, still more preferably 20 to 300 ⁇ m, and for example, 25 to 270 ⁇ m, 30 to 250 ⁇ m. , 35 to 220 ⁇ m, or 40 to 200 ⁇ m.
  • the particle-containing layer contained in the sheet of the present invention is referred to as particles (B) which are mesoporous silica carrying a polymer component (A) and a substance containing a platinum group atom (hereinafter, also simply referred to as “particles (B)”).
  • the particle size distribution of the particles (B) satisfies the following requirement (I).
  • the particle size D 50 (hereinafter, also simply referred to as "particle size D 50 of the particle (B)" at an integrated value of 50% based on the volume in the particle size distribution of the particle (B) is 70 ⁇ m or less. ..
  • a base material is impregnated with a solution containing mesoporous silica particles, the solution is dried, and the particles (B) are incorporated into the base material.
  • the particles (B) are likely to fall off from the sheet obtained by this method. Therefore, there is a concern that the particles (B) may adhere to other articles existing together with the sheet in the system, resulting in contamination.
  • a method of using a composition containing a polymer component (A) that plays a role of a binder together with the particles (B) can be considered.
  • Examples of the method using the composition include a method of impregnating the composition with the base material to allow the particles (B) to be incorporated into the base material, and a method of applying the composition onto the base material to form a particle-containing layer.
  • the first method in which the composition is impregnated with the substrate to incorporate the particles (B) into the substrate, requires the preparation of a large amount of the composition.
  • the amount of the composition used at the time of impregnation is different, the amount of particles (B) taken in per unit area of the base material may be different. That is, it is difficult to keep the quality of the sheet constant due to the difference in lots at the time of manufacturing.
  • the particles (B) of mesoporous silica are likely to settle, so that the particles (B) are uniformly distributed. It has been found by the present inventors that it is often difficult to apply the particles. Even if the coating can be applied, the mesoporous silica particles (B) are likely to be unevenly distributed on the substrate side of the particle-containing layer formed in the drying process. In various cases of the present inventors, it is difficult for a sheet in which such mesoporous silica particles (B) are present in the vicinity of the surface layer of the particle-containing layer to exhibit some of the various performances of the mesoporous silica. I found out during the examination.
  • one of the various performances of mesoporous silica is the effect of maintaining the freshness of food, but the effect is sufficiently exhibited on a sheet in which the presence ratio of mesoporous silica particles near the surface layer of the particle-containing layer is low. It turned out not to be done.
  • the particle size D 50 at a volume-based integrated value of 50% in the particle size distribution of the particles (B) contained in the particle-containing layer is 70 ⁇ m or less. It was found that the particles (B) can be unevenly distributed on the surface layer side of the particle-containing layer by adjusting the above.
  • the sheet of the present invention has been completed based on the knowledge.
  • the particle size D 50 of the particles (B) defined in the requirement (I) is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, still more preferably. Is 10 ⁇ m or less, particularly preferably 7 ⁇ m or less, and further, 6.5 ⁇ m or less, 6.0 ⁇ m or less, 5.7 ⁇ m or less, 5.5 ⁇ m or less, 5.2 ⁇ m or less, 5.0 ⁇ m or less, or 4.8 ⁇ m. good.
  • the particle size D 50 of the particles (B) is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.07 ⁇ m or more. , More preferably 0.1 ⁇ m or more, particularly preferably 0.5 ⁇ m or more, and further preferably 1.1 ⁇ m or more, 1.6 ⁇ m or more, 2.1 ⁇ m or more, 2.3 ⁇ m or more, 2.5 ⁇ m or more, 2.7 ⁇ m. It may be the above, or 2.9 ⁇ m or more.
  • the particle size D 50 of the particles (B) is preferably 0.01 to 70 ⁇ m, more preferably 0.03 to 50 ⁇ m, more preferably 0.05 to 30 ⁇ m, still more preferably 0.07 to 20 ⁇ m, and further. It is preferably 0.1 to 10 ⁇ m, particularly preferably 0.5 to 7 ⁇ m, and is, for example, 1.1 to 6.5 ⁇ m, 1.6 to 6.0 ⁇ m, 2.1 to 5.7 ⁇ m, 2.3. It may be ⁇ 5.5 ⁇ m, 2.5 to 5.2 ⁇ m, 2.7 to 5.0 ⁇ m, or 2.9 to 4.8 ⁇ m.
  • the particle size distribution of the particles (B) used in one aspect of the present invention is defined. Further, it is preferable to satisfy at least one of the following requirements (II) and (III), and it is more preferable to satisfy both the following requirements (II) and (III).
  • the ratio [D 10 / D 50 ] of the particle size D 10 at the integrated value of 10% based on the volume in the particle size distribution of the particles (B) to the particle size D 50 is 0.15 or more. Is.
  • the ratio [D 90 / D 50 ] of the particle size D 90 to the particle size D 50 of the particle (B) specified in the requirement (II) is 60.0 or less, and 50. It may be 0 or less, 45.0 or less, 30.0 or less, 20.0 or less, or 10.0 or less, but more preferably 3.50 or less, more preferably 3.20 or less, and more preferably 3.00. Below, it is more preferably 2.80 or less, still more preferably 2.50 or less, still more preferably 2.30 or less, and particularly preferably 1.95 or less.
  • the ratio [D 90 / D 50 ] is 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, 1.05 or more, 1.06 or more, 1.07 or more, 1. It may be 08 or more, 1.09 or more, 1.10 or more, 1.15 or more, 1.20 or more, or 1.30 or more. That is, the ratio [D 90 / D 50 ] of the particle size D 90 and the particle size D 50 of the particle (B) is, for example, 1.01 to 60.0, 1.02 to 50.0, 1.03 to. 45.0, 1.04 to 30.0, 1.05 to 20.0, 1.06 to 10.0, 1.07 to 3.50, 1.08 to 3.20, 1.09 to 3. It may be 00, 1.10 to 2.80, 1.15 to 2.50, 1.20 to 2.30, or 1.30 to 1.95.
  • the ratio [D 10 / D 50 ] of the particle size D 10 and the particle size D 50 of the particle (B) specified in the requirement (III) is preferably 0.20 or more, more preferably 0.20 or more. 0.23 or more, more preferably 0.25 or more, more preferably 0.27 or more, more preferably 0.30 or more, still more preferably 0.35 or more, still more preferably 0.40 or more, particularly preferably 0. It is .45 or more.
  • the ratio [D 10 / D 50 ] is preferably 0.99 or less, more preferably 0.98 or less, more preferably 0.97 or less, more preferably 0.96 or less, and more preferably 0.95.
  • the ratio [D 10 / D 50 ] of the particle size D 10 to the particle size D 50 of the particle (B) is preferably 0.20 to 0.99, more preferably 0.23 to 0.98, and more. It is preferably 0.25 to 0.97, more preferably 0.27 to 0.96, more preferably 0.30 to 0.95, still more preferably 0.35 to 0.90, still more preferably 0.40. It is ⁇ 0.85, particularly preferably 0.45 ⁇ 0.80.
  • the particle size D 90 of the particles (B) is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, and more, from the viewpoint of making the sheet more effectively exhibiting various performances of the mesoporous silica. It is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the particle size D 90 of the particles (B) is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, more preferably 0.05 ⁇ m or more, and more preferably 0.07 ⁇ m or more. More preferably 0.1 ⁇ m or more, still more preferably 0.3 ⁇ m or more, still more preferably 0.5 ⁇ m or more, still more preferably 1.0 ⁇ m or more, still more preferably 1.5 ⁇ m or more, still more preferably 2.0 ⁇ m.
  • the particle size D 90 of the particle (B) is preferably 0.01 to 300 ⁇ m, more preferably 0.03 to 250 ⁇ m, more preferably 0.05 to 200 ⁇ m, more preferably 0.07 to 150 ⁇ m, still more preferably.
  • It is 0.0 to 15 ⁇ m, particularly preferably 2.3 to 10 ⁇ m, and may be, for example, 3.0 to 9.5 ⁇ m, 3.5 to 8.0 ⁇ m, or 4.0 to 7.0 ⁇ m.
  • the particle size D 10 of the particles (B) is preferably 0.010 ⁇ m or more, more preferably 0. 012 ⁇ m or more, more preferably 0.015 ⁇ m or more, even more preferably 0.017 ⁇ m or more, particularly preferably 0.019 ⁇ m or more, and further 0.030 ⁇ m or more, 0.050 ⁇ m or more, 0.070 ⁇ m or more, 0.10 ⁇ m. As mentioned above, it may be 0.50 ⁇ m or more, 1.0 ⁇ m or more, 1.2 ⁇ m or more, 1.5 ⁇ m or more, or 1.7 ⁇ m or more.
  • the particle size D 10 of the particles (B) is preferably 6.5 ⁇ m or less, more preferably 6.0 ⁇ m or less, still more preferably 5.5 ⁇ m or less, still more preferably 5.2 ⁇ m.
  • it is particularly preferably 5.0 m or less, and further, 4.8 ⁇ m or less, 4.6 ⁇ m or less, 4.4 ⁇ m or less, 4.2 ⁇ m or less, 4.0 ⁇ m or less, 3.8 ⁇ m or less, 3.6 ⁇ m or less, 3 It may be 0.4 ⁇ m or less, or 3.2 ⁇ m or less.
  • the particle size D 10 of the particles (B) is preferably 0.010 to 6.5 ⁇ m, more preferably 0.012 to 6.0 ⁇ m, still more preferably 0.015 to 5.5 ⁇ m, and even more preferably 0. It is .017 to 5.2 ⁇ m, particularly preferably 0.019 to 5.0 ⁇ m, and is, for example, 0.030 to 4.8 ⁇ m, 0.050 to 4.6 ⁇ m, 0.070 to 4.4 ⁇ m, 0. It may be 10 to 4.2 ⁇ m, 0.50 to 4.0 ⁇ m, 1.0 to 3.8 ⁇ m, 1.2 to 3.6 ⁇ m, 1.5 to 3.4 ⁇ m, or 1.7 to 3.2 ⁇ m.
  • the particle size distribution of the particles (B) can be measured using, for example, a laser diffraction type particle size distribution meter (manufactured by Malvern Instruments, product name “Mastersizer 3000”). Then, based on the measured particle size distribution, as D 10 particle size during accumulation ratio by volume based from the side the smaller particle size is 10%, the particle diameter when cumulative rate by volume basis is 50% The particle size can be calculated as D 50 and when the integration rate based on the volume is 90% as D 90.
  • a laser diffraction type particle size distribution meter manufactured by Malvern Instruments, product name “Mastersizer 3000”.
  • the content of the particles (B) per 1 m 2 of each particle-containing layer contained in the sheet of one aspect of the present invention is preferably from the viewpoint of making the sheet easily exhibiting various performances of mesoporous silica. 0.10 g / m 2 or more, more preferably 0.15 g / m 2 or more, still more preferably 0.20 g / m 2 or more, even more preferably 0.25 g / m 2 or more, particularly preferably 0.30 g / m 2 or more, 0.32 g / m 2 or more, 0.34 g / m 2 or more, 0.36 g / m 2 or more, 0.38 g / m 2 or more, 0.40 g / m 2 or more, 0.44 g / m 2 or more, 0.48 g / m 2 or more, 0.50 g / m 2 or more, 0.55 g / m 2 or more, 0.60 g / m 2 or more, 0.70 g
  • the content of the particles (B) per 1 m 2 of each particle-containing layer of the sheet is preferably 20 g / m 2 or less, more preferably 16 g / m 2 or less, and further. It is preferably 14 g / m 2 or less, more preferably 12 g / m 2 or less, particularly preferably 10 g / m 2 or less, and further preferably 9.8 g / m 2 or less, 9.7 g / m 2 or less, 9.6 g.
  • / m 2 or less 9.5 g / m 2 or less, 9.0 g / m 2 or less, 8.0 g / m 2 or less, 7.0 g / m 2 or less, 6.0 g / m 2 or less, 5.0 g / m It may be 2 or less, 4.5 g / m 2 or less, 4.0 g / m 2 or less, 3.5 g / m 2 or less, 3.0 g / m 2 or less, or 2.5 g / m 2 or less.
  • the content of the particles (B) per 1 m 2 of each particle-containing layer contained in the sheet is preferably 0.10 to 20 g / m 2 , more preferably 0.15 to 16 g / m 2, and even more preferably 0.15 to 16 g / m 2 .
  • the above-mentioned "content of particles (B) per 1 m 2 of each particle-containing layer” means the content of particles (B) per 1 m 2 in one particle-containing layer.
  • each layer of the particle-containing layer 12a and the particle-containing layer 12b is used. It is preferable that the content of the particles (B) per 1 m 2 belongs to the above range.
  • the “content of particles (B) per 1 m 2 of the particle-containing layer” is the amount (unit: g / m) of the composition for forming the particle-containing layer, which is the material for forming each particle-containing layer, before drying. 2 ) (hereinafter, also simply referred to as "coating amount before drying”) can be calculated from the following formula.
  • [Content of particles (B) per 1 m 2 of particle-containing layer (g / m 2 )] [Coating amount before drying (g / m 2 )] x [Content ratio of active ingredient in composition] ⁇ [Mass of particles (B) in composition] / [Mass of active ingredient in composition]
  • the mass per 1 m 2 of each particle-containing layer of the sheet of one aspect of the present invention is preferably 0.01 g / m 2 or more from the viewpoint of making the sheet easily exhibiting various performances of mesoporous silica. , more preferably 0.03 g / m 2 or more, more preferably 0.05 g / m 2 or more, even more preferably at 0.10 g / m 2 or more, further, 0.20 g / m 2 or more, 0.30 g / M 2 or more, 0.40 g / m 2 or more, 0.50 g / m 2 or more, 0.60 g / m 2 or more, 0.70 g / m 2 or more, 0.80 g / m 2 or more, 0.90 g / m It may be 2 or more, or 1.00 g / m 2 or more.
  • the mass of each particle-containing layer per 1 m 2 of the sheet is preferably 150 g / m 2 or less, more preferably 100 g / m 2 or less, still more preferably 70 g / m 2. or less, more further preferably not 50 g / m 2 or less, further, 45 g / m 2 or less, 40 g / m 2 or less, 35 g / m 2 or less, 30 g / m 2 or less, 27 g / m 2 or less, 25 g / m 2
  • it may be 22 g / m 2 or less, 20 g / m 2 or less, or 18 g / m 2 or less.
  • the sheet has a weight of 1 m 2 per each particle containing layer is preferably 0.01 ⁇ 150g / m 2, more preferably 0.03 ⁇ 100g / m 2, more preferably 0.05 ⁇ 70 g / M 2 , more preferably 0.10 to 50 g / m 2 , and also, for example, 0.20 to 45 g / m 2 , 0.30 to 40 g / m 2 , 0.40 to 35 g / m 2 , 0.50 to 30 g / m 2 , 0.60 to 27 g / m 2 , 0.70 to 25 g / m 2 , 0.80 to 22 g / m 2 , 0.90 to 20 g / m 2 , or 1.00 to It may be 18 g / m 2.
  • the above-mentioned "mass per 1 m 2 of each particle-containing layer” means the mass per 1 m 2 of one particle-containing layer.
  • the mass per 2 belongs to the above range.
  • the particle-containing layer of the sheet of one aspect of the present invention contains the polymer component (A) and the particles (B) which are mesoporous silica carrying a substance containing a platinum group element, and the particle size distribution of the particles (B). It can be formed from a particle-containing layer forming composition used for forming a particle-containing layer having a particle size D 50 of 70 ⁇ m or less at an integrated value of 50% based on the volume in the above.
  • the particle-containing layer contained in the sheet of one aspect of the present invention and each component contained in the composition for forming the particle-containing layer, which is a material for forming the particle-containing layer will be described.
  • Polymer component (A) The polymer component (A) is fixed in the layer so that the particles (B) do not fall off from the particle-containing layer, and the particles (B) are uniformly dispersed in the particle-containing layer. It is a component for maintaining the shape.
  • various resins can be used, for example, acrylic resin, urethane resin, polyester resin, polyvinyl alcohol resin, phenol resin, epoxy resin, acetic acid. Examples thereof include vinyl resins, polyvinylpyrrolidone-based resins, and polysaccharides. These polymer components (A) may be used alone or in combination of two or more.
  • the number average molecular weight of the polymer component (A) is preferably 100 to 1,000,000, more preferably 1,000 to 600,000, still more preferably 3,000 to 300,000, and even more preferably 5. It is between 000 and 200,000.
  • the polymer component (A) used in one embodiment of the present invention preferably contains a hydroxyl group-containing polymer (A1).
  • the hydroxyl group-containing polymer (A1) By using the hydroxyl group-containing polymer (A1), the particles (B) whose particle size distribution has been adjusted as described above can be unevenly distributed on the surface layer side of the formed particle-containing layer. As a result, it is possible to obtain a sheet capable of more effectively exhibiting various performances (for example, mold resistance, freshness retention, etc.) of mesoporous silica.
  • the hydroxyl group-containing polymer (A1) has good compatibility with the silanol group of mesoporous silica, and can be expected to have an effect of suppressing the precipitation of the particles (B).
  • composition for forming a particle-containing layer when the composition for forming a particle-containing layer is applied on the base material, a hydrogen bond is formed between the hydroxyl group-containing polymer (A1) and the particles (B), so that the particles (B) are prevented from falling off. Can be effectively suppressed.
  • a paper base material is included as the base material, the adhesion between the paper base material and the particle-containing layer can be further improved.
  • the content ratio of the hydroxyl group-containing polymer (A1) in the polymer component (A) is the total amount (100 mass) of the polymer component (A) contained in the particle-containing layer or the composition for forming the particle-containing layer. %), preferably 50 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. Is.
  • Examples of the hydroxyl group-containing polymer (A1) used in one embodiment of the present invention include polyvinyl alcohol-based resins such as polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, and ethylene / vinyl alcohol copolymers; polyethylene-based polyols, polypropylene-based polyols, and the like.
  • Polyol-based resins such as polybutadiene-based polyols, acrylic polyols, polyester polyols, and polyether polyols; hydroxyl group-containing acrylic resins such as poly (2-hydroxyethyl methacrylate), polyhydroxypropyl acrylate, and polyhydroxyethyl acrylate; phenol-based resins; cellulose , Cellulite nitrate, Methyl cellulose, Ethyl cellulose, Celluloid, Viscoa rayon, Regenerated cellulose, Cellophane, Cupra, Cuprammonium rayon, Cuprophan, Bemberg, Hemicelle roll, Starch, Acetal pectin, Dextrin, Dextran, Glycogen, Pectin, Chitin, Chitosan, Arabia Polysaccharides such as gum, guar gum, locust bean gum, acacia gum; and the like can be mentioned.
  • These hydroxyl group-containing polymers (A1) may be used alone or in combination of two
  • the hydroxyl group-containing polymer (A1) used in one embodiment of the present invention preferably contains one or more selected from polyvinyl alcohol-based resins, phenol-based resins, and polysaccharides, and is preferably polyvinyl alcohol-based resins and poly. It is more preferable to contain one or more selected from sugars.
  • the polysaccharide preferably contains at least one of starch and cellulose, and starch is more preferable, from the viewpoint of high film-forming property and safety. In particular, starch can exhibit excellent film-forming properties even with a small amount of addition.
  • the total mass (100% by mass) of the particle-containing layer or the composition for forming the particle-containing layer is preferably 5% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, still more preferably.
  • the particles (B) are less likely to be buried in the particle-containing layer and are easily precipitated on the surface layer side, and it is possible to avoid directly coating the polymer component (A) with a substance containing a platinum group atom supported on mesoporous silica.
  • the content of the polymer component (A) is preferably 85 from the viewpoint of unevenly distributing the particles on the surface ( ⁇ ) side of the particle-containing layer to more effectively exhibit various performances of the mesoporous silica.
  • Mass% or less more preferably 80% by mass or less, still more preferably 75% by mass or less, still more preferably 70% by mass or less, particularly preferably 65% by mass or less, and further 62% by mass or less, 60% by mass or less. , 58% by mass or less, 56% by mass or less, 54% by mass or less, 52% by mass or less, 50% by mass or less, 48% by mass or less, 46% by mass or less, or 44% by mass or less.
  • the content of the polymer component (A) is preferably 5 to 85% by mass, more preferably 8 to 80% by mass, still more preferably 10 to 75% by mass, and even more preferably. It is 12 to 70% by mass, particularly preferably 15 to 65% by mass, and is, for example, 16 to 62% by mass, 18 to 60% by mass, 20 to 58% by mass, 22 to 56% by mass, and 24 to 54% by mass. , 26-52% by mass, 28-50% by mass, 30-48% by mass, 32-46% by mass, or 34-44% by mass.
  • the "active ingredient" of the composition for forming a particle-containing layer refers to the component contained in the formed particle-containing layer among the components contained in the composition for forming a particle-containing layer. , Specifically, it means a component other than the diluting solvent.
  • the particles (B) used in one embodiment of the present invention are particles made of mesoporous silica carrying a substance containing a platinum group atom.
  • the particles (B) used in one aspect of the present invention are preferably particles made of mesoporous silica in which a substance containing a platinum group atom is carried in the pores.
  • the substance containing a platinum group atom supported on mesoporous silica may be a substance containing at least one selected from platinum, rhodium, ruthenium, palladium, and iridium, and is a single particle made of one of these metals. It may be an alloy particle such as a ruthenium / palladium alloy or a platinum / ruthenium alloy. Among these, the substance containing a platinum group atom is preferably a substance containing a platinum atom. That is, the particles (B) used in one aspect of the present invention preferably include particles (B1) that are mesoporous silica carrying a substance containing a platinum atom.
  • the content ratio of the particles (B1) in the particles (B) used in one aspect of the present invention is the total amount (100% by mass) of the particles (B) contained in the particle-containing layer or the composition for forming the particle-containing layer. It is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass, and particularly preferably 98 to 100% by mass.
  • the average particle size of the substance containing platinum group atoms supported on the mesoporous silica is such that the substance is easily supported in the pores of the mesoporous silica and the substance is directly coated on the polymer component (A). From the viewpoint of avoiding it and effectively expressing the function as a catalyst and increasing the specific surface area, it is preferably 10.0 nm or less, more preferably 7.0 nm or less, still more preferably 5.0 nm or less, and further. , 4.5 nm or less, 4.0 nm or less, 3.5 nm or less, or 3.0 nm or less.
  • the average particle size of the substance containing a platinum group atom supported on the mesoporous silica is preferably 0.1 nm or more from the viewpoint of preventing the substance from falling off from the mesoporous silica and sufficiently exhibiting the function as a catalyst. It is more preferably 0.5 nm or more, further preferably 0.7 nm or more, and further preferably 0.8 nm or more, 1.0 nm or more, 1.2 nm or more, or 1.5 nm or more. That is, the average particle size of the substance containing a platinum group atom supported on mesoporous silica is preferably 0.1 to 10.0 nm, more preferably 0.5 to 7.0 nm, and further preferably 0.7 to 5.
  • the average particle size of a substance containing a platinum group atom is the particle size of 10 substances arbitrarily selected when observing an arbitrary region using a transmission electron microscope (TEM). Means the average value.
  • the shape of the pores of the mesoporous silica is not particularly limited, but is preferably a shape having an average aspect ratio of 5 or more (more preferably tubular).
  • the pores having such a shape easily take in air into the pores due to the capillary phenomenon, and easily come into contact with a substance containing a platinum group atom supported in the pores. As a result, it is possible to obtain a sheet in which various performances of mesoporous silica are easily exhibited.
  • the above-mentioned tubular shape is a pipe shape having substantially the same cross section, and the central axis may be a cylindrical shape extending linearly or a spiral shape having the central axis extending spirally. The shape may be such that the central axis extends randomly.
  • the average pore diameter of the mesoporous silica is preferably 0.5 to 50 nm, more preferably 0.7 to 15 nm, and even more preferably 1.0 to 10 nm.
  • the average pore diameter of mesoporous silica can be calculated by the BJH method by nitrogen adsorption / desorption.
  • the average particle size of the substance containing the platinum group atom supported on the mesoporous silica and the average of the mesoporous silica is smaller than 1.
  • the specific surface area of the mesoporous silica is preferably 300 to 2000 m 2 / g, more preferably 400 to 1700 m 2 / g, and further preferably 500 to 1500 m 2 / g.
  • the specific surface area of mesoporous silica can be calculated by the BET method by nitrogen adsorption / desorption.
  • the method for producing mesoporous silica is not particularly limited, and the mesoporous silica can be produced by a general method.
  • an inorganic raw material and an organic raw material are mixed and subjected to a shrink polymerization reaction to use an organic substance as a template.
  • Mesoporous silica can be obtained by forming a composite of an organic substance and an inorganic substance having an inorganic skeleton formed around them, and then removing the organic substance from the complex.
  • the inorganic raw material examples include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetrapropoxysilane, sodium silicate, kanemite, silica, and silica-metal composite oxides.
  • the said organic raw material for example, various surfactants and the like can be mentioned.
  • water or an organic solvent may be added.
  • the reaction conditions for the polycondensation reaction are appropriately set depending on the type of the inorganic raw material or the organic raw material used, but the reaction is preferably carried out at 0 to 100 ° C. for 1 to 24 hours.
  • examples of the removal of organic substances include a method of firing at about 400 to 800 ° C., a method of treating with a solvent such as water or alcohol, and the like.
  • Examples of the method of supporting a substance containing a platinum group atom on mesoporous silica include a method of reducing a mixture of a raw material compound containing a platinum group atom and mesoporous silica. Specifically, a method of preparing an aqueous solution of a raw material compound containing a platinum group atom, impregnating the aqueous solution with mesoporous silica, drying at 50 to 200 ° C., and then reducing the mixture can be mentioned.
  • the particles (B) commercially available mesoporous silica carrying a substance containing a platinum group atom may be used.
  • the mesoporous silica particles produced as described above or the commercially available mesoporous silica particles satisfy the above requirement (I) (preferably, further satisfy the above requirements (II) and (III). ), It is preferable to adjust the particle size distribution.
  • the mesoporous silica particles produced as described above and the commercially available mesoporous silica particles have a large particle size, and therefore the particle size distribution often does not satisfy the requirement (I).
  • the particle-containing layer or particles are made from the viewpoint of making it difficult for the particles (B) to be buried in the particle-containing layer and facilitating precipitation on the surface layer side so that various performances of the mesoporous silica can be more effectively exhibited.
  • the content of the particles (B) is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 70 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A) contained in the composition for forming a containing layer.
  • mass or more By mass or more, more preferably 80 parts by mass or more, particularly preferably 95 parts by mass or more, and further, 100 parts by mass or more, 110 parts by mass or more, 120 parts by mass or more, 130 parts by mass or more, 140 parts by mass or more, Alternatively, it may be 150 parts by mass or more. Further, from the viewpoint of retaining the particles (B) in the particle-containing layer to suppress the falling off of the particles (B), suppressing the overlap between the particles, and more effectively expressing the various performances of the mesoporous silica.
  • the content of the particles (B) is preferably 1000 parts by mass or less, more preferably 850 parts by mass or less, still more preferably 700 parts by mass or less, based on 100 parts by mass of the total amount of the polymer component (A). More preferably 550 parts by mass or less, particularly preferably 400 parts by mass or less, and further preferably 350 parts by mass or less, 300 parts by mass or less, 280 parts by mass or less, 260 parts by mass or less, 240 parts by mass or less, or 220 parts by mass or less. May be. That is, from these viewpoints, the content of the particles (B) is preferably 20 to 1000 parts by mass, more preferably 50 to 850 parts by mass, based on 100 parts by mass of the total amount of the polymer component (A).
  • the content of the particles (B) is a sheet capable of more effectively expressing various performances of the mesoporous silica. From the viewpoint, it is preferably 100 parts by mass or more, more preferably 120 parts by mass or more, still more preferably 120 parts by mass or more, based on 100 parts by mass of the total amount of the polymer component (A) contained in the particle-containing layer or the composition for forming the particle-containing layer.
  • It may be 150 parts by mass or more, more preferably 170 parts by mass or more, particularly preferably 190 parts by mass or more, and further, 200 parts by mass or more, 210 parts by mass or more, 220 parts by mass or more, or 230 parts by mass or more. Further, it is preferably 1000 parts by mass or less, more preferably 850 parts by mass or less, further preferably 700 parts by mass or less, still more preferably 550 parts by mass or less, particularly preferably 500 parts by mass or less, and further preferably 450 parts by mass or less. , 420 parts by mass or less, 400 parts by mass or less, or 370 parts by mass or less.
  • the content of the particles (B) is preferably 100 to 1000 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A). , More preferably 120 to 850 parts by mass, still more preferably 150 to 700 parts by mass, even more preferably 170 to 550 parts by mass, particularly preferably 190 to 500 parts by mass, and for example, 200 to 450 parts by mass. It may be 210 to 420 parts by mass, 220 to 400 parts by mass, or 230 to 370 parts by mass.
  • the particle-containing layer and the composition for forming the particle-containing layer which is a material for forming the particle-containing layer, contain active ingredients other than the polymer component (A) and the particles (B) as long as the effects of the present invention are not impaired. You may.
  • the total content of the polymer component (A) and the particles (B) is the total mass (100% by mass) of the particle-containing layer or the total amount of the active component of the composition for forming the particle-containing layer.
  • (100% by mass) it is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. It is 100% by mass.
  • Examples of the active ingredient other than the polymer component (A) and the particles (B) include an inorganic binder, a sedimentation inhibitor, a thixotropy and the like.
  • examples of the inorganic binder include alumina, zirconia, silica and the like.
  • examples of the sedimentation inhibitor include fumed silica, alumina and the like.
  • examples of the thixotropy include a copolymer of maleic anhydride and ⁇ -olefin (ethylene, propylene, etc.) or styrene.
  • composition for forming a particle-containing layer includes an insect repellent, a fragrance, a moisture-proof agent, a sizing agent, a coloring agent, a filler, a fixing agent, a dry paper strength agent, a wet paper strength agent, etc., depending on the use of the sheet. May be contained.
  • the content of the inorganic binder may be reduced as a component contained in the particle-containing layer and the composition for forming the particle-containing layer.
  • the specific content of the inorganic binder (particularly alumina) is 100 parts by mass of the total amount of the polymer component (A) and the particles (B) contained in the particle-containing layer or the composition for forming the particle-containing layer. , Less than 50 parts by mass, less than 20 parts by mass, less than 10 parts by mass, less than 5 parts by mass, less than 1 part by mass, less than 0.1 parts by mass, less than 0.01 parts by mass, or less than 0.001 parts by mass.
  • the content of alumina is large, the dispersibility may be lowered, and when the sheet is cut to an appropriate size, there is a concern that the cutting blade may be worn. Therefore, the smaller the alumina content, the more preferable.
  • the composition for forming a particle-containing layer used in one aspect of the present invention may contain a sedimentation inhibitor, but the particle size distribution of the particles (B) is adjusted so as to satisfy at least the above requirement (I). Therefore, it is not necessary to contain an anti-sediment agent.
  • the content of the anti-settlement agent is less than 50 parts by mass, 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A) and the particles (B) contained in the particle-containing layer or the composition for forming the particle-containing layer. Less than parts by mass, less than 10 parts by mass, less than 5 parts by mass, less than 1 part by mass, less than 0.1 parts by mass, less than 0.01 parts by mass, or less than 0.001 parts by mass.
  • the composition for forming a particle-containing layer which is a material for forming the particle-containing layer, is preferably in the form of a solution by further adding a diluting solvent.
  • the diluting solvent include water, ethanol, isopropyl alcohol, methyl ethyl ketone and the like, and among these, water is preferable.
  • the solid content (active ingredient) concentration of the solution of the composition for forming a particle-containing layer used in one embodiment of the present invention is preferably 0.01% by mass or more from the viewpoint of improving the drying efficiency with respect to a desired coating amount. It is preferably 0.05% by mass or more, more preferably 0.1% by mass or more. Further, from the viewpoint of suppressing the occurrence of drying inhibition due to the formation of a film only on the outermost layer portion, which may occur when the coating film is dried, the solid content (active ingredient) concentration of the solution of the particle-containing layer forming composition is set. It is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less.
  • the solid content (active ingredient) concentration of the solution of the composition for forming a particle-containing layer is preferably 0.01 to 50% by mass, more preferably 0.05 to 20% by mass, and even more preferably. It is 0.1 to 10% by mass.
  • the composition for forming a particle-containing layer used in one aspect of the present invention may contain acids such as hydrochloric acid, nitric acid and sulfuric acid, but from the viewpoint of preventing the occurrence of rust in the sheet manufacturing machine and the sheet. From the viewpoint of processability at the time of producing, the smaller the content of acid and base is, the more preferable.
  • the pH of the particle-containing layer forming composition used in one embodiment of the present invention is preferably 3.0 or higher, more preferably 4.0 or higher, still more preferably 5.0 or higher, and even more preferably 5.0 or higher. It is 5.5 or more, preferably 11.0 or less, more preferably 10.0 or less, still more preferably 9.0 or less, still more preferably 8.5 or less.
  • the pH of the particle-containing layer forming composition is preferably 3.0 to 11.0, more preferably 4.0 to 10.0, still more preferably 5.0 to 9.0, and even more preferably. It is 5.5 to 8.5.
  • the pH of the composition for forming a particle-containing layer means a value measured by the method described in Examples.
  • the sheet of one aspect of the present invention may further have a protective film.
  • the protective film protects the surface of the particle-containing layer so that the surface of the particle-containing layer does not come into direct contact with air and reduce the catalytic action of the particles (B) during storage. It is provided in.
  • a protective film having a release agent layer formed from a release material on the surface of the support is preferable.
  • the support for the protective film include paper base materials such as glassin paper, coated paper, and high-quality paper, laminated paper obtained by laminating a thermoplastic resin such as polyethylene on these paper base materials, polyethylene terephthalate resin, and polybutylene terephthalate.
  • examples thereof include a resin, a polyester resin film such as polyethylene naphthalate resin, and a resin film such as a polyolefin resin film such as polypropylene resin and polyethylene resin.
  • a support having a high gas barrier property is preferable.
  • the release agent include silicone-based resins, olefin-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluororesins.
  • the thickness of the protective film used in one aspect of the present invention is appropriately set, but is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 25 to 120 ⁇ m.
  • the protective film used in one aspect of the present invention may be a porous film having a large number of pores.
  • the sheet having the porous film can be used as it is without removing the porous film.
  • the average pore diameter of the pores of the porous film is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, still more preferably, from the viewpoint of sufficiently exhibiting various performances of the mesoporous silica of the particles (B). Is 50 ⁇ m or more.
  • the average pore diameter of the pores of the porous film is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, still more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less. .. That is, the average pore diameter of the pores of the porous film is preferably 1 to 2000 ⁇ m, more preferably 10 to 1000 ⁇ m, still more preferably 20 to 200 ⁇ m, and even more preferably 50 to 100 ⁇ m.
  • the method for producing a sheet according to one aspect of the present invention is not particularly limited, and examples thereof include methods having the following steps (1) and (2).
  • -Step (1) Mesoporous silica carrying a substance containing a polymer component (A) and a platinum group element, and having a particle size D 50 of 70 ⁇ m or less at an integrated value of 50% based on a volume in the particle size distribution.
  • Step (2) A step of forming a particle-containing layer on at least one surface of the base material by using the composition for forming a particle-containing layer.
  • the step (1) is a step of preparing the above-mentioned composition for forming a particle-containing layer.
  • the particles of mesoporous silica are pulverized by a bead mill or the like to prepare particles having a particle size distribution satisfying the above requirements (I) to (III).
  • the particles (B) whose particle size distribution has been adjusted in this manner are added together with the polymer component (A), and if necessary, other active ingredients are further added, and a diluting solvent such as water or ethanol is added. It is preferable to sufficiently stir to prepare the composition for forming a particle-containing layer in the form of a solution.
  • the solid content (active ingredient concentration) of the solution is preferably adjusted to be within the above range.
  • the step (2) is a step of forming a particle-containing layer on at least one surface of the base material by using the composition for forming a particle-containing layer prepared in the step (1).
  • the composition for forming a particle-containing layer used in one aspect of the present invention contains particles (B) having a particle size distribution satisfying the above requirement (I). Therefore, the particles (B) are easily dispersed uniformly in the composition, and the precipitation of the particles (B) is suppressed, and the particles (B) are uniformly dispersed even by application using the composition. It is possible to form an containing layer.
  • a method for applying the composition for forming a particle-containing layer in the form of a solution, for example, a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, etc.
  • the gravure coat method and the like can be mentioned.
  • the amount of the particle-containing layer-forming composition applied before drying is preferably 1 to 1500 g / m 2 , more preferably 5 to 1200 g / m 2 , still more preferably 10 to 1000 g / m 2 , and even more preferably 15. It is ⁇ 900 g / m 2 .
  • the coating film formed by applying the composition for forming a particle-containing layer on the surface of the base material can be subjected to a drying treatment to remove the diluting solvent and form the particle-containing layer.
  • the conditions for the drying treatment are not particularly limited, but are preferably a drying temperature of 50 to 180 ° C. (more preferably 80 to 180 ° C.) and a drying time of 0.5 minutes to 1.5 minutes.
  • the particles (B) are unevenly distributed on the surface layer side opposite to the base material, so that a sheet capable of more effectively exhibiting various performances of mesoporous silica can be easily produced. Can be manufactured in.
  • the base material is a paper base material
  • a size press or the like is used on the surface of the dried paper base material in the papermaking process for producing the paper base material.
  • a method of forming a coating film composed of a composition for forming a particle-containing layer and drying the coating film is also included. Further, in this step, the method for forming the particle-containing layer may be a method other than directly applying the composition to the surface of the base material.
  • the sheet of one aspect of the present invention can suppress contamination of other articles existing in the system, and can more effectively exhibit various performances of mesoporous silica as compared with powder. ..
  • particles (B) which are mesoporous silica are unevenly distributed on the surface layer side of the particle-containing layer, so that, for example, antifungal property, freshness retention property, putrefaction prevention property, and fermentation suppression. It has excellent performance improving effects such as malodor prevention and deodorant properties.
  • the sheet of one aspect of the present invention is, for example, a wrapping paper for wrapping various foods, a mold-proof sheet or a freshness-preserving sheet to be sealed together with various foods in a sealed bag, a storage container for fresh foods and fruits and vegetables, and a mold-proof sheet. It can be used as a wallpaper, Japanese paper tatami mat, shoji screen, etc. It can also be used as a reaction field utilizing the catalytic function of mesoporous silica.
  • each physical property value is a value measured by the method shown below.
  • (1) Particle size distribution Using a laser diffraction type particle size distribution meter (manufactured by Malvern Instruments, product name "Mastersizer 3000"), the particle size distribution of the mesoporous silica particles to be measured is measured, and the particle size distribution is measured.
  • Production Example 1 Adjustment of particle size distribution of mesoporous silica particles
  • the particle size of the particles was adjusted.
  • the diameter, rotation speed, and rotation time of the beads of the bead mill were appropriately set so as to obtain a predetermined particle size distribution.
  • the adjusted mesoporous silica particles D 10 , D 50 , and D 90 were calculated, respectively.
  • Table 1 shows the particle size distributions (D 10 , D 50 , D 90 ) of mesoporous silica particles used in the following examples and comparative examples.
  • the average particle diameter of the platinum particles supported on the mesoporous silica 2.25 nm
  • the pores of the mesoporous silica the tubular shape having an average aspect ratio of 5 or more, [average of platinum particles].
  • test sheet a sheet having a particle-containing layer
  • Comparative Example 1 Water was added to the particles (1) without blending the polymer component to prepare a composition having a solid content concentration of 2.0% by mass. Then, as in Example 1, an attempt was made to apply the composition on one surface of the woodfree paper using an applicator and a bar coater, but in both cases, the particles settled in the composition. , Can not be applied and the sheet could not be prepared. Therefore, it was completed without performing the evaluation described later.
  • Comparative Example 2 100 parts by mass of the particles (3) were added to 100 parts by mass of PVA and diluted with water to prepare a composition having a pH of 7 and a solid content concentration of 2.1% by mass. Then, as in Example 1, the composition is applied onto one surface of woodfree paper using an applicator to prepare a sheet (test sheet) having a particle-containing layer, and the evaluation described later is performed. rice field. In the prepared test sheet, the content of particles per 1 m 2 , the mass of the particle-containing layer after drying, the air permeability resistance of the test sheet, and the content of particles in the test sheet are as shown in Table 2.
  • Comparative Example 3 A sheet having a layer made of starch (test sheet) was prepared in the same manner as in Example 2 except that the particles of mesoporous silica were not blended, and the test described later was carried out.
  • the mass of the layer made of starch after drying and the air permeability resistance of the test sheet are as shown in Table 2.
  • Comparative Example 4 The high-quality paper used in Example 1 and the like was used as a test sheet as it was, and the evaluation described later was performed.
  • Comparative Example 5 The particles (3) shown in Table 1 were used as they were in the same blending amount as the particle content of the test sheet prepared in Example 1, and the evaluation described later was performed.
  • the sheets (1) to (7) produced in Examples 1 to 7 were excellent in antifungal properties and freshness retention, and the results showed that various performances of mesoporous silica were effectively exhibited.
  • the sheet (8) produced in Comparative Example 2 and the particles (3) of Comparative Example 5 are used as they are, the particle content of Example 3 is low even though the particle content is high.
  • the evaluation of the antifungal property is about the same as that of the sheet (3), and the result is that the freshness retention is inferior, and it can be seen that the various performances of the mesoporous silica are not sufficiently expressed. Further, in Comparative Example 3 and Comparative Example 4, the effects such as antifungal property and freshness retention were not particularly recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a sheet having a substrate and a particle-containing layer, wherein the particle-containing layer comprises a polymer component (A) and particles (B) of mesoporous silica that supports a substance that contains platinum group atoms. The particle diameter D50 at the 50% cumulative value on a volume basis in the particle size distribution of the particles (B) is not more than 70 µm.

Description

シート、及びシートの製造方法Sheets and sheet manufacturing methods
 本発明は、シート、及び当該シートの製造方法に関する。 The present invention relates to a sheet and a method for manufacturing the sheet.
 メソポーラスシリカは、二酸化ケイ素からなる均一で規則的な細孔直径0.5~50nmの細孔(メソポア)を有し、比表面積が大きな多孔質シリカである。このメソポーラスシリカに白金粒子を担持させた粒子からなる粉体は、エチレンや臭気物質を分解及び吸着する性質を有することが知られている。
 例えば、特許文献1には、多孔質シリカに白金又は白金含有化合物を担持させてなるエチレン分解剤、及び、酸素の存在下、-1~-40℃の雰囲気下で、エチレンと当該エチレン分解剤を接触させて、二酸化炭素と水に分解する、エチレンの分解方法が開示されている。
Mesoporous silica is a porous silica made of silicon dioxide having uniform and regular pores (mesopores) having a pore diameter of 0.5 to 50 nm and a large specific surface area. It is known that the powder composed of particles in which platinum particles are supported on this mesoporous silica has a property of decomposing and adsorbing ethylene and odorous substances.
For example, Patent Document 1 describes an ethylene decomposing agent obtained by supporting platinum or a platinum-containing compound on porous silica, and ethylene and the ethylene decomposing agent in the presence of oxygen and in an atmosphere of -1 to -40 ° C. Disclosed is a method for decomposing ethylene, which decomposes ethylene into carbon dioxide and water by contacting them.
特開2017-023889号公報Japanese Unexamined Patent Publication No. 2017-023889
 特許文献1に記載されたエチレン分解剤は、粉体であるため、系内に存在する他の物品を汚染してしまう可能性があり、取扱性に問題がある。そのため、取扱性に優れ、各種性能が良好であるメソポーラスシリカを含む物品が求められている。 Since the ethylene decomposing agent described in Patent Document 1 is a powder, it may contaminate other articles existing in the system, and there is a problem in handleability. Therefore, there is a demand for articles containing mesoporous silica having excellent handleability and various performances.
 本発明は、基材、及び、高分子成分と白金族原子を含む物質を担持したメソポーラスシリカである、粒径を特定の範囲となるように調整した粒子とを含む粒子含有層を有するシート、並びに、当該シートの製造方法を提供する。
 具体的な本発明の態様としては、下記[1]~[15]のとおりである。
[1]基材及び粒子含有層を有するシートであって、
 前記粒子含有層が、高分子成分(A)と、白金族原子を含む物質を担持したメソポーラスシリカである粒子(B)とを含み、
 粒子(B)の粒度分布における体積基準による積算値50%での粒径D50が70μm以下である、シート。
[2]粒子(B)の粒度分布における体積基準による積算値90%での粒径D90と、前記粒径D50との比〔D90/D50〕が、60.0以下である、上記[1]に記載のシート。
[3]粒子(B)の粒度分布における体積基準による積算値10%での粒径D10と、前記粒径D50との比〔D10/D50〕が、0.15以上である、上記[1]又は[2]に記載のシート。
[4]粒子(B)の粒度分布における体積基準による積算値90%での粒径D90が、300μm以下である、上記[1]~[3]のいずれか一項に記載のシート。
[5]粒子(B)の粒度分布における体積基準による積算値10%での粒径D10が0.010μm以上である、上記[1]~[4]のいずれか一項に記載のシート。
[6]前記基材の厚さが、1~1000μmである、上記[1]~[5]のいずれか一項に記載のシート。
[7]前記シートの透気抵抗度が、0秒超である、上記[1]~[6]のいずれか一項に記載のシート。
[8]前記基材が、紙基材を少なくとも含む、上記[1]~[7]のいずれか一項に記載のシート。
[9]高分子成分(A)が、水酸基含有高分子(A1)を含む、上記[1]~[8]のいずれか一項に記載のシート。
[10]水酸基含有高分子(A1)が、ポリビニルアルコール系樹脂、フェノール系樹脂及び多糖類から選ばれる1種以上を含む、上記[9]に記載のシート。
[11]前記多糖類が、デンプン及びセルロースの少なくとも一方を含む、上記[10]に記載のシート。
[12]粒子(B)の含有量が、前記粒子含有層に含まれる高分子成分(A)の全量100質量部に対して、20~1000質量部である、上記[1]~[11]のいずれか一項に記載のシート。
[13]前記シートが有する、それぞれの粒子含有層の1m当たりの粒子(B)の含有量が、0.10~20g/mである、上記[1]~[12]のいずれか一項に記載のシート。
[14]高分子成分(A)と、白金族元素を含む物質を担持したメソポーラスシリカである粒子(B)とを含み、粒子(B)の粒度分布における体積基準による積算値50%での粒径D50が70μm以下である、粒子含有層を形成するために用いられる、粒子含有層形成用組成物。
[15]下記工程(1)~(2)を有する、シートの製造方法。
・工程(1):高分子成分(A)と、白金族元素を含む物質を担持したメソポーラスシリカであり、粒度分布における体積基準による積算値50%での粒径D50が70μm以下である粒子(B)とを含む粒子含有層形成用組成物を調製する工程。
・工程(2):基材の少なくとも一方の表面に、前記粒子含有層形成用組成物を用いて粒子含有層を形成する工程。
The present invention is a sheet having a substrate and a particle-containing layer containing particles having a particle size adjusted to a specific range, which is mesoporous silica carrying a substance containing a polymer component and a platinum group atom. In addition, a method for manufacturing the sheet is provided.
Specific aspects of the present invention are as follows [1] to [15].
[1] A sheet having a base material and a particle-containing layer.
The particle-containing layer contains a polymer component (A) and particles (B) which are mesoporous silica carrying a substance containing a platinum group atom.
A sheet in which the particle size D 50 at an integrated value of 50% based on the volume in the particle size distribution of the particles (B) is 70 μm or less.
[2] The ratio [D 90 / D 50 ] of the particle size D 90 to the particle size D 50 at an integrated value of 90% based on the volume in the particle size distribution of the particles (B) is 60.0 or less. The sheet according to the above [1].
[3] The ratio [D 10 / D 50 ] of the particle size D 10 at the integrated value of 10% based on the volume in the particle size distribution of the particles (B) to the particle size D 50 is 0.15 or more. The sheet according to the above [1] or [2].
[4] The sheet according to any one of the above [1] to [3] , wherein the particle size D 90 at an integrated value of 90% based on the volume in the particle size distribution of the particles (B) is 300 μm or less.
[5] The sheet according to any one of the above [1] to [4] , wherein the particle size D 10 at an integrated value of 10% based on the volume in the particle size distribution of the particles (B) is 0.010 μm or more.
[6] The sheet according to any one of the above [1] to [5], wherein the thickness of the base material is 1 to 1000 μm.
[7] The sheet according to any one of [1] to [6] above, wherein the air permeation resistance of the sheet is more than 0 seconds.
[8] The sheet according to any one of the above [1] to [7], wherein the base material contains at least a paper base material.
[9] The sheet according to any one of the above [1] to [8], wherein the polymer component (A) contains a hydroxyl group-containing polymer (A1).
[10] The sheet according to the above [9], wherein the hydroxyl group-containing polymer (A1) contains at least one selected from a polyvinyl alcohol-based resin, a phenol-based resin, and a polysaccharide.
[11] The sheet according to the above [10], wherein the polysaccharide contains at least one of starch and cellulose.
[12] The above [1] to [11], wherein the content of the particles (B) is 20 to 1000 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A) contained in the particle-containing layer. The sheet described in any one of the items.
[13] Any one of the above [1] to [12], wherein the content of the particles (B) per 1 m 2 of each particle-containing layer of the sheet is 0.10 to 20 g / m 2. The sheet described in the section.
[14] Particles containing a polymer component (A) and particles (B) which are mesoporous silica carrying a substance containing a platinum group element, and having a volume-based integrated value of 50% in the particle size distribution of the particles (B). A composition for forming a particle-containing layer used for forming a particle-containing layer having a diameter D 50 of 70 μm or less.
[15] A method for producing a sheet, which comprises the following steps (1) and (2).
-Step (1): Mesoporous silica carrying a substance containing a polymer component (A) and a platinum group element, and having a particle size D 50 of 70 μm or less at a volume-based integrated value of 50% in the particle size distribution. A step of preparing a composition for forming a particle-containing layer containing (B).
Step (2): A step of forming a particle-containing layer on at least one surface of the base material by using the composition for forming a particle-containing layer.
 本発明の好適な一態様のシートは、粉体とは異なり、系内に存在する他の物品への汚染を抑制でき、より好適な一態様のシートは、さらにメソポーラスシリカが有する各種性能を粉体で用いる場合に比べてより効果的に発現させることができる。 Unlike powder, the sheet of the preferred embodiment of the present invention can suppress contamination of other articles existing in the system, and the sheet of the more preferred embodiment further enhances various performances of mesoporous silica. It can be expressed more effectively than when used in the body.
本発明の一態様のシートの構成の一例を示した、シートの模式断面図である。It is a schematic cross-sectional view of the sheet which showed an example of the structure of the sheet of one aspect of this invention.
〔シートの構成〕
 図1は、本発明の一態様のシートの構成の一例を示した、シートの模式断面図である。
 本発明のシートは、基材及び粒子含有層を有していればよく、例えば、図1(a)のシート1aのように、基材11の一方の表面上に、粒子含有層12を積層した構成であってもよい。また、図1(b)のシート1bのように、基材11の両面にそれぞれ粒子含有層12a、12bを有する構成であってもよい。このシート1bは、2つの粒子含有層12a、12bで基材11が挟持された構成となる。
[Sheet configuration]
FIG. 1 is a schematic cross-sectional view of a sheet showing an example of the structure of a sheet according to one aspect of the present invention.
The sheet of the present invention may have a base material and a particle-containing layer. For example, as in the sheet 1a of FIG. 1A, the particle-containing layer 12 is laminated on one surface of the base material 11. It may have the same configuration. Further, as in the sheet 1b of FIG. 1B, the particle-containing layers 12a and 12b may be provided on both surfaces of the base material 11, respectively. The sheet 1b has a structure in which the base material 11 is sandwiched between the two particle-containing layers 12a and 12b.
 なお、本発明の一態様のシートは、基材及び粒子含有層以外の他の層を有してもよい。
 例えば、粒子含有層を保護するために、粒子含有層の表面上に保護フィルムを積層した構成としてもよく、具体的には、シート1aの構成に対して、粒子含有層12の表面上に保護フィルム13が積層したシート1cとしてもよい。また、シート1bの構成に対して、一方の粒子含有層12aの表面上に保護フィルム13aが積層し、他方の粒子含有層12bの表面上に保護フィルム13bが積層したシート1dとしてもよい。
 なお、保護フィルム13、13a、13bは、シート1c又はシート1dの保管時には積層されているが、原則的には使用時には除去されるものである。ただし、保護フィルムが、多数の孔体を有する多孔フィルムである場合には、当該多孔フィルムを除去せずに、多孔フィルムを有するシートのまま用いてもよい。
The sheet of one aspect of the present invention may have a layer other than the base material and the particle-containing layer.
For example, in order to protect the particle-containing layer, a protective film may be laminated on the surface of the particle-containing layer. Specifically, the composition of the sheet 1a is protected on the surface of the particle-containing layer 12. The sheet 1c in which the films 13 are laminated may be used. Further, with respect to the configuration of the sheet 1b, the protective film 13a may be laminated on the surface of one particle-containing layer 12a, and the protective film 13b may be laminated on the surface of the other particle-containing layer 12b.
The protective films 13, 13a, and 13b are laminated during storage of the sheet 1c or sheet 1d, but are basically removed during use. However, when the protective film is a porous film having a large number of pores, the sheet having the porous film may be used as it is without removing the porous film.
 また、本発明の一態様のシートは、基材と粒子含有層との間に他の層を有してもよい。ただし、メソポーラスシリカが有する各種性能を効果的に発現させる観点から、基材の表面上に粒子含有層が直接積層した構成が好ましい。
 以下、本発明の一態様のシートが有する各層について詳述する。
Further, the sheet of one aspect of the present invention may have another layer between the base material and the particle-containing layer. However, from the viewpoint of effectively exhibiting various performances of mesoporous silica, a configuration in which a particle-containing layer is directly laminated on the surface of the base material is preferable.
Hereinafter, each layer of the sheet of one aspect of the present invention will be described in detail.
<基材>
 本発明の一態様のシートが有する基材としては、例えば、上質紙、中質紙、アート紙、コート紙、クラフト紙、グラシン紙、キャストコート紙、模造紙、マット紙、スーパーアート紙、マットコート紙、再生紙、合成紙、板紙、厚紙、和紙等の紙基材;ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニルフィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルム等の樹脂基材;アルミニウム、銅、銀、金、鉄、及びこれらを2種以上含む合金からなる金属基材;織布、不織布;等が挙げられる。
<Base material>
Examples of the base material contained in the sheet of one aspect of the present invention include high-quality paper, medium-quality paper, art paper, coated paper, kraft paper, glassin paper, cast-coated paper, imitation paper, matte paper, super art paper, and matte. Paper base materials such as coated paper, recycled paper, synthetic paper, paperboard, thick paper, Japanese paper; polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene Telephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, polyurethane film, ethylene vinyl acetate film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, Resin base materials such as polystyrene films, polycarbonate films, polyimide films, fluororesin films; metal base materials made of aluminum, copper, silver, gold, iron, and alloys containing two or more of these; woven fabrics, non-woven fabrics; etc. Be done.
 また、本発明の一態様で用いる基材は、単層からなる基材であってもよく、2層以上を積層してなる複層からなる基材であってもよい。
 複層からなる基材としては、例えば、紙基材にポリエチレン等の熱可塑性樹脂をラミネートして得られるラミネート紙や、紙基材や樹脂系基材にアルミニウム、銅、銀、金、鉄等の金属を蒸着してなる蒸着膜付き基材等が挙げられる。
Further, the base material used in one aspect of the present invention may be a base material composed of a single layer, or may be a base material composed of a plurality of layers in which two or more layers are laminated.
Examples of the base material composed of multiple layers include laminated paper obtained by laminating a thermoplastic resin such as polyethylene on a paper base material, aluminum, copper, silver, gold, iron and the like on a paper base material and a resin-based base material. Examples thereof include a base material with a vapor deposition film formed by depositing the metal of.
 本発明の一態様で用いる基材としては、強度及び取扱性や用途の多様性の観点から、紙基材又は樹脂系基材を少なくとも含むことが好ましく、透気性、吸水性、生分解性、及びリサイクル性が高いとの観点から、紙基材を少なくとも含むことがより好ましく、紙基材であることが更に好ましい。
 なお、本発明のシートにおいては、粒子含有層に含まれる粒子(B)の粒径D50を所定の範囲となるように調整している。当該シートにおいて、紙基材を含む基材を用いることで、粒子含有層の空気と触れ合う表層側に粒子(B)を偏在させ易くなる。その結果、メソポーラスシリカが有する各種性能をより効果的に発現させ得るシートとすることができる。そして、当該シートは、基材として紙基材を含むため吸水性があり、メソポーラスシリカに担持された白金族原子を含む物質に対する水との接触を防ぐことができ、メソポーラスシリカが有する各種性能の持続性を向上させ得るという効果も有する。
The base material used in one embodiment of the present invention preferably contains at least a paper base material or a resin-based base material from the viewpoint of strength, handleability, and versatility of use, and has air permeability, water absorption, and biodegradability. From the viewpoint of high recyclability, it is more preferable to contain at least a paper base material, and it is further preferable to use a paper base material.
In the sheet of the present invention, the particle size D 50 of the particles (B) contained in the particle-containing layer is adjusted to be within a predetermined range. By using a base material containing a paper base material in the sheet, the particles (B) can be easily unevenly distributed on the surface layer side of the particle-containing layer that comes into contact with air. As a result, it is possible to obtain a sheet capable of more effectively expressing various performances of mesoporous silica. Since the sheet contains a paper base material as a base material, it has water absorbency, can prevent contact with water with a substance containing a platinum group atom supported on the mesoporous silica, and has various performances of the mesoporous silica. It also has the effect of improving sustainability.
 粒子含有層の空気と触れ合う表層側に粒子(B)を偏在させ易くし、メソポーラスシリカが有する各種性能をより効果的に発現させ得るシートとする観点から、本発明の一態様で用いる基材の透気抵抗度としては、好ましくは0秒超、より好ましくは5秒以上、更に好ましくは10秒以上、より更に好ましくは15秒以上、特に好ましくは20秒以上であり、さらに、25秒以上、30秒以上、40秒以上、50秒以上、60秒以上、70秒以上、又は80秒以上としてもよい。
 また、基材の透気抵抗度は、100000秒以下、50000秒以下、20000秒以下、10000秒以下、8000秒以下、6000秒以下、5000秒以下、4000秒以下、3000秒以下、2500秒以下、2000秒以下、1800秒以下、1700秒以下、1600秒以下、1500秒以下、1400秒以下、1300秒以下、又は1200秒以下としてもよい。なお、後述のとおり、基材の透気抵抗度の上限を特定することができない場合もある。
 つまり、基材の透気抵抗度は、好ましくは0秒超5000秒以下、より好ましくは5~4000秒、更に好ましくは10~3000秒、より更に好ましくは15~2500秒、特に好ましくは20~2000秒であり、また、例えば、25~1800秒、30~1700秒、40~1600秒、50~1500秒、60~1400秒、70~1300秒、又は80~1200秒としてもよい。
The base material used in one embodiment of the present invention from the viewpoint of making it easy for the particles (B) to be unevenly distributed on the surface layer side of the particle-containing layer in contact with air and making the sheet capable of more effectively exhibiting various performances of mesoporous silica. The air permeation resistance is preferably more than 0 seconds, more preferably 5 seconds or more, further preferably 10 seconds or more, still more preferably 15 seconds or more, particularly preferably 20 seconds or more, and further 25 seconds or more. It may be 30 seconds or more, 40 seconds or more, 50 seconds or more, 60 seconds or more, 70 seconds or more, or 80 seconds or more.
The air permeability resistance of the base material is 100,000 seconds or less, 50,000 seconds or less, 20,000 seconds or less, 10,000 seconds or less, 8,000 seconds or less, 6000 seconds or less, 5,000 seconds or less, 4000 seconds or less, 3000 seconds or less, 2500 seconds or less. , 2000 seconds or less, 1800 seconds or less, 1700 seconds or less, 1600 seconds or less, 1500 seconds or less, 1400 seconds or less, 1300 seconds or less, or 1200 seconds or less. As will be described later, it may not be possible to specify the upper limit of the air permeability resistance of the base material.
That is, the air permeation resistance of the base material is preferably more than 0 seconds and 5000 seconds or less, more preferably 5 to 4000 seconds, further preferably 10 to 3000 seconds, still more preferably 15 to 2500 seconds, and particularly preferably 20 to 20 to. It is 2000 seconds, and may be, for example, 25 to 1800 seconds, 30 to 1700 seconds, 40 to 1600 seconds, 50 to 1500 seconds, 60 to 1400 seconds, 70 to 1300 seconds, or 80 to 1200 seconds.
 また、上記と同様の観点から、本発明の一態様のシートの透気抵抗度は、好ましくは0秒超、より好ましくは5秒以上、更に好ましくは10秒以上、より更に好ましくは15秒以上、特に好ましくは20秒以上であり、また、25秒以上、30秒以上、40秒以上、50秒以上、60秒以上、70秒以上、又は80秒以上としてもよい。
 また、本発明の一態様のシートの透気抵抗度は、100000秒以下、50000秒以下、20000秒以下、10000秒以下、8000秒以下、6000秒以下、5000秒以下、4000秒以下、3000秒以下、2500秒以下、2000秒以下、1800秒以下、1700秒以下、1600秒以下、1500秒以下、1400秒以下、1300秒以下、又は1200秒以下としてもよい。なお、後述のとおり、基材の透気抵抗度の上限を特定することができない場合もある。
 つまり、本発明の一態様のシートの透気抵抗度は、好ましくは0秒超5000秒以下、より好ましくは5~4000秒、更に好ましくは10~3000秒、より更に好ましくは15~2500秒、特に好ましくは20~2000秒であり、また、例えば、25~1800秒、30~1700秒、40~1600秒、50~1500秒、60~1400秒、70~1300秒、又は80~1200秒としてもよい。
From the same viewpoint as above, the air permeation resistance of the sheet of one aspect of the present invention is preferably more than 0 seconds, more preferably 5 seconds or more, still more preferably 10 seconds or more, still more preferably 15 seconds or more. It is particularly preferably 20 seconds or longer, and may be 25 seconds or longer, 30 seconds or longer, 40 seconds or longer, 50 seconds or longer, 60 seconds or longer, 70 seconds or longer, or 80 seconds or longer.
The air permeation resistance of the sheet according to one aspect of the present invention is 100,000 seconds or less, 50,000 seconds or less, 20,000 seconds or less, 10,000 seconds or less, 8,000 seconds or less, 6000 seconds or less, 5000 seconds or less, 4000 seconds or less, 3000 seconds or less. Hereinafter, it may be 2500 seconds or less, 2000 seconds or less, 1800 seconds or less, 1700 seconds or less, 1600 seconds or less, 1500 seconds or less, 1400 seconds or less, 1300 seconds or less, or 1200 seconds or less. As will be described later, it may not be possible to specify the upper limit of the air permeability resistance of the base material.
That is, the air permeation resistance of the sheet according to one aspect of the present invention is preferably more than 0 seconds and 5000 seconds or less, more preferably 5 to 4000 seconds, still more preferably 10 to 3000 seconds, still more preferably 15 to 2500 seconds. Particularly preferably, it is 20 to 2000 seconds, and for example, 25 to 1800 seconds, 30 to 1700 seconds, 40 to 1600 seconds, 50 to 1500 seconds, 60 to 1400 seconds, 70 to 1300 seconds, or 80 to 1200 seconds. May be good.
 なお、本明細書において、透気抵抗度は、JIS P8117:2009の王研式試験法に準拠した方法で測定した、体積100mLの空気が試験シートを通り抜けるのに要する時間(秒)を意味する。
 ただし、例えば、樹脂フィルムを含む基材及び基材として樹脂フィルムを含むシートである場合、体積100mLの空気は通り抜けることができず、透気抵抗度の値は測定不能(無限大)ともなり得る。そのような場合も考慮すると、透気抵抗度の上限値は特に制限されない。
In the present specification, the air permeation resistance means the time (seconds) required for air having a volume of 100 mL to pass through the test sheet, which is measured by a method based on the JIS P8117: 2009 Wang Lab test method. ..
However, for example, in the case of a base material containing a resin film and a sheet containing a resin film as the base material, air having a volume of 100 mL cannot pass through, and the value of air permeation resistance may be unmeasurable (infinite). .. Considering such a case, the upper limit of the air permeation resistance is not particularly limited.
 本発明の一態様で用いる基材の厚さは、ロール・ツー・ロール方式での加工をし易くし、生産性を向上させる観点から、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上、より更に好ましくは20μm以上であり、さらに、25μm以上、30μm以上、35μm以上、又は40μm以上としてもよい。
 また、同様の観点から、基材の厚さは、好ましくは1000μm以下、より好ましくは800μm以下、更に好ましくは500μm以下、より更に好ましくは300μm以下であり、さらに、270μm以下、250μm以下、220μm以下、又は200μm以下としてもよい。
 つまり、基材の厚さは、好ましくは1~1000μm、より好ましくは5~800μm、更に好ましくは10~500μm、より更に好ましくは20~300μmであり、また、例えば、25~270μm、30~250μm、35~220μm、又は40~200μmとしてもよい。
The thickness of the base material used in one embodiment of the present invention is preferably 1 μm or more, more preferably 5 μm or more, still more preferably 5 μm or more, from the viewpoint of facilitating roll-to-roll processing and improving productivity. It is 10 μm or more, more preferably 20 μm or more, and may be 25 μm or more, 30 μm or more, 35 μm or more, or 40 μm or more.
From the same viewpoint, the thickness of the base material is preferably 1000 μm or less, more preferably 800 μm or less, still more preferably 500 μm or less, still more preferably 300 μm or less, and further 270 μm or less, 250 μm or less, 220 μm or less. , Or 200 μm or less.
That is, the thickness of the base material is preferably 1 to 1000 μm, more preferably 5 to 800 μm, further preferably 10 to 500 μm, still more preferably 20 to 300 μm, and for example, 25 to 270 μm, 30 to 250 μm. , 35 to 220 μm, or 40 to 200 μm.
<粒子含有層>
 本発明のシートが有する粒子含有層は、高分子成分(A)と、白金族原子を含む物質を担持したメソポーラスシリカである粒子(B)(以下、単に「粒子(B)」ともいう)とを含み、粒子(B)の粒度分布は、下記要件(I)を満たす。
・要件(I):粒子(B)の粒度分布における体積基準による積算値50%での粒径D50(以下、単に「粒子(B)の粒径D50」ともいう)が70μm以下である。
<Particle-containing layer>
The particle-containing layer contained in the sheet of the present invention is referred to as particles (B) which are mesoporous silica carrying a polymer component (A) and a substance containing a platinum group atom (hereinafter, also simply referred to as “particles (B)”). The particle size distribution of the particles (B) satisfies the following requirement (I).
-Requirement (I): The particle size D 50 (hereinafter, also simply referred to as "particle size D 50 of the particle (B)") at an integrated value of 50% based on the volume in the particle size distribution of the particle (B) is 70 μm or less. ..
 一般的に、粒子(B)を含むシートを製造する方法としては、メソポーラスシリカの粒子を含む溶液を基材に含浸させ、溶液を乾燥させて、基材の内部に、粒子(B)を取り込ませる方法が考えられる。
 しかしながら、この方法で得られたシートからは、粒子(B)が脱落し易いという問題を有する。そのため、系内にシートと共に存在する他の物品に粒子(B)が付着することによる汚染が懸念される。特に、食品の保存等のために当該シートを用いることは、食品への汚染の点から難しい。つまり、取扱性や安全性に問題がある。
Generally, as a method for producing a sheet containing particles (B), a base material is impregnated with a solution containing mesoporous silica particles, the solution is dried, and the particles (B) are incorporated into the base material. There is a way to make it.
However, there is a problem that the particles (B) are likely to fall off from the sheet obtained by this method. Therefore, there is a concern that the particles (B) may adhere to other articles existing together with the sheet in the system, resulting in contamination. In particular, it is difficult to use the sheet for food preservation from the viewpoint of contamination of food. That is, there is a problem in handleability and safety.
 上記の取扱性や安全性の問題に対して、粒子(B)と共に、バインダーの役割を担う高分子成分(A)を含む組成物を用いる方法も考えられる。当該組成物を用いる方法としては、基材を当該組成物に含浸して基材に粒子(B)を取り込ませる方法や、基材上に当該組成物を塗布して粒子含有層を形成する方法がある。
 一つ目の、基材を組成物に含浸して基材に粒子(B)を取り込ませる方法は、多量の組成物を調製しなければならない。また、ロットによっては、含浸時に使用する組成物の量が異なれば、基材の単位面積当たりに取り込まれる粒子(B)の量に違いが出てしまう場合がある。つまり、製造時のロットの違いによって、シートの品質を一定に保つことが難しい。
To solve the above problems of handleability and safety, a method of using a composition containing a polymer component (A) that plays a role of a binder together with the particles (B) can be considered. Examples of the method using the composition include a method of impregnating the composition with the base material to allow the particles (B) to be incorporated into the base material, and a method of applying the composition onto the base material to form a particle-containing layer. There is.
The first method, in which the composition is impregnated with the substrate to incorporate the particles (B) into the substrate, requires the preparation of a large amount of the composition. Further, depending on the lot, if the amount of the composition used at the time of impregnation is different, the amount of particles (B) taken in per unit area of the base material may be different. That is, it is difficult to keep the quality of the sheet constant due to the difference in lots at the time of manufacturing.
 二つ目の、基材上に当該組成物を塗布して粒子含有層を形成する方法においては、メソポーラスシリカの粒子(B)は沈降し易いため、粒子(B)を均一に分布するように塗布することが難しい場合が多いことが本発明者らの検討で分かった。
 そして、仮に塗布できたとしても、乾燥過程で、形成される粒子含有層の基材側に、メソポーラスシリカの粒子(B)が偏在し易くなる。このようなメソポーラスシリカの粒子(B)が粒子含有層の表層付近への存在割合が低いシートは、メソポーラスシリカが有する各種性能の一部が発現され難くなることは、本発明者らの様々な検討の中で分かった。例えば、メソポーラスシリカが有する各種性能の一つとして、食品の鮮度の保持といった効果があるが、メソポーラスシリカの粒子が粒子含有層の表層付近への存在割合が低いシートでは、当該効果が十分に発現されないことが分かった。
In the second method of applying the composition on a substrate to form a particle-containing layer, the particles (B) of mesoporous silica are likely to settle, so that the particles (B) are uniformly distributed. It has been found by the present inventors that it is often difficult to apply the particles.
Even if the coating can be applied, the mesoporous silica particles (B) are likely to be unevenly distributed on the substrate side of the particle-containing layer formed in the drying process. In various cases of the present inventors, it is difficult for a sheet in which such mesoporous silica particles (B) are present in the vicinity of the surface layer of the particle-containing layer to exhibit some of the various performances of the mesoporous silica. I found out during the examination. For example, one of the various performances of mesoporous silica is the effect of maintaining the freshness of food, but the effect is sufficiently exhibited on a sheet in which the presence ratio of mesoporous silica particles near the surface layer of the particle-containing layer is low. It turned out not to be done.
 このような問題に対して、上記要件(I)で規定のとおり、粒子含有層に含まれる粒子(B)の粒度分布における体積基準による積算値50%での粒径D50が70μm以下となるように調整することで、粒子含有層の表層側に粒子(B)を偏在させ得るという知見を得た。本発明のシートはその知見に基づいて完成されたものである。 In response to such a problem, as specified in the above requirement (I), the particle size D 50 at a volume-based integrated value of 50% in the particle size distribution of the particles (B) contained in the particle-containing layer is 70 μm or less. It was found that the particles (B) can be unevenly distributed on the surface layer side of the particle-containing layer by adjusting the above. The sheet of the present invention has been completed based on the knowledge.
 本発明の一態様において、上記観点から、要件(I)で規定する、粒子(B)の粒径D50は、好ましくは50μm以下、より好ましくは30μm以下、更に好ましくは20μm以下、より更に好ましくは10μm以下、特に好ましくは7μm以下であり、さらに、6.5μm以下、6.0μm以下、5.7μm以下、5.5μm以下、5.2μm以下、5.0μm以下、又は4.8μmとしてもよい。
 また、上記と同様の観点から、粒子(B)の粒径D50は、好ましくは0.01μm以上、より好ましくは0.03μm以上、より好ましくは0.05μm以上、更に好ましくは0.07μm以上、より更に好ましくは0.1μm以上、特に好ましくは0.5μm以上であり、さらに、1.1μm以上、1.6μm以上、2.1μm以上、2.3μm以上、2.5μm以上、2.7μm以上、又は2.9μm以上としてもよい。
 つまり、粒子(B)の粒径D50は、好ましくは0.01~70μm、より好ましくは0.03~50μm、より好ましくは0.05~30μm、更に好ましくは0.07~20μm、より更に好ましくは0.1~10μm、特に好ましくは0.5~7μmであり、また、例えば、1.1~6.5μm、1.6~6.0μm、2.1~5.7μm、2.3~5.5μm、2.5~5.2μm、2.7~5.0μm、又は2.9~4.8μmとしてもよい。
In one aspect of the present invention, from the above viewpoint, the particle size D 50 of the particles (B) defined in the requirement (I) is preferably 50 μm or less, more preferably 30 μm or less, still more preferably 20 μm or less, still more preferably. Is 10 μm or less, particularly preferably 7 μm or less, and further, 6.5 μm or less, 6.0 μm or less, 5.7 μm or less, 5.5 μm or less, 5.2 μm or less, 5.0 μm or less, or 4.8 μm. good.
From the same viewpoint as above, the particle size D 50 of the particles (B) is preferably 0.01 μm or more, more preferably 0.03 μm or more, more preferably 0.05 μm or more, still more preferably 0.07 μm or more. , More preferably 0.1 μm or more, particularly preferably 0.5 μm or more, and further preferably 1.1 μm or more, 1.6 μm or more, 2.1 μm or more, 2.3 μm or more, 2.5 μm or more, 2.7 μm. It may be the above, or 2.9 μm or more.
That is, the particle size D 50 of the particles (B) is preferably 0.01 to 70 μm, more preferably 0.03 to 50 μm, more preferably 0.05 to 30 μm, still more preferably 0.07 to 20 μm, and further. It is preferably 0.1 to 10 μm, particularly preferably 0.5 to 7 μm, and is, for example, 1.1 to 6.5 μm, 1.6 to 6.0 μm, 2.1 to 5.7 μm, 2.3. It may be ~ 5.5 μm, 2.5 to 5.2 μm, 2.7 to 5.0 μm, or 2.9 to 4.8 μm.
 また、粒子含有層の表層側に粒子(B)を偏在させ、メソポーラスシリカが有する各種性能が十分に発現され易いシートとする観点から、本発明の一態様で用いる粒子(B)の粒度分布は、さらに下記要件(II)及び要件(III)の少なくとも一方を満たすことが好ましく、下記要件(II)及び要件(III)の双方を満たすことがより好ましい。
・要件(II):粒子(B)の粒度分布における体積基準による積算値90%での粒径D90と、前記粒径D50との比〔D90/D50〕が、60.0以下である。
・要件(III):粒子(B)の粒度分布における体積基準による積算値10%での粒径D10と、前記粒径D50との比〔D10/D50〕が、0.15以上である。
Further, from the viewpoint that the particles (B) are unevenly distributed on the surface layer side of the particle-containing layer to make a sheet in which various performances of mesoporous silica are easily exhibited, the particle size distribution of the particles (B) used in one aspect of the present invention is defined. Further, it is preferable to satisfy at least one of the following requirements (II) and (III), and it is more preferable to satisfy both the following requirements (II) and (III).
-Requirement (II): The ratio [D 90 / D 50 ] of the particle size D 90 at the integrated value of 90% based on the volume in the particle size distribution of the particles (B) to the particle size D 50 is 60.0 or less. Is.
-Requirement (III): The ratio [D 10 / D 50 ] of the particle size D 10 at the integrated value of 10% based on the volume in the particle size distribution of the particles (B) to the particle size D 50 is 0.15 or more. Is.
 本発明の一態様において、要件(II)で規定する、粒子(B)の粒径D90と粒径D50との比〔D90/D50〕は、60.0以下であり、50.0以下、45.0以下、30.0以下、20.0以下、又は10.0以下としてもよいが、より好ましくは3.50以下、より好ましくは3.20以下、より好ましくは3.00以下、より好ましくは2.80以下、更に好ましくは2.50以下、より更に好ましくは2.30以下、特に好ましくは1.95以下である。
 また、当該比〔D90/D50〕は、1.01以上、1.02以上、1.03以上、1.04以上、1.05以上、1.06以上、1.07以上、1.08以上、1.09以上、1.10以上、1.15以上、1.20以上、又は1.30以上としてもよい。
 つまり、粒子(B)の粒径D90と粒径D50との比〔D90/D50〕は、例えば、1.01~60.0、1.02~50.0、1.03~45.0、1.04~30.0、1.05~20.0、1.06~10.0、1.07~3.50、1.08~3.20、1.09~3.00、1.10~2.80、1.15~2.50、1.20~2.30、又は1.30~1.95としてもよい。
In one aspect of the present invention, the ratio [D 90 / D 50 ] of the particle size D 90 to the particle size D 50 of the particle (B) specified in the requirement (II) is 60.0 or less, and 50. It may be 0 or less, 45.0 or less, 30.0 or less, 20.0 or less, or 10.0 or less, but more preferably 3.50 or less, more preferably 3.20 or less, and more preferably 3.00. Below, it is more preferably 2.80 or less, still more preferably 2.50 or less, still more preferably 2.30 or less, and particularly preferably 1.95 or less.
The ratio [D 90 / D 50 ] is 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, 1.05 or more, 1.06 or more, 1.07 or more, 1. It may be 08 or more, 1.09 or more, 1.10 or more, 1.15 or more, 1.20 or more, or 1.30 or more.
That is, the ratio [D 90 / D 50 ] of the particle size D 90 and the particle size D 50 of the particle (B) is, for example, 1.01 to 60.0, 1.02 to 50.0, 1.03 to. 45.0, 1.04 to 30.0, 1.05 to 20.0, 1.06 to 10.0, 1.07 to 3.50, 1.08 to 3.20, 1.09 to 3. It may be 00, 1.10 to 2.80, 1.15 to 2.50, 1.20 to 2.30, or 1.30 to 1.95.
 本発明の一態様において、要件(III)で規定する粒子(B)の粒径D10と粒径D50との比〔D10/D50〕は、好ましくは0.20以上、より好ましくは0.23以上、より好ましくは0.25以上、より好ましくは0.27以上、より好ましくは0.30以上、更に好ましくは0.35以上、より更に好ましくは0.40以上、特に好ましくは0.45以上である。
 また、当該比〔D10/D50〕は、好ましくは0.99以下、より好ましくは0.98以下、より好ましくは0.97以下、より好ましくは0.96以下、より好ましくは0.95以下、更に好ましくは0.90以下、より更に好ましくは0.85以下、特に好ましくは0.80以下である。
 つまり、粒子(B)の粒径D10と粒径D50との比〔D10/D50〕は、好ましくは0.20~0.99、より好ましくは0.23~0.98、より好ましくは0.25~0.97、より好ましくは0.27~0.96、より好ましくは0.30~0.95、更に好ましくは0.35~0.90、より更に好ましくは0.40~0.85、特に好ましくは0.45~0.80である。
In one aspect of the present invention, the ratio [D 10 / D 50 ] of the particle size D 10 and the particle size D 50 of the particle (B) specified in the requirement (III) is preferably 0.20 or more, more preferably 0.20 or more. 0.23 or more, more preferably 0.25 or more, more preferably 0.27 or more, more preferably 0.30 or more, still more preferably 0.35 or more, still more preferably 0.40 or more, particularly preferably 0. It is .45 or more.
The ratio [D 10 / D 50 ] is preferably 0.99 or less, more preferably 0.98 or less, more preferably 0.97 or less, more preferably 0.96 or less, and more preferably 0.95. Below, it is more preferably 0.90 or less, still more preferably 0.85 or less, and particularly preferably 0.80 or less.
That is, the ratio [D 10 / D 50 ] of the particle size D 10 to the particle size D 50 of the particle (B) is preferably 0.20 to 0.99, more preferably 0.23 to 0.98, and more. It is preferably 0.25 to 0.97, more preferably 0.27 to 0.96, more preferably 0.30 to 0.95, still more preferably 0.35 to 0.90, still more preferably 0.40. It is ~ 0.85, particularly preferably 0.45 ~ 0.80.
 本発明の一態様において、メソポーラスシリカが有する各種性能をより効果的に発現させ易いシートとする観点から、粒子(B)の粒径D90は、好ましくは300μm以下、より好ましくは250μm以下、より好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは100μm以下、更に好ましくは50μm以下、更に好ましくは40μm以下、より更に好ましくは30μm以下、より更に好ましくは20μm以下、より更に好ましくは15μm以下、特に好ましくは10μm以下であり、さらに、9.5μm以下、8.0μm以下、又は7.0μm以下としてもよい。
 また、上記と同様の観点から、粒子(B)の粒径D90は、好ましくは0.01μm以上、より好ましくは0.03μm以上、より好ましくは0.05μm以上、より好ましくは0.07μm以上、更に好ましくは0.1μm以上、更に好ましくは0.3μm以上、更に好ましくは0.5μm以上、より更に好ましくは1.0μm以上、より更に好ましくは1.5μm以上、より更に好ましくは2.0μm以上、特に好ましくは2.3μm以上であり、さらに、3.0μm以上、3.5μm以上、又は4.0μm以上としてもよい。
 つまり、粒子(B)の粒径D90は、好ましくは0.01~300μm、より好ましくは0.03~250μm、より好ましくは0.05~200μm、より好ましくは0.07~150μm、更に好ましくは0.1~100μm、更に好ましくは0.3~50μm、更に好ましくは0.5~40μm、より更に好ましくは1.0~30μm、より更に好ましくは1.5~20μm、より更に好ましくは2.0~15μm、特に好ましくは2.3~10μmであり、また、例えば、3.0~9.5μm、3.5~8.0μm、又は4.0~7.0μmとしてもよい。
In one aspect of the present invention, the particle size D 90 of the particles (B) is preferably 300 μm or less, more preferably 250 μm or less, and more, from the viewpoint of making the sheet more effectively exhibiting various performances of the mesoporous silica. It is preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, still more preferably 40 μm or less, still more preferably 30 μm or less, still more preferably 20 μm or less, still more preferably 15 μm or less. Particularly preferably, it is 10 μm or less, and further, it may be 9.5 μm or less, 8.0 μm or less, or 7.0 μm or less.
From the same viewpoint as above, the particle size D 90 of the particles (B) is preferably 0.01 μm or more, more preferably 0.03 μm or more, more preferably 0.05 μm or more, and more preferably 0.07 μm or more. More preferably 0.1 μm or more, still more preferably 0.3 μm or more, still more preferably 0.5 μm or more, still more preferably 1.0 μm or more, still more preferably 1.5 μm or more, still more preferably 2.0 μm. As described above, it is particularly preferably 2.3 μm or more, and further, it may be 3.0 μm or more, 3.5 μm or more, or 4.0 μm or more.
That is, the particle size D 90 of the particle (B) is preferably 0.01 to 300 μm, more preferably 0.03 to 250 μm, more preferably 0.05 to 200 μm, more preferably 0.07 to 150 μm, still more preferably. Is 0.1 to 100 μm, more preferably 0.3 to 50 μm, still more preferably 0.5 to 40 μm, still more preferably 1.0 to 30 μm, even more preferably 1.5 to 20 μm, still more preferably 2. It is 0.0 to 15 μm, particularly preferably 2.3 to 10 μm, and may be, for example, 3.0 to 9.5 μm, 3.5 to 8.0 μm, or 4.0 to 7.0 μm.
 本発明の一態様において、メソポーラスシリカが有する各種性能をより効果的に発現させ易いシートとする観点から、粒子(B)の粒径D10は、好ましくは0.010μm以上、より好ましくは0.012μm以上、更に好ましくは0.015μm以上、より更に好ましくは0.017μm以上、特に好ましくは0.019μm以上であり、さらに、0.030μm以上、0.050μm以上、0.070μm以上、0.10μm以上、0.50μm以上、1.0μm以上、1.2μm以上、1.5μm以上、又は1.7μm以上としてもよい。
 また、上記と同様の観点から、粒子(B)の粒径D10は、好ましくは6.5μm以下、より好ましくは6.0μm以下、更に好ましくは5.5μm以下、より更に好ましくは5.2μm以下、特に好ましくは5.0m以下であり、さらに、4.8μm以下、4.6μm以下、4.4μm以下、4.2μm以下、4.0μm以下、3.8μm以下、3.6μm以下、3.4μm以下、又は3.2μm以下としてもよい。
 つまり、粒子(B)の粒径D10は、好ましくは0.010~6.5μm、より好ましくは0.012~6.0μm、更に好ましくは0.015~5.5μm、より更に好ましくは0.017~5.2μm、特に好ましくは0.019~5.0μmであり、また、例えば、0.030~4.8μm、0.050~4.6μm、0.070~4.4μm、0.10~4.2μm、0.50~4.0μm、1.0~3.8μm、1.2~3.6μm、1.5~3.4μm、又は1.7~3.2μmとしてもよい。
In one aspect of the present invention, the particle size D 10 of the particles (B) is preferably 0.010 μm or more, more preferably 0. 012 μm or more, more preferably 0.015 μm or more, even more preferably 0.017 μm or more, particularly preferably 0.019 μm or more, and further 0.030 μm or more, 0.050 μm or more, 0.070 μm or more, 0.10 μm. As mentioned above, it may be 0.50 μm or more, 1.0 μm or more, 1.2 μm or more, 1.5 μm or more, or 1.7 μm or more.
From the same viewpoint as above, the particle size D 10 of the particles (B) is preferably 6.5 μm or less, more preferably 6.0 μm or less, still more preferably 5.5 μm or less, still more preferably 5.2 μm. Below, it is particularly preferably 5.0 m or less, and further, 4.8 μm or less, 4.6 μm or less, 4.4 μm or less, 4.2 μm or less, 4.0 μm or less, 3.8 μm or less, 3.6 μm or less, 3 It may be 0.4 μm or less, or 3.2 μm or less.
That is, the particle size D 10 of the particles (B) is preferably 0.010 to 6.5 μm, more preferably 0.012 to 6.0 μm, still more preferably 0.015 to 5.5 μm, and even more preferably 0. It is .017 to 5.2 μm, particularly preferably 0.019 to 5.0 μm, and is, for example, 0.030 to 4.8 μm, 0.050 to 4.6 μm, 0.070 to 4.4 μm, 0. It may be 10 to 4.2 μm, 0.50 to 4.0 μm, 1.0 to 3.8 μm, 1.2 to 3.6 μm, 1.5 to 3.4 μm, or 1.7 to 3.2 μm.
 なお、本明細書において、粒子(B)の粒度分布は、例えば、レーザー回折式粒度分布計(マルバーンインストルメンツ社製、製品名「マスターサイザー3000」)を用いて測定することができる。
 そして、測定した粒度分布に基づき、粒径が小さい方からの体積基準による積算率が10%である際の粒径をD10として、体積基準による積算率が50%である際の粒径をD50として、及び、体積基準による積算率が90%である際の粒径をD90として算出することができる。
In the present specification, the particle size distribution of the particles (B) can be measured using, for example, a laser diffraction type particle size distribution meter (manufactured by Malvern Instruments, product name “Mastersizer 3000”).
Then, based on the measured particle size distribution, as D 10 particle size during accumulation ratio by volume based from the side the smaller particle size is 10%, the particle diameter when cumulative rate by volume basis is 50% The particle size can be calculated as D 50 and when the integration rate based on the volume is 90% as D 90.
 本発明の一態様のシートが有する、それぞれの粒子含有層の1m当たりの粒子(B)の含有量としては、メソポーラスシリカが有する各種性能が十分に発現され易いシートとする観点から、好ましくは0.10g/m以上、より好ましくは0.15g/m以上、更に好ましくは0.20g/m以上、より更に好ましくは0.25g/m以上、特に好ましくは0.30g/m以上であり、さらに、0.32g/m以上、0.34g/m以上、0.36g/m以上、0.38g/m以上、0.40g/m以上、0.44g/m以上、0.48g/m以上、0.50g/m以上、0.55g/m以上、0.60g/m以上、0.70g/m以上、0.80g/m以上、0.90g/m以上、又は1.00g/m以上としてもよい。
 また、脱落を抑制する観点から、シートが有する、それぞれの粒子含有層の1m当たりの粒子(B)の含有量は、好ましくは20g/m以下、より好ましくは16g/m以下、更に好ましくは14g/m以下、より更に好ましくは12g/m以下、特に好ましくは10g/m以下であり、さらに、9.8g/m以下、9.7g/m以下、9.6g/m以下、9.5g/m以下、9.0g/m以下、8.0g/m以下、7.0g/m以下、6.0g/m以下、5.0g/m以下、4.5g/m以下、4.0g/m以下、3.5g/m以下、3.0g/m以下、又は2.5g/m以下としてもよい。
 つまり、シートが有する、それぞれの粒子含有層の1m当たりの粒子(B)の含有量は、好ましくは0.10~20g/m、より好ましくは0.15~16g/m、更に好ましくは0.20~14g/m、より更に好ましくは0.25~12g/m、特に好ましくは0.30~10g/mであり、また、例えば、0.32~9.8g/m、0.34~9.7g/m、0.36~9.6g/m、0.38~9.5g/m、0.40~9.0g/m、0.44~8.0g/m、0.48~7.0g/m、0.50~6.0g/m、0.55~5.0g/m、0.60~4.5g/m、0.70~4.0g/m、0.80~3.5g/m、0.90~3.0g/m、又は1.00~2.5g/mとしてもよい。
The content of the particles (B) per 1 m 2 of each particle-containing layer contained in the sheet of one aspect of the present invention is preferably from the viewpoint of making the sheet easily exhibiting various performances of mesoporous silica. 0.10 g / m 2 or more, more preferably 0.15 g / m 2 or more, still more preferably 0.20 g / m 2 or more, even more preferably 0.25 g / m 2 or more, particularly preferably 0.30 g / m 2 or more, 0.32 g / m 2 or more, 0.34 g / m 2 or more, 0.36 g / m 2 or more, 0.38 g / m 2 or more, 0.40 g / m 2 or more, 0.44 g / m 2 or more, 0.48 g / m 2 or more, 0.50 g / m 2 or more, 0.55 g / m 2 or more, 0.60 g / m 2 or more, 0.70 g / m 2 or more, 0.80 g / m It may be 2 or more, 0.90 g / m 2 or more, or 1.00 g / m 2 or more.
Further, from the viewpoint of suppressing dropping, the content of the particles (B) per 1 m 2 of each particle-containing layer of the sheet is preferably 20 g / m 2 or less, more preferably 16 g / m 2 or less, and further. It is preferably 14 g / m 2 or less, more preferably 12 g / m 2 or less, particularly preferably 10 g / m 2 or less, and further preferably 9.8 g / m 2 or less, 9.7 g / m 2 or less, 9.6 g. / m 2 or less, 9.5 g / m 2 or less, 9.0 g / m 2 or less, 8.0 g / m 2 or less, 7.0 g / m 2 or less, 6.0 g / m 2 or less, 5.0 g / m It may be 2 or less, 4.5 g / m 2 or less, 4.0 g / m 2 or less, 3.5 g / m 2 or less, 3.0 g / m 2 or less, or 2.5 g / m 2 or less.
That is, the content of the particles (B) per 1 m 2 of each particle-containing layer contained in the sheet is preferably 0.10 to 20 g / m 2 , more preferably 0.15 to 16 g / m 2, and even more preferably 0.15 to 16 g / m 2 . Is 0.20 to 14 g / m 2 , more preferably 0.25 to 12 g / m 2 , particularly preferably 0.30 to 10 g / m 2 , and for example, 0.32 to 9.8 g / m. 2, 0.34 ~ 9.7g / m 2 , 0.36 ~ 9.6g / m 2, 0.38 ~ 9.5g / m 2, 0.40 ~ 9.0g / m 2, 0.44 ~ 8.0 g / m 2 , 0.48 to 7.0 g / m 2 , 0.50 to 6.0 g / m 2 , 0.55 to 5.0 g / m 2 , 0.60 to 4.5 g / m 2 , 0.70 to 4.0 g / m 2 , 0.80 to 3.5 g / m 2 , 0.90 to 3.0 g / m 2 , or 1.00 to 2.5 g / m 2 .
 なお、上記の「それぞれの粒子含有層の1m当たりの粒子(B)の含有量」とは、1つの粒子含有層での1m当たりの粒子(B)の含有量を意味する。例えば、図1(b)に示すシート1bのように、基材11の両面に粒子含有層12a及び粒子含有層12bのような態様の場合、粒子含有層12a及び粒子含有層12bのそれぞれの層において、1m当たりの粒子(B)の含有量が上記範囲に属していることが好ましい。
 また、「粒子含有層の1m当たりの粒子(B)の含有量」は、それぞれの粒子含有層の形成材料である粒子含有層形成用組成物の乾燥前の塗布量(単位:g/m)(以下、単に「乾燥前の塗布量」ともいう)から、下記式から算出することができる。
・[粒子含有層の1m当たりの粒子(B)の含有量(g/m)]=[乾燥前の塗布量(g/m)]×[組成物中の有効成分の含有比率]×[組成物中の粒子(B)の質量]/[組成物中の有効成分の質量]
The above-mentioned "content of particles (B) per 1 m 2 of each particle-containing layer" means the content of particles (B) per 1 m 2 in one particle-containing layer. For example, in the case of the particle-containing layer 12a and the particle-containing layer 12b on both sides of the base material 11 as in the sheet 1b shown in FIG. 1B, each layer of the particle-containing layer 12a and the particle-containing layer 12b is used. It is preferable that the content of the particles (B) per 1 m 2 belongs to the above range.
The "content of particles (B) per 1 m 2 of the particle-containing layer" is the amount (unit: g / m) of the composition for forming the particle-containing layer, which is the material for forming each particle-containing layer, before drying. 2 ) (hereinafter, also simply referred to as "coating amount before drying") can be calculated from the following formula.
[Content of particles (B) per 1 m 2 of particle-containing layer (g / m 2 )] = [Coating amount before drying (g / m 2 )] x [Content ratio of active ingredient in composition] × [Mass of particles (B) in composition] / [Mass of active ingredient in composition]
 本発明の一態様のシートが有する、それぞれの粒子含有層の1m当たりの質量は、メソポーラスシリカが有する各種性能が十分に発現され易いシートとする観点から、好ましくは0.01g/m以上、より好ましくは0.03g/m以上、更に好ましくは0.05g/m以上、より更に好ましくは0.10g/m以上であり、さらに、0.20g/m以上、0.30g/m以上、0.40g/m以上、0.50g/m以上、0.60g/m以上、0.70g/m以上、0.80g/m以上、0.90g/m以上、又は1.00g/m以上としてもよい。
 また、脱落を抑制する観点から、シートが有する、それぞれの粒子含有層の1m当たりの質量は、好ましくは150g/m以下、より好ましくは100g/m以下、更に好ましくは70g/m以下、より更に好ましくは50g/m以下であり、さらに、45g/m以下、40g/m以下、35g/m以下、30g/m以下、27g/m以下、25g/m以下、22g/m以下、20g/m以下、又は18g/m以下としてもよい。
 つまり、シートが有する、それぞれの粒子含有層の1m当たりの質量は、好ましくは0.01~150g/m、より好ましくは0.03~100g/m、更に好ましくは0.05~70g/m、より更に好ましくは0.10~50g/mであり、また、例えば、0.20~45g/m、0.30~40g/m、0.40~35g/m、0.50~30g/m、0.60~27g/m、0.70~25g/m、0.80~22g/m、0.90~20g/m、又は1.00~18g/mとしてもよい。
 上記の「それぞれの粒子含有層の1m当たりの質量」とは、1つの粒子含有層での1m当たりの質量を意味する。例えば、図1(b)に示すシート1bのように、基材11の両面に粒子含有層12a及び粒子含有層12bのような態様の場合、粒子含有層12a及び粒子含有層12bのそれぞれの1m当たりの質量が、上記範囲に属していることが好ましい。
The mass per 1 m 2 of each particle-containing layer of the sheet of one aspect of the present invention is preferably 0.01 g / m 2 or more from the viewpoint of making the sheet easily exhibiting various performances of mesoporous silica. , more preferably 0.03 g / m 2 or more, more preferably 0.05 g / m 2 or more, even more preferably at 0.10 g / m 2 or more, further, 0.20 g / m 2 or more, 0.30 g / M 2 or more, 0.40 g / m 2 or more, 0.50 g / m 2 or more, 0.60 g / m 2 or more, 0.70 g / m 2 or more, 0.80 g / m 2 or more, 0.90 g / m It may be 2 or more, or 1.00 g / m 2 or more.
Further, from the viewpoint of suppressing falling off, the mass of each particle-containing layer per 1 m 2 of the sheet is preferably 150 g / m 2 or less, more preferably 100 g / m 2 or less, still more preferably 70 g / m 2. or less, more further preferably not 50 g / m 2 or less, further, 45 g / m 2 or less, 40 g / m 2 or less, 35 g / m 2 or less, 30 g / m 2 or less, 27 g / m 2 or less, 25 g / m 2 Hereinafter, it may be 22 g / m 2 or less, 20 g / m 2 or less, or 18 g / m 2 or less.
In other words, the sheet has a weight of 1 m 2 per each particle containing layer is preferably 0.01 ~ 150g / m 2, more preferably 0.03 ~ 100g / m 2, more preferably 0.05 ~ 70 g / M 2 , more preferably 0.10 to 50 g / m 2 , and also, for example, 0.20 to 45 g / m 2 , 0.30 to 40 g / m 2 , 0.40 to 35 g / m 2 , 0.50 to 30 g / m 2 , 0.60 to 27 g / m 2 , 0.70 to 25 g / m 2 , 0.80 to 22 g / m 2 , 0.90 to 20 g / m 2 , or 1.00 to It may be 18 g / m 2.
The above-mentioned "mass per 1 m 2 of each particle-containing layer" means the mass per 1 m 2 of one particle-containing layer. For example, in the case of the particle-containing layer 12a and the particle-containing layer 12b on both sides of the base material 11 as in the sheet 1b shown in FIG. 1B, 1 m of each of the particle-containing layer 12a and the particle-containing layer 12b. It is preferable that the mass per 2 belongs to the above range.
 本発明の一態様のシートが有する粒子含有層は、高分子成分(A)と、白金族元素を含む物質を担持したメソポーラスシリカである粒子(B)とを含み、粒子(B)の粒度分布における体積基準による積算値50%での粒径D50が70μm以下である、粒子含有層を形成するために用いられる、粒子含有層形成用組成物から形成することができる。
 以下、本発明の一態様のシートが有する粒子含有層、及び、当該粒子含有層の形成材料である粒子含有層形成用組成物に含まれる各成分について説明する。
The particle-containing layer of the sheet of one aspect of the present invention contains the polymer component (A) and the particles (B) which are mesoporous silica carrying a substance containing a platinum group element, and the particle size distribution of the particles (B). It can be formed from a particle-containing layer forming composition used for forming a particle-containing layer having a particle size D 50 of 70 μm or less at an integrated value of 50% based on the volume in the above.
Hereinafter, the particle-containing layer contained in the sheet of one aspect of the present invention and each component contained in the composition for forming the particle-containing layer, which is a material for forming the particle-containing layer, will be described.
[高分子成分(A)]
 高分子成分(A)は、粒子含有層から粒子(B)が脱落しないように層内に固定すると共に、粒子(B)を粒子含有層内で一様に分散させ、また、粒子含有層の形状を維持するための成分である。
 本発明の一態様で用いる高分子成分(A)としては、各種樹脂を用いることができ、例えば、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、フェノール樹脂、エポキシ樹脂、酢酸ビニル樹脂、ポリビニルピロリドン系樹脂、及び多糖類等が挙げられる。
 これらの高分子成分(A)は、単独で用いてもよく、2種以上を併用してもよい。
[Polymer component (A)]
The polymer component (A) is fixed in the layer so that the particles (B) do not fall off from the particle-containing layer, and the particles (B) are uniformly dispersed in the particle-containing layer. It is a component for maintaining the shape.
As the polymer component (A) used in one embodiment of the present invention, various resins can be used, for example, acrylic resin, urethane resin, polyester resin, polyvinyl alcohol resin, phenol resin, epoxy resin, acetic acid. Examples thereof include vinyl resins, polyvinylpyrrolidone-based resins, and polysaccharides.
These polymer components (A) may be used alone or in combination of two or more.
 高分子成分(A)の数平均分子量としては、好ましくは100~1,000,000、より好ましくは1,000~600,000、更に好ましくは3,000~300,000、より更に好ましくは5,000~200,000である。 The number average molecular weight of the polymer component (A) is preferably 100 to 1,000,000, more preferably 1,000 to 600,000, still more preferably 3,000 to 300,000, and even more preferably 5. It is between 000 and 200,000.
 これらの中でも、本発明の一態様で用いる高分子成分(A)は、水酸基含有高分子(A1)を含むことが好ましい。
 水酸基含有高分子(A1)を用いることで、上述のように粒度分布を調整した粒子(B)を、形成される粒子含有層の表層側により偏在化させることができる。その結果、メソポーラスシリカが有する各種性能(例えば、防カビ性や鮮度保持性等)をより効果的に発現させ得るシートとすることができる。また、水酸基含有高分子(A1)は、メソポーラスシリカのシラノール基との相溶性が良く、粒子(B)の沈降の抑制効果が期待できる。さらに、基材上に粒子含有層形成用組成物を塗布した際に、水酸基含有高分子(A1)と粒子(B)との間で水素結合が形成されるため、粒子(B)の脱落を効果的に抑制できる。特に、基材として紙基材を含む場合には、紙基材と粒子含有層との密着性をより向上させることができる。
Among these, the polymer component (A) used in one embodiment of the present invention preferably contains a hydroxyl group-containing polymer (A1).
By using the hydroxyl group-containing polymer (A1), the particles (B) whose particle size distribution has been adjusted as described above can be unevenly distributed on the surface layer side of the formed particle-containing layer. As a result, it is possible to obtain a sheet capable of more effectively exhibiting various performances (for example, mold resistance, freshness retention, etc.) of mesoporous silica. Further, the hydroxyl group-containing polymer (A1) has good compatibility with the silanol group of mesoporous silica, and can be expected to have an effect of suppressing the precipitation of the particles (B). Further, when the composition for forming a particle-containing layer is applied on the base material, a hydrogen bond is formed between the hydroxyl group-containing polymer (A1) and the particles (B), so that the particles (B) are prevented from falling off. Can be effectively suppressed. In particular, when a paper base material is included as the base material, the adhesion between the paper base material and the particle-containing layer can be further improved.
 上記観点から、高分子成分(A)中の水酸基含有高分子(A1)の含有割合としては、粒子含有層又は粒子含有層形成用組成物に含まれる高分子成分(A)の全量(100質量%)に対して、好ましくは50~100質量%、より好ましくは70~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%、特に好ましくは95~100質量%である。 From the above viewpoint, the content ratio of the hydroxyl group-containing polymer (A1) in the polymer component (A) is the total amount (100 mass) of the polymer component (A) contained in the particle-containing layer or the composition for forming the particle-containing layer. %), preferably 50 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. Is.
 本発明の一態様で用いる水酸基含有高分子(A1)としては、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリビニルアセタール、エチレン・ビニルアルコール共重合体等のポリビニルアルコール系樹脂;ポリエチレン系ポリオール、ポリプロピレン系ポリオール、ポリブタジエン系ポリオール、アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等のポリオール系樹脂;ポリ(2-ヒドロキシエチルメタクリレート)、ポリヒドロキシプロピルアクリレート、ポリヒドロキシエチルアクリレート等の水酸基含有アクリル系樹脂;フェノール系樹脂;セルロース、硝酸セルロース、メチルセルロース、エチルセルロース、セルロイド、ビスコースレーヨン、再生セルロース、セロハン、キュプラ、銅アンモニアレーヨン、キュプロファン、ベンベルグ、ヘミセルロール、デンプン、アクロペクチン、デキストリン、デキストラン、グリコーゲン、ペクチン、キチン、キトサン、アラビアガム、グアーガム、ローカストビーンガム、アカシアガム等の多糖類;等が挙げられる。
 これらの水酸基含有高分子(A1)は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the hydroxyl group-containing polymer (A1) used in one embodiment of the present invention include polyvinyl alcohol-based resins such as polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, and ethylene / vinyl alcohol copolymers; polyethylene-based polyols, polypropylene-based polyols, and the like. Polyol-based resins such as polybutadiene-based polyols, acrylic polyols, polyester polyols, and polyether polyols; hydroxyl group-containing acrylic resins such as poly (2-hydroxyethyl methacrylate), polyhydroxypropyl acrylate, and polyhydroxyethyl acrylate; phenol-based resins; cellulose , Cellulite nitrate, Methyl cellulose, Ethyl cellulose, Celluloid, Viscoa rayon, Regenerated cellulose, Cellophane, Cupra, Cuprammonium rayon, Cuprophan, Bemberg, Hemicelle roll, Starch, Acetal pectin, Dextrin, Dextran, Glycogen, Pectin, Chitin, Chitosan, Arabia Polysaccharides such as gum, guar gum, locust bean gum, acacia gum; and the like can be mentioned.
These hydroxyl group-containing polymers (A1) may be used alone or in combination of two or more.
 これらの中でも、本発明の一態様で用いる水酸基含有高分子(A1)は、ポリビニルアルコール系樹脂、フェノール系樹脂、及び多糖類から選ばれる1種以上を含むことが好ましく、ポリビニルアルコール系樹脂及び多糖類から選ばれる1種以上を含むことがより好ましい。
 なお、前記多糖類としては、造膜性及び安全性が高いとの観点から、デンプン及びセルロースの少なくとも一方を含むことが好ましく、デンプンがより好ましい。特に、デンプンは、少量の添加であっても、優れた造膜性を発現し得る。
Among these, the hydroxyl group-containing polymer (A1) used in one embodiment of the present invention preferably contains one or more selected from polyvinyl alcohol-based resins, phenol-based resins, and polysaccharides, and is preferably polyvinyl alcohol-based resins and poly. It is more preferable to contain one or more selected from sugars.
The polysaccharide preferably contains at least one of starch and cellulose, and starch is more preferable, from the viewpoint of high film-forming property and safety. In particular, starch can exhibit excellent film-forming properties even with a small amount of addition.
 本発明の一態様において、粒子含有層内に粒子(B)を保持させて粒子(B)の脱落を抑制する観点から、粒子含有層の全質量(100質量%)又は粒子含有層形成用組成物の有効成分の全量(100質量%)に対する、高分子成分(A)の含有量は、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上、より更に好ましくは12質量%以上、特に好ましくは15質量%以上であり、さらに、16質量%以上、18質量%以上、20質量%以上、22質量%以上、24質量%以上、26質量%以上、28質量%以上、30質量%以上、32質量%以上、又は34質量%以上としてもよい。
 また、粒子含有層内に粒子(B)を埋もれ難くし表層側に析出し易くし、メソポーラスシリカに担持された白金族原子を含む物質を、高分子成分(A)に直接被覆することを回避した状態で、粒子含有層の表面(α)側に偏在させて、メソポーラスシリカが有する各種性能をより効果的に発現させる観点から、上記の高分子成分(A)の含有量は、好ましくは85質量%以下、より好ましくは80質量%以下、更に好ましくは75質量%以下、より更に好ましくは70質量%以下、特に好ましくは65質量%以下であり、さらに、62質量%以下、60質量%以下、58質量%以下、56質量%以下、54質量%以下、52質量%以下、50質量%以下、48質量%以下、46質量%以下、又は44質量%以下としてもよい。
 つまり、これらの観点から、上記の高分子成分(A)の含有量は、好ましくは5~85質量%、より好ましくは8~80質量%、更に好ましくは10~75質量%、より更に好ましくは12~70質量%、特に好ましくは15~65質量%であり、また、例えば、16~62質量%、18~60質量%、20~58質量%、22~56質量%、24~54質量%、26~52質量%、28~50質量%、30~48質量%、32~46質量%、又は34~44質量%としてもよい。
 なお、本明細書において、粒子含有層形成用組成物の「有効成分」とは、粒子含有層形成用組成物に含まれる成分のうち、形成された粒子含有層に含まれている成分を指し、具体的には、希釈溶媒以外の成分を意味する。
In one aspect of the present invention, from the viewpoint of retaining the particles (B) in the particle-containing layer and suppressing the falling off of the particles (B), the total mass (100% by mass) of the particle-containing layer or the composition for forming the particle-containing layer. The content of the polymer component (A) with respect to the total amount (100% by mass) of the active component of the product is preferably 5% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, still more preferably. Is 12% by mass or more, particularly preferably 15% by mass or more, and further, 16% by mass or more, 18% by mass or more, 20% by mass or more, 22% by mass or more, 24% by mass or more, 26% by mass or more, 28% by mass. % Or more, 30% by mass or more, 32% by mass or more, or 34% by mass or more.
In addition, the particles (B) are less likely to be buried in the particle-containing layer and are easily precipitated on the surface layer side, and it is possible to avoid directly coating the polymer component (A) with a substance containing a platinum group atom supported on mesoporous silica. In this state, the content of the polymer component (A) is preferably 85 from the viewpoint of unevenly distributing the particles on the surface (α) side of the particle-containing layer to more effectively exhibit various performances of the mesoporous silica. Mass% or less, more preferably 80% by mass or less, still more preferably 75% by mass or less, still more preferably 70% by mass or less, particularly preferably 65% by mass or less, and further 62% by mass or less, 60% by mass or less. , 58% by mass or less, 56% by mass or less, 54% by mass or less, 52% by mass or less, 50% by mass or less, 48% by mass or less, 46% by mass or less, or 44% by mass or less.
That is, from these viewpoints, the content of the polymer component (A) is preferably 5 to 85% by mass, more preferably 8 to 80% by mass, still more preferably 10 to 75% by mass, and even more preferably. It is 12 to 70% by mass, particularly preferably 15 to 65% by mass, and is, for example, 16 to 62% by mass, 18 to 60% by mass, 20 to 58% by mass, 22 to 56% by mass, and 24 to 54% by mass. , 26-52% by mass, 28-50% by mass, 30-48% by mass, 32-46% by mass, or 34-44% by mass.
In addition, in this specification, the "active ingredient" of the composition for forming a particle-containing layer refers to the component contained in the formed particle-containing layer among the components contained in the composition for forming a particle-containing layer. , Specifically, it means a component other than the diluting solvent.
[粒子(B)]
 本発明の一態様で用いる粒子(B)は、白金族原子を含む物質を担持したメソポーラスシリカからなる粒子である。本発明の一態様で用いる粒子(B)は、細孔内に白金族原子を含む物質を担持したメソポーラスシリカからなる粒子であることが好ましい。白金族原子を含む物質が、メソポーラスシリカの細孔内にすることで高分子成分(A)に直接被覆される状態を回避でき、当該物質の触媒としての機能を効果的に発現させることができる。
 なお、上述のとおり、粒子(B)の粒径分布は、少なくとも上記要件(I)を満たすように調整されており、さらに上記要件(II)及び(III)を満たすように調整されていることが好ましい。
[Particle (B)]
The particles (B) used in one embodiment of the present invention are particles made of mesoporous silica carrying a substance containing a platinum group atom. The particles (B) used in one aspect of the present invention are preferably particles made of mesoporous silica in which a substance containing a platinum group atom is carried in the pores. By placing a substance containing a platinum group atom in the pores of mesoporous silica, it is possible to avoid a state in which the substance is directly coated with the polymer component (A), and the function of the substance as a catalyst can be effectively exhibited. ..
As described above, the particle size distribution of the particles (B) is adjusted so as to satisfy at least the above requirement (I), and further adjusted to satisfy the above requirements (II) and (III). Is preferable.
 メソポーラスシリカに担持された白金族原子を含む物質としては、白金、ロジウム、ルテニウム、パラジウム、及びイリジウムから選ばれる少なくとも1種を含む物質であればよく、これらのうち1種の金属からなる単体粒子であってもよく、ルテニウム/パラジウム合金や白金/ルテニウム合金等の合金粒子であってもよい。
 これらの中でも、白金族原子を含む物質は、白金原子を含む物質であることが好ましい。つまり、本発明の一態様で用いる粒子(B)としては、白金原子を含む物質を担持したメソポーラスシリカである粒子(B1)を含むことが好ましい。
 本発明の一態様で用いる粒子(B)中の粒子(B1)の含有割合としては、粒子含有層又は粒子含有層形成用組成物に含まれる粒子(B)の全量(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%、特に好ましくは98~100質量%である。
The substance containing a platinum group atom supported on mesoporous silica may be a substance containing at least one selected from platinum, rhodium, ruthenium, palladium, and iridium, and is a single particle made of one of these metals. It may be an alloy particle such as a ruthenium / palladium alloy or a platinum / ruthenium alloy.
Among these, the substance containing a platinum group atom is preferably a substance containing a platinum atom. That is, the particles (B) used in one aspect of the present invention preferably include particles (B1) that are mesoporous silica carrying a substance containing a platinum atom.
The content ratio of the particles (B1) in the particles (B) used in one aspect of the present invention is the total amount (100% by mass) of the particles (B) contained in the particle-containing layer or the composition for forming the particle-containing layer. It is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass, and particularly preferably 98 to 100% by mass.
 メソポーラスシリカに担持された白金族原子を含む物質の平均粒子径としては、当該物質をメソポーラスシリカの細孔内に担持され易くし、当該物質が高分子成分(A)に直接被覆される状態を回避して、触媒としての機能を効果的に発現させると共に、比表面積を大きくする観点から、好ましくは10.0nm以下、より好ましくは7.0nm以下、更に好ましくは5.0nm以下であり、さらに、4.5nm以下、4.0nm以下、3.5nm以下、又は3.0nm以下としてもよい。
 また、メソポーラスシリカに担持された白金族原子を含む物質の平均粒子径としては、メソポーラスシリカからの脱落を防止すると共に、触媒としての機能を十分に発現させる観点から、好ましくは0.1nm以上、より好ましくは0.5nm以上、更に好ましくは0.7nm以上であり、さらに、0.8nm以上、1.0nm以上、1.2nm以上、又は1.5nm以上としてもよい。
 つまり、メソポーラスシリカに担持された白金族原子を含む物質の平均粒子径としては、好ましくは0.1~10.0nm、より好ましくは0.5~7.0nm、更に好ましくは0.7~5.0nmであり、また、例えば、0.8~4.5nm、1.0~4.0nm、1.2~3.5nm、又は1.5~3.0nmとしてもよい。
 なお、本明細書において、白金族原子を含む物質の平均粒子径は、透過型電子顕微鏡(TEM)を用いて任意の領域を観察した際に、任意に選択した10個の物質の粒径の平均値を意味する。
The average particle size of the substance containing platinum group atoms supported on the mesoporous silica is such that the substance is easily supported in the pores of the mesoporous silica and the substance is directly coated on the polymer component (A). From the viewpoint of avoiding it and effectively expressing the function as a catalyst and increasing the specific surface area, it is preferably 10.0 nm or less, more preferably 7.0 nm or less, still more preferably 5.0 nm or less, and further. , 4.5 nm or less, 4.0 nm or less, 3.5 nm or less, or 3.0 nm or less.
The average particle size of the substance containing a platinum group atom supported on the mesoporous silica is preferably 0.1 nm or more from the viewpoint of preventing the substance from falling off from the mesoporous silica and sufficiently exhibiting the function as a catalyst. It is more preferably 0.5 nm or more, further preferably 0.7 nm or more, and further preferably 0.8 nm or more, 1.0 nm or more, 1.2 nm or more, or 1.5 nm or more.
That is, the average particle size of the substance containing a platinum group atom supported on mesoporous silica is preferably 0.1 to 10.0 nm, more preferably 0.5 to 7.0 nm, and further preferably 0.7 to 5. It is 0.0 nm, and may be, for example, 0.8 to 4.5 nm, 1.0 to 4.0 nm, 1.2 to 3.5 nm, or 1.5 to 3.0 nm.
In the present specification, the average particle size of a substance containing a platinum group atom is the particle size of 10 substances arbitrarily selected when observing an arbitrary region using a transmission electron microscope (TEM). Means the average value.
 メソポーラスシリカが有する細孔の形状は、特に限定されないが、平均アスペクト比が5以上の形状(より好ましくは筒状)であることが好ましい。このような形状の細孔は、毛細管現象により細孔内に空気を取り込み易く、細孔内に担持された白金族原子を含む物質と接触し易くなる。その結果、メソポーラスシリカが有する各種性能が十分に発現され易いシートとすることができる。
 なお、上記の筒状とは、略同一の断面を有する管形状であり、中心軸は直線状に伸びる円筒形であってもよく、中心軸がらせん状に伸びるらせん形であってもよく、中心軸がランダムに伸びる形状であってもよい。
The shape of the pores of the mesoporous silica is not particularly limited, but is preferably a shape having an average aspect ratio of 5 or more (more preferably tubular). The pores having such a shape easily take in air into the pores due to the capillary phenomenon, and easily come into contact with a substance containing a platinum group atom supported in the pores. As a result, it is possible to obtain a sheet in which various performances of mesoporous silica are easily exhibited.
The above-mentioned tubular shape is a pipe shape having substantially the same cross section, and the central axis may be a cylindrical shape extending linearly or a spiral shape having the central axis extending spirally. The shape may be such that the central axis extends randomly.
 メソポーラスシリカの平均細孔直径としては、好ましくは0.5~50nm、より好ましくは0.7~15nm、更に好ましくは1.0~10nmである。
 なお、本明細書において、メソポーラスシリカの平均細孔直径は、窒素吸脱着によるBJH法により算出することができる。
The average pore diameter of the mesoporous silica is preferably 0.5 to 50 nm, more preferably 0.7 to 15 nm, and even more preferably 1.0 to 10 nm.
In this specification, the average pore diameter of mesoporous silica can be calculated by the BJH method by nitrogen adsorption / desorption.
 なお、触媒としての機能を効果的に発現させる観点から、本発明の一態様で用いる粒子(B)において、メソポーラスシリカに担持された白金族原子を含む物質の平均粒子径と、メソポーラスシリカの平均細孔直径との比〔白金族原子を含む物質の平均粒子径/メソポーラスシリカの平均細孔直径〕が1より小さいことが好ましい。 From the viewpoint of effectively expressing the function as a catalyst, in the particles (B) used in one embodiment of the present invention, the average particle size of the substance containing the platinum group atom supported on the mesoporous silica and the average of the mesoporous silica. It is preferable that the ratio to the pore diameter [average particle diameter of the substance containing platinum group atoms / average pore diameter of mesoporous silica] is smaller than 1.
 メソポーラスシリカの比表面積としては、好ましくは300~2000m/g、より好ましくは400~1700m/g、更に好ましくは500~1500m/gである。
 なお、本明細書において、メソポーラスシリカの比表面積は、窒素吸脱着によるBET法により算出することができる。
The specific surface area of the mesoporous silica is preferably 300 to 2000 m 2 / g, more preferably 400 to 1700 m 2 / g, and further preferably 500 to 1500 m 2 / g.
In this specification, the specific surface area of mesoporous silica can be calculated by the BET method by nitrogen adsorption / desorption.
 メソポーラスシリカの製造方法としては、特に限定されず、一般的な方法で製造することができるが、例えば、無機原料と有機原料とを混合して縮重合反応をさせて、有機物を鋳型とし、そのまわりに無機物の骨格が形成された有機物と無機物の複合体を形成した後、当該複合体から有機物を除去することにより、メソポーラスシリカを得ることができる。
 当該無機原料としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のアルコキシシラン、ケイ酸ソーダ、カネマイト、シリカ、シリカ-金属複合酸化物等が挙げられる。また、当該有機原料としては、例えば、各種界面活性剤等が挙げられる。
 無機原料と有機原料とを混合する際には、水や有機溶媒を加えてもよい。
 また、縮重合反応の反応条件としては、用いる無機原料や有機原料の種類によって適宜設定されるが、0~100℃で、1~24時間反応させることが好ましい。
 さらに、有機物の除去としては、例えば、400~800℃程度で焼成する方法、水やアルコール等の溶媒で処理する方法等が挙げられる。
The method for producing mesoporous silica is not particularly limited, and the mesoporous silica can be produced by a general method. For example, an inorganic raw material and an organic raw material are mixed and subjected to a shrink polymerization reaction to use an organic substance as a template. Mesoporous silica can be obtained by forming a composite of an organic substance and an inorganic substance having an inorganic skeleton formed around them, and then removing the organic substance from the complex.
Examples of the inorganic raw material include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetrapropoxysilane, sodium silicate, kanemite, silica, and silica-metal composite oxides. Moreover, as the said organic raw material, for example, various surfactants and the like can be mentioned.
When mixing the inorganic raw material and the organic raw material, water or an organic solvent may be added.
The reaction conditions for the polycondensation reaction are appropriately set depending on the type of the inorganic raw material or the organic raw material used, but the reaction is preferably carried out at 0 to 100 ° C. for 1 to 24 hours.
Further, examples of the removal of organic substances include a method of firing at about 400 to 800 ° C., a method of treating with a solvent such as water or alcohol, and the like.
 メソポーラスシリカに白金族原子を含む物質を担持させる方法としては、白金族原子を含む原料化合物と、メソポーラスシリカとの混合物を還元して得る方法が挙げられる。具体的には、白金族原子を含む原料化合物の水溶液を調製し、当該水溶液にメソポーラスシリカを含浸させ、50~200℃で乾燥させ、次いで還元させる方法が挙げられる。 Examples of the method of supporting a substance containing a platinum group atom on mesoporous silica include a method of reducing a mixture of a raw material compound containing a platinum group atom and mesoporous silica. Specifically, a method of preparing an aqueous solution of a raw material compound containing a platinum group atom, impregnating the aqueous solution with mesoporous silica, drying at 50 to 200 ° C., and then reducing the mixture can be mentioned.
 粒子(B)は、市販されている白金族原子を含む物質を担持したメソポーラスシリカを用いてもよい。
 上述のようにして製造されたメソポーラスシリカの粒子、もしくは市販品のメソポーラスシリカの粒子は、上記要件(I)を満たすように(好ましくは、さらに上記要件(II)及び(III)を満たすように)、粒度分布を調整することが好ましい。
 一般的に、上述のようにして製造されたメソポーラスシリカの粒子や、市販品のメソポーラスシリカの粒子は粒径が大きいため、その粒度分布は要件(I)を満たさない場合が多い。
 そのため、これらの粒子を、ビーズミル等によって粉砕することで、上記要件(I)~(III)を満たす粒度分布を有する粒子に調整することが好ましい。
 なお、ビーズミルのビーズの直径、回転数、及び回転時間を適宜設定することで、上記要件(I)~(III)を満たす粒度分布を有する粒子(B)と容易に調整することができる。
As the particles (B), commercially available mesoporous silica carrying a substance containing a platinum group atom may be used.
The mesoporous silica particles produced as described above or the commercially available mesoporous silica particles satisfy the above requirement (I) (preferably, further satisfy the above requirements (II) and (III). ), It is preferable to adjust the particle size distribution.
In general, the mesoporous silica particles produced as described above and the commercially available mesoporous silica particles have a large particle size, and therefore the particle size distribution often does not satisfy the requirement (I).
Therefore, it is preferable to pulverize these particles with a bead mill or the like to adjust the particles to have a particle size distribution satisfying the above requirements (I) to (III).
By appropriately setting the bead diameter, rotation speed, and rotation time of the bead mill, the particles (B) having a particle size distribution satisfying the above requirements (I) to (III) can be easily adjusted.
 本発明の一態様において、粒子含有層内に粒子(B)を埋もれ難くし表層側に析出し易くして、メソポーラスシリカが有する各種性能をより効果的に発現させる観点から、粒子含有層又は粒子含有層形成用組成物に含まれる高分子成分(A)の全量100質量部に対する、粒子(B)の含有量は、好ましくは20質量部以上、より好ましくは50質量部以上、更に好ましくは70質量部以上、より更に好ましくは80質量部以上、特に好ましくは95質量部以上であり、さらに、100質量部以上、110質量部以上、120質量部以上、130質量部以上、140質量部以上、又は150質量部以上としてもよい。
 また、粒子含有層内に粒子(B)を保持させて粒子(B)の脱落を抑制すると共に、粒子同士の重なりを抑制し、メソポーラスシリカが有する各種性能をより効果的に発現させる観点から、上記の粒子(B)の含有量は、高分子成分(A)の全量100質量部に対して、好ましくは1000質量部以下、より好ましくは850質量部以下、更に好ましくは700質量部以下、より更に好ましくは550質量部以下、特に好ましくは400質量部以下であり、さらに、350質量部以下、300質量部以下、280質量部以下、260質量部以下、240質量部以下、又は220質量部以下としてもよい。
 つまり、これらの観点から、上記の粒子(B)の含有量は、高分子成分(A)の全量100質量部に対して、好ましくは20~1000質量部、より好ましくは50~850質量部、更に好ましくは70~700質量部、より更に好ましくは80~550質量部、特に好ましくは95~400質量部であり、また、例えば、100~350質量部、110~300質量部、120~280質量部、130~260質量部、140~240質量部、又は150~220質量部としてもよい。
In one aspect of the present invention, the particle-containing layer or particles are made from the viewpoint of making it difficult for the particles (B) to be buried in the particle-containing layer and facilitating precipitation on the surface layer side so that various performances of the mesoporous silica can be more effectively exhibited. The content of the particles (B) is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 70 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A) contained in the composition for forming a containing layer. By mass or more, more preferably 80 parts by mass or more, particularly preferably 95 parts by mass or more, and further, 100 parts by mass or more, 110 parts by mass or more, 120 parts by mass or more, 130 parts by mass or more, 140 parts by mass or more, Alternatively, it may be 150 parts by mass or more.
Further, from the viewpoint of retaining the particles (B) in the particle-containing layer to suppress the falling off of the particles (B), suppressing the overlap between the particles, and more effectively expressing the various performances of the mesoporous silica. The content of the particles (B) is preferably 1000 parts by mass or less, more preferably 850 parts by mass or less, still more preferably 700 parts by mass or less, based on 100 parts by mass of the total amount of the polymer component (A). More preferably 550 parts by mass or less, particularly preferably 400 parts by mass or less, and further preferably 350 parts by mass or less, 300 parts by mass or less, 280 parts by mass or less, 260 parts by mass or less, 240 parts by mass or less, or 220 parts by mass or less. May be.
That is, from these viewpoints, the content of the particles (B) is preferably 20 to 1000 parts by mass, more preferably 50 to 850 parts by mass, based on 100 parts by mass of the total amount of the polymer component (A). It is more preferably 70 to 700 parts by mass, still more preferably 80 to 550 parts by mass, particularly preferably 95 to 400 parts by mass, and for example, 100 to 350 parts by mass, 110 to 300 parts by mass, 120 to 280 parts by mass. Parts, 130 to 260 parts by mass, 140 to 240 parts by mass, or 150 to 220 parts by mass may be used.
 本発明の一態様において、粒子(B)の平均粒子径0.1μm未満である場合における、粒子(B)の含有量は、メソポーラスシリカが有する各種性能をより効果的に発現させ易いシートとする観点から、粒子含有層又は粒子含有層形成用組成物に含まれる高分子成分(A)の全量100質量部に対して、好ましくは100質量部以上、より好ましくは120質量部以上、更に好ましくは150質量部以上、より更に好ましくは170質量部以上、特に好ましくは190質量部以上であり、さらに、200質量部以上、210質量部以上、220質量部以上、又は230質量部以上としてもよく、また、好ましくは1000質量部以下、より好ましくは850質量部以下、更に好ましくは700質量部以下、より更に好ましくは550質量部以下、特に好ましくは500質量部以下であり、さらに、450質量部以下、420質量部以下、400質量部以下、又は370質量部以下としてもよい。
 つまり、粒子(B)の平均粒子径0.1μm未満である場合における、粒子(B)の含有量は、高分子成分(A)の全量100質量部に対して、好ましくは100~1000質量部、より好ましくは120~850質量部、更に好ましくは150~700質量部、より更に好ましくは170~550質量部、特に好ましくは190~500質量部であり、また、例えば、200~450質量部、210~420質量部、220~400質量部、又は230~370質量部としてもよい。
In one aspect of the present invention, when the average particle size of the particles (B) is less than 0.1 μm, the content of the particles (B) is a sheet capable of more effectively expressing various performances of the mesoporous silica. From the viewpoint, it is preferably 100 parts by mass or more, more preferably 120 parts by mass or more, still more preferably 120 parts by mass or more, based on 100 parts by mass of the total amount of the polymer component (A) contained in the particle-containing layer or the composition for forming the particle-containing layer. It may be 150 parts by mass or more, more preferably 170 parts by mass or more, particularly preferably 190 parts by mass or more, and further, 200 parts by mass or more, 210 parts by mass or more, 220 parts by mass or more, or 230 parts by mass or more. Further, it is preferably 1000 parts by mass or less, more preferably 850 parts by mass or less, further preferably 700 parts by mass or less, still more preferably 550 parts by mass or less, particularly preferably 500 parts by mass or less, and further preferably 450 parts by mass or less. , 420 parts by mass or less, 400 parts by mass or less, or 370 parts by mass or less.
That is, when the average particle diameter of the particles (B) is less than 0.1 μm, the content of the particles (B) is preferably 100 to 1000 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A). , More preferably 120 to 850 parts by mass, still more preferably 150 to 700 parts by mass, even more preferably 170 to 550 parts by mass, particularly preferably 190 to 500 parts by mass, and for example, 200 to 450 parts by mass. It may be 210 to 420 parts by mass, 220 to 400 parts by mass, or 230 to 370 parts by mass.
[他の有効成分]
 粒子含有層、及び、その形成材料である粒子含有層形成用組成物には、本発明の効果を損なわない範囲で、高分子成分(A)及び粒子(B)以外の他の有効成分を含有してもよい。
[Other active ingredients]
The particle-containing layer and the composition for forming the particle-containing layer, which is a material for forming the particle-containing layer, contain active ingredients other than the polymer component (A) and the particles (B) as long as the effects of the present invention are not impaired. You may.
 ただし、本発明の一態様において、高分子成分(A)及び粒子(B)の合計含有量は、粒子含有層の全質量(100質量%)又は粒子含有層形成用組成物の有効成分の全量(100質量%)に対して、好ましくは60~100質量%、より好ましくは70~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%、特に好ましくは95~100質量%である。 However, in one aspect of the present invention, the total content of the polymer component (A) and the particles (B) is the total mass (100% by mass) of the particle-containing layer or the total amount of the active component of the composition for forming the particle-containing layer. With respect to (100% by mass), it is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. It is 100% by mass.
 高分子成分(A)及び粒子(B)以外の他の有効成分としては、例えば、無機バインダー、沈降防止剤、チキソ剤等が挙げられる。
 無機バインダーとしては、例えば、アルミナ、ジルコニア、シリカ等が挙げられる。
 沈降防止剤としては、例えば、ヒュームドシリカ、アルミナ等が挙げられる。
 チキソ剤としては、例えば、無水マレイン酸と、α-オレフィン(エチレン、プロピレン等)又はスチレンとの共重合体等が挙げられる。
 また、粒子含有層形成用組成物は、シートの用途に応じて、さらに、防虫剤、芳香剤、防湿剤、サイズ剤、着色剤、填料、定着剤、乾燥紙力剤、湿潤紙力剤等を含有してもよい。
Examples of the active ingredient other than the polymer component (A) and the particles (B) include an inorganic binder, a sedimentation inhibitor, a thixotropy and the like.
Examples of the inorganic binder include alumina, zirconia, silica and the like.
Examples of the sedimentation inhibitor include fumed silica, alumina and the like.
Examples of the thixotropy include a copolymer of maleic anhydride and α-olefin (ethylene, propylene, etc.) or styrene.
Further, the composition for forming a particle-containing layer includes an insect repellent, a fragrance, a moisture-proof agent, a sizing agent, a coloring agent, a filler, a fixing agent, a dry paper strength agent, a wet paper strength agent, etc., depending on the use of the sheet. May be contained.
 ただし、本発明の一態様において、粒子含有層及び粒子含有層形成用組成物に含まれる成分として、無機バインダー(特に、アルミナ)の含有量を少なくしてもよい。
 具体的な無機バインダー(特に、アルミナ)の含有量としては、粒子含有層又は粒子含有層形成用組成物に含まれる高分子成分(A)及び粒子(B)の合計量100質量部に対して、50質量部未満、20質量部未満、10質量部未満、5質量部未満、1質量部未満、0.1質量部未満、0.01質量部未満、又は0.001質量部未満である。
 特に、アルミナの含有量が多くなると分散性が低下する恐れがあると共に、シートを適当な大きさに切断する際に、切断刃の磨耗が懸念される。そのため、アルミナの含有量は少ないほど好ましい。
However, in one aspect of the present invention, the content of the inorganic binder (particularly alumina) may be reduced as a component contained in the particle-containing layer and the composition for forming the particle-containing layer.
The specific content of the inorganic binder (particularly alumina) is 100 parts by mass of the total amount of the polymer component (A) and the particles (B) contained in the particle-containing layer or the composition for forming the particle-containing layer. , Less than 50 parts by mass, less than 20 parts by mass, less than 10 parts by mass, less than 5 parts by mass, less than 1 part by mass, less than 0.1 parts by mass, less than 0.01 parts by mass, or less than 0.001 parts by mass.
In particular, if the content of alumina is large, the dispersibility may be lowered, and when the sheet is cut to an appropriate size, there is a concern that the cutting blade may be worn. Therefore, the smaller the alumina content, the more preferable.
 また、本発明の一態様で用いる粒子含有層形成用組成物では、沈降防止剤を含有してもよいが、粒子(B)の粒度分布を少なくとも上記要件(I)を満たすように調整しているため、沈降防止剤を含有しなくてもよい。
 沈降防止剤の含有量としては、粒子含有層又は粒子含有層形成用組成物に含まれる高分子成分(A)及び粒子(B)の合計量100質量部に対して、50質量部未満、20質量部未満、10質量部未満、5質量部未満、1質量部未満、0.1質量部未満、0.01質量部未満、又は0.001質量部未満である。
Further, the composition for forming a particle-containing layer used in one aspect of the present invention may contain a sedimentation inhibitor, but the particle size distribution of the particles (B) is adjusted so as to satisfy at least the above requirement (I). Therefore, it is not necessary to contain an anti-sediment agent.
The content of the anti-settlement agent is less than 50 parts by mass, 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A) and the particles (B) contained in the particle-containing layer or the composition for forming the particle-containing layer. Less than parts by mass, less than 10 parts by mass, less than 5 parts by mass, less than 1 part by mass, less than 0.1 parts by mass, less than 0.01 parts by mass, or less than 0.001 parts by mass.
[希釈溶媒]
 粒子含有層の形成材料である粒子含有層形成用組成物は、さらに希釈溶媒を加えて、溶液の形態とすることが好ましい。
 希釈溶媒としては、例えば、水、エタノール、イソプロピルアルコール、メチルエチルケトン等が挙げられるが、これらの中でも、水が好ましい。
[Diluting solvent]
The composition for forming a particle-containing layer, which is a material for forming the particle-containing layer, is preferably in the form of a solution by further adding a diluting solvent.
Examples of the diluting solvent include water, ethanol, isopropyl alcohol, methyl ethyl ketone and the like, and among these, water is preferable.
 本発明の一態様で用いる粒子含有層形成用組成物の溶液の固形分(有効成分)濃度としては、所望の塗布量に対する乾燥効率の向上の観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。
 また、塗膜の乾燥時に生じ得る、最表層部分のみに被膜が形成されることによる乾燥阻害の発生を抑制する観点から、粒子含有層形成用組成物の溶液の固形分(有効成分)濃度は、好ましくは50質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。
 つまり、これらの観点から、粒子含有層形成用組成物の溶液の固形分(有効成分)濃度は、好ましくは0.01~50質量%、より好ましくは0.05~20質量%、更に好ましくは0.1~10質量%である。
The solid content (active ingredient) concentration of the solution of the composition for forming a particle-containing layer used in one embodiment of the present invention is preferably 0.01% by mass or more from the viewpoint of improving the drying efficiency with respect to a desired coating amount. It is preferably 0.05% by mass or more, more preferably 0.1% by mass or more.
Further, from the viewpoint of suppressing the occurrence of drying inhibition due to the formation of a film only on the outermost layer portion, which may occur when the coating film is dried, the solid content (active ingredient) concentration of the solution of the particle-containing layer forming composition is set. It is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less.
That is, from these viewpoints, the solid content (active ingredient) concentration of the solution of the composition for forming a particle-containing layer is preferably 0.01 to 50% by mass, more preferably 0.05 to 20% by mass, and even more preferably. It is 0.1 to 10% by mass.
 また、本発明の一態様で用いる粒子含有層形成用組成物は、塩酸、硝酸、硫酸等の酸を含有してもよいが、シートの製造機の錆の発生を防止する観点、及び、シートを製造する際の加工性の観点から、酸及び塩基の含有量は少ないほど好ましい。
 上記観点から、本発明の一態様で用いる粒子含有層形成用組成物のpHとしては、好ましくは3.0以上、より好ましくは4.0以上、更に好ましくは5.0以上、より更に好ましくは5.5以上であり、また、好ましくは11.0以下、より好ましくは10.0以下、更に好ましくは9.0以下、より更に好ましくは8.5以下である。
 つまり、当該粒子含有層形成用組成物のpHは、好ましくは3.0~11.0、より好ましくは4.0~10.0、更に好ましくは5.0~9.0、より更に好ましくは5.5~8.5である。
 なお、本明細書において、粒子含有層形成用組成物のpHは、実施例に記載の方法により測定された値を意味する。
Further, the composition for forming a particle-containing layer used in one aspect of the present invention may contain acids such as hydrochloric acid, nitric acid and sulfuric acid, but from the viewpoint of preventing the occurrence of rust in the sheet manufacturing machine and the sheet. From the viewpoint of processability at the time of producing, the smaller the content of acid and base is, the more preferable.
From the above viewpoint, the pH of the particle-containing layer forming composition used in one embodiment of the present invention is preferably 3.0 or higher, more preferably 4.0 or higher, still more preferably 5.0 or higher, and even more preferably 5.0 or higher. It is 5.5 or more, preferably 11.0 or less, more preferably 10.0 or less, still more preferably 9.0 or less, still more preferably 8.5 or less.
That is, the pH of the particle-containing layer forming composition is preferably 3.0 to 11.0, more preferably 4.0 to 10.0, still more preferably 5.0 to 9.0, and even more preferably. It is 5.5 to 8.5.
In this specification, the pH of the composition for forming a particle-containing layer means a value measured by the method described in Examples.
<保護フィルム>
 本発明の一態様のシートは、さらに保護フィルムを有していてもよい。
 保護フィルムは、粒子含有層の表面を保護し、使用されるまでの間に、粒子含有層の表面が空気と直接接触して、保管時に粒子(B)の触媒作用を低下させないようにするために設けられる。
<Protective film>
The sheet of one aspect of the present invention may further have a protective film.
The protective film protects the surface of the particle-containing layer so that the surface of the particle-containing layer does not come into direct contact with air and reduce the catalytic action of the particles (B) during storage. It is provided in.
 本発明の一態様で用いる保護フィルムとしては、例えば、支持体の表面上に剥離材から形成された剥離剤層を有するものが好ましい。
 保護フィルムの支持体としては、例えば、グラシン紙、コート紙、上質紙等の紙基材、これらの紙基材にポリエチレン等の熱可塑性樹脂をラミネートしたラミネート紙、又はポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、ポリプロピレン樹脂、ポリエチレン樹脂等のポリオレフィン樹脂フィルム等の樹脂フィルム等が挙げられる。
 これらの中でも、ガスバリア性が高い支持体が好ましい。
 また、剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。
As the protective film used in one aspect of the present invention, for example, a protective film having a release agent layer formed from a release material on the surface of the support is preferable.
Examples of the support for the protective film include paper base materials such as glassin paper, coated paper, and high-quality paper, laminated paper obtained by laminating a thermoplastic resin such as polyethylene on these paper base materials, polyethylene terephthalate resin, and polybutylene terephthalate. Examples thereof include a resin, a polyester resin film such as polyethylene naphthalate resin, and a resin film such as a polyolefin resin film such as polypropylene resin and polyethylene resin.
Among these, a support having a high gas barrier property is preferable.
Examples of the release agent include silicone-based resins, olefin-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluororesins.
 本発明の一態様で用いる保護フィルムの厚さは、適宜設定されるが、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは25~120μmである。 The thickness of the protective film used in one aspect of the present invention is appropriately set, but is preferably 10 to 200 μm, more preferably 20 to 150 μm, and even more preferably 25 to 120 μm.
 なお、本発明の一態様で用いる保護フィルムとしては、多数の孔体を有する多孔フィルムであってもよい。当該多孔フィルムを除去せずに、多孔フィルムを有するシートのまま用いることができる。
 多孔フィルムが有する孔の平均孔径としては、粒子(B)のメソポーラスシリカが有する各種性能を十分に発現させる観点から、好ましくは1μm以上、より好ましくは10μm以上、更に好ましくは20μm以上、より更に好ましくは50μm以上である。
 また、粒子含有層の表層を適切に保護する観点から、多孔フィルムが有する孔の平均孔径は、好ましくは2000μm以下、より好ましくは1000μm以下、更に好ましくは200μm以下、より更に好ましくは100μm以下である。
 つまり、多孔フィルムが有する孔の平均孔径は、好ましくは1~2000μm、より好ましくは10~1000μm、更に好ましくは20~200μm、より更に好ましくは50~100μmである。
The protective film used in one aspect of the present invention may be a porous film having a large number of pores. The sheet having the porous film can be used as it is without removing the porous film.
The average pore diameter of the pores of the porous film is preferably 1 μm or more, more preferably 10 μm or more, still more preferably 20 μm or more, still more preferably, from the viewpoint of sufficiently exhibiting various performances of the mesoporous silica of the particles (B). Is 50 μm or more.
From the viewpoint of appropriately protecting the surface layer of the particle-containing layer, the average pore diameter of the pores of the porous film is preferably 2000 μm or less, more preferably 1000 μm or less, still more preferably 200 μm or less, still more preferably 100 μm or less. ..
That is, the average pore diameter of the pores of the porous film is preferably 1 to 2000 μm, more preferably 10 to 1000 μm, still more preferably 20 to 200 μm, and even more preferably 50 to 100 μm.
〔シートの製造方法〕
 本発明の一態様のシートの製造方法は、特に限定されないが、例えば、下記工程(1)~(2)を有する方法が挙げられる。
・工程(1):高分子成分(A)と、白金族元素を含む物質を担持したメソポーラスシリカであり、粒度分布における体積基準による積算値50%での粒径D50が70μm以下である粒子(B)とを含む粒子含有層形成用組成物を調製する工程。
・工程(2):基材の少なくとも一方の表面に、前記粒子含有層形成用組成物を用いて粒子含有層を形成する工程。
[Sheet manufacturing method]
The method for producing a sheet according to one aspect of the present invention is not particularly limited, and examples thereof include methods having the following steps (1) and (2).
-Step (1): Mesoporous silica carrying a substance containing a polymer component (A) and a platinum group element, and having a particle size D 50 of 70 μm or less at an integrated value of 50% based on a volume in the particle size distribution. A step of preparing a composition for forming a particle-containing layer containing (B).
Step (2): A step of forming a particle-containing layer on at least one surface of the base material by using the composition for forming a particle-containing layer.
<工程(1)>
 工程(1)は、上述の粒子含有層形成用組成物を調製する工程である。
 工程(1)では、粒子(B)の粒度分布が、上記要件(I)を満たすように(好ましくは、さらに上記要件(II)及び(III)を満たすように)調整することが好ましい。
 具体的な調整方法としては、メソポーラスシリカの粒子をビーズミル等によって粉砕して、上記要件(I)~(III)を満たす粒度分布を有する粒子に調整することが好ましい。なお、ビーズミルのビーズの直径、回転数、及び回転時間を適宜設定することで、所望の粒度分布を有する粒子(B)と容易に調整することができる。
<Process (1)>
The step (1) is a step of preparing the above-mentioned composition for forming a particle-containing layer.
In the step (1), it is preferable to adjust the particle size distribution of the particles (B) so as to satisfy the above requirement (I) (preferably, further satisfy the above requirements (II) and (III)).
As a specific adjustment method, it is preferable that the particles of mesoporous silica are pulverized by a bead mill or the like to prepare particles having a particle size distribution satisfying the above requirements (I) to (III). By appropriately setting the bead diameter, the number of rotations, and the rotation time of the beads of the bead mill, the particles (B) having a desired particle size distribution can be easily adjusted.
 このようにして粒度分布を調整した粒子(B)は、高分子成分(A)と共に添加し、必要に応じて、他の有効成分をさらに添加し、水やエタノール等の希釈溶媒を加えて、十分に攪拌して、粒子含有層形成用組成物を溶液の形態として調製することが好ましい。
 なお、当該溶液の固形分(有効成分濃度)が、上述の範囲となるように調整することが好ましい。
The particles (B) whose particle size distribution has been adjusted in this manner are added together with the polymer component (A), and if necessary, other active ingredients are further added, and a diluting solvent such as water or ethanol is added. It is preferable to sufficiently stir to prepare the composition for forming a particle-containing layer in the form of a solution.
The solid content (active ingredient concentration) of the solution is preferably adjusted to be within the above range.
<工程(2)>
 工程(2)は、基材の少なくとも一方の表面に、工程(1)で調製した粒子含有層形成用組成物を用いて粒子含有層を形成する工程である。
 本発明の一態様で用いる粒子含有層形成用組成物は、上記要件(I)を満たす粒度分布を有する粒子(B)を含有している。そのため、組成物中で粒子(B)が均一に分散し易く、粒子(B)の沈降が抑制されており、当該組成物を用いて、塗布によっても、均一に粒子(B)が分散した粒子含有層を形成することが可能である。
<Process (2)>
The step (2) is a step of forming a particle-containing layer on at least one surface of the base material by using the composition for forming a particle-containing layer prepared in the step (1).
The composition for forming a particle-containing layer used in one aspect of the present invention contains particles (B) having a particle size distribution satisfying the above requirement (I). Therefore, the particles (B) are easily dispersed uniformly in the composition, and the precipitation of the particles (B) is suppressed, and the particles (B) are uniformly dispersed even by application using the composition. It is possible to form an containing layer.
 粒子含有層形成用組成物の塗布方法としては、溶液の形態とした上で、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。 As a method for applying the composition for forming a particle-containing layer, in the form of a solution, for example, a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, etc. The gravure coat method and the like can be mentioned.
 粒子含有層形成用組成物の乾燥前の塗布量としては、好ましくは1~1500g/m、より好ましくは5~1200g/m、更に好ましくは10~1000g/m、より更に好ましくは15~900g/mである。 The amount of the particle-containing layer-forming composition applied before drying is preferably 1 to 1500 g / m 2 , more preferably 5 to 1200 g / m 2 , still more preferably 10 to 1000 g / m 2 , and even more preferably 15. It is ~ 900 g / m 2 .
 基材の表面上、粒子含有層形成用組成物を塗布して形成された塗膜は、乾燥処理を行うことで、希釈溶媒を除去して、粒子含有層を形成することができる。
 乾燥処理の条件としては、特に制限は無いが、乾燥温度50~180℃(より好ましくは80~180℃)で、乾燥時間0.5分~1.5分の条件が好ましい。
 乾燥処理後に形成された粒子含有層は、基材とは反対側の表層側に、粒子(B)が偏在しているため、メソポーラスシリカが有する各種性能をより効果的に発現させ得るシートを容易に製造することができる。
The coating film formed by applying the composition for forming a particle-containing layer on the surface of the base material can be subjected to a drying treatment to remove the diluting solvent and form the particle-containing layer.
The conditions for the drying treatment are not particularly limited, but are preferably a drying temperature of 50 to 180 ° C. (more preferably 80 to 180 ° C.) and a drying time of 0.5 minutes to 1.5 minutes.
In the particle-containing layer formed after the drying treatment, the particles (B) are unevenly distributed on the surface layer side opposite to the base material, so that a sheet capable of more effectively exhibiting various performances of mesoporous silica can be easily produced. Can be manufactured in.
 なお、上記の直接塗布による形成方法には、例えば、基材が紙基材である場合、紙基材を製造する抄紙工程において、乾燥後の紙基材の表面に、サイズプレス等を用いて粒子含有層形成用組成物からなる塗膜を形成して、当該塗膜を乾燥する方法も含まれる。
 また、本工程において、粒子含有層の形成方法としては、基材の表面に組成物を直接塗布する以外の方法であってもよい。
In the above-mentioned direct coating method, for example, when the base material is a paper base material, a size press or the like is used on the surface of the dried paper base material in the papermaking process for producing the paper base material. A method of forming a coating film composed of a composition for forming a particle-containing layer and drying the coating film is also included.
Further, in this step, the method for forming the particle-containing layer may be a method other than directly applying the composition to the surface of the base material.
〔シートの特性、用途〕
 本発明の一態様のシートは、粉体とは異なり、系内に存在する他の物品への汚染を抑制でき、粉体に比べて、メソポーラスシリカが有する各種性能をより効果的に発現させ得る。
 特に、本発明の一態様のシートは、粒子含有層の表層側に、メソポーラスシリカである粒子(B)を偏在しているため、例えば、防カビ性や鮮度保持性、腐敗防止性、発酵抑制、悪臭防止性、消臭性といった性能の向上効果に優れている。
 そのため、本発明の一態様のシートは、例えば、各種食品を包む包装紙や、密封された袋に各種食品と一緒に封入する防カビシート又は鮮度保持シート、生鮮食品や青果物の保存容器、防カビ性を有する壁紙、和紙畳、障子等として用いることができる。また、メソポーラスシリカの触媒機能を利用した反応場としても利用できる。
[Sheet characteristics and applications]
Unlike powder, the sheet of one aspect of the present invention can suppress contamination of other articles existing in the system, and can more effectively exhibit various performances of mesoporous silica as compared with powder. ..
In particular, in the sheet of one aspect of the present invention, particles (B) which are mesoporous silica are unevenly distributed on the surface layer side of the particle-containing layer, so that, for example, antifungal property, freshness retention property, putrefaction prevention property, and fermentation suppression. It has excellent performance improving effects such as malodor prevention and deodorant properties.
Therefore, the sheet of one aspect of the present invention is, for example, a wrapping paper for wrapping various foods, a mold-proof sheet or a freshness-preserving sheet to be sealed together with various foods in a sealed bag, a storage container for fresh foods and fruits and vegetables, and a mold-proof sheet. It can be used as a wallpaper, Japanese paper tatami mat, shoji screen, etc. It can also be used as a reaction field utilizing the catalytic function of mesoporous silica.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。各例中の部及び%は、特に断りのない限り、質量基準である。
 また、各物性値については、以下に示す方法で測定した値である。
(1)粒子の粒度分布
 レーザー回折式粒度分布計(マルバーンインストルメンツ社製、製品名「マスターサイザー3000」)を用いて、測定対象となるメソポーラスシリカの粒子の粒度分布を測定し、当該粒度分布における粒径が小さい方からの体積基準による積算率10%での粒径D10、体積基準による積算率50%での粒径D50、及び体積基準による積算率90%での粒径D90をそれぞれ算出した。
(2)透気抵抗度
 JIS P8117:2009の王研式試験法に準拠した方法で、体積100mLの空気が試験シートを通り抜けるのに要した時間(秒)を測定した。
(3)組成物のpH
 23℃、相対湿度50%の環境下、pHメータ(株式会社堀場アドバンスドテクノ製、製品名「LAQUAtwin pH-22B」)を用いて、pH4.01標準液とpH6.86標準液の2点校正を行った後、平面センサ全体を覆うように試料を滴下して測定した。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. Unless otherwise specified, parts and% in each example are based on mass.
Moreover, each physical property value is a value measured by the method shown below.
(1) Particle size distribution Using a laser diffraction type particle size distribution meter (manufactured by Malvern Instruments, product name "Mastersizer 3000"), the particle size distribution of the mesoporous silica particles to be measured is measured, and the particle size distribution is measured. particle size D 90 of the grain size D 10, the particle diameter D 50, and the integration of 90% by volume based on the cumulative rate of 50% by volume based on the cumulative 10% by volume based from the side the smaller particle size in Were calculated respectively.
(2) Air permeation resistance The time (seconds) required for 100 mL of air to pass through the test sheet was measured by a method based on the JIS P8117: 2009 Wang Lab test method.
(3) pH of the composition
In an environment of 23 ° C and 50% relative humidity, use a pH meter (manufactured by HORIBA Advanced Techno Co., Ltd., product name "LAQUAtwin pH-22B") to perform two-point calibration of pH 4.01 standard solution and pH 6.86 standard solution. After that, the sample was dropped and measured so as to cover the entire plane sensor.
製造例1(メソポーラスシリカの粒子の粒度分布の調整)
 市販の白金粒子を担持したメソポーラスシリカ(粒度分布の粒径の小さい方からの体積基準による積算率50%での粒径D50=2000~4000μm)を、ビーズミルを用いて粉砕し、メソポーラスシリカの粒子の粒径を調整した。なお、粒径の調整に際して、ビーズミルのビーズの直径、回転数、及び回転時間を適宜設定し、所定の粒度分布となるようにした。
 調整後のメソポーラスシリカの粒子のD10、D50、及びD90をそれぞれ算出した。
 以下の実施例及び比較例で用いる、メソポーラスシリカの粒子の粒度分布(D10、D50、D90)を表1に示す。なお、粒子(1)~(4)において、メソポーラスシリカに担持された白金粒子の平均粒子径=2.25nm、メソポーラスシリカの細孔=平均アスペクト比が5以上の筒状、〔白金粒子の平均粒子径/メソポーラスシリカの平均細孔直径〕<1である。
Production Example 1 (Adjustment of particle size distribution of mesoporous silica particles)
Commercially available mesoporous silica carrying platinum particles (particle size D 50 = 2000 to 4000 μm at a volume-based integration rate of 50% from the smaller particle size distribution) is pulverized using a bead mill to obtain mesoporous silica. The particle size of the particles was adjusted. When adjusting the particle size, the diameter, rotation speed, and rotation time of the beads of the bead mill were appropriately set so as to obtain a predetermined particle size distribution.
The adjusted mesoporous silica particles D 10 , D 50 , and D 90 were calculated, respectively.
Table 1 shows the particle size distributions (D 10 , D 50 , D 90 ) of mesoporous silica particles used in the following examples and comparative examples. In the particles (1) to (4), the average particle diameter of the platinum particles supported on the mesoporous silica = 2.25 nm, the pores of the mesoporous silica = the tubular shape having an average aspect ratio of 5 or more, [average of platinum particles]. Particle size / average pore diameter of mesoporous silica] <1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以下の実施例及び比較例で用いた表2に記載の高分子成分としては、「デンプン」、「PVA(ポリビニルアルコール)」及び「PVP(ポリビニルピロリドン)」を用いた。 As the polymer components shown in Table 2 used in the following Examples and Comparative Examples, "starch", "PVA (polyvinyl alcohol)" and "PVP (polyvinylpyrrolidone)" were used.
実施例1~7
 表2に示す種類の高分子成分100質量部に、粒子(1)、粒子(2)又は粒子(4)を表2に示す配合量で添加し、水で希釈して、pH=7であり、表2に示す固形分濃度の粒子含有層形成用組成物を調製した。
 そして、面積0.01mの上質紙(厚さ:48μm、透気抵抗度:30秒)の一方の表面上に、調製した前記粒子含有層形成用組成物を表2に示す塗布量となるように、実施例1ではアプリケーターを用いて、実施例2~7ではバーコーターを用いて塗布し、120℃で90秒間乾燥し、粒子含有層を有するシート(以下、「試験シート」ともいう)を作製して、後述の評価を行った。
 なお、作製した試験シートにおいて、1mあたりの粒子の含有量、乾燥後の粒子含有層の質量、試験シートの透気抵抗度、及び試験シートの粒子の含有量は、表2のとおりであった。
Examples 1-7
Particles (1), particles (2) or particles (4) were added to 100 parts by mass of the polymer components of the types shown in Table 2 in the blending amounts shown in Table 2, diluted with water, and pH = 7. , The composition for forming a particle-containing layer having a solid content concentration shown in Table 2 was prepared.
Then, the prepared composition for forming a particle-containing layer is applied on one surface of high-quality paper (thickness: 48 μm, air permeability resistance: 30 seconds) having an area of 0.01 m 2 as shown in Table 2. As described above, a sheet having a particle-containing layer (hereinafter, also referred to as “test sheet”) is coated with an applicator in Example 1 and a bar coater in Examples 2 to 7 and dried at 120 ° C. for 90 seconds. Was prepared and evaluated later.
In the prepared test sheet, the content of particles per 1 m 2 , the mass of the particle-containing layer after drying, the air permeability resistance of the test sheet, and the content of particles in the test sheet are as shown in Table 2. rice field.
比較例1
 高分子成分を配合せずに、粒子(1)に水を加えて、固形分濃度が2.0質量%の組成物を調製した。そして、実施例1と同じように、上質紙の一方の表面上に、当該組成物を、アプリケーター及びバーコーターを用いて塗布しようとしたが、どちらにおいても組成物中で粒子が沈降してしまい、塗布することができず、シートを作製できなかった。そのため、後述の評価を行わずに終了した。
Comparative Example 1
Water was added to the particles (1) without blending the polymer component to prepare a composition having a solid content concentration of 2.0% by mass. Then, as in Example 1, an attempt was made to apply the composition on one surface of the woodfree paper using an applicator and a bar coater, but in both cases, the particles settled in the composition. , Could not be applied and the sheet could not be prepared. Therefore, it was completed without performing the evaluation described later.
比較例2
 PVA100質量部に、粒子(3)を100質量部加えて、水で希釈して、pH=7であり、固形分濃度が2.1質量%の組成物を調製した。そして、実施例1と同じように、上質紙の一方の表面上に、当該組成物を、アプリケーターを用いて塗布し、粒子含有層を有するシート(試験シート)を作製し、後述の評価を行った。作製した試験シートにおいて、1mあたりの粒子の含有量、乾燥後の粒子含有層の質量、試験シートの透気抵抗度、及び試験シートの粒子の含有量は、表2のとおりであった。
Comparative Example 2
100 parts by mass of the particles (3) were added to 100 parts by mass of PVA and diluted with water to prepare a composition having a pH of 7 and a solid content concentration of 2.1% by mass. Then, as in Example 1, the composition is applied onto one surface of woodfree paper using an applicator to prepare a sheet (test sheet) having a particle-containing layer, and the evaluation described later is performed. rice field. In the prepared test sheet, the content of particles per 1 m 2 , the mass of the particle-containing layer after drying, the air permeability resistance of the test sheet, and the content of particles in the test sheet are as shown in Table 2.
比較例3
 メソポーラスシリカの粒子を配合しなかった以外は、実施例2と同様にして、デンプンからなる層を有するシート(試験シート)を作製し、後述の試験を行った。なお、乾燥後のデンプンからなる層の質量、及び試験シートの透気抵抗度は、表2のとおりであった。
Comparative Example 3
A sheet having a layer made of starch (test sheet) was prepared in the same manner as in Example 2 except that the particles of mesoporous silica were not blended, and the test described later was carried out. The mass of the layer made of starch after drying and the air permeability resistance of the test sheet are as shown in Table 2.
比較例4
 実施例1等で用いた上質紙をそのまま試験シートとして、後述の評価を行った。
Comparative Example 4
The high-quality paper used in Example 1 and the like was used as a test sheet as it was, and the evaluation described later was performed.
比較例5
 表1に記載の粒子(3)を、実施例1で作製した試験シートの粒子含有量と同じ配合量でそのまま使用して、後述の評価を行った。
Comparative Example 5
The particles (3) shown in Table 1 were used as they were in the same blending amount as the particle content of the test sheet prepared in Example 1, and the evaluation described later was performed.
比較例6
 何も使用しない場合を比較例6として、後述の評価を行った。
Comparative Example 6
The evaluation described later was performed with the case where nothing was used as Comparative Example 6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~7及び比較例2~3で作製した試験シートを用いて、及び、比較例4~6は上記記載の条件にて、以下の評価を行った。これらの結果を表3に示す。 Using the test sheets prepared in Examples 1 to 7 and Comparative Examples 2 to 3, and Comparative Examples 4 to 6 were evaluated as follows under the conditions described above. These results are shown in Table 3.
[パンの防カビ性の評価]
 食品添加物、保存料及び着色料が無添加の消費期限が2日間の食パンをポリエチレン袋に入れ、さらに、実施例1~7及び比較例2~3では試験シートを、比較例4では上質紙を、比較例5では粒子(B)を袋にいれて、袋の封をした。なお、比較例6では、前記食パンのみを袋に入れて、そのまま袋の封をした。そして、これらの食パンが入った袋を、23℃、相対湿度50%の環境下で静置した。2日後、3日後、5日後、6日後、60日後に、食パンの表面を目視で観察し、発生したカビの個数を数えた。なお、カビの発生が見られたサンプルについては評価を終了した。
[Evaluation of antifungal properties of bread]
Bread with no food additives, preservatives and colorings and an expiration date of 2 days is placed in a polyethylene bag, and test sheets are used in Examples 1 to 7 and Comparative Examples 2 to 3, and woodfree paper is used in Comparative Example 4. In Comparative Example 5, the particles (B) were put in a bag and the bag was sealed. In Comparative Example 6, only the bread was put in a bag and the bag was sealed as it was. Then, the bag containing these breads was allowed to stand in an environment of 23 ° C. and a relative humidity of 50%. After 2, 3, 5, 6, and 60 days, the surface of the bread was visually observed and the number of molds generated was counted. The evaluation of the sample in which mold was observed was completed.
[小松菜の鮮度保持性の評価]
 新鮮な小松菜をポリエチレン袋に入れ、実施例1~7及び比較例2~3では試験シートを、比較例4では上質紙を、比較例5では粒子(B)を、そして、比較例6では何も入れずに、それぞれ袋の封をし、23℃、相対湿度50%の環境下で静置した。14日後の小松菜の色を目視で観察し、以下の基準により、小松菜の鮮度保持性を評価し、A及びBを合格とした。
・A:全ての茎や葉が青々しく保水性の高い状態であった。
・B:一部の葉はやや茶色になっていたが茎は青々しく保水性の高い状態であった。
・C:全ての茎や葉が茶色になっていたが形状は維持されていた。
・D:全ての茎や葉が茶色になり、形状が維持されず、液状化が見られた。
[Evaluation of freshness retention of Japanese mustard spinach]
Put fresh Japanese mustard spinach in a polyethylene bag, test sheets in Examples 1 to 7, Comparative Examples 2 to 3, woodfree paper in Comparative Example 4, particles (B) in Comparative Example 5, and what in Comparative Example 6. The bags were sealed and allowed to stand in an environment of 23 ° C. and 50% relative humidity. The color of Japanese mustard spinach after 14 days was visually observed, and the freshness retention of Japanese mustard spinach was evaluated according to the following criteria, and A and B were accepted.
-A: All stems and leaves were lush and highly water-retaining.
-B: Some leaves were slightly brown, but the stems were lush and highly water-retaining.
-C: All stems and leaves were brown, but the shape was maintained.
-D: All stems and leaves turned brown, the shape was not maintained, and liquefaction was observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~7で作製したシート(1)~(7)は、防カビ性及び鮮度保持性に優れており、メソポーラスシリカが有する各種性能が効果的に発現している結果となった。
 一方で、比較例2で作製したシート(8)及び比較例5の粒子(3)をそのまま用いた場合は、粒子の含有量は多いにも関わらず、粒子の含有量が少ない実施例3のシート(3)と防カビ性の評価は同程度であり、鮮度保持性は劣る結果となり、メソポーラスシリカが有する各種性能が十分には発現されていないことが分かる。また、比較例3及び比較例4においては、防カビ性や鮮度保持性といった効果は特段認められない結果であった。
The sheets (1) to (7) produced in Examples 1 to 7 were excellent in antifungal properties and freshness retention, and the results showed that various performances of mesoporous silica were effectively exhibited.
On the other hand, when the sheet (8) produced in Comparative Example 2 and the particles (3) of Comparative Example 5 are used as they are, the particle content of Example 3 is low even though the particle content is high. The evaluation of the antifungal property is about the same as that of the sheet (3), and the result is that the freshness retention is inferior, and it can be seen that the various performances of the mesoporous silica are not sufficiently expressed. Further, in Comparative Example 3 and Comparative Example 4, the effects such as antifungal property and freshness retention were not particularly recognized.
1a、1b、1c、1d  シート
  11  基材
  12、12a、12b  粒子含有層
  13、13a、13b  保護フィルム
1a, 1b, 1c, 1d sheet 11 Base material 12, 12a, 12b Particle-containing layer 13, 13a, 13b Protective film

Claims (15)

  1.  基材及び粒子含有層を有するシートであって、
     前記粒子含有層が、高分子成分(A)と、白金族原子を含む物質を担持したメソポーラスシリカである粒子(B)とを含み、
     粒子(B)の粒度分布における体積基準による積算値50%での粒径D50が70μm以下である、シート。
    A sheet having a base material and a particle-containing layer.
    The particle-containing layer contains a polymer component (A) and particles (B) which are mesoporous silica carrying a substance containing a platinum group atom.
    A sheet in which the particle size D 50 at an integrated value of 50% based on the volume in the particle size distribution of the particles (B) is 70 μm or less.
  2.  粒子(B)の粒度分布における体積基準による積算値90%での粒径D90と、前記粒径D50との比〔D90/D50〕が、60.0以下である、請求項1に記載のシート。 The particle size D 90 of at integrated value of 90% by volume basis in the particle size distribution of the particles (B), the ratio [D 90 / D 50] of the particle diameter D 50, is 60.0 or less, claim 1 The sheet described in.
  3.  粒子(B)の粒度分布における体積基準による積算値10%での粒径D10と、前記粒径D50との比〔D10/D50〕が、0.15以上である、請求項1又は2に記載のシート。 The particle size D 10 in the integrated value 10% by volume basis in the particle size distribution of the particles (B), wherein the ratio of the particle diameter D 50 [D 10 / D 50], is 0.15 or more, according to claim 1 Or the sheet according to 2.
  4.  粒子(B)の粒度分布における体積基準による積算値90%の粒径D90が、300μm以下である、請求項1~3のいずれか一項に記載のシート。 The sheet according to any one of claims 1 to 3, wherein the particle size D 90 having an integrated value of 90% based on the volume in the particle size distribution of the particles (B) is 300 μm or less.
  5.  粒子(B)の粒度分布における体積基準による積算値10%の粒径D10が0.010μm以上である、請求項1~4のいずれか一項に記載のシート。 The sheet according to any one of claims 1 to 4, wherein the particle size D 10 having an integrated value of 10% based on the volume in the particle size distribution of the particles (B) is 0.010 μm or more.
  6.  前記基材の厚さが、1~1000μmである、請求項1~5のいずれか一項に記載のシート。 The sheet according to any one of claims 1 to 5, wherein the thickness of the base material is 1 to 1000 μm.
  7.  前記シートの透気抵抗度が、0秒超である、請求項1~6のいずれか一項に記載のシート。 The sheet according to any one of claims 1 to 6, wherein the air permeability resistance of the sheet is more than 0 seconds.
  8.  前記基材が、紙基材を少なくとも含む、請求項1~7のいずれか一項に記載のシート。 The sheet according to any one of claims 1 to 7, wherein the base material contains at least a paper base material.
  9.  高分子成分(A)が、水酸基含有高分子(A1)を含む、請求項1~8のいずれか一項に記載のシート。 The sheet according to any one of claims 1 to 8, wherein the polymer component (A) contains a hydroxyl group-containing polymer (A1).
  10.  水酸基含有高分子(A1)が、ポリビニルアルコール系樹脂、フェノール系樹脂及び多糖類から選ばれる1種以上を含む、請求項9に記載のシート。 The sheet according to claim 9, wherein the hydroxyl group-containing polymer (A1) contains at least one selected from polyvinyl alcohol-based resin, phenol-based resin, and polysaccharide.
  11.  前記多糖類が、デンプン及びセルロースの少なくとも一方を含む、請求項10に記載のシート。 The sheet according to claim 10, wherein the polysaccharide contains at least one of starch and cellulose.
  12.  粒子(B)の含有量が、前記粒子含有層に含まれる高分子成分(A)の全量100質量部に対して、20~1000質量部である、請求項1~11のいずれか一項に記載のシート。 According to any one of claims 1 to 11, the content of the particles (B) is 20 to 1000 parts by mass with respect to 100 parts by mass of the total amount of the polymer component (A) contained in the particle-containing layer. The sheet of description.
  13.  前記シートが有する、それぞれの粒子含有層の1m当たりの粒子(B)の含有量が、0.10~20g/mである、請求項1~12のいずれか一項に記載のシート。 The sheet according to any one of claims 1 to 12, wherein the content of the particles (B) per 1 m 2 of each particle-containing layer contained in the sheet is 0.10 to 20 g / m 2.
  14.  高分子成分(A)と、白金族元素を含む物質を担持したメソポーラスシリカである粒子(B)とを含み、粒子(B)の粒度分布における体積基準による積算値50%での粒径D50が70μm以下である、粒子含有層を形成するために用いられる、粒子含有層形成用組成物。 Particle size D 50 at a volume-based integrated value of 50% in the particle size distribution of the particles (B), which contains the polymer component (A) and the particles (B) which are mesoporous silica carrying a substance containing a platinum group element. A composition for forming a particle-containing layer used for forming a particle-containing layer having a particle size of 70 μm or less.
  15.  下記工程(1)~(2)を有する、シートの製造方法。
    ・工程(1):高分子成分(A)と、白金族元素を含む物質を担持したメソポーラスシリカであり、粒度分布における体積基準による積算値50%での粒径D50が70μm以下である粒子(B)とを含む粒子含有層形成用組成物を調製する工程。
    ・工程(2):基材の少なくとも一方の表面に、前記粒子含有層形成用組成物を用いて粒子含有層を形成する工程。
    A method for manufacturing a sheet, which comprises the following steps (1) and (2).
    -Step (1): Mesoporous silica carrying a substance containing a polymer component (A) and a platinum group element, and having a particle size D 50 of 70 μm or less at an integrated value of 50% based on a volume in the particle size distribution. A step of preparing a composition for forming a particle-containing layer containing (B).
    Step (2): A step of forming a particle-containing layer on at least one surface of the base material by using the composition for forming a particle-containing layer.
PCT/JP2021/003150 2020-01-30 2021-01-29 Sheet and method for producing sheet WO2021153713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020013603 2020-01-30
JP2020-013603 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153713A1 true WO2021153713A1 (en) 2021-08-05

Family

ID=77079453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003150 WO2021153713A1 (en) 2020-01-30 2021-01-29 Sheet and method for producing sheet

Country Status (1)

Country Link
WO (1) WO2021153713A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110919A (en) * 2009-11-30 2011-06-09 Jgc Catalysts & Chemicals Ltd Base material with transparent coated film, and application liquid for forming transparent coated film
JP2011115984A (en) * 2009-12-01 2011-06-16 Dainippon Printing Co Ltd Oxygen absorbent laminated film and packaging container
WO2019065504A1 (en) * 2017-09-28 2019-04-04 株式会社フルヤ金属 Decomposing material and decomposition method using same
JP2019085336A (en) * 2017-11-01 2019-06-06 株式会社ファンケル Antibacterial agent
JP2019092419A (en) * 2017-11-21 2019-06-20 株式会社Nbcメッシュテック Fruit aging control method
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110919A (en) * 2009-11-30 2011-06-09 Jgc Catalysts & Chemicals Ltd Base material with transparent coated film, and application liquid for forming transparent coated film
JP2011115984A (en) * 2009-12-01 2011-06-16 Dainippon Printing Co Ltd Oxygen absorbent laminated film and packaging container
WO2019065504A1 (en) * 2017-09-28 2019-04-04 株式会社フルヤ金属 Decomposing material and decomposition method using same
JP2019085336A (en) * 2017-11-01 2019-06-06 株式会社ファンケル Antibacterial agent
JP2019092419A (en) * 2017-11-21 2019-06-20 株式会社Nbcメッシュテック Fruit aging control method
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR20090091294A (en) Humidity-regulating sheet
RU2297956C2 (en) Multilayer packing material, method of its manufacture, packing container made of packing material
SE532388C2 (en) Packaging laminates and containers with two separate gas barrier layers and method for their preparation
JP2018518588A (en) the film
WO2010074341A1 (en) Cellulose fiber suspension and manufacturing method therefor, and film-like formed body and manufacturing method therefor
TW201211132A (en) Cellulosic barrier composition
TW402628B (en) Coating composition for recording material and process for producing recording material
EP3569644B1 (en) Packaging material
EP3797136B1 (en) Aqueous ethylene-vinyl alcohol copolymer dispersion and oxygen barrier multilayer film coated with said dispersion
TWI783050B (en) Decomposition materials and methods of decomposing them
WO2021153713A1 (en) Sheet and method for producing sheet
WO2021153714A1 (en) Sheet member and method for manufacturing sheet
JP2013226794A (en) Laminated sheet, and foamed laminated sheet
JPH0733909A (en) Gas barrier resin composition and film
WO2021153712A1 (en) Antifungal sheet, method of using antifungal sheet, and method of manufacturing antifungal sheet
KR20060091806A (en) The water tissue and manufacture method of water tissue use of metallic nano particles that have anti-fungi and smell exclusion function
JP2022116419A (en) Sheet
CN109162146A (en) A kind of corrugated paper with durable antibiotic fungicidal properties
JP7219539B2 (en) Antifungal porous material, antifungal processed product containing the same, and antifungal method using the same
US20020192131A1 (en) Device for protecting plants against post-harvest decay and method for making same
WO2006138597A2 (en) Barrier film with enhanced adhesive properties
CN111683532A (en) Antibacterial porous material, antibacterial processed product containing same, and antibacterial method using same
JPWO2018179864A1 (en) Gas adsorbing material, manufacturing method thereof, and packaging material
CN113321834B (en) Intelligent humidity-control barrier composite film and preparation method and application thereof
JP6984231B2 (en) Manufacturing method of hygroscopic film, packaging bag and hygroscopic layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21748037

Country of ref document: EP

Kind code of ref document: A1