JP3503262B2 - Deodorizing filter and method for producing deodorizing filter - Google Patents

Deodorizing filter and method for producing deodorizing filter

Info

Publication number
JP3503262B2
JP3503262B2 JP11215395A JP11215395A JP3503262B2 JP 3503262 B2 JP3503262 B2 JP 3503262B2 JP 11215395 A JP11215395 A JP 11215395A JP 11215395 A JP11215395 A JP 11215395A JP 3503262 B2 JP3503262 B2 JP 3503262B2
Authority
JP
Japan
Prior art keywords
deodorizing
filter
inorganic porous
binder
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11215395A
Other languages
Japanese (ja)
Other versions
JPH08299720A (en
Inventor
久 森
勝也 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP11215395A priority Critical patent/JP3503262B2/en
Publication of JPH08299720A publication Critical patent/JPH08299720A/en
Application granted granted Critical
Publication of JP3503262B2 publication Critical patent/JP3503262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒子状脱臭剤と無機多孔
質系粒子体に脱臭性能を有する触媒物質を担持加工させ
たものをフィルター材に併用付着させることにより相互
の相乗効果により広範な臭気に対し脱臭性能を付加する
ことが可能な為空気清器やエアコン、冷蔵庫、トイレの
脱臭器等の脱臭フィルターとし広範な適用が可能であ
る。
BACKGROUND OF THE INVENTION The present invention has a wide range of synergistic effects by mutually adhering a particulate deodorant and an inorganic porous particle on which a catalytic substance having a deodorizing performance is processed to be attached to a filter material. Since it is possible to add deodorizing performance to odors, it can be widely applied as a deodorizing filter for air purifiers, air conditioners, refrigerators, toilet deodorizers, etc.

【0002】[0002]

【従来の技術】従来の技術における脱臭性能を有する触
媒物質の使用法は無機物の表面にコーティング処理しハ
ニカム状に成形加工したものを直接脱臭フィルター材と
して使用した。しかし、常温での脱臭性能を考えた場合
これらの触媒物質はその化学的脱臭作用に依存していた
為、脱臭し得る臭気としては硫黄系や窒素系化合物など
極めて限られたに範囲に限定されていた。いわゆる空気
清浄器などの常温での脱臭フィルター材としては触媒物
質単独での使用は酸性ガス、塩基性ガスなど化学的に容
易に脱臭出来る臭気に限定されていた為、室内の空気清
浄を目的とした用途においてはタバコの臭気などさまざ
まな臭気が複合臭の状態で存在している為実質的にはほ
とんど効果がなかった。
2. Description of the Related Art In the prior art, the catalyst material having a deodorizing performance was used by directly coating a surface of an inorganic material and forming it into a honeycomb shape, which was directly used as a deodorizing filter material. However, when considering the deodorizing performance at room temperature, these catalytic substances depended on their chemical deodorizing action, so the odors that can be deodorized are limited to a very limited range such as sulfur-based and nitrogen-based compounds. Was there. As a deodorizing filter material at room temperature such as so-called air purifiers, the use of the catalytic substance alone was limited to the odors that can be easily deodorized chemically such as acidic gas and basic gas, so the purpose was to purify the indoor air. In the above application, various odors such as cigarette odors exist in a complex odor state, and thus there is practically no effect.

【0003】化学的脱臭作用と物理的脱臭作用を併用し
た従来の技術における脱臭フィルター材としては、これ
ら2タイプの脱臭フィルター材を2層積層使用する方法
が考えられていたが、必然的に脱臭フィルター材の厚み
が厚くなり、かつ通気抵抗が高くなる傾向があるためエ
アコンなど薄型でかつ圧力損失を低く抑える必要のある
用途については適用することが出来なかった。また、活
性炭などの物理的脱臭作用による多孔質の吸着剤に化学
的脱臭作用を有する薬剤を直接添着処理方法も従来の技
術の範疇で有り得たがこの方法では多孔質の吸着剤の有
する物理的脱臭性能が薬剤を直接添着処理することによ
り低下するため本来の物理的脱臭性能を十分発揮するこ
とが出来なかった。更に、当該方法は使用中に薬剤が溶
け出したりして安全上問題があった。
As a deodorizing filter material in the prior art that combines a chemical deodorizing action and a physical deodorizing action, a method of stacking two layers of these two types of deodorizing filter substances has been considered, but inevitably deodorizing Since the thickness of the filter material tends to become thick and the ventilation resistance tends to become high, it cannot be applied to applications such as air conditioners that are thin and require low pressure loss. Further, a method of directly impregnating a chemical adsorbent having a chemical deodorizing effect on a porous adsorbent by a physical deodorizing effect such as activated carbon could be within the scope of the conventional technique, but in this method, a physical adsorbent having a porous adsorbent is used. Since the deodorizing performance is lowered by directly impregnating the chemicals, the original physical deodorizing performance could not be sufficiently exhibited. Further, this method has a safety problem because the drug is dissolved during use.

【0004】[0004]

【発明が解決しようとする課題】本発明は、この様な従
来の問題点に着目してなされたものであり、鋭意検討を
行った結果これらの問題点を解決すべく、エアコンなど
薄型、低圧力損を要求させる用途においても広範な臭気
に対して脱臭性能を付加させるべく触媒物質等の化学的
脱臭剤と活性炭などの物理的脱臭剤を一体加工した請求
項1〜4の記載の脱臭フィルター材を提供する為下記課
題について解決の手法を見い出した。 脱臭フィルタ−加工時及び取り扱い時において触媒
物質が容易に溶出せぬ様触媒物質を担持するための最適
な無機多孔質系粒子体の選定。 触媒物質等の化学的脱臭剤と活性炭などの物理的脱
臭剤の最適使用比率とその製品化の方法。
The present invention has been made by paying attention to such conventional problems, and as a result of intensive studies, in order to solve these problems, air conditioners such as air conditioners having a low profile and low The deodorizing filter according to any one of claims 1 to 4, wherein a chemical deodorizing agent such as a catalyst substance and a physical deodorizing agent such as activated carbon are integrally processed to add deodorizing performance to a wide range of odors even in applications requiring pressure loss. In order to provide wood, we have found a solution to the following problems. Deodorizing filter-Selection of the most suitable inorganic porous particles for supporting the catalytic substance so that the catalytic substance does not easily elute during processing and handling. Optimal use ratio of chemical deodorants such as catalyst substances and physical deodorants such as activated carbon and the method of commercializing them.

【0005】[0005]

【課題を解決するための手段】本発明の手段として、
ゼオライト、アルミナ、無機系化学脱臭剤等の無機多
孔質系粒子体10〜300メッシュに、脱臭性能を有す
る触媒物質を100:1〜100:10(重量部)の割
合で水中に分散させ、十分浸漬させた後、遠心分離、ま
たは減圧吸引濾過法にて脱水、洗浄を繰返し触媒物質が
容易に水中に溶け出すことのないように処理を施す。
これらの処理によって得られた触媒物質担持無機多孔
質系粒子体と粒子状脱臭剤をフィルター母材に併用付着
させる為の具体策として請求項11の脱臭フィルタ
ーの製造方法を考案した。
As means of the present invention,
A catalyst substance having deodorizing performance is dispersed in water at a ratio of 100: 1 to 100: 10 (parts by weight) in 10 to 300 mesh of inorganic porous particles such as zeolite, alumina, and an inorganic chemical deodorant, After soaking, centrifugation or vacuum suction filtration is repeated for dehydration and washing to treat the catalyst substance so that it is not easily dissolved in water.
The method for producing a deodorizing filter according to claims 5 to 11 was devised as a specific measure for simultaneously adhering the catalyst substance-supporting inorganic porous particles and the particulate deodorizing agent obtained by these treatments to the filter base material.

【0006】即ち、請求項の脱臭フィルターの製造方
法はバインダー中に乾燥残量比でバインダー:触媒物質
担持無機多孔質系粒子体が、10:1〜1:10と目的
に応じ適宜調整し添加、分散させた触媒物質担持無機多
孔質系粒子体含有バインダーを作成しフィルター母材に
含浸、乾燥加工を施した後、当該バインダーのタック力
を利用し粒子状脱臭剤を後付着せしめる方法である。触
媒物質担持無機多孔質系粒子体含有バインダーを作成す
るにあたっては触媒物質担持無機系粒子体がバインダー
樹脂分に対して(1:10以上)過剰だと最終製品の段
階で粉落ちが多くなり、商品化に際し不具合が生ずるた
め好ましくなく、又少な過ぎる(10:1以下)と目的
とする脱臭性能が得られない為この点を留意し設計する
必要がある。従って請求項の手法による最適配合比率
としてはバインダー樹脂:触媒物質担持無機多孔質系粒
子体の配合比率を乾燥重量対比で10:2.5とするの
が最適である事が実験の結果明らかになった。この結
果、即ち、当該脱臭フィルターの脱臭性能及び活性炭の
粉落ち性に対する実施例を表5に示す(実施例5〜7、
比較例2)。またこの時のフィルターの状態を模写図と
して図3に示す。
That is, in the method for producing a deodorizing filter according to claim 5 , the binder: catalyst substance-supporting inorganic porous particle body is 10: 1 to 1:10 in a binder in a dry residual amount ratio, and is appropriately adjusted according to the purpose. By adding and dispersing a catalyst substance-supporting inorganic porous particle-containing binder, impregnating the filter base material, and subjecting it to a drying process, a method of post-adhering the particulate deodorant using the tack force of the binder is there. When preparing a binder containing a catalyst substance-supporting inorganic porous particle body, if the catalyst substance-supporting inorganic particle body is in excess of the binder resin content (1:10 or more), powder will fall off much in the final product stage, It is not preferable because a problem occurs during commercialization, and if it is too small (10: 1 or less), the desired deodorizing performance cannot be obtained, so it is necessary to pay attention to this point when designing. Therefore, as the optimum blending ratio according to the method of claim 5 , it is clear that the optimum blending ratio of binder resin: catalyst substance-supporting inorganic porous particle body is 10: 2.5 in terms of dry weight. Became. The results, that is, Examples for the deodorizing performance of the deodorizing filter and the powder falling property of the activated carbon are shown in Table 5 (Examples 5 to 7,
Comparative example 2). The state of the filter at this time is shown in FIG. 3 as a copy diagram.

【0007】本発明は、その配合割合から察するに触媒
物質担持無機多孔質系粒子体が、バインダー樹脂分に対
して少な過ぎる為、脱臭性能への影響が懸念されるが、
表5の結果の様に活性炭等の粒子状脱臭剤を併用付着せ
しめることにより、その相乗効果により活性炭等の脱臭
剤では脱臭レベルの低い窒素系化合物や硫黄系化合物に
対して脱臭性能を向上させる事が出来る。
[0007] In the present invention, the amount of the catalyst substance-supporting inorganic porous particles is too small relative to the binder resin content in view of the blending ratio, so there is a concern that the deodorizing performance will be affected.
As shown in the results of Table 5, by attaching the particulate deodorant such as activated carbon together, the synergistic effect improves the deodorizing performance for nitrogen compounds and sulfur compounds having a low deodorizing level with the deodorizing agent such as activated carbon. I can do things.

【0008】触媒物質を担持させる無機系多孔質系粒子
体としては、ゼオライト、アルミナの様に多孔質構造を
有する吸着剤を母材として用いることにより、比較的多
くの触媒物質を担持させることが出来、しかも触媒物質
が溶出しにくいといった特徴を有する為、製造加工時及
び製品化後の取り扱いにおいて安全性に優れている。
As an inorganic porous particle body for supporting a catalyst substance, a relatively large amount of catalyst substance can be supported by using an adsorbent having a porous structure such as zeolite or alumina as a base material. Since it can be produced and the catalyst substance is less likely to be eluted, it is excellent in safety during the manufacturing process and handling after commercialization.

【0009】請求項記載の脱臭フィルターの製造方法
は、あらかじめフイルター母材にバインダーを含浸、乾
燥加工を施した後、任意の割合に混合した触媒物質担持
無機多孔質系粒子体と粒子状脱臭剤を後付着にて併用付
着せしめる方法であり、表6の実験結果から判かる様
に、混合の割合を任意の割合に調整する事により目的に
応じた脱臭フィルターを提供できる特徴を有する。該脱
臭フィルターの触媒物質担持無機多孔質系粒子体と粒子
状脱臭剤との配合割合に対する脱臭性能についての実施
例を表6に示す(実施例8〜10、比較例3)。また図
4に、この時のフィルターへの触媒物質担持無機多孔質
系粒子体及び粒子状脱臭剤の付着状態の模写図を示す。
According to a sixth aspect of the present invention, there is provided a method for producing a deodorizing filter, wherein a filter base material is impregnated with a binder in advance, dried, and then mixed at an arbitrary ratio to form a catalyst substance-supporting inorganic porous particle body and a particulate deodorant. This is a method in which the agents are attached together by post-adhesion, and as can be seen from the experimental results in Table 6, it has a feature that a deodorizing filter suitable for the purpose can be provided by adjusting the mixing ratio to an arbitrary ratio. Examples of the deodorizing performance of the deodorizing filter with respect to the compounding ratio of the catalyst substance-supporting inorganic porous particle and the particulate deodorizing agent are shown in Table 6 (Examples 8 to 10 and Comparative Example 3). Further, FIG. 4 shows a copy of the state in which the catalyst substance-supporting inorganic porous particles and the particulate deodorant are attached to the filter at this time.

【0010】請求項記載の脱臭フィルターの製造方法
は、触媒物質担持無機多孔質系粒子体と粒子状脱臭剤の
混合品を任意の水に分散させた後ラテックスと混練しス
ラリーを作成する。その後フィルター母材を当該スラリ
ーに含浸し乾燥処理する。この様にして得られた脱臭フ
ィルターは請求項5,6記載の製造方法により得られた
脱臭フィルターに比較し脱臭性能は劣るものの請求項
記載の製造方法により得られた脱臭フィルターと同様、
触媒物質担持無機多孔質系粒子体と粒子状脱臭剤の混合
の割合を任意の割合に調整する事により目的に応じた低
圧力損失の脱臭フィルターを提供する事が出来る。該脱
臭フィルターの脱臭性能に対する実施例を表7に示す
(実施例11〜13、比較例4)。また、この時のフィ
ルターへの両粒子体の付着状態の模写図を図5に示す。
In the method for producing a deodorizing filter according to a seventh aspect, a mixture of a catalyst substance-supporting inorganic porous particle and a particulate deodorizing agent is dispersed in arbitrary water and then kneaded with a latex to form a slurry. After that, the filter base material is impregnated in the slurry and dried. The deodorizing filter thus obtained is inferior in deodorizing performance to the deodorizing filter obtained by the manufacturing method according to claims 5 and 6.
Like the deodorizing filter obtained by the manufacturing method described,
By adjusting the mixing ratio of the catalyst substance-supporting inorganic porous particles and the particulate deodorizing agent to an arbitrary ratio, it is possible to provide a deodorizing filter with a low pressure loss according to the purpose. Examples of the deodorizing performance of the deodorizing filter are shown in Table 7 (Examples 11 to 13 and Comparative Example 4). Further, FIG. 5 shows a copy of the state in which both particles are attached to the filter at this time.

【0011】[0011]

【作用】多孔質を有する無機多孔質系粒子体の孔内及び
表面に付着した触媒物質を用いていることにより、製造
加工時及び製品化後の取り扱いにおいて安全性に優れて
いる為、加工性の良い三次元網状化構造を有するポリウ
レタンフォーム等の有機系のフィルター母材を用いるこ
とが可能である。また、触媒物質担持無機多孔質系粒子
体と粒子状脱臭剤を併用付着させる事により相乗的脱臭
効果を得ることが出来る。特に、三次元網状化構造を有
するポリウレタンフォームをフィルターの母材として用
いることにより、比較的低圧力損失で、且つ多次にわた
り臭気と接触することが可能となる為、脱臭効率を最大
限に発揮することが出来る。請求項3〜4により得られ
た脱臭フィルターは目的に応じた脱臭フィルターを設計
する事が可能である。
[Function] By using the catalyst substance adhered to the inside and surface of the pores of the porous inorganic porous material, it is excellent in safety during manufacturing and handling after commercialization. It is possible to use an organic filter base material such as polyurethane foam having a good three-dimensional network structure. In addition, a synergistic deodorizing effect can be obtained by simultaneously attaching the catalyst substance-supporting inorganic porous particle and the particulate deodorant. In particular, by using a polyurethane foam with a three-dimensional reticulated structure as the base material of the filter, it is possible to bring out the deodorizing efficiency to the maximum because it is possible to contact with odors with a relatively low pressure loss and multiple orders. You can do it. The deodorizing filter obtained according to claims 3 to 4 can be designed as a deodorizing filter according to the purpose.

【0012】[0012]

【実施例】以下、更に具体的に本発明を説明する。The present invention will be described in more detail below.

【0013】[実施例1〜4・比較例1]実施例1〜4
及び比較例1は、本発明の請求項6に基づく無機多孔質
系粒子体を、脱臭性能を有する触媒物質に担持加工する
にあたり最適な無機多孔質系粒子体を選定する為の実験
に関するものであり、無機系粒子体としては平均粒径
4.7μmの天然ゼオライト(日東粉化工業(株)製C
SP−600)を用い、触媒としては比較的安価でかつ
良好な酸化触媒作用を示す市販の酸化マンガン系触媒ス
ラリー(固形分43%)[カルト(株)製]を用いた。
[Examples 1 to 4 and Comparative Example 1] Examples 1 to 4
Also, Comparative Example 1 relates to an experiment for selecting an optimum inorganic porous particle body for supporting and processing the inorganic porous particle body according to claim 6 of the present invention on a catalyst substance having deodorizing performance. As an inorganic particle, a natural zeolite having an average particle size of 4.7 μm (C manufactured by Nitto Koka Kogyo Co., Ltd.)
SP-600) was used as the catalyst, and a commercially available manganese oxide-based catalyst slurry (solid content 43%) [manufactured by Cult Co., Ltd.] which is relatively inexpensive and exhibits a good oxidation catalytic action was used.

【0014】尚、脱臭性能を有する触媒としては、酸化
触媒、還元触媒、光励起触媒等の各触媒を使用すること
ができる。
As the catalyst having deodorizing performance, various catalysts such as an oxidation catalyst, a reduction catalyst and a photoexcited catalyst can be used.

【0015】また、実施例1〜4迄の無機系粒子体に触
媒を担持させる方法としては浸漬法によった。まず、全
体量を100とした配合系の内、水を64.6wt%、
酸化マンガン系スラリーを3wt%、泥しょう安定剤を
0.1wt%、天然ゼオライトを32.3wt%加え撹
拌させながら1hr. 以上保持する。その後1500r
pm×5min程度の低速、短時間で遠心分離し上液を
廃棄、更に水を加えながら再度撹拌した後、同様に遠心
分離を行ない上液がほぼ透明になる迄この作業を繰り返
す。その後沈降物のうちチョコレート色をした上層のみ
をかきとり下層のグレー色の酸化マンガン系触媒担持ゼ
オライトを乾燥し粉砕する。以上の処理によって得られ
た酸化マンガン系触媒担持ゼオライトは水へ再分散させ
ても酸化マンガン系触媒が容易に流出する事がない為、
安全に製造加工出来るという利点を有する。なお、比較
例1は、上記実施例のうち、最も酸化マンガン系触媒の
担持量の多い実施例1について、酸化マンガン系触媒を
担持する前の状態を示した。
As a method for supporting the catalyst on the inorganic particles of Examples 1 to 4, the dipping method was used. First, 64.6 wt% of water in the compounding system with the total amount as 100,
Add 3 wt% of manganese oxide-based slurry, 0.1 wt% of sludge stabilizer, and 32.3 wt% of natural zeolite and hold for 1 hr. Or more while stirring. Then 1500r
Centrifuge at a low speed of about pm × 5 min for a short time, discard the upper solution, stir again while adding water, and repeat centrifugation until the upper solution becomes almost transparent. After that, only the chocolate-colored upper layer of the sediment is scraped off, and the lower layer of gray-colored manganese oxide catalyst-supporting zeolite is dried and pulverized. The manganese oxide-based catalyst-supported zeolite obtained by the above treatment does not easily flow out of the manganese oxide-based catalyst even when redispersed in water,
It has the advantage that it can be manufactured and processed safely. Comparative Example 1 shows the state before supporting the manganese oxide-based catalyst in Example 1 in which the supported amount of the manganese oxide-based catalyst is the largest among the above Examples.

【0016】担持体として用いる無機多孔質系粒子体
は、その平均粒子が2500〜1.0μmである以外は
特に限定されないが、当実施例において、担持体として
天然ゼオライトを用いた理由としては実施例1〜4に示
す様に、その他各種無機多孔系粒子体における前記と
同様の手法によって得られた酸化マンガン系触媒担持品
の蛍光X線での担持量の測定の結果、表1より他の各種
無機多孔質系粒子体よりも担持量が多くかつ製造加工製
もよく安価であるという理由からである。また、表2〜
4における常温及び200℃加熱時の脱臭性能の確認評
価においても実施例1記載のタイプはベンゼン、トリメ
チルアミン、メチルメルカプタンの特徴ある3臭気に対
して、良好な脱臭性能及び触媒性能を示した。触媒性能
の評価は200℃加熱時の脱臭性能と二酸化炭素の発生
濃度より評価した。
The inorganic porous particle body used as the carrier is not particularly limited except that the average particle is 2500 to 1.0 μm, but in the present example, the reason for using natural zeolite as the carrier is as shown in examples 1 to 4, other various inorganic porous system results in loading of measurement in the similar X-ray fluorescence of the resulting manganese oxide-based catalyst carrying article by a method in a particle body, other than Table 1 This is because the amount of the particles is larger than those of various inorganic porous particles, and the manufacturing process is good and the cost is low. Also, Table 2
In the confirmation evaluation of the deodorizing performance at room temperature and at 200 ° C. in Example 4, the type described in Example 1 also showed good deodorizing performance and catalytic performance against the three characteristic odors of benzene, trimethylamine and methyl mercaptan. The catalyst performance was evaluated based on the deodorizing performance at the time of heating at 200 ° C. and the carbon dioxide generation concentration.

【0017】実験方法としては、図1の評価試験機を用
い通気法にて検知管法により、ベンゼン、メチルメルカ
プタン、トリメチルアミンの3臭気それぞれの常温及び
200℃時の脱臭性能と触媒反応の指標として二酸化炭
素発生量をを測定した。標準ガスの発生方法は(株)ガ
ステック製のパーミカルパーミエーター(PB−1B)
用い、ベンゼン100ppm、トリメチルアミン10p
pm、メチルメルカプタン12ppmに調整した。また
この時のキャリアガスとしては酸素20%、窒素80%
の混合ガスを用い、発生ガス流量を1L/min に調整し
た。試料は全て0.5g とし内径30φ、長さ220mm
のガラス製カラムのほぼ中央部にセットした。カラム内
は吸着作用のないグラスウールを詰め試料の上下には吸
着作用のないガラス製の濾紙をセットし試料が上下に移
動することのない様に配慮した。またガラス製のカラム
の上下には耐熱栓をセットしガラス製の3方コックを取
り付けた。
As an experimental method, the evaluation tube shown in FIG. 1 was used as an indicator of deodorizing performance and catalytic reaction at room temperature and 200 ° C. for each of the three odors of benzene, methyl mercaptan, and trimethylamine by the detection tube method by aeration method. The amount of carbon dioxide generated was measured. The standard gas generation method is Gas Tech Co., Ltd. permical permeator (PB-1B).
Used, benzene 100ppm, trimethylamine 10p
It was adjusted to pm and 12 ppm of methyl mercaptan. The carrier gas used at this time is 20% oxygen and 80% nitrogen.
The mixed gas of was used to adjust the flow rate of the generated gas to 1 L / min. All samples are 0.5g, inner diameter 30φ, length 220mm
The glass column was set at approximately the center. The inside of the column was filled with non-adsorbing glass wool, and glass filter paper with no adsorbing action was set above and below the sample to prevent the sample from moving up and down. Heat-resistant stoppers were set on the upper and lower sides of the glass column, and a glass 3-way cock was attached.

【0018】加熱時の評価はガラス製のカラムの表面に
パイプヒーターを取り付け温度コントロールユニットで
200℃に制御した。ガス濃度の測定はガラス製のカラ
ムの上下にセットした3方コックを切り換えることによ
り行ない(株)ガステック製の検知管、ベンゼン(NO.1
21)、トリメチルアミン(NO.180)、 メチルメルカプタン(N
O.71) また、触媒作用を確認する為に二酸化炭素(NO.2L
L)の検知管を用いた。加熱時のガス濃度の測定は、図1
の様に常温にガスを冷却させ検知管が熱の影響を受けぬ
様配慮した。
For the evaluation during heating, a pipe heater was attached to the surface of a glass column and the temperature was controlled to 200 ° C. by a temperature control unit. The gas concentration is measured by switching the three-way cocks set on the top and bottom of the glass column.
21), trimethylamine (NO.180), methyl mercaptan (N
O.71) In order to confirm the catalytic action, carbon dioxide (NO.2L
The detector tube of L) was used. Figure 1 shows the measurement of gas concentration during heating.
Like the above, the gas was cooled to room temperature so that the detector tube would not be affected by heat.

【0019】[実施例5〜7、比較例2]実施例5〜7
は、本発明の請求項2に記載の脱臭フィルターあり、前
記実施例1の触媒物質担持天然ゼオライトと粒子状脱臭
剤として北越炭素工業(株)製のY−60C椰子殻活性
炭を用いた。フィルター母材としては(株)ブリヂスト
ン製エバーライトSF、セル10PPI、250mm×
250mm、厚み5tを用い、また混合用バインダーと
しては宗研化学(株)製のアクリル系エマルジョン(水
系)品番E−1054−6を用いた。尚、上記セル数P
PIは、1インチ直線上でのセル(孔)の数を表わす。
まず、バインダー中に実施例1の触媒物質担持天然ゼオ
ライトを表5の割合で添加し、本混合バインダ−がフィ
ルタ−材に対して30g/m2 dryとなる様に含浸、
乾燥加工を施した。次に本混合バインダ−のタック力を
利用しY−60C椰子殻活性炭をドライ状態で後付着せ
しめた。なお、比較例2は触媒物質担持天然ゼオライト
をバインダーに添加せず、単に活性炭のみをドライ状態
で付着させたものである。
[Examples 5 to 7 and Comparative Example 2] Examples 5 to 7
Is a deodorizing filter according to claim 2 of the present invention, and the catalyst substance-supporting natural zeolite of Example 1 and Y-60C coconut shell activated carbon manufactured by Hokuetsu Carbon Co., Ltd. were used as the particulate deodorizing agent. As the filter base material, Everstone SF made by Bridgestone Corporation, cell 10 PPI, 250 mm x
250 mm in thickness and 5 t in thickness, and as a mixing binder, acrylic emulsion (water-based) product number E-1054-6 manufactured by Souken Kagaku Co., Ltd. was used. The number of cells P
PI represents the number of cells (holes) on a 1-inch straight line.
First, the catalyst substance-supporting natural zeolite of Example 1 was added to the binder at a ratio shown in Table 5, and the mixed binder was impregnated so as to be 30 g / m 2 dry with respect to the filter material.
It was dried. Next, Y-60C coconut shell activated carbon was post-deposited in a dry state by utilizing the tack force of this mixed binder. In Comparative Example 2, the catalyst substance-supporting natural zeolite was not added to the binder, and only activated carbon was simply attached in a dry state.

【0020】当該評価方法としては、図2の評価試験機
にて行ないカラム径は20φとし、長さ220mmのガラ
ス管を用い、試料は当該カラムのほぼ中央部にセットし
た。ガス発生方法及びガス検知方法は[実施例1]の方
法に準じた。但し当該評価は常温のみの評価とし二酸化
炭素発生濃度は確認しなかった。これは、実施例1〜4
・比較例1・表2〜4の実験結果からも判かる様に常温
時には触媒物質は化学脱臭剤として働く為、触媒性能そ
のものの評価は意味を持たないからである。また粉落ち
性の評価は白厚紙(105mm×150mm)の片面全面に
両面テープを貼り合わせたものを用意し、5t ×80mm
×110mmにカッティングした試料を本粘着シート板の
中央部にセットし更に試料の上面に厚紙(105mm×1
50mm)をセットさせ厚紙の上面より0.8t ×25mm
×300mm(40〜50g)の鉄板で平行に全面を4
回、往復8回軽くたたいた。タタキ終了後試料を取り除
き粘着テープ面に付着した活性炭量を粉落ち度合いとし
て目視にて[実施例5〜7・比較例2」を相対比較評価
した。
As the evaluation method, the evaluation tester shown in FIG. 2 was used, the column diameter was 20φ, a glass tube having a length of 220 mm was used, and the sample was set at substantially the center of the column. The gas generation method and the gas detection method were in accordance with the method of [Example 1]. However, the evaluation was conducted only at room temperature, and the carbon dioxide generation concentration was not confirmed. This is for Examples 1-4
-Comparative Example 1-As can be seen from the experimental results in Tables 2 to 4, the catalyst substance acts as a chemical deodorant at room temperature, and therefore the evaluation of the catalyst performance itself has no meaning. For the evaluation of the powder falling property, prepare a white thick paper (105 mm x 150 mm) with a double-sided tape stuck on the entire surface on one side, 5 t x 80 mm
A sample cut to × 110 mm is set in the center of the pressure-sensitive adhesive sheet plate, and a thick paper (105 mm × 1
50 mm) and 0.8 t x 25 mm from the top of the cardboard
× 300mm (40-50g) iron plate parallel to the entire surface 4
I tapped it 8 times. After the completion of the tataki, the sample was removed and the amount of activated carbon adhering to the surface of the adhesive tape was used as the degree of powder removal to visually compare [Examples 5 to 7 and Comparative Example 2] with each other.

【0021】表5より、バインダー樹脂分に対し実施例
1の触媒物質担持天然ゼオライトの添加の割合が増すに
つれトリメチルアミンやメチルメルカプタンの脱臭性能
が向上する傾向にある事が確認された。但し同時にバイ
ンダーのタック力が低下する為、後付着による活性炭の
付着量が除々に低下し、また実施例7に示す様に活性炭
の粉落ちが目立ってくる為、実施例5に示す様にバイン
ダー樹脂分に対する実施例1の添加量の割合は10:
2.5程度が最適であることが判明した。
From Table 5, it was confirmed that the deodorizing performance of trimethylamine and methyl mercaptan tended to improve as the ratio of the catalyst substance-supporting natural zeolite of Example 1 added to the binder resin component increased. However, at the same time, since the tackiness of the binder decreases, the amount of the activated carbon deposited due to post-adhesion gradually decreases, and as shown in Example 7, the activated carbon powder falls off noticeably. The ratio of the added amount of Example 1 to the resin component was 10:
It has been found that about 2.5 is optimal.

【0022】請求項2記載の当該仕様の脱臭フィルター
は単位体積当たりの活性炭付着量が非常に多く取ること
が出来かつ触媒物質と併用使用する事により窒素系化合
物や硫黄系化合物の吸着性能をその相乗効果により比較
的少ない触媒物質の使用量で高める事が出来る特徴を有
する。従って、物理的脱臭性能を極限まで高め更に窒素
系化合物や硫黄系化合物など広範な臭気に対してもより
安全にカバーするといった面で非常に優れた脱臭性能を
有する。更にフィルター母材のセル数や厚みを及び粒子
状脱臭剤の粒度をコントロールする事により圧力損失や
脱臭性能を任意に調整する事が出来るといった特徴を有
する。
The deodorizing filter according to the second aspect of the present invention can have a very large amount of activated carbon deposited per unit volume, and when used in combination with a catalyst substance, the adsorption performance of nitrogen compounds and sulfur compounds can be improved. Due to the synergistic effect, it can be increased with a relatively small amount of catalyst substance used. Therefore, it has a very excellent deodorizing performance in that it physically enhances the deodorizing performance to the maximum and further safely covers a wide range of odors such as nitrogen compounds and sulfur compounds. Furthermore, the pressure loss and the deodorizing performance can be arbitrarily adjusted by controlling the cell number and thickness of the filter base material and the particle size of the particulate deodorant.

【0023】[実施例8〜10・比較例3]実施例8〜
10は、請求項3記載の脱臭フィルタ−であり、フィル
ター母材としては(株)ブリヂストン製エバーライトS
F、セル10PPI、厚み5t を用い、バインダーとし
ては宗研化学(株)製のアクリル系エマルジョン(水
系)品番E−1054−6を用いた。触媒物質を担持さ
せる無機多孔質系粒子体としては、日東粉化工業(株)
製ZO2号の天然ゼオライトを後述の活性炭と同一メッ
シュである25メッシュに振るい分けて用いた。
[Examples 8 to 10 and Comparative Example 3] Examples 8 to
10 is the deodorizing filter according to claim 3, and the filter base material is Everlight S manufactured by Bridgestone Corporation.
F, cell 10 PPI, thickness 5 t was used, and as the binder, acrylic emulsion (water-based) product number E-1054-6 manufactured by Souken Chemical Co., Ltd. was used. Examples of the inorganic porous particles supporting the catalyst substance include Nitto Koka Kogyo Co., Ltd.
The ZO2 natural zeolite manufactured was used after sieving into 25 mesh, which is the same mesh as the activated carbon described below.

【0024】触媒物質の担持方法は実施例1と同様の方
法で行ない、触媒物質としてはカルト(株)製の酸化マ
ンガン系触媒を担持させた。また、本触媒物質担持天然
ゼオライトと任意の割合で混合する粒子状脱臭剤として
は北越炭素工業(株)製のY−20/32の椰子殻活性
炭を用いた。まず、フィルター母材にバインダーが40
g/m2 dryとなる様に含浸乾燥させ、あらかじめ表
6の割合によく混合した上記触媒物質担持天然ゼオライ
トと活性炭をドライ状態で1300g/m2 になる様に
付着加工した。当該脱臭フィルターの評価方法として
は、実施例1の方法と同様の方法で行なった。なお、比
較例3は活性炭のみを付着させた場合を示す。
The catalyst substance was loaded in the same manner as in Example 1, and a manganese oxide-based catalyst manufactured by Cult Co., Ltd. was loaded as the catalyst substance. Further, as a particulate deodorant to be mixed with the catalyst substance-supporting natural zeolite at an arbitrary ratio, Y-20 / 32 coconut shell activated carbon manufactured by Hokuetsu Carbon Co., Ltd. was used. First, the binder is 40% on the filter base material.
g / m 2 impregnated and dried so as to be a dry, adhering processing the catalyst substance-supporting natural zeolite and activated carbon were thoroughly premixed in proportions shown in Table 6 so as to be 1300 g / m 2 in a dry state. As the evaluation method of the deodorizing filter, the same method as in Example 1 was used. Comparative Example 3 shows a case where only activated carbon is attached.

【0025】表6より、触媒物質担持天然ゼオライトの
混合割合を増すにつれトリメチルアミンやメチルメルカ
プタンの脱臭性能は向上するが同時に活性炭の混合割合
が低下する為ベンゼンの様な物理的吸着に依存するガス
成分については反対に低下する傾向がある。従って上記
粒子体を任意の割合に混合することにより目的に応じた
脱臭フィルターを提供できる特徴を有する。いわゆるト
イレ臭や冷蔵庫の匂の脱臭など窒素系化合物や硫黄系化
合物がメインとなる用途には触媒物質担持天然ゼオライ
トの混合割合を増し対処する事が望ましい。また空気清
浄器等広範な臭気をカバーする必要がある用途に対して
は活性炭の混合割合を増し対処する事が望ましい。更に
フィルタ−母材のセル数や厚み及び粒子状脱臭剤及び触
媒物質担持粒子状脱臭剤の粒度をコントロールする事に
より圧力損失や脱臭性能を任意に調整する事が出来る。
From Table 6, the deodorizing performance of trimethylamine and methyl mercaptan is improved as the mixing ratio of the catalyst-supporting natural zeolite is increased, but at the same time, the mixing ratio of activated carbon is lowered, so that a gas component depending on physical adsorption such as benzene. On the contrary, it tends to decrease. Therefore, there is a feature that a deodorizing filter suitable for the purpose can be provided by mixing the above-mentioned particles in an arbitrary ratio. It is desirable to increase the mixing ratio of the catalyst substance-supported natural zeolite to deal with so-called toilet odors and refrigerator odor deodorization, which are mainly used for nitrogen compounds and sulfur compounds. In addition, it is desirable to increase the mixing ratio of activated carbon to cope with applications that need to cover a wide range of odors such as air purifiers. Further, the pressure loss and the deodorizing performance can be arbitrarily adjusted by controlling the cell number and thickness of the filter-base material and the particle size of the particulate deodorant and the catalyst substance-supporting particulate deodorant.

【0026】[実施例11〜13・比較例4]実施例1
1〜13・比較例4は、請求項4記載の脱臭フィルター
であり、フィルター母材としては(株)ブリヂストン製
エバーライトSF、セル10PPI、250mm×25
0mm、厚み5t を用いた。まず、実施例1に記載の触
媒物質担持天然ゼオライトと北越炭素工業(株)製椰子
殻活性炭Y−300Cを表7の割合で混合させ水に分散
させた後、日本合成ゴム(株)製アクリル系ラテックス
AE−932と混練し固形分45%のスラリーを作成し
た。この時のラテックスと触媒物質担持天然ゼオライト
の混合割合は乾燥重量対比で5(混合粉体):1(ラテ
ックス)とした。なお、比較例4は活性炭のみの場合を
示す。
[Examples 11 to 13 and Comparative Example 4] Example 1
1 to 13 and Comparative Example 4 are the deodorizing filters according to claim 4, and as the filter base material, Everstone SF manufactured by Bridgestone Corporation, cell 10PPI, 250 mm × 25
A thickness of 0 mm and a thickness of 5 t was used. First, the catalyst substance-supporting natural zeolite described in Example 1 and palm shell activated carbon Y-300C manufactured by Hokuetsu Carbon Industry Co., Ltd. were mixed at a ratio shown in Table 7 and dispersed in water, and then acrylic resin manufactured by Nippon Synthetic Rubber Co., Ltd. This was kneaded with the system latex AE-932 to prepare a slurry having a solid content of 45%. At this time, the mixing ratio of the latex and the catalyst substance-supporting natural zeolite was 5 (mixed powder): 1 (latex) based on the dry weight. In addition, Comparative Example 4 shows the case where only activated carbon is used.

【0027】表7より、触媒物質担持天然ゼオライトの
混合割合を増すにつれトリメチルアミンやメチルメルカ
プタンの脱臭性能は向上するが、同時に活性炭の混合割
合が低下する為ベンゼンの様な物理的吸着に依存するガ
ス成分については反対に低下する傾向がある。従って前
記の請求項3記載の脱臭フィルターと同様、触媒物質担
持天然ゼオライトと活性炭の混合割合を任意の割合に混
合することにより目的に応じた脱臭フィルターを低圧損
で提供できる特徴を有する。
As shown in Table 7, the deodorizing performance of trimethylamine and methyl mercaptan improves as the mixing ratio of the catalyst-supporting natural zeolite increases, but at the same time, the mixing ratio of activated carbon decreases, so that a gas dependent on physical adsorption such as benzene. On the contrary, the composition tends to decrease. Therefore, similar to the deodorizing filter according to the third aspect, there is a feature that a deodorizing filter suitable for the purpose can be provided with a low pressure loss by mixing the catalyst substance-supporting natural zeolite and the activated carbon in an arbitrary mixing ratio.

【0028】[0028]

【発明の効果】請求項記載の脱臭フィルターの製造方
法により得た脱臭フィルターは粒子状脱臭剤と触媒物質
担持無機多孔質系粒子体を併用付着する事によりその相
乗効果により広範な臭気に対し優れた脱臭性能を示す脱
臭フィルターを提供する事が出来る。請求項記載の脱
臭フィルターの製造方法により得た脱臭フィルターは粒
子状脱臭剤と触媒物質担持無機多孔質系粒子体の混合割
合を任意に変化させる事により用途に応じた脱臭フィル
ターを提供する事が出来る。請求項記載の脱臭フィル
ターの製造方法により得た脱臭フィルターは含浸タイプ
であるため請求項及び請求項記載の脱臭フィルター
の製造方法により得た脱臭フィルターに比べ脱臭性能は
劣るものの圧力損失的に厳しい用途に対しては低圧力損
失でかつ請求項記載の脱臭フィルターの製造方法によ
り得た脱臭フィルターと同様粒子状脱臭剤と触媒物質担
持無機多孔質系粒子体の混合割合を任意に変化させる事
により用途に応じた脱臭フィルターを提供する事が出来
る。
The deodorizing filter obtained by the method for producing a deodorizing filter according to claim 5 adheres to a particulate deodorizing agent and a catalyst substance-supporting inorganic porous particle body in combination, so that a wide range of odors can be obtained due to their synergistic effect. It is possible to provide a deodorizing filter having excellent deodorizing performance. The deodorizing filter obtained by the method for producing a deodorizing filter according to claim 6 provides a deodorizing filter according to the application by arbitrarily changing the mixing ratio of the particulate deodorizing agent and the catalyst substance-supporting inorganic porous particle. Can be done. 7. deodorizing filter obtained by the production method of deodorizing filter according the pressure loss of the deodorizing performance compared to deodorizing filter obtained by the production method of deodorizing filter according to claim 5 and claim 6, wherein for a impregnation type is inferior ones For very severe applications, the pressure drop is low and the mixing ratio of the particulate deodorant and the catalyst substance-supporting inorganic porous particle is arbitrarily changed as in the deodorizing filter obtained by the method for producing a deodorizing filter according to claim 6. By doing so, it is possible to provide a deodorizing filter according to the application.

【0029】[0029]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1〜記載の脱臭性能を有する触媒物質
を無機多孔質系粒子体に担持加工するにあたり当該加工
品の最適品の評価の為、実際に脱臭性能の測定を常温及
び200℃加熱時で行なう為の評価試験機の該略図であ
る。
FIG. 1 is a graph showing the deodorizing performance of a catalyst substance having the deodorizing performance according to claims 1 to 4 , which is actually measured at room temperature and at 200 to evaluate the optimum product of the processed product when supporting and processing the inorganic porous particle body. 1 is a schematic diagram of an evaluation tester for carrying out heating at ℃.

【図2】請求項1〜記載の脱臭フィルターの常温にお
ける脱臭性能を測定する為の評価試験機の概略図であ
る。
FIG. 2 is a schematic diagram of an evaluation tester for measuring the deodorizing performance of the deodorizing filter according to claims 1 to 4 at room temperature.

【図3】請求項に基づく実施例5〜7記載の脱臭フィ
ルターに関する該略図である。
FIG. 3 is a schematic view of a deodorizing filter according to Examples 5 to 7 according to claim 5 .

【図4】請求項に基づく実施例8〜10記載の脱臭フ
ィルターに関する該略図である。
FIG. 4 is a schematic view of a deodorizing filter according to Examples 8 to 10 according to claim 6 .

【図5】請求項に基づく実施例11〜13記載の脱臭
フィルターに関する該略図である。
5 is a schematic representation regarding the deodorizing filter according Examples 11-13 based on claim 7.

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (1)粒子状脱臭剤と(2)無機多孔質
系粒子体に脱臭性能を有する触媒物質を担持加工させた
ものをバインダーを用いてフィルター材に付着せしめ
(1)と(2)を併用付着させることを特徴とする脱臭
フィルター。
1. A particulate deodorant and (2) an inorganic porous particle having a catalytic substance having a deodorizing property supported and processed thereon, and attached to a filter material with a binder (1) and ( A deodorizing filter characterized by being attached together with 2).
【請求項2】 前記(1)粒子状脱臭剤の平均粒径が1
0〜300メッシュ(2500〜85μm)であり、前
記無機多孔質系粒子体の平均粒径が2500〜1.0μ
mである請求項1記載の脱臭フィルター。
2. The average particle diameter of the particulate deodorant (1) is 1
0 to 300 mesh (2500 to 85 μm), and the average particle diameter of the inorganic porous particle body is 2500 to 1.0 μm.
The deodorizing filter according to claim 1, which is m.
【請求項3】 前記無機多孔質系粒子体が、多孔質構造
を有するゼオライト又はアルミナであり、前記脱臭性能
を有する触媒物質が酸化マンガン系触媒である請求項1
又は2記載の脱臭フィルター。
3. The inorganic porous particle body is zeolite or alumina having a porous structure, and the catalytic substance having deodorizing performance is a manganese oxide type catalyst.
Alternatively, the deodorizing filter according to item 2.
【請求項4】 前記フィルター材が三次元網状骨格構造
を有するポリウレタンフォーム、樹脂ネット体、又は不
織布であり、前記バインダーが水系エマルジョンである
請求項1,2又は3記載の脱臭フィルター。
4. A polyurethane foam said filter material having a three-dimensional network skeleton structure, the resin net member, or a nonwoven fabric, the deodorizing filter according to claim 1, wherein said binder is a water-based emulsion.
【請求項5】 (1)粒子状脱臭剤と(2)無機多孔質
系粒子体に脱臭性能を有する触媒物質を担持加工させた
ものをバインダーを用いてフィルター材に付着せしめ、
(1)と(2)を併用付着させた脱臭フィルターの製造
方法であって、 あらかじめ(2)無機多孔質系粒子体に脱臭性能を有す
る触媒物質を担持加工せしめたものをバインダーに添加
・分散したうえフィルター材に含浸・乾燥させ、本バイ
ンダーのタック力を利用し、更に当該フィルター材に粒
子状脱臭剤を後付着せしめフィルター材の表面及び内部
にこの粒子状脱臭剤が接触して固着され残部が露出した
ことを特徴とする脱臭フィルターの製造方法。
5. (1) A particulate deodorant and (2) an inorganic porous particulate material on which a catalytic substance having deodorizing performance is supported and processed, and the resulting material is attached to a filter material using a binder,
A method for producing a deodorizing filter in which (1) and (2) are adhered together, wherein (2) an inorganic porous particle body on which a catalytic substance having deodorizing performance is carried and processed is added and dispersed in a binder. After that, the filter material is impregnated and dried, and the tackiness of this binder is used to further attach the particulate deodorant to the filter material later, and the particulate deodorant comes into contact and adheres to the surface and inside of the filter material. A method for producing a deodorizing filter, characterized in that the rest is exposed.
【請求項6】 (1)粒子状脱臭剤と(2)無機多孔質
系粒子体に脱臭性能を有する触媒物質を担持加工させた
ものをバインダーを用いてフィルター材に付着せしめ、
(1)と(2)を併用付着させた脱臭フィルターの製造
方法であって、 あらかじめフィルター材にバインダーを含浸・乾燥せし
め粒子状脱臭剤及び無機多孔質系粒子体に脱臭性能を有
する触媒物質を担持加工したものを付着せしめフィルタ
ー材の表面及び内部にこれらの触媒物質担持加工品が接
触して固着され残部が露出したことを特徴とする脱臭フ
ィルターの製造方法。
6. A (1) particulate deodorant and (2) an inorganic porous particulate material on which a catalytic substance having deodorizing performance is supported and processed, and the resulting material is attached to a filter material using a binder,
A method for producing a deodorizing filter in which (1) and (2) are adhered in combination, wherein a filter material is impregnated with a binder in advance and dried to obtain a particulate deodorizing agent and an inorganic porous particle body having a deodorizing performance. A method for producing a deodorizing filter, characterized in that the catalyst-supported processed product is brought into contact with and adhered to the surface and the inside of the filter material after the support-processed product is attached, and the remainder is exposed.
【請求項7】 (1)粒子状脱臭剤と(2)無機多孔質
系粒子体に脱臭性能を有する触媒物質を担持加工させた
ものをバインダーを用いてフィルター材に付着せしめ、
(1)と(2)を併用付着させた脱臭フィルターの製造
方法であって、 無機多孔質系粒子体に脱臭性能を有する触媒物質を担持
加工せしめたものと粒子状脱臭剤の混合品をバインダー
に添加・分散したうえフィルター材に含浸・乾燥させる
ことを特徴とする脱臭フィルターの製造方法。
7. (1) A particulate deodorant and (2) an inorganic porous particle on which a catalytic substance having deodorizing performance is supported and processed, and the resulting substance is attached to a filter material using a binder,
A method for producing a deodorizing filter in which (1) and (2) are adhered together, wherein a mixture of a particulate deodorant and an inorganic porous particulate material on which a catalytic substance having deodorizing performance is processed. A method for producing a deodorizing filter, which comprises adding and dispersing into a filter material, and then impregnating and drying the filter material.
【請求項8】 前記(1)粒子状脱臭剤の平均粒径が1
0〜300メッシュ(2500〜85μm)であり、前
記無機多孔質系粒子体の平均粒径が2500〜1.0μ
mである請求項5,6又は7記載の脱臭フィルターの製
造方法。
8. The average particle diameter of the particulate deodorant (1) is 1
0 to 300 mesh (2500 to 85 μm), and the average particle diameter of the inorganic porous particle body is 2500 to 1.0 μm.
The method for producing a deodorizing filter according to claim 5, 6 or 7, wherein m is m.
【請求項9】 前記(2)無機多孔質系粒子体に脱臭性
能を有する触媒物質を担持加工させたものが、前記無機
多孔質系粒子体に、脱臭性能を有する触媒物質を10
0:1〜100:10(重量部)の割合で水中に分散さ
せ、十分浸漬させた後、遠心分離、または減圧吸引濾過
法にて脱水、洗浄を繰返し触媒物質が容易に水中に解け
出すことのないように処理を施したものである請求項
乃至のいずれか1項に記載の脱臭フィルターの製造方
法。
9. The (2) inorganic porous particle body prepared by supporting and processing a catalyst substance having a deodorizing property, wherein the inorganic porous particle body is provided with a catalyst substance having a deodorizing property.
Disperse in water at a ratio of 0: 1 to 100: 10 (parts by weight), sufficiently immerse it, and then repeat dehydration and washing by centrifugation or vacuum suction filtration so that the catalyst substance can be easily dissolved in water. of those subjected to treatment to claims 5
9. The method for manufacturing a deodorizing filter according to any one of items 8 to 8 .
【請求項10】 前記無機多孔質系粒子体が、多孔質構
造を有するゼオライト又はアルミナであり、前記脱臭性
能を有する触媒物質が酸化マンガン系触媒である請求項
乃至のいずれか1項に記載の脱臭フィルターの製造
方法。
10. The inorganic porous particle body is zeolite or alumina having a porous structure, and the catalytic substance having deodorizing performance is a manganese oxide type catalyst.
The method for producing a deodorizing filter according to any one of 5 to 9 .
【請求項11】 前記フィルター材が三次元網状骨格構
造を有するポリウレタンフォーム、樹脂ネット体、又は
不織布であり、前記バインダーが水系エマルジョンであ
る請求項乃至10のいずれか1項に記載の脱臭フィル
ターの製造方法。
11. A polyurethane foam said filter material having a three-dimensional network skeleton structure, the resin net member, or a nonwoven fabric, the deodorizing filter according to any one of claims 5 to 10 wherein the binder is an aqueous emulsion Manufacturing method.
JP11215395A 1995-05-10 1995-05-10 Deodorizing filter and method for producing deodorizing filter Expired - Fee Related JP3503262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11215395A JP3503262B2 (en) 1995-05-10 1995-05-10 Deodorizing filter and method for producing deodorizing filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11215395A JP3503262B2 (en) 1995-05-10 1995-05-10 Deodorizing filter and method for producing deodorizing filter

Publications (2)

Publication Number Publication Date
JPH08299720A JPH08299720A (en) 1996-11-19
JP3503262B2 true JP3503262B2 (en) 2004-03-02

Family

ID=14579567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11215395A Expired - Fee Related JP3503262B2 (en) 1995-05-10 1995-05-10 Deodorizing filter and method for producing deodorizing filter

Country Status (1)

Country Link
JP (1) JP3503262B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350913A (en) * 1999-06-10 2000-12-19 Nitta Ind Corp Gas removing filter and its manufacture
JP2002085538A (en) * 2000-09-21 2002-03-26 Bridgestone Corp Deodorant and deodorization filter using this deodorant
JP2018202356A (en) * 2017-06-08 2018-12-27 フタムラ化学株式会社 Solid acid filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783814B2 (en) * 1991-03-29 1995-09-13 日本たばこ産業株式会社 Deodorizing filter for air conditioner
JPH05305213A (en) * 1992-04-28 1993-11-19 Kobe Steel Ltd Air purifying sheet and air purifying filter using the same

Also Published As

Publication number Publication date
JPH08299720A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
JP2022045928A (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
JP5486497B2 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
EP2437884B1 (en) Catalytic article for removal of volatile organic compounds in low temperature applications
WO1996037288A1 (en) Environment purifying material
JP2007167495A (en) Aldehyde-containing air purifying agent and its manufacturing method
KR100330599B1 (en) Porous deodorizing filter and its manufucturing method
JP2691751B2 (en) Catalytic structure and method and apparatus for producing the same
JP2010063963A (en) Dehumidification element and dehumidifying apparatus using the same
JP3503262B2 (en) Deodorizing filter and method for producing deodorizing filter
JP4263268B2 (en) Method for immobilizing a catalyst layer on an aluminum carrier
JP2007190533A (en) Photocatalyst sheet and air filter using the same
JPH07136502A (en) Adsorbent for ammonia and aldehyde and air purifying filter unit
KR100710002B1 (en) Modified natural zeolite, coating composition and building interior material for high adsorption and removal rate for pollutants
CN111841498B (en) Guanidine salt modified activated carbon for removing aldehyde, preparation method thereof, composite filter screen comprising guanidine salt modified activated carbon and air purification device
JP3029764B2 (en) Deodorant
WO2022071379A1 (en) Odor removal catalyst and use therefor
WO2022118986A1 (en) Odor removal catalyst and use thereof
JPH03146132A (en) Deodorant
JP3766750B2 (en) Manufacturing method of deodorizing material
JP2006217994A (en) Deodorant and deodorizer using the same
JPH1133342A (en) Environmental pollutant removing sheet or board
WO2019186986A1 (en) Deodorizing material, preparation method thereof, deodorizing method, and deodorizing sheet
JP2004129840A (en) Deodorizer and deodorizing device using deodorizer
JPH06218231A (en) Deodorizing filter
JP2001046877A (en) Solid acid catalyst, gas removing member using the same and production of them

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees