JPWO2019044619A1 - 生体情報処理システム、生体情報処理方法、及びコンピュータプログラム - Google Patents

生体情報処理システム、生体情報処理方法、及びコンピュータプログラム Download PDF

Info

Publication number
JPWO2019044619A1
JPWO2019044619A1 JP2019539407A JP2019539407A JPWO2019044619A1 JP WO2019044619 A1 JPWO2019044619 A1 JP WO2019044619A1 JP 2019539407 A JP2019539407 A JP 2019539407A JP 2019539407 A JP2019539407 A JP 2019539407A JP WO2019044619 A1 JPWO2019044619 A1 JP WO2019044619A1
Authority
JP
Japan
Prior art keywords
feature amount
target patient
series data
biometric information
restlessness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019539407A
Other languages
English (en)
Other versions
JP7108267B2 (ja
Inventor
利憲 細井
利憲 細井
友嗣 大野
友嗣 大野
久保 雅洋
雅洋 久保
昌洋 林谷
昌洋 林谷
茂実 北原
茂実 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitahara Medical Strategies International Co Ltd
Original Assignee
Kitahara Medical Strategies International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitahara Medical Strategies International Co Ltd filed Critical Kitahara Medical Strategies International Co Ltd
Publication of JPWO2019044619A1 publication Critical patent/JPWO2019044619A1/ja
Application granted granted Critical
Publication of JP7108267B2 publication Critical patent/JP7108267B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • Social Psychology (AREA)
  • Fuzzy Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Pulmonology (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)

Abstract

対象患者の問題行動の発生前に、当該問題行動の発生を予知できる。生体情報処理システムは、入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出する特徴量算出部と、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知する不穏検知部とを有する。

Description

本発明は生体情報処理システム、生体情報処理方法、及びコンピュータプログラム記録媒体に関する。
特許文献1は使用者における有害状態の発生を予測する使用者監視システムを開示している。具体的に説明すると、特許文献1は、第1のセンサー、第2のセンサー、及び制御装置を備えた使用者モニタシステムを開示している。第1のセンサーは、ベッド等の使用者支持装置に設けられ、当該使用者支持装置の特徴に対応する第1の情報を検出する。第2のセンサーは、使用者の生理学的特性に対応する第2の情報を検出する。制御装置は、第1及び第2の情報から使用者の有害状態予測アルゴリズムにより指標を計算する。当該制御装置は、指標が閾値を超えた場合、看護者や介護者(以降、看護・介護者)に警報を出すように構成されている。
また、特許文献1は使用者の心拍、体温等を第2のセンサーによって検出し、使用者が覚醒しているか、音声に反応するか、痛みに反応するか、又は無反応であるかをも判断することを開示している。
しかしながら、特許文献1は使用者の有害状態予測アルゴリズムについて具体的には説明していない。
特許文献2は被験者の睡眠時の生体データから睡眠の深さと体動変化を含む睡眠データを生成し、既存のパターンと比較して認知症のリスクを判定する認知症リスク判定システムを開示している。
更に、特許文献3は第1の運動センサー、第2の運動センサー、及びパターン分析モジュールを備えたシステムを開示している。第1の運動センサーはベッド上の被験者の運動を検出する。第2の運動センサーは被験者が休むための第2の物体内に配置される。パターン分析モジュールは第1及び第2のセンサーからのデータを受信して、臨床徴候をモニタする。
特許文献4は患者を監視し、患者のせん妄を検出する監視システムを開示している。具体的に説明すると、特許文献4は患者の画像データから患者の運動事象を検出し、検出された運動事象をせん妄典型運動事象と非せん妄典型運動事象とに分類する評価ユニットを開示している。更に、特許文献4は評価ユニットで評価されたせん妄典型運動事象の持続時間等から、患者のせん妄の可能性及び/又は強度を示すせん妄スコアを決定する、せん妄決定ユニットを明らかにしている。ここで、「せん妄」とは、意識障害の一つであり、一時的な不安感により異常な行動や言動、興奮がみられる状態である。
特開2011−120874号公報 特開2016−22310号公報 特表2013−154190号公報 特表2014−528514号公報
特許文献1は使用者である患者自体の状態を監視することのみを開示している。このことは、特許文献2及び3においても同様である。
また、特許文献4の監視システムは患者が目立った過活動挙動、目立った機能減退挙動及び/又は著しく頻繁なせん妄典型運動を示す場合にせん妄患者であると判断している。更に、特許文献4はせん妄状態を患者の画像から決定する監視システムを記載している。具体的に言えば、特許文献4は、監視システムがせん妄状態にある患者(せん妄患者)のせん妄スコアを、非せん妄患者のスコアを基準にして定められた特定の閾値と比較し、当該せん妄スコアが閾値を超過する場合にアラームを発生する、ことを記載している。しかしながら、特許文献4はせん妄を検出した後における当該せん妄患者の問題行動については何等記載していない。
また、特許文献4の監視システムのように、せん妄スコアを特定の閾値と比較した場合、せん妄の発生自体、患者個人毎に異なっているため、せん妄検知後の問題行動の検知率が低く、エラーが多いと言う欠点がある。
上記したことからも理解できるように、特許文献1〜4は、何れも患者による問題行動が看護・介護者に及ぼす負担、労力の増加について何等配慮していない。即ち、看護・介護者に対する患者の問題行動について特許文献1〜4は全く配慮していない。
ここで、本明細書において、「問題行動」とは、例えば、看護・介護者に負担をかける患者の行動である。具体的には、問題行動は看護・介護業務に負担及び手間をかける患者の行動である。より具体的には、問題行動は、ベッド上で起き上がる、ベッドの柵を外す、離床する、一人歩きする、徘徊する、病院の別のフロアへ行く、ベッドから転落する、点滴やチューブ類をいじり、抜去する、奇声を発する、暴言を発する、暴力をふるう患者の行動である。
一方、患者の看護・介護者は、患者の問題行動の対処に労働時間の2〜3割もの時間を割いていることもある。例えば、患者のベッド転落、挿管抜去、奇声発声、暴力行為、離床行動等の問題行動は患者自身だけでなく看護・介護者に対してもリスクの多い行動である。看護・介護者がこのような患者の問題行動に多くの時間を割いている状態では、看護・介護者の本来のケア業務に注力する時間が圧迫されている。
また、発生後に問題行動を見つけても、問題行動の発生を抑えることはできず、患者や看護・介護者の怪我などの事故に繋がり得る。
実際には、問題行動を起こした患者に対して、強い鎮静薬を投与する処置、或いは、抑制器具で身体を拘束する処置等がとられている。このような事後処置を取った場合、リハビリの速やかな実施が阻害されると共に回復が大幅に遅れ、且つ、予後が悪化することが多い。
すなわち、上述の特許文献1〜4では、患者が問題行動を起こすことを、当該問題行動の発生前に予知できないという課題があった。
本発明の目的は、上記課題を解決し、患者の問題行動の発生前に、当該問題行動の発生を予知できる生体情報処理システム/処理方法を提供することである。
本発明の他の目的は、生体情報処理システムに使用できるコンピュータプログラム記録媒体を提供することである。
本発明の第1の態様によれば、入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出する特徴量算出部と、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知する不穏検知部と、を有する、生体情報処理システムが得られる。
本発明の第2の態様によれば、入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出する特徴量算出部と、事前に取得した識別用パラメータを記憶する識別用パラメータ記憶部と、前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新する識別用パラメータ更新部と、を有する、生体情報処理システムが得られる。
本発明の第3の態様によれば、入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出し、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知する、生体情報処理方法が得られる。
本発明の第4の態様によれば、入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知するステップを、コンピュータに実行させるコンピュータプログラムを記録した記録媒体が得られる。
本発明は、問題行動をその発生の前に予知できるため、患者の問題行動に対応する看護・介護者に対する労力・負担を大幅に軽減できる。
本発明の原理を説明するブロック図である。 図1の動作を説明するフローチャートである。 本発明の第1の実施形態に係る生体情報処理システムを示すブロック図である。 図3に示された学習済識別用パラメータ記憶部の作成に使用されるシステムを示すブロック図である。 本発明の第2の実施形態に係る生体情報処理システムを示すブロック図である。 図4に示されたシステムを他の生体情報に適用した例を示すブロック図である。 本発明の第1の実施形態及び第2の実施形態に係る生体情報処理システムのハードウエア構成の一例を示すブロック図である。
まず、本発明者等の観察によれば、少なくとも脳神経外科関連の患者の場合、実際に問題行動を起こす前に、行動が過剰で落ち着きがない不穏状態(不穏)になっている場合が多いことが判明した。ここで、「不穏」とは、単に、行動が過剰で落ち着きがない状態だけでなく、患者が穏やかでない状態及び精神を正常にコントロールできない状態を含んでいる。また、不穏は身体的苦痛、せん妄及び不安に起因して発生することから、本明細書中における「不穏」の用語は、せん妄をも含むものとする。
不穏における具体的な患者の行動としては、手足を無闇に動かし続ける、身体が震えている、不自然に何かの動作に集中している、論理が不明瞭な発言をする、看護・介護者の言うことを聞かない等の行動である。更に、患者にとっては有害ではない、例えば、患者の尿意に伴う行動も本明細書では、不穏に含まれるものとする。
いずれにしても、不穏を患者の問題行動の発生前、例えば、10分程度前に自動的に検知し、看護・介護者に通知できれば、看護・介護者に対する負担等は著しく軽減できるものと考えられる。
本発明は上記した知見に基づいたものである。具体的には、本発明は、患者の生体情報の時間的変動を、機械学習手法を利用して過去に発生した問題の予兆となる時間的変動パターンとの類似性や非類似性を算出することによって、患者の不穏状態を検出して、問題行動をその発生前に検知・予知することにある。
以下、具体的に、図1を参照して、本発明に係る生体情報処理システム100を説明する。図示された生体情報処理システム100には、センサー(図示せず)等からセンシングによって得られた対象の患者(対象患者)の生体情報が入力信号として与えられている。生体情報処理システム100は、当該生体情報の現在の特徴量を示す検知処理用の時系列データを算出する特徴量算出部11と、複数の過去の生体情報と、過去の不穏/非不穏状態との関係から得られたモデル(識別用パラメータ)を備えた不穏検知部12とを有している。このため、不穏検知部12は後述するように、事前に取得した過去の識別用パラメータを記憶する記憶部を備えている。ここで、過去の生体情報は、対象患者の生体情報であってもよいし、対象患者以外の患者の生体情報であってもよい。
図1に示された不穏検知部12は、特徴量算出部11から生体情報に基づいて算出された検知処理用の時系列データを受けると、識別用パラメータを利用して、患者の現在の不穏/非不穏状態を示す識別結果を現在の不穏スコアとして生成し、看護・介護者等に通知する。即ち、不穏検知部12は識別用パラメータと、検知処理用の時系列データとにより、識別結果として患者の現在の不穏/非不穏状態を自動的に検知して、介護・看護者等に通知する。このため、不穏検知部12は対象患者の現在の不穏/非不穏状態を検知し、看護・介護者に通知する通知部と呼ばれても良い。
各患者の不穏/非不穏状態の検知は、不穏になっている間に発生する可能性のある各患者の問題行動の発生を事前に予知することを可能にする。したがって、本発明に係る生体情報処理システム100は、生体情報を処理して患者の問題行動を予知する生体情報検知・予知システムと呼ばれても良い。
図示された不穏検知部12には、識別用パラメータが機械学習の学習フェーズで作成・用意されているものとする。更に、不穏検知部12は学習された識別用パラメータにより、入力信号である対象患者毎の検知処理用の時系列データから、不穏/非不穏の2クラスに識別または回帰する動作を行う。
更に具体的に説明すると、図1に示された特徴量算出部11は対象患者の現在の生体情報を受け、当該対象患者の生体情報の特徴量を示す検知処理用の特徴量時系列データX(t)(時系列データX(t))を算出し、出力する。ここでは、生体情報として、心拍に関する情報を用いるものとする。心拍とは心臓の拍動を意味しており、本明細書中では、脈拍と同等のものとして説明する。
また、心拍数とは一定時間(例えば、1分間)内における心臓の拍動の回数を表している。医療現場では、多くの場合、心拍数はP波、Q波、R波、S波、及びT波等、複数の波形を含む心電図を用いて計算される。例えば、心拍数は、所定数(例えば、300又は1500)を心電図にあらわれたR波の間隔(RR間隔)によって、割ることによって計算される。
他方、RR間隔が測定できれば、1分間内の心拍数は、RR間隔の逆数に60を掛けることによっても計算され得るから、心拍値の逆数(RR間隔)が生体情報である入力信号として与えられても心拍数を計算できる。また、所定時間内の心拍数を測定できれば、当該心拍数を入力信号として用いることも可能である。
このことを考慮して、本発明に係る生体情報処理システム100の特徴量算出部11には、心拍に関する情報が、心拍値及び/又は心拍値の逆数が心拍センサー等から生体情報として供給されるものとする。尚、特徴量算出部11に供給される生体情報はアナログ情報であっても良いし、デジタル情報であっても良い。
ここでは、対象患者の現在の生体情報である入力信号は時系列データ、即ち、デジタル信号の形で心拍センサー等から特徴量算出部11に供給されるものとする。したがって、現在の生体情報である入力信号は心拍センサーから時系列データであらわされるデジタル情報として特徴量算出部11に与えられている。
より具体的に説明すると、時刻t(t=1,2,・・・T)における心拍値をh_tするとき、心拍値h_tの時系列データや、その逆数(RR間隔)r_tの時系列データが、生体情報の時系列データX(t)として、特徴量算出部11に供給される。この場合、特徴量算出部11には心拍値h_tの時系列データだけが供給されても良いし、心拍値の逆数(RR間隔)r_tの時系列データだけが供給されも良い。また、特徴量算出部11に両時系列データが供給されても良い。
以下では、一例として、センサーとして、心拍値の逆数(RR間隔)を得る心拍センサーの出力部が、図示しない有線または無線を介して、生体情報処理システム100に接続されているものとする。この場合、心拍値の逆数r_tの時系列データが心拍センサーから生体情報処理システム100に入力される場合について主に説明する。
図示された特徴量算出部11は、互いに異なる帯域を持つ複数のフィルタ(例えば、異なる通過帯域(パスバンド)を備えた複数のバンドパスフィルタや、微分フィルタなど、合計500種のフィルタ)を備える。特徴量算出部11は、これら複数のフィルタを用いて、入力された生体情報に平均化処理や微分処理等を施し、得られた複数個の値を組み合わせて、生体情報である心拍の特徴量を表す検知処理用の時系列データY(t)として出力する。フィルタ処理された特徴量を表す検知処理用の時系列データY(t)は特徴ベクトルである。以下では、対象患者からの現在の生体情報に関する時系列データと、過去の生体情報に関する時系列データとを区別するために、過去の生体情報に関する時系列データには、「'」を付すこととする。
一方、不穏検知部12には、過去の生体情報の時系列データX’(t)から得た特徴量を表す過去の時系列データY’(t)と、患者の過去の不穏/非不穏状態の多数のデータとを機械学習にかけることによって得られた識別用パラメータが用意されている。即ち、識別用パラメータは、不穏状態でセンシングされた過去の生体情報(第1の過去の時系列データX’(t))から得た第1の過去の特徴量(第1の学習処理用の時系列データY’(t))と、非不穏状態でセンシングされた過去の生体情報(第2の過去の時系列データX’(t))から得た第2の過去の特徴量(第2の学習処理用の時系列データY’(t))とを、機械学習にかけることによって生成される。即ち、特徴量を表す検知処理用の時系列データY(t)は、事前に生成された識別用パラメータに乗算され、この結果、不穏検知部12は識別用パラメータと検知処理用の時系列データY(t)とによって定まる現在の不穏/非不穏状態を表す不穏スコア(識別結果)を出力する。
前述したように生体情報処理システム100は、対象患者毎の現在の生体情報の時系列データX(t)と、過去の生体情報の時系列データX’(t)を学習することによって得られた識別用パラメータとにしたがって、対象患者の現在の不穏/非不穏状態を検知し通知している。このため、生体情報処理システム100は各患者の不穏状態を個別に検出し、当該患者の問題行動の発生前に、問題行動の発生の可能性を看護・介護者に通知することができる。また、機械学習の手法を用いているため、蓄積されたデータが増え、学習が進むにつれて、本発明に係る生体情報処理システム100はその検知率は高くなり、患者の問題行動に対する看護・介護者に対する負担を大幅に軽減できるという利点がある。
尚、図1では、説明の便宜上、特徴量算出部11及び不穏検知部12を分けて説明しているが、特徴量算出部11及び不穏検知部12は個別に上記した処理を行う複数のプロセッサによって構成されても良いし、上記した処理を行うコンピュータプログラムによって動作する単一のプロセッサによって構成されても良い。
ここで、「生体情報」とは、センサーなどにより得られる、生体に関する情報である。また、「生体情報」は、例えば、生体センシングされたデータ(バイタルサイン)である。具体的には、「生体情報」は、心拍(脈拍)、呼吸、血圧、深部体温、意識レベル、皮膚体温、皮膚コンダクタンス反応(Galvanic Skin Response(GSR))、皮膚電位、筋電位、心電波形、脳波波形、発汗量、血中酸素飽和度、脈波波形、光脳機能マッピング(Near-infrared Spectroscopy(NIRS))、尿量、及び瞳孔の反射等の少なくとも一つの生体情報を含んでいるが、これらに限定されない。
図2に示されたフローチャートを用いて、図1に係る生体情報処理システム100の動作を説明する。患者に関する現在の生体情報がセンサーから図1に示された特徴量算出部11に供給される(ステップS1)。特徴量算出部11は、センサーから受け取った患者の現在の生体情報から検知処理用の特徴量の時系列データY(t)を算出する(ステップS2)。この例では、特徴量算出部11は患者の現在の生体情報から、検知処理用の特徴量の時系列データY(t)を算出し、不穏検知部12に供給する。
不穏検知部12は検知処理用の特徴量の時系列データY(t)と、事前に取得した識別用パラメータとから、現在の不穏スコアを算出し、患者の現在の不穏/非不穏状態を検知して、看護・介護者に通知する(ステップS3)。
図示された例では、不穏検知部12の記憶部は、事前に機械学習によって得られた識別用パラメータを記憶している。識別用パラメータは、過去の生体情報の時系列データX’(t)から得られる過去の特徴量を表す学習処理用の時系列データY’(t)と、過去の不穏/非不穏状態のデータとを基に、事前に生成される。不穏検知部12は、入力された検知処理用の特徴量の時系列データY(t)と識別用パラメータとを基に、現在の不穏スコアを算出する(ステップS31)。更に、不穏検知部12は、当該現在の不穏スコアを看護・介護者に通知する(ステップS32)。現在の不穏スコアは対象患者である患者の現在の不穏/非不穏状態を示している。
図1及び図2に示す例では、生体情報処理システム100は、対象患者が実際に問題行動を起こす前に、患者の現在の不穏/非不穏状態を現在の不穏スコアによって検知できる。このように、患者の問題行動の発生前に当該患者が不穏状態にあることを検知できるため、看護・介護者は患者の問題行動を予知して患者の問題行動に対する対策をたてることができる。例えば、看護・介護者は、問題行動発生前に問題行動が発生した場合に必要な準備態勢を整えることができる。また、患者毎に問題行動の発生を予知し、各患者に適した対応を未然に準備しておくことも可能である。したがって、看護・介護者の負担を大幅に軽減できる。また、問題行動をその発生前に抑制できれば、患者自身のリハビリにも大きな効果が得られる。
図3を参照して、本発明の第1の実施形態に係る生体情報処理システム100Aについて説明する。図3に示された生体情報処理システム100Aは図1に示された算出部11に対応する特徴量算出部11Aを備える。当該特徴量算出部11Aには、心電計等のセンサーのセンシングによって得られた患者の心拍を表す現在の時系列データX(t)が対象患者の現在の生体情報として供給されているものとする。
入力される時系列データX(t)は、時刻(t=1,2…T)における心拍値h(t)、及び/又は心拍値の逆数である心拍間隔の時系列データ(r_t(=C/h_t):Cは定数)であっても良い。ここでは、現在の時系列データX(t)として、時系列データ(r_t)が心拍センサー等から与えられるものとする。
特徴量算出部11Aは、異なる時刻t1及びt2の時系列データr_tの差分を演算する。以下、特徴量算出部11Aは、順次、互いに異なる時刻t2・・・における時系列データr_tの差分を演算し、演算により得られた差分の列を検知処理用の特徴量の時系列データY(t)として出力する。
更に、特徴量算出部11Aは様々な所定時間区間内の時系列データr_t(数値列)の差分に加えて、様々な時間区間で算出された時系列データr_tの差分値(数値列)を算出すると共に、それらの差分値の最小値min、差分値の最大値maxを組み合わせた数値群として算出する。これら数値群は特徴量算出部11Aから心拍を示す検知処理用の特徴量の時系列データY(t)、即ち、特徴ベクトルとして不穏検知部12Aに供給される。
尚、検知処理用の特徴量時系列データである特徴ベクトルY(t)は異なる時刻t1及びt2の心拍間隔データr_tの比や、時刻t1における心拍間隔データr_1を含んでもよい。即ち、特徴量算出部11Aで算出される特徴量ベクトルは上記した時系列データに限定されないことは言うまでもない。また、既に記載したように、上記の検知処理用の特徴量の時系列データY(t)は、現在の時系列データX(t)を複数のフィルタ(バンドパスフィルタや微分フィルタなど)を用いてフィルタ処理して算出することにより得られてもよい。
図示された不穏検知部12Aは、不穏状態識別部21及び学習済識別用パラメータ記憶部22から成る。学習済識別用パラメータ記憶部22には、機械学習の学習フェーズで計算された学習済識別用パラメータ(識別用パラメータ)が記憶されている。ここでは、学習済識別用パラメータ記憶部22は、過去の生体情報の時系列データX’(t)から算出して得られた学習処理用の特徴量の時系列データY’(t)と、過去の不穏/非不穏状態を表すデータとを基に生成した学習済識別用パラメータを記憶する。尚、学習済識別用パラメータ記憶部22は図3に示すように不穏検知部12A内部に不穏状態識別部21と共に設けられても良いし、不穏検知部12Aに外付けされても良い。即ち、識別用パラメータを記憶した学習済識別用パラメータ記憶部22は単体で市販されても良い。
不穏状態識別部21は、特徴量算出部11Aから受け取った検知処理用の特徴量の時系列データY(t)と、学習済識別用パラメータ記憶部22から読み出された学習済識別用パラメータとに基づいて、対象患者の現在の不穏スコアS(t)を算出して出力する。不穏状態識別部21から出力される現在の不穏スコアは対象患者の現在の不穏/非不穏状態を表しているから、不穏状態識別部21は対象患者の現在の不穏状態を識別する動作を行っている。
また、現在の不穏/非不穏を示す不穏スコアS(t)は、不穏/非不穏のいずれかを示す2値信号(1/0)の形で出力されても良いし、両者の類似度を表す0以上かつ1以下の範囲の数値を持つスコアの形で出力されても良い。この場合、スコアの数値は、1に近い程、不穏であり、0に近い程、非不穏であることを表す。なお、現在の不穏スコアS(t)の出力の仕方は上記に限らず、不穏であることまたは不穏に近いこと、及び、非不穏であることまたは非不穏に近いことを数値として表現されていればよい。
このように、図示された不穏検知部12Aは生体情報の時間的変動と、過去に発生した問題の予兆となる時間的変動パターンとから機械学習の枠組みで、対象患者の現在の不穏/非不穏状態を判定している。換言すれば、不穏状態識別部21Aは、対象患者が現時点において不穏状態にあるか否かを人手に頼ることなく自動的に識別、判定し、対象患者の現在の不穏/非不穏状態を示す現在の不穏スコアS(t)として出力する。現在の不穏スコアS(t)が特定の値(事前に設定した閾値)よりも高い場合、すなわち対象患者が現時点において不穏状態にある場合、生体情報処理システム100Aは不穏状態通知信号として看護・介護者等にアラームとして通知する。不穏状態通知信号は音声及び/又は画像によって通知される。
次に、不穏状態識別部21の動作をより具体的に説明する。不穏状態識別部21は、例えば、特徴量算出部11Aから供給される、心拍値(或いは、心拍値の逆数)を算出して得られた検知処理用の特徴量時系列データY(t)を演算処理することによって現在の不穏スコアS(t)を生成する。具体的には、不穏状態識別部21は、検知処理用の特徴量の時系列データY(t)である特徴ベクトルを、識別用パラメータに乗算して、現在の不穏スコアS(t)を算出する。
ここでは、識別用パラメータが線形であり、係数ベクトルwで表されるとすると、
S(t)=1 (wY(t)≧0のとき)
S(t)=0 (wY(t)<0のとき)
である。
ここで、不穏状態識別部21は、現在の不穏スコアを、上記のとおり0または1の2値信号の形で出力しても良いし、0以上かつ1以下の範囲の数値で表される類似度(確率)として出力しても良い。
上記した不穏状態識別部21は、単純な線形識別を行うものとして説明したが、SVM(Support Vector Machine)、LVQ(Learning Vector Quantization)のような統計的な線形手法を機械学習手法として用いても良いし、ニューラルネットワーク(Neural Networks)のような統計的非線形手法を機械学習手法として用いてもよい。これらは一般的な手法であるため、ここでは詳細には説明しない。
図4は図3に示された学習済識別用パラメータ記憶部22に記憶される識別用パラメータを得る生体情報処理システム30を示している。即ち、機械学習における学習フェーズの動作を行う生体情報処理システム30は学習システムと呼ばれても良い。図4に示された生体情報処理システム30は、入力信号として心拍センサー等から心拍値h(t)及び/又は心拍値の逆数r(t)を受け、入力信号の時系列データと不穏/非不穏との関係を示すデータとに基づいて識別用パラメータを順次更新するものとする。この関係で、生体情報処理システム30は、心拍取得部31、心拍区間変量計算部32、及び識別用パラメータ更新部33を含んでいる。
具体的に説明すると、心拍センサー等のセンサーによって構成される心拍取得部31は、対象患者からの現在の生体情報を表す時系列データX(t)を心拍区間変量計算部32に供給する。心拍区間変量計算部32は図3に示された特徴量算出部11Aと同様な動作を行い、特徴量を表す検知処理用の時系列データY(t)を特徴ベクトルとして識別用パラメータ更新部33に供給する。
学習済識別用パラメータ記憶部22は、多数の対象患者の過去の特徴ベクトルY’(t)と、これら対象患者の過去の不穏/非不穏との関係を示す識別用パラメータを学習済識別用パラメータとして記憶している。
一方、識別用パラメータ更新部33は図3に示された不穏状態識別部21と同様な構成を備えている。即ち、識別用パラメータ更新部33は、過去の生体情報の時系列データX’(t)から算出して得られた学習処理用の特徴量の時系列データY’(t)及び過去の不穏/非不穏状態を表すデータを基に生成した学習済識別用パラメータと、対象患者の現在の生体情報から算出して得られた検知処理用の特徴量の時系列データY(t)とを所定のアルゴリズムにしたがって演算することで、新たな学習済識別用パラメータを得る。この場合、識別用パラメータ更新部33は、現在の不穏スコアS(t)と、過去の不穏/非不穏状態を表すデータとの差を最小化するような動作を行っても良い。具体的には、識別用パラメータ更新部33は、検知処理用の特徴量の時系列データY(t)、学習済識別用パラメータ、及び過去の不穏/非不穏状態を表すデータから、その係数パラメータwを更新し、更新結果を学習済識別用パラメータ記憶部22に新たな学習済識別用パラメータとして格納する。このように、学習済識別用パラメータは、学習データとして与えられる検知処理用の特徴量の時系列データY(t)及び過去の不穏/非不穏状態を表すデータの増加と共に随時更新される。この結果、蓄積されたデータが増えるにつれて、学習済識別用パラメータの識別精度は向上する。
本発明者らは、図1〜4に示された生体情報処理システムを実際に患者に適用して、患者の問題行動の発生前に対象患者である患者が不穏状態にあることを検出して、問題行動の発生の予知ができるかどうかを確認した。ここでは、患者が覚醒した後、問題行動(この場合、離床行動)に至るまでの行動と、患者の心拍の変化との関係に注目して観測した。その結果、問題行動である離床行動の30分前に心拍の区間平均値及び心拍の分散が急激に大きくなった。これによって、本発明者らは、患者が、非不穏状態から問題行動の前の状態である不穏状態に遷移したことを心拍を観測することによって見いだした。観測の結果、非不穏状態から不穏状態に遷移後、約30分経過した時に、患者は離床行動をおこしていた。
上記した患者の現在の不穏状態を、本発明に係る生体情報処理システムによって正確に且つ適切に検知することができた。このことから、本発明者らは、心拍が非不穏状態から不穏状態への遷移の指標となり、問題行動の発生の予知に有効であることを確認した。
図1乃至図3では、時刻t(t=1・・・,T)の心拍間隔r_t(心拍値h_tの逆数)の時系列データから、複数個の特徴量(特徴ベクトル)を算出する場合について説明した。しかしながら、本発明はこの算出方法に限定されない。例えば、心拍値h_tの時系列データから算出される複数個の値を、心拍値を表す特徴量として使用しても良い。この場合、特徴量算出部は、過去一定時間内の心拍h_tを使用して、異なる時刻のh_t値の差分(時刻の間隔は複数パターンあり)h_t1 - h_t2を算出する。また、特徴量算出部は、過去一定時間内の最小値min(h_t)及び最大値max(h_t)を算出する。
続いて、不穏検知部(不穏状態識別部)は、これらの特徴量(数値列)を表す検知処理用の時系列データY(t)と識別用パラメータとを用いて、現在の不穏スコアを算出し、不穏/非不穏の2パターンを識別する。
上記のr_tとh_tについては、特徴量を計算する前に正規化処理が行われても良い。この場合、過去の一定時間内のr_tの平均値をr_m、一定時間内の標準偏差値をr_sとすると、
r_t' = (r_t - r_m)/r_s; (1)
過去の一定時間内のh_tの平均値をh_m、一定時間内の標準偏差値をh_sとすると
h_t' = (h_t - h_m)/h_s; (2)
上記した式(1)及び(2)により、正規化された平均値r_t’及び標準偏差値h_t’が得られる。
このように、正規化処理された特徴量(特徴ベクトル)を使用することにより、単に患者個人の問題行動の発生を予知できるだけでなく、複数の患者に対する問題行動に対する一般的な指標を与えることができる。また、正規化処理によって、特定の患者であっても生体情報の日中変動を抑制することができる。なお、正規化処理についても他の処理と同様に、検知処理用の特徴量の時系列データY(t)を正規化フィルタを用いてフィルタ処理して算出してもよい。
図1〜4では、心拍の時系列的な変化量を利用して、非不穏状態から不穏状態への遷移を検出し、問題行動の発生を予知できることを説明した。他の手法として、心電図の心電波形を利用することによっても同様に非不穏状態から不穏状態への遷移を検出できる。例えば、心電図には、前述したように、P波、Q波、R波、S波、及びT波等複数の波形が含まれている。心電図に含まれる各種の波形のうち、心拍を表すRR間隔以外の特徴的な変動量、例えば、PQ時間、QRS幅、QT時間等を時系列的に観測・記録しておき、これらの変動量と患者の過去の不穏/非不穏の関係を機械学習にかけておいても良い。この手法によっても、不穏検知部12、12Aは現在の不穏/非不穏状態を示す現在の不穏スコアを算出し、不穏状態通知信号として出力することも可能である。尚、心電図のPQ時間を用いる場合、例えば、複数のPQ時間を収集しておき、不穏検知部12、12Aが収集されたPQ時間の畳み込み演算を行うことによって、患者の非不穏状態から不穏状態への遷移を問題行動の発生前に検出できる。
この場合においても、上記した特徴的な変動量と過去の不穏/非不穏の相関関係が機械学習の手法によって識別用パラメータとして予め作成され得る。不穏検知部12、12Aは、入力された検知処理用の特徴量の時系列データと、識別用パラメータとに基づいて、現在の不穏スコアを算出し、算出して得られた現在の不穏スコアを患者の非不穏状態から不穏状態への遷移情報として出力できる。このように、この実施形態では、患者が不穏状態にあることを当該患者の問題行動の発生前に検知して、問題行動の発生前に看護・介護者に通知できる。
更に、上記した実施形態は、生体情報として心拍に関する情報を用いて現在の不穏/非不穏状態を示す現在の不穏スコアを得る例について主に説明した。しかしながら、本発明は、心拍以外の生体情報、例えば、呼吸、血圧、深部体温、意識レベル、皮膚体温、皮膚コンダクタンス反応、皮膚電位、筋電位、心電波形、脳波波形、発汗量、血中酸素飽和度、脈波波形、光脳機能マッピング、尿量、及び瞳孔の反射等の生体情報を用いた場合にも同様に適用できる。
更に、学習済識別用パラメータを生成する手法としては、SVM、LVQ等の統計的な線形識別手法、ニューラルネットワーク等の統計的な非線形識別手法を用いても良い。
図5を参照して、本発明の第2の実施形態に係る生体情報処理システム100Bについて説明する。本発明者等の観測によれば、患者の問題行動は、種々の要因によって発生することが判明した。例えば、患者は、24時間以内に家族など同居していた人物と面会した場合に、帰宅を希望したがることが多く、面会に起因して患者は問題行動を起こす場合がある。即ち、患者の問題行動は電子カルテに記載された情報だけに起因して発生する訳ではない。
このように、電子カルテに記載されていない情報、例えば、面会の有無を表す情報を利用することによっても患者の問題行動の発生を予知できる場合がある。
更に、上述した情報(心拍に関する情報、電子カルテに記載された情報、および面会の有無を表す情報)に、以下の付加情報(A1〜A7)を組み合わせることによっても患者の問題行動の発生を予知できる場合がある。
A1.看護記録(電子カルテの一部)にある定期的な問題行動アセスメントシートのチェック項目。
A2.「せん妄」のアセスメント指標。
A3.同室の他の入院患者、担当看護・介護者が誰か、という情報。
A4.鎮静系睡眠系薬剤の種類、投与からの経過時間、薬剤の半減期、体重、年齢の情報。
A5.心拍以外の生体センサーからわかる生体情報(例えば、体動量、皮膚体温、発汗量、血圧、筋電位、呼吸数)の変化パターン。
A6.カメラ映像からわかる人体の姿勢や動きの量。例えば、カメラ映像からわかる人体の動きのうち、手で顔に触れた回数。カメラ映像からわかる人体の動きのうち、手で腕に触れた回数。
A7.マイクからわかる対象患者の発声。例えば、対象患者の叫びや独り言。
図5に示された生体情報処理システム100Bは、上記A1〜A7に係る付加情報を組み合わせることにより、問題行動の発生を予知している。図示された生体情報処理システム100Bは心拍区間変量計算部41及び不穏状態識別部42を備える。心拍区間変量計算部41は図4に示された心拍区間変量計算部32と同様な処理を行い、対象患者からの心拍に関する現在の時系列データX(t)を受け、特徴量をあらわす検知処理用の時系列データY(t)を不穏状態識別部42に供給する。この場合、心拍区間変量計算部41は、異なる時間における最小値min(r_t)及び最大値max(r_t)の平均値m1及びm2の変動量及び区間1及び2内の分散の変動量s1及びs2等を、検知処理用の特徴量を表す時系列データY(t)として不穏状態識別部42に供給しても良い。
更に、図示された不穏状態識別部42には、上記A1〜A7に係る付加情報も検知処理用の特徴量を表す時系列データY(t)として与えられている。即ち、不穏状態識別部42には、心拍区間変量計算部41からの計算結果だけでなく、上記A1〜A7から選択された付加情報も与えられている。
具体的に説明すると、生体情報処理システム100Bは、同居者等との面会記録の有無を示す面会記録部401、せん妄指標記録部402、血圧記録部403、人体動き量記録部404、及び鎮静系薬剤血中濃度記録部405を含み、各部からのデータが検知処理用の特徴量を表す時系列データY(t)として不穏状態識別部42に与えられている。
面会記録部401には、患者の面会の有無を示す2値データ及び面会時間が応対記録情報として記録されている。また、せん妄指標記録部402には、患者のせん妄指標が記録されている。血圧記録部403には、拡張期血圧及び収縮期血圧と、計測時間が記録されている。せん妄指標は、上記特許文献4に記載された、せん妄スコアであっても良い。
更に、人体動き量記録部404には、カメラ等の画像から得られた患者の動き量が記録されている。鎮静系薬剤血中濃度記録部405には、患者の体重から計算された薬剤の半減期が記録されている。
ここで、面会記録部401、せん妄指標記録部402、血圧記録部403、人体動き量記録部404、及び鎮静系薬剤血中濃度記録部405からの情報は、以下では付加情報と呼ぶものとする。これら付加情報は選択的に或いは組み合わせて不穏状態識別部42に与えられる。即ち、不穏識別部42に与えられる付加情報は、患者の応対記録情報、薬剤の投与記録情報、体重情報、及び年齢情報の全てを含む必要はなく、少なくとも一つを含めば良い。また、付加情報は、上記記録部401〜405に記録された情報以外の上記A1〜A7に係る付加情報(同室入院患者情報や、体温、発声など)を含んでもよい。
不穏状態識別部42は、心拍区間変量計算部41からの計算結果だけでなく、上記記録部401〜405からの付加情報にも基づいて現在の不穏スコアを算出し、現在の不穏/非不穏状態を示す不穏状態通知信号を出力する。この場合、不穏状態識別部42は、心拍に関する検知処理用の時系列データY(t)だけでなく、付加情報に関する検知処理用の時系列データをも特徴ベクトルとして受け、これら特徴ベクトルと過去の不穏/非不穏に関するデータに基づいて事前に学習された識別用パラメータとに基づいて、現在の不穏スコアを算出する。
この場合、心拍区間変量計算部41からの検知処理用の時系列データは必ずしも使用されなくても良く、例えば、付加情報のみによって対象患者の現在の不穏/非不穏状態が決定されても良い。この場合、不穏状態識別部42は、付加情報を特徴ベクトルとして受け、付加情報に関する特徴ベクトルと、過去の不穏/非不穏に関するデータに基づいて事前に作成されたモデル(識別パラメータ)とにしたがって現在の不穏スコアを算出する。
図5に示された生体情報処理システム100Bは、対象患者本人に特化した不穏スコアを得ることが可能である。更に、当該対象患者の不穏スコアを他の患者における不穏スコアと比較し、問題行動の発生しやすい患者を順位付けしておくことも可能である。これによって、看護・介護者は問題行動の発生しやすい患者から順に対処することができ、看護・介護者に対する負担等を大幅に軽減できる。
また、不穏状態識別部42からの不穏スコアによって対象患者が不穏状態であることが通知された場合、対象患者の映像を看護・介護者等が保有する携帯端末のモニタやナースステーションにあるモニタに表示すれば、看護・介護者は対象患者の様子を目視確認できる。このため、不穏状態識別部42から誤って不穏状態通知信号が出力されるような場合であっても、看護・介護者は目視確認後に対象患者に対する対処を行うことができる。このため、看護・介護者の作業負担を更に軽減できる。
尚、患者の生体情報をセンシングするセンサーとしては接触型或いは非接触型センサーを用いることができる。例えば、心拍(脈拍)を検出するセンサーとしては、腕時計型センサーであっても良いし、胸部貼付型センサーであってもよいし、カメラの映像等によって非接触で心拍を検出するセンサーであっても良い。
図4では、対象患者の生体情報として、心拍に関する情報を用いて、学習済識別用パラメータを生成する場合について主に説明したが、本発明は何等これに限定されず、心拍以外の生体情報を用いても同様に学習済識別用パラメータを得ることができる。
図6を参照すると、心拍以外の生体情報を機械学習することによって、識別用パラメータを得る生体情報処理システム(学習システム)60が示されている。図示された学習システム60は生体情報取得部61、特徴量計算部62、識別用パラメータ更新部63、及び学習済識別用パラメータ記憶部64を備える。ここでは、学習ステージで動作する場合について説明する。
生体情報取得部61は、多数の対象患者の呼吸、血圧、深部体温、意識レベル、皮膚体温、皮膚コンダクタンス反応、皮膚電位、筋電位、心電波形、脳波波形、発汗量、血中酸素飽和度、脈波波形、光脳機能マッピング、尿量、及び瞳孔の反射等の少なくとも一つをセンシングするセンサーによって構成されている。生体情報取得部61からの現在の時系列データは特徴量計算部62に与えられる。当該特徴量計算部62は入力された生体情報に応じた検知処理用の特徴量を表す時系列データを生成する。識別用パラメータ更新部63は、検知処理用の特徴量を表す時系列データと過去の不穏/非不穏との関係を表すデータとの関係に基づいて学習済識別用パラメータを生成し、学習済識別用パラメータ記憶部64に格納する。
上記したように、学習済識別用パラメータを学習済識別用パラメータ記憶部64に格納した生体情報処理システム60は、図1と同様に、不穏スコアを不穏状態通知信号として出力する生体情報処理システムとしても利用できる。
この場合、図6に示された識別用パラメータ更新部63は図4に示された識別用パラメータ更新部33と同様である。この例の場合、生体情報取得部61は対象患者からの現在の生体情報から対象となる生体情報の現在の時系列データを得、特徴量計算部62は検知処理用の特徴量を表す時系列データを生成する。以後、検知処理用の特徴量を表す時系列データは、学習済識別用パラメータ記憶部64から読み出された識別用パラメータに乗算され、現在の不穏スコアが算出される。
[生体情報処理システムのハードウエア構成]
上述の生体情報処理システム100A及び生体情報処理システム100Bは、ハードウエアによって実現してもよいし、ソフトウエアによって実現してもよい。また、生体情報処理システム100A及び生体情報処理システム100Bは、ハードウエアとソフトウエアの組み合わせによって実現してもよい。
図7は、生体情報処理システム100A及び生体情報処理システム100Bを構成する情報処理装置(コンピュータ)の一例を示すブロック図である。
図7に示すように、情報処理装置500は、制御部(CPU:Central Processing Unit)510と、記憶部520と、ROM(Read Only Memory)530と、RAM(Random Access Memory)540と、通信インターフェース550と、ユーザインターフェース560とを備えている。
制御部(CPU)510は、記憶部520またはROM530に格納されたプログラムをRAM540に展開して実行することで、生体情報処理システム100A及び生体情報処理システム100Bの各種の機能を実現することができる。また、制御部(CPU)510は、データなどを一時的に格納できる内部バッファを備えていてもよい。
記憶部520は、各種のデータを保持できる大容量の記憶媒体であって、HDD(Hard Disk Drive)及びSSD(Solid State Drive)などの記憶媒体で実現することができる。また、記憶部520は、情報処理装置500が通信インターフェース550を介して通信ネットワークと接続されている場合には、通信ネットワーク上に存在するクラウドストレージであってもよい。また、記憶部520は、制御部(CPU)510が読み取り可能なプログラムを保持していてもよい。
ROM530は、記憶部520と比べると小容量なフラッシュメモリなどで構成できる不揮発性の記憶装置である。また、ROM530は、制御部(CPU)510が読み取り可能なプログラムを保持していてもよい。なお、制御部(CPU)510が読み取り可能なプログラムは、記憶部520及びROM530の少なくとも一方が保持していればよい。
なお、制御部(CPU)510が読み取り可能なプログラムは、コンピュータが読み取り可能な様々な記憶媒体に非一時的に格納した状態で、情報処理装置400に供給されてもよい。このような記憶媒体は、例えば、磁気テープ、磁気ディスク、光磁気ディスク、CD−ROM(Compact Disc-Read Only Memory)、CD−R(Compact Disc- Recordable)、CD−RW(Compact Disc-ReWritable)、半導体メモリである。
RAM440は、DRAM(Dynamic Random Access Memory)及びSRAM(Static Random Access Memory)などの半導体メモリであり、データなどを一時的に格納する内部バッファとして用いることができる。
通信インターフェース550は、有線または無線を介して、情報処理装置500と、通信ネットワークとを接続するインターフェースである。
ユーザインターフェース560は、例えば、ディスプレイなどの表示部、及びキーボード、マウス、タッチパネルなどの入力部である。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出する特徴量算出部と、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知する不穏検知部と、を有する、生体情報処理システム。
(付記2)前記識別用パラメータを記憶する記憶部を有し、前記記憶部は、不穏状態における生体情報から得られる第1の学習処理用の特徴量時系列データと、非不穏状態における生体情報から得られる第2の学習処理用の特徴量時系列データと、に基づいて算出される前記識別用パラメータを記憶する、付記1記載の生体情報処理システム。
(付記3)前記不穏検知部は、前記特徴量算出部からの前記検知処理用の特徴量時系列データと前記識別用パラメータとを用いて、前記対象患者の前記現在の不穏スコアを算出する、付記1または2に記載の生体情報処理システム。
(付記4)前記不穏検知部は、前記特徴量算出部からの前記検知処理用の特徴量時系列データを前記識別用パラメータに乗算することによって、前記対象患者の前記現在の不穏スコアを算出する、付記3に記載の生体情報処理システム。
(付記5)前記識別用パラメータは機械学習手法によって得られた線形パラメータ又は非線形パラメータである、付記1〜4のいずれか1項に記載の生体情報処理システム。
(付記6)前記生体情報が心拍、呼吸、血圧、体温、意識レベル、皮膚温度、皮膚コンダクタンス反応、心電波形、及び脳波波形を含む群から選択された情報である、付記1〜5のいずれか1項に記載の生体情報処理システム。
(付記7)前記不穏検知部は、前記検知処理用の特徴量時系列データに加えて前記対象患者に関する付加情報をも用いて、前記対象患者の現在の不穏状態を検知する、付記1〜6のいずれか1項に記載の生体情報処理システム。
(付記8)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出する特徴量算出部と、事前に取得した識別用パラメータを記憶する識別用パラメータ記憶部と;前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新する識別用パラメータ更新部と、を有する、生体情報処理システム。
(付記9)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出し、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知する、生体情報処理方法。
(付記10)不穏状態における生体情報から得られる第1の学習処理用の特徴量時系列データと、非不穏状態における生体情報から得られる第2の学習処理用の特徴量時系列データと、に基づいて前記識別用パラメータを算出する、付記9に記載の生体情報処理方法。
(付記11)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出し、事前に取得した識別用パラメータを識別用パラメータ記憶部に記憶し、前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新して、前記識別用パラメータ記憶部に記憶させる、生体情報処理方法。
(付記12)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知するステップを、コンピュータに実行させるコンピュータプログラムを記録した記録媒体。
(付記13)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、事前に取得した識別用パラメータを識別用パラメータ記憶部に記憶するステップと、前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新して、前記識別用パラメータ記憶部に記憶させるステップを、コンピュータに実行させるコンピュータプログラムを記録した記録媒体。
本発明に係る生体情報処理システムは救急病院、リハビリ病院、介護施設等において利用することによって患者を介護する看護・介護者等の負担、労力を大幅に軽減できる。
この出願は、2017年8月30日に出願された日本出願特願2017−165605を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100、100A、100B 生体情報処理システム
11、11A 特徴量算出部
12、12A 不穏検知部
21 不穏状態識別部
22 学習済識別用パラメータ記憶部
30 生体情報処理システム(学習システム)
31 心拍取得部
32 心拍区間変量計算部
33 識別用パラメータ更新部
41 心拍区間変量計算部
42 不穏状態識別部
401 面会記録部
402 せん妄指標記録部
403 血圧記録部
404 人体動き量記録部
405 鎮静系薬剤血中濃度記録部
60 生体情報処理システム(学習システム)
61 生体情報取得部
62 特徴量計算部
63 識別用パラメータ更新部
64 学習済識別用パラメータ記憶部
500 情報処理装置
510 制御部(CPU)
520 記憶部
530 ROM
540 RAM
550 通信インターフェース
560 ユーザインターフェース
本発明は生体情報処理システム、生体情報処理方法、及びコンピュータプログラムに関する。
特開2011−120874号公報 特開2016−22310号公報 特開2013−154190号公報 特表2014−528314号公報
本発明の他の目的は、生体情報処理システムに使用できるコンピュータプログラムを提供することである。
本発明の第4の態様によれば、入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知するステップを、コンピュータに実行させるコンピュータプログラムが得られる。
このように、図示された不穏検知部12Aは生体情報の時間的変動と、過去に発生した問題の予兆となる時間的変動パターンとから機械学習の枠組みで、対象患者の現在の不穏/非不穏状態を判定している。換言すれば、不穏状態識別部21は、対象患者が現時点において不穏状態にあるか否かを人手に頼ることなく自動的に識別、判定し、対象患者の現在の不穏/非不穏状態を示す現在の不穏スコアS(t)として出力する。現在の不穏スコアS(t)が特定の値(事前に設定した閾値)よりも高い場合、すなわち対象患者が現時点において不穏状態にある場合、生体情報処理システム100Aは不穏状態通知信号として看護・介護者等にアラームとして通知する。不穏状態通知信号は音声及び/又は画像によって通知される。
生体情報取得部61は、多数の対象患者の呼吸、血圧、深部体温、意識レベル、皮膚体温、皮膚コンダクタンス反応、皮膚電位、筋電位、心電波形、脳波波形、発汗量、血中酸素飽和度、脈波波形、光脳機能マッピング、尿量、及び瞳孔の反射等の少なくとも一つをセンシングするセンサーによって構成されている。生体情報取得部61からの現在の時系列データは特徴量計算部62に与えられる。当該特徴量計算部62は入力された生体情報に応じた検知処理用の特徴量を表す時系列データを生成する。識別用パラメータ更新部63は、検知処理用の特徴量を表す時系列データと過去の不穏/非不穏を表すデータとの間の関係に基づいて学習済識別用パラメータを生成し、学習済識別用パラメータ記憶部64に格納する。
なお、制御部(CPU)510が読み取り可能なプログラムは、コンピュータが読み取り可能な様々な記憶媒体に非一時的に格納した状態で、情報処理装置500に供給されてもよい。このような記憶媒体は、例えば、磁気テープ、磁気ディスク、光磁気ディスク、CD−ROM(Compact Disc-Read Only Memory)、CD−R(Compact Disc- Recordable)、CD−RW(Compact Disc-ReWritable)、半導体メモリである。
RAM540は、DRAM(Dynamic Random Access Memory)及びSRAM(Static Random Access Memory)などの半導体メモリであり、データなどを一時的に格納する内部バッファとして用いることができる。
(付記12)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知するステップを、コンピュータに実行させるコンピュータプログラム。
(付記13)入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、事前に取得した識別用パラメータを識別用パラメータ記憶部に記憶するステップと、前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新して、前記識別用パラメータ記憶部に記憶させるステップを、コンピュータに実行させるコンピュータプログラム。

Claims (13)

  1. 入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出する特徴量算出部と、
    事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知する不穏検知部と、
    を有する、生体情報処理システム。
  2. 前記識別用パラメータを記憶する記憶部を有し、
    前記記憶部は、不穏状態における生体情報から得られる第1の学習処理用の特徴量時系列データと、非不穏状態における生体情報から得られる第2の学習処理用の特徴量時系列データと、に基づいて算出される前記識別用パラメータを記憶する、
    請求項1記載の生体情報処理システム。
  3. 前記不穏検知部は、前記特徴量算出部からの前記検知処理用の特徴量時系列データと前記識別用パラメータとを用いて、前記対象患者の前記現在の不穏スコアを算出する、請求項1または2に記載の生体情報処理システム。
  4. 前記不穏検知部は、前記特徴量算出部からの前記検知処理用の特徴量時系列データを前記識別用パラメータに乗算することによって、前記対象患者の前記現在の不穏スコアを算出する、請求項3に記載の生体情報処理システム。
  5. 前記識別用パラメータは機械学習手法によって得られた線形パラメータ又は非線形パラメータである、請求項1〜4のいずれか1項に記載の生体情報処理システム。
  6. 前記生体情報が心拍、呼吸、血圧、体温、意識レベル、皮膚温度、皮膚コンダクタンス反応、心電波形、及び脳波波形を含む群から選択された情報である、請求項1〜5のいずれか1項に記載の生体情報処理システム。
  7. 前記不穏検知部は、前記検知処理用の特徴量時系列データに加えて前記対象患者に関する付加情報をも用いて、前記対象患者の現在の不穏状態を検知する、請求項1〜6のいずれか1項に記載の生体情報処理システム。
  8. 入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出する特徴量算出部と、
    事前に取得した識別用パラメータを記憶する識別用パラメータ記憶部と、
    前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新する識別用パラメータ更新部と、
    を有する、生体情報処理システム。
  9. 入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出し、
    事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知する、生体情報処理方法。
  10. 不穏状態における生体情報から得られる第1の学習処理用の特徴量時系列データと、非不穏状態における生体情報から得られる第2の学習処理用の特徴量時系列データと、に基づいて前記識別用パラメータを算出する、請求項9に記載の生体情報処理方法。
  11. 入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出し、
    事前に取得した識別用パラメータを識別用パラメータ記憶部に記憶し、
    前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新して、前記識別用パラメータ記憶部に記憶させる、生体情報処理方法。
  12. 入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、
    事前に取得した識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記対象患者の現在の不穏スコアを算出し、前記対象患者の問題行動前に、前記対象患者の現在の不穏状態を検知するステップを、コンピュータに実行させるコンピュータプログラムを記録した記録媒体。
  13. 入力される対象患者の生体情報から当該対象患者に関する特徴量を示す検知処理用の特徴量時系列データを算出するステップと、
    事前に取得した識別用パラメータを識別用パラメータ記憶部に記憶するステップと、
    前記識別用パラメータに基づいて、前記検知処理用の特徴量時系列データを処理し、前記識別用パラメータを更新して、前記識別用パラメータ記憶部に記憶させるステップを、コンピュータに実行させるコンピュータプログラムを記録した記録媒体。

JP2019539407A 2017-08-30 2018-08-22 生体情報処理システム、生体情報処理方法、及びコンピュータプログラム Active JP7108267B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017165605 2017-08-30
JP2017165605 2017-08-30
PCT/JP2018/030970 WO2019044619A1 (ja) 2017-08-30 2018-08-22 生体情報処理システム、生体情報処理方法、及びコンピュータプログラム記録媒体

Publications (2)

Publication Number Publication Date
JPWO2019044619A1 true JPWO2019044619A1 (ja) 2020-10-01
JP7108267B2 JP7108267B2 (ja) 2022-07-28

Family

ID=65527277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019539407A Active JP7108267B2 (ja) 2017-08-30 2018-08-22 生体情報処理システム、生体情報処理方法、及びコンピュータプログラム

Country Status (3)

Country Link
US (1) US20200265950A1 (ja)
JP (1) JP7108267B2 (ja)
WO (1) WO2019044619A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200303046A1 (en) * 2019-02-22 2020-09-24 Aerial Technologies Inc. Wi-fi-based condition monitoring
US11800993B2 (en) * 2019-06-28 2023-10-31 Hill-Rom Services, Inc. Exit monitoring system for patient support apparatus
WO2021016112A2 (en) 2019-07-19 2021-01-28 Bioxcel Therapeutics, Inc. Non-sedating dexmedetomidine treatment regimens
CA3154659A1 (en) * 2019-09-18 2021-03-25 Bioxcel Therapeutics, Inc. Systems and methods for detection and prevention of emergence of agitation
JP7477813B2 (ja) * 2019-11-26 2024-05-02 日本電気株式会社 環境管理システム、環境管理方法およびプログラム
JP2023513306A (ja) * 2020-02-14 2023-03-30 バイオエクセル セラピューティクス,インコーポレイテッド 激越の出現を検出及び防止するためのシステム及び方法
JPWO2022059142A1 (ja) * 2020-09-17 2022-03-24
US20240285203A1 (en) 2020-09-17 2024-08-29 Nec Corporation Determination apparatus
US20230346317A1 (en) * 2020-09-17 2023-11-02 Nec Corporation Determination apparatus
US20240312628A1 (en) * 2021-03-29 2024-09-19 Nec Corporation Learning device, determination device, method for generating trained model, and recording medium
WO2023137400A1 (en) * 2022-01-12 2023-07-20 CeriBell, Inc. Systems and methods for detection of delirium and other neurological conditions
WO2023136336A1 (ja) * 2022-01-14 2023-07-20 住友ファーマ株式会社 診断支援システム、診断支援方法、及び診断支援プログラム
US11806334B1 (en) 2023-01-12 2023-11-07 Bioxcel Therapeutics, Inc. Non-sedating dexmedetomidine treatment regimens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079328A (ja) * 2004-09-09 2006-03-23 Keakomu:Kk 行動予測システム
JP2012502342A (ja) * 2008-09-10 2012-01-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 離床警報システム
JP2013240601A (ja) * 2012-05-22 2013-12-05 Hill-Rom Services Inc 使用者離床予測システム、方法および装置
JP2014147596A (ja) * 2013-02-01 2014-08-21 Daikin Ind Ltd 離床予測装置
WO2016120955A1 (ja) * 2015-01-26 2016-08-04 株式会社Ubic 行動予測装置、行動予測装置の制御方法、および行動予測装置の制御プログラム
JP2016526953A (ja) * 2013-06-06 2016-09-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 患者が安全領域を離れるリスクを決定する方法及び装置
JP2017038924A (ja) * 2015-08-19 2017-02-23 パロ アルト リサーチ センター インコーポレイテッド 双方向の遠隔的な患者監視および状態管理介入システム
WO2017096358A1 (en) * 2015-12-04 2017-06-08 University Of Iowa Research Foundation Apparatus, systems and methods for predicting, screening and monitoring of encephalopathy / delirium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10136856B2 (en) * 2016-06-27 2018-11-27 Facense Ltd. Wearable respiration measurements system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079328A (ja) * 2004-09-09 2006-03-23 Keakomu:Kk 行動予測システム
JP2012502342A (ja) * 2008-09-10 2012-01-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 離床警報システム
JP2013240601A (ja) * 2012-05-22 2013-12-05 Hill-Rom Services Inc 使用者離床予測システム、方法および装置
JP2014147596A (ja) * 2013-02-01 2014-08-21 Daikin Ind Ltd 離床予測装置
JP2016526953A (ja) * 2013-06-06 2016-09-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 患者が安全領域を離れるリスクを決定する方法及び装置
WO2016120955A1 (ja) * 2015-01-26 2016-08-04 株式会社Ubic 行動予測装置、行動予測装置の制御方法、および行動予測装置の制御プログラム
JP2017038924A (ja) * 2015-08-19 2017-02-23 パロ アルト リサーチ センター インコーポレイテッド 双方向の遠隔的な患者監視および状態管理介入システム
WO2017096358A1 (en) * 2015-12-04 2017-06-08 University Of Iowa Research Foundation Apparatus, systems and methods for predicting, screening and monitoring of encephalopathy / delirium

Also Published As

Publication number Publication date
WO2019044619A1 (ja) 2019-03-07
US20200265950A1 (en) 2020-08-20
JP7108267B2 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
JP7108267B2 (ja) 生体情報処理システム、生体情報処理方法、及びコンピュータプログラム
van Andel et al. Non-EEG based ambulatory seizure detection designed for home use: What is available and how will it influence epilepsy care?
US9801553B2 (en) System, method, and computer program product for the real-time mobile evaluation of physiological stress
JP6010558B2 (ja) 患者の悪化の検出
EP3429456B1 (en) A method and apparatus for determining a baseline for one or more physiological characteristics of a subject
JP7057592B2 (ja) 生体情報処理システム、生体情報処理方法、および生体情報処理プログラム
US20150272500A1 (en) Comfortable and personalized monitoring device, system, and method for detecting physiological health risks
KR20190105163A (ko) 인공지능 기반의 환자상태 예측 장치 및 이를 이용한 환자상태 예측 방법
RU2657384C2 (ru) Способ и система неинвазивной скрининговой оценки физиологических параметров и патологий
CN108175382B (zh) 基于cpc的非接触式睡眠评估方法及装置
CN105593860B (zh) 用于确定复合评分分布的装置和患者健康状态确定器
Yeo et al. Respiratory event detection during sleep using electrocardiogram and respiratory related signals: Using polysomnogram and patch-type wearable device data
Nuksawn et al. Real-time sensor-and camera-based logging of sleep postures
KR102119805B1 (ko) 수면 모니터링 및 코칭을 위한 생체정보 측정 시스템 및 방법
EP3577653A1 (en) Method and system for detection of atrial fibrillation
WO2020047539A1 (en) System and method for network analysis of a patient's neuro-cardio-respiratory system
Hamlin et al. Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor data
JP7140264B2 (ja) 異常判定装置、その動作方法、及びプログラム
Panagiotou et al. A multi: modal decision making system for an ambient assisted living environment
Mathur et al. Body Sensor-Based Multimodal Nurse Stress Detection Using Machine Learning
Lakudzode et al. Review on human stress monitoring system using wearable sensors
JP7238910B2 (ja) 生体情報処理装置、方法、及びプログラム
Sujin et al. Public e-health network system using arduino controller
EP4385402A1 (en) Hypnodensity-based sleep apnea monitoring system and method of operation thereof
US20230337924A1 (en) State information determination method and device, control method and device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211117

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211124

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220114

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220118

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220202

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220510

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220615

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220707

R150 Certificate of patent or registration of utility model

Ref document number: 7108267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150