JPWO2019044474A1 - Decolorized tea extract and method for producing the same - Google Patents

Decolorized tea extract and method for producing the same Download PDF

Info

Publication number
JPWO2019044474A1
JPWO2019044474A1 JP2019539321A JP2019539321A JPWO2019044474A1 JP WO2019044474 A1 JPWO2019044474 A1 JP WO2019044474A1 JP 2019539321 A JP2019539321 A JP 2019539321A JP 2019539321 A JP2019539321 A JP 2019539321A JP WO2019044474 A1 JPWO2019044474 A1 JP WO2019044474A1
Authority
JP
Japan
Prior art keywords
tea
tea extract
extract
less
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019539321A
Other languages
Japanese (ja)
Other versions
JP6993418B2 (en
Inventor
瑞 田村
瑞 田村
紋佳 橋田
紋佳 橋田
風雷 陳
風雷 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Publication of JPWO2019044474A1 publication Critical patent/JPWO2019044474A1/en
Application granted granted Critical
Publication of JP6993418B2 publication Critical patent/JP6993418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/18Extraction of water soluble tea constituents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/30Further treatment of dried tea extract; Preparations produced thereby, e.g. instant tea

Abstract

【課題】ニアウォーターやフレーバードウォーター様の飲料を調製する上で、着色することなく茶葉に由来する風味、特に呈味を該飲料に付与することのできる茶抽出液および当該茶抽出液の使用、例えば茶飲料を提出すること。【解決手段】以下の工程(A)〜(E)を含んでなる、脱色された茶抽出液の製造方法。(A)茶葉および水を混合する工程(B)工程(A)の後、配糖体分解酵素を作用させる工程(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程、(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程を含んでなる、脱色された茶抽出液の製造方法、並びに当該茶抽出液に、必要によりビタミンCを添加した後加水して茶飲料、特に、容器詰茶飲料の製造方法、さらには、前記脱色された茶抽出液、並びに前記容器詰茶飲料が開示される。PROBLEM TO BE SOLVED: To prepare a near-water or flavored water-like beverage, and a tea extract capable of imparting a flavor derived from tea leaves, particularly a taste, to the beverage without coloring, and use of the tea extract. , Submit tea drinks, for example. A method for producing a decolorized tea extract, comprising the following steps (A) to (E): (A) After the step (B) of mixing tea leaves and water, the step (A) of reacting a glycoside-degrading enzyme, the step (C) of the step (B) of separating tea leaves from the extract, Step (D) of obtaining a glycoside enzyme-treated tea extract, a step of heat-treating the glycoside enzyme-treated tea extract obtained in the step (C), and (E) a heated glycoside obtained in a step (D) A method for producing a decolorized tea extract, which comprises a step of removing insoluble components from an enzyme-treated tea extract to obtain a decolorized tea extract, and vitamin C was added to the tea extract if necessary. Disclosed is a method for producing a tea beverage after post-hydration, particularly a packaged tea beverage, and further, the decolorized tea extract and the packaged tea beverage.

Description

本発明は、脱色された茶抽出液およびその製造方法に関する。さらに詳しくは、色が薄いにもかかわらず、茶本来の良好な香気、旨味および苦渋味を有する茶抽出液および茶葉の配糖体分解酵素処理工程を含むその製造方法に関する。 The present invention relates to a decolorized tea extract and a method for producing the same. More specifically, the present invention relates to a tea extract having a good aroma, umami and bitterness inherent to tea despite its light color, and a method for producing the same, which includes a step of treating a tea leaf with a glycoside degrading enzyme.

近年、容器詰飲料に対する消費者の嗜好性の多様化により、無色透明な容器にほぼ無色透明の飲料を充填した容器詰飲料が市場に多く見られる。このような飲料はニアウォーターやフレーバードウォーターなどとも呼ばれ、外観の無色透明感が重要な要素の一つとなる。このようなほぼ無色透明の飲料には、レモン、オレンジ、みかんなどの柑橘の風味、ぶどう、りんご、桃などのソフトフルーツの風味、ヨーグルトなどの発酵乳の風味を有するものがみられるが、茶の風味を有するものはあまり見られない。 In recent years, due to the diversification of consumers' preference for packaged beverages, there are many marketed packaged beverages in which colorless and transparent containers are filled with almost colorless and transparent beverages. Such beverages are also called near water and flavored water, and the colorless and transparent appearance is one of the important factors. Some of these almost colorless and transparent beverages have citrus flavors such as lemons, oranges and tangerines, soft fruit flavors such as grapes, apples and peaches, and fermented milk flavors such as yogurt. There are not many things that have the flavor of.

茶の風味は茶の香気を有する香料(調合香料または天然香料)のみによってもある程度再現は可能であるが、茶の本物感を感じさせるためには、茶由来の水溶性成分を配合することにより、より好ましい風味を付与することが可能となる。 The flavor of tea can be reproduced to some extent only with a flavor having a tea fragrance (prepared flavor or natural flavor), but in order to make tea feel like it is, by adding a water-soluble ingredient derived from tea. It becomes possible to impart a more preferable flavor.

一方、茶抽出液は、通常着色しており、茶抽出液を風味が付与される程度の量配合しようとすると、飲料全体が淡緑色〜淡褐色に着色してしまう。 On the other hand, the tea extract is usually colored, and if an attempt is made to add the tea extract in an amount such that flavor is imparted, the entire beverage will be colored in light green to light brown.

茶抽出液を脱色する発明としては、例えば茶抽出液を陽イオン交換樹脂処理により金属イオンを除去した後、微小濾過膜で濾過して処理液を得る方法(特許文献1)が知られているが、陽イオン交換樹脂処理により、旨味成分であるアミノ酸も除かれてしまうという欠点がある。 As an invention for decolorizing a tea extract, for example, a method is known in which a tea extract is treated with a cation exchange resin to remove metal ions and then filtered through a microfiltration membrane to obtain a treated liquid (Patent Document 1). However, there is a drawback in that the cation exchange resin treatment also removes the amino acid that is the umami component.

脱色方法としては一般的に、活性炭などの吸着材による処理が知られており、茶についても各種吸着剤処理による処理技術が知られている。特許文献2には茶類の抽出時および/または抽出後に活性炭を混合または添加して茶類抽出液を得る方法が開示されているが、カフェインを除去する目的であり、脱色については全く記載されていない。また、特許文献3には茶抽出液などのカフェイン含有水溶液と活性白土または酸性白土と接触させる方法が開示されているが、この方法もカフェインを除去する目的であり、脱色については全く記載されていない。また、特許文献4または特許文献5には茶抽出液をポリビニルポリピロリドンと接触させる方法が開示されているが、カテキンまたはタンニン類を除去する目的であり、脱色については全く記載されていない。 As a decolorizing method, generally, treatment with an adsorbent such as activated carbon is known, and tea is also known with various adsorbent treatment techniques. Patent Document 2 discloses a method for obtaining a tea extract by mixing or adding activated carbon during and/or after extraction of tea, but it is for the purpose of removing caffeine, and decolorization is completely described. It has not been. Further, Patent Document 3 discloses a method of bringing a caffeine-containing aqueous solution such as a tea extract solution into contact with activated clay or acid clay, but this method is also for the purpose of removing caffeine, and decolorization is completely described. It has not been. Further, Patent Document 4 or Patent Document 5 discloses a method in which a tea extract is brought into contact with polyvinylpolypyrrolidone, but the purpose is to remove catechins or tannins, and no decolorization is described at all.

スポーツ飲料及びアイソトニック飲料に使用できる緑茶抽出液の製法として、緑茶抽出物を、エタノールと水の重量比が91/9〜97/3の混合溶液に溶解させ、活性炭及び酸性白土と接触させる方法によって得られた低カフェイン緑茶抽出物の製法(特許文献6)が開示されているが、主な目的はカフェインの除去である。特許文献6では、色相を悪化させないこと(段落[0009]など)も効果とされているが、色調に関して具体的に特定できる記載は見当たらず、また実施例における記載もない。 As a method for producing a green tea extract that can be used for sports drinks and isotonic beverages, a method of dissolving a green tea extract in a mixed solution of ethanol and water in a weight ratio of 91/9 to 97/3 and contacting with activated carbon and acid clay is used. Although a method for producing the obtained low caffeine green tea extract (Patent Document 6) is disclosed, the main purpose is to remove caffeine. In Patent Document 6, the fact that the hue is not deteriorated (paragraph [0009] and the like) is also effective, but there is no description that can be specifically specified regarding the color tone, and there is no description in the examples.

一方、配糖体分解酵素は配糖体のアノマー炭素とアグリコン部との結合(グリコシド結合)を加水分解して遊離のアグリコンを生成する酵素を意味するが、茶類への応用としては、緑茶飲料の製造方法において、前記緑茶抽出液の加熱殺菌処理工程に先立ち、配糖体分解酵素を添加することにより配糖体を香気成分化合物に変化させる酵素処理工程を具備する緑茶飲料の製造方法(特許文献7)、茶葉をタンナーゼで処理する際および/または
処理した後、茶葉に配糖体分解酵素を作用させることを特徴とする香気が増強された茶類エキスの製法(特許文献8)などが知られているが、いずれも香気発生に関する内容しか記載がない。また、引用文献9には、烏龍茶などの茶の水抽出液をBx2〜15°に濃縮した後、濃縮液に配糖体分解酵素を作用させることにより、透明度が高く、長期保存してもオリを発生しない茶エキスの製造方法が記載されている。しかしながら、色調(色の濃さなど)については全く記載されていない。
On the other hand, a glycoside-degrading enzyme means an enzyme that hydrolyzes a bond (glycoside bond) between the anomeric carbon of a glycoside and an aglycone part to produce a free aglycone. In the method for producing a beverage, a method for producing a green tea beverage comprising an enzyme treatment step of converting a glycoside into an aroma component compound by adding a glycoside-degrading enzyme prior to the heat sterilization treatment step of the green tea extract ( Patent Document 7), a method for producing an aroma-enhanced tea extract characterized by allowing a glycoside-degrading enzyme to act on tea leaves when and/or after treating the tea leaves with Tannase (Patent Document 8), etc. Are known, but all of them only describe the content related to aroma generation. Further, in Patent Document 9, after the aqueous extract of tea such as oolong tea is concentrated to Bx2 to 15°, and the glycoside-degrading enzyme is allowed to act on the concentrated liquid, the transparency is high, and the solution can be stored for a long time. A method for producing a tea extract that does not generate is described. However, the color tone (color depth, etc.) is not described at all.

特表11−504224号公報Japanese Patent Publication No. 11-504224 特開平8−70772号公報JP-A-8-70772 特開平6−142405号公報JP, 6-142405, A 特許第3315304号公報Japanese Patent No. 3315304 特開2003−204754号公報JP, 2003-204754, A 特許第4181982号公報Japanese Patent No. 4181982 特開2004−147606号公報JP, 2004-147606, A 特開2006−75112号公報JP, 2006-75112, A 特許第5818784号Patent No. 5818784

前述したとおり、茶葉抽出液を脱色する方法としては、主として物理化学的処理手段によるものがあるが、茶葉本来の風味を損ねてしまう等の短所または欠点を有する場合がある。 As described above, as a method for decolorizing the tea leaf extract, there is a method mainly using a physicochemical treatment means, but there are cases where there are disadvantages or drawbacks such as impairing the original flavor of the tea leaf.

したがって、本発明の目的はニアウォーターやフレーバードウォーター様の飲料を調製する上で、着色することなく茶葉に由来する風味、特に呈味を該飲料に付与することのできる緑茶抽出液、ならびに該緑茶抽出液を用いる例えば、茶飲料、特に、容器詰茶飲料を提出することにある。 Therefore, an object of the present invention is to prepare a near water or flavored water-like beverage, a flavor derived from tea leaves without coloring, in particular, a green tea extract capable of imparting a taste to the beverage, and For example, it is to submit a tea beverage using the green tea extract, particularly a packaged tea beverage.

茶葉の水抽出物に配糖体分解酵素を作用させて配糖体を香気成分化合物に変化させることは既に知られているところ、今回、驚くべきことに、緑茶葉類を水の存在下、一定の条件下において配糖体分解酵素で処理した後、得られる配糖体酵素処理茶抽出液を加熱処理して水不溶性物質を形成せしめ、該水不溶性物質を除去すると、茶葉に由来する風味を実質的に損ねることなく、透明かつ、脱色された緑茶抽出液が得られることを見出した。また、かような処理によると、緑茶葉に限定されることなく、広く一定の茶葉からも、同様な抽出液が得られことも見出だした。 It is already known that a glycoside-degrading enzyme acts on an aqueous extract of tea leaves to change the glycoside into an aroma component compound, and this time, surprisingly, in the presence of water, After treatment with a glycoside-degrading enzyme under certain conditions, the resulting glycoside-enzyme-treated tea extract is heat-treated to form a water-insoluble substance, and when the water-insoluble substance is removed, a flavor derived from tea leaves is obtained. It was found that a transparent and decolorized green tea extract can be obtained without substantially impairing the above. In addition, it was also found that, by such a treatment, a similar extract can be obtained from a wide and constant range of tea leaves, not limited to green tea leaves.

こうして、本発明によれば、限定されるものでないが、主な態様または特徴を有する発明として、下記のものが提供される。
態様1: 以下の工程(A)〜(E)を含んでなる、脱色された茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程、
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
態様2: 工程(B)と同時または前若しくは後であって工程(C)の前に、さらに、タンナーゼおよび/またはペクチナーゼを作用させる工程を含む、態様1に記載の脱色された茶抽出液の製造方法。
態様3: 工程(B)と同時におよび/または工程(B)の後であって工程(C)の前に、さらに、プロテアーゼを作用させる工程を含む、態様1または2に記載の脱色された茶抽出液の製造方法。
態様4: 工程(D)における加熱処理条件が温度70〜135℃、時間2秒〜30分の範囲内である態様1〜3のいずれか1項に記載の脱色された茶抽出液の製造方法。
態様5: 茶葉が緑茶である態様1〜4のいずれかに記載の脱色された茶抽出液の製造方法。
態様6: 工程(A)の前に、茶葉を水蒸気蒸留して香気回収物を得、得られた香気回収物を工程(E)で得られる清澄液に混合する工程を含む、態様1〜5のいずれかに記載の脱色された茶抽出液の製造方法。
態様7: 茶葉に対する配糖体分解酵素の使用量が1U/g以上、酵素反応の温度が30〜70℃の範囲内、かつ、反応時間が30分以上である態様1〜6のいずれかに記載の脱色された茶抽出液の製造方法。
態様8:態様1に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下である、方法。
態様9:態様8に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.1以下かつ680nmの吸光度が0.05以下である、方法。
態様10:茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.15以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のカテキン含有量が1.0質量%以上である緑茶葉抽出液。
態様11: 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上である緑茶葉抽出液。
態様12:以下の工程(A)〜(F)を含んでなる、低タンニン茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
(F)工程(E)の後に得られた脱色された茶抽出液をさらにPVPP(ポリビニルポリピロリドン)と接触させ、接触後のPVPPを除去した抽出液を得る工程
態様13:態様12に記載の低タンニン茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin−Denis法)が1.0質量%以下である、方法。
態様14:茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin−Denis法)が1.0質量%以下である緑茶葉抽出液。
態様15:(G)態様1〜9、12および13のいずれかに記載の方法によって得られた茶抽出液に加水して茶由来の可溶性固形分を0.005〜0.3%(Bx、20℃)に調整する工程、
(H)工程(G)でえられた茶飲料に、ビタミンCまたはその可食性の塩(ナトリウム)を加える工程を含む容器詰茶飲料の製造方法。
態様16:態様10、11および14に記載の緑茶抽出液を、茶由来の可溶性固形分として0.005〜0.3%(Bx、20℃)質量%含み、さらにビタミンCまたはその可食性の塩(ナトリウム)を含有する、容器詰茶飲料。
態様17:ビタミンCまたはその可食性の塩(ナトリウム)を0.002〜0.3質量%含有する、態様16に記載の容器詰茶飲料。
態様18:茶抽出液の可溶性固形分(屈折糖度、温度20℃)が0.3の場合の430nmの吸光度が0.015以下かつ680nmの吸光度が0.05以下である、態様16または17に記載の容器詰茶飲料。
Thus, according to the present invention, the following are provided as inventions having, but not limited to, main aspects or features.
Aspect 1: A method for producing a decolorized tea extract, which comprises the following steps (A) to (E).
(A) A step of mixing tea leaves and water (B) A step of allowing a glycoside-degrading enzyme to act on the mixture of (A) after step (A) (C) After step (B), a tea leaf residue and an extract And a step of obtaining a glycoside enzyme-treated tea extract, (D) a step of heat-treating the glycoside enzyme-treated tea extract obtained in step (C),
(E) Step Aspect 2 in which insoluble components are removed from the heat-glycoside enzyme-treated tea extract obtained in step (D) to obtain a decolorized tea extract: Simultaneously with or before or after step (B) The method for producing a decolorized tea extract according to aspect 1, which further comprises a step of causing tannase and/or pectinase to act before the step (C).
Aspect 3: The decolorized tea according to Aspect 1 or 2, which comprises a step of allowing a protease to act at the same time as step (B) and/or after step (B) but before step (C). Method for producing extract.
Aspect 4: A method for producing a decolorized tea extract according to any one of Aspects 1 to 3, wherein the heat treatment conditions in the step (D) are within a range of a temperature of 70 to 135°C and a time of 2 seconds to 30 minutes. ..
Aspect 5: The method for producing a decolorized tea extract according to any one of Aspects 1 to 4, wherein the tea leaves are green tea.
Aspect 6: Aspects 1 to 5 including a step of steam-distilling tea leaves to obtain an aroma recovery product before the step (A), and mixing the obtained aroma recovery product with the clarified liquid obtained in the step (E) 5. The method for producing a decolorized tea extract according to any one of 1.
Aspect 7: In any one of Aspects 1 to 6, wherein the amount of the glycoside-degrading enzyme used for tea leaves is 1 U/g or more, the temperature of the enzyme reaction is in the range of 30 to 70° C., and the reaction time is 30 minutes or more. A method for producing the decolorized tea extract as described.
Aspect 8: The method for producing a decolorized tea extract according to Aspect 1, wherein the absorbance at 430 nm is 0.3 when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. A method wherein the absorbance at 5 or less and at 680 nm is 0.15 or less.
Aspect 9: The method for producing a decolorized tea extract described in Aspect 8, wherein the absorbance at 430 nm is 0.3 when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. A method wherein the absorbance at 1 or less and at 680 nm is 0.05 or less.
Aspect 10: The absorbance at 430 nm is 0.15 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3, and the soluble solid content is further A green tea leaf extract having a catechin content of 1.0 mass% or more when (refractive sugar content, temperature 20° C.) is 15.
Aspect 11: When the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3, the absorbance at 430 nm is 0.5 or less and the absorbance at 680 nm is 0.15 or less, and further the soluble solid content is A green tea leaf extract having an amino acid content of 1.0% by mass or more when the (refractive sugar content, temperature 20° C.) is 15.
Aspect 12: A method for producing a low tannin tea extract, which comprises the following steps (A) to (F).
(A) A step of mixing tea leaves and water (B) A step of allowing a glycoside-degrading enzyme to act on the mixture of (A) after step (A) (C) After step (B), a tea leaf residue and an extract To obtain a glycoside enzyme-treated tea extract, (D) a step of heating the glycoside enzyme-treated tea extract obtained in the step (C), and a step (E) obtained in the step (D). Insoluble components are removed from the heat-treated glycoside enzyme-treated tea extract to obtain a decolorized tea extract (F) The decolorized tea extract obtained after the step (E) is further converted into PVPP (polyvinyl poly Pyrrolidone) to obtain an extract from which PVPP is removed after the contact Aspect 13: A method for producing a low tannin tea extract according to aspect 12, wherein the soluble solid content (refractive sugar content, temperature) of the tea extract is Amino acids when the absorbance at 430 nm is 0.05 or less and the absorbance at 680 nm is 0.05 or less when 20° C.) is 0.3, and when the soluble solid content (refractive sugar content, temperature 20° C.) is 15 A method in which the content is 1.0% by mass or more and the tannin (Folin-Denis method) is 1.0% by mass or less.
Aspect 14: The absorbance at 430 nm and the absorbance at 680 nm are 0.05 or less and 0.05 or less, respectively, when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. A green tea leaf extract having an amino acid content of 1.0% by mass or more and a tannin (Folin-Denis method) of 1.0% by mass or less when the (refractive sugar content, temperature 20° C.) is 15.
Aspect 15: (G) The tea extract obtained by the method according to any one of Aspects 1 to 9, 12 and 13 is added with water to have a soluble solid content of 0.005 to 0.3% (Bx, 20° C.) adjusting step,
(H) A method for producing a packaged tea beverage, which comprises the step of adding vitamin C or an edible salt (sodium) thereof to the tea beverage obtained in step (G).
Aspect 16: The green tea extract according to Aspects 10, 11 and 14 is contained in an amount of 0.005 to 0.3% (Bx, 20° C.) mass% as a soluble solid content derived from tea, and further contains vitamin C or its edible A packaged tea beverage containing salt (sodium).
Aspect 17: The packaged tea beverage according to aspect 16, which contains 0.002 to 0.3% by mass of vitamin C or an edible salt thereof (sodium).
Aspect 18: Aspect 16 or 17, wherein the tea extract has a soluble solid content (refractive sugar content, temperature of 20° C.) of 0.3, the absorbance at 430 nm is 0.015 or less and the absorbance at 680 nm is 0.05 or less. The packaged tea beverage described.

本発明によれば、従来行われていた物理的化学的方法により脱色されていた茶抽出物に比べ、茶類の風味、特に、呈味を保持した茶抽出液、さらには低タンニン茶抽出液、ならびに該緑茶抽出液を用いる例えば、茶飲料、特に、容器詰茶飲料を提供することができる。 According to the present invention, compared to the tea extract that has been decolorized by the conventional physical and chemical methods, the flavor of tea, in particular, the tea extract that retains the taste, and further the low tannin tea extract. , And, for example, using the green tea extract, it is possible to provide a tea beverage, particularly a packaged tea beverage.

実施例1において得られた緑茶抽出液をBx0.3°に希釈した液の外観を示した写真を示す。左から、比較品1、本発明品4、本発明品5、本発明品6、本発明品7である。2 is a photograph showing the appearance of a solution obtained by diluting the green tea extract solution obtained in Example 1 to Bx 0.3°. From the left, Comparative Product 1, Inventive Product 4, Inventive Product 5, Inventive Product 6, and Inventive Product 7. 実施例2において、工程途中の液を20℃、1夜放置した後の外観の写真を示す。左から(1)、(2)、(3)、(4)である。In Example 2, the photograph of the external appearance after leaving the liquid in the middle of the process at 20° C. overnight is shown. From left to right are (1), (2), (3), and (4). 実施例3において得られた緑茶抽出液をBx0.3°に希釈した液の外観の写真を示す。左が比較品4、右が本発明品8である。The photograph of the external appearance of the liquid obtained by diluting the green tea extract obtained in Example 3 to Bx0.3° is shown. Comparative product 4 is on the left, and product 8 of the present invention is on the right. 実施例4において、比較品5調製工程の途中段階の液の外観を示した写真を示す。左から比較品4、酵素失活後、濾過後、遠心分離後である。In Example 4, the photograph which shows the external appearance of the liquid of the intermediate step of the comparative product 5 preparation process is shown. From left, Comparative product 4, after enzyme deactivation, filtration, and centrifugation. 実施例5において、左から遠心分離の上清液、沈殿物を水洗した時の洗浄液、および沈殿物をメタノールに溶解した液の外観の写真を示す。In Example 5, a photograph of the appearance of the supernatant liquid of centrifugation, the washing liquid when the precipitate was washed with water, and the liquid of the precipitate dissolved in methanol is shown from the left. 実施例7における、沈殿物のデジタルマイクロスコープにて撮影写真である。7 is a photograph of the precipitate taken in Example 7 with a digital microscope. 実施例8における、茶葉当たり配糖体分解酵素の活性を変動させたときの茶抽出液の吸光度(OD430nmおよびOD680nm)のグラフである9 is a graph of the absorbance of the tea extract (OD430 nm and OD680 nm) when the activity of the glycoside degrading enzyme per tea leaf was changed in Example 8. 実施例8における、茶葉当たり配糖体分解酵素の活性を変動させたときの茶抽出液No.1〜No.6のBx0.3°希釈液の外観を示した写真である。In Example 8, the tea extract No. 1 when the activity of the glycoside degrading enzyme per tea leaf was changed. 1-No. 6 is a photograph showing the appearance of a Bx 0.3° diluted solution of No. 6;

発明の詳細な記述Detailed description of the invention

本発明の方法において原料として使用しうる茶葉としては、世界的に広く栽培されているチャ(Camellia sinensis)に属するチャノキの葉であって、本発明の目的に沿うものであればいずれであってもよいが、不発酵茶が好ましく、例えば、煎茶、焙じ茶、玉露、かぶせ茶、てん茶等の蒸青茶、嬉野茶、青柳茶、各種中国茶等の釜炒り茶を挙げることができる。また、包種茶、鉄観音茶、ウーロン茶等の半発酵茶、紅茶等の発酵茶などにも適用が可能である。 The tea leaf that can be used as a raw material in the method of the present invention is a tea leaf that belongs to the widely-cultivated tea (Camellia sinensis), and is any one that meets the purpose of the present invention. However, unfermented tea is preferable, and examples thereof include steamed green tea such as sencha, roasted tea, gyokuro, kabusecha, and tencha, and roasted tea in kettles such as Ureshino tea, Aoyagi tea, and various Chinese teas. In addition, it is also applicable to semi-fermented tea such as baekse tea, iron kannon tea and oolong tea, fermented tea such as black tea and the like.

また、チャは、やぶきた種(Camellia sinensis var. sinenses cv. Yabukita)をはじめ、いずれのバラエティのものであってもよく、その葉は、通常、緑茶等の原料となる、芯芽から四葉までの葉を含む一芯四葉摘みのもの、また、さらに成熟した四葉以外の葉であってもよい。上記の茶葉または茶原料は、そのまま用いることもできるが、通常、食品製造などで使用される装置を用いて、切断、粉砕、磨砕などの処理を施したものを使用するのがよい。 Further, the tea may be of any variety including Yabukita seeds (Camellia sinensis var. sinenses cv. Yabukita), and its leaves are usually the raw materials for green tea and the like, from core buds to four leaves. It may be one-core/four-leaf picked containing leaves, or may be a leaf other than the matured four-leaf. The above-mentioned tea leaves or tea raw materials can be used as they are, but it is generally preferable to use those that have been subjected to treatments such as cutting, crushing, and grinding using an apparatus used in food production and the like.

工程(A)では、茶葉と水が混合されるところ、水は、一般的には軟水、イオン交換水、RO膜処理水などが都合よく使用できる。茶葉と水の使用割合は、茶葉の乾燥状態により好適範囲は異なるが、重量比で、一般に1:5〜50、好ましくは1:8〜20、より好ましくは、1:10〜15であることができる。混合は、室温下で行うことができるが、使用する葉の収穫時期・成熟度等を考慮し、さらにまた、酵素反応前に殺菌行うことが好ましいことを考慮して、加温条件で行うこともできる。その際の温度としては、殺菌目的が達成され、茶葉の熱劣化が少ない条件が例示でき、例えば、65〜100℃、より好ましくは70〜90℃で行うことができる。混合時間は、茶葉が水を吸収し、膨らんだ状態になる時間であって、限定されるものでないが、一般的に1分〜60分、好ましくは5分〜30分の範囲にあることができる。 In the step (A), when tea leaves and water are mixed, generally, soft water, ion-exchanged water, RO membrane-treated water or the like can be conveniently used. The ratio of tea leaves to water used varies depending on the dry state of the tea leaves, but the weight ratio is generally 1:5 to 50, preferably 1:8 to 20, and more preferably 1:10 to 15. You can Mixing can be performed at room temperature, but in consideration of the harvest time and maturity of the leaves to be used, and also considering that it is preferable to sterilize before the enzyme reaction, it should be performed under warming conditions. Can also The temperature at that time can be exemplified under the condition that the purpose of sterilization is achieved and the heat deterioration of tea leaves is small. For example, the temperature can be 65 to 100°C, more preferably 70 to 90°C. The mixing time is a time for tea leaves to absorb water and become inflated, and is not limited, but it is generally 1 minute to 60 minutes, preferably 5 minutes to 30 minutes. it can.

なお、殺菌を兼ねて加温条件で混合を行った場合、加熱殺菌後、茶葉と水の混合物を酵素処理に適当な温度まで冷却する。 When mixing is performed under heating conditions for sterilization, the mixture of tea leaves and water is cooled to a temperature suitable for enzyme treatment after heat sterilization.

工程(B)では、工程(A)で得られる混合物に直接配糖体分解酵素を作用させることができるが、その前に、混合物から水抽出物若しくは配糖体分解酵素以外であって、茶の抽出に使用されている各種酵素の存在下において酵素処理抽出物を調製した後、配糖体分解酵素を作用させるか、または、前記混合物に直接配糖体分解酵素を作用させると同時、若しくは、その後に配糖体分解酵素以外の酵素を作用させることもできる。配糖体分解酵素以外の酵素としては、限定されるものでないが、タンニン分解酵素タンナーゼ、プロテアーゼ、アミラーゼ、グルコアミラーゼ、ペクチナーゼ、セルラーゼ、ヘミセルラーゼ等を挙げることができる。これらの中、本発明の目的上、すなわち、茶の本来の風味乃至呈味を保持し、透明かつ脱色した茶抽出液を得るのに好適なものとしては、タンナーゼ、ペクチナーゼを挙げることができる。これらの酵素は、単独または2種以上を組み合わせて用いることができる。 In the step (B), the glycoside-degrading enzyme can be directly acted on the mixture obtained in the step (A), but before that, a mixture other than a water extract or a glycoside-degrading enzyme from the mixture, After preparing an enzyme-treated extract in the presence of various enzymes used for the extraction of, the glycoside-degrading enzyme is allowed to act, or at the same time the glycoside-degrading enzyme is allowed to act directly on the mixture, or After that, an enzyme other than the glycoside-degrading enzyme can be allowed to act. Enzymes other than glycoside-degrading enzymes include, but are not limited to, tannin-degrading enzymes tannase, protease, amylase, glucoamylase, pectinase, cellulase, hemicellulase, and the like. Among these, tannase and pectinase can be mentioned as suitable for the purpose of the present invention, that is, for obtaining a transparent and decolorized tea extract which retains the original flavor or taste of tea. These enzymes can be used alone or in combination of two or more kinds.

配糖体分解酵素およびそれ以外の各酵素は、本発明の目的に沿い、当該技術分野で使用されているものであれば、限定されることなく使用できところ、配糖体分解酵素、タンナーゼ、ペクチナーゼについては次のように詳述することができる。 Glycoside degrading enzyme and other enzymes can be used without limitation as long as they are used in the technical field according to the purpose of the present invention, glycoside degrading enzyme, tannase, Pectinase can be described in detail as follows.

配糖体分解酵素としては、茶葉中に存在し得る各種配糖体の中、例えば、フラボノール類とグルコース類からなる配糖体を遊離のアグリコン部と糖部に加水分解できる酵素を都合よく使用することができる。かような、O−グリコシド配糖体は植物界に豊富に存在することから、一方では、該O−グリコシド結合を加水分解する酵素も多種多様なものが自然界に存在する。これらの中で、限定されるものでないが、本発明の目的に沿うものとしては、次のものを挙げることができる。例えば、アスペルギルス(Aspergillus)属、ペニシリウム(Penicillum)属、リゾプス(Rhizopus)属、シュードモナス(Pseudmonas)属、ピキア(Pichia)属などに属するβ−グルコシダーゼ生産菌を、小麦ふすま、米ぬかなどの固体栄養培地または液体栄養培地で常法に従って固体培養又は液体培養し、得られる培養物またはその処理物を常法により精製処理したものであることができる。また、バニラ豆、生茶葉などの植物より精製処理し得られるものも使用することができ、さらに、シグマアルドリッチ社から市販されているアーモンド由来のエムルシン、またはβ−グルコシダーゼ含む酵素製剤セルラーゼA(アマノエンザイム)、セルラーゼT(アマノエンザイム)などから分離したものも使用することができる。β−キシロシダーゼとしては、例えば、ペニシリウム属、アスペルギルス属、リゾプス属、ムコール属などに属するβーキシロシダーゼ生産菌を小麦ふすま、米ぬかなどの固体栄養培地または液体栄養培地で常法に従って固体培養または液体培養し、得られる培養物またはその処理物を常法により精製処理したものを挙げることができ、また、シグマアルドリッチ社から市販されている黒麹菌(Aspergillus niger)由来のものまたはβ−キシロシダーゼを含む酵素製剤スミチームACH(新日本科学工業)などから分離したものも使用することができる。β−プリメベロシダーゼは、例えば、セルロモナス属、ペニシリウム属、アスペルギルス属などに属するβープリメベロシダーゼ生産菌を小麦ふすま、米ぬかなどの固体培地または液体培地で常法に従って固体培養もしくは液体培養し、得られる培養物またはその処理物を常法により精製処理したものを挙げることができ、また、生茶葉などの植物中より分離精製したものも使用することができる。これらの配糖体分解酵素の使用量は、本発明の目的で使用する場合、一般に、茶葉原料の質量基準で、例えば、p−NP グルコース添加法によるβ−グルコシダーゼ活性で1〜100U/g、好ましくは4〜75U/g、より好ましくは8〜50U/g、さらに好ましくは10〜40U/gの範囲内であることができる。 As the glycoside degrading enzyme, among various glycosides that can be present in tea leaves, for example, an enzyme that can hydrolyze a glycoside composed of flavonols and glucose into a free aglycone part and a sugar part is conveniently used. can do. Since such O-glycoside glycosides are abundant in the plant kingdom, on the other hand, a wide variety of enzymes that hydrolyze the O-glycoside bond exist in nature. Among these, but not limited to, the following can be mentioned as ones meeting the object of the present invention. For example, β-glucosidase-producing bacteria belonging to Aspergillus genus, Penicillium genus, Rhizopus genus, Pseudomonas genus, Pichia genus, and the like are solid nutrients such as wheat bran and rice bran. Alternatively, it may be one obtained by performing solid culture or liquid culture in a liquid nutrient medium according to a conventional method, and purifying the obtained culture or a treated product thereof by a conventional method. In addition, vanilla beans, those obtained by purification treatment from plants such as green tea leaves can also be used, and further, almond-derived emulsin commercially available from Sigma-Aldrich, or enzyme preparation cellulase A (β-glucosidase) containing β-glucosidase. Enzymes, cellulase T (amanoenzyme) and the like separated from each other can also be used. Examples of β-xylosidase include, for example, penicillium, Aspergillus, Rhizopus, mucor, and the like, β-xylosidase-producing bacteria such as wheat bran, rice bran, or the like in solid nutrient medium or liquid nutrient medium in accordance with a conventional method. The resulting culture or a treated product thereof may be purified by a conventional method, and a commercially available product from Aspergillus niger or an enzyme containing β-xylosidase, which is commercially available from Sigma-Aldrich Co., Ltd. It is also possible to use those separated from the pharmaceutical preparation Sumiteam ACH (Shin Nippon Kagaku Kogyo) and the like. β-prime berosidase, for example, Cellulomonas, Penicillium, Aspergillus, etc. β-prime berosidase production strain wheat bran, solid culture or liquid culture of solid medium or liquid medium such as rice bran according to a conventional method, The obtained culture or a treated product thereof may be purified by a conventional method, and a product obtained by separating and purifying from a plant such as fresh tea leaf may also be used. When used for the purpose of the present invention, the amount of these glycoside-degrading enzymes used is generally based on the mass of the tea leaf material, for example, 1 to 100 U/g in β-glucosidase activity by the p-NP glucose addition method, It can be preferably in the range of 4 to 75 U/g, more preferably 8 to 50 U/g, and further preferably 10 to 40 U/g.

タンナーゼは、タンニン中の水酸基に没食子酸がエステル結合しているデプシド結合を加水分解する酵素、例えば、エピガロカテキンガレートをエピガロカテキンと没食子酸に加水分解する酵素である。本発明で使用することのできるタンナーゼとしては、具体的には、例えば、アスペルギルス属、ペニシリウム属、リゾプス属、リゾムコール属、ラクトバシラス属、スタフィロコッカス属、ストレプトコッカス属、ロネピネラ属などに属するタンナーゼ生産菌を、これら糸状菌の培養に通常用いられる培地で常法に従って固体培養または液体培養し、得られる培養物またはその処理物を常法により精製処理することにより得られるものを挙げることができる。また、市販されているタンナーゼ、例えば、タンナーゼ(500U/g;キッコーマン社製)、タンナーゼ(5,000U/g;キッコーマン社製)、タンナーゼ(500U/g;三菱化学フーズ社製)、スミチーム(登録商標)TAN(新日本化学工業社製)などを用いることもできる。タンナーゼの使用量は、力価などにより最適範囲が変動するので特定できないが、一般に、茶葉原料の質量基準で0.1〜50U/g、好ましくは0.5〜20U/gの範囲内であることができる。 Tannase is an enzyme that hydrolyzes a depside bond in which gallic acid forms an ester bond with a hydroxyl group in tannin, for example, an enzyme that hydrolyzes epigallocatechin gallate into epigallocatechin and gallic acid. Specific examples of tannase that can be used in the present invention include tannase-producing bacteria belonging to, for example, Aspergillus, Penicillium, Rhizopus, Rhizomucor, Lactobacillus, Staphylococcus, Streptococcus, Ronepinella, and the like. Can be obtained by culturing solid culture or liquid culture in a medium usually used for culturing these filamentous fungi according to a conventional method, and purifying the obtained culture or a treated product thereof by a conventional method. Further, commercially available tannase, for example, tannase (500 U/g; Kikkoman Corp.), tannase (5,000 U/g; Kikkoman Corp.), tannase (500 U/g; Mitsubishi Kagaku Foods Corp.), Sumiteam (registered) Trademark) TAN (manufactured by Shin Nippon Chemical Industry Co., Ltd.) and the like can also be used. The amount of tannase used cannot be specified because the optimum range varies depending on the potency and the like, but it is generally within the range of 0.1 to 50 U/g, preferably 0.5 to 20 U/g based on the mass of the tea leaf raw material. be able to.

ペクチナーゼは、ポリガラクツロナーゼ、ペクチックエンザイム、ポリメチルガラクツロナーゼ、ペクチンデポリメラーゼとも呼ばれ、ペクリニン酸、ペクチン、ペクチン酸などのα−1,4結合を加水分解する酵素である。ペクチナーゼは、細菌、カビ、酵母、高等植物、カタツムリなどに含まれていることが知られており、本発明ではこれらをはじめとする生物から採取したペクチナーゼを広く使用することができる。また、市販のペクチナーゼ製剤を使用することもできる。市販のペクチナーゼ製剤としては、例えば、スクラーゼ(登録商標)A、スクラーゼ(登録商標)N、スクラーゼ(登録商標)S(以上、三菱化学フーズ社製)、ペクチネックスウルトラ(登録商標)SP−L(ノボノルディクスA/S社製)、メイセラーゼ(登録商標)(明治製菓(株)社製)、ウルトラザイム(登録商標)(ノボノルディクスA/S社製)、ニューラーゼF(登録商標)(天野エンザイム(株)社製)スミチーム(登録商標)SPG(新日本化学工業社製)などを例示することができる。ペクチナーゼの使用量は、ペクチナーゼ製剤には通常複数種類の酵素が含まれているため活性単位では表しにくく、茶葉原料の質量基準で、一般に0.01質量%〜5質量%、好ましくは0.1質量%〜2質量%の範囲内であることができる。 Pectinase, which is also called polygalacturonase, pectic enzyme, polymethylgalacturonase, or pectin depolymerase, is an enzyme that hydrolyzes α-1,4 bonds such as pecrinic acid, pectin, and pectic acid. It is known that pectinase is contained in bacteria, molds, yeasts, higher plants, snails and the like, and in the present invention, pectinases collected from organisms including these can be widely used. Moreover, a commercially available pectinase preparation can also be used. Examples of commercially available pectinase preparations include Sucrase (registered trademark) A, Sucrase (registered trademark) N, Sucrase (registered trademark) S (above, manufactured by Mitsubishi Kagaku Foods Co., Ltd.), Pectinex Ultra (registered trademark) SP-L ( Novo Nordix A/S), Meiserase (registered trademark) (Meiji Seika Co., Ltd.), Ultrazyme (registered trademark) (Novo Nordix A/S), Newase F (registered trademark) ( Amano Enzyme Co., Ltd. Sumiteam (registered trademark) SPG (manufactured by Shin Nippon Chemical Industry Co., Ltd.) and the like can be exemplified. The amount of pectinase to be used is difficult to be expressed in an activity unit because a pectinase preparation usually contains a plurality of types of enzymes, and is generally 0.01% by mass to 5% by mass, preferably 0.1% by mass of the tea leaf raw material. It can be in the range of 2% by weight to 2% by weight.

茶葉中には約25質量%のタンパク質(5訂食品成分表参照)が含まれており、プロテアーゼ処理を行うことにより、後の加熱反応の効果が特に高まる。しかしながら、茶葉中のタンパク質はタンニンと結合しているため、茶葉にプロテアーゼを単独で作用させても、ほとんどアミノ酸は生成しない。そこで、茶葉にプロテアーゼおよびタンナーゼを作用させることにより茶葉中のタンパク質の一部が分解し、アミノ酸の豊富な茶抽出液を得ることができる。 The tea leaves contain about 25% by mass of protein (refer to the 5th revised food composition table), and the effect of the subsequent heating reaction is particularly enhanced by the protease treatment. However, since the protein in tea leaves is bound to tannin, even if protease is allowed to act on tea leaves alone, almost no amino acids are produced. Then, by causing protease and tannase to act on the tea leaves, a part of the protein in the tea leaves is decomposed, and a tea extract liquid rich in amino acids can be obtained.

プロテアーゼは、蛋白質やペプチドのペプチド結合を加水分解する酵素である。本発明で使用可能なプロテアーゼとしては、市販の各種プロテアーゼを挙げることができる。プロテアーゼの使用量は、力価などにより異なり一概には言えないが、通常、茶類原料の質量を基準として通常、0.01〜100U/g、好ましくは1〜80U/gの範囲内を例示することができる。 Proteases are enzymes that hydrolyze peptide bonds of proteins and peptides. Examples of the protease that can be used in the present invention include various commercially available proteases. The amount of protease used varies depending on the potency and cannot be generally stated, but is usually 0.01 to 100 U/g, preferably 1 to 80 U/g based on the mass of the tea raw material. can do.

以上述べた酵素による茶葉の処理工程(特に、工程(A)及び(B)を含む)は、それ自体既知の方法、例えば特許庁公報 周知・慣用技術集(香料)題II部 食品香料(2000.1.14発行)「2・1・7微生物・酵素フレーバー」(46〜57頁)等の刊行物に記載の方法に準じて行うことができる。 The above-described enzyme treatment process of tea leaves (in particular, including the steps (A) and (B)) is a method known per se, for example, Patent Office Publication, Known and Conventional Techniques Collection (Flavor), Part II Food Flavors (2000 1.14 issued) It can be carried out according to the method described in publications such as "2.1.7 Microorganism/enzyme flavor" (pages 46 to 57).

かような工程の中、茶葉と水の混合物、或いはまた、その処理物に配糖体分解酵素を作用させる、とは、その後の工程(D)の加熱処理および工程(E)における不溶性成分の除去により得られる茶抽出液が、実質的に脱色されるように、着色原因物質を除去可能にすることを意味する。理論により拘束されるものでないが、茶葉に存在する配糖体の中、着色原因物質を除去可能にするとは、該酵素の作用により本来水溶性等の形態にあったものを、非水溶性若しくは難水溶性に変換することを意味する。本発明によると、工程(E)で除去される不溶性成分を含有する浮遊物または沈殿物中には、天然フラボノールの一つであるケンペロールやケルセチン等を包含する着色起因物質が存在するものと理解されている。このことは、さらに理論により拘束されるものでないが、前記作用は、茶葉中に存在し得る配糖体の中、少なくともケンペロールやケルセチン等をアグリコンとする配糖体の全て若しくは大部分を加水分解して難水溶性の遊離アグリコンを生成させるものと理解されている。 In such a step, the action of a glycoside-degrading enzyme on the mixture of tea leaves and water, or the treated product thereof means that the heat treatment in the subsequent step (D) and the insoluble component in the step (E) It means that the causative agent for coloration can be removed so that the tea extract obtained by the removal is substantially decolorized. Without being bound by theory, it is meant that among the glycosides present in tea leaves, it is possible to remove the coloring-causing substance from the glycosides that were originally water-soluble due to the action of the enzyme. It means to be converted to poorly water-soluble. According to the present invention, it is understood that a color-causing substance including kaempferol, quercetin, etc., which are one of the natural flavonols, is present in the suspension or precipitate containing the insoluble component removed in step (E). Has been done. This is not further bound by theory, but the above-mentioned action hydrolyzes all or most of the glycosides having at least kaempferol, quercetin, etc. as an aglycone, among glycosides that may exist in tea leaves. It is understood that it produces a poorly water-soluble free aglycone.

したがって、工程(B)は、上記のような浮遊物または沈殿物を形成する条件下で酵素処理が行われる。このような条件は、使用する酵素の力価等により最適条件が変動するが、一般に温度は30〜70℃、好ましくは36〜60℃、より好ましくは40℃〜50℃、さらに好ましくは42℃〜48℃で、反応時間は理論的には25分以上、実用的には30分〜48時間、好ましくは1〜36時間、より好ましくは1.5〜24時間、さらに好ましくは2〜16時間であって、pHは、使用する酵素の起源等により最適条件が変動するが、一般に4〜6である。 Therefore, in the step (B), the enzyme treatment is carried out under the condition that the above-mentioned suspended matter or precipitate is formed. Optimum conditions of such conditions vary depending on the titer of the enzyme used, etc., but generally the temperature is 30 to 70° C., preferably 36 to 60° C., more preferably 40° C. to 50° C., further preferably 42° C. At -48°C, the reaction time is theoretically 25 minutes or more, practically 30 minutes to 48 hours, preferably 1-36 hours, more preferably 1.5-24 hours, further preferably 2-16 hours. The pH is generally 4 to 6, although the optimum conditions vary depending on the origin of the enzyme used and the like.

前述したとおり、工程(B)では、同時に(工程(B)において)配糖体分解酵素以外の酵素を作用させることができるところ、これらの酵素処理も、配糖体分解酵素を作用させる上記の条件に準じた条件を選ぶことができる。 As described above, in step (B), an enzyme other than the glycoside-degrading enzyme can be simultaneously acted (in step (B)). The conditions can be selected according to the conditions.

工程(C)では、工程(B)により、前述したごとく、茶葉に対し配糖体分解酵素を配糖体のアグリコン部と糖部が加水分解されるのに十分な時間作用させた後、原料茶葉残渣またはその他の不溶性の固形物をそれ以外の処理液(抽出物ともいう)と分離させる。かような分離は、例えば、脱水型遠心分離機、フィルタープレス、濾過助剤をコーティングしたヌッチェ濾過機等により行い、必要な場合、さらなる固形物も同時に除去する。 In the step (C), as described above, in the step (B), the glycoside-degrading enzyme is allowed to act on the tea leaves for a time sufficient to hydrolyze the aglycone part and the sugar part of the glycoside, and then the raw material Tea leaf residue or other insoluble solid matter is separated from other processing liquids (also referred to as extracts). Such separation is performed by, for example, a dehydration type centrifuge, a filter press, a Nutsche filter coated with a filter aid, or the like, and further solid matter is simultaneously removed if necessary.

工程(D)では、前記酵素処理茶抽出物を加熱処理し、上記工程で使用した酵素をはじめとするタンパク質類を変性させる。なお、理論により本発明の技術的範囲の解釈は拘束されるものでないが、この加熱処理による変性により、酵素は活性を失うことのみならず、また、着色の原因成分であり、かつ、酵素処理により水に不溶となった成分が変性したタンパク質類と結合し凝集しやすい状態になると考えられる。この加熱処理条件は、一般に温度70〜135℃、時間2秒〜30分の範囲内、好ましくは温度75〜121℃、時間10秒〜25分の範囲内、より好ましくは温度80〜100℃、時間30秒〜20分の範囲内、さらに好ましくは温度85〜95℃、時間20秒〜15分の範囲内にある。 In the step (D), the enzyme-treated tea extract is heat-treated to denature the proteins such as the enzyme used in the above step. Although the theory does not restrict the interpretation of the technical scope of the present invention, the denaturation by the heat treatment not only causes the enzyme to lose its activity, but also causes the coloring and is treated with the enzyme. It is considered that the water-insoluble component is bound to the denatured proteins and easily aggregates. The heat treatment conditions are generally a temperature of 70 to 135°C and a time of 2 seconds to 30 minutes, preferably a temperature of 75 to 121°C and a time of 10 seconds to 25 minutes, more preferably a temperature of 80 to 100°C. The time is in the range of 30 seconds to 20 minutes, more preferably the temperature is 85 to 95° C. and the time is in the range of 20 seconds to 15 minutes.

工程(E)では、前記加熱処理物を45℃以下、好ましくは35℃以下まで冷却して不溶性成分を含む浮遊物または沈殿物を生じさせる。かような不溶性成分それ自体、または浮遊物若しくは沈殿物の除去は、例えば、脱水型遠心分離機、沈降型遠心分離機、フィルタープレス、濾過助剤をコーティングしたヌッチェ濾過機等により行うことができるが、通常、沈降型遠心分離によるのが好ましい結果をもたらす。 In the step (E), the heat-treated product is cooled to 45° C. or lower, preferably 35° C. or lower to produce a suspension or a precipitate containing an insoluble component. The insoluble component itself or the suspended matter or the precipitate can be removed by, for example, a dehydration type centrifuge, a sedimentation type centrifuge, a filter press, a Nutsche filter coated with a filter aid, or the like. However, sedimentation centrifugation usually gives the preferred results.

こうして、本発明によれば、通常、茶葉の着色物に由来する抽出物または酵素抽出物中の着色を脱色することができる。一方で、茶類の風味、特に、呈味に寄与することが既知の、アミノ酸、カフェイン、カテキン類の含有量が実質的に低減されていない、茶抽出液を提供できる。このような、茶抽出液としては、例えば緑茶葉を原料にした場合、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下、好ましくは0.3以下、より好ましくは0.2以下、さらに好ましくは0.1以下、なおさら好ましくは0.05以下、最もこのましく0.015以下であり、かつ680nmの吸光度が0.15以下、好ましくは0.10以下、より好ましくは0.08以下、さらに好ましくは0.05以下、なおさら好ましくは0.01以下であり、最も好ましくは0.005以下である。これは、相当する酵素処理を行わない場合の茶抽出液の当該430nmの吸光度に比べて約4/5以下、好ましくは約1/2以下、より好ましくは1/3以下、さらにより好ましくは1/5以下である。また、可溶性固形分(屈折糖度、温度20℃)を15とした場合の前記固形分の総質量あたりのカテキン含有量が1.0質量%以上、好ましくは1.2質量%以上、より好ましくは1.5質量%以上である緑茶抽出液を提供できる。さらに、茶葉にプロテアーゼを作用させて抽出した場合においては、可溶性固形分(屈折糖度、温度20℃)を15とした場合の、前記固形分の総質量あたりのアミノ酸含有量が1.0質量%以上、好ましくは1.5質量%以上、より好ましくは1.8質量%以上であり、かつカテキン含有量が1.0質量%以上、好ましくは1.2質量%以上、より好ましくは1.5質量%以上である緑茶抽出液を提供できる。 Thus, according to the present invention, the coloring in the extract or enzyme extract, which is usually derived from the coloring matter of tea leaves, can be decolorized. On the other hand, it is possible to provide a tea extract in which the contents of amino acids, caffeine, and catechins, which are known to contribute to the flavor of teas, in particular the taste, are not substantially reduced. As such a tea extract, for example, when green tea leaves are used as a raw material, the absorbance at 430 nm is 0.5 or less when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. , Preferably 0.3 or less, more preferably 0.2 or less, even more preferably 0.1 or less, even more preferably 0.05 or less, most preferably 0.015 or less, and the absorbance at 680 nm is 0. It is 15 or less, preferably 0.10 or less, more preferably 0.08 or less, even more preferably 0.05 or less, even more preferably 0.01 or less, and most preferably 0.005 or less. This is about 4/5 or less, preferably about 1/2 or less, more preferably 1/3 or less, and even more preferably 1 as compared with the absorbance at 430 nm of the tea extract without the corresponding enzyme treatment. /5 or less. Further, when the soluble solid content (refractive sugar content, temperature 20° C.) is 15, the catechin content based on the total mass of the solid content is 1.0% by mass or more, preferably 1.2% by mass or more, more preferably It is possible to provide a green tea extract having a content of 1.5% by mass or more. Furthermore, when tea leaves are extracted with a protease, when the soluble solid content (refractive sugar content, temperature 20° C.) is 15, the amino acid content is 1.0 mass% based on the total mass of the solid content. Or more, preferably 1.5 mass% or more, more preferably 1.8 mass% or more, and the catechin content is 1.0 mass% or more, preferably 1.2 mass% or more, more preferably 1.5. It is possible to provide a green tea extract having a mass% or more.

前述したとおり、430nmにおける吸光度とOD680nmにおける吸光度を有する本発明により提供される脱色された茶抽出液は、水で希釈または加水して茶飲料を製造する際に、前記茶飲料の総質量当たり、前記固形分含量が0.005質量%〜0.3質量%に調整されると、本発明方法で処理されていない茶抽出物に比べて有意に低減した着色度合の茶飲料、さらには、実質的に無色透明な茶飲料を提供できる。前記水は、飲用に供することができる水であれば、所謂、軟水または硬水に属するかに限定されない。このような茶飲料は、430nmの吸光度が0.05以下かつ680nmの吸光度0.05以下である一方で、茶の風味を保持しているものが、好ましい。したがって、本発明の所期の目的を達成するためには、例えば、後述する図7に示されるデータ等を参照に、前述の工程Bにおいて作用させる配糖体分解酵素の用量を制御して、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3に調整したときに直前に記載の両吸光度を示すように調製してもよい。 As described above, the decolorized tea extract provided by the present invention having the absorbance at 430 nm and the absorbance at OD680 nm is diluted with water or water to produce a tea beverage, and the total mass of the tea beverage is When the solid content is adjusted to 0.005% by mass to 0.3% by mass, a tea beverage having a coloring degree significantly reduced as compared with the tea extract not treated by the method of the present invention, and further, substantially A colorless and transparent tea drink can be provided. The water is not limited to so-called soft water or hard water as long as it is water that can be used for drinking. It is preferable that such a tea beverage has an absorbance at 430 nm of 0.05 or less and an absorbance at 680 nm of 0.05 or less, while retaining the flavor of tea. Therefore, in order to achieve the intended purpose of the present invention, for example, referring to the data shown in FIG. 7 described later, the dose of the glycoside-degrading enzyme to be acted in the above step B is controlled, The tea extract may be prepared so that the soluble solid content (refractive sugar content, temperature of 20° C.) of the tea extract is adjusted to 0.3 to exhibit both absorbances described immediately above.

本明細書において、茶抽出液の可溶性固形分(屈折糖度、温度20℃)について、0.3質量%または0.3というが、これは互換可能に用いている。また、可溶性固形分(屈折糖度、温度20℃)またはBx(ブリックス)0.3°という場合も同様であるが、これらはブリックス計で測定して得られる値をいう。 In the present specification, the soluble solid content (refractive sugar content, temperature of 20° C.) of the tea extract is 0.3% by mass or 0.3, which are used interchangeably. The same applies to the case of the soluble solid content (refractive sugar content, temperature 20° C.) or Bx (Brix) 0.3°, but these are the values obtained by measurement with a Brix meter.

本発明で提供される脱色された茶抽出液は、例えば、ニアウォーターやフレーバードウォーター様の飲料、また、容器詰茶飲料の原料として、使用できる。 The decolorized tea extract provided by the present invention can be used, for example, as a drink for near water or flavored water, or as a raw material for packaged tea drinks.

具体的には、上記の態様1〜9、12〜13のいずれかに記載の方法で得られるか、態様10または11に記載された、脱色され、場合によって低タンニン化された茶抽出液に加水して茶由来の可溶性固形分を、提供しようとする茶飲料の種類にあわせて0.005〜0.3、または0.01〜0.3、または0.05〜0.3、または0.1〜0.3%(または °)に調整し、前記調整と同時または前後に、ビタミンCまたはその可食性の塩(ナトリウム)を加えることにより、茶飲料、容器詰茶飲料を提供できる(態様16または17参照)。かような飲料を提供する場合、特に、態様12または13の方法により得られるか、または態様14にしたがう、脱色され、かつ、低タンニン茶抽出液から出発すると、貯蔵または保存安定性の高い、茶飲料が提供できる。態様12の方法における、PVPP(ポリビニルポリピロリドン)の使用条件は、限定するものでないが、特許文献5の記載を参考に本発明の目的を達成できるものである限り適宜選択できるところ、本発明では、例えば、前記工程(E)で得られた茶抽出液の可溶性固形分の質量に対し、1質量%〜100質量%のPVPPが使用される。こうして得られる茶抽出液は、好ましくは、茶由来の可溶性固形分を前記のように調整した後、ビタミンCまたはその可食性の塩(ナトリウム)が調整後の茶飲料の総質量当たり、0.002質量%〜0.3質量%、好ましくは、0.005質量%〜0.1質量%、より好ましくは0.01質量%〜0.03質量%加えられる。このような処理により、茶飲料は、加熱殺菌した後、通常の茶飲料を充填する容器中の条件下で、茶由来の可溶性固形分を0.3%(Bx、20℃)に調整したとき、430nmの吸光度が0.015以下であり、かつ、680nmの吸光度0.05以下である、状態を安定に保持する。 Specifically, the tea extract obtained by the method according to any one of the above aspects 1 to 9 and 12 to 13 or the bleached and optionally reduced tannin tea extract according to aspect 10 or 11 The soluble solid content derived from tea by addition of water is 0.005-0.3, or 0.01-0.3, or 0.05-0.3, or 0 depending on the type of tea beverage to be provided. It is possible to provide a tea beverage or a packaged tea beverage by adjusting the content of the extract to 0.1 to 0.3% (or °) and adding vitamin C or an edible salt thereof (sodium) at the same time or before or after the adjustment ( Aspect 16 or 17). When providing such a beverage, it has a high storage or storage stability, especially when obtained from the process of aspect 12 or 13 or according to aspect 14, starting from a decolorized and low tannin tea extract, Tea beverages can be provided. The use conditions of PVPP (polyvinylpolypyrrolidone) in the method of Aspect 12 are not limited, but can be appropriately selected as long as the object of the present invention can be achieved with reference to the description of Patent Document 5, but in the present invention, For example, 1% by mass to 100% by mass of PVPP is used with respect to the mass of the soluble solid content of the tea extract obtained in the step (E). The tea extract thus obtained is preferably prepared by adjusting the soluble solids derived from tea as described above, and then adding the vitamin C or the edible salt (sodium) thereof to the total amount of the tea beverage after adjustment of 0. 002% by mass to 0.3% by mass, preferably 0.005% by mass to 0.1% by mass, more preferably 0.01% by mass to 0.03% by mass. By such a treatment, when the tea beverage is sterilized by heating, and the soluble solid content derived from tea is adjusted to 0.3% (Bx, 20° C.) under the condition in a container filled with an ordinary tea beverage. The state in which the absorbance at 430 nm is 0.015 or less and the absorbance at 680 nm is 0.05 or less is stably maintained.

なお、透明性および無色(着色状況)の尺度については次の説明を参酌できる。
(透明)
・OD680nmが0.15以下(わずかに不透明感あり)、好ましくは0.10以下(ごくわずかに不透明感あり)、より好ましくは0.07以下(ほぼ透明)、さらに好ましくは0.05以下(おおよそ完全に透明)
(無色)
・純水との透過度によるLabを比較した場合のΔ(デルタ)Eが4.0以下(わずかに着色)、好ましくは3.0以下(ごくわずかに着色)、さらに好ましくは2.0以下(ほぼ無色)、特に好ましくは1.4以下(おおよそ完全に無色)、
・もしくはOD430nmが0.05以下(わずかに着色)、好ましくは0.038以下(ごくわずかに着色)、より好ましくは0.025以下(ほぼ無色)、特に好ましくは0.015以下(おおよそ完全に無色)
The following explanation can be referred to for the scales of transparency and colorlessness (colored state).
(Transparent)
-OD680nm is 0.15 or less (slightly opaque), preferably 0.10 or less (slightly opaque), more preferably 0.07 or less (almost transparent), further preferably 0.05 or less ( (Approximately completely transparent)
(colorless)
Δ(delta)E is 4.0 or less (slightly colored), preferably 3.0 or less (slightly colored), and more preferably 2.0 or less when Lab is compared with pure water. (Almost colorless), particularly preferably 1.4 or less (approximately completely colorless),
-Or OD430nm is 0.05 or less (slightly colored), preferably 0.038 or less (slightly colored), more preferably 0.025 or less (almost colorless), particularly preferably 0.015 or less (approximately completely). colorless)

以下、本発明を実施例および比較例によりさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

(実施例1)
純水1300gにビタミンC 1.8gを溶解し、75℃に加温した。そこに静岡産2番茶(やぶきた種、蒸青法、5mmにカット品)100gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表1に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。抽出液をNo.2濾紙(保留粒子径5μm)濾過した後、20℃に冷却し、重力加速度3000×gにて10分間遠心分離し、緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表1に示す。また、これらのBx0.3°希釈液の外観の写真を図1に示す(左から、比較品1、本発明品4、本発明品5、本発明品6、本発明品7)。
(酵素の説明)
・配糖体分解酵素:市販のβ−グルコシダーゼ(1200U/g)
・タンナーゼ:スミチーム(登録商標)TAN(新日本化学工業社製のタンナーゼ:5000U/g)
・ペクチナーゼ:スミチーム(登録商標)SPG(新日本化学工業社製のペクチナーゼ)・インベルターゼ:スミチーム(登録商標)INV(新日本化学工業社製のインベルターゼ)
・ヘミセルラーゼ(β−マンナナーゼ):スミチーム(登録商標)ACH(新日本化学工業社製のヘミセルラーゼ)
(Example 1)
Vitamin C (1.8 g) was dissolved in pure water (1300 g) and heated to 75°C. 100 g of No. 2 tea produced in Shizuoka (Yabukita seed, steaming method, cut into 5 mm) was added thereto, heated with stirring and sterilized by heating at 95° C. for 15 minutes. The mixture was cooled to 45° C. (pH at this point was 5.3), the enzymes shown in Table 1 were added, and the reaction was carried out at 45° C. for 4 hours with stirring. After separating the tea leaf residue and the extract with a dehydrating centrifuge, the extract was heated at 95°C for 1 minute and cooled to 30°C. The extract was After filtering with 2 filter papers (holding particle diameter 5 μm), the mixture was cooled to 20° C. and centrifuged at a gravity acceleration of 3000×g for 10 minutes to obtain a green tea extract. The obtained green tea extract was diluted to Bx 0.3° (refractive sugar content, measured at 20° C.), and the absorbance at 430 nm (coloring index) and the absorbance at 680 nm (turbidity index) were measured. The results are shown in Table 1. In addition, photographs of the appearance of these Bx 0.3° diluted solutions are shown in FIG. 1 (from left, comparative product 1, invention product 4, invention product 5, invention product 6, invention product 7).
(Explanation of enzyme)
Glycoside degrading enzyme: commercially available β-glucosidase (1200 U/g)
Tannase: Sumiteam (registered trademark) TAN (tannase manufactured by Shin Nippon Chemical Industry Co., Ltd.: 5000 U/g)
Pectinase: Sumizyme (registered trademark) SPG (pectinase manufactured by Shin Nippon Chemical Industry Co., Ltd.)-Invertase: Sumiteam (registered trademark) INV (invertase manufactured by Shin Nippon Chemical Co., Ltd.)
Hemicellulase (β-mannanase): Sumiteam (registered trademark) ACH (Hemicellulase manufactured by Shin Nippon Chemical Industry Co., Ltd.)

Figure 2019044474
Figure 2019044474

表1に示した通り、タンナーゼとペクチナーゼを併用した比較品1、インベルターゼを使用した比較品2および、ヘミセルラーゼ(マンナナーゼ)を使用した比較品3と比べ、配糖体分解酵素を作用させた本発明品1〜7では、いずれも430nmの吸光度(着色の指標)が低く、また、680nmの吸光度(濁りの指標)もほぼ同等かそれ以下であった。配糖体分解酵素は単独で使用する(本発明品1)よりもタンナーゼと併用した方がより脱色され(本発明品2)、さらにペクチナーゼを加えることで大幅(約1/4〜1/5)に脱色される結果が得られた(本発明品6)。タンナーゼとペクチナーゼを併用した場合の配糖体分解酵素の添加量を検討した結果、配糖体分解酵素添加量を増やすにつれて色調は薄くなり、濁りもよりクリアになることが判明した(本発明品4〜7)。 As shown in Table 1, in comparison with Comparative product 1 using tannase and pectinase in combination, Comparative product 2 using invertase, and Comparative product 3 using hemicellulase (mannanase), a glycoside-degrading enzyme was used. In each of the invention products 1 to 7, the absorbance at 430 nm (index of coloring) was low, and the absorbance at 680 nm (index of turbidity) was almost the same or less. The glycoside-degrading enzyme was more decolorized when used in combination with tannase (Invention product 2) than when used alone (Invention product 1), and significantly increased by adding pectinase (about 1/4 to 1/5). ) Was obtained (invention product 6). As a result of examining the amount of glycoside-degrading enzyme added when tannase and pectinase were used in combination, it was found that as the amount of glycoside-degrading enzyme added was increased, the color tone became lighter and turbidity became clearer (the present invention product). 4-7).

(実施例2)
前記の本発明品6と同一の条件で、工程途中の液を調製した。すなわち、脱水型遠心分離機により分離した液(1)、その液を95℃、1分間加熱した後の液(2)、次いで、その液を冷却後さらにNo.2濾紙濾過した液(3)、次いでその液を、20℃に冷却し、重力加速度3000×gにて10分間遠心分離した液(4)。これらのそれぞれを20℃にて一夜静置した。
(Example 2)
A liquid in the middle of the process was prepared under the same conditions as the product 6 of the present invention. That is, the liquid (1) separated by the dehydration type centrifuge, the liquid (2) after heating the liquid at 95° C. for 1 minute, and then the liquid was cooled and further No. 2 Liquid filtered with filter paper (3), and then the liquid was cooled to 20° C. and centrifuged for 10 minutes at a gravity acceleration of 3000×g (4). Each of these was allowed to stand overnight at 20°C.

その結果、(1)の液は全体が均一で、濃厚で濁りのある黄緑色を呈しているが、(2)の液は多量の濃緑色の沈殿を生じ、上清は色が薄くほぼ清澄な液となっていた。また、(3)の液は、僅かに沈殿を生じていたが、上清は色が薄くほぼ清澄な液となっており、(4)の液は色が薄くほぼ清澄な液となっており、沈殿は全くなかった。これらの外観の写真を図2に示す。左から(1)、(2)、(3)、(4)である。 As a result, the liquid of (1) was uniformly uniform and had a thick and turbid yellow green color, but the liquid of (2) caused a large amount of dark green precipitate, and the supernatant was pale and almost clear. It was a liquid. In addition, although the liquid of (3) had a slight precipitate, the supernatant was a light and almost clear liquid, and the liquid of (4) was a light and almost clear liquid. , There was no precipitation. A photograph of these appearances is shown in FIG. From left to right are (1), (2), (3), and (4).

以上の結果、酵素処理後に加熱処理を行うことで着色成分を含む沈殿物が生じ、この沈殿物を取り除くことで脱色されたことが判明した。また、本沈殿物はNo.2 ろ紙(保留粒子径5μm)では完全には除去できず、重力加速度3000×gにて遠沈処理することにより効率的に除去可能であることがわかった。 As a result, it was found that heat treatment after enzyme treatment produced a precipitate containing a coloring component, and removal of this precipitate resulted in decolorization. In addition, this precipitate is 2 It was found that the filter paper (holding particle diameter: 5 μm) could not be completely removed, but it could be efficiently removed by performing a centrifugal sedimentation treatment with a gravity acceleration of 3000×g.

(実施例3)
純水2600gにビタミンC 3.6gを溶解し、75℃に加温した。そこに静岡産1番茶(実施例1とは異なる茶葉:やぶきた種、蒸青法、5mmにカット品)200gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表2に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。ついで、抽出液をロータリーエバポレーターにより、Bx17°まで減圧濃縮し、20℃に冷却し、重力加速度3000×gにて10分間遠心分離して沈殿物を除去した後、上清液をBx15°に調整し、95℃、1分間加熱殺菌後20℃まで冷却して緑茶抽出液を得た。得られた緑茶抽出液は、カフェイン含有量(HPLC法)、カテキン類含有量(HPLC法)およびタンニン含有量(Folin−denis法)を測定し、また、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表2に示す。また、これらのBx0.3°希釈液の外観の写真を図3に示す(左が比較品4、右が本発明品8)。
(Example 3)
Vitamin C (3.6 g) was dissolved in pure water (2600 g) and heated to 75°C. 200 g of No. 1 tea produced in Shizuoka (tea leaf different from that of Example 1: Yabukita seed, steamed blue method, 5 mm cut product) was added thereto, heated with stirring and sterilized by heating at 95° C. for 15 minutes. The mixture was cooled to 45°C (pH at this point was 5.3), the enzymes shown in Table 2 were added, and the reaction was carried out at 45°C for 4 hours with stirring. After separating the tea leaf residue and the extract with a dehydrating centrifuge, the extract was heated at 95°C for 1 minute and cooled to 30°C. The extract was then concentrated under reduced pressure to Bx17° by a rotary evaporator, cooled to 20°C, centrifuged at gravity acceleration of 3000×g for 10 minutes to remove the precipitate, and the supernatant was adjusted to Bx15°. Then, the mixture was heated and sterilized at 95°C for 1 minute and then cooled to 20°C to obtain a green tea extract. The obtained green tea extract was measured for caffeine content (HPLC method), catechins content (HPLC method) and tannin content (Folin-denis method), and Bx 0.3° (refractive sugar content, 20 The mixture was diluted to 430 nm (measured at °C), and the absorbance at 430 nm (coloring index) and the absorbance at 680 nm (turbidity index) were measured. The results are shown in Table 2. In addition, photographs of the appearance of these Bx 0.3° diluted solutions are shown in FIG. 3 (comparative product 4 on the left, product 8 of the present invention on the right).

Figure 2019044474
Figure 2019044474

本発明品8と比較品4の成分値を比較すると、本発明品8は比較品4と比べカフェイン、タンニンおよびカテキン類が少なくなっているが、わずかな程度であった。 Comparing the component values of the product 8 of the present invention and the product 4 of the comparison, the product 8 of the present invention contained less caffeine, tannins and catechins than the product 4 of the comparison, but the amounts were insignificant.

<官能評価>
本発明品8と比較品4それぞれのBx0.3°希釈品を、5名のパネラーにより評価した。その平均的な評価結果としては、本発明品8は比較品4よりも、呈味部分でややボディ感が弱く感じられたものの、明らかに緑茶の風味が確認できた。また、香りの面では緑茶の華やかな香気が感じられ。酵素処理茶特有の芋臭がマスキングされていた。
<Sensory evaluation>
The Bx 0.3° diluted products of the present invention product 8 and the comparative product 4 were evaluated by 5 panelists. As an average evaluation result, the product 8 of the present invention had a slightly weaker body feeling in the taste portion than the product 4 of the comparison, but the flavor of green tea was clearly confirmed. Also, in terms of scent, you can feel the gorgeous aroma of green tea. The potato odor peculiar to enzyme-treated tea was masked.

(実施例4)
比較品4にさらに配糖体分解酵素を作用させ、本発明品と同様の抽出液が得られるかどうか確認実験を行った。
(Example 4)
A glycoside-degrading enzyme was further allowed to act on Comparative Product 4 to confirm whether or not an extract similar to the product of the present invention could be obtained.

すなわち、比較品4に市販のβ−グルコシダーゼ(1200U/g)(茶葉1gに対し12U)を添加し、45℃にて4時間撹拌反応を行った後、95℃、1分間加熱し、30℃まで冷却した。ついで、20℃に冷却し、No2.ろ紙濾過後、重力加速度3000×gにて10分間遠心分離し、95℃、1分間加熱殺菌後20℃まで冷却して緑茶抽出液を得た(比較品5)。得られた緑茶抽出液は、カフェイン含有量(HPLC法)、カテキン類含有量(HPLC法)およびタンニン含有量(Folin−denis法)を測定し、また、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を比較品4と本発明品8を合わせて表3に示す。 That is, commercially available β-glucosidase (1200 U/g) (12 U per 1 g of tea leaf) was added to Comparative Product 4, and the mixture was stirred at 45° C. for 4 hours, heated at 95° C. for 1 minute, and then heated at 30° C. Cooled down. Then, it was cooled to 20° C., and No2. After filtration with filter paper, centrifugation was performed at a gravity acceleration of 3000×g for 10 minutes, heat sterilization at 95° C. for 1 minute, and cooling to 20° C. to obtain a green tea extract (Comparative product 5). The obtained green tea extract was measured for caffeine content (HPLC method), catechins content (HPLC method) and tannin content (Folin-denis method), and Bx 0.3° (refractive sugar content, 20 The mixture was diluted to 430 nm (measured at °C), and the absorbance at 430 nm (coloring index) and the absorbance at 680 nm (turbidity index) were measured. The results are shown in Table 3 for the comparative product 4 and the invention product 8.

Figure 2019044474
Figure 2019044474

比較品5は比較品4(配糖体分解酵素処理前)と比較すると、カフェイン、タンニン、カテキン類いずれも減少していた。一方で本発明品8の色調(OD430nm)は本発明品8よりも着色がみられるものの、比較品4よりは、色も薄く濁りも少なくなる傾向にあった。 Compared to Comparative product 4 (before glycoside-degrading enzyme treatment), Comparative product 5 had a decrease in all of caffeine, tannin, and catechins. On the other hand, although the color tone (OD430 nm) of the product 8 of the present invention was more colored than that of the product 8 of the present invention, the color and the turbidity tended to be smaller than those of the comparative product 4.

また、比較品5の調製工程において、酵素反応し加熱処理を行った抽出液を20℃にて一夜放置した段階で、実施例2の(2)と同様の緑色のフロック状沈殿物が生じた。比較品5調製工程の途中段階の液の外観の写真を図4に示す(左から、比較品4、酵素失活後、濾過後、遠心分離後)。 Further, in the step of preparing Comparative Product 5, a green floc-like precipitate similar to that in (2) of Example 2 was produced at the stage where the extract solution subjected to the enzyme reaction and heat treatment was left overnight at 20°C. .. A photograph of the appearance of the liquid at the intermediate stage of the comparative product 5 preparation process is shown in FIG. 4 (from the left, comparative product 4, after enzyme deactivation, after filtration, and after centrifugation).

(実施例5)
実施例4で生じた沈殿物を回収し、遠沈処理/水洗を3回繰り返し、濃緑色の沈殿物を回収した。
(Example 5)
The precipitate generated in Example 4 was collected, and centrifugation treatment/washing with water was repeated 3 times to collect a dark green precipitate.

この沈殿物は水には不溶であったが、メタノールには清澄に溶解し、濃い緑色を呈した。この結果から、詳細な機序は不明だが、緑茶抽出液に配糖体分解酵素を作用させることで水溶性であった色素成分が水に不溶性の沈殿物として析出し、これを分離することで脱色されると推定された。 Although this precipitate was insoluble in water, it was clarified in methanol and had a deep green color. From this result, although the detailed mechanism is unknown, the action of the glycoside-degrading enzyme on the green tea extract causes the water-soluble pigment component to precipitate as an insoluble precipitate in water. It was estimated to be decolorized.

遠心分離の上清液、沈殿物を水洗した時の洗浄液、および沈殿物をメタノールに溶解した液の外観の写真を図5に示す(左から遠心分離の上清液、沈殿物を水洗した時の洗浄液、および沈殿物をメタノールに溶解した液)。 A photograph of the appearance of the supernatant liquid of centrifugation, the washing liquid when the precipitate was washed with water, and the liquid of the precipitate dissolved in methanol is shown in Fig. 5 (from the supernatant liquid of the centrifugation, when the precipitate was washed with water. Of the washing solution and the solution obtained by dissolving the precipitate in methanol).

(実施例6)
プロテアーゼを併用した場合について検討を行った。
(Example 6)
A study was conducted on the case where a protease was used in combination.

純水2600gにビタミンC 3.6gを溶解し、75℃に加温した。そこに静岡産2番茶(実施例1と同じ茶葉:やぶきた種、蒸青法、5mmにカット品)200gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表4に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。ついで、抽出液をロータリーエバポレーターを用いて、Bx17°まで減圧濃縮し、20℃に冷却し、重力加速度3000×gにて10分間遠心分離して沈殿物を除去した後、上清液をBx15°に調整し、95℃、1分間加熱殺菌後20℃まで冷却して緑茶抽出液を得た。得られた緑茶抽出液は、カフェイン(HPLC法)、カテキン類(HPLC法)タンニン(Folin−denis法)およびアミノ酸(HPLC法)を測定し、また、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表4に示す。
(酵素の説明)
・プロテアーゼ:プロテアーゼM「アマノ」SD(天野エンザイム株式会社製のプロテアーゼ)
Vitamin C (3.6 g) was dissolved in pure water (2600 g) and heated to 75°C. 200 g of No. 2 tea produced in Shizuoka (the same tea leaf as in Example 1: Yabukita seed, steamed blue method, 5 mm cut product) was added thereto, heated with stirring and sterilized by heating at 95° C. for 15 minutes. It cooled to 45 degreeC (pH at this time is 5.3), the enzyme shown in Table 4 was added, and stirring reaction was performed at 45 degreeC for 4 hours. After separating the tea leaf residue and the extract with a dehydrating centrifuge, the extract was heated at 95°C for 1 minute and cooled to 30°C. Then, the extract was concentrated under reduced pressure to 17° Bx using a rotary evaporator, cooled to 20° C., centrifuged at a gravity acceleration of 3000×g for 10 minutes to remove the precipitate, and the supernatant was B×15°. The mixture was heat-sterilized at 95°C for 1 minute and then cooled to 20°C to obtain a green tea extract. The obtained green tea extract was measured for caffeine (HPLC method), catechins (HPLC method) tannin (Folin-denis method) and amino acid (HPLC method), and Bx 0.3° (refractive sugar content, 20° C.). And the absorbance at 430 nm (index of coloring) and the absorbance at 680 nm (index of turbidity) were measured. The results are shown in Table 4.
(Explanation of enzyme)
Protease: Protease M "Amano" SD (Protease manufactured by Amano Enzyme Inc.)

Figure 2019044474
Figure 2019044474

表4に示した通り、本発明品9のアミノ酸は比較品6よりも多く、カフェイン、タンニンおよびカテキン類の含有量はほぼ同等の値であった。また、色調については、配糖体分解酵素を作用させた本発明品9は、比較品6と比べ脱色されることが確認できた。また、香味については、イオン交換水に0.2質量%添加した賦香品(Bx0.03°)を評価したころ、本発明品9は比較品6と比べてボディ感がやや弱いものの、旨味や渋味といった緑茶の風味が十分感じられ、良好な緑茶風味を有していた。 As shown in Table 4, the product 9 of the present invention contained more amino acids than the comparative product 6, and the contents of caffeine, tannin and catechins were almost the same. Further, regarding the color tone, it was confirmed that the product 9 of the present invention, which had been acted on by the glycoside-degrading enzyme, was decolorized as compared with the comparative product 6. Regarding the flavor, when a perfumed product (Bx0.03°) in which 0.2% by mass was added to ion-exchanged water was evaluated, the product 9 of the present invention had a slightly weaker body feeling than the comparative product 6, but had a good taste. The taste of green tea, such as astringency and astringency, was fully felt, and it had a good green tea flavor.

(実施例7)
実施例6において、本発明品9の調製工程において、重力加速度3000×gにて10分間遠心分離して得られた沈殿物を回収し、実施例5と同様に遠沈処理/水洗を3回繰り返し、濃緑色の沈殿物を回収した。得られた沈殿物をデジタルマイクロスコープにて撮影後、蛍光X線分析およびFT/IR分析に供した。
(Example 7)
In Example 6, in the step of preparing the product 9 of the present invention, the precipitate obtained by centrifuging at a gravitational acceleration of 3000×g for 10 minutes was recovered, and the centrifugation treatment/washing with water was repeated 3 times as in Example 5. Repeatedly, a dark green precipitate was collected. The obtained precipitate was photographed with a digital microscope and then subjected to fluorescent X-ray analysis and FT/IR analysis.

沈殿物は遠心分離/水洗を3回繰り返すことで2層に分かれており、上層部は緑色で粘稠性を有する物体、下層部は淡緑色の微小な球状物体が確認された(図6)。蛍光X線分析より上層部、下層部はいずれも有機物が主成分と推定され、FT/IR分析より上層部はタンパク質を主体とするもの、下層部は天然フラボノールの一つであり、例えば、下記化学構造式で示されるケンペロールを主体とするものである可能性が示唆された。 The precipitate was separated into two layers by repeating centrifugation/washing with water three times, and it was confirmed that the upper layer portion was a green and viscous substance, and the lower layer portion was a pale green minute spherical substance (Fig. 6). .. Organic substances are presumed to be the main component in both the upper and lower layers from the fluorescent X-ray analysis, and the upper layer is mainly composed of protein from the FT/IR analysis, and the lower layer is one of the natural flavonols. It was suggested that the main component is kaempferol represented by the chemical structural formula.

Figure 2019044474
Figure 2019044474

ケンペロール自体は水にわずかしか溶けないが、茶葉中に配糖体として存在することが知られているため、水抽出しても容易に溶け出す。今回、沈殿物として検出されたケンペロールは配糖体分解酵素の働きで糖が脱離してアグリコン化したケンペロールが不溶化して生じたものと推測される。ケンペロールの結晶は黄色を呈し、緑茶の水色である帯緑黄色〜鮮黄色に寄与していると考えられるが、本検討で検出された沈殿物は緑色を呈しており、ケンペロールとたんぱく質、クロロフィルなどが複合的に結合し、不溶化し沈殿したものと推測される。 Kaempferol itself is only slightly soluble in water, but it is known to exist as a glycoside in tea leaves, and therefore easily dissolves even when extracted with water. It is speculated that the kaempferol detected as a precipitate was caused by the elimination of sugar due to the action of a glycoside-degrading enzyme and insolubilization of aglyconized kaempferol. The crystals of kaempferol are yellow, and it is considered that they contribute to the greenish yellow to bright yellow of the light blue color of green tea, but the precipitates detected in this study are green, and kaempferol, protein, chlorophyll, etc. It is presumed that they were complexly bound, insoluble and precipitated.

(実施例8)茶葉の質量当たり配糖体分解酵素の活性を変動させたときの茶抽出液の脱色への影響の検討
酵素の添加量を下記表5に記載のとおりに調整し、45℃にて4時間撹拌反応を行ったこと以外、実施例1に記載の方法に従い緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。結果を表5に示す。
Example 8 Examination of Effect on Decolorization of Tea Extract when Varying Activity of Glycoside Degrading Enzyme per Mass of Tea Leaf The amount of enzyme added was adjusted as shown in Table 5 below, and 45° C. A green tea extract was obtained according to the method described in Example 1 except that the stirring reaction was performed for 4 hours. The obtained green tea extract was diluted to Bx 0.3° (refractive sugar content, measured at 20° C.), and the absorbance at 430 nm (coloring index) and the absorbance at 680 nm (turbidity index) were measured. The results are shown in Table 5.

Figure 2019044474
Figure 2019044474

OD430nmは着色の指標を、OD680nmは濁りの指標を表す。OD430nmが0.05以下ではほぼ着色なしであり、0.3以下ではごくわずかな着色、0.5以下では薄い着色であるといえる。また、OD680nmが0.1以下ではほぼ濁りなし(清澄)、0.15程度はわずかな濁りがある程度である。 OD430nm is an index of coloring, and OD680nm is an index of turbidity. It can be said that when the OD430nm is 0.05 or less, almost no coloring occurs, when it is 0.3 or less, it is very slight coloring, and when it is 0.5 or less, it is light coloring. Further, when OD680nm is 0.1 or less, there is almost no turbidity (clarification), and when OD680nm is about 0.15, slight turbidity is present.

表5に示した通り、茶葉に対する配糖体酵素の使用量の増加につれて、得られるエキスの色が薄くなっていくことが判明した。また、茶葉1gに対し10U(No.3)以上使用した場合には、着色も濁りもごくわずかといえる。 As shown in Table 5, it was found that the color of the obtained extract became lighter as the amount of the glycoside enzyme used for tea leaves increased. Moreover, when 10 U (No. 3) or more is used for 1 g of tea leaves, it can be said that coloring and turbidity are very slight.

(実施例9)茶葉に対する配糖体分解酵素の反応時間の茶抽出液の脱色への影響の検討
酵素反応時間を変える以外は、実施例1の本発明品4(配糖体分解酵素を茶葉1gに対し10U添加)および本発明品6(配糖体分解酵素を茶葉1gに対し20U添加)に記載の方法に従い緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。結果を表6に示す。
Example 9 Examination of Effect of Reaction Time of Glycoside Degrading Enzyme on Tea Leaf on Decolorization of Tea Extract Except that the enzyme reaction time was changed, the present invention product 4 of Example 1 A green tea extract was obtained in accordance with the method described in 10 g of 1 g) and the product 6 of the present invention (adding 20 U of glycoside degrading enzyme to 1 g of tea leaf). The obtained green tea extract was diluted to Bx 0.3° (refractive sugar content, measured at 20° C.), and the absorbance at 430 nm (coloring index) and the absorbance at 680 nm (turbidity index) were measured. The results are shown in Table 6.

Figure 2019044474
Figure 2019044474

表6に示した通り、配糖体分解酵素を茶葉1gに対し10Uまたは20U使用した抽出液は、いずれも1時間の反応で色、濁りとも低下していることが確認できた。表5により酵素反応を行っていない茶抽出液はOD430nmが0.562、OD680nmが0.146であることを踏まえると、1時間での脱色、濁りの低下の程度から想定して、30分の酵素反応時間でも効果があることが示唆される。 As shown in Table 6, it was confirmed that the extract using 10 U or 20 U of glycoside-degrading enzyme per 1 g of tea leaves had a decrease in both color and turbidity in the reaction for 1 hour. Based on the fact that the tea extract without enzyme reaction shown in Table 5 has an OD430nm of 0.562 and an OD680nm of 0.146, it takes 30 minutes for the decolorization and turbidity reduction in 1 hour. It is suggested that the enzymatic reaction time is also effective.

また、酵素反応時間が長くなるほど、色、濁りの値の低下は進み、着色については糖体分解酵素を茶葉1gに対し10U使用した系では4時間の反応で、20U使用した系では2時間の反応でOD430nmが0.3以下となった。また濁りについては、10U使用した系では3時間の反応で、20U使用した系では2時間の反応でOD680nmが0.1以下となった。いずれの系についてもさらなる反応時間の延長に伴い、さらに色(OD430nm)も濁り(OD680nm)も低下した。 In addition, the longer the enzymatic reaction time, the more the color and turbidity values decrease, and regarding coloring, the reaction was 4 hours in a system using 10 U of glycolytic enzyme for 1 g of tea leaf, and 2 hours in a system using 20 U. The OD430nm was 0.3 or less in the reaction. Regarding the turbidity, the OD680 nm was 0.1 or less after 3 hours of reaction in the system using 10 U and 2 hours of reaction in the system using 20 U. In each system, the color (OD430 nm) and the turbidity (OD680 nm) were further reduced as the reaction time was further extended.

(実施例10) β−グルコシダーゼとPVPP処理
純水660gにビタミンC(0.9g)を溶解し、75℃に加温した。そこに静岡産2番茶(やぶきた種、蒸青法、5mmにカット品)50gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは4.9)、表7(本発明品10)に示す酵素を添加し、45℃にて8時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離し、さらに軟水100gを遠心分離機内に投入して茶葉残渣に付着した抽出液を押出して抽出液を得、抽出液を95℃、30秒間加熱して殺菌および酵素失活し、30℃まで冷却した。次いで抽出液を遠心分離(1200×g、8分間)して沈殿物を除いた後、抽出液に対し、可溶性固形分(20℃におけるBxを用いて計算)の40%質量のPVPPを添加し、30℃にて1時間撹拌した。次いでNo.2濾紙(保留粒子径5μm)濾過した後、20℃に冷却し、軟水にてBx(20℃)3.0に調整し、95℃、30秒間加熱殺菌し、30℃まで冷却、200メッシュサラン濾過しながらペットボトルに充填し、緑茶エキスを得た(本発明品10)。
(Example 10) β-glucosidase and PVPP treatment Vitamin C (0.9 g) was dissolved in 660 g of pure water and heated to 75°C. 50 g of No. 2 tea produced in Shizuoka (Yabukita seed, steaming method, cut into 5 mm) was added thereto, heated while stirring, and sterilized by heating at 95°C for 15 minutes. The mixture was cooled to 45° C. (pH at this point was 4.9), the enzymes shown in Table 7 (Invention product 10) were added, and the reaction was carried out at 45° C. for 8 hours with stirring. The tea leaf residue and the extract are separated by a dehydration type centrifuge, 100 g of soft water is further charged into the centrifuge, and the extract adhering to the tea leaf residue is extruded to obtain the extract, which is 95°C for 30 seconds. It was heated to sterilize and deactivate the enzyme, and cooled to 30°C. Then, the extract was centrifuged (1200×g, 8 minutes) to remove the precipitate, and 40% by mass of PVPP of soluble solid content (calculated using Bx at 20° C.) was added to the extract. The mixture was stirred at 30°C for 1 hour. Then No. 2 Filter paper (holding particle diameter 5 μm), cool to 20° C., adjust to Bx (20° C.) 3.0 with soft water, heat sterilize at 95° C. for 30 seconds, cool to 30° C., 200 mesh Saran It was filled in a PET bottle while being filtered to obtain a green tea extract (invention product 10).

(実施例11)
実施例10において、PVPP添加量を、抽出液に対し、可溶性固形分(20℃におけるBxを用いて計算)の80%質量とする以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(本発明品11)。
(Example 11)
In Example 10, except that the amount of PVPP added was 80% by mass of the soluble solid content (calculated using Bx at 20° C.) with respect to the extract, the same operation as in Example 10 was performed to obtain a green tea extract. Obtained (invention product 11).

(実施例12) β−グルコシダーゼ処理
実施例10において、PVPP添加を行わない以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(本発明品12)。
(比較例7) β−グルコシダーゼなしかつ、PVPP処理
実施例10において、酵素としてβ−グルコシダーゼを使用しない(表7の本発明品12の酵素を使用)する以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(比較品7)。
(比較例8) β−グルコシダーゼ処理もPVPP処理のいずれもなし
比較例7において、PVPP添加を行わない以外は比較例7と全く同様の操作を行い、緑茶エキスを得た(比較品8)。
(Example 12) β-Glucosidase treatment In Example 10, the same operation as in Example 10 was carried out except that PVPP was not added to obtain a green tea extract (product 12 of the invention).
(Comparative Example 7) Without β-glucosidase and PVPP treatment In Example 10, exactly the same operation as in Example 10 except that β-glucosidase was not used as the enzyme (using the enzyme of the product 12 of the present invention in Table 7). Then, a green tea extract was obtained (Comparative Product 7).
(Comparative Example 8) Neither β-glucosidase treatment nor PVPP treatment was performed. In Comparative Example 7, the same operation as in Comparative Example 7 was performed except that PVPP was not added to obtain a green tea extract (Comparative Product 8).

(実施例13)
本発明品10、本発明品11、本発明品12、比較品7および比較品8の、Bx、pH、アミノ酸(mg%)、タンニン(mg%)、カフェイン(mg%)を測定した。また純水にてBx0.3°に希釈し、OD430nm、OD680nm、Lab、ΔE(純水との比較)を測定した。さらにまた、Bx0.3°希釈品は5名のよく訓練されたパネラーにより緑茶らしさを官能評価した。これらの分析値および官能評価の平均的な結果を表7に示す。
(Example 13)
Bx, pH, amino acid (mg%), tannin (mg%) and caffeine (mg%) of the present invention product 10, the present invention product 11, the present invention product 12, the comparative product 7 and the comparative product 8 were measured. Further, it was diluted to Bx 0.3° with pure water, and OD430nm, OD680nm, Lab, and ΔE (comparison with pure water) were measured. Furthermore, the Bx 0.3° diluted product was subjected to sensory evaluation of green tea likeness by 5 well-trained panelists. Table 7 shows the average results of these analysis values and sensory evaluations.

Figure 2019044474
Figure 2019044474

(結果、考察)
・β-グルコシダーゼ処理により茶飲料の着色度合は低下する(比較品8と本発明品12、ならびに、比較品7と本発明品10の対比)。
・PVPP処理により茶飲料の着色度合は低下する、特に加熱殺菌後の着色が少ない傾向がある。また、PVPP処理により、苦渋味が弱くなる(比較品8と比較品7、ならびに、本発明品12と本発明品10の対比)。
・β−グルコシダーゼ処理に加え、PVPP処理(タンニン除去)を行った本発明品10および11は、同一の固形分濃度(Bx0.3°)に希釈した場合、茶の風味を維持しながらも、色が最も薄く、より脱色されたエキスが得られることが認められた。
・β−グルコシダーゼ処理に加え、PVPP処理(タンニン除去)を行うことにより茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下、かつ、680nmの吸光度0.05以下、であり、さらに、可溶性固形分(屈折糖度、温度20℃)を15(上記発明品の5倍濃度)とした場合の、アミノ酸が1.0質量%以上かつカテキンが1.0質量%未満である緑茶抽出液を得ることができた(本発明品10および11)。
(Result, consideration)
-The β-glucosidase treatment reduces the degree of coloring of the tea beverage (comparative product 8 and invention product 12, and comparative product 7 and invention product 10).
-The PVPP treatment reduces the degree of coloring of the tea beverage, and in particular, there is a tendency that the coloring after heat sterilization is small. In addition, the bitterness and astringency are weakened by the PVPP treatment (comparison between comparative product 8 and comparative product 7, and invention product 12 and invention product 10).
-In addition to the β-glucosidase treatment, the products 10 and 11 of the present invention that have been subjected to PVPP treatment (removal of tannin), when diluted to the same solid content concentration (Bx 0.3°), while maintaining the flavor of tea, It was observed that the lightest color and more decolorized extract was obtained.
-In addition to β-glucosidase treatment, PVPP treatment (tannin removal) is performed to obtain a soluble solid content (refractive sugar content, temperature 20°C) of the tea extract of 0.3, the absorbance at 430 nm is 0.05 or less, Moreover, the absorbance at 680 nm is 0.05 or less, and when the soluble solid content (refractive sugar content, temperature 20° C.) is 15 (5 times the concentration of the above-mentioned invention product), the amino acid content is 1.0% by mass or more. Moreover, a green tea extract having less than 1.0% by mass of catechin could be obtained (invention products 10 and 11).

(実施例14) 本発明品および比較品を用いた容器詰飲料の色調
本発明品10、11、12、比較品7および比較品8をそれぞれBx0.005°となるように希釈し(それぞれの本発明品または比較品を各水に0.167%)、アスコルビン酸ナトリウム0.03%添加と無添加の溶液を調整し、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
それぞれの飲料の色調(OD430nm、OD680nmおよび純水とのΔE)を表8に示す。
(Example 14) Color tone of packaged beverage using invented product and comparative product Invented products 10, 11, 12 and comparative product 7 and comparative product 8 were diluted to Bx 0.005° (respectively). 0.167% of each of the present invention product and comparative product), 0.03% sodium ascorbate added and non-added solutions were prepared, sterilized by UHT at 135°C for 30 seconds, and then cooled to 90°C. After filling the bottle, it was cooled to 30° C. or lower to prepare a container-packaged green tea beverage.
Table 8 shows the color tone of each beverage (OD430 nm, OD680 nm and ΔE with pure water).

Figure 2019044474
Figure 2019044474

(結果、考察)
・エキスをBx0.005°に希釈し、アスコルビン酸ナトリウム0.03%添加した場合では、本発明品10、11、12、比較品7および比較品8のいずれも無色透明またはそれに近い飲料が調製できる。
・エキスをBx0.005°に希釈し、アスコルビン酸ナトリウム無添加の場合では、いずれも濁りはなくほぼ透明であり、10および11はおおよそ完全に無色であるが、それ以外は着色が見られた。
(Result, consideration)
-When the extract is diluted to Bx 0.005° and sodium ascorbate 0.03% is added, all of the products 10, 11, 12 of the present invention, Comparative product 7 and Comparative product 8 are colorless and transparent or beverages close thereto are prepared. it can.
When the extract was diluted to Bx 0.005° and sodium ascorbate was not added, it was almost transparent without turbidity, and 10 and 11 were almost completely colorless, but other colors were observed. ..

(実施例15) エキスの添加濃度と色調の関連性
本発明品10を表9の濃度となるように希釈し(アスコルビン酸ナトリウムは無添加)、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
それぞれの飲料の色調(OD430nmおよび純水とのΔE)を表9に示す。
Example 15 Relationship between Additive Concentration of Extract and Color Tone The product 10 of the present invention was diluted to have the concentration shown in Table 9 (sodium ascorbate was not added) and UHT sterilized at 135° C. for 30 seconds, then 90 After being cooled to 30°C and filled in a PET bottle, it was cooled to 30°C or lower to prepare a packaged green tea beverage.
Table 9 shows the color tone of each beverage (OD430 nm and ΔE with pure water).

Figure 2019044474
Figure 2019044474

(結果、考察)
アスコルビン酸ナトリウム無添加で調製した容器詰飲料の場合、本発明品10の濃度がBx0.005°ではおおよそ完全に無色、Bx0.015ではわずかに着色といった程度、Bx0.025では着色する。
しかしながら、緑茶らしい風味を十分確保するためには、0.025程度は必要と思われた。
前記実施例13から容器詰飲料の調製に当たり、アスコルビン酸ナトリウム添加が着色防止の効果が認められるため、次の実験を行った。
(Result, consideration)
In the case of a packaged beverage prepared without addition of sodium ascorbate, when the concentration of the product 10 of the present invention is Bx 0.005°, it is almost completely colorless, and when Bx 0.015 is slightly colored, it is colored at Bx 0.025.
However, in order to sufficiently secure the flavor like green tea, it seems that about 0.025 is necessary.
Since the addition of sodium ascorbate was found to have the effect of preventing coloration when preparing a packaged beverage from Example 13, the following experiment was conducted.

(実施例16) アスコルビン酸ナトリウム添加濃度、保存条件と色調の関連性
本発明品10をBx0.025°となるように希釈し、その際、表10の濃度のアスコルビン酸ナトリウムを添加し、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
各容器詰飲料は、10℃および50℃にて10日間保存した。
保存後のそれぞれの飲料の色調(OD430nmおよび純水とのΔE)を表10に示す。
(Example 16) Relationship between sodium ascorbate addition concentration, storage condition and color tone The product 10 of the present invention was diluted to have Bx0.025°, and at that time, sodium ascorbate having a concentration shown in Table 10 was added to the mixture to give 135 After UHT sterilization at 30° C. for 30 seconds, the mixture was cooled to 90° C., filled in a PET bottle, and then cooled to 30° C. or lower to prepare a packaged green tea beverage.
Each packaged beverage was stored at 10°C and 50°C for 10 days.
Table 10 shows the color tone (OD430 nm and ΔE with pure water) of each beverage after storage.

Figure 2019044474
Figure 2019044474

(結果、考察)
・アスコルビン酸ナトリウム添加により殺菌後の着色が抑えられた。
・アスコルビン酸ナトリウム添加濃度0〜0.03%の範囲で、添加量が増加するほど殺菌後の着色が抑えられることが認められた。
・殺菌直後および10℃、10日間保存のOD430nmおよびΔEから、アスコルビン酸ナトリウムは0.01%以上であれば、おおよそ完全に無色かつ透明であった。
・容器詰飲料を50℃、10日間(虐待条件)で保存した場合、アスコルビン酸ナトリウム添加濃度0.03%で「ほぼ着色」であったが0.01%では「ごくわずかに着色」程度であった。
・以上によれば、アスコルビン酸ナトリウムの添加濃度は0.01%以上が好ましいといえる。
(Result, consideration)
-Addition of sodium ascorbate suppressed coloration after sterilization.
-In the range of addition concentration of sodium ascorbate of 0 to 0.03%, it was confirmed that the coloring after sterilization was suppressed as the addition amount increased.
From the OD430 nm and ΔE immediately after sterilization and after storage at 10° C. for 10 days, if sodium ascorbate was 0.01% or more, it was almost completely colorless and transparent.
・When the packaged beverage was stored at 50°C for 10 days (abuse condition), it was "almost colored" at a sodium ascorbate concentration of 0.03%, but was "slightly colored" at 0.01%. there were.
-According to the above, it can be said that the addition concentration of sodium ascorbate is preferably 0.01% or more.

Claims (18)

以下の工程(A)〜(E)を含んでなる、脱色された茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程、
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
A method for producing a decolorized tea extract, which comprises the following steps (A) to (E).
(A) A step of mixing tea leaves and water (B) A step of allowing a glycoside-degrading enzyme to act on the mixture of (A) after step (A) (C) After step (B), a tea leaf residue and an extract And a step of obtaining a glycoside enzyme-treated tea extract, (D) a step of heat-treating the glycoside enzyme-treated tea extract obtained in step (C),
(E) A step of removing insoluble components from the heat-glycoside enzyme-treated tea extract obtained in step (D) to obtain a decolorized tea extract
工程(B)と同時または前若しくは後であって工程(C)の前に、さらに、タンナーゼおよび/またはペクチナーゼを作用させる工程を含む、請求項1に記載の脱色された茶抽出液の製造方法。 The method for producing a decolorized tea extract according to claim 1, further comprising the step of allowing tannase and/or pectinase to act at the same time as or before or after step (B) and before step (C). .. 工程(B)と同時におよび/または工程(B)の後であって工程(C)の前に、さらに、プロテアーゼを作用させる工程を含む、請求項1または2に記載の脱色された茶抽出液の製造方法。 Decolorized tea extract according to claim 1 or 2, further comprising the step of allowing a protease to act at the same time as step (B) and/or after step (B) but before step (C). Manufacturing method. 工程(D)における加熱処理条件が温度70〜135℃、時間2秒〜30分の範囲内である請求項1〜3のいずれか1項に記載の脱色された茶抽出液の製造方法。 The method for producing a decolorized tea extract according to any one of claims 1 to 3, wherein the heat treatment conditions in the step (D) are at a temperature of 70 to 135°C and a time of 2 seconds to 30 minutes. 茶葉が緑茶である請求項1〜4のいずれかに記載の脱色された茶抽出液の製造方法。 The method for producing a decolorized tea extract according to claim 1, wherein the tea leaves are green tea. 工程(A)の前に、茶葉を水蒸気蒸留して香気回収物を得、得られた香気回収物を工程(E)で得られる清澄液に混合する工程を含む、請求項1〜5のいずれかに記載の脱色された茶抽出液の製造方法。 Any of claims 1 to 5, including a step of steam-distilling tea leaves to obtain an aroma collection product before the step (A), and mixing the obtained aroma collection product with the clarified liquid obtained in the step (E). A method for producing a decolorized tea extract described in (1). 茶葉に対する配糖体分解酵素の使用量が1U/g以上、酵素反応の温度が30〜70℃の範囲内、かつ、反応時間が30分以上である請求項1〜6のいずれかに記載の脱色された茶抽出液の製造方法。 The amount of glycoside-degrading enzyme used for tea leaves is 1 U/g or more, the temperature of the enzyme reaction is in the range of 30 to 70° C., and the reaction time is 30 minutes or more. A method for producing a decolorized tea extract. 請求項1に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下である、方法。 The method for producing a decolorized tea extract according to claim 1, wherein the absorbance at 430 nm is 0.5 or less when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. And the absorbance at 680 nm is 0.15 or less. 請求項8に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.15以下かつ680nmの吸光度が0.05以下である、方法。 The method for producing a decolorized tea extract according to claim 8, wherein the absorbance at 430 nm is 0.15 or less when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. And the absorbance at 680 nm is 0.05 or less. 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.15以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のカテキン含有量が1.0質量%以上である緑茶葉抽出液。 When the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3, the absorbance at 430 nm is 0.15 or less and the absorbance at 680 nm is 0.05 or less. , And a catechin content of 1.0 mass% or more when the temperature is 20° C.) is 15. 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上である緑茶葉抽出液。 When the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3, the absorbance at 430 nm is 0.5 or less and the absorbance at 680 nm is 0.15 or less. And a temperature of 20° C.) of 15, the green tea leaf extract having an amino acid content of 1.0 mass% or more. 以下の工程(A)〜(F)を含んでなる、低タンニン茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
(F)工程(E)の後に得られた脱色された茶抽出液をさらにPVPP(ポリビニルポリピロリドン)と接触させ、接触後のPVPPを除去した抽出液を得る工程
A method for producing a low tannin tea extract, which comprises the following steps (A) to (F).
(A) A step of mixing tea leaves and water (B) A step of allowing a glycoside-degrading enzyme to act on the mixture of (A) after step (A) (C) After step (B), a tea leaf residue and an extract To obtain a glycoside enzyme-treated tea extract, (D) a step of heating the glycoside enzyme-treated tea extract obtained in the step (C), and a step (E) obtained in the step (D). Insoluble components are removed from the heat-treated glycoside enzyme-treated tea extract to obtain a decolorized tea extract (F) The decolorized tea extract obtained after the step (E) is further converted into PVPP (polyvinyl poly (Pyrrolidone) to obtain an extract liquid after removing PVPP after contact
請求項12に記載の低タンニン茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin−Denis法)が1.0質量%以下である、方法。 The method for producing a low tannin tea extract according to claim 12, wherein the absorbance at 430 nm is 0.05 or less when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. The absorbance at 680 nm is 0.05 or less, and when the soluble solid content (refractive sugar content, temperature 20° C.) is 15, the amino acid content is 1.0% by mass or more and the tannin (Folin-Denis method) is 1. The method is 0 mass% or less. 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin−Denis法)が1.0質量%以下である緑茶葉抽出液。 When the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3, the absorbance at 430 nm is 0.05 or less and the absorbance at 680 nm is 0.05 or less, and the soluble solid content (refractive sugar content) is 0.05 or less. , And the tannin (Folin-Denis method) is 1.0 mass% or less when the temperature is 20° C.) and the amino acid content is 1.0 mass% or more. (G)請求項1〜9、12および13のいずれかに記載の方法によって得られた茶抽出液に加水して茶由来の可溶性固形分を0.005〜0.3%(Bx、20℃)に調整する工程、
(H)工程(G)でえられた茶飲料に、ビタミンCまたはその可食性の塩(ナトリウム)を加える工程
を含む容器詰茶飲料の製造方法。
(G) A soluble solid content derived from tea is 0.005-0.3% (Bx, 20° C.) by adding water to the tea extract obtained by the method according to any one of claims 1 to 9, 12 and 13. ) Adjusting step,
(H) A method for producing a packaged tea beverage, which comprises the step of adding vitamin C or an edible salt (sodium) thereof to the tea beverage obtained in step (G).
請求項10、11および14に記載の緑茶抽出液を、茶由来の可溶性固形分として0.005〜0.3%(Bx、20℃)質量%含み、さらにビタミンCまたはその可食性の塩(ナトリウム)を含有する、容器詰茶飲料。 The green tea extract according to claim 10, 11 and 14 is contained in an amount of 0.005 to 0.3% (Bx, 20°C) mass% as a soluble solid content derived from tea, and further vitamin C or an edible salt thereof ( A packaged tea beverage containing sodium). ビタミンCまたはその可食性の塩(ナトリウム)を0.002〜0.3質量%含有する、請求項16に記載の容器詰茶飲料。 The packaged tea beverage according to claim 16, which contains 0.002 to 0.3% by mass of vitamin C or an edible salt thereof (sodium). 茶抽出液の可溶性固形分(屈折糖度、温度20℃)が0.3の場合の430nmの吸光度が0.015以下かつ680nmの吸光度が0.05以下である、請求項16または17に記載の容器詰茶飲料。 The absorbance at 430 nm is 0.015 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content, temperature 20° C.) of the tea extract is 0.3. Bottled tea beverage.
JP2019539321A 2017-09-01 2018-08-13 Decolorized tea extract and its manufacturing method Active JP6993418B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017168775 2017-09-01
JP2017168775 2017-09-01
PCT/JP2018/030186 WO2019044474A1 (en) 2017-09-01 2018-08-13 Decolored tea extract, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019044474A1 true JPWO2019044474A1 (en) 2020-07-27
JP6993418B2 JP6993418B2 (en) 2022-01-13

Family

ID=65525481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019539321A Active JP6993418B2 (en) 2017-09-01 2018-08-13 Decolorized tea extract and its manufacturing method

Country Status (3)

Country Link
JP (1) JP6993418B2 (en)
TW (1) TWI756464B (en)
WO (1) WO2019044474A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116712373A (en) * 2022-06-22 2023-09-08 可可琪可思曼中华有限公司 Sugar-resistant skin care lotion

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218550A (en) * 1988-02-25 1989-08-31 Itouen:Kk Tannin-removed tea solution and production of tea beverage
JPH05168407A (en) * 1991-12-24 1993-07-02 Toyo Seikan Kaisha Ltd Preparation of green tea drink packed in container
JPH09220055A (en) * 1996-02-15 1997-08-26 Calpis Food Ind Co Ltd:The Production of tea beverages
JP2003204754A (en) * 2002-01-17 2003-07-22 T Hasegawa Co Ltd Method for manufacturing green tea extracted solution
JP2004147606A (en) * 2002-10-31 2004-05-27 Ito En Ltd New green tea drink and method for producing the same
JP2006075112A (en) * 2004-09-10 2006-03-23 T Hasegawa Co Ltd Tea essence and method for producing tea aroma
JP2011182673A (en) * 2010-03-05 2011-09-22 T Hasegawa Co Ltd Method for producing tea extract
WO2011126003A1 (en) * 2010-04-05 2011-10-13 サントリーホールディングス株式会社 Process for producing tea extract
JP2011250736A (en) * 2010-06-02 2011-12-15 Mitsui Norin Co Ltd Method of making tea extract and tea extract
WO2015022911A1 (en) * 2013-08-12 2015-02-19 長谷川香料株式会社 Method for manufacturing tea extract
JP2016220562A (en) * 2015-05-28 2016-12-28 長谷川香料株式会社 Method for producing recovery from roast aroma

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218550A (en) * 1988-02-25 1989-08-31 Itouen:Kk Tannin-removed tea solution and production of tea beverage
JPH05168407A (en) * 1991-12-24 1993-07-02 Toyo Seikan Kaisha Ltd Preparation of green tea drink packed in container
JPH09220055A (en) * 1996-02-15 1997-08-26 Calpis Food Ind Co Ltd:The Production of tea beverages
JP2003204754A (en) * 2002-01-17 2003-07-22 T Hasegawa Co Ltd Method for manufacturing green tea extracted solution
JP2004147606A (en) * 2002-10-31 2004-05-27 Ito En Ltd New green tea drink and method for producing the same
JP2006075112A (en) * 2004-09-10 2006-03-23 T Hasegawa Co Ltd Tea essence and method for producing tea aroma
JP2011182673A (en) * 2010-03-05 2011-09-22 T Hasegawa Co Ltd Method for producing tea extract
WO2011126003A1 (en) * 2010-04-05 2011-10-13 サントリーホールディングス株式会社 Process for producing tea extract
JP2011250736A (en) * 2010-06-02 2011-12-15 Mitsui Norin Co Ltd Method of making tea extract and tea extract
WO2015022911A1 (en) * 2013-08-12 2015-02-19 長谷川香料株式会社 Method for manufacturing tea extract
JP2016220562A (en) * 2015-05-28 2016-12-28 長谷川香料株式会社 Method for producing recovery from roast aroma

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大森薫 他: "煎茶缶ドリンクの劣化防止法", 福岡県農業総合試験場研究報告.A,作物, JPN7020004099, 1991, pages 51 - 54, ISSN: 0004442717 *

Also Published As

Publication number Publication date
TW201912036A (en) 2019-04-01
WO2019044474A1 (en) 2019-03-07
TWI756464B (en) 2022-03-01
JP6993418B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
CN1611125B (en) Packaged, tea-based beverages
JP5562229B2 (en) Taste improving agent and tea beverage containing the same
JP3706370B2 (en) Tannase-treated green tea extract
JP4745784B2 (en) Purified green tea extract
JP5081028B2 (en) Method for producing purified green tea extract containing non-polymer catechins
JP5228229B2 (en) Method for producing low caffeine tea extract
JP2002238519A (en) Drink
JP6294676B2 (en) Method for producing tea extract
JP5981234B2 (en) Taste improving agent for tea-containing foods and drinks
KR101475758B1 (en) Method for production of tea extract
CN102307482B (en) Tea extract and method for producing the same
CN1923022B (en) Preparation process of purified green-tea extract
WO2009119112A1 (en) Method of producing fermented tea drink
JP2010148499A (en) Purified green tea extract
JP5162594B2 (en) Method for producing purified tea extract
JP4634409B2 (en) Process for producing a flavor-modified tea extraction product
JP5336340B2 (en) Method for producing purified tea extract
JP5111096B2 (en) Production method of tea extract
WO2012046351A1 (en) Process for producing tea extract
JP6993418B2 (en) Decolorized tea extract and its manufacturing method
JP2007274920A (en) Method for producing green-tea extract
JP4630295B2 (en) Production method of tea extract
JP7074418B1 (en) Fermented tea extract manufacturing method
JP2006333769A (en) Tea extract
JP3638560B2 (en) Production method of semi-fermented tea beverage and fermented tea beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211011

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211018

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211209

R150 Certificate of patent or registration of utility model

Ref document number: 6993418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150