WO2019044474A1 - Decolored tea extract, and method for producing same - Google Patents
Decolored tea extract, and method for producing same Download PDFInfo
- Publication number
- WO2019044474A1 WO2019044474A1 PCT/JP2018/030186 JP2018030186W WO2019044474A1 WO 2019044474 A1 WO2019044474 A1 WO 2019044474A1 JP 2018030186 W JP2018030186 W JP 2018030186W WO 2019044474 A1 WO2019044474 A1 WO 2019044474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tea
- tea extract
- extract
- less
- absorbance
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
- A23F3/18—Extraction of water soluble tea constituents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
- A23F3/30—Further treatment of dried tea extract; Preparations produced thereby, e.g. instant tea
Definitions
- the present invention relates to a bleached tea extract and a process for the preparation thereof. More specifically, the present invention relates to a tea extract having good aroma, umami and bitterness inherent to tea despite its light color, and a process for producing the same including a glycosidolytic enzyme treatment step of tea leaves.
- container-packed beverages in which a colorless and transparent container is filled with a substantially colorless and transparent beverage are often found in the market.
- Such beverages are also called near water, flavored water, etc., and the colorlessness of the appearance is one of the important factors.
- Examples of such almost colorless and transparent beverages are those having citrus flavors such as lemon, orange and orange, flavors of soft fruits such as grapes, apples and peaches, and fermented milk such as yoghurt. There are not many things that have a flavor of.
- the flavor of tea can be reproduced to a certain extent only by the flavor having aroma of tea (compound flavor or natural flavor), but in order to give the true feeling of tea, it is possible to blend water-soluble ingredients derived from tea. It is possible to impart a more desirable flavor.
- the tea extract is usually colored, and if it is attempted to mix the tea extract in an amount that imparts a flavor, the whole beverage will be colored light green to light brown.
- a method for decoloring a tea extract, for example, a method is known in which a tea extract is subjected to cation exchange resin treatment to remove metal ions and then filtered through a microfiltration membrane to obtain a treated solution (Patent Document 1)
- Patent Document 1 a method is known in which a tea extract is subjected to cation exchange resin treatment to remove metal ions and then filtered through a microfiltration membrane to obtain a treated solution.
- Patent Document 2 discloses a method for obtaining a tea extract by mixing or adding activated carbon during and / or after extraction of teas, but for the purpose of removing caffeine, decolorization is completely described. It has not been.
- Patent Document 3 discloses a method of bringing a caffeine-containing aqueous solution such as a tea extract into contact with activated white earth or acid white earth, but this method is also for the purpose of removing caffeine, and decoloration is completely described. It has not been.
- the method of making a tea extract liquid contact with polyvinylpolypyrrolidone is disclosed by patent document 4 or patent document 5, it is an objective in order to remove catechin or tannins, and it does not describe at all about decolorization.
- the green tea extract As a process for producing green tea extract that can be used for sports drinks and isotonic drinks, the green tea extract is dissolved in a mixed solution of ethanol and water in a weight ratio of 91/9 to 97/3 and brought into contact with activated carbon and acid clay.
- the preparation method (patent document 6) of the obtained low caffeine green tea extract is disclosed, the main objective is removal of caffeine.
- Patent Document 6 although it is considered that the hue is not deteriorated (eg, paragraph [0009]), a description that can be specifically identified regarding the color tone is not found, and is not described in the examples.
- glucoside-degrading enzyme means an enzyme that hydrolyzes the bond (glycosidic bond) between the anomeric carbon of a glycoside and the aglycone part (glycosidic bond) to generate free aglycone.
- a method of producing a green tea beverage comprising an enzyme treatment step of converting a glycoside into an aroma component compound by adding a glycoside degrading enzyme prior to the heat sterilization treatment step of the green tea extract in the method of producing a beverage Patent Document 7), A method for producing a tea extract having enhanced aroma and the like, which comprises treating a tea leaf with tannase and / or after treating the tea leaf with a glycolytic enzyme (Patent Document 8), etc.
- Patent No. 5818784 Japanese Patent Publication No. 11-504224 JP-A-8-70772 JP-A-6-142405 Patent No. 3315304 JP 2003-204754 A Patent No. 4181982 JP 2004-147606 A JP, 2006-75112, A Patent No. 5818784
- the method for decolorizing the tea leaf extract is mainly based on physicochemical treatment means, but it may have disadvantages or drawbacks such as the deterioration of the original flavor of tea leaves.
- an object of the present invention is to prepare a near water or flavored water-like beverage, a green tea extract capable of imparting a flavor derived from tea leaves, particularly taste, to the beverage without coloring, and It consists, for example, in presenting tea beverages, in particular container-packed tea beverages, using a green tea extract.
- a process for producing a decolorized tea extract comprising the following steps (A) to (E): (A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And separating the glycoside enzyme-treated tea extract (D) a step of heat-treating the glycoside enzyme-treated tea extract obtained in step (C), (E) Step 2: Step of obtaining insoluble decolorized tea extract from the heated glycoside enzyme-treated tea extract obtained in step (D) to obtain a decolorized tea extract: simultaneously with or before or after step (B) The method for producing a decolorized tea extract according to aspect 1, further comprising the step of reacting tannase and / or pectinase before step (C).
- Aspect 3 The decolorized tea according to aspect 1 or 2, further comprising the step of allowing a protease to act simultaneously with and / or after step (B) and before step (C). Method for producing an extract.
- Embodiment 4 The method for producing a decolorized tea extract according to any one of Embodiments 1 to 3, wherein the heat treatment conditions in the step (D) are a temperature of 70 to 135 ° C. and a time of 2 seconds to 30 minutes.
- Aspect 5 A method for producing a decolorized tea extract according to any one of aspects 1 to 4, wherein the tea leaf is green tea.
- Aspect 6 Before the step (A), steam-distilling the tea leaves to obtain an aroma-collected substance, and mixing the obtained aroma-collected substance into the clear liquid obtained in the step (E).
- the manufacturing method of the decolorized tea extract liquid in any one of-.
- Mode 7 In any of the modes 1 to 6, wherein the amount of glycoside degrading enzyme used for tea leaves is 1 U / g or more, the temperature of the enzyme reaction is in the range of 30 to 70 ° C., and the reaction time is 30 minutes or more. The manufacturing method of the decolored tea extract as described.
- Aspect 9 The method for producing a decolorized tea extract according to aspect 8, wherein the absorbance at 430 nm is 0.3 when the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3. 1 or less and the absorbance at 680 nm is 0.05 or less.
- Aspect 10 The absorbance at 430 nm is 0.15 or less and the absorbance at 680 nm is 0.05 or less, assuming that the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3, and further the soluble solid content
- the green tea leaf extract which has a catechin content of 1.0% by mass or more when the (refractive index sugar content, temperature 20 ° C.) is 15.
- Aspect 11 The absorbance at 430 nm is 0.5 or less and the absorbance at 680 nm is 0.15 or less, assuming that the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3, and further the soluble solid content
- the green tea leaf extract which has an amino acid content of 1.0% by mass or more when the (refractive index sugar content, temperature 20 ° C.) is 15.
- a method for producing a low tannin tea extract comprising the following steps (A) to (F): (A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And (G) separation of the glycoside enzyme-treated tea extract obtained in step (C) by heat treatment (E) step (D) obtained in step (D) Step of removing insoluble components from the heated glycoside enzyme-treated tea extract to obtain a decolorized tea extract (F) The decolorized tea extract obtained after the step (E) is further treated with PVPP (polyvinyl poly) Process for obtaining an extract from which PVPP has been removed by contacting with pyrrolidone) Step aspect 13: The method for producing a low tannin tea extract according to aspect 12, which is a soluble solid content of tea extract (refractory sugar content, temperature Whether the absorbance at 430 nm is 0.05 or less when
- the absorbance at 430 nm is 0.05 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3, and the soluble solid content is further A green tea leaf extract solution having an amino acid content of 1.0% by mass or more and a tannin (Folin-Denis method) of 1.0% by mass or less when the (refractive sugar content, temperature 20 ° C.) is 15.
- Aspect 15 (G) a tea extract obtained by the method according to any one of aspects 1 to 9, 12 and 13, wherein the soluble solids derived from tea is 0.005 to 0.3% (Bx, Adjusting to 20 ° C.), (H) The manufacturing method of the container-packed tea beverage including the process of adding vitamin C or its edible salt (sodium) to the tea beverage obtained at the process (G).
- Aspect 16 The green tea extract according to aspects 10, 11 and 14 comprises 0.005% to 0.3% (Bx, 20 ° C.)% by mass as a soluble solid content derived from tea, and further vitamin C or the edible thereof Container-packed tea beverage containing salt (sodium).
- Aspect 17 The container-packed tea beverage according to aspect 16, which comprises 0.002 to 0.3% by mass of vitamin C or an edible salt thereof (sodium).
- Aspect 18 In aspect 16 or 17 in which the absorbance at 430 nm is 0.015 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3.
- the tea extract having the flavor of the tea, in particular, the taste, and further the low tannin tea extract
- tea beverages particularly container-packed tea beverages, can be provided using the green tea extract.
- Example 2 The photograph which showed the external appearance of the liquid which diluted the green tea extract obtained in Example 1 to Bx0.3 degree is shown. From the left, the comparative product 1, the invention product 4, the invention product 5, the invention product 6, and the invention product 7. In Example 2, the photograph of the external appearance after leaving the liquid in the middle of a process for one night at 20 degreeC is shown. From left to right are (1), (2), (3) and (4). The photograph of the external appearance of the liquid which diluted the green tea extract obtained in Example 3 to Bx0.3 degree is shown. The left is the comparative product 4 and the right is the product 8 of the present invention. The photograph which showed the external appearance of the liquid of the middle stage of the comparative product 5 preparation process in Example 4 is shown.
- FIG. 16 is a photograph taken with a digital microscope of the precipitate in Example 7.
- FIG. It is a graph of the light absorbency (OD430nm and OD680nm) of the tea extract when the activity of the glycoside degrading enzyme per tea leaf is changed in Example 8
- tea extract No. 1 when changing the activity of the glucoside degrading enzyme per tea leaf was varied. 1 to No. It is the photograph which showed the external appearance of the Bx0.3 degree dilution liquid of 6.
- Tea leaves which can be used as a raw material in the method of the present invention are tea leaves belonging to tea (Camellia sinensis) widely cultivated worldwide, and any tea leaves which are in line with the object of the present invention
- non-fermented tea is preferable
- non-fermented tea is preferable, and for example, roasted tea such as Sencha, Maruji tea, Gyokuro, Kabute tea, steamed tea such as Tencha, Ureshino tea, Aoyagi tea, various Chinese teas and the like can be mentioned.
- semi-fermented teas such as Baked tea, iron kannon tea, oolong tea and the like, and fermented teas such as black tea and the like.
- the tea may be of any variety, including the seed of camellia (Camellia sinensis var. Sinenses cv. Yabukita), and its leaves are usually from the center bud to the four leaves, which are raw materials for green tea etc. It may be a single-core quadruple-picked one containing leaves, or a leaf other than mature four-leaf.
- camellia Camellia sinensis var. Sinenses cv. Yabukita
- the above-mentioned tea leaves or tea raw materials can be used as they are, it is usually preferable to use those which have been subjected to treatments such as cutting, grinding and grinding using an apparatus used in food production and the like.
- tea leaf and water are mixed
- soft water, ion exchanged water, RO membrane treated water, etc. can be conveniently used as water.
- the use ratio of tea leaf to water is preferably 1: 5 to 50, preferably 1: 8 to 20, more preferably 1:10 to 15 in weight ratio although the suitable range varies depending on the dry state of the tea leaf.
- the mixing can be carried out at room temperature, but should be carried out under heating conditions in consideration of the harvest time, maturity, etc. of the leaves used, and also considering that sterilization is preferably performed before the enzyme reaction. You can also.
- the temperature at that time may be, for example, 65 to 100 ° C., more preferably 70 to 90 ° C., for the purpose of achieving the sterilization purpose and reducing the thermal deterioration of the tea leaves.
- the mixing time is a time during which the tea leaves absorb water and expand, and is not limited, but generally it is in the range of 1 minute to 60 minutes, preferably 5 minutes to 30 minutes it can.
- the mixture of tea leaves and water is cooled to a temperature suitable for the enzyme treatment.
- the mixture obtained in the step (A) can be allowed to act directly on the glycoside degrading enzyme, but before that, the mixture is other than the water extract or the glycoside degrading enzyme, and tea
- the enzyme-treated extract is prepared in the presence of various enzymes used for the extraction of glucosides, and then allowed to act on glucoside degrading enzymes, or simultaneously upon acting glucoside degrading enzymes directly on the mixture, or After that, enzymes other than glucoside degrading enzymes can also be allowed to act.
- enzymes other than glycoside degrading enzymes include, but are not limited to, tannin degrading enzyme tannase, protease, amylase, glucoamylase, pectinase, cellulase, hemicellulase and the like. Among them, tannase and pectinase can be mentioned as preferable ones for the purpose of the present invention, that is, to obtain the clear and decolorized tea extract while retaining the original flavor and taste of tea. These enzymes can be used alone or in combination of two or more.
- glycosidase, tannase, Pectinase can be detailed as follows.
- glycosides which may be present in tea leaves, for example, an enzyme capable of hydrolyzing a glycoside consisting of flavonols and glucose to a free aglycone part and a sugar part is advantageously used as a glycoside degrading enzyme. can do.
- Such O-glycoside glycosides are abundantly present in the plant world, and on the other hand, a large variety of enzymes that hydrolyze the O-glycosidic bond exist in nature. Among these, although not limited thereto, the following can be mentioned as those meeting the object of the present invention.
- solid nutrient culture media such as wheat bran and rice bran containing ⁇ -glucosidase-producing bacteria belonging to the genus Aspergillus, Penicillium, Rhizopus, Pseudomonas, Pichia, etc.
- it can be a solid culture or liquid culture in a liquid nutrient medium according to a conventional method, and the obtained culture or a treated product thereof can be purified by a conventional method.
- those obtained by purification treatment from plants such as vanilla bean and fresh tea leaves can also be used, and further, an enzyme preparation cellulase A containing almond-derived emulsin or ⁇ -glucosidase commercially available from Sigma-Aldrich, Inc.
- ⁇ -xylosidase for example, ⁇ -xylosidase-producing bacteria belonging to Penicillium, Aspergillus, Rhizopus, Mucor and the like are subjected to solid culture or liquid culture according to a conventional method in solid nutrient media such as wheat bran or rice bran or liquid nutrient media And the culture obtained or the treated product thereof may be purified by a conventional method, and may also be commercially available from Sigma-Aldrich Co., which is derived from Aspergillus niger or an enzyme containing ⁇ -xylosidase It is also possible to use those separated from the preparation Sumi Team ACH (New Nippon Kagaku Kogyo) and the like.
- the ⁇ -primeverosidase is, for example, a solid culture or liquid culture of ⁇ -primeverosidase producing bacteria belonging to the genus Cerulomonas, Penicillium, Aspergillus, etc. in a solid medium or liquid medium such as wheat bran or rice bran according to a conventional method
- the obtained culture or the treated product thereof may be purified by a conventional method, and those separated and purified from plants such as fresh tea leaves may also be used.
- the amount of these glycoside degrading enzymes is generally 1 to 100 U / g in terms of ⁇ -glucosidase activity by p-NP glucose addition method, for example, based on the mass of tea leaf material.
- it can be in the range of 4 to 75 U / g, more preferably 8 to 50 U / g, still more preferably 10 to 40 U / g.
- Tannase is an enzyme that hydrolyzes a depside bond in which gallic acid is ester-linked to a hydroxyl group in tannin, for example, an enzyme that hydrolyzes epigallocatechin gallate into epigallocatechin and gallic acid.
- Specific examples of the tannase that can be used in the present invention include tannase-producing bacteria belonging to, for example, Aspergillus, Penicillium, Rhizopus, Rhizomucor, Lactobacillus, Staphylococcus, Streptococcus, Ronepinella, etc.
- solid culture or liquid culture according to a conventional method in a medium usually used for culture of these filamentous fungi, and obtained products obtained by purifying the obtained culture or the treated product thereof by a conventional method.
- tannases for example, tannase (500 U / g; made by Kikkoman Corporation), tannase (5,000 U / g; made by Kikkoman Corporation), tannase (500 U / g; made by Mitsubishi Chemical Foods Corporation), Sumi Team (registered) It is also possible to use a trademark TAN (manufactured by Shin Nippon Chemical Industry Co., Ltd.) or the like.
- tannase can not be specified because the optimum range varies depending on the titer etc., but it is generally in the range of 0.1 to 50 U / g, preferably 0.5 to 20 U / g based on the mass of the tea leaf raw material be able to.
- Pectinase is also called polygalacturonase, pectin enzyme, polymethyl galacturonase, pectin de polymerase, and is an enzyme that hydrolyzes an ⁇ -1,4 bond such as peclinic acid, pectin, pectic acid.
- Pectinase is known to be contained in bacteria, molds, yeasts, higher plants, snails and the like, and in the present invention, pectinases collected from organisms including these can be widely used. Alternatively, commercially available pectinase preparations can be used.
- pectinase preparations include, for example, Sucrase (registered trademark) A, Sucrase (registered trademark) N, Sucrase (registered trademark) S (above, manufactured by Mitsubishi Chemical Foods Corporation), Pectinex Ultra (registered trademark) SP-L ( Novo Nordics A / S, Meicerase (registered trademark) (Meiji Seika Co., Ltd.), Ultrazyme (registered trademark) (Novo Nordics A / S), Neulase F (registered trademark) Amano Enzyme Co., Ltd. product Sumi team (registered trademark) SPG (made by Shin Nippon Chemical Industry Co., Ltd.) etc. can be illustrated.
- the amount of pectinase to be used is generally difficult to represent in activity units since a plurality of enzymes are contained in the pectinase preparation, and generally 0.01% by mass to 5% by mass, preferably 0.1% by mass on the basis of tea leaf material It can be in the range of mass% to 2 mass%.
- the tea leaves contain about 25% by mass of protein (see the 5th edition food composition table), and the protease treatment particularly enhances the effect of the later heating reaction.
- proteins in tea leaves are bound to tannins, little action of protease on tea leaves produces almost no amino acid. Therefore, by causing protease and tannase to act on the tea leaf, a part of the protein in the tea leaf is decomposed and a tea extract rich in amino acids can be obtained.
- proteases are enzymes that hydrolyze peptide bonds of proteins and peptides.
- various commercially available proteases can be mentioned.
- the amount of protease used varies depending on the titer etc. and can not be generally determined, but it is usually exemplified within the range of usually 0.01 to 100 U / g, preferably 1 to 80 U / g, based on the mass of the tea material. can do.
- a mixture of tea leaves and water refers to the heat treatment in the subsequent step (D) and the insoluble component in the step (E). It means that the tea extract liquid obtained by the removal can remove the color-causing substance so that it is substantially decolorized.
- the glycosides present in tea leaves to make it possible to remove the color-causing substance, one that was originally in a water-soluble form or the like by the action of the enzyme is non-water-soluble or It means converting to poor water solubility.
- a coloring origin substance including kaempferol which is one of natural flavonols, quercetin and the like is present in the suspension or precipitate containing the insoluble component to be removed in the step (E). It is done. Although this is not further limited by theory, the above-mentioned action hydrolyzes all or most of the glycosides having at least kaempferol or quercetin as aglycones among the glycosides which may be present in the tea leaf. It is understood to produce poorly water-soluble free aglycones.
- step (B) the enzyme treatment is carried out under conditions that form a float or precipitate as described above.
- Such conditions vary depending on the titer of the enzyme used, but generally the temperature is 30 to 70 ° C., preferably 36 to 60 ° C., more preferably 40 to 50 ° C., still more preferably 42 ° C.
- the reaction time is theoretically 25 minutes or more, practically 30 minutes to 48 hours, preferably 1 to 36 hours, more preferably 1 to 36 hours, more preferably 1.5 to 24 hours, further preferably 2 to 16 hours at -48 ° C.
- the pH is generally 4 to 6, although the optimum conditions vary depending on the source of the enzyme used and the like.
- enzymes other than the glucoside degrading enzymes
- these enzyme treatments also cause the glucoside degrading enzymes to act.
- the conditions according to the conditions can be selected.
- the glycoside-degrading enzyme is allowed to act on the tea leaves for a sufficient time to hydrolyze the aglycone portion and the sugar portion of the glycoside Tea residue or other insoluble solids are separated from other processing solutions (also referred to as extracts).
- Such separation is carried out, for example, by a dewatering type centrifuge, a filter press, a filter filter coated Nutsche filter or the like, and simultaneously with the removal of further solids if necessary.
- step (D) the enzyme-treated tea extract is heat-treated to denature proteins including the enzyme used in the above step.
- the modification by heat treatment not only causes the enzyme to lose its activity, but is also a causative component of coloring, and the enzyme treatment It is considered that the component which has become insoluble in water is bound to the denatured proteins to be in a state of being easily aggregated.
- the heat treatment conditions are generally a temperature of 70 to 135 ° C., a time of 2 seconds to 30 minutes, preferably 75 to 121 ° C., a time of 10 seconds to 25 minutes, more preferably 80 to 100 ° C.
- the time is in the range of 30 seconds to 20 minutes, more preferably in the range of 85 to 95 ° C., and the time range of 20 seconds to 15 minutes.
- the heat-treated product is cooled to 45 ° C. or less, preferably 35 ° C. or less to form a float or precipitate containing an insoluble component.
- the removal of such insoluble components per se, or the suspension or precipitate can be carried out by, for example, a dewatering type centrifuge, a sedimentation type centrifuge, a filter press, a Nutsche filter coated with a filter aid, etc. However, it is usually preferred to obtain the results by sedimentation centrifugation.
- the present invention it is possible to decolorize the color in the extract or enzyme extract usually derived from the color of tea leaves.
- a tea extract in which the contents of amino acids, caffeine and catechins are not substantially reduced, which are known to contribute to the flavor of teas, in particular, the taste.
- the absorbance at 430 nm is 0.5 or less when the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3.
- the absorbance at 680 nm is 0. It is 15 or less, preferably 0.10 or less, more preferably 0.08 or less, still more preferably 0.05 or less, still more preferably 0.01 or less, and most preferably 0.005 or less. This is about 4/5 or less, preferably about 1/2 or less, more preferably 1/3 or less, still more preferably 1 or less, as compared to the absorbance at 430 nm of the tea extract when the corresponding enzyme treatment is not performed. / 5 or less.
- the catechin content per total mass of the solid content is 1.0 mass% or more, preferably 1.2 mass% or more, more preferably The green tea extract which is 1.5 mass% or more can be provided.
- the amino acid content per total mass of said solid content is 1.0 mass% Or more, preferably 1.5% by mass or more, more preferably 1.8% by mass or more, and the catechin content is 1.0% by mass or more, preferably 1.2% by mass or more, more preferably 1.5
- the green tea extract which is mass% or more can be provided.
- the decolorized tea extract provided by the present invention having an absorbance at 430 nm and an absorbance at OD 680 nm is diluted or hydrolyzed with water to produce a tea beverage, based on the total mass of the tea beverage,
- the solid content is adjusted to 0.005% by mass to 0.3% by mass
- the tea beverage having a significantly reduced degree of color as compared to the tea extract not treated with the method of the present invention, further, the substance Provide a colorless and transparent tea beverage.
- the water is not limited to so-called soft water or hard water as long as the water can be provided for drinking.
- Such a tea beverage preferably has an absorbance at 430 nm of 0.05 or less and an absorbance at 680 nm of 0.05 or less, while retaining the flavor of the tea. Therefore, in order to achieve the intended purpose of the present invention, for example, with reference to the data shown in FIG.
- the soluble solid content (refractive index sugar content, temperature 20 ° C.) of the tea extract is adjusted to 0.3, it may be prepared so as to show both the absorbances described immediately before.
- 0.3 mass% or 0.3 is used interchangeably for soluble solids (refractory sugar content, temperature 20 ° C.) of tea extract.
- soluble solids refractory sugar content, temperature 20 ° C.
- Bx bricks
- the decolorized tea extract provided by the present invention can be used, for example, as a near water or flavored water-like beverage, or as a raw material for container-packed tea beverages.
- a decolorized, optionally low tanned tea extract obtained by the method according to any one of the above aspects 1 to 9, 12 to 13 or described in aspect 10 or 11.
- the soluble solids derived from tea can be added to 0.005 to 0.3, or 0.01 to 0.3, or 0.05 to 0.3, or 0
- a tea beverage or container-packed tea beverage can be provided by adjusting to 1 to 0.3% (or °) and adding vitamin C or its edible salt (sodium) simultaneously with or before or after the adjustment Aspect 16 or 17).
- PVPP polyvinylpolypyrrolidone
- Tea beverages can be provided.
- the use conditions of PVPP (polyvinylpolypyrrolidone) in the method of the embodiment 12 are not limited, they can be appropriately selected as long as the object of the present invention can be achieved with reference to the description of Patent Document 5; For example, 1% by mass to 100% by mass of PVPP is used with respect to the mass of the soluble solid content of the tea extract obtained in the step (E).
- the tea extract thus obtained is preferably prepared by adjusting the soluble solid content derived from tea as described above, and then the vitamin C or its edible salt (sodium) per total mass of the tea beverage after adjustment. From 002% by mass to 0.3% by mass, preferably from 0.005% by mass to 0.1% by mass, more preferably from 0.01% by mass to 0.03% by mass.
- 0.3% (Bx, 20 ° C.) of soluble solids derived from tea under the conditions in a container filled with a normal tea beverage after heating and sterilizing by such treatment.
- the absorbance at 430 nm is 0.015 or less
- the absorbance at 680 nm is 0.05 or less.
- the OD 680 nm is 0.15 or less (slightly opaque), preferably 0.10 or less (very slightly opaque), more preferably 0.07 or less (almost transparent), still more preferably 0.05 or less (slightly opaque) Almost completely transparent) (colorless) ⁇ ⁇ (delta) E is 4.0 or less (slightly colored), preferably 3.0 or less (very slightly colored), more preferably 2.0 or less, in comparison with Lab according to permeability with pure water (Almost colorless), particularly preferably 1.4 or less (approximately completely colorless),
- the OD 430 nm is 0.05 or less (slightly colored), preferably 0.038 or less (very slightly colored), more preferably 0.025 or less (almost colorless), particularly preferably 0.015 or less (approximately completely) colorless)
- Example 1 In 1300 g of pure water, 1.8 g of vitamin C was dissolved and heated to 75 ° C. Thereto, 100 g of Shizuoka second tea (Yabukita seed, steaming method, cut product of 5 mm) was added, heated with stirring, and heat-sterilized at 95 ° C. for 15 minutes. The mixture was cooled to 45 ° C. (the pH at this point is 5.3), the enzymes shown in Table 1 were added, and a reaction of stirring at 45 ° C. for 4 hours was performed. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C. The extract was no.
- Shizuoka second tea Yabukita seed, steaming method, cut product of 5 mm
- -Glycoside degrading enzyme commercially available ⁇ -glucosidase (1200 U / g) -Tannase: Sumi Team (registered trademark) TAN (Shin Nippon Chemical Industry Co., Ltd.
- tannase 5000 U / g
- Pectinase Sumi Team (registered trademark) SPG (Pectinase manufactured by Shin Nippon Chemical Industries Co., Ltd.)
- Invertase Sumi Team (registered trademark) INV (Invertase manufactured by Shin Nippon Chemical Industrial Co., Ltd.)
- Hemicellulase ⁇ -mannanase
- Sumizyme (registered trademark) ACH Hemicellulase manufactured by Shin Nippon Chemical Co., Ltd.
- Glycoside degrading enzymes are more decolorized when used in combination with tannase than when used alone (Invention product 1) (Invention product 2), and addition of pectinase significantly (about 1/4 to 1/5) The result of being decolorized to (6) was obtained.
- this invention product 4-7 As a result of examining the addition amount of the glucoside decomposing enzyme in the case of using tannase and pectinase in combination, it was found that the color tone becomes lighter and the turbidity becomes clearer as the addition amount of the glucoside decomposing enzyme increases (this invention product 4-7).
- Example 2 The solution in the middle of the process was prepared under the same conditions as those of the product 6 of the present invention. That is, the liquid (1) separated by the dewatering type centrifuge, the liquid (2) after heating the liquid at 95 ° C. for 1 minute, and then the liquid was further cooled. 2 Filtered solution (3), and then the solution was cooled to 20 ° C. and centrifuged at 3000 ⁇ g for 10 minutes (4). Each of these was allowed to stand overnight at 20 ° C.
- the liquid of (1) is uniform throughout and shows thick and cloudy yellow-green color, but the liquid of (2) produces a large amount of dark green precipitate, and the supernatant is pale and almost clear. Had become a liquid.
- the liquid of (3) was slightly precipitated, but the supernatant was light and almost clear, and the liquid of (4) was light and almost clear. There was no precipitation at all. Photographs of these appearances are shown in FIG. From left to right are (1), (2), (3) and (4).
- Example 3 3.6 g of vitamin C was dissolved in 2600 g of pure water and heated to 75 ° C. Thereto, 200 g of Shizuoka No. 1 tea (a tea leaf different from that of Example 1: Yabuki seed, steamed blue, 5 mm cut product) was added, heated with stirring and heat sterilized at 95 ° C. for 15 minutes. The mixture was cooled to 45 ° C. (the pH at this point is 5.3), the enzymes shown in Table 2 were added, and a stirring reaction was performed at 45 ° C. for 4 hours. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C.
- Shizuoka No. 1 tea a tea leaf different from that of Example 1: Yabuki seed, steamed blue, 5 mm cut product
- the extract was concentrated under reduced pressure to Bx17 ° using a rotary evaporator, cooled to 20 ° C, centrifuged at 3000 ⁇ g for 10 minutes to remove precipitates, and then the supernatant was adjusted to Bx15 °.
- the mixture was heated and sterilized at 95 ° C. for 1 minute and cooled to 20 ° C. to obtain a green tea extract.
- the obtained green tea extract was measured for caffeine content (HPLC method), catechins content (HPLC method) and tannin content (Folin-denis method), and Bx 0.3 ° (refractive index, 20) C.), and the absorbance at 430 nm (indicator of color) and the absorbance at 680 nm (indicator of turbidity) were measured.
- the results are shown in Table 2.
- the photograph of the external appearance of these Bx0.3 degree dilution liquid is shown in FIG. 3 (the left is the comparative product 4 and the right is this invention product 8).
- the inventive product 8 is lower in caffeine, tannin and catechins as compared with the comparative product 4, but is at a slight level.
- Example 4 A glycoside degrading enzyme was further allowed to act on Comparative Product 4, and a confirmation experiment was conducted to see if an extract similar to that of the present invention could be obtained.
- the obtained green tea extract was measured for caffeine content (HPLC method), catechins content (HPLC method) and tannin content (Folin-denis method), and Bx 0.3 ° (refractive index, 20) C.), and the absorbance at 430 nm (indicator of color) and the absorbance at 680 nm (indicator of turbidity) were measured.
- the results are shown in Table 3 in which the comparative product 4 and the inventive product 8 are combined.
- Comparative Product 5 had decreased caffeine, tannin and catechins.
- the color tone (OD 430 nm) of the product 8 of the present invention was observed to be more colored than the product 8 of the present invention, the color and the turbidity tended to be smaller than the comparative product 4 because the color was thin.
- Example 5 The precipitate formed in Example 4 was collected, and centrifugation / washing with water was repeated three times to collect a deep green precipitate.
- the precipitate was insoluble in water, but was clearly dissolved in methanol and turned deep green. Although the detailed mechanism is unknown from this result, the pigment component that was water soluble by causing the green tea extract to react with the glucoside degrading enzyme precipitates as a water insoluble precipitate, and this is separated. It was estimated to be bleached.
- Figure 5 shows the appearance of the supernatant of the centrifugation, the washing liquid when the precipitate is washed with water, and the solution of the precipitate in methanol (from above, when the supernatant of the centrifugation and the precipitate are washed with water) And the solution of the precipitate in methanol).
- the extract is concentrated under reduced pressure to Bx 17 ° using a rotary evaporator, cooled to 20 ° C., centrifuged at 3000 ⁇ g for 10 minutes to remove precipitates, and then the supernatant liquid is Bx 15 ° After heat sterilization at 95 ° C. for 1 minute, the mixture was cooled to 20 ° C. to obtain a green tea extract.
- the obtained green tea extract measures caffeine (HPLC method), catechins (HPLC method) tannin (Folin-denis method) and amino acid (HPLC method), and Bx 0.3 ° (refractive index, 20 ° C.) And the absorbance at 430 nm (indicator of color) and the absorbance at 680 nm (indicator of turbidity) were measured.
- the results are shown in Table 4. (Description of the enzyme) -Protease: Protease M "Amano" SD (Protease manufactured by Amano Enzyme Inc.)
- the amino acid content of the product 9 of the present invention was larger than that of the comparative product 6, and the contents of caffeine, tannin and catechins were almost equivalent values. Further, with regard to color tone, it was confirmed that the product 9 of the present invention treated with a glycoside degrading enzyme was decolorized as compared with the comparative product 6. With regard to the flavor, when the scented product (Bx 0.03 °) added with 0.2% by mass to ion-exchanged water was evaluated, the inventive product 9 had a slightly weaker body feeling than the comparative product 6, but the umami The flavor of green tea such as astringency was sufficiently felt, and it had a good green tea flavor.
- Example 7 In Example 6, the precipitate obtained by centrifuging at a gravity acceleration of 3000 ⁇ g for 10 minutes in the preparation step of the product of the present invention 9 is recovered, and the centrifugation / water washing is performed three times in the same manner as in Example 5. Repeatedly, a dark green precipitate was collected. The obtained precipitate was photographed with a digital microscope and subjected to fluorescent X-ray analysis and FT / IR analysis.
- the precipitate was divided into two layers by repeating centrifugation / washing 3 times, and the upper part was a green, viscous object, and the lower part was a light green, minute spherical object (FIG. 6). .
- the organic substance is assumed to be the main component, in the upper layer is mainly composed of protein and from the FT / IR analysis, the lower layer is one of natural flavonols. It is suggested that it may be mainly composed of kaempferol represented by the chemical structural formula.
- kaempferol itself is only sparingly soluble in water, it is known to exist as a glycoside in tea leaves, so it easily dissolves even if it is extracted with water.
- kaempferol detected as a precipitate is generated by insolubilization of kaempferol which is aglycone-eliminated due to the elimination of sugar by the function of a glycosidic degradation enzyme.
- the crystals of kaempferol are considered to be yellowish and contribute to greenish green to bright yellow, which is the water color of green tea, but the precipitate detected in this study is greenish, and kaempferol, protein, chlorophyll, etc. It is inferred that they are complexly bound, insolubilized and precipitated.
- Example 8 Examination of influence on decolorization of tea extract when varying activity of glycoside degrading enzyme per mass of tea leaf The amount of enzyme added is adjusted as described in Table 5 below, 45 ° C.
- the green tea extract was obtained according to the method described in Example 1 except that the reaction was carried out for 4 hours.
- the obtained green tea extract was diluted to Bx 0.3 ° (refractive index, measured at 20 ° C.), and the absorbance at 430 nm (index of color) and the absorbance at 680 nm (index of turbidity) were measured. The results are shown in Table 5.
- OD 430 nm represents an index of coloration
- OD 680 nm represents an index of turbidity. It can be said that when the OD 430 nm is 0.05 or less, there is almost no coloring, and if it is 0.3 or less, the coloring is very slight, and if it is 0.5 or less, it is light coloring. In addition, when the OD 680 nm is 0.1 or less, there is almost no turbidity (clear), and a slight turbidity of around 0.15 is a certain degree.
- Example 9 Examination of the influence on the decolorization of the tea extract of the reaction time of the reaction time of the glucoside decomposing enzyme with respect to tea leaves Except for changing the enzyme reaction time, the product 4 of the present invention 1 A green tea extract was obtained according to the method described in 10 U added per 1 g) and the product 6 of the present invention (20 U added with glycoside degrading enzyme per 1 g of tea leaves). The obtained green tea extract was diluted to Bx 0.3 ° (refractive index, measured at 20 ° C.), and the absorbance at 430 nm (index of color) and the absorbance at 680 nm (index of turbidity) were measured. The results are shown in Table 6.
- Example 10 ⁇ -Glucosidase and PVPP Treatment Vitamin C (0.9 g) was dissolved in 660 g of pure water and heated to 75 ° C. Thereto, 50 g of Shizuoka second green tea (Yabukita seed, steamed blue, 5 mm cut product) was charged, heated with stirring, and heat sterilized at 95 ° C. for 15 minutes. After cooling to 45 ° C. (the pH at this point is 4.9), the enzymes shown in Table 7 (Inventive product 10) were added, and the reaction of stirring at 45 ° C. for 8 hours was performed.
- Shizuoka second green tea Yabukita seed, steamed blue, 5 mm cut product
- Example 11 In Example 10, the procedure for Example 10 is repeated except that the amount of added PVPP is 80% by mass of the soluble solid (calculated using Bx at 20 ° C.) to the extract, and the green tea extract is Obtained (inventive product 11).
- Example 12 ⁇ -glucosidase treatment
- a green tea extract was obtained (Inventive product 12).
- Comparative Example 7 No ⁇ -Glucosidase and PVPP Treatment In Example 10, the procedure was completely the same as Example 10 except that ⁇ -glucosidase was not used as the enzyme (the enzyme of the product of the present invention 12 in Table 7 was used). To obtain a green tea extract (comparative product 7).
- Comparative Example 8 Neither ⁇ -Glucosidase Treatment nor PVPP Treatment The procedure of Comparative Example 7 was performed in the same manner as in Comparative Example 7 except that PVPP was not added in Comparative Example 7 to obtain a green tea extract (comparative product 8).
- Example 13 The Bx, pH, amino acid (mg%), tannin (mg%), and caffeine (mg%) of the inventive product 10, the inventive product 12, the inventive product 12, and the comparative product 8 were measured. Moreover, it diluted to Bx0.3 degree with the pure water, and measured OD430nm, OD680nm, Lab, (DELTA) E (comparison with a pure water). Furthermore, the Bx 0.3 ° diluted product was sensory-evaluated for green teaness by five well-trained panelists. The average results of these analytical values and sensory evaluations are shown in Table 7.
- the degree of coloration of the tea beverage is reduced by the ⁇ -glucosidase treatment (comparative product 8 and the inventive product 12 and comparison between the comparative product 7 and the inventive product 10).
- the degree of coloration of tea beverages is reduced by the PVPP treatment, in particular, the coloration tends to be small after heat sterilization.
- the PVPP treatment weakens bitterness (Comparison 8 and Comparison 7 and Comparison between Invention 12 and Invention 10).
- the absorbance at 430 nm is 0.05 or less when the soluble solid content (refractive index sugar content, temperature 20 ° C) of the tea extract is 0.3 by performing PVPP treatment (tannin removal) in addition to ⁇ -glucosidase treatment, And, the absorbance at 680 nm is 0.05 or less, and the amino acid content is 1.0 mass% or more when the soluble solid content (refractive sugar content, temperature 20 ° C.) is 15 (five times the concentration of the above-mentioned invention product). And the green tea extract which is less than 1.0 mass% of catechin was able to be obtained (this invention products 10 and 11).
- Example 14 Color tone of container-packed beverage using the product of the present invention and the comparative product
- the present products 10, 11, 12 and the comparative product 7 and the comparative product 8 are each diluted to Bx 0.005 ° (each The product of the present invention or the comparative product is adjusted to 0.167% in each water, adjusted to 0.03% with and without sodium ascorbate, UHT sterilized at 135 ° C for 30 seconds, and cooled to 90 ° C. After filling the bottle, it was cooled to 30 ° C. or less to prepare a container-packed green tea beverage.
- the color tone (OD 430 nm, OD 680 nm and ⁇ E with pure water) of each beverage is shown in Table 8.
- Example 15 Relationship between added concentration of extract and color tone
- the product 10 of the present invention is diluted to a concentration shown in Table 9 (without sodium ascorbate), and after UHT sterilization at 135 ° C. for 30 seconds, 90 After cooling to ° C. and filling in a plastic bottle, it was cooled to 30 ° C. or less to prepare a containerized green tea beverage.
- the color tone (OD 430 nm and ⁇ E with pure water) of each beverage is shown in Table 9.
- Example 16 Relationship between sodium ascorbate addition concentration, storage conditions, and color tone
- the product 10 of the present invention is diluted to Bx 0.025 °, and at this time, sodium ascorbate at the concentration in Table 10 is added, 135 After UHT sterilization at 30 ° C. for 30 seconds, it was cooled to 90 ° C., filled in a plastic bottle, and then cooled to 30 ° C. or less to prepare a containerized green tea beverage. Each bottled beverage was stored at 10 ° C. and 50 ° C. for 10 days.
- the color tone (OD 430 nm and ⁇ E with pure water) of each beverage after storage is shown in Table 10.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Tea And Coffee (AREA)
Abstract
[Problem] To provide: a tea extract which can impart a tea leaf-derived flavor, particularly a tea leaf-derived taste, to a beverage such as so-called "near water" and flavored water without coloring the beverage in the preparation of the beverage; and a use of the tea extract, such as a tea beverage. [Solution] Disclosed are: a method for producing a decolored tea extract, the method including steps (A) to (E) mentioned below; a method for producing a tea beverage, particularly a container-packed tea beverage, comprising hydrolyzing the tea extract optionally after adding vitamin C to the tea extract; the decolored tea extract; and the container-packed tea beverage: (A) a step of mixing tea leaves with water; (B) a step of allowing a glycoside-decomposing enzyme to act subsequent to step (A); (C) a step of separating a tea leaf residue from an extract to produce a glycoside enzyme-treated tea extract subsequent to step (B); (D) a step of heating the glycoside enzyme-treated tea extract obtained in step (C); and (E) a step of removing an insoluble component from a heated glycoside enzyme-treated tea extract obtained in step (D) to obtain a decolored tea extract.
Description
本発明は、脱色された茶抽出液およびその製造方法に関する。さらに詳しくは、色が薄いにもかかわらず、茶本来の良好な香気、旨味および苦渋味を有する茶抽出液および茶葉の配糖体分解酵素処理工程を含むその製造方法に関する。
The present invention relates to a bleached tea extract and a process for the preparation thereof. More specifically, the present invention relates to a tea extract having good aroma, umami and bitterness inherent to tea despite its light color, and a process for producing the same including a glycosidolytic enzyme treatment step of tea leaves.
近年、容器詰飲料に対する消費者の嗜好性の多様化により、無色透明な容器にほぼ無色透明の飲料を充填した容器詰飲料が市場に多く見られる。このような飲料はニアウォーターやフレーバードウォーターなどとも呼ばれ、外観の無色透明感が重要な要素の一つとなる。このようなほぼ無色透明の飲料には、レモン、オレンジ、みかんなどの柑橘の風味、ぶどう、りんご、桃などのソフトフルーツの風味、ヨーグルトなどの発酵乳の風味を有するものがみられるが、茶の風味を有するものはあまり見られない。
In recent years, due to diversification of consumer preference for container-packed beverages, container-packed beverages in which a colorless and transparent container is filled with a substantially colorless and transparent beverage are often found in the market. Such beverages are also called near water, flavored water, etc., and the colorlessness of the appearance is one of the important factors. Examples of such almost colorless and transparent beverages are those having citrus flavors such as lemon, orange and orange, flavors of soft fruits such as grapes, apples and peaches, and fermented milk such as yoghurt. There are not many things that have a flavor of.
茶の風味は茶の香気を有する香料(調合香料または天然香料)のみによってもある程度再現は可能であるが、茶の本物感を感じさせるためには、茶由来の水溶性成分を配合することにより、より好ましい風味を付与することが可能となる。
The flavor of tea can be reproduced to a certain extent only by the flavor having aroma of tea (compound flavor or natural flavor), but in order to give the true feeling of tea, it is possible to blend water-soluble ingredients derived from tea. It is possible to impart a more desirable flavor.
一方、茶抽出液は、通常着色しており、茶抽出液を風味が付与される程度の量配合しようとすると、飲料全体が淡緑色~淡褐色に着色してしまう。
On the other hand, the tea extract is usually colored, and if it is attempted to mix the tea extract in an amount that imparts a flavor, the whole beverage will be colored light green to light brown.
茶抽出液を脱色する発明としては、例えば茶抽出液を陽イオン交換樹脂処理により金属イオンを除去した後、微小濾過膜で濾過して処理液を得る方法(特許文献1)が知られているが、陽イオン交換樹脂処理により、旨味成分であるアミノ酸も除かれてしまうという欠点がある。
As an invention for decoloring a tea extract, for example, a method is known in which a tea extract is subjected to cation exchange resin treatment to remove metal ions and then filtered through a microfiltration membrane to obtain a treated solution (Patent Document 1) However, there is a disadvantage that the amino acid which is a umami component is also removed by the cation exchange resin treatment.
脱色方法としては一般的に、活性炭などの吸着材による処理が知られており、茶についても各種吸着剤処理による処理技術が知られている。特許文献2には茶類の抽出時および/または抽出後に活性炭を混合または添加して茶類抽出液を得る方法が開示されているが、カフェインを除去する目的であり、脱色については全く記載されていない。また、特許文献3には茶抽出液などのカフェイン含有水溶液と活性白土または酸性白土と接触させる方法が開示されているが、この方法もカフェインを除去する目的であり、脱色については全く記載されていない。また、特許文献4または特許文献5には茶抽出液をポリビニルポリピロリドンと接触させる方法が開示されているが、カテキンまたはタンニン類を除去する目的であり、脱色については全く記載されていない。
Generally as a decoloring method, the process by adsorption materials, such as activated carbon, is known, and the processing technique by various adsorption agent processes is known also about tea. Patent Document 2 discloses a method for obtaining a tea extract by mixing or adding activated carbon during and / or after extraction of teas, but for the purpose of removing caffeine, decolorization is completely described. It has not been. Patent Document 3 discloses a method of bringing a caffeine-containing aqueous solution such as a tea extract into contact with activated white earth or acid white earth, but this method is also for the purpose of removing caffeine, and decoloration is completely described. It has not been. Moreover, although the method of making a tea extract liquid contact with polyvinylpolypyrrolidone is disclosed by patent document 4 or patent document 5, it is an objective in order to remove catechin or tannins, and it does not describe at all about decolorization.
スポーツ飲料及びアイソトニック飲料に使用できる緑茶抽出液の製法として、緑茶抽出物を、エタノールと水の重量比が91/9~97/3の混合溶液に溶解させ、活性炭及び酸性白土と接触させる方法によって得られた低カフェイン緑茶抽出物の製法(特許文献6)が開示されているが、主な目的はカフェインの除去である。特許文献6では、色相を悪化させないこと(段落[0009]など)も効果とされているが、色調に関して具体的に特定できる記載は見当たらず、また実施例における記載もない。
As a process for producing green tea extract that can be used for sports drinks and isotonic drinks, the green tea extract is dissolved in a mixed solution of ethanol and water in a weight ratio of 91/9 to 97/3 and brought into contact with activated carbon and acid clay. Although the preparation method (patent document 6) of the obtained low caffeine green tea extract is disclosed, the main objective is removal of caffeine. In Patent Document 6, although it is considered that the hue is not deteriorated (eg, paragraph [0009]), a description that can be specifically identified regarding the color tone is not found, and is not described in the examples.
一方、配糖体分解酵素は配糖体のアノマー炭素とアグリコン部との結合(グリコシド結合)を加水分解して遊離のアグリコンを生成する酵素を意味するが、茶類への応用としては、緑茶飲料の製造方法において、前記緑茶抽出液の加熱殺菌処理工程に先立ち、配糖体分解酵素を添加することにより配糖体を香気成分化合物に変化させる酵素処理工程を具備する緑茶飲料の製造方法(特許文献7)、茶葉をタンナーゼで処理する際および/または
処理した後、茶葉に配糖体分解酵素を作用させることを特徴とする香気が増強された茶類エキスの製法(特許文献8)などが知られているが、いずれも香気発生に関する内容しか記載がない。また、引用文献9には、烏龍茶などの茶の水抽出液をBx2~15°に濃縮した後、濃縮液に配糖体分解酵素を作用させることにより、透明度が高く、長期保存してもオリを発生しない茶エキスの製造方法が記載されている。しかしながら、色調(色の濃さなど)については全く記載されていない。 On the other hand, glucoside-degrading enzyme means an enzyme that hydrolyzes the bond (glycosidic bond) between the anomeric carbon of a glycoside and the aglycone part (glycosidic bond) to generate free aglycone. A method of producing a green tea beverage comprising an enzyme treatment step of converting a glycoside into an aroma component compound by adding a glycoside degrading enzyme prior to the heat sterilization treatment step of the green tea extract in the method of producing a beverage Patent Document 7), A method for producing a tea extract having enhanced aroma and the like, which comprises treating a tea leaf with tannase and / or after treating the tea leaf with a glycolytic enzyme (Patent Document 8), etc. Is known, but none of them describes only the content related to the odor generation. Further, in the cited reference 9, after concentrating a water extract of tea such as oolong tea toBx 2 to 15 °, the concentrate is made to react with a glucoside degrading enzyme, so that the transparency is high, and it is possible to store for a long time. A method of producing a tea extract that does not occur is described. However, the color tone (such as the color depth) is not described at all.
処理した後、茶葉に配糖体分解酵素を作用させることを特徴とする香気が増強された茶類エキスの製法(特許文献8)などが知られているが、いずれも香気発生に関する内容しか記載がない。また、引用文献9には、烏龍茶などの茶の水抽出液をBx2~15°に濃縮した後、濃縮液に配糖体分解酵素を作用させることにより、透明度が高く、長期保存してもオリを発生しない茶エキスの製造方法が記載されている。しかしながら、色調(色の濃さなど)については全く記載されていない。 On the other hand, glucoside-degrading enzyme means an enzyme that hydrolyzes the bond (glycosidic bond) between the anomeric carbon of a glycoside and the aglycone part (glycosidic bond) to generate free aglycone. A method of producing a green tea beverage comprising an enzyme treatment step of converting a glycoside into an aroma component compound by adding a glycoside degrading enzyme prior to the heat sterilization treatment step of the green tea extract in the method of producing a beverage Patent Document 7), A method for producing a tea extract having enhanced aroma and the like, which comprises treating a tea leaf with tannase and / or after treating the tea leaf with a glycolytic enzyme (Patent Document 8), etc. Is known, but none of them describes only the content related to the odor generation. Further, in the cited reference 9, after concentrating a water extract of tea such as oolong tea to
前述したとおり、茶葉抽出液を脱色する方法としては、主として物理化学的処理手段によるものがあるが、茶葉本来の風味を損ねてしまう等の短所または欠点を有する場合がある。
As described above, the method for decolorizing the tea leaf extract is mainly based on physicochemical treatment means, but it may have disadvantages or drawbacks such as the deterioration of the original flavor of tea leaves.
したがって、本発明の目的はニアウォーターやフレーバードウォーター様の飲料を調製する上で、着色することなく茶葉に由来する風味、特に呈味を該飲料に付与することのできる緑茶抽出液、ならびに該緑茶抽出液を用いる例えば、茶飲料、特に、容器詰茶飲料を提出することにある。
Therefore, an object of the present invention is to prepare a near water or flavored water-like beverage, a green tea extract capable of imparting a flavor derived from tea leaves, particularly taste, to the beverage without coloring, and It consists, for example, in presenting tea beverages, in particular container-packed tea beverages, using a green tea extract.
茶葉の水抽出物に配糖体分解酵素を作用させて配糖体を香気成分化合物に変化させることは既に知られているところ、今回、驚くべきことに、緑茶葉類を水の存在下、一定の条件下において配糖体分解酵素で処理した後、得られる配糖体酵素処理茶抽出液を加熱処理して水不溶性物質を形成せしめ、該水不溶性物質を除去すると、茶葉に由来する風味を実質的に損ねることなく、透明かつ、脱色された緑茶抽出液が得られることを見出した。また、かような処理によると、緑茶葉に限定されることなく、広く一定の茶葉からも、同様な抽出液が得られことも見出だした。
Although it is already known to cause glucoside-degrading enzymes to act on the water extract of tea leaves to convert glycosides into aroma component compounds, it is surprising that green tea leaves are now in the presence of water, After treating with glycoside degrading enzymes under certain conditions, the resulting glycoside enzyme-treated tea extract is heat treated to form a water-insoluble substance, and the water-insoluble substance is removed to give a flavor derived from tea leaves. It has been found that a clear and bleached green tea extract can be obtained without substantially damaging the In addition, it was also found that similar extracts were obtained from such a wide range of tea leaves not limited to green tea leaves by such treatment.
こうして、本発明によれば、限定されるものでないが、主な態様または特徴を有する発明として、下記のものが提供される。
態様1: 以下の工程(A)~(E)を含んでなる、脱色された茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程、
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
態様2: 工程(B)と同時または前若しくは後であって工程(C)の前に、さらに、タンナーゼおよび/またはペクチナーゼを作用させる工程を含む、態様1に記載の脱色された茶抽出液の製造方法。
態様3: 工程(B)と同時におよび/または工程(B)の後であって工程(C)の前に、さらに、プロテアーゼを作用させる工程を含む、態様1または2に記載の脱色された茶抽出液の製造方法。
態様4: 工程(D)における加熱処理条件が温度70~135℃、時間2秒~30分の範囲内である態様1~3のいずれか1項に記載の脱色された茶抽出液の製造方法。
態様5: 茶葉が緑茶である態様1~4のいずれかに記載の脱色された茶抽出液の製造方法。
態様6: 工程(A)の前に、茶葉を水蒸気蒸留して香気回収物を得、得られた香気回収物を工程(E)で得られる清澄液に混合する工程を含む、態様1~5のいずれかに記載の脱色された茶抽出液の製造方法。
態様7: 茶葉に対する配糖体分解酵素の使用量が1U/g以上、酵素反応の温度が30~70℃の範囲内、かつ、反応時間が30分以上である態様1~6のいずれかに記載の脱色された茶抽出液の製造方法。
態様8:態様1に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下である、方法。
態様9:態様8に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.1以下かつ680nmの吸光度が0.05以下である、方法。
態様10:茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.15以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のカテキン含有量が1.0質量%以上である緑茶葉抽出液。
態様11: 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上である緑茶葉抽出液。
態様12:以下の工程(A)~(F)を含んでなる、低タンニン茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
(F)工程(E)の後に得られた脱色された茶抽出液をさらにPVPP(ポリビニルポリピロリドン)と接触させ、接触後のPVPPを除去した抽出液を得る工程
態様13:態様12に記載の低タンニン茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin-Denis法)が1.0質量%以下である、方法。
態様14:茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin-Denis法)が1.0質量%以下である緑茶葉抽出液。
態様15:(G)態様1~9、12および13のいずれかに記載の方法によって得られた茶抽出液に加水して茶由来の可溶性固形分を0.005~0.3%(Bx、20℃)に調整する工程、
(H)工程(G)でえられた茶飲料に、ビタミンCまたはその可食性の塩(ナトリウム)を加える工程を含む容器詰茶飲料の製造方法。
態様16:態様10、11および14に記載の緑茶抽出液を、茶由来の可溶性固形分として0.005~0.3%(Bx、20℃)質量%含み、さらにビタミンCまたはその可食性の塩(ナトリウム)を含有する、容器詰茶飲料。
態様17:ビタミンCまたはその可食性の塩(ナトリウム)を0.002~0.3質量%含有する、態様16に記載の容器詰茶飲料。
態様18:茶抽出液の可溶性固形分(屈折糖度、温度20℃)が0.3の場合の430nmの吸光度が0.015以下かつ680nmの吸光度が0.05以下である、態様16または17に記載の容器詰茶飲料。 Thus, according to the present invention, the following is provided as an invention having, but not limited to, main aspects or features.
Aspect 1: A process for producing a decolorized tea extract comprising the following steps (A) to (E):
(A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And separating the glycoside enzyme-treated tea extract (D) a step of heat-treating the glycoside enzyme-treated tea extract obtained in step (C),
(E) Step 2: Step of obtaining insoluble decolorized tea extract from the heated glycoside enzyme-treated tea extract obtained in step (D) to obtain a decolorized tea extract: simultaneously with or before or after step (B) The method for producing a decolorized tea extract according to aspect 1, further comprising the step of reacting tannase and / or pectinase before step (C).
Aspect 3: The decolorized tea according toaspect 1 or 2, further comprising the step of allowing a protease to act simultaneously with and / or after step (B) and before step (C). Method for producing an extract.
Embodiment 4: The method for producing a decolorized tea extract according to any one of Embodiments 1 to 3, wherein the heat treatment conditions in the step (D) are a temperature of 70 to 135 ° C. and a time of 2 seconds to 30 minutes. .
Aspect 5: A method for producing a decolorized tea extract according to any one of aspects 1 to 4, wherein the tea leaf is green tea.
Aspect 6: Before the step (A), steam-distilling the tea leaves to obtain an aroma-collected substance, and mixing the obtained aroma-collected substance into the clear liquid obtained in the step (E). The manufacturing method of the decolorized tea extract liquid in any one of-.
Mode 7: In any of the modes 1 to 6, wherein the amount of glycoside degrading enzyme used for tea leaves is 1 U / g or more, the temperature of the enzyme reaction is in the range of 30 to 70 ° C., and the reaction time is 30 minutes or more. The manufacturing method of the decolored tea extract as described.
Aspect 8: A method for producing a decolorized tea extract according to aspect 1, wherein the absorbance at 430 nm is 0.3 when the soluble solid content (refractive sugar content,temperature 20 ° C.) of the tea extract is 0.3. The method, wherein the absorbance is 5 or less and the absorbance at 680 nm is 0.15 or less.
Aspect 9: The method for producing a decolorized tea extract according to aspect 8, wherein the absorbance at 430 nm is 0.3 when the soluble solid content (refractive sugar content,temperature 20 ° C.) of the tea extract is 0.3. 1 or less and the absorbance at 680 nm is 0.05 or less.
Aspect 10: The absorbance at 430 nm is 0.15 or less and the absorbance at 680 nm is 0.05 or less, assuming that the soluble solid content (refractive sugar content,temperature 20 ° C.) of the tea extract is 0.3, and further the soluble solid content The green tea leaf extract which has a catechin content of 1.0% by mass or more when the (refractive index sugar content, temperature 20 ° C.) is 15.
Aspect 11: The absorbance at 430 nm is 0.5 or less and the absorbance at 680 nm is 0.15 or less, assuming that the soluble solid content (refractive sugar content,temperature 20 ° C.) of the tea extract is 0.3, and further the soluble solid content The green tea leaf extract which has an amino acid content of 1.0% by mass or more when the (refractive index sugar content, temperature 20 ° C.) is 15.
Aspect 12: A method for producing a low tannin tea extract, comprising the following steps (A) to (F):
(A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And (G) separation of the glycoside enzyme-treated tea extract obtained in step (C) by heat treatment (E) step (D) obtained in step (D) Step of removing insoluble components from the heated glycoside enzyme-treated tea extract to obtain a decolorized tea extract (F) The decolorized tea extract obtained after the step (E) is further treated with PVPP (polyvinyl poly) Process for obtaining an extract from which PVPP has been removed by contacting with pyrrolidone) Step aspect 13: The method for producing a low tannin tea extract according to aspect 12, which is a soluble solid content of tea extract (refractory sugar content, temperature Whether the absorbance at 430 nm is 0.05 or less when 0.3 at 20 ° C) The absorbance at 680 nm is 0.05 or less, and the amino acid content is 1.0% by mass or more and the tannin (Folin-Denis method) is 1. when the soluble solid content (refractive sugar content,temperature 20 ° C.) is 15. The method which is 0 mass% or less.
Aspect 14: The absorbance at 430 nm is 0.05 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content,temperature 20 ° C.) of the tea extract is 0.3, and the soluble solid content is further A green tea leaf extract solution having an amino acid content of 1.0% by mass or more and a tannin (Folin-Denis method) of 1.0% by mass or less when the (refractive sugar content, temperature 20 ° C.) is 15.
Aspect 15: (G) a tea extract obtained by the method according to any one of aspects 1 to 9, 12 and 13, wherein the soluble solids derived from tea is 0.005 to 0.3% (Bx, Adjusting to 20 ° C.),
(H) The manufacturing method of the container-packed tea beverage including the process of adding vitamin C or its edible salt (sodium) to the tea beverage obtained at the process (G).
Aspect 16: The green tea extract according toaspects 10, 11 and 14 comprises 0.005% to 0.3% (Bx, 20 ° C.)% by mass as a soluble solid content derived from tea, and further vitamin C or the edible thereof Container-packed tea beverage containing salt (sodium).
Aspect 17: The container-packed tea beverage according to aspect 16, which comprises 0.002 to 0.3% by mass of vitamin C or an edible salt thereof (sodium).
Aspect 18: In aspect 16 or 17 in which the absorbance at 430 nm is 0.015 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content,temperature 20 ° C.) of the tea extract is 0.3. Container-packed tea beverage described.
態様1: 以下の工程(A)~(E)を含んでなる、脱色された茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程、
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
態様2: 工程(B)と同時または前若しくは後であって工程(C)の前に、さらに、タンナーゼおよび/またはペクチナーゼを作用させる工程を含む、態様1に記載の脱色された茶抽出液の製造方法。
態様3: 工程(B)と同時におよび/または工程(B)の後であって工程(C)の前に、さらに、プロテアーゼを作用させる工程を含む、態様1または2に記載の脱色された茶抽出液の製造方法。
態様4: 工程(D)における加熱処理条件が温度70~135℃、時間2秒~30分の範囲内である態様1~3のいずれか1項に記載の脱色された茶抽出液の製造方法。
態様5: 茶葉が緑茶である態様1~4のいずれかに記載の脱色された茶抽出液の製造方法。
態様6: 工程(A)の前に、茶葉を水蒸気蒸留して香気回収物を得、得られた香気回収物を工程(E)で得られる清澄液に混合する工程を含む、態様1~5のいずれかに記載の脱色された茶抽出液の製造方法。
態様7: 茶葉に対する配糖体分解酵素の使用量が1U/g以上、酵素反応の温度が30~70℃の範囲内、かつ、反応時間が30分以上である態様1~6のいずれかに記載の脱色された茶抽出液の製造方法。
態様8:態様1に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下である、方法。
態様9:態様8に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.1以下かつ680nmの吸光度が0.05以下である、方法。
態様10:茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.15以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のカテキン含有量が1.0質量%以上である緑茶葉抽出液。
態様11: 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上である緑茶葉抽出液。
態様12:以下の工程(A)~(F)を含んでなる、低タンニン茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
(F)工程(E)の後に得られた脱色された茶抽出液をさらにPVPP(ポリビニルポリピロリドン)と接触させ、接触後のPVPPを除去した抽出液を得る工程
態様13:態様12に記載の低タンニン茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin-Denis法)が1.0質量%以下である、方法。
態様14:茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin-Denis法)が1.0質量%以下である緑茶葉抽出液。
態様15:(G)態様1~9、12および13のいずれかに記載の方法によって得られた茶抽出液に加水して茶由来の可溶性固形分を0.005~0.3%(Bx、20℃)に調整する工程、
(H)工程(G)でえられた茶飲料に、ビタミンCまたはその可食性の塩(ナトリウム)を加える工程を含む容器詰茶飲料の製造方法。
態様16:態様10、11および14に記載の緑茶抽出液を、茶由来の可溶性固形分として0.005~0.3%(Bx、20℃)質量%含み、さらにビタミンCまたはその可食性の塩(ナトリウム)を含有する、容器詰茶飲料。
態様17:ビタミンCまたはその可食性の塩(ナトリウム)を0.002~0.3質量%含有する、態様16に記載の容器詰茶飲料。
態様18:茶抽出液の可溶性固形分(屈折糖度、温度20℃)が0.3の場合の430nmの吸光度が0.015以下かつ680nmの吸光度が0.05以下である、態様16または17に記載の容器詰茶飲料。 Thus, according to the present invention, the following is provided as an invention having, but not limited to, main aspects or features.
Aspect 1: A process for producing a decolorized tea extract comprising the following steps (A) to (E):
(A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And separating the glycoside enzyme-treated tea extract (D) a step of heat-treating the glycoside enzyme-treated tea extract obtained in step (C),
(E) Step 2: Step of obtaining insoluble decolorized tea extract from the heated glycoside enzyme-treated tea extract obtained in step (D) to obtain a decolorized tea extract: simultaneously with or before or after step (B) The method for producing a decolorized tea extract according to aspect 1, further comprising the step of reacting tannase and / or pectinase before step (C).
Aspect 3: The decolorized tea according to
Embodiment 4: The method for producing a decolorized tea extract according to any one of Embodiments 1 to 3, wherein the heat treatment conditions in the step (D) are a temperature of 70 to 135 ° C. and a time of 2 seconds to 30 minutes. .
Aspect 5: A method for producing a decolorized tea extract according to any one of aspects 1 to 4, wherein the tea leaf is green tea.
Aspect 6: Before the step (A), steam-distilling the tea leaves to obtain an aroma-collected substance, and mixing the obtained aroma-collected substance into the clear liquid obtained in the step (E). The manufacturing method of the decolorized tea extract liquid in any one of-.
Mode 7: In any of the modes 1 to 6, wherein the amount of glycoside degrading enzyme used for tea leaves is 1 U / g or more, the temperature of the enzyme reaction is in the range of 30 to 70 ° C., and the reaction time is 30 minutes or more. The manufacturing method of the decolored tea extract as described.
Aspect 8: A method for producing a decolorized tea extract according to aspect 1, wherein the absorbance at 430 nm is 0.3 when the soluble solid content (refractive sugar content,
Aspect 9: The method for producing a decolorized tea extract according to aspect 8, wherein the absorbance at 430 nm is 0.3 when the soluble solid content (refractive sugar content,
Aspect 10: The absorbance at 430 nm is 0.15 or less and the absorbance at 680 nm is 0.05 or less, assuming that the soluble solid content (refractive sugar content,
Aspect 11: The absorbance at 430 nm is 0.5 or less and the absorbance at 680 nm is 0.15 or less, assuming that the soluble solid content (refractive sugar content,
Aspect 12: A method for producing a low tannin tea extract, comprising the following steps (A) to (F):
(A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And (G) separation of the glycoside enzyme-treated tea extract obtained in step (C) by heat treatment (E) step (D) obtained in step (D) Step of removing insoluble components from the heated glycoside enzyme-treated tea extract to obtain a decolorized tea extract (F) The decolorized tea extract obtained after the step (E) is further treated with PVPP (polyvinyl poly) Process for obtaining an extract from which PVPP has been removed by contacting with pyrrolidone) Step aspect 13: The method for producing a low tannin tea extract according to aspect 12, which is a soluble solid content of tea extract (refractory sugar content, temperature Whether the absorbance at 430 nm is 0.05 or less when 0.3 at 20 ° C) The absorbance at 680 nm is 0.05 or less, and the amino acid content is 1.0% by mass or more and the tannin (Folin-Denis method) is 1. when the soluble solid content (refractive sugar content,
Aspect 14: The absorbance at 430 nm is 0.05 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content,
Aspect 15: (G) a tea extract obtained by the method according to any one of aspects 1 to 9, 12 and 13, wherein the soluble solids derived from tea is 0.005 to 0.3% (Bx, Adjusting to 20 ° C.),
(H) The manufacturing method of the container-packed tea beverage including the process of adding vitamin C or its edible salt (sodium) to the tea beverage obtained at the process (G).
Aspect 16: The green tea extract according to
Aspect 17: The container-packed tea beverage according to aspect 16, which comprises 0.002 to 0.3% by mass of vitamin C or an edible salt thereof (sodium).
Aspect 18: In aspect 16 or 17 in which the absorbance at 430 nm is 0.015 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content,
本発明によれば、従来行われていた物理的化学的方法により脱色されていた茶抽出物に比べ、茶類の風味、特に、呈味を保持した茶抽出液、さらには低タンニン茶抽出液、ならびに該緑茶抽出液を用いる例えば、茶飲料、特に、容器詰茶飲料を提供することができる。
According to the present invention, compared to the tea extract which has been decolorized by the conventionally used physical and chemical method, the tea extract having the flavor of the tea, in particular, the taste, and further the low tannin tea extract For example, tea beverages, particularly container-packed tea beverages, can be provided using the green tea extract.
本発明の方法において原料として使用しうる茶葉としては、世界的に広く栽培されているチャ(Camellia sinensis)に属するチャノキの葉であって、本発明の目的に沿うものであればいずれであってもよいが、不発酵茶が好ましく、例えば、煎茶、焙じ茶、玉露、かぶせ茶、てん茶等の蒸青茶、嬉野茶、青柳茶、各種中国茶等の釜炒り茶を挙げることができる。また、包種茶、鉄観音茶、ウーロン茶等の半発酵茶、紅茶等の発酵茶などにも適用が可能である。
Tea leaves which can be used as a raw material in the method of the present invention are tea leaves belonging to tea (Camellia sinensis) widely cultivated worldwide, and any tea leaves which are in line with the object of the present invention Although non-fermented tea is preferable, non-fermented tea is preferable, and for example, roasted tea such as Sencha, Maruji tea, Gyokuro, Kabute tea, steamed tea such as Tencha, Ureshino tea, Aoyagi tea, various Chinese teas and the like can be mentioned. In addition, it can be applied to semi-fermented teas such as Baked tea, iron kannon tea, oolong tea and the like, and fermented teas such as black tea and the like.
また、チャは、やぶきた種(Camellia sinensis var. sinenses cv. Yabukita)をはじめ、いずれのバラエティのものであってもよく、その葉は、通常、緑茶等の原料となる、芯芽から四葉までの葉を含む一芯四葉摘みのもの、また、さらに成熟した四葉以外の葉であってもよい。上記の茶葉または茶原料は、そのまま用いることもできるが、通常、食品製造などで使用される装置を用いて、切断、粉砕、磨砕などの処理を施したものを使用するのがよい。
In addition, the tea may be of any variety, including the seed of camellia (Camellia sinensis var. Sinenses cv. Yabukita), and its leaves are usually from the center bud to the four leaves, which are raw materials for green tea etc. It may be a single-core quadruple-picked one containing leaves, or a leaf other than mature four-leaf. Although the above-mentioned tea leaves or tea raw materials can be used as they are, it is usually preferable to use those which have been subjected to treatments such as cutting, grinding and grinding using an apparatus used in food production and the like.
工程(A)では、茶葉と水が混合されるところ、水は、一般的には軟水、イオン交換水、RO膜処理水などが都合よく使用できる。茶葉と水の使用割合は、茶葉の乾燥状態により好適範囲は異なるが、重量比で、一般に1:5~50、好ましくは1:8~20、より好ましくは、1:10~15であることができる。混合は、室温下で行うことができるが、使用する葉の収穫時期・成熟度等を考慮し、さらにまた、酵素反応前に殺菌行うことが好ましいことを考慮して、加温条件で行うこともできる。その際の温度としては、殺菌目的が達成され、茶葉の熱劣化が少ない条件が例示でき、例えば、65~100℃、より好ましくは70~90℃で行うことができる。混合時間は、茶葉が水を吸収し、膨らんだ状態になる時間であって、限定されるものでないが、一般的に1分~60分、好ましくは5分~30分の範囲にあることができる。
In the step (A), where tea leaf and water are mixed, generally, soft water, ion exchanged water, RO membrane treated water, etc. can be conveniently used as water. The use ratio of tea leaf to water is preferably 1: 5 to 50, preferably 1: 8 to 20, more preferably 1:10 to 15 in weight ratio although the suitable range varies depending on the dry state of the tea leaf. Can. The mixing can be carried out at room temperature, but should be carried out under heating conditions in consideration of the harvest time, maturity, etc. of the leaves used, and also considering that sterilization is preferably performed before the enzyme reaction. You can also. The temperature at that time may be, for example, 65 to 100 ° C., more preferably 70 to 90 ° C., for the purpose of achieving the sterilization purpose and reducing the thermal deterioration of the tea leaves. The mixing time is a time during which the tea leaves absorb water and expand, and is not limited, but generally it is in the range of 1 minute to 60 minutes, preferably 5 minutes to 30 minutes it can.
なお、殺菌を兼ねて加温条件で混合を行った場合、加熱殺菌後、茶葉と水の混合物を酵素処理に適当な温度まで冷却する。
In addition, when mixing is also performed on heating conditions while serving as sterilization, after heat sterilization, the mixture of tea leaves and water is cooled to a temperature suitable for the enzyme treatment.
工程(B)では、工程(A)で得られる混合物に直接配糖体分解酵素を作用させることができるが、その前に、混合物から水抽出物若しくは配糖体分解酵素以外であって、茶の抽出に使用されている各種酵素の存在下において酵素処理抽出物を調製した後、配糖体分解酵素を作用させるか、または、前記混合物に直接配糖体分解酵素を作用させると同時、若しくは、その後に配糖体分解酵素以外の酵素を作用させることもできる。配糖体分解酵素以外の酵素としては、限定されるものでないが、タンニン分解酵素タンナーゼ、プロテアーゼ、アミラーゼ、グルコアミラーゼ、ペクチナーゼ、セルラーゼ、ヘミセルラーゼ等を挙げることができる。これらの中、本発明の目的上、すなわち、茶の本来の風味乃至呈味を保持し、透明かつ脱色した茶抽出液を得るのに好適なものとしては、タンナーゼ、ペクチナーゼを挙げることができる。これらの酵素は、単独または2種以上を組み合わせて用いることができる。
In the step (B), the mixture obtained in the step (A) can be allowed to act directly on the glycoside degrading enzyme, but before that, the mixture is other than the water extract or the glycoside degrading enzyme, and tea The enzyme-treated extract is prepared in the presence of various enzymes used for the extraction of glucosides, and then allowed to act on glucoside degrading enzymes, or simultaneously upon acting glucoside degrading enzymes directly on the mixture, or After that, enzymes other than glucoside degrading enzymes can also be allowed to act. Examples of enzymes other than glycoside degrading enzymes include, but are not limited to, tannin degrading enzyme tannase, protease, amylase, glucoamylase, pectinase, cellulase, hemicellulase and the like. Among them, tannase and pectinase can be mentioned as preferable ones for the purpose of the present invention, that is, to obtain the clear and decolorized tea extract while retaining the original flavor and taste of tea. These enzymes can be used alone or in combination of two or more.
配糖体分解酵素およびそれ以外の各酵素は、本発明の目的に沿い、当該技術分野で使用されているものであれば、限定されることなく使用できところ、配糖体分解酵素、タンナーゼ、ペクチナーゼについては次のように詳述することができる。
Glycoside degrading enzymes and enzymes other than them can be used without limitation as long as they are used in the technical field in accordance with the object of the present invention, glycosidase, tannase, Pectinase can be detailed as follows.
配糖体分解酵素としては、茶葉中に存在し得る各種配糖体の中、例えば、フラボノール類とグルコース類からなる配糖体を遊離のアグリコン部と糖部に加水分解できる酵素を都合よく使用することができる。かような、O-グリコシド配糖体は植物界に豊富に存在することから、一方では、該O-グリコシド結合を加水分解する酵素も多種多様なものが自然界に存在する。これらの中で、限定されるものでないが、本発明の目的に沿うものとしては、次のものを挙げることができる。例えば、アスペルギルス(Aspergillus)属、ペニシリウム(Penicillum)属、リゾプス(Rhizopus)属、シュードモナス(Pseudmonas)属、ピキア(Pichia)属などに属するβ-グルコシダーゼ生産菌を、小麦ふすま、米ぬかなどの固体栄養培地または液体栄養培地で常法に従って固体培養又は液体培養し、得られる培養物またはその処理物を常法により精製処理したものであることができる。また、バニラ豆、生茶葉などの植物より精製処理し得られるものも使用することができ、さらに、シグマアルドリッチ社から市販されているアーモンド由来のエムルシン、またはβ-グルコシダーゼ含む酵素製剤セルラーゼA(アマノエンザイム)、セルラーゼT(アマノエンザイム)などから分離したものも使用することができる。β-キシロシダーゼとしては、例えば、ペニシリウム属、アスペルギルス属、リゾプス属、ムコール属などに属するβーキシロシダーゼ生産菌を小麦ふすま、米ぬかなどの固体栄養培地または液体栄養培地で常法に従って固体培養または液体培養し、得られる培養物またはその処理物を常法により精製処理したものを挙げることができ、また、シグマアルドリッチ社から市販されている黒麹菌(Aspergillus niger)由来のものまたはβ-キシロシダーゼを含む酵素製剤スミチームACH(新日本科学工業)などから分離したものも使用することができる。β-プリメベロシダーゼは、例えば、セルロモナス属、ペニシリウム属、アスペルギルス属などに属するβープリメベロシダーゼ生産菌を小麦ふすま、米ぬかなどの固体培地または液体培地で常法に従って固体培養もしくは液体培養し、得られる培養物またはその処理物を常法により精製処理したものを挙げることができ、また、生茶葉などの植物中より分離精製したものも使用することができる。これらの配糖体分解酵素の使用量は、本発明の目的で使用する場合、一般に、茶葉原料の質量基準で、例えば、p-NP グルコース添加法によるβ-グルコシダーゼ活性で1~100U/g、好ましくは4~75U/g、より好ましくは8~50U/g、さらに好ましくは10~40U/gの範囲内であることができる。
Among various glycosides which may be present in tea leaves, for example, an enzyme capable of hydrolyzing a glycoside consisting of flavonols and glucose to a free aglycone part and a sugar part is advantageously used as a glycoside degrading enzyme. can do. Such O-glycoside glycosides are abundantly present in the plant world, and on the other hand, a large variety of enzymes that hydrolyze the O-glycosidic bond exist in nature. Among these, although not limited thereto, the following can be mentioned as those meeting the object of the present invention. For example, solid nutrient culture media such as wheat bran and rice bran containing β-glucosidase-producing bacteria belonging to the genus Aspergillus, Penicillium, Rhizopus, Pseudomonas, Pichia, etc. Alternatively, it can be a solid culture or liquid culture in a liquid nutrient medium according to a conventional method, and the obtained culture or a treated product thereof can be purified by a conventional method. In addition, those obtained by purification treatment from plants such as vanilla bean and fresh tea leaves can also be used, and further, an enzyme preparation cellulase A containing almond-derived emulsin or β-glucosidase commercially available from Sigma-Aldrich, Inc. (Amano Enzymes), cellulase T (Amano enzyme) and the like can also be used. As β-xylosidase, for example, β-xylosidase-producing bacteria belonging to Penicillium, Aspergillus, Rhizopus, Mucor and the like are subjected to solid culture or liquid culture according to a conventional method in solid nutrient media such as wheat bran or rice bran or liquid nutrient media And the culture obtained or the treated product thereof may be purified by a conventional method, and may also be commercially available from Sigma-Aldrich Co., which is derived from Aspergillus niger or an enzyme containing β-xylosidase It is also possible to use those separated from the preparation Sumi Team ACH (New Nippon Kagaku Kogyo) and the like. The β-primeverosidase is, for example, a solid culture or liquid culture of β-primeverosidase producing bacteria belonging to the genus Cerulomonas, Penicillium, Aspergillus, etc. in a solid medium or liquid medium such as wheat bran or rice bran according to a conventional method, The obtained culture or the treated product thereof may be purified by a conventional method, and those separated and purified from plants such as fresh tea leaves may also be used. When used for the purpose of the present invention, the amount of these glycoside degrading enzymes is generally 1 to 100 U / g in terms of β-glucosidase activity by p-NP glucose addition method, for example, based on the mass of tea leaf material. Preferably, it can be in the range of 4 to 75 U / g, more preferably 8 to 50 U / g, still more preferably 10 to 40 U / g.
タンナーゼは、タンニン中の水酸基に没食子酸がエステル結合しているデプシド結合を加水分解する酵素、例えば、エピガロカテキンガレートをエピガロカテキンと没食子酸に加水分解する酵素である。本発明で使用することのできるタンナーゼとしては、具体的には、例えば、アスペルギルス属、ペニシリウム属、リゾプス属、リゾムコール属、ラクトバシラス属、スタフィロコッカス属、ストレプトコッカス属、ロネピネラ属などに属するタンナーゼ生産菌を、これら糸状菌の培養に通常用いられる培地で常法に従って固体培養または液体培養し、得られる培養物またはその処理物を常法により精製処理することにより得られるものを挙げることができる。また、市販されているタンナーゼ、例えば、タンナーゼ(500U/g;キッコーマン社製)、タンナーゼ(5,000U/g;キッコーマン社製)、タンナーゼ(500U/g;三菱化学フーズ社製)、スミチーム(登録商標)TAN(新日本化学工業社製)などを用いることもできる。タンナーゼの使用量は、力価などにより最適範囲が変動するので特定できないが、一般に、茶葉原料の質量基準で0.1~50U/g、好ましくは0.5~20U/gの範囲内であることができる。
Tannase is an enzyme that hydrolyzes a depside bond in which gallic acid is ester-linked to a hydroxyl group in tannin, for example, an enzyme that hydrolyzes epigallocatechin gallate into epigallocatechin and gallic acid. Specific examples of the tannase that can be used in the present invention include tannase-producing bacteria belonging to, for example, Aspergillus, Penicillium, Rhizopus, Rhizomucor, Lactobacillus, Staphylococcus, Streptococcus, Ronepinella, etc. And solid culture or liquid culture according to a conventional method in a medium usually used for culture of these filamentous fungi, and obtained products obtained by purifying the obtained culture or the treated product thereof by a conventional method. In addition, commercially available tannases, for example, tannase (500 U / g; made by Kikkoman Corporation), tannase (5,000 U / g; made by Kikkoman Corporation), tannase (500 U / g; made by Mitsubishi Chemical Foods Corporation), Sumi Team (registered) It is also possible to use a trademark TAN (manufactured by Shin Nippon Chemical Industry Co., Ltd.) or the like. The use amount of tannase can not be specified because the optimum range varies depending on the titer etc., but it is generally in the range of 0.1 to 50 U / g, preferably 0.5 to 20 U / g based on the mass of the tea leaf raw material be able to.
ペクチナーゼは、ポリガラクツロナーゼ、ペクチックエンザイム、ポリメチルガラクツロナーゼ、ペクチンデポリメラーゼとも呼ばれ、ペクリニン酸、ペクチン、ペクチン酸などのα-1,4結合を加水分解する酵素である。ペクチナーゼは、細菌、カビ、酵母、高等植物、カタツムリなどに含まれていることが知られており、本発明ではこれらをはじめとする生物から採取したペクチナーゼを広く使用することができる。また、市販のペクチナーゼ製剤を使用することもできる。市販のペクチナーゼ製剤としては、例えば、スクラーゼ(登録商標)A、スクラーゼ(登録商標)N、スクラーゼ(登録商標)S(以上、三菱化学フーズ社製)、ペクチネックスウルトラ(登録商標)SP-L(ノボノルディクスA/S社製)、メイセラーゼ(登録商標)(明治製菓(株)社製)、ウルトラザイム(登録商標)(ノボノルディクスA/S社製)、ニューラーゼF(登録商標)(天野エンザイム(株)社製)スミチーム(登録商標)SPG(新日本化学工業社製)などを例示することができる。ペクチナーゼの使用量は、ペクチナーゼ製剤には通常複数種類の酵素が含まれているため活性単位では表しにくく、茶葉原料の質量基準で、一般に0.01質量%~5質量%、好ましくは0.1質量%~2質量%の範囲内であることができる。
Pectinase is also called polygalacturonase, pectin enzyme, polymethyl galacturonase, pectin de polymerase, and is an enzyme that hydrolyzes an α-1,4 bond such as peclinic acid, pectin, pectic acid. Pectinase is known to be contained in bacteria, molds, yeasts, higher plants, snails and the like, and in the present invention, pectinases collected from organisms including these can be widely used. Alternatively, commercially available pectinase preparations can be used. Examples of commercially available pectinase preparations include, for example, Sucrase (registered trademark) A, Sucrase (registered trademark) N, Sucrase (registered trademark) S (above, manufactured by Mitsubishi Chemical Foods Corporation), Pectinex Ultra (registered trademark) SP-L ( Novo Nordics A / S, Meicerase (registered trademark) (Meiji Seika Co., Ltd.), Ultrazyme (registered trademark) (Novo Nordics A / S), Neulase F (registered trademark) Amano Enzyme Co., Ltd. product Sumi team (registered trademark) SPG (made by Shin Nippon Chemical Industry Co., Ltd.) etc. can be illustrated. The amount of pectinase to be used is generally difficult to represent in activity units since a plurality of enzymes are contained in the pectinase preparation, and generally 0.01% by mass to 5% by mass, preferably 0.1% by mass on the basis of tea leaf material It can be in the range of mass% to 2 mass%.
茶葉中には約25質量%のタンパク質(5訂食品成分表参照)が含まれており、プロテアーゼ処理を行うことにより、後の加熱反応の効果が特に高まる。しかしながら、茶葉中のタンパク質はタンニンと結合しているため、茶葉にプロテアーゼを単独で作用させても、ほとんどアミノ酸は生成しない。そこで、茶葉にプロテアーゼおよびタンナーゼを作用させることにより茶葉中のタンパク質の一部が分解し、アミノ酸の豊富な茶抽出液を得ることができる。
The tea leaves contain about 25% by mass of protein (see the 5th edition food composition table), and the protease treatment particularly enhances the effect of the later heating reaction. However, since proteins in tea leaves are bound to tannins, little action of protease on tea leaves produces almost no amino acid. Therefore, by causing protease and tannase to act on the tea leaf, a part of the protein in the tea leaf is decomposed and a tea extract rich in amino acids can be obtained.
プロテアーゼは、蛋白質やペプチドのペプチド結合を加水分解する酵素である。本発明で使用可能なプロテアーゼとしては、市販の各種プロテアーゼを挙げることができる。プロテアーゼの使用量は、力価などにより異なり一概には言えないが、通常、茶類原料の質量を基準として通常、0.01~100U/g、好ましくは1~80U/gの範囲内を例示することができる。
Proteases are enzymes that hydrolyze peptide bonds of proteins and peptides. As the protease that can be used in the present invention, various commercially available proteases can be mentioned. The amount of protease used varies depending on the titer etc. and can not be generally determined, but it is usually exemplified within the range of usually 0.01 to 100 U / g, preferably 1 to 80 U / g, based on the mass of the tea material. can do.
以上述べた酵素による茶葉の処理工程(特に、工程(A)及び(B)を含む)は、それ自体既知の方法、例えば特許庁公報 周知・慣用技術集(香料)題II部 食品香料(2000.1.14発行)「2・1・7微生物・酵素フレーバー」(46~57頁)等の刊行物に記載の方法に準じて行うことができる。
The processing steps of tea leaves with enzymes described above (in particular, including the steps (A) and (B)) are methods known per se, such as the Patent Office Publications Well-known and Conventional Techniques Collection (Fragrance) Title II, Food flavors (2000) 1. 1.14) It can be carried out according to the method described in the publications such as “2.1 · 7 microorganism and enzyme flavor” (pages 46 to 57).
かような工程の中、茶葉と水の混合物、或いはまた、その処理物に配糖体分解酵素を作用させる、とは、その後の工程(D)の加熱処理および工程(E)における不溶性成分の除去により得られる茶抽出液が、実質的に脱色されるように、着色原因物質を除去可能にすることを意味する。理論により拘束されるものでないが、茶葉に存在する配糖体の中、着色原因物質を除去可能にするとは、該酵素の作用により本来水溶性等の形態にあったものを、非水溶性若しくは難水溶性に変換することを意味する。本発明によると、工程(E)で除去される不溶性成分を含有する浮遊物または沈殿物中には、天然フラボノールの一つであるケンペロールやケルセチン等を包含する着色起因物質が存在するものと理解されている。このことは、さらに理論により拘束されるものでないが、前記作用は、茶葉中に存在し得る配糖体の中、少なくともケンペロールやケルセチン等をアグリコンとする配糖体の全て若しくは大部分を加水分解して難水溶性の遊離アグリコンを生成させるものと理解されている。
Among such processes, a mixture of tea leaves and water, or alternatively, allowing a treated product thereof to act as a glucoside degrading enzyme, refers to the heat treatment in the subsequent step (D) and the insoluble component in the step (E). It means that the tea extract liquid obtained by the removal can remove the color-causing substance so that it is substantially decolorized. Without being limited by theory, among the glycosides present in tea leaves, to make it possible to remove the color-causing substance, one that was originally in a water-soluble form or the like by the action of the enzyme is non-water-soluble or It means converting to poor water solubility. According to the present invention, it is understood that in the suspension or precipitate containing the insoluble component to be removed in the step (E), a coloring origin substance including kaempferol which is one of natural flavonols, quercetin and the like is present. It is done. Although this is not further limited by theory, the above-mentioned action hydrolyzes all or most of the glycosides having at least kaempferol or quercetin as aglycones among the glycosides which may be present in the tea leaf. It is understood to produce poorly water-soluble free aglycones.
したがって、工程(B)は、上記のような浮遊物または沈殿物を形成する条件下で酵素処理が行われる。このような条件は、使用する酵素の力価等により最適条件が変動するが、一般に温度は30~70℃、好ましくは36~60℃、より好ましくは40℃~50℃、さらに好ましくは42℃~48℃で、反応時間は理論的には25分以上、実用的には30分~48時間、好ましくは1~36時間、より好ましくは1.5~24時間、さらに好ましくは2~16時間であって、pHは、使用する酵素の起源等により最適条件が変動するが、一般に4~6である。
Thus, in step (B), the enzyme treatment is carried out under conditions that form a float or precipitate as described above. Such conditions vary depending on the titer of the enzyme used, but generally the temperature is 30 to 70 ° C., preferably 36 to 60 ° C., more preferably 40 to 50 ° C., still more preferably 42 ° C. The reaction time is theoretically 25 minutes or more, practically 30 minutes to 48 hours, preferably 1 to 36 hours, more preferably 1 to 36 hours, more preferably 1.5 to 24 hours, further preferably 2 to 16 hours at -48 ° C. The pH is generally 4 to 6, although the optimum conditions vary depending on the source of the enzyme used and the like.
前述したとおり、工程(B)では、同時に(工程(B)において)配糖体分解酵素以外の酵素を作用させることができるところ、これらの酵素処理も、配糖体分解酵素を作用させる上記の条件に準じた条件を選ぶことができる。
As described above, in the step (B), enzymes (other than the glucoside degrading enzymes) can be allowed to act simultaneously (in the step (B)), and these enzyme treatments also cause the glucoside degrading enzymes to act. The conditions according to the conditions can be selected.
工程(C)では、工程(B)により、前述したごとく、茶葉に対し配糖体分解酵素を配糖体のアグリコン部と糖部が加水分解されるのに十分な時間作用させた後、原料茶葉残渣またはその他の不溶性の固形物をそれ以外の処理液(抽出物ともいう)と分離させる。かような分離は、例えば、脱水型遠心分離機、フィルタープレス、濾過助剤をコーティングしたヌッチェ濾過機等により行い、必要な場合、さらなる固形物も同時に除去する。
In the step (C), as described above, in the step (B), the glycoside-degrading enzyme is allowed to act on the tea leaves for a sufficient time to hydrolyze the aglycone portion and the sugar portion of the glycoside Tea residue or other insoluble solids are separated from other processing solutions (also referred to as extracts). Such separation is carried out, for example, by a dewatering type centrifuge, a filter press, a filter filter coated Nutsche filter or the like, and simultaneously with the removal of further solids if necessary.
工程(D)では、前記酵素処理茶抽出物を加熱処理し、上記工程で使用した酵素をはじめとするタンパク質類を変性させる。なお、理論により本発明の技術的範囲の解釈は拘束されるものでないが、この加熱処理による変性により、酵素は活性を失うことのみならず、また、着色の原因成分であり、かつ、酵素処理により水に不溶となった成分が変性したタンパク質類と結合し凝集しやすい状態になると考えられる。この加熱処理条件は、一般に温度70~135℃、時間2秒~30分の範囲内、好ましくは温度75~121℃、時間10秒~25分の範囲内、より好ましくは温度80~100℃、時間30秒~20分の範囲内、さらに好ましくは温度85~95℃、時間20秒~15分の範囲内にある。
In step (D), the enzyme-treated tea extract is heat-treated to denature proteins including the enzyme used in the above step. Although the interpretation of the technical scope of the present invention is not restricted by theory, the modification by heat treatment not only causes the enzyme to lose its activity, but is also a causative component of coloring, and the enzyme treatment It is considered that the component which has become insoluble in water is bound to the denatured proteins to be in a state of being easily aggregated. The heat treatment conditions are generally a temperature of 70 to 135 ° C., a time of 2 seconds to 30 minutes, preferably 75 to 121 ° C., a time of 10 seconds to 25 minutes, more preferably 80 to 100 ° C. The time is in the range of 30 seconds to 20 minutes, more preferably in the range of 85 to 95 ° C., and the time range of 20 seconds to 15 minutes.
工程(E)では、前記加熱処理物を45℃以下、好ましくは35℃以下まで冷却して不溶性成分を含む浮遊物または沈殿物を生じさせる。かような不溶性成分それ自体、または浮遊物若しくは沈殿物の除去は、例えば、脱水型遠心分離機、沈降型遠心分離機、フィルタープレス、濾過助剤をコーティングしたヌッチェ濾過機等により行うことができるが、通常、沈降型遠心分離によるのが好ましい結果をもたらす。
In the step (E), the heat-treated product is cooled to 45 ° C. or less, preferably 35 ° C. or less to form a float or precipitate containing an insoluble component. The removal of such insoluble components per se, or the suspension or precipitate can be carried out by, for example, a dewatering type centrifuge, a sedimentation type centrifuge, a filter press, a Nutsche filter coated with a filter aid, etc. However, it is usually preferred to obtain the results by sedimentation centrifugation.
こうして、本発明によれば、通常、茶葉の着色物に由来する抽出物または酵素抽出物中の着色を脱色することができる。一方で、茶類の風味、特に、呈味に寄与することが既知の、アミノ酸、カフェイン、カテキン類の含有量が実質的に低減されていない、茶抽出液を提供できる。このような、茶抽出液としては、例えば緑茶葉を原料にした場合、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下、好ましくは0.3以下、より好ましくは0.2以下、さらに好ましくは0.1以下、なおさら好ましくは0.05以下、最もこのましく0.015以下であり、かつ680nmの吸光度が0.15以下、好ましくは0.10以下、より好ましくは0.08以下、さらに好ましくは0.05以下、なおさら好ましくは0.01以下であり、最も好ましくは0.005以下である。これは、相当する酵素処理を行わない場合の茶抽出液の当該430nmの吸光度に比べて約4/5以下、好ましくは約1/2以下、より好ましくは1/3以下、さらにより好ましくは1/5以下である。また、可溶性固形分(屈折糖度、温度20℃)を15とした場合の前記固形分の総質量あたりのカテキン含有量が1.0質量%以上、好ましくは1.2質量%以上、より好ましくは1.5質量%以上である緑茶抽出液を提供できる。さらに、茶葉にプロテアーゼを作用させて抽出した場合においては、可溶性固形分(屈折糖度、温度20℃)を15とした場合の、前記固形分の総質量あたりのアミノ酸含有量が1.0質量%以上、好ましくは1.5質量%以上、より好ましくは1.8質量%以上であり、かつカテキン含有量が1.0質量%以上、好ましくは1.2質量%以上、より好ましくは1.5質量%以上である緑茶抽出液を提供できる。
Thus, according to the present invention, it is possible to decolorize the color in the extract or enzyme extract usually derived from the color of tea leaves. On the other hand, it is possible to provide a tea extract in which the contents of amino acids, caffeine and catechins are not substantially reduced, which are known to contribute to the flavor of teas, in particular, the taste. As such a tea extract, for example, when green tea leaves are used as a raw material, the absorbance at 430 nm is 0.5 or less when the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3. , Preferably 0.3 or less, more preferably 0.2 or less, still more preferably 0.1 or less, still more preferably 0.05 or less, most preferably 0.015 or less, and the absorbance at 680 nm is 0. It is 15 or less, preferably 0.10 or less, more preferably 0.08 or less, still more preferably 0.05 or less, still more preferably 0.01 or less, and most preferably 0.005 or less. This is about 4/5 or less, preferably about 1/2 or less, more preferably 1/3 or less, still more preferably 1 or less, as compared to the absorbance at 430 nm of the tea extract when the corresponding enzyme treatment is not performed. / 5 or less. Further, when the soluble solid content (refractive sugar content, temperature 20 ° C.) is 15, the catechin content per total mass of the solid content is 1.0 mass% or more, preferably 1.2 mass% or more, more preferably The green tea extract which is 1.5 mass% or more can be provided. Furthermore, when a protease is made to act on tea leaf and it extracts, when the soluble solid content (refractive sugar content, temperature 20 degreeC) is set to 15, the amino acid content per total mass of said solid content is 1.0 mass% Or more, preferably 1.5% by mass or more, more preferably 1.8% by mass or more, and the catechin content is 1.0% by mass or more, preferably 1.2% by mass or more, more preferably 1.5 The green tea extract which is mass% or more can be provided.
前述したとおり、430nmにおける吸光度とOD680nmにおける吸光度を有する本発明により提供される脱色された茶抽出液は、水で希釈または加水して茶飲料を製造する際に、前記茶飲料の総質量当たり、前記固形分含量が0.005質量%~0.3質量%に調整されると、本発明方法で処理されていない茶抽出物に比べて有意に低減した着色度合の茶飲料、さらには、実質的に無色透明な茶飲料を提供できる。前記水は、飲用に供することができる水であれば、所謂、軟水または硬水に属するかに限定されない。このような茶飲料は、430nmの吸光度が0.05以下かつ680nmの吸光度0.05以下である一方で、茶の風味を保持しているものが、好ましい。したがって、本発明の所期の目的を達成するためには、例えば、後述する図7に示されるデータ等を参照に、前述の工程Bにおいて作用させる配糖体分解酵素の用量を制御して、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3に調整したときに直前に記載の両吸光度を示すように調製してもよい。
As described above, the decolorized tea extract provided by the present invention having an absorbance at 430 nm and an absorbance at OD 680 nm is diluted or hydrolyzed with water to produce a tea beverage, based on the total mass of the tea beverage, When the solid content is adjusted to 0.005% by mass to 0.3% by mass, the tea beverage having a significantly reduced degree of color as compared to the tea extract not treated with the method of the present invention, further, the substance Provide a colorless and transparent tea beverage. The water is not limited to so-called soft water or hard water as long as the water can be provided for drinking. Such a tea beverage preferably has an absorbance at 430 nm of 0.05 or less and an absorbance at 680 nm of 0.05 or less, while retaining the flavor of the tea. Therefore, in order to achieve the intended purpose of the present invention, for example, with reference to the data shown in FIG. When the soluble solid content (refractive index sugar content, temperature 20 ° C.) of the tea extract is adjusted to 0.3, it may be prepared so as to show both the absorbances described immediately before.
本明細書において、茶抽出液の可溶性固形分(屈折糖度、温度20℃)について、0.3質量%または0.3というが、これは互換可能に用いている。また、可溶性固形分(屈折糖度、温度20℃)またはBx(ブリックス)0.3°という場合も同様であるが、これらはブリックス計で測定して得られる値をいう。
In the present specification, 0.3 mass% or 0.3 is used interchangeably for soluble solids (refractory sugar content, temperature 20 ° C.) of tea extract. The same applies to soluble solids (refractory sugar content, temperature 20 ° C.) or Bx (bricks) 0.3 °, but these are values obtained by measurement with a Brix meter.
本発明で提供される脱色された茶抽出液は、例えば、ニアウォーターやフレーバードウォーター様の飲料、また、容器詰茶飲料の原料として、使用できる。
The decolorized tea extract provided by the present invention can be used, for example, as a near water or flavored water-like beverage, or as a raw material for container-packed tea beverages.
具体的には、上記の態様1~9、12~13のいずれかに記載の方法で得られるか、態様10または11に記載された、脱色され、場合によって低タンニン化された茶抽出液に加水して茶由来の可溶性固形分を、提供しようとする茶飲料の種類にあわせて0.005~0.3、または0.01~0.3、または0.05~0.3、または0.1~0.3%(または °)に調整し、前記調整と同時または前後に、ビタミンCまたはその可食性の塩(ナトリウム)を加えることにより、茶飲料、容器詰茶飲料を提供できる(態様16または17参照)。かような飲料を提供する場合、特に、態様12または13の方法により得られるか、または態様14にしたがう、脱色され、かつ、低タンニン茶抽出液から出発すると、貯蔵または保存安定性の高い、茶飲料が提供できる。態様12の方法における、PVPP(ポリビニルポリピロリドン)の使用条件は、限定するものでないが、特許文献5の記載を参考に本発明の目的を達成できるものである限り適宜選択できるところ、本発明では、例えば、前記工程(E)で得られた茶抽出液の可溶性固形分の質量に対し、1質量%~100質量%のPVPPが使用される。こうして得られる茶抽出液は、好ましくは、茶由来の可溶性固形分を前記のように調整した後、ビタミンCまたはその可食性の塩(ナトリウム)が調整後の茶飲料の総質量当たり、0.002質量%~0.3質量%、好ましくは、0.005質量%~0.1質量%、より好ましくは0.01質量%~0.03質量%加えられる。このような処理により、茶飲料は、加熱殺菌した後、通常の茶飲料を充填する容器中の条件下で、茶由来の可溶性固形分を0.3%(Bx、20℃)に調整したとき、430nmの吸光度が0.015以下であり、かつ、680nmの吸光度0.05以下である、状態を安定に保持する。
Specifically, it is possible to use a decolorized, optionally low tanned tea extract obtained by the method according to any one of the above aspects 1 to 9, 12 to 13 or described in aspect 10 or 11. Depending on the type of tea beverage to be added, the soluble solids derived from tea can be added to 0.005 to 0.3, or 0.01 to 0.3, or 0.05 to 0.3, or 0 A tea beverage or container-packed tea beverage can be provided by adjusting to 1 to 0.3% (or °) and adding vitamin C or its edible salt (sodium) simultaneously with or before or after the adjustment Aspect 16 or 17). When such a beverage is provided, it is obtained by the method of the embodiment 12 or 13, or decolorized according to the embodiment 14 and having high storage or storage stability, starting from a low tannin tea extract, Tea beverages can be provided. Although the use conditions of PVPP (polyvinylpolypyrrolidone) in the method of the embodiment 12 are not limited, they can be appropriately selected as long as the object of the present invention can be achieved with reference to the description of Patent Document 5; For example, 1% by mass to 100% by mass of PVPP is used with respect to the mass of the soluble solid content of the tea extract obtained in the step (E). The tea extract thus obtained is preferably prepared by adjusting the soluble solid content derived from tea as described above, and then the vitamin C or its edible salt (sodium) per total mass of the tea beverage after adjustment. From 002% by mass to 0.3% by mass, preferably from 0.005% by mass to 0.1% by mass, more preferably from 0.01% by mass to 0.03% by mass. When the tea beverage is adjusted to 0.3% (Bx, 20 ° C.) of soluble solids derived from tea under the conditions in a container filled with a normal tea beverage after heating and sterilizing by such treatment. The absorbance at 430 nm is 0.015 or less, and the absorbance at 680 nm is 0.05 or less.
なお、透明性および無色(着色状況)の尺度については次の説明を参酌できる。
(透明)
・OD680nmが0.15以下(わずかに不透明感あり)、好ましくは0.10以下(ごくわずかに不透明感あり)、より好ましくは0.07以下(ほぼ透明)、さらに好ましくは0.05以下(おおよそ完全に透明)
(無色)
・純水との透過度によるLabを比較した場合のΔ(デルタ)Eが4.0以下(わずかに着色)、好ましくは3.0以下(ごくわずかに着色)、さらに好ましくは2.0以下(ほぼ無色)、特に好ましくは1.4以下(おおよそ完全に無色)、
・もしくはOD430nmが0.05以下(わずかに着色)、好ましくは0.038以下(ごくわずかに着色)、より好ましくは0.025以下(ほぼ無色)、特に好ましくは0.015以下(おおよそ完全に無色) The following description can be referred to for the scale of transparency and colorlessness (coloring condition).
(Transparent)
The OD 680 nm is 0.15 or less (slightly opaque), preferably 0.10 or less (very slightly opaque), more preferably 0.07 or less (almost transparent), still more preferably 0.05 or less (slightly opaque) Almost completely transparent)
(colorless)
· Δ (delta) E is 4.0 or less (slightly colored), preferably 3.0 or less (very slightly colored), more preferably 2.0 or less, in comparison with Lab according to permeability with pure water (Almost colorless), particularly preferably 1.4 or less (approximately completely colorless),
Or, the OD 430 nm is 0.05 or less (slightly colored), preferably 0.038 or less (very slightly colored), more preferably 0.025 or less (almost colorless), particularly preferably 0.015 or less (approximately completely) colorless)
(透明)
・OD680nmが0.15以下(わずかに不透明感あり)、好ましくは0.10以下(ごくわずかに不透明感あり)、より好ましくは0.07以下(ほぼ透明)、さらに好ましくは0.05以下(おおよそ完全に透明)
(無色)
・純水との透過度によるLabを比較した場合のΔ(デルタ)Eが4.0以下(わずかに着色)、好ましくは3.0以下(ごくわずかに着色)、さらに好ましくは2.0以下(ほぼ無色)、特に好ましくは1.4以下(おおよそ完全に無色)、
・もしくはOD430nmが0.05以下(わずかに着色)、好ましくは0.038以下(ごくわずかに着色)、より好ましくは0.025以下(ほぼ無色)、特に好ましくは0.015以下(おおよそ完全に無色) The following description can be referred to for the scale of transparency and colorlessness (coloring condition).
(Transparent)
The OD 680 nm is 0.15 or less (slightly opaque), preferably 0.10 or less (very slightly opaque), more preferably 0.07 or less (almost transparent), still more preferably 0.05 or less (slightly opaque) Almost completely transparent)
(colorless)
· Δ (delta) E is 4.0 or less (slightly colored), preferably 3.0 or less (very slightly colored), more preferably 2.0 or less, in comparison with Lab according to permeability with pure water (Almost colorless), particularly preferably 1.4 or less (approximately completely colorless),
Or, the OD 430 nm is 0.05 or less (slightly colored), preferably 0.038 or less (very slightly colored), more preferably 0.025 or less (almost colorless), particularly preferably 0.015 or less (approximately completely) colorless)
以下、本発明を実施例および比較例によりさらに具体的に説明する。
Hereinafter, the present invention will be more specifically described by Examples and Comparative Examples.
(実施例1)
純水1300gにビタミンC 1.8gを溶解し、75℃に加温した。そこに静岡産2番茶(やぶきた種、蒸青法、5mmにカット品)100gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表1に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。抽出液をNo.2濾紙(保留粒子径5μm)濾過した後、20℃に冷却し、重力加速度3000×gにて10分間遠心分離し、緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表1に示す。また、これらのBx0.3°希釈液の外観の写真を図1に示す(左から、比較品1、本発明品4、本発明品5、本発明品6、本発明品7)。
(酵素の説明)
・配糖体分解酵素:市販のβ-グルコシダーゼ(1200U/g)
・タンナーゼ:スミチーム(登録商標)TAN(新日本化学工業社製のタンナーゼ:5000U/g)
・ペクチナーゼ:スミチーム(登録商標)SPG(新日本化学工業社製のペクチナーゼ)・インベルターゼ:スミチーム(登録商標)INV(新日本化学工業社製のインベルターゼ)
・ヘミセルラーゼ(β-マンナナーゼ):スミチーム(登録商標)ACH(新日本化学工業社製のヘミセルラーゼ) Example 1
In 1300 g of pure water, 1.8 g of vitamin C was dissolved and heated to 75 ° C. Thereto, 100 g of Shizuoka second tea (Yabukita seed, steaming method, cut product of 5 mm) was added, heated with stirring, and heat-sterilized at 95 ° C. for 15 minutes. The mixture was cooled to 45 ° C. (the pH at this point is 5.3), the enzymes shown in Table 1 were added, and a reaction of stirring at 45 ° C. for 4 hours was performed. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C. The extract was no. 2 Filter paper (heldparticle diameter 5 μm) After filtration, cooled to 20 ° C. and centrifuged at 3000 × g for 10 minutes to obtain a green tea extract. The obtained green tea extract was diluted to Bx 0.3 ° (refractive index, measured at 20 ° C.), and the absorbance at 430 nm (index of color) and the absorbance at 680 nm (index of turbidity) were measured. The results are shown in Table 1. Further, photographs of appearances of these Bx 0.3 ° diluted solutions are shown in FIG. 1 (from the left, Comparative Product 1, Present Product 4, Present Product 5, Present Product 6, and Present Product 7).
(Description of the enzyme)
-Glycoside degrading enzyme: commercially available β-glucosidase (1200 U / g)
-Tannase: Sumi Team (registered trademark) TAN (Shin Nippon Chemical Industry Co., Ltd. tannase: 5000 U / g)
Pectinase: Sumi Team (registered trademark) SPG (Pectinase manufactured by Shin Nippon Chemical Industries Co., Ltd.) Invertase: Sumi Team (registered trademark) INV (Invertase manufactured by Shin Nippon Chemical Industrial Co., Ltd.)
・ Hemicellulase (β-mannanase): Sumizyme (registered trademark) ACH (Hemicellulase manufactured by Shin Nippon Chemical Co., Ltd.)
純水1300gにビタミンC 1.8gを溶解し、75℃に加温した。そこに静岡産2番茶(やぶきた種、蒸青法、5mmにカット品)100gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表1に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。抽出液をNo.2濾紙(保留粒子径5μm)濾過した後、20℃に冷却し、重力加速度3000×gにて10分間遠心分離し、緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表1に示す。また、これらのBx0.3°希釈液の外観の写真を図1に示す(左から、比較品1、本発明品4、本発明品5、本発明品6、本発明品7)。
(酵素の説明)
・配糖体分解酵素:市販のβ-グルコシダーゼ(1200U/g)
・タンナーゼ:スミチーム(登録商標)TAN(新日本化学工業社製のタンナーゼ:5000U/g)
・ペクチナーゼ:スミチーム(登録商標)SPG(新日本化学工業社製のペクチナーゼ)・インベルターゼ:スミチーム(登録商標)INV(新日本化学工業社製のインベルターゼ)
・ヘミセルラーゼ(β-マンナナーゼ):スミチーム(登録商標)ACH(新日本化学工業社製のヘミセルラーゼ) Example 1
In 1300 g of pure water, 1.8 g of vitamin C was dissolved and heated to 75 ° C. Thereto, 100 g of Shizuoka second tea (Yabukita seed, steaming method, cut product of 5 mm) was added, heated with stirring, and heat-sterilized at 95 ° C. for 15 minutes. The mixture was cooled to 45 ° C. (the pH at this point is 5.3), the enzymes shown in Table 1 were added, and a reaction of stirring at 45 ° C. for 4 hours was performed. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C. The extract was no. 2 Filter paper (held
(Description of the enzyme)
-Glycoside degrading enzyme: commercially available β-glucosidase (1200 U / g)
-Tannase: Sumi Team (registered trademark) TAN (Shin Nippon Chemical Industry Co., Ltd. tannase: 5000 U / g)
Pectinase: Sumi Team (registered trademark) SPG (Pectinase manufactured by Shin Nippon Chemical Industries Co., Ltd.) Invertase: Sumi Team (registered trademark) INV (Invertase manufactured by Shin Nippon Chemical Industrial Co., Ltd.)
・ Hemicellulase (β-mannanase): Sumizyme (registered trademark) ACH (Hemicellulase manufactured by Shin Nippon Chemical Co., Ltd.)
表1に示した通り、タンナーゼとペクチナーゼを併用した比較品1、インベルターゼを使用した比較品2および、ヘミセルラーゼ(マンナナーゼ)を使用した比較品3と比べ、配糖体分解酵素を作用させた本発明品1~7では、いずれも430nmの吸光度(着色の指標)が低く、また、680nmの吸光度(濁りの指標)もほぼ同等かそれ以下であった。配糖体分解酵素は単独で使用する(本発明品1)よりもタンナーゼと併用した方がより脱色され(本発明品2)、さらにペクチナーゼを加えることで大幅(約1/4~1/5)に脱色される結果が得られた(本発明品6)。タンナーゼとペクチナーゼを併用した場合の配糖体分解酵素の添加量を検討した結果、配糖体分解酵素添加量を増やすにつれて色調は薄くなり、濁りもよりクリアになることが判明した(本発明品4~7)。
As shown in Table 1, compared with Comparative Product 1 in which tannase and pectinase were used in combination, Comparative Product 2 in which invertase was used, and Comparative Product 3 in which hemicellulase (mannanase) was used, this glycolipid degrading enzyme was allowed to act In each of Inventions 1 to 7, the absorbance at 430 nm (index of coloration) was low, and the absorbance at 680 nm (index of turbidity) was almost the same or less. Glycoside degrading enzymes are more decolorized when used in combination with tannase than when used alone (Invention product 1) (Invention product 2), and addition of pectinase significantly (about 1/4 to 1/5) The result of being decolorized to (6) was obtained. As a result of examining the addition amount of the glucoside decomposing enzyme in the case of using tannase and pectinase in combination, it was found that the color tone becomes lighter and the turbidity becomes clearer as the addition amount of the glucoside decomposing enzyme increases (this invention product 4-7).
(実施例2)
前記の本発明品6と同一の条件で、工程途中の液を調製した。すなわち、脱水型遠心分離機により分離した液(1)、その液を95℃、1分間加熱した後の液(2)、次いで、その液を冷却後さらにNo.2濾紙濾過した液(3)、次いでその液を、20℃に冷却し、重力加速度3000×gにて10分間遠心分離した液(4)。これらのそれぞれを20℃にて一夜静置した。 (Example 2)
The solution in the middle of the process was prepared under the same conditions as those of the product 6 of the present invention. That is, the liquid (1) separated by the dewatering type centrifuge, the liquid (2) after heating the liquid at 95 ° C. for 1 minute, and then the liquid was further cooled. 2 Filtered solution (3), and then the solution was cooled to 20 ° C. and centrifuged at 3000 × g for 10 minutes (4). Each of these was allowed to stand overnight at 20 ° C.
前記の本発明品6と同一の条件で、工程途中の液を調製した。すなわち、脱水型遠心分離機により分離した液(1)、その液を95℃、1分間加熱した後の液(2)、次いで、その液を冷却後さらにNo.2濾紙濾過した液(3)、次いでその液を、20℃に冷却し、重力加速度3000×gにて10分間遠心分離した液(4)。これらのそれぞれを20℃にて一夜静置した。 (Example 2)
The solution in the middle of the process was prepared under the same conditions as those of the product 6 of the present invention. That is, the liquid (1) separated by the dewatering type centrifuge, the liquid (2) after heating the liquid at 95 ° C. for 1 minute, and then the liquid was further cooled. 2 Filtered solution (3), and then the solution was cooled to 20 ° C. and centrifuged at 3000 × g for 10 minutes (4). Each of these was allowed to stand overnight at 20 ° C.
その結果、(1)の液は全体が均一で、濃厚で濁りのある黄緑色を呈しているが、(2)の液は多量の濃緑色の沈殿を生じ、上清は色が薄くほぼ清澄な液となっていた。また、(3)の液は、僅かに沈殿を生じていたが、上清は色が薄くほぼ清澄な液となっており、(4)の液は色が薄くほぼ清澄な液となっており、沈殿は全くなかった。これらの外観の写真を図2に示す。左から(1)、(2)、(3)、(4)である。
As a result, the liquid of (1) is uniform throughout and shows thick and cloudy yellow-green color, but the liquid of (2) produces a large amount of dark green precipitate, and the supernatant is pale and almost clear. Had become a liquid. In addition, the liquid of (3) was slightly precipitated, but the supernatant was light and almost clear, and the liquid of (4) was light and almost clear. There was no precipitation at all. Photographs of these appearances are shown in FIG. From left to right are (1), (2), (3) and (4).
以上の結果、酵素処理後に加熱処理を行うことで着色成分を含む沈殿物が生じ、この沈殿物を取り除くことで脱色されたことが判明した。また、本沈殿物はNo.2 ろ紙(保留粒子径5μm)では完全には除去できず、重力加速度3000×gにて遠沈処理することにより効率的に除去可能であることがわかった。
As a result of the above, it was found that the heat treatment after the enzyme treatment resulted in the formation of a precipitate containing a coloring component, and the removal of the precipitate resulted in decolorization. Moreover, this deposit is No. 2 It was found that the filter paper (retained particle diameter 5 μm) could not be completely removed, but could be efficiently removed by centrifuging at a gravity acceleration of 3000 × g.
(実施例3)
純水2600gにビタミンC 3.6gを溶解し、75℃に加温した。そこに静岡産1番茶(実施例1とは異なる茶葉:やぶきた種、蒸青法、5mmにカット品)200gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表2に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。ついで、抽出液をロータリーエバポレーターにより、Bx17°まで減圧濃縮し、20℃に冷却し、重力加速度3000×gにて10分間遠心分離して沈殿物を除去した後、上清液をBx15°に調整し、95℃、1分間加熱殺菌後20℃まで冷却して緑茶抽出液を得た。得られた緑茶抽出液は、カフェイン含有量(HPLC法)、カテキン類含有量(HPLC法)およびタンニン含有量(Folin-denis法)を測定し、また、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表2に示す。また、これらのBx0.3°希釈液の外観の写真を図3に示す(左が比較品4、右が本発明品8)。 (Example 3)
3.6 g of vitamin C was dissolved in 2600 g of pure water and heated to 75 ° C. Thereto, 200 g of Shizuoka No. 1 tea (a tea leaf different from that of Example 1: Yabuki seed, steamed blue, 5 mm cut product) was added, heated with stirring and heat sterilized at 95 ° C. for 15 minutes. The mixture was cooled to 45 ° C. (the pH at this point is 5.3), the enzymes shown in Table 2 were added, and a stirring reaction was performed at 45 ° C. for 4 hours. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C. Next, the extract was concentrated under reduced pressure to Bx17 ° using a rotary evaporator, cooled to 20 ° C, centrifuged at 3000 × g for 10 minutes to remove precipitates, and then the supernatant was adjusted to Bx15 °. The mixture was heated and sterilized at 95 ° C. for 1 minute and cooled to 20 ° C. to obtain a green tea extract. The obtained green tea extract was measured for caffeine content (HPLC method), catechins content (HPLC method) and tannin content (Folin-denis method), and Bx 0.3 ° (refractive index, 20) C.), and the absorbance at 430 nm (indicator of color) and the absorbance at 680 nm (indicator of turbidity) were measured. The results are shown in Table 2. Moreover, the photograph of the external appearance of these Bx0.3 degree dilution liquid is shown in FIG. 3 (the left is thecomparative product 4 and the right is this invention product 8).
純水2600gにビタミンC 3.6gを溶解し、75℃に加温した。そこに静岡産1番茶(実施例1とは異なる茶葉:やぶきた種、蒸青法、5mmにカット品)200gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表2に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。ついで、抽出液をロータリーエバポレーターにより、Bx17°まで減圧濃縮し、20℃に冷却し、重力加速度3000×gにて10分間遠心分離して沈殿物を除去した後、上清液をBx15°に調整し、95℃、1分間加熱殺菌後20℃まで冷却して緑茶抽出液を得た。得られた緑茶抽出液は、カフェイン含有量(HPLC法)、カテキン類含有量(HPLC法)およびタンニン含有量(Folin-denis法)を測定し、また、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表2に示す。また、これらのBx0.3°希釈液の外観の写真を図3に示す(左が比較品4、右が本発明品8)。 (Example 3)
3.6 g of vitamin C was dissolved in 2600 g of pure water and heated to 75 ° C. Thereto, 200 g of Shizuoka No. 1 tea (a tea leaf different from that of Example 1: Yabuki seed, steamed blue, 5 mm cut product) was added, heated with stirring and heat sterilized at 95 ° C. for 15 minutes. The mixture was cooled to 45 ° C. (the pH at this point is 5.3), the enzymes shown in Table 2 were added, and a stirring reaction was performed at 45 ° C. for 4 hours. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C. Next, the extract was concentrated under reduced pressure to Bx17 ° using a rotary evaporator, cooled to 20 ° C, centrifuged at 3000 × g for 10 minutes to remove precipitates, and then the supernatant was adjusted to Bx15 °. The mixture was heated and sterilized at 95 ° C. for 1 minute and cooled to 20 ° C. to obtain a green tea extract. The obtained green tea extract was measured for caffeine content (HPLC method), catechins content (HPLC method) and tannin content (Folin-denis method), and Bx 0.3 ° (refractive index, 20) C.), and the absorbance at 430 nm (indicator of color) and the absorbance at 680 nm (indicator of turbidity) were measured. The results are shown in Table 2. Moreover, the photograph of the external appearance of these Bx0.3 degree dilution liquid is shown in FIG. 3 (the left is the
本発明品8と比較品4の成分値を比較すると、本発明品8は比較品4と比べカフェイン、タンニンおよびカテキン類が少なくなっているが、わずかな程度であった。
When the component values of the inventive product 8 and the comparative product 4 are compared, the inventive product 8 is lower in caffeine, tannin and catechins as compared with the comparative product 4, but is at a slight level.
<官能評価>
本発明品8と比較品4それぞれのBx0.3°希釈品を、5名のパネラーにより評価した。その平均的な評価結果としては、本発明品8は比較品4よりも、呈味部分でややボディ感が弱く感じられたものの、明らかに緑茶の風味が確認できた。また、香りの面では緑茶の華やかな香気が感じられ。酵素処理茶特有の芋臭がマスキングされていた。 <Sensory evaluation>
The Bx 0.3 ° diluted products of the inventive product 8 and thecomparative product 4 were evaluated by five panelists. As the average evaluation result, although the inventive product 8 felt a slighter body feeling in the taste portion than the comparative product 4, the green tea flavor was clearly confirmed. Also, in terms of aroma, you can feel the colorful aroma of green tea. The peculiar odor of enzyme-treated tea was masked.
本発明品8と比較品4それぞれのBx0.3°希釈品を、5名のパネラーにより評価した。その平均的な評価結果としては、本発明品8は比較品4よりも、呈味部分でややボディ感が弱く感じられたものの、明らかに緑茶の風味が確認できた。また、香りの面では緑茶の華やかな香気が感じられ。酵素処理茶特有の芋臭がマスキングされていた。 <Sensory evaluation>
The Bx 0.3 ° diluted products of the inventive product 8 and the
(実施例4)
比較品4にさらに配糖体分解酵素を作用させ、本発明品と同様の抽出液が得られるかどうか確認実験を行った。 (Example 4)
A glycoside degrading enzyme was further allowed to act onComparative Product 4, and a confirmation experiment was conducted to see if an extract similar to that of the present invention could be obtained.
比較品4にさらに配糖体分解酵素を作用させ、本発明品と同様の抽出液が得られるかどうか確認実験を行った。 (Example 4)
A glycoside degrading enzyme was further allowed to act on
すなわち、比較品4に市販のβ-グルコシダーゼ(1200U/g)(茶葉1gに対し12U)を添加し、45℃にて4時間撹拌反応を行った後、95℃、1分間加熱し、30℃まで冷却した。ついで、20℃に冷却し、No2.ろ紙濾過後、重力加速度3000×gにて10分間遠心分離し、95℃、1分間加熱殺菌後20℃まで冷却して緑茶抽出液を得た(比較品5)。得られた緑茶抽出液は、カフェイン含有量(HPLC法)、カテキン類含有量(HPLC法)およびタンニン含有量(Folin-denis法)を測定し、また、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を比較品4と本発明品8を合わせて表3に示す。
That is, after adding commercially available β-glucosidase (1200 U / g) (12 U to 1 g of tea leaves) to Comparative product 4 and performing stirring reaction at 45 ° C. for 4 hours, heat at 95 ° C. for 1 minute; It cooled down. Then, it was cooled to 20 ° C., No. 2 After filter paper filtration, it was centrifuged at a gravity acceleration of 3000 × g for 10 minutes, heat-sterilized at 95 ° C. for 1 minute, and cooled to 20 ° C. to obtain a green tea extract (comparative product 5). The obtained green tea extract was measured for caffeine content (HPLC method), catechins content (HPLC method) and tannin content (Folin-denis method), and Bx 0.3 ° (refractive index, 20) C.), and the absorbance at 430 nm (indicator of color) and the absorbance at 680 nm (indicator of turbidity) were measured. The results are shown in Table 3 in which the comparative product 4 and the inventive product 8 are combined.
比較品5は比較品4(配糖体分解酵素処理前)と比較すると、カフェイン、タンニン、カテキン類いずれも減少していた。一方で本発明品8の色調(OD430nm)は本発明品8よりも着色がみられるものの、比較品4よりは、色も薄く濁りも少なくなる傾向にあった。
As compared with Comparative Product 4 (before glycosidolytic enzyme treatment), Comparative Product 5 had decreased caffeine, tannin and catechins. On the other hand, although the color tone (OD 430 nm) of the product 8 of the present invention was observed to be more colored than the product 8 of the present invention, the color and the turbidity tended to be smaller than the comparative product 4 because the color was thin.
また、比較品5の調製工程において、酵素反応し加熱処理を行った抽出液を20℃にて一夜放置した段階で、実施例2の(2)と同様の緑色のフロック状沈殿物が生じた。比較品5調製工程の途中段階の液の外観の写真を図4に示す(左から、比較品4、酵素失活後、濾過後、遠心分離後)。
Further, in the preparation step of Comparative product 5, the green flock-like precipitate similar to (2) in Example 2 was produced at the stage of leaving the extract solution subjected to the enzyme reaction and heat treatment overnight at 20 ° C. . The photograph of the external appearance of the liquid in the middle of the preparation process of the comparative product 5 is shown in FIG. 4 (from the left, the comparative product 4, after enzyme inactivation, after filtration, after centrifugation).
(実施例5)
実施例4で生じた沈殿物を回収し、遠沈処理/水洗を3回繰り返し、濃緑色の沈殿物を回収した。 (Example 5)
The precipitate formed in Example 4 was collected, and centrifugation / washing with water was repeated three times to collect a deep green precipitate.
実施例4で生じた沈殿物を回収し、遠沈処理/水洗を3回繰り返し、濃緑色の沈殿物を回収した。 (Example 5)
The precipitate formed in Example 4 was collected, and centrifugation / washing with water was repeated three times to collect a deep green precipitate.
この沈殿物は水には不溶であったが、メタノールには清澄に溶解し、濃い緑色を呈した。この結果から、詳細な機序は不明だが、緑茶抽出液に配糖体分解酵素を作用させることで水溶性であった色素成分が水に不溶性の沈殿物として析出し、これを分離することで脱色されると推定された。
The precipitate was insoluble in water, but was clearly dissolved in methanol and turned deep green. Although the detailed mechanism is unknown from this result, the pigment component that was water soluble by causing the green tea extract to react with the glucoside degrading enzyme precipitates as a water insoluble precipitate, and this is separated. It was estimated to be bleached.
遠心分離の上清液、沈殿物を水洗した時の洗浄液、および沈殿物をメタノールに溶解した液の外観の写真を図5に示す(左から遠心分離の上清液、沈殿物を水洗した時の洗浄液、および沈殿物をメタノールに溶解した液)。
Figure 5 shows the appearance of the supernatant of the centrifugation, the washing liquid when the precipitate is washed with water, and the solution of the precipitate in methanol (from above, when the supernatant of the centrifugation and the precipitate are washed with water) And the solution of the precipitate in methanol).
(実施例6)
プロテアーゼを併用した場合について検討を行った。 (Example 6)
The case where protease was used in combination was examined.
プロテアーゼを併用した場合について検討を行った。 (Example 6)
The case where protease was used in combination was examined.
純水2600gにビタミンC 3.6gを溶解し、75℃に加温した。そこに静岡産2番茶(実施例1と同じ茶葉:やぶきた種、蒸青法、5mmにカット品)200gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは5.3)、表4に示す酵素を添加し、45℃にて4時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離した後、抽出液を95℃、1分間加熱し、30℃まで冷却した。ついで、抽出液をロータリーエバポレーターを用いて、Bx17°まで減圧濃縮し、20℃に冷却し、重力加速度3000×gにて10分間遠心分離して沈殿物を除去した後、上清液をBx15°に調整し、95℃、1分間加熱殺菌後20℃まで冷却して緑茶抽出液を得た。得られた緑茶抽出液は、カフェイン(HPLC法)、カテキン類(HPLC法)タンニン(Folin-denis法)およびアミノ酸(HPLC法)を測定し、また、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。その結果を表4に示す。
(酵素の説明)
・プロテアーゼ:プロテアーゼM「アマノ」SD(天野エンザイム株式会社製のプロテアーゼ) 3.6 g of vitamin C was dissolved in 2600 g of pure water and heated to 75 ° C. Thereto, 200 g of a second tea from Shizuoka (tea leaves as in Example 1: Yabuki seed, steamed blue, 5 mm cut product) was added, heated with stirring and heat sterilized at 95 ° C. for 15 minutes. After cooling to 45 ° C. (pH at this point is 5.3), the enzymes shown in Table 4 were added, and a reaction of stirring at 45 ° C. for 4 hours was performed. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C. Next, the extract is concentrated under reduced pressure to Bx 17 ° using a rotary evaporator, cooled to 20 ° C., centrifuged at 3000 × g for 10 minutes to remove precipitates, and then the supernatant liquid isBx 15 ° After heat sterilization at 95 ° C. for 1 minute, the mixture was cooled to 20 ° C. to obtain a green tea extract. The obtained green tea extract measures caffeine (HPLC method), catechins (HPLC method) tannin (Folin-denis method) and amino acid (HPLC method), and Bx 0.3 ° (refractive index, 20 ° C.) And the absorbance at 430 nm (indicator of color) and the absorbance at 680 nm (indicator of turbidity) were measured. The results are shown in Table 4.
(Description of the enzyme)
-Protease: Protease M "Amano" SD (Protease manufactured by Amano Enzyme Inc.)
(酵素の説明)
・プロテアーゼ:プロテアーゼM「アマノ」SD(天野エンザイム株式会社製のプロテアーゼ) 3.6 g of vitamin C was dissolved in 2600 g of pure water and heated to 75 ° C. Thereto, 200 g of a second tea from Shizuoka (tea leaves as in Example 1: Yabuki seed, steamed blue, 5 mm cut product) was added, heated with stirring and heat sterilized at 95 ° C. for 15 minutes. After cooling to 45 ° C. (pH at this point is 5.3), the enzymes shown in Table 4 were added, and a reaction of stirring at 45 ° C. for 4 hours was performed. After the tea leaf residue and the extract were separated by a dewatering centrifuge, the extract was heated at 95 ° C. for 1 minute and cooled to 30 ° C. Next, the extract is concentrated under reduced pressure to Bx 17 ° using a rotary evaporator, cooled to 20 ° C., centrifuged at 3000 × g for 10 minutes to remove precipitates, and then the supernatant liquid is
(Description of the enzyme)
-Protease: Protease M "Amano" SD (Protease manufactured by Amano Enzyme Inc.)
表4に示した通り、本発明品9のアミノ酸は比較品6よりも多く、カフェイン、タンニンおよびカテキン類の含有量はほぼ同等の値であった。また、色調については、配糖体分解酵素を作用させた本発明品9は、比較品6と比べ脱色されることが確認できた。また、香味については、イオン交換水に0.2質量%添加した賦香品(Bx0.03°)を評価したころ、本発明品9は比較品6と比べてボディ感がやや弱いものの、旨味や渋味といった緑茶の風味が十分感じられ、良好な緑茶風味を有していた。
As shown in Table 4, the amino acid content of the product 9 of the present invention was larger than that of the comparative product 6, and the contents of caffeine, tannin and catechins were almost equivalent values. Further, with regard to color tone, it was confirmed that the product 9 of the present invention treated with a glycoside degrading enzyme was decolorized as compared with the comparative product 6. With regard to the flavor, when the scented product (Bx 0.03 °) added with 0.2% by mass to ion-exchanged water was evaluated, the inventive product 9 had a slightly weaker body feeling than the comparative product 6, but the umami The flavor of green tea such as astringency was sufficiently felt, and it had a good green tea flavor.
(実施例7)
実施例6において、本発明品9の調製工程において、重力加速度3000×gにて10分間遠心分離して得られた沈殿物を回収し、実施例5と同様に遠沈処理/水洗を3回繰り返し、濃緑色の沈殿物を回収した。得られた沈殿物をデジタルマイクロスコープにて撮影後、蛍光X線分析およびFT/IR分析に供した。 (Example 7)
In Example 6, the precipitate obtained by centrifuging at a gravity acceleration of 3000 × g for 10 minutes in the preparation step of the product of the present invention 9 is recovered, and the centrifugation / water washing is performed three times in the same manner as in Example 5. Repeatedly, a dark green precipitate was collected. The obtained precipitate was photographed with a digital microscope and subjected to fluorescent X-ray analysis and FT / IR analysis.
実施例6において、本発明品9の調製工程において、重力加速度3000×gにて10分間遠心分離して得られた沈殿物を回収し、実施例5と同様に遠沈処理/水洗を3回繰り返し、濃緑色の沈殿物を回収した。得られた沈殿物をデジタルマイクロスコープにて撮影後、蛍光X線分析およびFT/IR分析に供した。 (Example 7)
In Example 6, the precipitate obtained by centrifuging at a gravity acceleration of 3000 × g for 10 minutes in the preparation step of the product of the present invention 9 is recovered, and the centrifugation / water washing is performed three times in the same manner as in Example 5. Repeatedly, a dark green precipitate was collected. The obtained precipitate was photographed with a digital microscope and subjected to fluorescent X-ray analysis and FT / IR analysis.
沈殿物は遠心分離/水洗を3回繰り返すことで2層に分かれており、上層部は緑色で粘稠性を有する物体、下層部は淡緑色の微小な球状物体が確認された(図6)。蛍光X線分析より上層部、下層部はいずれも有機物が主成分と推定され、FT/IR分析より上層部はタンパク質を主体とするもの、下層部は天然フラボノールの一つであり、例えば、下記化学構造式で示されるケンペロールを主体とするものである可能性が示唆された。
The precipitate was divided into two layers by repeating centrifugation / washing 3 times, and the upper part was a green, viscous object, and the lower part was a light green, minute spherical object (FIG. 6). . In the upper layer and lower layer from the fluorescent X-ray analysis, the organic substance is assumed to be the main component, in the upper layer is mainly composed of protein and from the FT / IR analysis, the lower layer is one of natural flavonols. It is suggested that it may be mainly composed of kaempferol represented by the chemical structural formula.
ケンペロール自体は水にわずかしか溶けないが、茶葉中に配糖体として存在することが知られているため、水抽出しても容易に溶け出す。今回、沈殿物として検出されたケンペロールは配糖体分解酵素の働きで糖が脱離してアグリコン化したケンペロールが不溶化して生じたものと推測される。ケンペロールの結晶は黄色を呈し、緑茶の水色である帯緑黄色~鮮黄色に寄与していると考えられるが、本検討で検出された沈殿物は緑色を呈しており、ケンペロールとたんぱく質、クロロフィルなどが複合的に結合し、不溶化し沈殿したものと推測される。
Although kaempferol itself is only sparingly soluble in water, it is known to exist as a glycoside in tea leaves, so it easily dissolves even if it is extracted with water. Here, it is presumed that kaempferol detected as a precipitate is generated by insolubilization of kaempferol which is aglycone-eliminated due to the elimination of sugar by the function of a glycosidic degradation enzyme. The crystals of kaempferol are considered to be yellowish and contribute to greenish green to bright yellow, which is the water color of green tea, but the precipitate detected in this study is greenish, and kaempferol, protein, chlorophyll, etc. It is inferred that they are complexly bound, insolubilized and precipitated.
(実施例8)茶葉の質量当たり配糖体分解酵素の活性を変動させたときの茶抽出液の脱色への影響の検討
酵素の添加量を下記表5に記載のとおりに調整し、45℃にて4時間撹拌反応を行ったこと以外、実施例1に記載の方法に従い緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。結果を表5に示す。 (Example 8) Examination of influence on decolorization of tea extract when varying activity of glycoside degrading enzyme per mass of tea leaf The amount of enzyme added is adjusted as described in Table 5 below, 45 ° C. The green tea extract was obtained according to the method described in Example 1 except that the reaction was carried out for 4 hours. The obtained green tea extract was diluted to Bx 0.3 ° (refractive index, measured at 20 ° C.), and the absorbance at 430 nm (index of color) and the absorbance at 680 nm (index of turbidity) were measured. The results are shown in Table 5.
酵素の添加量を下記表5に記載のとおりに調整し、45℃にて4時間撹拌反応を行ったこと以外、実施例1に記載の方法に従い緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。結果を表5に示す。 (Example 8) Examination of influence on decolorization of tea extract when varying activity of glycoside degrading enzyme per mass of tea leaf The amount of enzyme added is adjusted as described in Table 5 below, 45 ° C. The green tea extract was obtained according to the method described in Example 1 except that the reaction was carried out for 4 hours. The obtained green tea extract was diluted to Bx 0.3 ° (refractive index, measured at 20 ° C.), and the absorbance at 430 nm (index of color) and the absorbance at 680 nm (index of turbidity) were measured. The results are shown in Table 5.
OD430nmは着色の指標を、OD680nmは濁りの指標を表す。OD430nmが0.05以下ではほぼ着色なしであり、0.3以下ではごくわずかな着色、0.5以下では薄い着色であるといえる。また、OD680nmが0.1以下ではほぼ濁りなし(清澄)、0.15程度はわずかな濁りがある程度である。
OD 430 nm represents an index of coloration, and OD 680 nm represents an index of turbidity. It can be said that when the OD 430 nm is 0.05 or less, there is almost no coloring, and if it is 0.3 or less, the coloring is very slight, and if it is 0.5 or less, it is light coloring. In addition, when the OD 680 nm is 0.1 or less, there is almost no turbidity (clear), and a slight turbidity of around 0.15 is a certain degree.
表5に示した通り、茶葉に対する配糖体酵素の使用量の増加につれて、得られるエキスの色が薄くなっていくことが判明した。また、茶葉1gに対し10U(No.3)以上使用した場合には、着色も濁りもごくわずかといえる。
As shown in Table 5, it was found that as the amount of glucoside enzyme used for tea leaves increases, the color of the obtained extract becomes lighter. Moreover, when using 10 U (No. 3) or more with respect to 1 g of tea leaves, it can be said that coloring and turbidity are also very few.
(実施例9)茶葉に対する配糖体分解酵素の反応時間の茶抽出液の脱色への影響の検討
酵素反応時間を変える以外は、実施例1の本発明品4(配糖体分解酵素を茶葉1gに対し10U添加)および本発明品6(配糖体分解酵素を茶葉1gに対し20U添加)に記載の方法に従い緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。結果を表6に示す。 (Example 9) Examination of the influence on the decolorization of the tea extract of the reaction time of the reaction time of the glucoside decomposing enzyme with respect to tea leaves Except for changing the enzyme reaction time, theproduct 4 of the present invention 1 A green tea extract was obtained according to the method described in 10 U added per 1 g) and the product 6 of the present invention (20 U added with glycoside degrading enzyme per 1 g of tea leaves). The obtained green tea extract was diluted to Bx 0.3 ° (refractive index, measured at 20 ° C.), and the absorbance at 430 nm (index of color) and the absorbance at 680 nm (index of turbidity) were measured. The results are shown in Table 6.
酵素反応時間を変える以外は、実施例1の本発明品4(配糖体分解酵素を茶葉1gに対し10U添加)および本発明品6(配糖体分解酵素を茶葉1gに対し20U添加)に記載の方法に従い緑茶抽出液を得た。得られた緑茶抽出液は、Bx0.3°(屈折糖度、20℃にて測定)に希釈し、430nmの吸光度(着色の指標)および680nmの吸光度(濁りの指標)を測定した。結果を表6に示す。 (Example 9) Examination of the influence on the decolorization of the tea extract of the reaction time of the reaction time of the glucoside decomposing enzyme with respect to tea leaves Except for changing the enzyme reaction time, the
表6に示した通り、配糖体分解酵素を茶葉1gに対し10Uまたは20U使用した抽出液は、いずれも1時間の反応で色、濁りとも低下していることが確認できた。表5により酵素反応を行っていない茶抽出液はOD430nmが0.562、OD680nmが0.146であることを踏まえると、1時間での脱色、濁りの低下の程度から想定して、30分の酵素反応時間でも効果があることが示唆される。
As shown in Table 6, it was confirmed that the extracts using 10 U or 20 U of glycoside-degrading enzyme per 1 g of tea leaves were both reduced in color and turbidity in the reaction for 1 hour. Based on the fact that the tea extract not subjected to the enzyme reaction according to Table 5 has an OD 430 nm of 0.562 and an OD 680 nm of 0.146, it is estimated from the degree of decolorization in 1 hour and turbidity reduction, 30 minutes It is suggested that the enzyme reaction time is also effective.
また、酵素反応時間が長くなるほど、色、濁りの値の低下は進み、着色については糖体分解酵素を茶葉1gに対し10U使用した系では4時間の反応で、20U使用した系では2時間の反応でOD430nmが0.3以下となった。また濁りについては、10U使用した系では3時間の反応で、20U使用した系では2時間の反応でOD680nmが0.1以下となった。いずれの系についてもさらなる反応時間の延長に伴い、さらに色(OD430nm)も濁り(OD680nm)も低下した。
In addition, the longer the enzyme reaction time, the lower the color and turbidity values, and for coloring, a system using 10 U of glycolytic enzyme for 1 g of tea leaves gives a reaction for 4 hours, and a system using 20 U for 2 hours The reaction resulted in an OD 430 nm of 0.3 or less. With regard to turbidity, in the system using 10 U, the reaction was 3 hours, and in the system using 20 U, the OD 680 nm became 0.1 or less in the reaction for 2 hours. The color (OD 430 nm) and the turbidity (OD 680 nm) both decreased with further extension of the reaction time for any of the systems.
(実施例10) β-グルコシダーゼとPVPP処理
純水660gにビタミンC(0.9g)を溶解し、75℃に加温した。そこに静岡産2番茶(やぶきた種、蒸青法、5mmにカット品)50gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは4.9)、表7(本発明品10)に示す酵素を添加し、45℃にて8時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離し、さらに軟水100gを遠心分離機内に投入して茶葉残渣に付着した抽出液を押出して抽出液を得、抽出液を95℃、30秒間加熱して殺菌および酵素失活し、30℃まで冷却した。次いで抽出液を遠心分離(1200×g、8分間)して沈殿物を除いた後、抽出液に対し、可溶性固形分(20℃におけるBxを用いて計算)の40%質量のPVPPを添加し、30℃にて1時間撹拌した。次いでNo.2濾紙(保留粒子径5μm)濾過した後、20℃に冷却し、軟水にてBx(20℃)3.0に調整し、95℃、30秒間加熱殺菌し、30℃まで冷却、200メッシュサラン濾過しながらペットボトルに充填し、緑茶エキスを得た(本発明品10)。 Example 10 β-Glucosidase and PVPP Treatment Vitamin C (0.9 g) was dissolved in 660 g of pure water and heated to 75 ° C. Thereto, 50 g of Shizuoka second green tea (Yabukita seed, steamed blue, 5 mm cut product) was charged, heated with stirring, and heat sterilized at 95 ° C. for 15 minutes. After cooling to 45 ° C. (the pH at this point is 4.9), the enzymes shown in Table 7 (Inventive product 10) were added, and the reaction of stirring at 45 ° C. for 8 hours was performed. Separate the tea leaf residue and the extract with a dewatering type centrifuge, and further add 100 g of soft water into the centrifuge to extrude the extract adhering to the tea leaf residue to obtain an extract, the extract at 95 ° C for 30 seconds Heated to sterilization and enzyme inactivation and cooled to 30 ° C. The extract is then centrifuged (1200 × g, 8 minutes) to remove precipitates, and then 40% by weight of soluble solid content (calculated using Bx at 20 ° C.) of PVPP is added to the extract. The mixture was stirred at 30 ° C. for 1 hour. Next, No. 2 Filter paper (holdingparticle diameter 5 μm) After filtration, cool to 20 ° C, adjust to Bx (20 ° C) 3.0 with soft water, heat sterilize at 95 ° C for 30 seconds, cool to 30 ° C, 200 mesh saran The resultant was filled in a plastic bottle while being filtered to obtain a green tea extract (Inventive product 10).
純水660gにビタミンC(0.9g)を溶解し、75℃に加温した。そこに静岡産2番茶(やぶきた種、蒸青法、5mmにカット品)50gを投入し、撹拌しながら加熱して95℃にて15分間加熱殺菌した。45℃まで冷却し(この時点のpHは4.9)、表7(本発明品10)に示す酵素を添加し、45℃にて8時間撹拌反応を行った。脱水型遠心分離機により、茶葉残渣と抽出液を分離し、さらに軟水100gを遠心分離機内に投入して茶葉残渣に付着した抽出液を押出して抽出液を得、抽出液を95℃、30秒間加熱して殺菌および酵素失活し、30℃まで冷却した。次いで抽出液を遠心分離(1200×g、8分間)して沈殿物を除いた後、抽出液に対し、可溶性固形分(20℃におけるBxを用いて計算)の40%質量のPVPPを添加し、30℃にて1時間撹拌した。次いでNo.2濾紙(保留粒子径5μm)濾過した後、20℃に冷却し、軟水にてBx(20℃)3.0に調整し、95℃、30秒間加熱殺菌し、30℃まで冷却、200メッシュサラン濾過しながらペットボトルに充填し、緑茶エキスを得た(本発明品10)。 Example 10 β-Glucosidase and PVPP Treatment Vitamin C (0.9 g) was dissolved in 660 g of pure water and heated to 75 ° C. Thereto, 50 g of Shizuoka second green tea (Yabukita seed, steamed blue, 5 mm cut product) was charged, heated with stirring, and heat sterilized at 95 ° C. for 15 minutes. After cooling to 45 ° C. (the pH at this point is 4.9), the enzymes shown in Table 7 (Inventive product 10) were added, and the reaction of stirring at 45 ° C. for 8 hours was performed. Separate the tea leaf residue and the extract with a dewatering type centrifuge, and further add 100 g of soft water into the centrifuge to extrude the extract adhering to the tea leaf residue to obtain an extract, the extract at 95 ° C for 30 seconds Heated to sterilization and enzyme inactivation and cooled to 30 ° C. The extract is then centrifuged (1200 × g, 8 minutes) to remove precipitates, and then 40% by weight of soluble solid content (calculated using Bx at 20 ° C.) of PVPP is added to the extract. The mixture was stirred at 30 ° C. for 1 hour. Next, No. 2 Filter paper (holding
(実施例11)
実施例10において、PVPP添加量を、抽出液に対し、可溶性固形分(20℃におけるBxを用いて計算)の80%質量とする以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(本発明品11)。 (Example 11)
In Example 10, the procedure for Example 10 is repeated except that the amount of added PVPP is 80% by mass of the soluble solid (calculated using Bx at 20 ° C.) to the extract, and the green tea extract is Obtained (inventive product 11).
実施例10において、PVPP添加量を、抽出液に対し、可溶性固形分(20℃におけるBxを用いて計算)の80%質量とする以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(本発明品11)。 (Example 11)
In Example 10, the procedure for Example 10 is repeated except that the amount of added PVPP is 80% by mass of the soluble solid (calculated using Bx at 20 ° C.) to the extract, and the green tea extract is Obtained (inventive product 11).
(実施例12) β-グルコシダーゼ処理
実施例10において、PVPP添加を行わない以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(本発明品12)。
(比較例7) β-グルコシダーゼなしかつ、PVPP処理
実施例10において、酵素としてβ-グルコシダーゼを使用しない(表7の本発明品12の酵素を使用)する以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(比較品7)。
(比較例8) β-グルコシダーゼ処理もPVPP処理のいずれもなし
比較例7において、PVPP添加を行わない以外は比較例7と全く同様の操作を行い、緑茶エキスを得た(比較品8)。 (Example 12) β-glucosidase treatment In the same manner as in Example 10 except that PVPP was not added in Example 10, a green tea extract was obtained (Inventive product 12).
Comparative Example 7 No β-Glucosidase and PVPP Treatment In Example 10, the procedure was completely the same as Example 10 except that β-glucosidase was not used as the enzyme (the enzyme of the product of the present invention 12 in Table 7 was used). To obtain a green tea extract (comparative product 7).
Comparative Example 8 Neither β-Glucosidase Treatment nor PVPP Treatment The procedure of Comparative Example 7 was performed in the same manner as in Comparative Example 7 except that PVPP was not added in Comparative Example 7 to obtain a green tea extract (comparative product 8).
実施例10において、PVPP添加を行わない以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(本発明品12)。
(比較例7) β-グルコシダーゼなしかつ、PVPP処理
実施例10において、酵素としてβ-グルコシダーゼを使用しない(表7の本発明品12の酵素を使用)する以外は実施例10と全く同様の操作を行い、緑茶エキスを得た(比較品7)。
(比較例8) β-グルコシダーゼ処理もPVPP処理のいずれもなし
比較例7において、PVPP添加を行わない以外は比較例7と全く同様の操作を行い、緑茶エキスを得た(比較品8)。 (Example 12) β-glucosidase treatment In the same manner as in Example 10 except that PVPP was not added in Example 10, a green tea extract was obtained (Inventive product 12).
Comparative Example 7 No β-Glucosidase and PVPP Treatment In Example 10, the procedure was completely the same as Example 10 except that β-glucosidase was not used as the enzyme (the enzyme of the product of the present invention 12 in Table 7 was used). To obtain a green tea extract (comparative product 7).
Comparative Example 8 Neither β-Glucosidase Treatment nor PVPP Treatment The procedure of Comparative Example 7 was performed in the same manner as in Comparative Example 7 except that PVPP was not added in Comparative Example 7 to obtain a green tea extract (comparative product 8).
(実施例13)
本発明品10、本発明品11、本発明品12、比較品7および比較品8の、Bx、pH、アミノ酸(mg%)、タンニン(mg%)、カフェイン(mg%)を測定した。また純水にてBx0.3°に希釈し、OD430nm、OD680nm、Lab、ΔE(純水との比較)を測定した。さらにまた、Bx0.3°希釈品は5名のよく訓練されたパネラーにより緑茶らしさを官能評価した。これらの分析値および官能評価の平均的な結果を表7に示す。 (Example 13)
The Bx, pH, amino acid (mg%), tannin (mg%), and caffeine (mg%) of theinventive product 10, the inventive product 12, the inventive product 12, and the comparative product 8 were measured. Moreover, it diluted to Bx0.3 degree with the pure water, and measured OD430nm, OD680nm, Lab, (DELTA) E (comparison with a pure water). Furthermore, the Bx 0.3 ° diluted product was sensory-evaluated for green teaness by five well-trained panelists. The average results of these analytical values and sensory evaluations are shown in Table 7.
本発明品10、本発明品11、本発明品12、比較品7および比較品8の、Bx、pH、アミノ酸(mg%)、タンニン(mg%)、カフェイン(mg%)を測定した。また純水にてBx0.3°に希釈し、OD430nm、OD680nm、Lab、ΔE(純水との比較)を測定した。さらにまた、Bx0.3°希釈品は5名のよく訓練されたパネラーにより緑茶らしさを官能評価した。これらの分析値および官能評価の平均的な結果を表7に示す。 (Example 13)
The Bx, pH, amino acid (mg%), tannin (mg%), and caffeine (mg%) of the
(結果、考察)
・β-グルコシダーゼ処理により茶飲料の着色度合は低下する(比較品8と本発明品12、ならびに、比較品7と本発明品10の対比)。
・PVPP処理により茶飲料の着色度合は低下する、特に加熱殺菌後の着色が少ない傾向がある。また、PVPP処理により、苦渋味が弱くなる(比較品8と比較品7、ならびに、本発明品12と本発明品10の対比)。
・β-グルコシダーゼ処理に加え、PVPP処理(タンニン除去)を行った本発明品10および11は、同一の固形分濃度(Bx0.3°)に希釈した場合、茶の風味を維持しながらも、色が最も薄く、より脱色されたエキスが得られることが認められた。
・β-グルコシダーゼ処理に加え、PVPP処理(タンニン除去)を行うことにより茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下、かつ、680nmの吸光度0.05以下、であり、さらに、可溶性固形分(屈折糖度、温度20℃)を15(上記発明品の5倍濃度)とした場合の、アミノ酸が1.0質量%以上かつカテキンが1.0質量%未満である緑茶抽出液を得ることができた(本発明品10および11)。 (Result, consideration)
The degree of coloration of the tea beverage is reduced by the β-glucosidase treatment (comparative product 8 and the inventive product 12 and comparison between the comparative product 7 and the inventive product 10).
The degree of coloration of tea beverages is reduced by the PVPP treatment, in particular, the coloration tends to be small after heat sterilization. In addition, the PVPP treatment weakens bitterness (Comparison 8 and Comparison 7 and Comparison between Invention 12 and Invention 10).
Inventive products 10 and 11 treated with PVPP (removed tannin) in addition to β-glucosidase treatment, when diluted to the same solid concentration (B × 0.3 °), while maintaining the flavor of tea, It was observed that the lightest, more bleached extract was obtained.
-The absorbance at 430 nm is 0.05 or less when the soluble solid content (refractive index sugar content,temperature 20 ° C) of the tea extract is 0.3 by performing PVPP treatment (tannin removal) in addition to β-glucosidase treatment, And, the absorbance at 680 nm is 0.05 or less, and the amino acid content is 1.0 mass% or more when the soluble solid content (refractive sugar content, temperature 20 ° C.) is 15 (five times the concentration of the above-mentioned invention product). And the green tea extract which is less than 1.0 mass% of catechin was able to be obtained (this invention products 10 and 11).
・β-グルコシダーゼ処理により茶飲料の着色度合は低下する(比較品8と本発明品12、ならびに、比較品7と本発明品10の対比)。
・PVPP処理により茶飲料の着色度合は低下する、特に加熱殺菌後の着色が少ない傾向がある。また、PVPP処理により、苦渋味が弱くなる(比較品8と比較品7、ならびに、本発明品12と本発明品10の対比)。
・β-グルコシダーゼ処理に加え、PVPP処理(タンニン除去)を行った本発明品10および11は、同一の固形分濃度(Bx0.3°)に希釈した場合、茶の風味を維持しながらも、色が最も薄く、より脱色されたエキスが得られることが認められた。
・β-グルコシダーゼ処理に加え、PVPP処理(タンニン除去)を行うことにより茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下、かつ、680nmの吸光度0.05以下、であり、さらに、可溶性固形分(屈折糖度、温度20℃)を15(上記発明品の5倍濃度)とした場合の、アミノ酸が1.0質量%以上かつカテキンが1.0質量%未満である緑茶抽出液を得ることができた(本発明品10および11)。 (Result, consideration)
The degree of coloration of the tea beverage is reduced by the β-glucosidase treatment (comparative product 8 and the inventive product 12 and comparison between the comparative product 7 and the inventive product 10).
The degree of coloration of tea beverages is reduced by the PVPP treatment, in particular, the coloration tends to be small after heat sterilization. In addition, the PVPP treatment weakens bitterness (Comparison 8 and Comparison 7 and Comparison between Invention 12 and Invention 10).
-The absorbance at 430 nm is 0.05 or less when the soluble solid content (refractive index sugar content,
(実施例14) 本発明品および比較品を用いた容器詰飲料の色調
本発明品10、11、12、比較品7および比較品8をそれぞれBx0.005°となるように希釈し(それぞれの本発明品または比較品を各水に0.167%)、アスコルビン酸ナトリウム0.03%添加と無添加の溶液を調整し、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
それぞれの飲料の色調(OD430nm、OD680nmおよび純水とのΔE)を表8に示す。 (Example 14) Color tone of container-packed beverage using the product of the present invention and the comparative product Thepresent products 10, 11, 12 and the comparative product 7 and the comparative product 8 are each diluted to Bx 0.005 ° (each The product of the present invention or the comparative product is adjusted to 0.167% in each water, adjusted to 0.03% with and without sodium ascorbate, UHT sterilized at 135 ° C for 30 seconds, and cooled to 90 ° C. After filling the bottle, it was cooled to 30 ° C. or less to prepare a container-packed green tea beverage.
The color tone (OD 430 nm, OD 680 nm and ΔE with pure water) of each beverage is shown in Table 8.
本発明品10、11、12、比較品7および比較品8をそれぞれBx0.005°となるように希釈し(それぞれの本発明品または比較品を各水に0.167%)、アスコルビン酸ナトリウム0.03%添加と無添加の溶液を調整し、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
それぞれの飲料の色調(OD430nm、OD680nmおよび純水とのΔE)を表8に示す。 (Example 14) Color tone of container-packed beverage using the product of the present invention and the comparative product The
The color tone (OD 430 nm, OD 680 nm and ΔE with pure water) of each beverage is shown in Table 8.
(結果、考察)
・エキスをBx0.005°に希釈し、アスコルビン酸ナトリウム0.03%添加した場合では、本発明品10、11、12、比較品7および比較品8のいずれも無色透明またはそれに近い飲料が調製できる。
・エキスをBx0.005°に希釈し、アスコルビン酸ナトリウム無添加の場合では、いずれも濁りはなくほぼ透明であり、10および11はおおよそ完全に無色であるが、それ以外は着色が見られた。 (Result, consideration)
· When the extract is diluted to Bx 0.005 ° and 0.03% of sodium ascorbate is added, thepresent invention products 10, 11, 12 and comparative product 7 and comparative product 8 are all colorless clear or close to the beverage prepared it can.
The extract was diluted to Bx 0.005 °, and in the case of no sodium ascorbate addition, it was neither hazy nor nearly clear, and 10 and 11 were almost completely colorless but otherwise colored .
・エキスをBx0.005°に希釈し、アスコルビン酸ナトリウム0.03%添加した場合では、本発明品10、11、12、比較品7および比較品8のいずれも無色透明またはそれに近い飲料が調製できる。
・エキスをBx0.005°に希釈し、アスコルビン酸ナトリウム無添加の場合では、いずれも濁りはなくほぼ透明であり、10および11はおおよそ完全に無色であるが、それ以外は着色が見られた。 (Result, consideration)
· When the extract is diluted to Bx 0.005 ° and 0.03% of sodium ascorbate is added, the
The extract was diluted to Bx 0.005 °, and in the case of no sodium ascorbate addition, it was neither hazy nor nearly clear, and 10 and 11 were almost completely colorless but otherwise colored .
(実施例15) エキスの添加濃度と色調の関連性
本発明品10を表9の濃度となるように希釈し(アスコルビン酸ナトリウムは無添加)、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
それぞれの飲料の色調(OD430nmおよび純水とのΔE)を表9に示す。 (Example 15) Relationship between added concentration of extract and color tone Theproduct 10 of the present invention is diluted to a concentration shown in Table 9 (without sodium ascorbate), and after UHT sterilization at 135 ° C. for 30 seconds, 90 After cooling to ° C. and filling in a plastic bottle, it was cooled to 30 ° C. or less to prepare a containerized green tea beverage.
The color tone (OD 430 nm and ΔE with pure water) of each beverage is shown in Table 9.
本発明品10を表9の濃度となるように希釈し(アスコルビン酸ナトリウムは無添加)、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
それぞれの飲料の色調(OD430nmおよび純水とのΔE)を表9に示す。 (Example 15) Relationship between added concentration of extract and color tone The
The color tone (OD 430 nm and ΔE with pure water) of each beverage is shown in Table 9.
(結果、考察)
アスコルビン酸ナトリウム無添加で調製した容器詰飲料の場合、本発明品10の濃度がBx0.005°ではおおよそ完全に無色、Bx0.015ではわずかに着色といった程度、Bx0.025では着色する。
しかしながら、緑茶らしい風味を十分確保するためには、0.025程度は必要と思われた。
前記実施例13から容器詰飲料の調製に当たり、アスコルビン酸ナトリウム添加が着色防止の効果が認められるため、次の実験を行った。 (Result, consideration)
In the case of a container-packed beverage prepared without the addition of sodium ascorbate, the concentration of theproduct 10 according to the present invention is almost completely colorless at Bx 0.005 °, slightly colored at Bx 0.015, and colored at Bx 0.025.
However, about 0.025 was considered to be necessary in order to secure sufficient green tea-like flavor.
The following experiment was carried out since the addition of sodium ascorbate has an effect of preventing coloration in preparation of the packaged beverage from Example 13 above.
アスコルビン酸ナトリウム無添加で調製した容器詰飲料の場合、本発明品10の濃度がBx0.005°ではおおよそ完全に無色、Bx0.015ではわずかに着色といった程度、Bx0.025では着色する。
しかしながら、緑茶らしい風味を十分確保するためには、0.025程度は必要と思われた。
前記実施例13から容器詰飲料の調製に当たり、アスコルビン酸ナトリウム添加が着色防止の効果が認められるため、次の実験を行った。 (Result, consideration)
In the case of a container-packed beverage prepared without the addition of sodium ascorbate, the concentration of the
However, about 0.025 was considered to be necessary in order to secure sufficient green tea-like flavor.
The following experiment was carried out since the addition of sodium ascorbate has an effect of preventing coloration in preparation of the packaged beverage from Example 13 above.
(実施例16) アスコルビン酸ナトリウム添加濃度、保存条件と色調の関連性
本発明品10をBx0.025°となるように希釈し、その際、表10の濃度のアスコルビン酸ナトリウムを添加し、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
各容器詰飲料は、10℃および50℃にて10日間保存した。
保存後のそれぞれの飲料の色調(OD430nmおよび純水とのΔE)を表10に示す。 (Example 16) Relationship between sodium ascorbate addition concentration, storage conditions, and color tone Theproduct 10 of the present invention is diluted to Bx 0.025 °, and at this time, sodium ascorbate at the concentration in Table 10 is added, 135 After UHT sterilization at 30 ° C. for 30 seconds, it was cooled to 90 ° C., filled in a plastic bottle, and then cooled to 30 ° C. or less to prepare a containerized green tea beverage.
Each bottled beverage was stored at 10 ° C. and 50 ° C. for 10 days.
The color tone (OD 430 nm and ΔE with pure water) of each beverage after storage is shown in Table 10.
本発明品10をBx0.025°となるように希釈し、その際、表10の濃度のアスコルビン酸ナトリウムを添加し、135℃にて30秒間UHT殺菌した後、90℃まで冷却しペットボトルに充填後、30℃以下まで冷却し、容器詰緑茶飲料を調製した。
各容器詰飲料は、10℃および50℃にて10日間保存した。
保存後のそれぞれの飲料の色調(OD430nmおよび純水とのΔE)を表10に示す。 (Example 16) Relationship between sodium ascorbate addition concentration, storage conditions, and color tone The
Each bottled beverage was stored at 10 ° C. and 50 ° C. for 10 days.
The color tone (OD 430 nm and ΔE with pure water) of each beverage after storage is shown in Table 10.
(結果、考察)
・アスコルビン酸ナトリウム添加により殺菌後の着色が抑えられた。
・アスコルビン酸ナトリウム添加濃度0~0.03%の範囲で、添加量が増加するほど殺菌後の着色が抑えられることが認められた。
・殺菌直後および10℃、10日間保存のOD430nmおよびΔEから、アスコルビン酸ナトリウムは0.01%以上であれば、おおよそ完全に無色かつ透明であった。
・容器詰飲料を50℃、10日間(虐待条件)で保存した場合、アスコルビン酸ナトリウム添加濃度0.03%で「ほぼ着色」であったが0.01%では「ごくわずかに着色」程度であった。
・以上によれば、アスコルビン酸ナトリウムの添加濃度は0.01%以上が好ましいといえる。
(Result, consideration)
-Coloration after sterilization was suppressed by the addition of sodium ascorbate.
It was found that the coloring after sterilization was suppressed as the addition amount increased in the range of 0 to 0.03% of the concentration of sodium ascorbate addition.
Immediately after sterilization and at OD 430 nm and ΔE stored at 10 ° C. for 10 days, sodium ascorbate was almost completely colorless and transparent when it was 0.01% or more.
-When the packaged beverage was stored at 50 ° C for 10 days (abuse condition), it was "almost colored" at a concentration of 0.03% with sodium ascorbate addition concentration, but at "nearly slightly colored" at 0.01%. there were.
-According to the above, it can be said that 0.01% or more of the addition density | concentration of sodium ascorbate is preferable.
・アスコルビン酸ナトリウム添加により殺菌後の着色が抑えられた。
・アスコルビン酸ナトリウム添加濃度0~0.03%の範囲で、添加量が増加するほど殺菌後の着色が抑えられることが認められた。
・殺菌直後および10℃、10日間保存のOD430nmおよびΔEから、アスコルビン酸ナトリウムは0.01%以上であれば、おおよそ完全に無色かつ透明であった。
・容器詰飲料を50℃、10日間(虐待条件)で保存した場合、アスコルビン酸ナトリウム添加濃度0.03%で「ほぼ着色」であったが0.01%では「ごくわずかに着色」程度であった。
・以上によれば、アスコルビン酸ナトリウムの添加濃度は0.01%以上が好ましいといえる。
(Result, consideration)
-Coloration after sterilization was suppressed by the addition of sodium ascorbate.
It was found that the coloring after sterilization was suppressed as the addition amount increased in the range of 0 to 0.03% of the concentration of sodium ascorbate addition.
Immediately after sterilization and at OD 430 nm and ΔE stored at 10 ° C. for 10 days, sodium ascorbate was almost completely colorless and transparent when it was 0.01% or more.
-When the packaged beverage was stored at 50 ° C for 10 days (abuse condition), it was "almost colored" at a concentration of 0.03% with sodium ascorbate addition concentration, but at "nearly slightly colored" at 0.01%. there were.
-According to the above, it can be said that 0.01% or more of the addition density | concentration of sodium ascorbate is preferable.
Claims (18)
- 以下の工程(A)~(E)を含んでなる、脱色された茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程、
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程 A process for producing a decolorized tea extract comprising the following steps (A) to (E):
(A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And separating the glycoside enzyme-treated tea extract (D) a step of heat-treating the glycoside enzyme-treated tea extract obtained in step (C),
(E) A step of removing insoluble components from the heated glycoside enzyme-treated tea extract obtained in step (D) to obtain a decolorized tea extract - 工程(B)と同時または前若しくは後であって工程(C)の前に、さらに、タンナーゼおよび/またはペクチナーゼを作用させる工程を含む、請求項1に記載の脱色された茶抽出液の製造方法。 The method for producing a decolorized tea extract according to claim 1, further comprising the step of allowing tannase and / or pectinase to act simultaneously with or before or after step (B) and before step (C). .
- 工程(B)と同時におよび/または工程(B)の後であって工程(C)の前に、さらに、プロテアーゼを作用させる工程を含む、請求項1または2に記載の脱色された茶抽出液の製造方法。 The decolorized tea extract according to claim 1 or 2, further comprising the step of allowing a protease to act simultaneously with and / or after step (B) and before step (C). Manufacturing method.
- 工程(D)における加熱処理条件が温度70~135℃、時間2秒~30分の範囲内である請求項1~3のいずれか1項に記載の脱色された茶抽出液の製造方法。 The method for producing a decolorized tea extract liquid according to any one of claims 1 to 3, wherein the heat treatment conditions in the step (D) are within a temperature range of 70 to 135 ° C and a time of 2 seconds to 30 minutes.
- 茶葉が緑茶である請求項1~4のいずれかに記載の脱色された茶抽出液の製造方法。 The method for producing a decolorized tea extract according to any one of claims 1 to 4, wherein the tea leaf is green tea.
- 工程(A)の前に、茶葉を水蒸気蒸留して香気回収物を得、得られた香気回収物を工程(E)で得られる清澄液に混合する工程を含む、請求項1~5のいずれかに記載の脱色された茶抽出液の製造方法。 The method according to any one of claims 1 to 5, further comprising the step of steam-distilling the tea leaves to obtain an aroma recovery product, and mixing the obtained aroma recovery product with the clear liquid obtained in step (E) before the step (A). The manufacturing method of the decolorized tea extract as described in a crab.
- 茶葉に対する配糖体分解酵素の使用量が1U/g以上、酵素反応の温度が30~70℃の範囲内、かつ、反応時間が30分以上である請求項1~6のいずれかに記載の脱色された茶抽出液の製造方法。 7. The method according to any one of claims 1 to 6, wherein the amount of the glycoside degrading enzyme used for tea leaves is 1 U / g or more, the temperature of the enzyme reaction is in the range of 30 to 70 ° C, and the reaction time is 30 minutes or more. Method for producing a decolorized tea extract.
- 請求項1に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下である、方法。 It is a manufacturing method of the decolorized tea extract according to claim 1, wherein the absorbance at 430 nm is 0.5 or less when the soluble solid content (refractive sugar content, temperature 20 ° C) of the tea extract is 0.3. And the absorbance at 680 nm is 0.15 or less.
- 請求項8に記載の脱色された茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.15以下かつ680nmの吸光度が0.05以下である、方法。 The method for producing a decolorized tea extract according to claim 8, wherein the absorbance at 430 nm is 0.15 or less when the soluble solid content (refractive index, temperature 20 ° C) of the tea extract is 0.3. And the absorbance at 680 nm is 0.05 or less.
- 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.15以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のカテキン含有量が1.0質量%以上である緑茶葉抽出液。 The absorbance at 430 nm is 0.15 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive index, temperature 20 ° C.) of the tea extract is 0.3, and the soluble solid content (refractive index The green tea leaf extract which has a catechin content of 1.0% by mass or more when the temperature is set to 20 ° C.
- 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.5以下かつ680nmの吸光度が0.15以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上である緑茶葉抽出液。 The absorbance at 430 nm is 0.5 or less and the absorbance at 680 nm is 0.15 or less when the soluble solid content (refractive index, temperature 20 ° C.) of the tea extract is 0.3, and the soluble solid content (refractive index The green tea leaf extract which has an amino acid content of 1.0% by mass or more when the temperature is set to 20 ° C.
- 以下の工程(A)~(F)を含んでなる、低タンニン茶抽出液の製造方法。
(A)茶葉および水を混合する工程
(B)工程(A)の後、(A)の混合物に配糖体分解酵素を作用させる工程
(C)工程(B)の後、茶葉残渣と抽出液とを分離し、配糖体酵素処理茶抽出液を得る工程
(D)工程(C)で得られた配糖体酵素処理茶抽出液を加熱処理する工程
(E)工程(D)で得られた加熱配糖体酵素処理茶抽出液から不溶性成分を除去し、脱色された茶抽出液を得る工程
(F)工程(E)の後に得られた脱色された茶抽出液をさらにPVPP(ポリビニルポリピロリドン)と接触させ、接触後のPVPPを除去した抽出液を得る工程 A method for producing a low tannin tea extract comprising the following steps (A) to (F):
(A) A step of mixing tea leaves and water (B) A step of causing a mixture of (A) to have a glycosidolytic enzyme after step (A) (C) After step (B), tea leaf residue and an extract And (G) separation of the glycoside enzyme-treated tea extract obtained in step (C) by heat treatment (E) step (D) obtained in step (D) Step of removing insoluble components from the heated glycoside enzyme-treated tea extract to obtain a decolorized tea extract (F) The decolorized tea extract obtained after the step (E) is further treated with PVPP (polyvinyl poly) Contacting with pyrrolidone) to obtain an extract from which PVPP has been removed after contact - 請求項12に記載の低タンニン茶抽出液の製造方法であって、茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin-Denis法)が1.0質量%以下である、方法。 The method for producing a low tannin tea extract according to claim 12, wherein the absorbance at 430 nm is 0.05 or less when the soluble solid content (refractive sugar content, temperature 20 ° C) of the tea extract is 0.3. The absorbance at 680 nm is 0.05 or less, and the amino acid content is 1.0% by mass or more and the tannin (Folin-Denis method) is 1. when the soluble solid content (refractive sugar content, temperature 20 ° C.) is 15. The method which is 0 mass% or less.
- 茶抽出液の可溶性固形分(屈折糖度、温度20℃)を0.3とした場合の430nmの吸光度が0.05以下かつ680nmの吸光度が0.05以下であり、さらに可溶性固形分(屈折糖度、温度20℃)を15とした場合のアミノ酸含有量が1.0質量%以上かつタンニン(Folin-Denis法)が1.0質量%以下である緑茶葉抽出液。 The absorbance at 430 nm is 0.05 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive index, temperature 20 ° C.) of the tea extract is 0.3, and the soluble solid content (refractive index A green tea leaf extract solution having an amino acid content of 1.0% by mass or more and a tannin (Folin-Denis method) of 1.0% by mass or less when a temperature of 20 ° C. is 15.
- (G)請求項1~9、12および13のいずれかに記載の方法によって得られた茶抽出液に加水して茶由来の可溶性固形分を0.005~0.3%(Bx、20℃)に調整する工程、
(H)工程(G)でえられた茶飲料に、ビタミンCまたはその可食性の塩(ナトリウム)を加える工程
を含む容器詰茶飲料の製造方法。 (G) The tea extract obtained by the method according to any one of claims 1 to 9, 12 and 13, wherein the soluble solid content derived from tea is 0.005 to 0.3% (Bx, 20 ° C) Process to adjust to
(H) The manufacturing method of the container-packed tea beverage including the process of adding vitamin C or its edible salt (sodium) to the tea beverage obtained at the process (G). - 請求項10、11および14に記載の緑茶抽出液を、茶由来の可溶性固形分として0.005~0.3%(Bx、20℃)質量%含み、さらにビタミンCまたはその可食性の塩(ナトリウム)を含有する、容器詰茶飲料。 A green tea extract according to claim 10, containing 0.005% to 0.3% (Bx, 20 ° C.)% by mass as a soluble solid content derived from tea, further comprising vitamin C or an edible salt thereof ( Container-packed tea beverage containing sodium).
- ビタミンCまたはその可食性の塩(ナトリウム)を0.002~0.3質量%含有する、請求項16に記載の容器詰茶飲料。 The container-packed tea beverage according to claim 16, which comprises 0.002 to 0.3% by mass of vitamin C or an edible salt thereof (sodium).
- 茶抽出液の可溶性固形分(屈折糖度、温度20℃)が0.3の場合の430nmの吸光度が0.015以下かつ680nmの吸光度が0.05以下である、請求項16または17に記載の容器詰茶飲料。 18. The tea extract according to claim 16, wherein the absorbance at 430 nm is 0.015 or less and the absorbance at 680 nm is 0.05 or less when the soluble solid content (refractive sugar content, temperature 20 ° C.) of the tea extract is 0.3. Container packed tea beverage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019539321A JP6993418B2 (en) | 2017-09-01 | 2018-08-13 | Decolorized tea extract and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-168775 | 2017-09-01 | ||
JP2017168775 | 2017-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019044474A1 true WO2019044474A1 (en) | 2019-03-07 |
Family
ID=65525481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030186 WO2019044474A1 (en) | 2017-09-01 | 2018-08-13 | Decolored tea extract, and method for producing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6993418B2 (en) |
TW (1) | TWI756464B (en) |
WO (1) | WO2019044474A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114983893A (en) * | 2022-06-22 | 2022-09-02 | 可可琪可思曼中华有限公司 | Method and apparatus for preparing anti-sugar composition |
WO2023127911A1 (en) | 2021-12-28 | 2023-07-06 | 花王株式会社 | Method for producing extract composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003204754A (en) * | 2002-01-17 | 2003-07-22 | T Hasegawa Co Ltd | Method for manufacturing green tea extracted solution |
JP2004147606A (en) * | 2002-10-31 | 2004-05-27 | Ito En Ltd | New green tea drink and method for producing the same |
JP2006075112A (en) * | 2004-09-10 | 2006-03-23 | T Hasegawa Co Ltd | Tea essence and method for producing tea aroma |
WO2011126003A1 (en) * | 2010-04-05 | 2011-10-13 | サントリーホールディングス株式会社 | Process for producing tea extract |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01218550A (en) * | 1988-02-25 | 1989-08-31 | Itouen:Kk | Tannin-removed tea solution and production of tea beverage |
JPH05168407A (en) * | 1991-12-24 | 1993-07-02 | Toyo Seikan Kaisha Ltd | Preparation of green tea drink packed in container |
JPH09220055A (en) * | 1996-02-15 | 1997-08-26 | Calpis Food Ind Co Ltd:The | Production of tea beverages |
JP5411748B2 (en) * | 2010-03-05 | 2014-02-12 | 長谷川香料株式会社 | Production method of tea extracts |
JP5517349B2 (en) * | 2010-06-02 | 2014-06-11 | 三井農林株式会社 | Tea extract production method and tea extract |
CN105407732A (en) * | 2013-08-12 | 2016-03-16 | 长谷川香料株式会社 | Method for manufacturing tea extract |
JP6355166B2 (en) * | 2015-05-28 | 2018-07-11 | 長谷川香料株式会社 | Method for producing roasted fragrance collection |
-
2018
- 2018-08-13 WO PCT/JP2018/030186 patent/WO2019044474A1/en active Application Filing
- 2018-08-13 JP JP2019539321A patent/JP6993418B2/en active Active
- 2018-08-20 TW TW107128929A patent/TWI756464B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003204754A (en) * | 2002-01-17 | 2003-07-22 | T Hasegawa Co Ltd | Method for manufacturing green tea extracted solution |
JP2004147606A (en) * | 2002-10-31 | 2004-05-27 | Ito En Ltd | New green tea drink and method for producing the same |
JP2006075112A (en) * | 2004-09-10 | 2006-03-23 | T Hasegawa Co Ltd | Tea essence and method for producing tea aroma |
WO2011126003A1 (en) * | 2010-04-05 | 2011-10-13 | サントリーホールディングス株式会社 | Process for producing tea extract |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023127911A1 (en) | 2021-12-28 | 2023-07-06 | 花王株式会社 | Method for producing extract composition |
CN114983893A (en) * | 2022-06-22 | 2022-09-02 | 可可琪可思曼中华有限公司 | Method and apparatus for preparing anti-sugar composition |
Also Published As
Publication number | Publication date |
---|---|
JP6993418B2 (en) | 2022-01-13 |
TW201912036A (en) | 2019-04-01 |
TWI756464B (en) | 2022-03-01 |
JPWO2019044474A1 (en) | 2020-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1611125B (en) | Packaged, tea-based beverages | |
TWI358262B (en) | ||
JP4745784B2 (en) | Purified green tea extract | |
JP5081028B2 (en) | Method for producing purified green tea extract containing non-polymer catechins | |
JP3626462B2 (en) | Method for producing tea beverage | |
JP4800779B2 (en) | Method for producing purified green tea extract | |
JP2010172258A (en) | Tea extract and method for producing same | |
CN1923022B (en) | Preparation process of purified green-tea extract | |
CN102307482B (en) | Tea extract and method for producing the same | |
WO2004068961A1 (en) | Packaged beverage and process for producing the same | |
WO2019044474A1 (en) | Decolored tea extract, and method for producing same | |
JP5162594B2 (en) | Method for producing purified tea extract | |
JP3696594B2 (en) | Production method of tea extract | |
JP5111096B2 (en) | Production method of tea extract | |
JP3660637B2 (en) | Green tea beverage manufacturing method | |
EP1576887B1 (en) | Packaged tea drink | |
JP2006333769A (en) | Tea extract | |
JP4332487B2 (en) | Containerized green tea beverage | |
JP3096035B1 (en) | Method for producing green tea beverage and green tea beverage produced by the method | |
JP2007274920A (en) | Method for producing green-tea extract | |
JP3638560B2 (en) | Production method of semi-fermented tea beverage and fermented tea beverage | |
JPH08228684A (en) | Production of green tea beverage | |
JP4369464B2 (en) | Containerized green tea beverage and method for producing the same | |
JP2022153271A (en) | Manufacturing method of fermentation tea extract | |
JP2006320246A (en) | Tea extract |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18850656 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019539321 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18850656 Country of ref document: EP Kind code of ref document: A1 |