JPWO2019038846A1 - Method for manufacturing optical component and method for manufacturing transparent sealing member - Google Patents

Method for manufacturing optical component and method for manufacturing transparent sealing member Download PDF

Info

Publication number
JPWO2019038846A1
JPWO2019038846A1 JP2019537474A JP2019537474A JPWO2019038846A1 JP WO2019038846 A1 JPWO2019038846 A1 JP WO2019038846A1 JP 2019537474 A JP2019537474 A JP 2019537474A JP 2019537474 A JP2019537474 A JP 2019537474A JP WO2019038846 A1 JPWO2019038846 A1 JP WO2019038846A1
Authority
JP
Japan
Prior art keywords
manufacturing
glass body
optical component
transparent glass
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019537474A
Other languages
Japanese (ja)
Other versions
JP6966556B2 (en
Inventor
芳郎 菊池
芳郎 菊池
宏之 柴田
宏之 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2019038846A1 publication Critical patent/JPWO2019038846A1/en
Application granted granted Critical
Publication of JP6966556B2 publication Critical patent/JP6966556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本発明は光学部品の製造方法及び透明封止部材の製造方法に関する。少なくとも1つの光学素子(12)が実装された実装基板(18)と、実装基板(18)に金属接合された透明ガラス体(24)からなる透明封止部材(20)とを有する光学部品(10)の製造方法において、透明封止部材(20)の実装基板(18)との接合面(24a)に、複数の粒子(26)を固着する粒子固着工程と、透明封止部材(20)と実装基板(18)とを金属接合する金属接合工程とを有する。The present invention relates to a method for manufacturing an optical component and a method for manufacturing a transparent sealing member. An optical component having a mounting substrate (18) on which at least one optical element (12) is mounted and a transparent sealing member (20) made of a transparent glass body (24) metal-bonded to the mounting substrate (18) ( In the manufacturing method of 10), a particle fixing step of fixing a plurality of particles (26) to a bonding surface (24a) of the transparent sealing member (20) with the mounting substrate (18), and the transparent sealing member (20). And a mounting substrate (18) are metal-bonded together.

Description

本発明は、例えばLED(発光ダイオード)、LD(半導体レーザー)等に用いられる光学部品の製造方法、並びに光学部品の構成部材である透明封止部材の製造方法に関する。 The present invention relates to a method of manufacturing an optical component used in, for example, an LED (light emitting diode), an LD (semiconductor laser), etc., and a method of manufacturing a transparent sealing member which is a constituent member of the optical component.

一般に、紫外線を出射する光学素子(例えばLEDやLD等)を有する光学部品は、光学素子を外気や水分から保護するために、透明封止部材が必要である。 Generally, an optical component having an optical element that emits ultraviolet rays (for example, an LED or an LD) requires a transparent sealing member in order to protect the optical element from outside air and moisture.

特開2001−237335号公報には、半導体素子が実装された金属製の放熱板と、該放熱板の上面に銀ロウ等のロウ材によって接合された金属製の枠体と、枠体の上面にロウ材によって接合されたセラミックス製の蓋体とで構成された筐体が開示されている。 Japanese Patent Application Laid-Open No. 2001-237335 discloses a metal heat sink on which a semiconductor element is mounted, a metal frame joined to the upper surface of the heat sink by a brazing material such as silver solder, and the upper surface of the frame. There is disclosed a casing composed of a ceramic lid joined by a brazing material.

ところで、LEDが実装された実装基板と例えば石英ガラスやホウ珪酸ガラス等の透明ガラス体からなる透明封止部材との接合において、例えばろう材による金属接合を用いる場合、その前提として、透明封止部材の端面並びに実装基板に金属めっき層を形成してから上記金属接合を実施する。しかし、この金属接合においては、透明封止部材と金属めっき層との密着性が悪く、良好な封止性が得られない場合がある。 By the way, in the case of using metal joining, for example, a brazing material, in the joining of the mounting substrate on which the LED is mounted and the transparent sealing member made of a transparent glass body such as quartz glass or borosilicate glass, the transparent sealing is a prerequisite. The metal bonding is performed after the metal plating layer is formed on the end surface of the member and the mounting board. However, in this metal joining, the adhesion between the transparent sealing member and the metal plating layer is poor, and good sealing properties may not be obtained in some cases.

そこで、透明封止部材と金属めっき層との間に、多層構造の蒸着膜を形成するようにして、透明封止部材と金属めっき層との密着性を良好にしている。 Therefore, a vapor deposition film having a multi-layer structure is formed between the transparent sealing member and the metal plating layer to improve the adhesion between the transparent sealing member and the metal plating layer.

しかしながら、透明封止部材と金属めっき層との間に多層構造の蒸着膜を形成する必要から、製造工程が複雑になり、工数の増大化、コストの高価格化を招くという問題がある。 However, since it is necessary to form a vapor-deposited film having a multi-layer structure between the transparent sealing member and the metal plating layer, there are problems that the manufacturing process becomes complicated, the number of steps is increased, and the cost is increased.

本発明はこのような課題を考慮してなされたものであり、透明ガラス体からなる透明封止部材と実装基板とを金属接合する際に、透明封止部材と金属めっき層との間に多層構造の蒸着膜を形成する必要がなくなり、光学部品の製造工程の簡略化、工数の低減化、製造コストの低廉化を図ることができる光学部品の製造方法及び透明封止部材の製造方法を提供することを目的とする。 The present invention has been made in consideration of such problems, and when metal-bonding a transparent sealing member made of a transparent glass body and a mounting substrate, a multilayer structure is provided between the transparent sealing member and the metal plating layer. Provided are a method for manufacturing an optical component and a method for manufacturing a transparent sealing member, which eliminates the need to form a vapor deposition film having a structure, can simplify the manufacturing process of an optical component, reduce the number of steps, and reduce the manufacturing cost. The purpose is to do.

[1] 第1の本発明に係る光学部品の製造方法は、少なくとも1つの光学素子が実装された実装基板と、前記実装基板に金属接合された透明ガラス体からなる透明封止部材とを有する光学部品の製造方法において、前記透明封止部材の前記実装基板との接合面に、複数の粒子を固着する粒子固着工程と、前記透明封止部材と前記実装基板とを金属接合する金属接合工程とを有することを特徴とする。 [1] A method of manufacturing an optical component according to a first aspect of the present invention includes a mounting substrate on which at least one optical element is mounted, and a transparent sealing member made of a transparent glass body metal-bonded to the mounting substrate. In the method of manufacturing an optical component, a particle fixing step of fixing a plurality of particles to a bonding surface of the transparent sealing member with the mounting substrate, and a metal bonding step of metal-bonding the transparent sealing member and the mounting substrate. And having.

これにより、透明封止部材と実装基板とを金属接合する際に、透明封止部材と金属めっき層との間に多層構造の蒸着膜を形成する必要がなくなり、光学部品の製造工程の簡略化、工数の低減化、製造コストの低廉化を図ることができる。 This eliminates the need to form a vapor-deposited film having a multilayer structure between the transparent sealing member and the metal plating layer when metal-bonding the transparent sealing member and the mounting substrate, and simplifies the manufacturing process of the optical component. In addition, it is possible to reduce the man-hours and the manufacturing cost.

[2] 第1の本発明において、前記金属接合工程は、前記透明封止部材のうち、前記複数の粒子が固着された部分に第1金属めっき層を形成する工程と、実装基板のうち、少なくとも前記透明封止部材が接合される部分に第2金属めっき層を形成する工程と、前記透明封止部材の前記第1金属めっき層と前記実装基板の前記第2金属めっき層とをろう材にて接合する工程とを有してもよい。 [2] In the first aspect of the present invention, the metal bonding step includes a step of forming a first metal plating layer on a portion of the transparent sealing member to which the plurality of particles are fixed, and a mounting board, At least a step of forming a second metal plating layer on a portion to which the transparent sealing member is joined, and a brazing material including the first metal plating layer of the transparent sealing member and the second metal plating layer of the mounting substrate. And the step of joining in.

透明封止部材の実装基板との接合面に、複数の粒子を固着するようにしたので、透明封止部材のうち、複数の粒子が固着された部分に第1金属めっき層を形成したとき、第1金属めっき層の複数の粒子に対する密着性が透明ガラス体に対する密着性よりも良好なため、透明ガラス体からなる透明封止部材との密着性が改善される。その結果、透明封止部材と第1金属めっき層との間に、多層構造の蒸着膜を形成する必要がなくなる。これは、光学部品の製造工程の簡略化、工数の低減化、製造コストの低廉化につながる。 Since the plurality of particles are fixed to the bonding surface of the transparent sealing member with the mounting substrate, when the first metal plating layer is formed on the portion of the transparent sealing member where the plurality of particles are fixed, Since the adhesion of the first metal plating layer to the plurality of particles is better than the adhesion to the transparent glass body, the adhesion to the transparent sealing member made of the transparent glass body is improved. As a result, it is not necessary to form a vapor deposition film having a multilayer structure between the transparent sealing member and the first metal plating layer. This leads to simplification of the manufacturing process of the optical component, reduction of man-hours, and reduction of manufacturing cost.

[3] 第1の本発明において、前記粒子固着工程は、板材の上に粉末を配置する工程と、前記粉末が配置された前記板材上に前記透明ガラス体の端面又は前記透明ガラス体の前駆体を端面を下にして載置する工程と、前記透明ガラス体又は前記透明ガラス体の前駆体を前記粉末の融点より低い温度で熱処理を行う工程とを有してもよい。 [3] In the first aspect of the present invention, the particle fixing step includes a step of arranging powder on a plate material, and an end face of the transparent glass body or a precursor of the transparent glass body on the plate material on which the powder is arranged. The method may include the step of placing the body with the end face down, and the step of heat-treating the transparent glass body or the precursor of the transparent glass body at a temperature lower than the melting point of the powder.

板材の上に粉末を配置し、粉末が配置された板材上に透明ガラス体(後に透明封止部材となる)又は透明ガラス体の前駆体を載置し、透明ガラス体又は透明ガラス体の前駆体を粉末の融点より低い温度で熱処理を行うことで、容易に透明封止部材の実装基板との接合面に、複数の粒子を固着することができる。 A powder is placed on a plate material, a transparent glass body (which will later become a transparent sealing member) or a precursor of a transparent glass body is placed on the plate material on which the powder is placed, and a transparent glass body or a precursor of the transparent glass body is placed. By heat-treating the body at a temperature lower than the melting point of the powder, it is possible to easily fix the plurality of particles to the bonding surface of the transparent sealing member with the mounting substrate.

[4] 第1の本発明において、前記粒子固着工程は、前記透明ガラス体の端面又は前記透明ガラス体の前駆体の端面に、ペースト化した粉末を塗布する工程と、板材の上に前記透明ガラス体の前記端面又は前記透明ガラス体の前駆体の前記端面を下にして載置する工程と、前記透明ガラス体又は前記透明ガラス体の前駆体を前記粉末の融点より低い温度で熱処理を行う工程と、を有してもよい。 [4] In the first aspect of the present invention, in the particle fixing step, a step of applying a powdered paste to an end surface of the transparent glass body or an end surface of a precursor of the transparent glass body, and the transparent step on a plate material. A step of placing the end face of the glass body or the end face of the precursor of the transparent glass body downward, and heat-treating the transparent glass body or the precursor of the transparent glass body at a temperature lower than the melting point of the powder. And a process.

透明ガラス体の端面又は透明ガラス体の前駆体の端面に、ペースト化した粉末を塗布し、板材の上に透明ガラス体の端面又は透明ガラス体の前駆体を端面を下にして載置し、透明ガラス体又は透明ガラス体の前駆体を前記粉末の融点より低い温度で熱処理を行うことで、容易に透明封止部材の実装基板との接合面に、複数の粒子を固着することができる。この場合、粒子の消費を抑えることができるため、材料費の点でも有利になる。また、ペースト化した粉末を塗布する場合、透明ガラス体の端面又は透明ガラス体の前駆体の端面のうち、任意の場所に複数の粒子を固着することが可能となり、設計の自由度も向上する。 To the end face of the transparent glass body or the end face of the precursor of the transparent glass body, the powdered paste is applied, and the end face of the transparent glass body or the precursor of the transparent glass body is placed with the end face down on the plate material, By heat-treating the transparent glass body or the precursor of the transparent glass body at a temperature lower than the melting point of the powder, a plurality of particles can be easily fixed to the bonding surface of the transparent sealing member with the mounting substrate. In this case, the consumption of particles can be suppressed, which is advantageous in terms of material cost. Further, when applying the powdered paste, it is possible to fix a plurality of particles at any place on the end surface of the transparent glass body or the end surface of the precursor of the transparent glass body, and the degree of freedom in design is also improved. ..

[5] 第1の本発明において、前記粒子の融点は、前記透明ガラス体の融点より高いことが好ましい。 [5] In the first aspect of the present invention, the melting point of the particles is preferably higher than the melting point of the transparent glass body.

[6] 第1の本発明において、前記粒子は、窒化物、炭化物又はホウ化物のセラミック粒子であってもよい。 [6] In the first aspect of the present invention, the particles may be nitride, carbide or boride ceramic particles.

[7] 第1の本発明において、前記セラミック粒子の構成材料が、AlN(窒化アルミニウム)、Si(窒化ケイ素)、SiC(炭化ケイ素)、WC(炭化タングステン)、MoC(炭化モリブデン)、BN(窒化ホウ素)、BC(炭化ホウ素)、MoB(ホウ化モリブデン)又はWB(ホウ化タングステン)であることが好ましい。[7] In the first aspect of the present invention, the constituent material of the ceramic particles is AlN (aluminum nitride), Si 3 N 4 (silicon nitride), SiC (silicon carbide), WC (tungsten carbide), Mo 2 C (carbonization). It is preferably molybdenum), BN (boron nitride), B 4 C (boron carbide), MoB (molybdenum boride) or WB (tungsten boride).

[8] 第1の本発明において、前記粒子は、金属粒子であってもよい。 [8] In the first aspect of the present invention, the particles may be metal particles.

[9] 第1の本発明において、前記金属粒子(32b)の構成材料が、Mo(モリブデン)、W(タングステン)、Ti(チタン)、Zr(ジルコニウム)、Pt(白金)、B(ホウ素)、Cr(クロム)又はIr(イリジウム)であってもよい。 [9] In the first aspect of the present invention, the constituent material of the metal particles (32b) is Mo (molybdenum), W (tungsten), Ti (titanium), Zr (zirconium), Pt (platinum), B (boron). , Cr (chromium) or Ir (iridium).

[10] 第1の本発明において、前記粒子は、金属間化合物粒子であってもよい。 [10] In the first aspect of the present invention, the particles may be intermetallic compound particles.

[11] 前記金属間化合物粒子の構成材料が、ケイ化物であることが好ましい。 [11] The constituent material of the intermetallic compound particles is preferably a silicide.

[12] この場合、前記金属間化合物粒子の構成材料が、MoSi又はWSiであることが好ましい。[12] In this case, the constituent material of the intermetallic compound particles is preferably MoSi 2 or WSi 2 .

[13] 第1の本発明において、前記粒子の平均粒径が0.1〜10μmの範囲であることが好ましい。 [13] In the first aspect of the present invention, the average particle size of the particles is preferably in the range of 0.1 to 10 μm.

[14] 第1の本発明において、前記透明封止部材のうち、前記実装基板と接合する部分の表面粗さRaが0.1〜10μmであることが好ましい。 [14] In the first aspect of the present invention, it is preferable that a surface roughness Ra of a portion of the transparent sealing member that is joined to the mounting substrate is 0.1 to 10 μm.

[15] 第1の本発明において、前記透明ガラス体は、石英ガラス又はホウ珪酸ガラスで構成されていることが好ましい。特に、石英ガラスが好ましい。すなわち、石英ガラスは、透明性の点で優れているが、実装基板との熱膨張差が大きく剥がれやすい。しかし、透明封止部材の前記実装基板との接合面に、複数の粒子を固着する工程を経ることで、実装基板との金属接合において、接合強度を高めることができる。つまり、本発明に係る製造方法は、石英ガラスのような実装基板との熱膨張差が大きい透明ガラス体を実装基板に接合する場合に、効果を発揮する。 [15] In the first aspect of the present invention, the transparent glass body is preferably made of quartz glass or borosilicate glass. Quartz glass is particularly preferable. That is, although quartz glass is excellent in transparency, it has a large difference in thermal expansion from the mounting substrate and is easily peeled off. However, the bonding strength can be increased in metal bonding with the mounting substrate by performing a step of fixing a plurality of particles on the bonding surface of the transparent sealing member with the mounting substrate. That is, the manufacturing method according to the present invention is effective when a transparent glass body such as quartz glass having a large thermal expansion difference from the mounting substrate is bonded to the mounting substrate.

[16] 第2の本発明に係る透明封止部材の製造方法は、少なくとも1つの光学素子を収容するためのパッケージに用いられ、前記光学素子が実装された実装基板に金属接合される透明ガラス体からなる透明封止部材の製造方法において、板材の上に粉末を配置する工程と、前記粉末が配置された前記板材上に前記透明ガラス体の端面又は前記透明ガラス体の前駆体を端面を下にして載置する工程と、前記粉末の融点より低い温度で熱処理を行う工程と、前記透明ガラス体を前記板材から取り外す工程とを経ることで、端面に粒子が固着された前記透明封止部材を得ることを特徴とする。 [16] A method for manufacturing a transparent sealing member according to a second aspect of the present invention, which is used for a package for accommodating at least one optical element, and transparent glass which is metal-bonded to a mounting substrate on which the optical element is mounted. In the method for producing a transparent sealing member comprising a body, a step of disposing powder on a plate material, and an end surface of the transparent glass body or an end surface of the transparent glass body on the plate material on which the powder is disposed. The transparent encapsulation in which particles are fixed to the end face by going through a step of placing the powder down, a step of performing heat treatment at a temperature lower than the melting point of the powder, and a step of removing the transparent glass body from the plate material. It is characterized in that a member is obtained.

例えば光学素子が実装された実装基板に透明封止部材を金属接合して光学部品を作製する場合、透明封止部材と金属めっき層との間に多層構造の蒸着膜を形成する必要がなくなるため、光学部品の製造工程の簡略化、工数の低減化、製造コストの低廉化を図ることができる。 For example, when a transparent sealing member is metal-bonded to a mounting substrate on which an optical element is mounted to produce an optical component, it is not necessary to form a vapor deposition film having a multilayer structure between the transparent sealing member and the metal plating layer. Therefore, the manufacturing process of the optical component can be simplified, the number of steps can be reduced, and the manufacturing cost can be reduced.

[17] 第3の本発明に係る透明封止部材の製造方法は、少なくとも1つの光学素子を収容するためのパッケージに用いられ、前記光学素子が実装された実装基板に金属接合される透明ガラス体からなる透明封止部材の製造方法において、前記透明ガラス体の端面又は前記透明ガラス体の前駆体の端面にペースト化した粉末を塗布する工程と、板材の上に前記透明ガラス体の前記端面又は前記透明ガラス体の前駆体の前記端面を下にして載置する工程と、前記粉末の融点より低い温度で熱処理を行う工程と、前記透明ガラス体を前記板材から取り外す工程とを経ることで、端面に粒子が固着された透明封止部材を得ることを特徴とする。 [17] A method for manufacturing a transparent sealing member according to a third aspect of the present invention, which is used for a package for accommodating at least one optical element, and transparent glass which is metal-bonded to a mounting substrate on which the optical element is mounted. In the method for producing a transparent sealing member consisting of a body, a step of applying a powdered paste to the end face of the transparent glass body or the end face of the precursor of the transparent glass body, and the end face of the transparent glass body on a plate material. Alternatively, by passing through the step of placing the precursor of the transparent glass body with the end face down, performing a heat treatment at a temperature lower than the melting point of the powder, and removing the transparent glass body from the plate material. A transparent sealing member having particles fixed to the end faces is obtained.

この発明においても、例えば光学素子が実装された実装基板に透明封止部材を金属接合して光学部品を作製する場合、透明封止部材と金属めっき層との間に多層構造の蒸着膜を形成する必要がなくなるため、光学部品の製造工程の簡略化、工数の低減化、製造コストの低廉化を図ることができる。特に、この発明では、粒子の消費を抑えることができるため、材料費の点でも有利になる。また、ペースト化した粉末を塗布する場合、透明ガラス体の端面又は透明ガラス体の前駆体の端面のうち、任意の場所に複数の粒子を固着することが可能となり、設計の自由度も向上する。 Also in this invention, for example, when a transparent sealing member is metal-bonded to a mounting substrate on which an optical element is mounted to manufacture an optical component, a vapor deposition film having a multilayer structure is formed between the transparent sealing member and the metal plating layer. Since it is not necessary to do so, the manufacturing process of the optical component can be simplified, the number of steps can be reduced, and the manufacturing cost can be reduced. Particularly, in the present invention, the consumption of particles can be suppressed, which is advantageous in terms of material cost. Further, when applying the powdered paste, it is possible to fix a plurality of particles at any place on the end surface of the transparent glass body or the end surface of the precursor of the transparent glass body, and the degree of freedom in design is also improved. ..

以上説明したように、本発明に係る光学部品の製造方法及び透明封止部材の製造方法によれば、例えば光学素子が実装された実装基板に透明封止部材を金属接合して光学部品を作製する場合、透明封止部材と金属めっき層との間に多層膜を形成する必要がなくなるため、光学部品の製造工程の簡略化、工数の低減化、製造コストの低廉化を図ることができる。 As described above, according to the optical component manufacturing method and the transparent sealing member manufacturing method of the present invention, for example, the transparent sealing member is metal-bonded to the mounting substrate on which the optical element is mounted to manufacture the optical component. In this case, since it is not necessary to form a multilayer film between the transparent sealing member and the metal plating layer, the manufacturing process of the optical component can be simplified, the number of steps can be reduced, and the manufacturing cost can be reduced.

本実施の形態に係る光学部品の製造方法にて製造される光学部品の一例を示す断面図である。It is sectional drawing which shows an example of the optical component manufactured by the manufacturing method of the optical component which concerns on this Embodiment. 図2Aは透明ガラス体の端面にセラミック粒子を固着した状態を一部省略して示す拡大断面図であり、図2Bは透明ガラス体の端面に金属粒子を固着した状態を一部省略して示す拡大断面図であり、図2Cは透明ガラス体の端面に金属間化合物粒子を固着した状態を一部省略して示す拡大断面図である。FIG. 2A is an enlarged cross-sectional view showing a state in which ceramic particles are fixed to the end surface of the transparent glass body, with a part thereof omitted, and FIG. 2B shows a state in which metal particles are fixed to the end surface of the transparent glass body, partly omitted. FIG. 2C is an enlarged cross-sectional view in which a state in which intermetallic compound particles are fixed to the end surface of the transparent glass body is partially omitted. 本実施の形態に係る光学部品の製造工程を示すフローチャートである。6 is a flowchart showing a manufacturing process of the optical component according to the present embodiment. 図4Aは切り出し加工又は高温モールド成形によって透明ガラス体を作製した状態を示す工程図であり、図4Bは粉末焼結法によって透明ガラス体を作製した状態を示す工程図である。FIG. 4A is a process diagram showing a state where a transparent glass body is produced by cutting out or high temperature molding, and FIG. 4B is a process diagram showing a state where the transparent glass body is produced by a powder sintering method. 図5Aは板材上にセラミック粉末を配置した状態を示す工程図であり、図5Bはセラミック粉末上に透明ガラス体の前駆体又は透明ガラス体を載置した状態を示す工程図であり、図5Cはセラミック粉末の融点より低い温度で熱処理した状態を示す工程図であり、図5Dは板材を取り外して、セラミック粒子が固着された透明封止部材とした状態を示す工程図である。5A is a process diagram showing a state in which ceramic powder is placed on a plate material, and FIG. 5B is a process diagram showing a state in which a precursor of a transparent glass body or a transparent glass body is placed on the ceramic powder, and FIG. FIG. 5D is a process drawing showing a state of being heat-treated at a temperature lower than the melting point of ceramic powder, and FIG. 5D is a process drawing showing a state of removing a plate material to obtain a transparent sealing member to which ceramic particles are fixed. 図6Aは透明ガラス体の前駆体の端面又は透明ガラス体の端面に、ペースト化したセラミック粉末を塗布した状態を示す工程図であり、図6Bは板材上に透明ガラス体の前駆体又は透明ガラス体を載置した状態を示す工程図であり、図6Cはセラミック粉末の融点より低い温度で熱処理した状態を示す工程図であり、図6Dは板材を取り外して、セラミック粒子が固着された透明封止部材とした状態を示す工程図である。FIG. 6A is a process diagram showing a state in which pasted ceramic powder is applied to the end face of the precursor of the transparent glass body or the end face of the transparent glass body, and FIG. 6B is the precursor of the transparent glass body or the transparent glass on the plate material. FIG. 6C is a process diagram showing a state in which the body is placed, FIG. 6C is a process diagram showing a state of being heat-treated at a temperature lower than the melting point of the ceramic powder, and FIG. 6D is a transparent seal in which the plate material is removed and the ceramic particles are fixed. It is process drawing which shows the state made into a stop member. 図7Aは透明封止部材の接合面からX線CT画像を得る方法を示す説明図であり、図7Bは取得したX線CT画像のうち、接合面から露出(突出)する粒子による凸部の高さから表面粗さを得る方法を示す説明図である。FIG. 7A is an explanatory diagram showing a method of obtaining an X-ray CT image from the joint surface of the transparent sealing member, and FIG. 7B is a diagram showing a convex portion due to particles exposed (projecting) from the joint surface in the acquired X-ray CT image. It is explanatory drawing which shows the method of obtaining surface roughness from height.

以下、本発明に係る光学部品の製造方法及び透明封止部材の製造方法の実施の形態例を図1〜図7Bを参照しながら説明する。 Hereinafter, embodiments of the method of manufacturing an optical component and the method of manufacturing a transparent sealing member according to the present invention will be described with reference to FIGS. 1 to 7B.

先ず、本実施の形態に係る光学部品の製造方法にて作製される光学部品10は、図1に示すように、例えば紫外光を出射する少なくとも1つの光学素子12と、光学素子12が収容されるパッケージ14とを有する。パッケージ14は、光学素子12の実装面16を有する例えば平板状の実装基板18と、実装基板18上に金属接合される透明ガラス体24からなる透明封止部材20とを有する。なお、実装基板18は例えばAlN(窒化アルミニウム)にて構成される。 First, as shown in FIG. 1, an optical component 10 manufactured by the method for manufacturing an optical component according to the present embodiment contains, for example, at least one optical element 12 that emits ultraviolet light and an optical element 12. And the package 14. The package 14 has, for example, a plate-shaped mounting substrate 18 having the mounting surface 16 of the optical element 12, and a transparent sealing member 20 made of a transparent glass body 24 that is metal-bonded to the mounting substrate 18. The mounting substrate 18 is made of, for example, AlN (aluminum nitride).

光学素子12は、上述したように、実装基板18の上記実装面16に実装される。光学素子12は、図示しないが、例えばサファイア基板(熱膨張係数:7.7×10−6/℃)上に、量子井戸構造を具備したGaN系結晶層が積層されて構成されている。光学素子12の実装方法としては、例えば光出射面12aを透明封止部材20に対面させて実装する、いわゆるフェイスアップ実装を採用している。すなわち、光学素子12から導出された端子(図示せず)と、実装基板18上に形成された回路配線(図示せず)とを例えばボンディングワイヤ(図示せず)にて電気的に接続させる。The optical element 12 is mounted on the mounting surface 16 of the mounting substrate 18, as described above. Although not shown, the optical element 12 is formed by stacking, for example, a GaN-based crystal layer having a quantum well structure on a sapphire substrate (coefficient of thermal expansion: 7.7×10 −6 /° C.). As a mounting method of the optical element 12, for example, so-called face-up mounting is adopted in which the light emitting surface 12a is mounted so as to face the transparent sealing member 20. That is, the terminal (not shown) led out from the optical element 12 and the circuit wiring (not shown) formed on the mounting substrate 18 are electrically connected by, for example, a bonding wire (not shown).

透明封止部材20は、上面閉塞、下面開口の筒状に形成され、実装基板18の実装面16に実装された光学素子12を囲む凹部22を有する。透明封止部材20の外形形状は、例えば円筒状、多角筒状等である。もちろん、透明封止部材20は、凹部22を有しない平板状であってもよい。 The transparent sealing member 20 is formed in a cylindrical shape having an upper surface closed and a lower surface opening, and has a recess 22 surrounding the optical element 12 mounted on the mounting surface 16 of the mounting substrate 18. The outer shape of the transparent sealing member 20 is, for example, a cylindrical shape, a polygonal tube shape, or the like. Of course, the transparent sealing member 20 may have a flat plate shape without the recess 22.

透明封止部材20の寸法としては、高さが0.5〜10mm、外径が3.0〜10mmである。なお、光学素子12の寸法としては、厚みが0.005〜0.5mm、図示しないが、上面から見た縦の寸法が0.5〜2.0mm、横の寸法が0.5〜2.0mmである。 The transparent sealing member 20 has a height of 0.5 to 10 mm and an outer diameter of 3.0 to 10 mm. The optical element 12 has a thickness of 0.005 to 0.5 mm, a vertical dimension of 0.5 to 2.0 mm and a horizontal dimension of 0.5 to 2. It is 0 mm.

そして、この光学部品10の透明封止部材20は、透明ガラス体24と、該透明ガラス体24のうち、実装基板18との接合面24a(端面24aともいう)に固着された複数の粒子26とを有する。 The transparent sealing member 20 of the optical component 10 includes a transparent glass body 24 and a plurality of particles 26 fixed to a bonding surface 24 a (also referred to as an end surface 24 a) of the transparent glass body 24 with the mounting substrate 18. Have and.

また、透明封止部材20と実装基板18との接合部分は、透明封止部材20の接合面24a側に形成された第1金属めっき層28aと、実装基板18のうち、少なくとも透明封止部材20が接合される部分に形成された第2金属めっき層28bと、第1金属めっき層28aと第2金属めっき層28bとの間に形成されたろう材30とを有する。 Further, the bonding portion between the transparent sealing member 20 and the mounting substrate 18 is at least the transparent sealing member of the first metal plating layer 28a formed on the bonding surface 24a side of the transparent sealing member 20 and the mounting substrate 18. It has the 2nd metal plating layer 28b formed in the part to which 20 is joined, and the brazing material 30 formed between the 1st metal plating layer 28a and the 2nd metal plating layer 28b.

第1金属めっき層28aとしては、例えばAu/Sn膜、Au膜、Ni膜等を用いることができる。第2金属めっき層28bとしては、例えばAu/Sn膜、Au膜、Ag膜、Ni膜等を用いることができる。ろう材30としては、例えばAg/Snロウ、Au/Snロウ等を用いることができる。 As the first metal plating layer 28a, for example, an Au/Sn film, an Au film, a Ni film or the like can be used. As the second metal plating layer 28b, for example, an Au/Sn film, an Au film, an Ag film, a Ni film or the like can be used. As the brazing material 30, for example, Ag/Sn solder, Au/Sn solder, or the like can be used.

粒子26は、例えば図2Aに示すように、窒化物、炭化物又はホウ化物のセラミック粒子26aを選択することができる。この場合、セラミック粒子26aの構成材料としては、例えばAlN(融点:2200℃)、Si(融点:1900℃)、SiC(融点:2730℃)、WC(融点:2870℃)又はMoC(融点:2687℃)、BN(融点:2730℃)、BC(融点:2763℃)、MoB(融点:2823℃)又はWB(融点:3073℃)等を選択することができる。セラミック粒子26aの平均粒径は0.1〜10μmの範囲であることが好ましい。The particles 26 can be selected from nitride, carbide or boride ceramic particles 26a, for example, as shown in FIG. 2A. In this case, as a constituent material of the ceramic particles 26a, for example, AlN (melting point: 2200° C.), Si 3 N 4 (melting point: 1900° C.), SiC (melting point: 2730° C.), WC (melting point: 2870° C.) or Mo 2 C (melting point: 2687° C.), BN (melting point: 2730° C.), B 4 C (melting point: 2763° C.), MoB (melting point: 2823° C.), WB (melting point: 3073° C.), or the like can be selected. The average particle size of the ceramic particles 26a is preferably in the range of 0.1 to 10 μm.

ここで、本実施の形態に係る光学部品10の製造方法について図3〜図5Dを参照しながら説明する。 Here, a method of manufacturing the optical component 10 according to the present embodiment will be described with reference to FIGS. 3 to 5D.

先ず、図3のステップS1において、透明封止部材20の実装基板18との接合面24aに、複数の粒子26を固着する(粒子固着工程)。これによって、本実施の形態に係る透明封止部材20が完成する。その後、ステップS2において、透明封止部材20の接合面24aと実装基板18とを金属接合する(金属接合工程)。 First, in step S1 of FIG. 3, a plurality of particles 26 are fixed to the bonding surface 24a of the transparent sealing member 20 with the mounting substrate 18 (particle fixing step). As a result, the transparent sealing member 20 according to this embodiment is completed. Then, in step S2, the bonding surface 24a of the transparent sealing member 20 and the mounting substrate 18 are metal-bonded (metal bonding step).

金属接合工程(S2)は、ステップS2aにおいて、透明封止部材20のうち、複数の粒子26が固着された部分に第1金属めっき層28aを形成する。その後、ステップS2bにおいて、実装基板18のうち、少なくとも透明封止部材20が接合される部分に第2金属めっき層28bを形成する。その後、ステップS2cにおいて、透明封止部材20の第1金属めっき層28aと実装基板18の第2金属めっき層28bとをろう材30にて接合する。これによって、本実施の形態に係る光学部品10が完成する。 In the metal bonding step (S2), in step S2a, the first metal plating layer 28a is formed on the portion of the transparent sealing member 20 to which the plurality of particles 26 are fixed. Then, in step S2b, the second metal plating layer 28b is formed on at least the portion of the mounting substrate 18 to which the transparent sealing member 20 is joined. Then, in step S2c, the first metal plating layer 28a of the transparent sealing member 20 and the second metal plating layer 28b of the mounting substrate 18 are joined with the brazing material 30. As a result, the optical component 10 according to this embodiment is completed.

次に、上述した粒子固着工程(S1)について図4A〜図6Dを参照しながら説明する。 Next, the particle fixing step (S1) described above will be described with reference to FIGS. 4A to 6D.

先ず、透明ガラス体24を作製する。透明ガラス体24の作製方法は、(a)バルク母材からの切り出し加工、(b)高温モールド成形、(c)粉末焼結法等がある。 First, the transparent glass body 24 is produced. Examples of the method for producing the transparent glass body 24 include (a) cutting out from a bulk base material, (b) high temperature molding, (c) powder sintering method, and the like.

切り出し加工は、透明ガラス体24のバルク母材から切り出し加工を行って、図4Aに示すように、透明ガラス体24を作製する。高温モールド成形は、高温で型に材料を流し込む、又は型に材料片を入れておき、高温で型状に変形させて、図4Aに示すように、透明ガラス体24を作製する。 The cutting process is performed from the bulk base material of the transparent glass body 24 to produce the transparent glass body 24 as shown in FIG. 4A. In the high temperature molding, a material is poured into a mold at a high temperature, or a material piece is put in the mold and is deformed into a mold at a high temperature to produce a transparent glass body 24 as shown in FIG. 4A.

粉末焼結法は、例えば成形型にシリカ粉体と有機化合物とを含む成形スラリーを鋳込み、有機化合物相互の化学反応、例えば分散媒と硬化剤若しくは硬化剤相互の化学反応により固化させた後、成形型から離型して、図4Bに示すように、透明ガラス体24の前駆体32を作製する。その後、前駆体32を熱処理して、透明ガラス体24を作製する。 The powder sintering method is, for example, casting a molding slurry containing silica powder and an organic compound in a molding die, and after solidifying by a chemical reaction between the organic compounds, for example, a dispersion medium and a curing agent or a curing agent mutual chemical reaction, The mold 32 is released from the mold to prepare a precursor 32 of the transparent glass body 24 as shown in FIG. 4B. Then, the precursor 32 is heat-treated to produce the transparent glass body 24.

次に、透明ガラス体24の端面24aに粒子26を固着する(図2A参照)。透明ガラス体24の端面24aにセラミック粒子26aを固着する方法としては、例えば以下の2つの方法が挙げられる。 Next, the particles 26 are fixed to the end surface 24a of the transparent glass body 24 (see FIG. 2A). As a method of fixing the ceramic particles 26a to the end surface 24a of the transparent glass body 24, for example, the following two methods can be mentioned.

すなわち、第1の方法は、図5Aに示すように、融点の高い板材、例えばモリブデン製の板材40上にセラミック粉末42を配置し、その後、図5Bに示すように、その上に透明ガラス体24の前駆体32の端面32a又は透明ガラス体24の端面24aを下にして載置(静置が好ましい)する。その後、図5Cに示すように、セラミック粉末42の融点より低い温度(好ましくは、板材40の融点より低い温度。以下、同様である。)で熱処理を行う。図5Bの工程で、前駆体32を用いた場合は、前駆体32が焼結して透明ガラス体24になる。その後、図5Dに示すように、板材40を取り外すことで、接合面24aにセラミック粒子26aが固着された透明封止部材20を得る。 That is, in the first method, as shown in FIG. 5A, a ceramic powder 42 is placed on a plate material having a high melting point, for example, a plate material 40 made of molybdenum, and then, as shown in FIG. 5B, a transparent glass body is placed thereon. The end surface 32a of the precursor 32 of 24 or the end surface 24a of the transparent glass body 24 is placed downward (preferably standing). Thereafter, as shown in FIG. 5C, heat treatment is performed at a temperature lower than the melting point of the ceramic powder 42 (preferably a temperature lower than the melting point of the plate material 40. The same applies hereinafter). When the precursor 32 is used in the step of FIG. 5B, the precursor 32 is sintered to become the transparent glass body 24. Thereafter, as shown in FIG. 5D, the plate member 40 is removed to obtain the transparent sealing member 20 in which the ceramic particles 26a are fixed to the joint surface 24a.

第2の方法は、先ず、図6Aに示すように、透明ガラス体24の前駆体32の端面32a又は透明ガラス体24の端面24aに、ペースト化したセラミック粉末42を印刷、あるいはディッピング、あるいはスプレー、あるいはハケ塗り等の方法で塗布する。その後、図6Bに示すように、乾燥した後に、融点の高い板材、例えばモリブデン製の板材40上に、透明ガラス体24の前駆体32又は透明ガラス体24を載置(静置が好ましい)する。その後、図6Cに示すように、セラミック粉末42の融点より低い温度で熱処理を行う。図6Bの工程で、前駆体32を用いた場合は、前駆体32が焼結して透明ガラス体24になる。その後、図6Dに示すように、板材40を取り外すことで、接合面24aにセラミック粒子26aが固着された透明封止部材20を得る。 In the second method, as shown in FIG. 6A, first, the end surface 32a of the precursor 32 of the transparent glass body 24 or the end surface 24a of the transparent glass body 24 is printed, dipped, or sprayed with the pasted ceramic powder 42. Alternatively, it is applied by a method such as brush coating. Thereafter, as shown in FIG. 6B, after drying, the precursor 32 of the transparent glass body 24 or the transparent glass body 24 is placed (preferably standing) on a plate material having a high melting point, for example, a plate material 40 made of molybdenum. .. Then, as shown in FIG. 6C, heat treatment is performed at a temperature lower than the melting point of the ceramic powder 42. When the precursor 32 is used in the step of FIG. 6B, the precursor 32 is sintered to become the transparent glass body 24. Then, as shown in FIG. 6D, the plate member 40 is removed to obtain the transparent sealing member 20 in which the ceramic particles 26a are fixed to the joint surface 24a.

上述の例では、粒子26としてセラミック粒子26aを用いた例を示したが、その他、図2Bに示すように、金属粒子26bであってもよい。この場合、金属粒子26bの構成材料としては、例えばMo(融点:2623℃)、W(融点:3422℃)、Ti(融点:1668℃)、Zr(融点:1855℃)、Pt(融点:1768℃)、B(融点:2076℃)、Cr(融点:1907℃)又はIr(融点:2447℃)等を選択することができる。 In the above-mentioned example, the example in which the ceramic particles 26a are used as the particles 26 is shown, but in addition, as shown in FIG. 2B, the metal particles 26b may be used. In this case, as a constituent material of the metal particles 26b, for example, Mo (melting point: 2623° C.), W (melting point: 3422° C.), Ti (melting point: 1668° C.), Zr (melting point: 1855° C.), Pt (melting point: 1768). C.), B (melting point: 2076° C.), Cr (melting point: 1907° C.), Ir (melting point: 2447° C.) and the like can be selected.

上記粒子26は、図2Cに示すように、金属間化合物粒子26cであってもよい。この場合、金属間化合物粒子26cの構成材料としては、ケイ化物であることが好ましく、例えばMoSi(融点:2030℃)、WSi(融点:2160℃)等を選択することができる。The particles 26 may be intermetallic compound particles 26c, as shown in FIG. 2C. In this case, the constituent material of the intermetallic compound particles 26c is preferably a silicide, and for example, MoSi 2 (melting point: 2030° C.), WSi 2 (melting point: 2160° C.) or the like can be selected.

透明封止部材20は、実装基板18と接合する部分の表面粗さRaが0.1〜10μmであることが好ましい。実装基板18と接合する部分の表面粗さRaとは、接合面24a自体の表面粗さではなく、接合面24aに粒子26(セラミック粒子26a、あるいは金属粒子26b、あるいは金属間化合物粒子26c)を固着した後の表面粗さを示す。 The transparent sealing member 20 preferably has a surface roughness Ra of 0.1 to 10 μm at a portion to be joined to the mounting substrate 18. The surface roughness Ra of the portion bonded to the mounting substrate 18 is not the surface roughness of the bonding surface 24a itself, but the particles 26 (ceramic particles 26a, metal particles 26b, or intermetallic compound particles 26c) on the bonding surface 24a. The surface roughness after fixing is shown.

表面粗さRaは以下のように測定した。例えば図7Aに示すように、透明封止部材20の接合面24aのうち、予め設定した測定ラインLaに沿った例えばX線CT画像を取得した。その後、図7Bに示すように、取得したX線CT画像のうち、接合面24aから露出(突出)する粒子26による凸部50を複数個選択する。例えば凸部50の高さhが大きいものから順に例えば5つ選択する。そして、選択した5つの凸部50の高さhの平均値を表面粗さRaとした。 The surface roughness Ra was measured as follows. For example, as shown in FIG. 7A, for example, an X-ray CT image of the joint surface 24a of the transparent sealing member 20 along a preset measurement line La was acquired. Then, as shown in FIG. 7B, a plurality of convex portions 50 formed by the particles 26 exposed (projecting) from the bonding surface 24a are selected from the acquired X-ray CT image. For example, for example, five convex portions 50 are selected in descending order of height h. Then, the average value of the heights h of the selected five convex portions 50 was defined as the surface roughness Ra.

このように、本実施の形態においては、透明封止部材20の実装基板18との接合面24aに、複数の粒子26を固着する粒子固着工程と、透明封止部材20と実装基板18とを金属接合する金属接合工程とを有することから、以下のような作用効果を奏する。 As described above, in the present embodiment, the particle fixing step of fixing the plurality of particles 26 to the bonding surface 24a of the transparent sealing member 20 with the mounting substrate 18, and the transparent sealing member 20 and the mounting substrate 18 are performed. Since it has a metal bonding step of metal bonding, the following operational effects are achieved.

すなわち、透明封止部材20の実装基板18との接合面24aに、複数の粒子26を固着するようにしたので、透明封止部材20のうち、複数の粒子26が固着された部分に第1金属めっき層28aを形成したとき、第1金属めっき層28aの複数の粒子26に対する密着性が透明ガラス体24に対する密着性よりも良好なため、透明ガラス体24からなる透明封止部材20との密着性が改善される。その結果、透明封止部材20と第1金属めっき層28aとの間に、多層構造の蒸着膜を形成する必要がなくなる。これは、光学部品10の製造工程の簡略化、工数の低減化、製造コストの低廉化につながる。 That is, since the plurality of particles 26 are fixed to the joint surface 24 a of the transparent sealing member 20 with the mounting substrate 18, the first portion is attached to the portion of the transparent sealing member 20 to which the plurality of particles 26 are fixed. When the metal plating layer 28a is formed, the adhesion of the first metal plating layer 28a to the plurality of particles 26 is better than the adhesion to the transparent glass body 24. Adhesion is improved. As a result, it is not necessary to form a vapor deposition film having a multilayer structure between the transparent sealing member 20 and the first metal plating layer 28a. This leads to simplification of the manufacturing process of the optical component 10, reduction of man-hours, and reduction of manufacturing cost.

粒子固着工程の第1の方法では、セラミック粉末42が配置された板材40の上に透明ガラス体24の端面24a又は透明ガラス体24の前駆体32を端面32aを下にして載置し、透明ガラス体24又は透明ガラス体24の前駆体32をセラミック粉末42の融点より低い温度で熱処理を行うようにしたので、容易に透明封止部材20の実装基板18との接合面24aに、複数のセラミック粒子26aを固着することができる。これは、金属粒子26bや金属間化合物粒子26cでも同様である。 In the first method of the particle fixing step, the end surface 24a of the transparent glass body 24 or the precursor 32 of the transparent glass body 24 is placed with the end surface 32a facing down on the plate material 40 on which the ceramic powder 42 is arranged, and the transparent material is transparent. Since the glass body 24 or the precursor 32 of the transparent glass body 24 is heat-treated at a temperature lower than the melting point of the ceramic powder 42, a plurality of bonding surfaces 24a of the transparent sealing member 20 with the mounting substrate 18 can be easily formed. The ceramic particles 26a can be fixed. The same applies to the metal particles 26b and the intermetallic compound particles 26c.

粒子固着工程の第2の方法では、透明ガラス体24の端面24a又は透明ガラス体24の前駆体32の端面32aに、ペースト化したセラミック粉末42を塗布し、板材40の上に透明ガラス体24の端面24a又は透明ガラス体24の前駆体32を端面32aを下にして載置し、透明ガラス体24又は透明ガラス体24の前駆体32をセラミック粉末42の融点より低い温度で熱処理を行うようにしたので、容易に透明封止部材20の実装基板18との接合面24aに、複数のセラミック粒子26aを固着することができる。この場合、セラミック粒子26aの消費を抑えることができるため、材料費の点でも有利になる。また、ペースト化したセラミック粉末42を塗布する場合、透明ガラス体24の端面24a又は透明ガラス体24の前駆体32の端面32aのうち、任意の場所に複数のセラミック粒子26aを固着することが可能となり、設計の自由度も向上する。これらの効果は、金属粒子26bや金属間化合物粒子26cでも同様である。 In the second method of the particle fixing step, the pasted ceramic powder 42 is applied to the end surface 24a of the transparent glass body 24 or the end surface 32a of the precursor 32 of the transparent glass body 24, and the transparent glass body 24 is applied onto the plate material 40. End surface 24a or the precursor 32 of the transparent glass body 24 is placed with the end surface 32a facing down, and the transparent glass body 24 or the precursor 32 of the transparent glass body 24 is heat-treated at a temperature lower than the melting point of the ceramic powder 42. Therefore, the plurality of ceramic particles 26a can be easily fixed to the joint surface 24a of the transparent sealing member 20 with the mounting substrate 18. In this case, the consumption of the ceramic particles 26a can be suppressed, which is advantageous in terms of material cost. In addition, when applying the pasted ceramic powder 42, it is possible to fix a plurality of ceramic particles 26a at any place on the end surface 24a of the transparent glass body 24 or the end surface 32a of the precursor 32 of the transparent glass body 24. Therefore, the degree of freedom in design is improved. These effects are the same for the metal particles 26b and the intermetallic compound particles 26c.

なお、本発明に係る光学部品の製造方法及び透明封止部材の製造方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 The manufacturing method of the optical component and the manufacturing method of the transparent sealing member according to the present invention are not limited to the above-described embodiments, and it goes without saying that various configurations can be adopted without departing from the gist of the present invention. is there.

Claims (17)

少なくとも1つの光学素子(12)が実装された実装基板(18)と、前記実装基板(18)に金属接合された透明ガラス体(24)からなる透明封止部材(20)とを有する光学部品(10)の製造方法において、
前記透明封止部材(20)の前記実装基板(18)との接合面(24a)に、複数の粒子(26)を固着する粒子固着工程と、
前記透明封止部材(20)と前記実装基板(18)とを金属接合する金属接合工程とを有することを特徴とする光学部品の製造方法。
An optical component having a mounting substrate (18) on which at least one optical element (12) is mounted, and a transparent sealing member (20) made of a transparent glass body (24) metal-bonded to the mounting substrate (18). In the manufacturing method of (10),
A particle fixing step of fixing a plurality of particles (26) to a bonding surface (24a) of the transparent sealing member (20) with the mounting substrate (18);
A method of manufacturing an optical component, comprising a metal bonding step of metal-bonding the transparent sealing member (20) and the mounting substrate (18).
請求項1記載の光学部品の製造方法において、
前記金属接合工程は、
前記透明封止部材(20)のうち、前記複数の粒子(26)が固着された部分に第1金属めっき層(28a)を形成する工程と、
前記実装基板(18)のうち、少なくとも前記透明封止部材(20)が接合される部分に第2金属めっき層(28b)を形成する工程と、
前記透明封止部材(20)の前記第1金属めっき層(28a)と前記実装基板(18)の前記第2金属めっき層(28b)とをろう材(30)にて接合する工程とを有することを特徴とする光学部品の製造方法。
The method of manufacturing an optical component according to claim 1,
The metal bonding step,
A step of forming a first metal plating layer (28a) on a portion of the transparent sealing member (20) to which the plurality of particles (26) are fixed,
Forming a second metal plating layer (28b) on at least a portion of the mounting substrate (18) to which the transparent sealing member (20) is joined;
Bonding the first metal plating layer (28a) of the transparent sealing member (20) and the second metal plating layer (28b) of the mounting board (18) with a brazing material (30). A method for manufacturing an optical component, which is characterized by the above.
請求項1又は2記載の光学部品の製造方法において、
前記粒子固着工程は、
板材(40)の上に粉末(42)を配置する工程と、
前記粉末(42)が配置された前記板材(40)上に前記透明ガラス体(24)の端面(24a)又は前記透明ガラス体(24)の前駆体(32)を端面(32a)を下にして載置する工程と、
前記透明ガラス体(24)又は前記透明ガラス体(24)の前駆体(32)を前記粉末(42)の融点より低い温度で熱処理を行う工程と、を有することを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to claim 1 or 2,
The particle fixing step,
Placing the powder (42) on the plate (40),
The end face (24a) of the transparent glass body (24) or the precursor (32) of the transparent glass body (24) is placed on the plate member (40) on which the powder (42) is placed with the end face (32a) facing down. And the step of placing
And a step of heat-treating the transparent glass body (24) or the precursor (32) of the transparent glass body (24) at a temperature lower than the melting point of the powder (42). Method.
請求項1又は2記載の光学部品の製造方法において、
前記粒子固着工程は、
前記透明ガラス体(24)の端面(24a)又は前記透明ガラス体(24)の前駆体(32)の端面(32a)に、ペースト化した粉末(42)を塗布する工程と、
板材(40)の上に前記透明ガラス体(24)の前記端面(24a)又は前記透明ガラス体(24)の前駆体(32)の前記端面(32a)を下にして載置する工程と、
前記透明ガラス体(24)又は前記透明ガラス体(24)の前駆体(32)を前記粉末(42)の融点より低い温度で熱処理を行う工程と、を有することを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to claim 1 or 2,
The particle fixing step,
Applying a pasted powder (42) to the end surface (24a) of the transparent glass body (24) or the end surface (32a) of the precursor (32) of the transparent glass body (24);
Placing the end face (24a) of the transparent glass body (24) or the end face (32a) of the precursor (32) of the transparent glass body (24) on the plate material (40),
And a step of heat-treating the transparent glass body (24) or the precursor (32) of the transparent glass body (24) at a temperature lower than the melting point of the powder (42). Method.
請求項1〜4のいずれか1項に記載の光学部品の製造方法において、
前記粒子(26)の融点は、前記透明ガラス体(24)の融点より高いことを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to any one of claims 1 to 4,
The melting point of the particles (26) is higher than the melting point of the transparent glass body (24).
請求項1〜5のいずれか1項に記載の光学部品の製造方法において、
前記粒子(26)は、窒化物、炭化物又はホウ化物のセラミック粒子(26a)であることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to claim 1, wherein
The said particle|grain (26) is a nitride, a carbide|carbonized_material, or a boride ceramic particle (26a), The manufacturing method of the optical component characterized by the above-mentioned.
請求項6記載の光学部品の製造方法において、
前記セラミック粒子(26a)の構成材料が、AlN(窒化アルミニウム)、Si(窒化ケイ素)、SiC(炭化ケイ素)、WC(炭化タングステン)、MoC(炭化モリブデン)、BN(窒化ホウ素)、BC(炭化ホウ素)、MoB(ホウ化モリブデン)又はWB(ホウ化タングステン)であることを特徴とする光学部品の製造方法。
The method of manufacturing an optical component according to claim 6,
The constituent material of the ceramic particles (26a) is AlN (aluminum nitride), Si 3 N 4 (silicon nitride), SiC (silicon carbide), WC (tungsten carbide), Mo 2 C (molybdenum carbide), BN (boron nitride). ), B 4 C (boron carbide), MoB (molybdenum boride) or WB (tungsten boride).
請求項1〜5のいずれか1項に記載の光学部品の製造方法において、
前記粒子(26)は、金属粒子(26b)であることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to claim 1, wherein
The said particle|grain (26) is a metal particle (26b), The manufacturing method of the optical component characterized by the above-mentioned.
請求項8記載の光学部品の製造方法において、
前記金属粒子(26b)の構成材料が、Mo(モリブデン)、W(タングステン)、Ti(チタン)、Zr(ジルコニウム)、Pt(白金)、B(ホウ素)、Cr(クロム)又はIr(イリジウム)であることを特徴とする光学部品の製造方法。
The method of manufacturing an optical component according to claim 8,
The constituent material of the metal particles (26b) is Mo (molybdenum), W (tungsten), Ti (titanium), Zr (zirconium), Pt (platinum), B (boron), Cr (chromium) or Ir (iridium). And a method of manufacturing an optical component.
請求項1〜5のいずれか1項に記載の光学部品の製造方法において、
前記粒子(26)は、金属間化合物粒子(26c)であることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to claim 1, wherein
The said particle|grain (26) is an intermetallic compound particle|grain (26c), The manufacturing method of the optical component characterized by the above-mentioned.
請求項10記載の光学部品の製造方法において、
前記金属間化合物粒子(26c)の構成材料が、ケイ化物であることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to claim 10,
The method for manufacturing an optical component, wherein the constituent material of the intermetallic compound particles (26c) is a silicide.
請求項10記載の光学部品の製造方法において、
前記金属間化合物粒子(26c)の構成材料が、MoSi又はWSiであることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to claim 10,
The method for producing an optical component, wherein the constituent material of the intermetallic compound particles (26c) is MoSi 2 or WSi 2 .
請求項1〜12のいずれか1項に記載の光学部品の製造方法において、
前記粒子(26)の平均粒径が0.1〜10μmの範囲であることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to any one of claims 1 to 12,
The method for producing an optical component, wherein the particles (26) have an average particle diameter in the range of 0.1 to 10 μm.
請求項1〜13のいずれか1項に記載の光学部品の製造方法において、
前記透明封止部材(20)のうち、前記実装基板(18)と接合する部分の表面粗さRaが0.1〜10μmであることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to any one of claims 1 to 13,
A method for manufacturing an optical component, wherein a surface roughness Ra of a portion of the transparent sealing member (20) that is joined to the mounting substrate (18) is 0.1 to 10 μm.
請求項1〜14のいずれか1項に記載の光学部品の製造方法において、
前記透明ガラス体(24)は、石英ガラス又はホウ珪酸ガラスで構成されていることを特徴とする光学部品の製造方法。
The method for manufacturing an optical component according to any one of claims 1 to 14,
The method for manufacturing an optical component, wherein the transparent glass body (24) is made of quartz glass or borosilicate glass.
少なくとも1つの光学素子(12)を収容するためのパッケージ(14)に用いられ、前記光学素子(12)が実装された実装基板(18)に金属接合される透明ガラス体(24)からなる透明封止部材(20)の製造方法において、
板材(40)の上に粉末(42)を配置する工程と、
前記粉末(42)が配置された前記板材(40)上に前記透明ガラス体(24)の端面(24a)又は前記透明ガラス体(24)の前駆体(32)を端面(32a)を下にして載置する工程と、
前記粉末(42)の融点より低い温度で熱処理を行う工程と、
前記透明ガラス体(24)を前記板材(40)から取り外す工程とを経ることで、端面(24a)に粒子(26)が固着された前記透明封止部材(20)を得ることを特徴とする透明封止部材の製造方法。
A transparent glass body (24) used for a package (14) for containing at least one optical element (12) and metal-bonded to a mounting substrate (18) on which the optical element (12) is mounted. In the method for manufacturing the sealing member (20),
Placing the powder (42) on the plate (40),
The end face (24a) of the transparent glass body (24) or the precursor (32) of the transparent glass body (24) is placed on the plate member (40) on which the powder (42) is placed with the end face (32a) facing down. And the step of placing
Performing a heat treatment at a temperature lower than the melting point of the powder (42),
The transparent sealing member (20) having the particles (26) fixed to the end face (24a) is obtained by a step of removing the transparent glass body (24) from the plate material (40). A method for manufacturing a transparent sealing member.
少なくとも1つの光学素子(12)を収容するためのパッケージ(14)に用いられ、前記光学素子(12)が実装された実装基板(18)に金属接合される透明ガラス体(24)からなる透明封止部材(20)の製造方法において、
前記透明ガラス体(24)の端面(24a)又は前記透明ガラス体(24)の前駆体(32)の端面(32a)にペースト化した粉末(42)を塗布する工程と、
板材(40)の上に前記透明ガラス体(24)の前記端面(24a)又は前記透明ガラス体(24)の前駆体(32)の前記端面(32a)を下にして載置する工程と、
前記粉末(42)の融点より低い温度で熱処理を行う工程と、
前記透明ガラス体(24)を前記板材(40)から取り外す工程とを経ることで、端面(24a)に粒子(26)が固着された透明封止部材(20)を得ることを特徴とする透明封止部材の製造方法。
A transparent glass body (24) used for a package (14) for containing at least one optical element (12) and metal-bonded to a mounting substrate (18) on which the optical element (12) is mounted. In the method for manufacturing the sealing member (20),
Applying a pasted powder (42) to the end surface (24a) of the transparent glass body (24) or the end surface (32a) of the precursor (32) of the transparent glass body (24);
Placing the end face (24a) of the transparent glass body (24) or the end face (32a) of the precursor (32) of the transparent glass body (24) on the plate material (40),
Performing a heat treatment at a temperature lower than the melting point of the powder (42),
A transparent sealing member (20) having particles (26) fixed to an end face (24a) is obtained by going through the step of removing the transparent glass body (24) from the plate material (40). Manufacturing method of sealing member.
JP2019537474A 2017-08-23 2017-08-23 Manufacturing method of optical parts and manufacturing method of transparent sealing member Active JP6966556B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030083 WO2019038846A1 (en) 2017-08-23 2017-08-23 Method for producing optical component, and method for producing transparent sealing member

Publications (2)

Publication Number Publication Date
JPWO2019038846A1 true JPWO2019038846A1 (en) 2020-08-06
JP6966556B2 JP6966556B2 (en) 2021-11-17

Family

ID=65438490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019537474A Active JP6966556B2 (en) 2017-08-23 2017-08-23 Manufacturing method of optical parts and manufacturing method of transparent sealing member

Country Status (2)

Country Link
JP (1) JP6966556B2 (en)
WO (1) WO2019038846A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430526A (en) * 2021-12-30 2023-07-14 华为技术有限公司 Optical device, optical module, and optical switching system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629451A (en) * 1991-11-27 1994-02-04 Shinko Electric Ind Co Ltd Coaxial cable for high-frequency device package
JPH0992028A (en) * 1995-09-22 1997-04-04 Murata Mfg Co Ltd Conductive composition
US20030098651A1 (en) * 2001-11-29 2003-05-29 Ming-Der Lin Light-emitting device with improved reliability
JP2010267740A (en) * 2009-05-13 2010-11-25 Seiko Instruments Inc Electronic device
JP2011040577A (en) * 2009-08-11 2011-02-24 Citizen Electronics Co Ltd Method of manufacturing light-emitting device
JP2014120635A (en) * 2012-12-18 2014-06-30 Seiko Instruments Inc Optical device and method of manufacturing optical device
JP2016127255A (en) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 Light emission device
JP2016219505A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Light-emitting device
WO2017047358A1 (en) * 2015-09-17 2017-03-23 日機装株式会社 Light emitting module and method for manufacturing light emitting module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629451A (en) * 1991-11-27 1994-02-04 Shinko Electric Ind Co Ltd Coaxial cable for high-frequency device package
JPH0992028A (en) * 1995-09-22 1997-04-04 Murata Mfg Co Ltd Conductive composition
US20030098651A1 (en) * 2001-11-29 2003-05-29 Ming-Der Lin Light-emitting device with improved reliability
JP2010267740A (en) * 2009-05-13 2010-11-25 Seiko Instruments Inc Electronic device
JP2011040577A (en) * 2009-08-11 2011-02-24 Citizen Electronics Co Ltd Method of manufacturing light-emitting device
JP2014120635A (en) * 2012-12-18 2014-06-30 Seiko Instruments Inc Optical device and method of manufacturing optical device
JP2016127255A (en) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 Light emission device
JP2016219505A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Light-emitting device
WO2017047358A1 (en) * 2015-09-17 2017-03-23 日機装株式会社 Light emitting module and method for manufacturing light emitting module

Also Published As

Publication number Publication date
WO2019038846A1 (en) 2019-02-28
JP6966556B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US11195980B2 (en) Transparent sealing member and optical component
JP6966556B2 (en) Manufacturing method of optical parts and manufacturing method of transparent sealing member
JP2005191065A (en) Package for housing light-emitting element and its manufacturing method
JP2009218512A (en) Package for storing electronic element, and electronic device
JPH07335792A (en) Package for mounting semiconductor element
WO2021060475A1 (en) Electronic component mounting base and electronic device
JP3752440B2 (en) Package for storing semiconductor elements
JP3659298B2 (en) Package for storing semiconductor elements
JP3971592B2 (en) Package for storing semiconductor elements
JP3628280B2 (en) Package for storing semiconductor elements
JP3659297B2 (en) Package for storing semiconductor elements
JP3752447B2 (en) Package for storing semiconductor elements
JP3659300B2 (en) Package for storing semiconductor elements
JP3659301B2 (en) Package for storing semiconductor elements
JP4548978B2 (en) Package for storing semiconductor elements
JP3981256B2 (en) Optical semiconductor element storage package
JP3792561B2 (en) Package for storing semiconductor elements
JP3659299B2 (en) Package for storing semiconductor elements
JP2003174109A (en) Package for storing semiconductor device
JP2003124376A (en) Package for housing semiconductor device
JP2003152128A (en) Package for containing semiconductor element
JP2003152127A (en) Package for containing semiconductor element
JP2003273266A (en) Package for housing semiconductor element
JPH09162337A (en) Semiconductor element encapsulating package
JP2003007932A (en) Package for housing semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211021

R150 Certificate of patent or registration of utility model

Ref document number: 6966556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150