JPWO2019017136A1 - Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method - Google Patents

Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method Download PDF

Info

Publication number
JPWO2019017136A1
JPWO2019017136A1 JP2018568988A JP2018568988A JPWO2019017136A1 JP WO2019017136 A1 JPWO2019017136 A1 JP WO2019017136A1 JP 2018568988 A JP2018568988 A JP 2018568988A JP 2018568988 A JP2018568988 A JP 2018568988A JP WO2019017136 A1 JPWO2019017136 A1 JP WO2019017136A1
Authority
JP
Japan
Prior art keywords
bending
strain
crack
sheared
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018568988A
Other languages
Japanese (ja)
Other versions
JP6547920B2 (en
Inventor
祐輔 藤井
祐輔 藤井
健斗 藤井
健斗 藤井
雄司 山▲崎▼
雄司 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019017136A1 publication Critical patent/JPWO2019017136A1/en
Application granted granted Critical
Publication of JP6547920B2 publication Critical patent/JP6547920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

せん断加工された素板の端面での曲げ加工による割れの評価方法と予測手法を提供し、プレス金型の設計方法に反映すべき技術を提供する。せん断加工された金属板(1)をプレス成形する際における、金属板(1)のせん断加工面(10A)での変形限界を評価する変形限界の評価方法である。曲げ加工を受ける金属板(1)の曲げ外側表面とせん断加工面(10A)の境界近傍に発生するひずみの分布のうち、評価位置のせん断加工面(10A)での板厚方向Xの表面ひずみ分布の勾配と、上記せん断加工面(10A)から離れる方向に向かう曲げ加工による曲げ稜線方向Yの表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配から求めた指標値に基づき、せん断加工面(10A)での変形限界を評価したり割れを予測したりする。We will provide evaluation methods and prediction methods for cracks due to bending at the end face of sheared blanks, and provide technologies that should be reflected in the press mold design method. It is an evaluation method of the deformation limit which evaluates the deformation limit in the shear processing side (10A) of metal plate (1) at the time of press-forming metal plate (1) by which shear processing was carried out. Of the strain distribution generated near the boundary between the bending outer surface of the metal plate (1) subjected to bending and the shearing surface (10A), the surface strain in the thickness direction X on the shearing surface (10A) at the evaluation position A sheared surface based on index values obtained from the gradients of the two surface strain distributions: the gradient of the distribution and the gradient of the surface strain distribution in the bending ridge direction Y by bending away from the sheared surface (10A) The deformation limit at (10A) is evaluated or cracks are predicted.

Description

本発明は、せん断加工した後の金属板(素材)を、曲げ加工を含むプレス成形で成形して加工する際における、せん断加工面に発生する割れを評価、予測する技術、及びその技術に基づき金属板の割れを抑制可能な金型形状の設計方法(決定方法)に関する技術である。   The present invention is based on a technology for evaluating and predicting a crack generated on a sheared surface when forming and processing a metal plate (material) after shear processing by press forming including bending processing, and the technology It is a technique regarding the design method (determination method) of the die shape which can suppress the crack of a metal plate.

プレス成形は、代表的な金属加工技術の一つであり、一対の金型の間に金属板を挟んで挟圧し、その金属板を金型の型形状に倣うように成形することで、金属板を所望の成形品形状に加工する技術である。そして、このプレス成形は、自動車部品、機械部品、建築部材、家電製品等、幅広い製造分野で用いられている。
このプレス成形における成形性の主な課題の一つとして割れがある。この割れには、主に、素材の引張り変形による割れと、曲げ変形による割れと、それらの複合変形による割れとがある。引張り変形による割れは素材の延性に大きく起因し、成形限界線図を用いた割れの予測手法で評価することが一般的である。一方、曲げ変形による割れは、金型の曲げ半径Rと素材の板厚tとの比である曲げ性R/tに大きく起因し、素材の表面に亀裂が発生しない最小の曲げ半径と板厚tの比を実験的に求めることで、割れの予測をする方法が一般的である。引張り変形と曲げ変形の複合変形による割れの予測手法としては、例えば、金型の曲げ半径Rと金属板に発生する張力を用いた予測手法(特許文献1)がある。
Press forming is one of the representative metal processing techniques. A metal plate is sandwiched between a pair of molds and pressed, and the metal sheet is shaped so as to conform to the mold shape of the mold. This is a technology for processing a plate into a desired molded product shape. And this press molding is used in a wide manufacturing field, such as a car part, a machine part, a construction member, a household appliance, etc.
Cracking is one of the main problems of formability in this press molding. The cracks mainly include a crack due to tensile deformation of the material, a crack due to bending deformation, and a crack due to their combined deformation. Cracking due to tensile deformation is largely attributable to the ductility of the material, and is generally evaluated by a prediction method of cracking using a forming limit diagram. On the other hand, cracking due to bending deformation is largely attributed to the bendability R / t, which is the ratio of the bending radius R of the mold to the plate thickness t of the material, and the minimum bending radius and plate thickness at which cracking does not occur on the surface of the material It is common to predict cracking by experimentally determining the ratio of t. As a prediction method of a crack due to combined deformation of tensile deformation and bending deformation, there is, for example, a prediction method using a bending radius R of a mold and a tension generated in a metal plate (Patent Document 1).

上記の割れは、いずれも金属板の表面から亀裂が発生し、亀裂が板厚方向に貫通する場合の事例である。
しかし、その他に、割れ発生の事例として、せん断加工された素材の端面が変形を受けることで、端面から亀裂が発生して割れに至る事例がある。素材の端面は、せん断加工により強い変形をすでに受けているため延性に乏しく、また、破断面やバリといった凹凸へ応力が集中することで、亀裂が発生しやすいという特徴がある。このため、割れに対する評価方法や予測方法が上記とは異なる。
The above-mentioned cracks are all cases in which a crack is generated from the surface of a metal plate and the crack penetrates in the thickness direction.
However, as an example of the occurrence of a crack, there is a case where a crack is generated from the end surface and the crack is caused by the deformation of the end surface of the sheared material. The end face of the material is poor in ductility because it has already undergone strong deformation by shear processing, and is characterized in that a crack is easily generated by concentration of stress on irregularities such as a fracture surface and burrs. For this reason, the evaluation method and the prediction method for cracking are different from the above.

従来では、この素材の端面の割れに関しては、引張り変形によって引き起こされる伸びフランジ割れに対する評価方法について多くの検討がなされており、例えば、端面に沿った方向のひずみ勾配や端面と直交する面内方向のひずみ分布の勾配とを用いた予測手法(特許文献2)などが提案されている。ここでいうひずみ分布の勾配(本明細書では「ひずみ勾配」とも記載する)とは、ある長さに分布するひずみの単位長さ当たりのひずみの変化である。しかし、曲げ変形や、引張り変形と曲げ変形の複合変形により引き起こされる素材の端面の割れに関しては、有効な予測方法や評価方法が少ない。しかしながら、このような素材の端面での割れに関し、特に引張り強度590MPa級以上の高強度鋼板で課題として顕在しはじめている。   Conventionally, with regard to cracking of the end face of this material, many studies have been made on evaluation methods for stretch flange cracking caused by tensile deformation, for example, strain gradient in the direction along the end face and in-plane direction orthogonal to the end face The prediction method (patent document 2) etc. which used the gradient of the distortion distribution of, etc. are proposed. The gradient of strain distribution (herein also referred to as “strain gradient” in this specification) is a change in strain per unit length of strain distributed over a certain length. However, there are few effective prediction methods and evaluation methods regarding the crack of the end face of the material caused by the bending deformation and the combined deformation of the tensile deformation and the bending deformation. However, with regard to cracking at the end face of such a material, in particular, high strength steel sheets having a tensile strength of 590 MPa or more have begun to appear as problems.

特許第5630312号公報Patent No. 5630312 特許第5146395号公報Patent No. 5146395 gazette

風間 宏一、永井 康友著「板の曲げ加工時に生ずる端部反り変形の解析」、塑性と加工、第45巻、第516号、2004年、p.40−44Kazama, K. and Nagai, Y., "Analysis of End-Curl Deformation During Bending of Plates", Plasticity and Processing, Volume 45, No. 516, 2004, p. 40-44

本発明は、上記のような点に着目してなされたものであり、せん断加工された素板(金属板)の端面の曲げ変形や引張り変形と曲げ変形の複合変形により引き起こされる割れの評価や予測の手法を提供し、プレス金型の設計方法に反映すべき技術を提供することを目的とする。   The present invention has been made focusing on the above points, and evaluation of cracks caused by bending deformation of the end face of a sheared base plate (metal plate), combined deformation of tensile deformation and bending deformation, The purpose is to provide prediction techniques and to provide technologies that should be reflected in the press die design method.

課題を解決するために、本発明の一態様は、せん断加工された金属板を曲げ加工を含むプレス成形で成形する際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、曲げ加工を受ける金属板の曲げ外側表面とせん断加工面との境界近傍に発生するひずみの分布のうち、評価位置における、せん断加工面での板厚方向の表面ひずみ分布の勾配と上記曲げ加工による曲げ稜線方向の表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配から求めた指標値に基づき、せん断加工面での変形限界を評価する。   In order to solve the problem, one aspect of the present invention is a deformation limit for evaluating the deformation limit of a sheared surface of the metal plate in forming the sheared metal plate by press forming including bending. In the evaluation method, of the distribution of strain generated in the vicinity of the boundary between the bending outer surface and the sheared surface of a metal plate subjected to bending, the surface strain distribution in the thickness direction at the sheared surface at the evaluation position. The deformation limit on the sheared surface is evaluated on the basis of index values obtained from the two surface strain distribution gradients of the gradient and the surface strain distribution gradient in the bending ridge direction by the bending.

本発明の一態様によれば、対象となる金属板(素材)をせん断加工後に変形させる際における、端面の変形限界が評価出来る。この結果、端面からの割れの発生有無を精度よく予測したり、割れの発生を抑えたりすることができる金型形状の設計が可能となる。
また、本発明の一態様によれば、単純曲げ、曲げと引張りとの複合変形、引張り変形の複数の形態を一つの指標で評価することが出来る。
According to one aspect of the present invention, it is possible to evaluate the deformation limit of the end face when deforming a target metal plate (material) after shearing. As a result, it is possible to design a mold shape that can predict the presence or absence of a crack from the end face with high accuracy or suppress the occurrence of a crack.
Further, according to one aspect of the present invention, it is possible to evaluate a plurality of forms of simple bending, combined deformation of bending and tension, and tensile deformation with one index.

曲げ加工を含むプレス成形で成形した成形品の一例を示す図である。It is a figure which shows an example of the molded article shape | molded by press molding including a bending process. 曲げ加工時に型からの浮きが発生した状態の一例を示す図である。It is a figure which shows an example of the state which the floatation from the type | mold generate | occur | produced at the time of bending. 割れひずみと指標値との関係から分かる、変形限界線や端面での割れの発生しない領域の例を示す図である。It is a figure which shows the example of the area | region which a crack does not generate | occur | produce in a deformation | transformation limit line or an end surface which is understood from the relationship between a crack distortion and an index value. 単純曲げ成形を行う例示する模式図で、(a)は側面図、(b)は試験片1とパンチ21との関係を示す平面図である。It is a schematic diagram which illustrates simple bend-forming, (a) is a side view, (b) is a top view showing the relation between test piece 1 and punch 21. As shown in FIG. 複合曲げ成形を行う例示する模式図で、(a)は側面図、(b)は試験片1とパンチ32との関係を示す平面図である。It is a schematic diagram which illustrates compound bending, and (a) is a side view and (b) is a top view showing the relation between test piece 1 and punch 32. As shown in FIG. 割れひずみと面内方向ひずみ勾配との関係を示す図である。It is a figure which shows the relationship between crack distortion and in-plane direction strain gradient. 割れひずみと厚さ方向のひずみ勾配との関係を示す図である。It is a figure which shows the relationship between a crack distortion and the strain gradient of thickness direction. 割れひずみと正規化した厚さ方向のひずみ勾配との関係を示す図である。It is a figure which shows the relationship between a crack distortion and the distortion gradient of the thickness direction normalized. 割れひずみと、2つのひずみ勾配の自乗平均からなる指標値との関係を示す図である。It is a figure which shows the relationship between crack distortion and the index value which consists of a root mean square of two distortion gradients. 割れひずみと、2つのひずみ勾配の自乗平均からなる指標値(正規化した値)との関係を示す図である。It is a figure which shows the relationship between crack distortion and the index value (normalized value) which consists of a root mean square of two distortion gradients. 割れひずみと、2つのひずみ勾配の和からなる指標値との関係を示す図である。It is a figure which shows the relationship between crack distortion and the index value which consists of two distortion gradients. 割れひずみと、2つのひずみ勾配の和からなる指標値(正規化した値)との関係を示す図である。It is a figure which shows the relationship between crack distortion and the index value (normalized value) which consists of a sum of two distortion gradients. 各サンプルでの決定係数を示す図である。It is a figure which shows the determination coefficient in each sample.

次に、本発明に基づく実施形態について図面を参照しつつ説明する。
金属板を曲げ加工を含むプレス成形で成形した成形品の例を、図1に示す。図1は鞍状形状にプレス成形した場合の例である。この図1において、符号1Bは、金属板1を曲げる際の曲げ線位置となる曲げ稜線方向となる。符号10Aは、端面(せん断加工面)となる。また符号Zが、曲げ外側表面とせん断加工面との境界近傍のうちの、亀裂が発生しやすい箇所の例である。
そして、発明者らが種々の検討をした結果、素材1(金属板1)をプレス成形した際に、図2に示すように、素材1の端面は曲げ加工時に反りが発生(例えば、非特許文献1)して、素材1の端面側が金型の曲げ部から浮く。このため、素材1の中央部側(図1の符号1Ba参照)では、金型の曲げ半径Rに近い曲げ半径で曲げ変形を受けるが、素材1の端面側(図1の1Bb参照)では、金型の曲げ半径Rとは異なる曲げ半径で曲げ変形を受ける。
Next, an embodiment based on the present invention will be described with reference to the drawings.
The example of the molded article which shape | molded the metal plate by press molding including a bending process is shown in FIG. FIG. 1 shows an example of press forming into a bowl shape. In FIG. 1, reference numeral 1 B is a bending ridge direction which is a bending line position when bending the metal plate 1. The reference numeral 10A is an end surface (sheared surface). Further, a symbol Z is an example of a portion in the vicinity of the boundary between the bent outer surface and the sheared surface where a crack is likely to occur.
Then, as a result of various investigations by the inventors, when the material 1 (metal plate 1) is press-formed, as shown in FIG. 2, the end face of the material 1 is warped at the time of bending (for example, non-patent According to the document 1), the end face side of the material 1 floats from the bending portion of the mold. For this reason, on the central portion side of the material 1 (see symbol 1Ba in FIG. 1), bending deformation is received at a bending radius close to the bending radius R of the mold, but on the end surface side of the material 1 (see 1Bb in FIG. 1) It receives bending deformation at a bending radius different from that of the mold.

このとき、曲げ変形と引張り変形との複合変形の場合、引張り変形を強めていくと、金型に対する素材端面の浮きは減少する傾向があるが、素材1の強度が590MPa以上または板厚が1.0mm以上となると、素材1の端面10Aでの浮きが無くなる前に割れが発生してしまうことが分かった。したがって、従来のように、金型の曲げ半径Rを用いた割れの予測手法では、端面10Aからの割れを精度よく予測できないことが分かった。
また、曲げ変形時には素材1の板厚方向Xに非常に大きなひずみ勾配が発生するため、素材1の端面10Aに沿った方向のひずみ勾配や端面10Aと直交する面内方向のひずみ勾配は相対的に影響が小さくなる。そのため、それらを用いた従来の予測手法では、曲げ変形が含まれるプレス成形の場合、端面10Aの割れを予測することが困難であることが分かった。
At this time, in the case of combined deformation of bending deformation and tensile deformation, when the tensile deformation is intensified, the lifting of the end face of the material relative to the mold tends to decrease, but the strength of the material 1 is 590 MPa or more or the thickness is 1 It was found that, if the thickness was more than 0 mm, cracking occurred before the lifting of the end face 10A of the material 1 was lost. Therefore, it has been found that the crack prediction method using the bending radius R of the mold can not predict cracks from the end face 10A with high accuracy as in the prior art.
In addition, since a very large strain gradient occurs in the thickness direction X of the material 1 during bending deformation, the strain gradient in the direction along the end surface 10A of the material 1 and the strain gradient in the in-plane direction orthogonal to the end surface 10A are relative. Less impact on Therefore, in the conventional prediction method using them, it was found that it is difficult to predict a crack of the end face 10A in the case of press forming including bending deformation.

更に、発明者らは、せん断加工された素材1の端面10Aに様々な変形を加えて割れの有無を検討した結果、下記の知見を得た。
端面10Aからの亀裂は、その発生部に与えられる最大主ひずみの方向と直交する方向に進展する。その際、最大主ひずみの方向と直交する方向のひずみ勾配が大きいほど、亀裂の発生と進展を抑制する傾向がある。そして、最大主ひずみの方向と直交する様々な方向のうち、ひずみ勾配が最大となる方向の値が最も抑制効果を発揮する。しかし、ひずみ勾配が最大となる方向は素材1の端面10Aに加わる変形によって一定とはならず、また、前述のように素材1の端面10Aは曲げ変形時に反りが発生するため、最大となる方向を特定することは難しい。
Furthermore, inventors added various deformations to the end face 10A of the sheared material 1 and examined the presence or absence of a crack, and obtained the following findings.
The crack from the end face 10A develops in the direction orthogonal to the direction of the maximum principal strain given to the generation part. At that time, as the strain gradient in the direction orthogonal to the direction of the maximum principal strain is larger, there is a tendency to suppress the generation and progress of the crack. Then, among various directions orthogonal to the direction of the maximum principal strain, the value in the direction in which the strain gradient is maximum exhibits the most suppression effect. However, the direction in which the strain gradient is maximum is not constant due to the deformation applied to the end face 10A of the material 1 and, as described above, the end face 10A of the material 1 warps during bending deformation, so It is difficult to identify

そして、本実施形態の方法は、プレス加工における、金属板1のせん断加工面10Aでの単純曲げ変形、及び引張り変形と曲げ変形が複合した変形のいずれでもあっても、せん断加工面10A(せん断によって形成された端面10A)での変形限界の評価や割れの予測を、一つの指標値で統一的に且つ精度良く評価可能とするための技術を提供するものである。
発明者らは、上記のような知見に基づいて、亀裂発生部の近傍Zにおける板厚方向Xの表面ひずみ分布の勾配と、曲げ稜線方向Yの表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配をパラメータとして、金属板1のせん断加工面10Aでの変形限界を評価する評価方法、それに基づいた端面割れの予測方法を考案した。
And, in the method of this embodiment, the sheared surface 10A (shearing, whether it is a simple bending deformation at the sheared surface 10A of the metal plate 1 or a combination of a tensile deformation and a bending deformation in press working) The present invention provides a technique for making it possible to uniformly and accurately evaluate the evaluation of deformation limit and the prediction of cracking at the end face 10A) formed by the above.
Based on the above findings, the inventors of the present invention have two surface strain distributions: the gradient of the surface strain distribution in the thickness direction X in the vicinity Z of the crack generation part and the gradient of the surface strain distribution in the bending ridge direction Y. An evaluation method for evaluating the deformation limit of the sheared surface 10A of the metal plate 1 using the slope of the parameter as a parameter, and a prediction method of end face crack based on it are devised.

(指標値について)
本実施形態で使用する金属板1のせん断加工面10Aでの変形限界を評価する評価、それに基づいた端面割れの予測で用いる指標値について説明する。
本実施形態の指標値は、曲げ加工を受ける金属板1の曲げ外側表面とせん断加工面10Aの境界近傍に発生するひずみの分布のうち、せん断加工面10Aでの板厚方向Xの表面ひずみ分布の勾配と、せん断加工面10Aから離れる方向に向かう曲げ加工による曲げ稜線方向Yの表面ひずみ分布の勾配との、2つの表面ひずみ分布の勾配を変数とした値である。ここで、曲げ外側表面とは、曲げ加工によって凸に変形する側の表面である。
(About index value)
The evaluation which evaluates the deformation | transformation limit in 10 A of shear processing surfaces of the metal plate 1 used by this embodiment, and the index value used by prediction of the end surface crack based on it are demonstrated.
The index value in the present embodiment is the surface strain distribution in the thickness direction X in the sheared surface 10A among the distribution of strain generated near the boundary between the bending outer surface of the metal plate 1 subjected to bending and the sheared surface 10A. And the gradient of the surface strain distribution in the bending ridge direction Y by bending toward a direction away from the sheared surface 10A, the values of the gradients of the two surface strain distributions as variables. Here, the bending outer surface is a surface on the side that is deformed to be convex by bending.

指標値は、例えば、下記(1)式のような、上記2つの表面ひずみ分布の勾配の平均値とする。この例では、△εcombineが指標値となる。なお、ひずみ勾配は、一般にひずみの急峻さを表す。
ここで、曲げ稜線方向Yの表面ひずみは、曲げ加工を受ける金属板1の曲げ外側表面での端面10Aから曲げ稜線方向Yに向かう表面ひずみであり、その勾配は、端面10Aを起点として当該端面10Aから離れる方向の勾配となる。また板厚方向Xの表面ひずみ分布の勾配は、曲げ外側表面から内面側に向かう勾配とする。
The index value is, for example, an average value of the gradients of the two surface strain distributions as represented by the following equation (1). In this example, Δεcombine is the index value. The distortion gradient generally represents the steepness of distortion.
Here, the surface strain in the bending ridge direction Y is a surface strain from the end face 10A on the bending outer surface of the metal plate 1 subjected to bending toward the bending ridge direction Y, and the gradient thereof is the end face starting from the end face 10A. It becomes a gradient in the direction away from 10A. The gradient of the surface strain distribution in the thickness direction X is a gradient from the bending outer surface toward the inner surface.

△εcombine= (△εthickness
+△εridgeline)/2
・・・(1)
ここで、
△εthickness:板厚方向Xの表面ひずみ分布の勾配
△εridgeline:曲げ稜線方向Yの表面ひずみ分布の勾配
である。
Δεcombine = (Δεthickness
+ Δε ridgeline) / 2
... (1)
here,
Δε thickness: slope of surface strain distribution in thickness direction X Δε ridgeline: slope of surface strain distribution in bending ridge direction Y

端面10Aから発生する亀裂は、亀裂発生部の近傍Zの板厚方向Xの表面ひずみ分布の勾配と曲げ稜線方向Yの表面ひずみ分布の勾配の2方向の勾配と相関があると知見を得ているが、(2)式のように、それら2方向の勾配の自乗平均からなる指標値△εcombineは、さらに端面10Aでの亀裂と相関が高い。このため、(2)式で算出した評価値を用いることで、せん断加工面10Aでの変形限界の評価や端面割れの予測を、より高い精度で行うことが可能となる。
△εcombine=(((△εthickness)
+(△εridgeline)0.5)/2
・・・(2)
ここで、
△εthickness:板厚方向Xの表面ひずみ分布の勾配
△εridgeline:曲げ稜線方向Yの表面ひずみ分布の勾配
である。
It is found that the crack generated from the end face 10A is correlated with the gradient of the surface strain distribution in the thickness direction X in the vicinity Z of the crack generation part and the gradient of the surface strain distribution in the bending ridge direction Y However, as in equation (2), the index value Δεcombine, which is the root mean square of the gradients in those two directions, has a high correlation with the crack at the end face 10A. Therefore, by using the evaluation value calculated by the equation (2), it becomes possible to evaluate the deformation limit on the sheared surface 10A and predict the end face crack with higher accuracy.
Δεcombine = (((Δεthickness) 2
+ (Δε Ridgeline) 2 ) 0.5 ) / 2
... (2)
here,
Δε thickness: slope of surface strain distribution in thickness direction X Δε ridgeline: slope of surface strain distribution in bending ridge direction Y

また、本実施形態の指標値を用いた端面10Aでの変形限界の評価や端面割れの予測は、複数の曲げ変形に対し一つの指標値で行うことが出来ることに併せ、ひずみ勾配の最大となる方向を特定しなくとも、最大ひずみ勾配の値を簡便な方法で求められるという利点もある。また、本実施形態の指標値は、単純引張り変形の割れについても適用可能である。
なお、簡易的な評価手法として、(3)式のように、板厚方向Xの表面ひずみ分布の勾配△εthicknessだけから指標値を算出して、端面10Aからの割れの発生有無を評価しても良い。
すなわち、
△εcombine= △εthickness ・・・(3)
としても良い。
これは、割れの評価指標として、板厚方向Xの表面ひずみ分布の勾配の値の方が、曲げ稜線方向Yの表面ひずみ分布の勾配の値よりも寄与度が高いためである。このため、精度は下がるがものの、(3)式はより簡便であるという利点がある。
In addition, the evaluation of deformation limit at end face 10A and prediction of end face crack using the index value of the present embodiment can be performed with one index value for a plurality of bending deformations, and the maximum strain gradient There is also an advantage that the value of the maximum strain gradient can be obtained by a simple method without specifying the direction. Moreover, the index value of this embodiment is applicable also to the crack of simple tensile deformation.
As a simple evaluation method, index value is calculated only from the gradient Δεthickness of surface strain distribution in the thickness direction X as shown in equation (3), and the occurrence of cracks from the end face 10A is evaluated Also good.
That is,
Δεcombine = Δεthickness (3)
As well.
This is because the value of the gradient of the surface strain distribution in the thickness direction X is higher than the value of the gradient of the surface strain distribution in the bending ridge direction Y as a crack evaluation index. For this reason, although the accuracy is lowered, there is an advantage that the equation (3) is simpler.

また別の簡便な方法として、(4)式のように、板厚方向Xと曲げ稜線方向Yの2つの表面ひずみ分布の勾配の和を指標値としても良い。
△εcombine= △εthickness
+△εridgeline
・・・(4)
ここで、上述の(1)式は、2つの表面ひずみ分布の勾配から指標値を求める際に、2つの表面ひずみ分布の勾配を単純平均で平均化した場合の例であるが、板厚方向Xの表面ひずみ分布の勾配の方が、寄与度が高いという観点から、(5)式のように、板厚方向Xの表面ひずみ分布の勾配側の重み付けを大きくして、加重平均で指標値を求めても良い。
As another simple method, the sum of the gradients of the two surface strain distributions in the plate thickness direction X and the bending ridge direction Y may be used as an index value, as in equation (4).
Δcombine = Δεthickness
+ Δε ridgeline
... (4)
Here, the above equation (1) is an example of averaging the gradients of the two surface strain distributions by simple averaging when obtaining the index value from the gradients of the two surface strain distributions. From the viewpoint that the gradient of the surface strain distribution of X has a higher degree of contribution, the weight on the gradient side of the surface strain distribution in the thickness direction X is increased as in equation (5), and the index value is weighted average You may ask for

△εcombine= (a×△εthickness
+b×△εridgeline)
・・・(5)
ここで、a,bは重み係数であり、a>bの関係に設定する。例えば、a=0.7、b=0.3のように設定する。
同様に、(2)式や(4)式においても、板厚方向Xの表面ひずみ分布の勾配側の重み付けを大きく設定しても良い。
Δcombine = (a × Δεthickness
+ B x Δ ε ridgeline)
... (5)
Here, a and b are weighting coefficients, and are set to a relationship of a> b. For example, a = 0.7 and b = 0.3.
Similarly, in the equations (2) and (4), the weighting on the gradient side of the surface strain distribution in the thickness direction X may be set large.

例えば、(4)式のように、2つの表面ひずみ分布の勾配の和を指標値とする際に、(6)式のように、板厚方向Xの表面ひずみ分布の勾配側の重み付けを大きく設定しても良い。
△εcombine= a・△εthickness
+b・△εridgeline
・・・(6)
ここで、a,bは重み係数であり、a>bの関係に設定する。例えば、a=1.3、b=0.7のように設定する。
For example, when using the sum of the gradients of two surface strain distributions as an index value as in equation (4), the weighting on the gradient side of the surface strain distribution in the thickness direction X is made large as in equation (6) You may set it.
Δ ε combine = a · Δ ε thickness
+ B · Δε ridgeline
... (6)
Here, a and b are weighting coefficients, and are set to a relationship of a> b. For example, it sets as a = 1.3 and b = 0.7.

(評価値の正規化)
更に、上記指標値である△εcombineを、金属板1の局部伸びの逆数で正規化するようにしても良い。
例えば、素材1の局部伸びL−Elを使用し、下記(7)式のように、指標値に対し、金属板1の局部伸びL−Elの逆数を乗算して、指標値を正規化する。
△εcombine ← △εcombine/L−El
・・・(7)
素材1の局部伸びL−Elの逆数を乗算すると、亀裂が発生する直前の素材1表面の最大主ひずみ(以下、割れひずみと称する)と(5)式との関係が、素材1の種類毎に層別されることも見出した。そして、このように正規化することによって、更に、変形限界の評価や端面割れの予測の精度が向上する。
(Normalization of evaluation value)
Further, the index value Δεcombine may be normalized by the reciprocal of the local elongation of the metal plate 1.
For example, using the local elongation L-El of the material 1 and multiplying the index value by the reciprocal of the local elongation L-El of the metal plate 1 as in the following equation (7), the index value is normalized. .
Εεcombine △ εεcombine / L-El
... (7)
When the reciprocal of the local elongation L-El of the material 1 is multiplied, the relationship between the maximum principal strain (hereinafter referred to as a crack strain) on the surface of the material 1 immediately before the occurrence of a crack and the equation (5) It was also found that it was stratified into Then, by performing normalization in this manner, the accuracy of the evaluation of the deformation limit and the prediction of the end face crack is further improved.

ここで、局部伸びL−Elは、素材1を所定の形状(例えば長方形形状の平板)で引張り試験することで求められる。具体的には、局部伸びL−Elは、素材1が破断するまでの伸び(全伸び)から引張り強さが最大となる伸び(均一伸び)の差分から求める。多くの素材1では均一伸びと局部伸びL−Elは同等となることが多いため、均一伸びや、全伸びの半分の値を、局部伸びL−Elの代わりに採用しても良い。その他にも、素材1の局部伸びL−Elを求める方法はあるが特に限定されない。   Here, the local elongation L-El is obtained by tensile test of the material 1 with a predetermined shape (for example, a rectangular flat plate). Specifically, the local elongation L-El is determined from the difference between the elongation until the material 1 breaks (total elongation) and the elongation (uniform elongation) at which the tensile strength is maximized. In many materials 1, the uniform elongation and the local elongation L-El are often the same, so the uniform elongation or a half value of the total elongation may be employed instead of the local elongation L-El. In addition, although there is a method for obtaining the local elongation L-El of the material 1, it is not particularly limited.

(指標値を求める評価位置について)
ここで、指標値△εcombineを求める評価位置は、対象とするプレス成形による曲げ加工で端面10Aの変形時に亀裂が発生すると推定される位置とすることが好ましい。例えば図1における符号Z位置である。
端面変形時に亀裂が発生すると推定される位置は、予め実験や成形シミュレーションで求めた、ひずみが一番大きくなる位置とすればよい。例えば、曲げ加工によって、曲げられる端面部分における、曲率変化が一番大きな位置若しくはその近傍を評価位置とする。
(About the evaluation position to determine the index value)
Here, it is preferable that an evaluation position for obtaining the index value Δεcombine be a position at which it is estimated that a crack will occur when the end face 10A is deformed by bending by the target press forming. For example, it is the code Z position in FIG.
The position at which it is estimated that a crack will occur when the end face is deformed may be a position which is obtained in advance by experiment or molding simulation and in which the strain is largest. For example, a position where the curvature change is largest or its vicinity in the end face portion to be bent by bending is set as an evaluation position.

(せん断加工による端面(せん断加工面10A)について)
せん断加工後による端面10Aについて説明する。
せん断加工は、一対のパンチとダイを用いて素材1にせん断変形を与え、割れを生じさせることで、素材1を2個以上に分離する方法である。
本実施形態では、一般的なせん断加工により所定輪郭形状にせん断されることで、せん断加工面10Aを有する素材1が作製される。
(About the end face by shear processing (sheared surface 10A))
The end face 10A after shear processing will be described.
Shearing is a method of separating the material 1 into two or more pieces by applying shear deformation to the material 1 using a pair of punches and a die to cause cracking.
In the present embodiment, the material 1 having the sheared surface 10A is manufactured by being sheared into a predetermined contour shape by general shear processing.

ここで、せん断加工された素材1の端面10Aの性状は、パンチとダイスの間隔であるクリアランスにより変化するが、本実施形態は端面10Aの性状に限定されない。ただし、クリアランスは、加工荷重が低く、パンチとダイの損傷が少なくなる観点から、素材1の板厚の5〜20%の範囲にすると良く、特に引張り強度590MPa以上の鋼板に対しては8〜15%とすることが好ましい。なお、クリアランスを5%以下にしてせん断加工をすることでせん断加工面10Aを広く作成する方法もあるが、本実施形態は、どのような方法でせん断加工をして評価する試験片(素材1)を作製しても適用することが出来る。
そして、所定輪郭形状にせん断加工された素材1を試験片として、種々の変形を与え、割れひずみや、指標値のためのひずみ勾配を求める。
ここで、割れひずみは、上述のように、評価位置の端面10A近傍における、亀裂が発生する直前の素材1表面の最大主ひずみである。
Here, the property of the end face 10A of the material 1 subjected to shear processing changes depending on the clearance which is the distance between the punch and the die, but the present embodiment is not limited to the property of the end face 10A. However, the clearance should be in the range of 5 to 20% of the thickness of the material 1 from the viewpoint of low processing load and less damage to the punch and the die, particularly 8 to 8 for steel plates with a tensile strength of 590 MPa or more. It is preferable to be 15%. Although there is also a method of widely creating the sheared surface 10A by shearing at a clearance of 5% or less, in the present embodiment, a test piece (raw material 1) to be evaluated by shearing by any method Even if it produces, it can apply.
Then, using the material 1 sheared into a predetermined contour shape as a test piece, various deformations are applied to determine crack strain and strain gradient for index value.
Here, as described above, the crack strain is the maximum principal strain of the surface of the material 1 immediately before the occurrence of a crack in the vicinity of the end face 10A at the evaluation position.

(単純曲げ変形の付与について)
せん断加工された試験片の端面10Aに対して曲げ変形を与える方法は、試験片1を曲げる金型や治具等の曲げ半径Rと、端面10Aの亀裂有無とを確認できる方法であればどのような方法でもよい。
簡易的には、V曲げ加工やU曲げ加工のパンチの先端半径Rを変えながら試験片1の端面10Aを曲げて、亀裂の有無を確認する方法が良い。その他にもロールフォーミングなどの曲げ方法がある。
(On the application of simple bending deformation)
The method of giving bending deformation to the end face 10A of the sheared test piece may be any method as long as it can check the bending radius R of a die or jig for bending the test piece 1 and the presence or absence of cracks in the end face 10A. Such a method may be used.
In a simple manner, it is preferable to bend the end face 10A of the test piece 1 while changing the tip radius R of the V-shaped bending process or the U-shaped bending process to confirm the presence or absence of a crack. There are other bending methods such as roll forming.

(引張り変形と曲げ変形の複合変形の付与について)
試験片の端面10Aに引張り変形と曲げ変形の複合変形を与える方法は、ビードや素材1を挟圧する機構により試験片1に与える引張り応力が変更でき、かつ素材1を曲げる金型や治具等の曲げ半径Rと端面10Aの亀裂有無とを確認できる方法であればどのような方法でもよい。簡易的には、ハット形状の絞り成形金型を用いることで、パンチの曲げ半径Rとクッション圧、およびビードの有無を変えて種々の複合変形を与える方法が良い。
(On the application of combined deformation of tensile deformation and bending deformation)
The method of giving compound deformation of tensile deformation and bending deformation to the end face 10A of the test piece, the tensile stress to be given to the test piece 1 can be changed by the mechanism that pinches the bead or the material 1, and the die or jig etc. which bends the material 1 Any method may be used as long as it can check the bending radius R and the presence or absence of cracks on the end face 10A. A simple method is to change the bending radius R of the punch, the cushion pressure, and the presence or absence of the bead by using a hat-shaped squeeze forming mold to give various complex deformations.

(曲げ加工による割れの評価方法について)
上記の方法により亀裂が発生した位置での、亀裂が発生する直前の割れひずみと、素材1表面のひずみ勾配を求める。
具体的には、曲げ変形を受ける素材1の外側表面とせん断加工された端面10Aの境界で求めるのが好ましい。これは、亀裂の発生が上記の境界で発生しやすいためである。
割れひずみとひずみ勾配の求め方は、公知の手法を採用すれば良い。張力とひずみ勾配の求め方としては、例えば、素材1の表面に微小なマークをつけてマークの変形からひずみを求める実験的な方法や、有限要素法による成形シミュレーションによりひずみを予測する方法などがあるが、これに限定されず、公知の方法を適用すれば良い。このようにして、表面ひずみの分布を求め、求めた表面ひずみの分布からひずみ勾配を算出する。
(About the evaluation method of the crack by bending)
According to the above-mentioned method, the crack strain immediately before the occurrence of the crack and the strain gradient on the surface of the material 1 at the position where the crack occurs are determined.
Specifically, it is preferable to obtain at the boundary between the outer surface of the material 1 which is subjected to bending deformation and the end surface 10A which is sheared. This is because the occurrence of a crack is likely to occur at the above boundary.
A known method may be employed for determining the crack strain and strain gradient. As a method of determining tension and strain gradient, for example, an experimental method of making a minute mark on the surface of the material 1 to obtain strain from deformation of the mark, a method of predicting strain by forming simulation by finite element method, etc. However, the method is not limited to this, and a known method may be applied. Thus, the distribution of surface strain is determined, and the strain gradient is calculated from the determined distribution of surface strain.

マークの形状は、サークルパターン、ドットパターン、グリッドパターン、同心円パターン等、成形後にひずみを計測できる形状であればよい。また、マーク方法は、電解エッチング、フォトエッチング、インクによる転写(スタンプ印刷)等があるが、いずれの方法を用いてもよい。ただし、けがきは亀裂発生を誘発するため好ましくない。成形シミュレーションの場合は、せん断加工を再現する必要は無く、せん断加工された素材1の端部の形状を再現したモデルや、端部の形状を単に平坦としたモデルを用いればよい。
3次元のソリッド要素を用いた有限要素法を用いると精度良く割れひずみが算出できる。
The shape of the mark may be a circle pattern, a dot pattern, a grid pattern, a concentric circle pattern, or any other shape that can measure strain after molding. Moreover, although the mark method includes electrolytic etching, photo etching, transfer by ink (stamp printing), etc., any method may be used. However, scribing is not preferable because it induces cracking. In the case of forming simulation, there is no need to reproduce shear processing, and a model in which the shape of the end of the sheared material 1 is reproduced or a model in which the shape of the end is simply flat may be used.
The crack strain can be calculated with high accuracy by using the finite element method using a three-dimensional solid element.

ひずみ勾配は、亀裂が発生すると推定される部分の近傍で算出することが好ましい。板厚方向Xのひずみ勾配の算出範囲は狭いほど良く、素材1の板厚の90%以下が好ましく、50%以下とすることがより好ましい。これは、初期に発生する亀裂は微小であるため、それを評価する範囲も同じく微小な範囲で算出すると精度が良いためである。曲げ稜線方向Yのひずみ勾配の算出範囲は10mm以下が好ましく、5mm以下がより好ましい。これは、曲げ変形時に素材1の端面10Aに発生するそりが上記の範囲にあり、この反りの変形を考慮するためである。   The strain gradient is preferably calculated in the vicinity of a portion where a crack is estimated to occur. The smaller the calculation range of the strain gradient in the thickness direction X is, the better, and it is preferably 90% or less of the thickness of the material 1 and more preferably 50% or less. This is because the cracks occurring in the initial stage are minute, and therefore the range to be evaluated is also accurate when calculated in the same minute range. 10 mm or less is preferable and, as for the calculation range of the strain gradient of bending ridge line direction Y, 5 mm or less is more preferable. This is because the warpage generated on the end face 10A of the material 1 at the time of bending deformation is in the above-mentioned range, and the deformation of the warpage is taken into consideration.

(変形限界の評価について)
次に、上述の指標値を用いた、金属板1のせん断加工面10Aでの変形限界の評価方法の一例について説明する。
上述のように、上記単純曲げを行ったときの、せん断加工面10Aでの亀裂が発生する直前の割れひずみと、その亀裂が発生する直前の曲げにおける同一箇所での指標値とを、第1の取得値として求める。同様にして、上記引張り変形と曲げ変形の複合変形を行ったときの、せん断加工面10Aでの亀裂が発生する直前の割れひずみと、その亀裂が発生する直前の曲げにおける同一箇所での指標値とを、第2の取得値として求める。割れひずみを、亀裂が発生する直後としても良いが、割れひずみは、出来るだけ亀裂初期の状態のときが良い。
(About the evaluation of deformation limit)
Next, an example of the evaluation method of the deformation | transformation limit in 10 A of shear processing surfaces of the metal plate 1 using the above-mentioned index value is demonstrated.
As described above, when the above simple bending is performed, the crack strain immediately before the occurrence of the crack on the sheared surface 10A and the index value at the same position in the bending immediately before the occurrence of the crack are Calculated as an acquisition value of Similarly, when the combined deformation of the tensile deformation and the bending deformation is performed, the crack strain immediately before the occurrence of the crack on the sheared surface 10A and the index value at the same position in the bending immediately before the occurrence of the crack And as a second acquired value. The crack strain may be immediately after the occurrence of a crack, but the crack strain may be as good as possible in the initial state of the crack.

そして、図3のように、第1の取得値と第2の取得値を通る直線を、変形限界線とする。
ここで、割れひずみの算出は、出来るだけ亀裂発生が小さいときの状態での割れひずみが好ましいため、亀裂が発生した直前の状態の割れひずみを採用している。
また後述のように、同一素材1において、割れひずみと指標値との関係は一次線形の関係にあるので、2点を求めれば上記変形限界線を求めることが可能である。
ここで、本実施形態で求める変形限界線は、単純引張り変形による端面10Aでの割れについても適用出来るので、単純引張り変形による端面10Aでの割れが発生するときの割れひずみと、そのときの指標値との組を使用して、単純曲げ変形若しくは複合変形のデータのうちの、一方の取得を省略しても構わない。
Then, as shown in FIG. 3, a straight line passing the first acquired value and the second acquired value is taken as a deformation limit line.
Here, since the crack strain in the state where the crack generation is as small as possible is preferable for the calculation of the crack strain, the crack strain in the state immediately before the crack generation is adopted.
Further, as described later, in the same material 1, since the relationship between the crack strain and the index value is in a linear relationship, it is possible to obtain the above-mentioned deformation limit line by obtaining two points.
Here, since the deformation limit line determined in the present embodiment can be applied to cracking at the end face 10A due to simple tensile deformation, crack strain when cracking occurs at the end face 10A due to simple tensile deformation and an index at that time The combination with the value may be used to omit acquisition of one of the simple bending deformation data and the composite deformation data.

この変形限界線によって、曲げ変形時におけるせん断加工面10Aでの変形の限界を評価する。
また、プレス成形によって製品形状に成形する際における曲げ変形部分の端面10Aの曲げ形状が、この変形限界線以下に収まるように、プレス成形品を決定するようにしても良い。又は、プレス成形によって製品形状に成形する際における曲げ変形部分の端面10Aにおいて、この変形限界線未満に収まるように、プレス金型の形状を決定したり、プレス加工の工程選定を行うようにしたりしても良い。
With this deformation limit line, the limit of deformation on the sheared surface 10A during bending deformation is evaluated.
Alternatively, the press-formed product may be determined such that the bending shape of the end face 10A of the bending deformation portion when forming into a product shape by press molding falls below the deformation limit line. Alternatively, at the end face 10A of the bending deformation portion when forming into a product shape by press molding, the shape of the press die is determined or the process selection of the press working is performed so as to be smaller than the deformation limit line. You may.

(割れの予測)
上記のような変形限界の評価方法のようにして、予め割れひずみと指標値の関係を求めておき、その関係に基づき、図3の[割れの発生しない領域]内に位置するか否かで割れが発生するか否かを予測する。
そして、割れが発生すると予測(評価)された位置に対し、その金属板端面10Aでの割れ発生が抑制されるように、プレス成形で使用するプレス金型の設計変形を行う。
(Prediction of cracking)
The relationship between the crack strain and the index value is obtained in advance as in the evaluation method of the deformation limit as described above, and based on the relationship, it is determined whether or not it is located in [a region where no crack occurs] in FIG. Predict if cracking will occur.
Then, design deformation of the press die used in press molding is performed at a position where it is predicted (evaluated) that a crack will occur, so that the occurrence of the crack at the metal plate end face 10A is suppressed.

(効果)
以上のように、本実施形態によれば、対象となる素材1をせん断加工後に変形させる際の、端面10Aからの割れの発生有無を精度よく評価することが可能となる。
この評価方法は、割れの発生を予測する方法としても活用できる。例えば、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に用いる金型の形状が適切であるか精度良く予測できるようになる。また、プレス成形を安定して行うことができるのでプレス成形品の不良率が低減でき、プレス金型の製造期間の短縮にも貢献できる。
強度が高い素材1は一般的に延性が低いため、素材1のせん断加工面10Aを変形させることで割れが容易に起きやすい。そのため、本発明は強度が高い素材1ほど有効である。具体的には、引張り強度590MPa以上の素材1を対象とすることが好ましく、引張り曲げ強度980MPa以上の素材1はさらに好ましい。また、素材1の種類としては、プレス成形のように大量生産をする素材1を対象とするとコスト面で秀でており、金属板1や特に鋼板を対象とすることが好ましい。
(effect)
As described above, according to the present embodiment, it is possible to accurately evaluate the occurrence of cracks from the end face 10A when the target material 1 is deformed after shearing.
This evaluation method can also be used as a method of predicting the occurrence of cracking. For example, it becomes possible to accurately predict whether the shape of a mold used when press-forming various parts such as panel parts of vehicles, and structural / framework parts is appropriate. Further, since the press molding can be stably performed, the defective rate of the press-formed product can be reduced, which can also contribute to shortening of the manufacturing period of the press die.
Since the material 1 having high strength generally has low ductility, it is easy to cause cracking by deforming the sheared surface 10A of the material 1. Therefore, the present invention is more effective as the material 1 has higher strength. Specifically, the material 1 having a tensile strength of 590 MPa or more is preferably used, and the material 1 having a tensile bending strength of 980 MPa or more is more preferable. In addition, as the type of the material 1, cost is excellent when targeting the material 1 that is mass-produced like press molding, and it is preferable to target the metal plate 1 and particularly steel plate.

次に、本発明に基づく実施例について説明する。
表1に示す3種類の素材A、BおよびCを対象に本発明の検証を行った。各素材1に対してせん断加工を行って、矩形形状の試験片を作製した。
そのせん断加工は、10×20mmの矩形のパンチと、10.3×20.3mmの矩形のダイスを用いた(不図示)。金型のクリアランスは、素材1の板厚によって変更し、素材Aが板厚の15%、素材1Bが板厚の10.7%、素材1Cが板厚の8.3%とした。
Next, an embodiment based on the present invention will be described.
The present invention was tested on three types of materials A, B and C shown in Table 1. Each material 1 was subjected to shear processing to produce a rectangular test piece.
The shearing process used a 10 × 20 mm rectangular punch and a 10.3 × 20.3 mm rectangular die (not shown). The clearance of the mold was changed according to the thickness of the material 1, and the material A was 15% of the thickness, the material 1B was 10.7% of the thickness, and the material 1C was 8.3% of the thickness.

Figure 2019017136
Figure 2019017136

試験片に対し、単純曲げ変形、及び引張り変形と曲げ変形の複合変形の2形態の曲げ加工を実施して、各形態での曲げ加工における、割れひずみとひずみ勾配との関係を求めてみた。併せて、単純引張り変形についての、割れひずみとひずみ勾配との関係を求めてみた。
単純曲げ変形は、図4に示す頂角90°のV曲げ金型により試験片1の端面10Aに曲げを与えた。パンチ21の頂点の曲げR部にせん断加工部のダレ側が接するように試験片を設置した。そして、パンチ21の先端の曲げ半径Rを0.5mmピッチで変えて変形試験を実行し、試験片の端面10Aに亀裂が発生しない最小の曲げ半径を求めた。符号20はダイを示す。
The bending of two types of simple bending deformation and combined deformation of tensile deformation and bending deformation was performed on the test piece, and the relationship between the crack strain and the strain gradient in the bending processing in each form was determined. At the same time, the relationship between crack strain and strain gradient for simple tensile deformation was determined.
In the simple bending deformation, the end face 10A of the test piece 1 was bent by a V-bending mold having an apex angle of 90 ° shown in FIG. The test piece was placed so that the sag side of the sheared portion was in contact with the bending R portion at the top of the punch 21. Then, the bending radius R of the tip of the punch 21 was changed at a pitch of 0.5 mm to execute a deformation test, and the minimum bending radius at which a crack was not generated at the end face 10A of the test piece was determined. Reference numeral 20 indicates a die.

その後、成形シミュレーションにより最小曲げ半径で曲げられたときの端面10Aの割れひずみとひずみ勾配を算出した。
なお、板厚方向Xのひずみ勾配の算出範囲は各素材1の板厚の50%とし、曲げ稜線方向Yのひずみ勾配の算出範囲は5mmとした。
引張り変形と曲げ変形の複合変形は、図5に示すハット形状の絞り成形金型により素材1の端面10Aに与えた。パンチ32の曲げR部に対し、試験片1のせん断加工部のダレ側が接するように試験片1を設置した。符号30はダイを、符号31はしわ押さえ板を示す。
Thereafter, cracking strain and strain gradient of the end face 10A when bent at the minimum bending radius were calculated by forming simulation.
In addition, the calculation range of the strain gradient in the plate thickness direction X was 50% of the plate thickness of each material 1, and the calculation range of the strain gradient in the bending ridge direction Y was 5 mm.
The combined deformation of tensile deformation and bending deformation was applied to the end face 10A of the material 1 by a hat-shaped drawing mold shown in FIG. The test piece 1 was placed such that the sag side of the sheared portion of the test piece 1 was in contact with the bending R portion of the punch 32. Reference numeral 30 denotes a die, and reference numeral 31 denotes a crease presser.

パンチ32の肩部の曲げ半径Rは5mmと10mmの2種類を用いて、しわ押さえ力を2.5トンピッチで変えて試験をし、それぞれの曲げ半径で試験片の端面10Aに亀裂が発生しない最小のしわ押さえ力を求めた。その後、成形シミュレーションにより同じ条件で複合変形を与えられた時の端面10Aの割れひずみとひずみ勾配を算出した。板厚方向Xのひずみ勾配と曲げ稜線方向Yのひずみ勾配の算出範囲は上記の曲げ変形の場合と同じである。   The bending radius R of the shoulder of the punch 32 was tested using two types of 5 mm and 10 mm, and the wrinkle holding force was changed at 2.5 ton pitch, and no crack was generated at the end face 10A of the test piece at each bending radius The minimum wrinkling force was determined. After that, crack strain and strain gradient of the end face 10A when compound deformation was given under the same conditions by molding simulation were calculated. The calculation ranges of the strain gradient in the thickness direction X and the strain gradient in the bending ridge direction Y are the same as in the case of the above-mentioned bending deformation.

併せて、試験片に対し引張り試験を実施して、試験片の端面10Aに亀裂が発生しない最小の引張り力を求めた。その後、成形シミュレーションにより同じ条件で引張り変形を与えられた時の端面10Aの割れひずみとひずみ勾配を算出した。この場合には、曲げ稜線方向Yのひずみ勾配として端面10Aから引張り方向のひずみ勾配を使用して、端面10Aの割れひずみと各種のひずみ勾配を算出した。
そして、上記のようにして求めた割れひずみと各種のひずみ勾配を用いて整理した。グラフのプロット間の直線は最小二乗法の回帰直線である。
At the same time, a tensile test was performed on the test piece to determine the minimum tensile force at which no crack occurs on the end face 10A of the test piece. Thereafter, cracking strain and strain gradient of the end face 10A when tensile deformation was given under the same conditions were calculated by molding simulation. In this case, using the strain gradient in the tension direction from the end surface 10A as the strain gradient in the bending ridge direction Y, the crack strain of the facet 10A and various strain gradients were calculated.
And it arranged using the crack distortion and various strain gradients which were calculated | required as mentioned above. The straight lines between the plots of the graph are the least squares regression line.

<サンプル1>
サンプル1は、図6に示すように、割れひずみを、試験片の端面10Aと直交する面内方向のひずみ勾配で整理した結果である。
<サンプル2>
サンプル2は、図7に示すように、割れひずみを素材1の端面10Aの板厚方向Xのひずみ勾配△εthicknessで整理した結果である。図4に示す結果は、実施形態で説明した簡易版((3)式に対応)である。
<サンプル3>
サンプル3は、図8に示すように、サンプル2に対し、指標値としての△εthicknessにL−Elの逆数を乗算して正規化した結果である。
<Sample 1>
Sample 1, as shown in FIG. 6, is the result of arranging the crack strain by the strain gradient in the in-plane direction orthogonal to the end face 10A of the test piece.
<Sample 2>
Sample 2 is the result of arranging the crack strain by the strain gradient Δεthickness in the thickness direction X of the end face 10A of the material 1 as shown in FIG. The result shown in FIG. 4 is the simplified version (corresponding to equation (3)) described in the embodiment.
<Sample 3>
Sample 3, as shown in FIG. 8, is the result of normalizing sample 2 by multiplying Δε thickness as an index value by the reciprocal of L-El.

<サンプル4>
サンプル4は、図9に示すように、本実施形態に基づき、指標値としての△εcombineを(2)式で算出して、割れひずみを整理した結果である。
<サンプル5>
サンプル5は、図10に示すように、サンプル4に対し、指標値としての△εcombineにL−Elの逆数を乗算して正規化した結果である。
<サンプル6>
サンプル6は、図11に示すように、本実施形態に基づき、指標値としての△εcombineに(4)式で算出して、割れひずみを整理した結果である。
<サンプル7>
サンプル7は、図12に示すように、サンプル6に対し、指標値としての△εcombineにL−Elの逆数を乗算して正規化した結果である。
<Sample 4>
As shown in FIG. 9, sample 4 is a result of arranging the crack strain by calculating Δεcombine as an index value by the equation (2) based on the present embodiment.
<Sample 5>
Sample 5, as shown in FIG. 10, is the result of normalizing sample 4 by multiplying Δεcombine as an index value by the reciprocal of L-El.
<Sample 6>
Sample 6, as shown in FIG. 11, is a result of arranging crack distortion by calculating Δεcombine as an index value according to the equation (4) based on the present embodiment.
<Sample 7>
Sample 7, as shown in FIG. 12, is the result of normalizing sample 6 by multiplying Δεcombine as an index value by the reciprocal of L-El.

(検証)
ここで、各サンプルのデータにおいて、割れひずみの値が一番小さい群のデータは、単純引張りでのデータであり、割れひずみの値が一番大きい群のデータは、単純曲げでのデータであり、割れひずみの値が中間の群のデータは、複合曲げでのデータである。
サンプル1〜7の結果を、回帰直線との相関係数の二乗の値である決定係数で評価した結果を図13と表2に示す。
(Verification)
Here, in the data of each sample, the data of the group with the smallest value of the crack strain is the data in the simple tension, and the data of the group with the largest value of the crack strain is the data in the simple bending The data of the group in which the value of crack strain is in the middle are the data in composite bending.
The results of the samples 1 to 7 are evaluated by the determination coefficient which is the square of the correlation coefficient with the regression line, and the results are shown in FIG. 13 and Table 2.

Figure 2019017136
Figure 2019017136

ここで、決定係数が1に近いほどグラフのプロットと回帰直線との誤差が少なく、評価精度が良い。
図13及び表2から分かるように、素材A、B、Cのいずれの場合も、サンプル2〜7よりもサンプル1の精度は劣っていた。
また、サンプル2,3は精度が同じであるが、各素材1の結果を線形に層別できていることが分かる。
サンプル4〜7も同様に、精度は同じであるが、各素材1の結果を層別できていた。
Here, the closer the determination coefficient is to 1, the smaller the error between the plot of the graph and the regression line, and the better the evaluation accuracy.
As can be seen from FIG. 13 and Table 2, in any of the materials A, B, and C, the accuracy of Sample 1 was inferior to Samples 2 to 7.
Also, it can be seen that although the samples 2 and 3 have the same accuracy, the results of each material 1 can be stratified linearly.
Similarly, in the samples 4 to 7, although the accuracy was the same, the results of each material 1 could be stratified.

このように、サンプル3,5、7から分かるように、L−Elの逆数を乗算して正規化することで、材料による回帰直線の勾配のバラツキが抑えられるので、複数種類の材料に対して同じ回帰直線の勾配を採用出来るようになることが分かる。
また、サンプル2,3よりも、本発明に基づくサンプル4〜7の方が、精度が向上していることが分かった。またサンプル6,7は、サンプル4,5と比較すると、素材A、Bの精度で劣るが、サンプル1に比べると顕著に精度が良いことが分かる。
Thus, as can be seen from the samples 3, 5 and 7, by performing multiplication by the reciprocal of L-El and normalization, variation in the slope of the regression line due to the material can be suppressed, so for multiple types of materials It can be seen that the same regression line gradient can be adopted.
In addition, it was found that the accuracy was improved in the samples 4 to 7 according to the present invention than the samples 2 and 3. The samples 6 and 7 are inferior in the accuracy of the materials A and B as compared with the samples 4 and 5, but it is understood that the accuracy is significantly better than the samples 1.

以上、本願が優先権を主張する、日本国特許出願2017−140811(2017年7月20日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。   The entire contents of Japanese Patent Application 2017-140811 (filed on July 20, 2017), to which the present application claims priority, form a part of the present disclosure by reference. Although the description herein has been made with reference to a limited number of embodiments, the scope of rights is not limited to them, and modifications of each embodiment based on the above disclosure are obvious to those skilled in the art.

1 素材(金属板)
10A せん断加工面(端面)
X 板厚方向
Y 稜線方向
1 Material (metal plate)
10A sheared surface (end face)
X thickness direction Y ridge direction

Claims (9)

せん断加工された金属板を曲げ加工を含むプレス成形で成形する際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、
曲げ加工を受ける金属板の曲げ外側表面とせん断加工面との境界近傍に発生するひずみの分布のうち、評価位置における、せん断加工面での板厚方向の表面ひずみ分布の勾配と上記曲げ加工による曲げ稜線方向の表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配から求めた指標値に基づき、せん断加工面での変形限界を評価することを特徴とする変形限界の評価方法。
It is an evaluation method of a deformation limit which evaluates a deformation limit on a sheared surface of the metal plate when forming a sheared metal plate by press forming including bending,
Of the distribution of strain generated near the boundary between the bending outer surface and the sheared surface of the metal plate subjected to bending, the gradient of the surface strain distribution in the thickness direction at the sheared surface at the evaluation position and the bending A deformation limit evaluation method characterized in that a deformation limit on a sheared surface is evaluated based on index values obtained from gradients of two surface strain distributions with a gradient of surface strain distribution in a bending ridge direction.
評価位置の端面に亀裂が生じる直前の最大主ひずみである割れひずみと、そのときの上記指標値との関係から、せん断加工面での変形限界を評価することを特徴とする請求項1に記載した変形限界の評価方法。   The deformation limit on the sheared surface is evaluated from the relationship between the crack strain which is the maximum principal strain immediately before the crack is generated at the end face of the evaluation position and the index value at that time. Evaluation method of the deformation limit. 上記指標値は、2つの表面ひずみ分布の勾配の自乗平均であることを特徴とする請求項1又は請求項2に記載した変形限界の評価方法。   The method according to claim 1 or 2, wherein the index value is a root mean square of gradients of two surface strain distributions. 上記指標値は、2つの表面ひずみ分布の勾配の和であることを特徴とする請求項1又は請求項2に記載した変形限界の評価方法。   The method according to claim 1 or 2, wherein the index value is a sum of gradients of two surface strain distributions. 上記2つの表面ひずみ分布の勾配から求めた指標値を、金属板の局部伸びの逆数で正規化することを特徴とする請求項1〜請求項4のいずれか1項に記載した変形限界の評価方法。   The evaluation of the deformation limit according to any one of claims 1 to 4, wherein the index value obtained from the gradients of the two surface strain distributions is normalized by the reciprocal of the local elongation of the metal plate. Method. 上記2つの表面ひずみ分布を求めるための、板厚方向と曲げ稜線方向の各表面ひずみを、曲げ加工の成形シミュレーションによって算出することを特徴とした請求項1〜請求項5のいずれか1項に記載した変形限界の評価方法。   The method according to any one of claims 1 to 5, wherein each surface strain in the thickness direction and the bending ridge direction is calculated by forming simulation of bending in order to obtain the two surface strain distributions. Evaluation method of deformation limit described. 上記評価位置を、対象とする曲げ加工で端面を変形するときに亀裂が発生すると推定される位置とすることを特徴とした請求項1〜請求項6のいずれか1項に記載した変形限界の評価方法。   The deformation limit according to any one of claims 1 to 6, characterized in that the evaluation position is a position at which it is estimated that a crack will occur when the end face is deformed in the target bending process. Evaluation method. せん断加工された金属板を曲げ加工を含むプレス成形で成形した場合の割れの有無を予測する割れ予測方法であって、
曲げ加工を受ける上記金属板の曲げ外側表面とせん断加工面との境界近傍に発生するひずみの分布のうち、せん断加工面での板厚方向の表面ひずみ分布の勾配と上記曲げ加工による曲げ稜線方向の表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配を変数とした指標値と、端面に亀裂が生じる直前の最大主ひずみである割れひずみとの関係を、予め求めておき、
上記関係と、評価位置での上記2つの表面ひずみ分布の勾配から求めた指標値とから、せん断加工面での割れを予測することを特徴とする割れ予測方法。
A crack prediction method for predicting the presence or absence of a crack when forming a sheared metal sheet by press forming including bending,
Among the distribution of strain generated near the boundary between the bending outer surface and the sheared surface of the metal sheet subjected to bending, the gradient of the surface strain distribution in the thickness direction at the sheared surface and the bending ridge direction by the bending The relationship between the index value with the slopes of the two surface strain distributions with the slope of the surface strain distribution and the crack strain, which is the maximum main strain just before the crack is generated at the end face, is determined in advance,
A crack prediction method characterized in that a crack on a sheared surface is predicted from the relationship and an index value obtained from the gradient of the two surface strain distributions at an evaluation position.
請求項1〜請求項7のいずれか1項に記載した変形限界の評価方法、若しくは請求項8に記載した割れ予測方法を用いて、金属板端面での割れ発生を抑制したプレス金型の形状を設計することを特徴とするプレス金型の設計方法。   The shape of a press die in which the occurrence of a crack at the end face of a metal plate is suppressed by using the evaluation method of the deformation limit according to any one of claims 1 to 7 or the crack prediction method according to claim 8 How to design a press mold characterized by designing.
JP2018568988A 2017-07-20 2018-06-20 Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method Active JP6547920B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017140811 2017-07-20
JP2017140811 2017-07-20
PCT/JP2018/023493 WO2019017136A1 (en) 2017-07-20 2018-06-20 Method for evaluating deformation limit and method for predicting cracks in sheared surface of metal plate, and method for designing press die

Publications (2)

Publication Number Publication Date
JPWO2019017136A1 true JPWO2019017136A1 (en) 2019-07-18
JP6547920B2 JP6547920B2 (en) 2019-07-24

Family

ID=65015338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018568988A Active JP6547920B2 (en) 2017-07-20 2018-06-20 Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method

Country Status (4)

Country Link
JP (1) JP6547920B2 (en)
KR (1) KR102271009B1 (en)
CN (1) CN110740821B (en)
WO (1) WO2019017136A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12017265B2 (en) 2019-02-26 2024-06-25 Jfe Steel Corporation Method for evaluating bending crack, system for evaluating bending crack, and method for manufacturing press-formed component
US11371148B2 (en) * 2020-08-24 2022-06-28 Applied Materials, Inc. Fabricating a recursive flow gas distribution stack using multiple layers
CN114324741B (en) * 2020-09-30 2024-02-13 宝山钢铁股份有限公司 Evaluation die and evaluation method for characteristic forming limit of roll-punched forming rib groove
CN112536355B (en) * 2020-10-22 2022-04-12 钢铁研究总院有限公司 Method for evaluating forming performance of blanking and flanging of high-strength steel plate
CN114925462B (en) * 2022-04-11 2023-04-18 西北工业大学 Thin-wall part machining deformation prediction method based on cutting force and rigidity correlation evolution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043452A (en) * 2009-08-24 2011-03-03 Nippon Steel Corp Bending limit strain measuring method, bending crack determination method, and bending crack determination program
JP2014016807A (en) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal Integrated breakage evaluation device, control method and control program
JP2014115269A (en) * 2012-11-19 2014-06-26 Jfe Steel Corp Method for specifying limit strain of elongation flange, and method for determining press forming acceptance/rejection

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146395B2 (en) 1971-08-26 1976-12-08
US4064986A (en) 1976-04-30 1977-12-27 Westinghouse Electric Corporation Escalator having guide wheels and guide track with cooperative non-flat surfaces
JP4371985B2 (en) 2004-11-30 2009-11-25 株式会社豊田中央研究所 Stress analysis method, program, and recording medium
JP4935713B2 (en) 2008-02-27 2012-05-23 Jfeスチール株式会社 Method for determining whether molding is possible at the shear edge of a pressed product
JP5146395B2 (en) 2008-08-20 2013-02-20 新日鐵住金株式会社 Stretch flange crack estimation method considering strain gradient and stretch flange crack judgment system of press forming simulation
JP5630311B2 (en) 2011-02-16 2014-11-26 Jfeスチール株式会社 Method for predicting cracks in press molding and method for manufacturing pressed parts
US10670515B2 (en) * 2013-05-20 2020-06-02 Magna International Inc. Detecting edge cracks
JP6060814B2 (en) * 2013-05-22 2017-01-18 新日鐵住金株式会社 Evaluation method for cracking of thin plate
JP6325865B2 (en) * 2014-03-26 2018-05-16 株式会社Jsol Method for determining fracture of parts, system and program, and method for creating theoretical forming limit diagram
US10467361B2 (en) * 2014-07-02 2019-11-05 Nippon Steel Corporation Stretch flange crack prediction method, stretch flange crack prediction apparatus, computer program, and recording medium
JP6098664B2 (en) * 2015-05-08 2017-03-22 Jfeスチール株式会社 Shear edge molding availability evaluation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043452A (en) * 2009-08-24 2011-03-03 Nippon Steel Corp Bending limit strain measuring method, bending crack determination method, and bending crack determination program
JP2014016807A (en) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal Integrated breakage evaluation device, control method and control program
JP2014115269A (en) * 2012-11-19 2014-06-26 Jfe Steel Corp Method for specifying limit strain of elongation flange, and method for determining press forming acceptance/rejection

Also Published As

Publication number Publication date
CN110740821B (en) 2021-04-20
CN110740821A (en) 2020-01-31
KR20200015711A (en) 2020-02-12
WO2019017136A1 (en) 2019-01-24
JP6547920B2 (en) 2019-07-24
KR102271009B1 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
JP6547920B2 (en) Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method
JP6558515B2 (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting cracks, and method for designing press dies
JP6769561B2 (en) Deformation limit evaluation method, crack prediction method and press die design method
KR101539559B1 (en) Press-forming mold designing method and press-forming mold
KR20140131387A (en) Method for drawing forming limit diagram for press forming, crack prediction method, and method for manufacturing pressed components
JP6870670B2 (en) Deformation limit evaluation method, crack prediction method and press die design method
JP6149843B2 (en) Method and apparatus for analyzing shape correction of press-formed product, and method for correcting shape of press-formed product
JP5098901B2 (en) Calculation method of material property parameters
JP6107411B2 (en) Evaluation method for cracking of thin plate
JP2024006542A (en) Method and device for acquiring formation limit of metal plate
CN113453818B (en) Method for evaluating bending crack, system therefor, and method for manufacturing press-formed part
JP5900751B2 (en) Evaluation method and prediction method of bending inner crack
JP6060814B2 (en) Evaluation method for cracking of thin plate
JP2020069534A (en) Manufacturing method of press part, and design method of lower mold
JP7288212B2 (en) Blank manufacturing method, press-formed product manufacturing method, shape determining method, shape determining program, blank manufacturing apparatus, and blank
KR20220146642A (en) How to specify the necking limit distortion of a metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6547920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250