JP2011043452A - Bending limit strain measuring method, bending crack determination method, and bending crack determination program - Google Patents

Bending limit strain measuring method, bending crack determination method, and bending crack determination program Download PDF

Info

Publication number
JP2011043452A
JP2011043452A JP2009192863A JP2009192863A JP2011043452A JP 2011043452 A JP2011043452 A JP 2011043452A JP 2009192863 A JP2009192863 A JP 2009192863A JP 2009192863 A JP2009192863 A JP 2009192863A JP 2011043452 A JP2011043452 A JP 2011043452A
Authority
JP
Japan
Prior art keywords
bending
strain
crack
limit
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009192863A
Other languages
Japanese (ja)
Other versions
JP5294082B2 (en
Inventor
Koji Hashimoto
浩二 橋本
Koji Tanaka
康治 田中
Hiroshi Yoshida
博司 吉田
Toru Yoshida
亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009192863A priority Critical patent/JP5294082B2/en
Publication of JP2011043452A publication Critical patent/JP2011043452A/en
Application granted granted Critical
Publication of JP5294082B2 publication Critical patent/JP5294082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring accurately a bending limit strain when performing bending deformation having strain gradient in the plate thickness direction to a plate material; and to provide a bending crack determination method and a program therefor, capable of predicting and determining effectively bending breaking from a forming analysis result by a finite element method by utilizing a measured value. <P>SOLUTION: A bending limit strain is measured by putting a ruling line on a cross section of the plate material, and a bending forming portion and an elongation strain of an outermost layer bending center part are extracted from a forming analysis output result of a bending forming product made of the plate material, and existence of a bending crack is determined by comparing the elongation strain with the bending limit strain. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、板状素材に対して曲げ成形を含むプレス成形加工を行うに際し、成形可否を事前に正確に予測し、生産準備期間を短縮することで経費を低減でき、さらに良好な成形性を得るために用いられる曲げ限界ひずみ測定法、これを利用した曲げ割れ判定方法、及び曲げ割れ判定プログラムに関するものである。   In the present invention, when performing press forming processing including bending on a plate-shaped material, it is possible to accurately predict in advance whether or not molding is possible, and to reduce costs by shortening the production preparation period, and further improve the moldability. The present invention relates to a bending limit strain measurement method used for obtaining, a bending crack determination method using the same, and a bending crack determination program.

プレス部品を製造する場合、部品設計の段階で、事前に成形予測を有限要素法などで検討することが一般的に行われている。このとき、絞り成形や張り出し成形の破断は成形限界線図(FLD)による判断によって、ある程度予測可能である。しかし、プレス成形加工を行う段階では、材料や成形条件などが変動するために、成形が安定しないことが指摘されている。そのために、標準値に対する変動要因をコンピュータプログラムで解析し、プレス成形加工方法にフィードバックする技術が開示されている(特許文献1)。   In the case of manufacturing a pressed part, it is generally performed that the forming prediction is examined in advance by a finite element method or the like at the part design stage. At this time, it is possible to predict to some extent the breakage of drawing or stretch forming by judgment based on a forming limit diagram (FLD). However, it has been pointed out that molding is not stable at the stage of press molding because the material, molding conditions and the like fluctuate. For this purpose, a technique for analyzing a variation factor with respect to a standard value by a computer program and feeding back to a press forming method is disclosed (Patent Document 1).

絞り成形や張り出し成形のように板厚方向に均一な変形を受ける変形様式に対して、図1に示すように板厚方向にひずみ勾配を有する曲げ変形は、従来のFLDによる成形解析の破断判定が行えない成形様式のひとつである。さらに、昨今の高強度鋼板やアルミ材、マグネシウム材などの難加工材の成形が増えるにつれ、曲げ成形に伴う破断が問題となってきている。   In contrast to the deformation mode that undergoes uniform deformation in the plate thickness direction, such as drawing and stretch forming, bending deformation with a strain gradient in the plate thickness direction as shown in Fig. 1 is used to determine the fracture in the conventional FLD forming analysis. This is one of the molding methods that cannot be performed. Furthermore, with the recent increase in molding of difficult-to-work materials such as high-strength steel plates, aluminum materials, and magnesium materials, breakage due to bending has become a problem.

かかる曲げ成形に伴う破断を成形解析によって正確に求めるには、有限要素法などの成形解析において、板厚方向のひずみ分布を正確に求めるためにSolid要素を用いて板厚方向の要素分割数を多くする必要があるが、計算コストがかかり現実的でない。さらに、破断限界ひずみの定義も明確でなく、曲げ破断を有限要素法などの成形解析で予見することは非常に困難であった。   In order to accurately determine the fracture associated with such bending by forming analysis, in the forming analysis such as the finite element method, in order to accurately determine the strain distribution in the thickness direction, the number of element divisions in the thickness direction is determined using the Solid element. Although it is necessary to increase it, it is computationally expensive and not practical. Furthermore, the definition of the fracture limit strain is not clear, and it is very difficult to predict the bending fracture by forming analysis such as a finite element method.

一方、穴広げ成形も素材断面性状もしくは割れ近傍部のひずみ勾配により、限界ひずみが影響されることから、従来のFLDによる破断判定が困難な成形様式であるが、有限要素法による予測技術が開示されている(特許文献2)。また鍛造における割れの予測についても鍛造割れの予測指標が開示されている(特許文献3)。   On the other hand, hole expansion molding is a molding mode in which fracture determination by conventional FLD is difficult because the limit strain is affected by the cross-sectional properties of the material or the strain gradient in the vicinity of the crack, but the prediction technology by the finite element method is disclosed (Patent Document 2). Moreover, the prediction index of a forge crack is also disclosed also about the prediction of the crack in forging (patent document 3).

一般にプレス成形部品には、曲げ成形を主体とする成形だけでなく、通常の深絞りや張り出し成形、複合成形などにおいても、稜線部分の曲げやダイ肩Rを通過するときの曲げ曲げ戻し変形など、曲げ部位は必ず存在する。しかるに、金型設計段階において、絞り成形による伸び変形が起因となる破断はFLDと有限要素法解析などで予見可能であるが、曲げ部の変形による曲げ破断については正確な予測がほとんどできていなかった。   In general, for press-molded parts, not only molding mainly for bending molding, but also bending of the ridgeline part, bending bending back deformation when passing through the die shoulder R, etc. in ordinary deep drawing, overhang molding, composite molding, etc. There is always a bending part. However, at the mold design stage, fractures due to stretch deformation due to drawing can be predicted by FLD and finite element analysis, but bending fracture due to deformation of the bending part has hardly been accurately predicted. It was.

その原因のひとつは、通常用いられるスクライブドサークル径5mmや10mmは言うに及ばず、最小の1mmグリッドですら(非特許文献1)、1mmRや0.5mmRなど厳しい曲げの場合、局所的なひずみの分布の計測には寸法が大きすぎて計測にそぐわず、素材の破断限界ひずみの測定を十分な精度でおこなうことは困難であった。また、破断限界ひずみが測定されたとしても、有限要素法解析では曲げ破断を判断するアルゴリズムが存在せず、成形解析結果を曲げ破断に対して有効に活用する術がなかった。   One of the causes is not only the scribed circle diameters of 5mm and 10mm that are usually used, but even the smallest 1mm grid (Non-Patent Document 1), in the case of severe bending such as 1mmR and 0.5mmR, It was difficult to measure the fracture limit strain of the material with sufficient accuracy because the dimensions were too large for the measurement of the distribution, which was not suitable for the measurement. Even if the fracture limit strain was measured, there was no algorithm for judging bending fracture in the finite element analysis, and there was no way to use the molding analysis result effectively for bending fracture.

さらに、従来のひずみ測定方法は、板状素材の曲げ外側表面に罫書き線を罫書き、曲面上にある罫書き線間の距離を測定するために、曲面に沿って貼り付けた延性の小さいセロテープ(登録商標)や樹脂フィルムに罫書き線を転写し、平面に貼り付けた状態で極細線間距離を測定し、ひずみを計算する方法、もしくは3次元的な画像処理によりひずみの計算を行なうことが一般的に行なわれている。しかし、これらの方法では、テープ転写の際に人為的な誤差を生じたり、テープの伸縮が誤差となって残る。また、画像処理の場合、曲げ変形のように被写体の焦点深度が深い場合には測定誤差が大きくなる欠点がある。このため、板状素材の曲げ限界ひずみを正確に測定することができなかった。   Furthermore, the conventional strain measurement method has a small ductility that is pasted along a curved surface in order to measure the distance between the crease lines on the curved surface by scoring crease lines on the outer surface of the plate-like material. Transfer the ruled lines to cello tape (registered trademark) or resin film, measure the distance between the fine wires in a state where they are affixed to a flat surface, and calculate the strain by the method of calculating the strain or 3D image processing. It is generally done. However, in these methods, an artificial error is generated at the time of tape transfer, and expansion / contraction of the tape remains as an error. In addition, in the case of image processing, there is a drawback that the measurement error becomes large when the depth of focus of the subject is deep like bending deformation. For this reason, the bending limit strain of the plate material could not be measured accurately.

特開2006-75884号公報JP 2006-75884 A 特開2009-61477号公報JP 2009-61477 特開2006-231384号公報JP 2006-231384 A

「プレス成形難易ハンドブック第3版」:薄鋼板成形技術研究会編、日刊工業新聞社(P135)"Press Forming Difficulty Handbook 3rd Edition": Thin Steel Sheet Forming Technology Study Group, Nikkan Kogyo Shimbun (P135)

従って本発明の目的は、板状素材に対して板厚方向にひずみ勾配を有する曲げ変形を行う場合における曲げ限界ひずみを正確に測定する方法と、その測定値を利用して有限要素法による成形解析結果から曲げ破断を効果的に予測判断することができる曲げ割れ判定方法と、そのためのプログラムを提供することである。   Accordingly, an object of the present invention is to accurately measure the bending limit strain when bending deformation having a strain gradient in the plate thickness direction is performed on a plate-shaped material, and molding by the finite element method using the measured value. It is to provide a bending crack determination method capable of effectively predicting and determining a bending fracture from an analysis result, and a program therefor.

上記の課題を解決するためになされた本発明の曲げ限界ひずみの測定方法は、断面に板厚方向の罫書き線を入れた板状の試験片を用いてV曲げ試験またはL曲げ試験を行い、割れに至る直前の曲げ半径で成形した試験片の最外層表面の曲げ中心部における曲げ曲面の伸びひずみを測定し、板状素材の曲げ限界ひずみとすることを特徴とするものである。   The method of measuring the bending limit strain of the present invention made to solve the above-mentioned problem is to perform a V-bending test or an L-bending test using a plate-shaped test piece in which a scored line in the thickness direction is put in the cross section. The elongation strain of the bending curved surface at the bending center portion of the outermost layer surface of the test piece formed at the bending radius immediately before cracking is measured, and the bending limit strain of the plate material is measured.

なお請求項2のように、前記最外層表面の伸びひずみは、試験片断面にあらかじめ罫書いた線を拡大投影機または写真で読み取り、その座標値をひずみに変換することによって測定することが好ましく、また請求項3のように、前記罫書き線は、線幅1ミクロン以上50ミクロン未満の極細線のレーザーやインクジェットなどを用いて、線間隔50ミクロン以上1,000ミクロン未満で罫書くことが好ましい。   As in claim 2, the elongation strain on the outermost layer surface is preferably measured by reading a line marked in advance on the cross section of the test piece with an magnifying projector or a photograph and converting the coordinate value into strain. Further, as in claim 3, it is preferable that the crease lines are scribed with a line interval of 50 microns or more and less than 1,000 microns using an ultrafine laser or ink jet having a line width of 1 micron or more and less than 50 microns.

また請求項4のように、前記最外層表面の伸びひずみは、試験片断面に罫書き線を罫書き、成形後に罫書き線の試験片外表面との交点の座標を読み取り、その値から計算して求めることが好ましく、また請求項5のように、前記試験片断面に罫書いた罫書き線と試験片外表面との交点の座標から伸びひずみを計算するのは、3点の座標位置から曲率を考慮して算出する伸びひずみ計算式を用いて計算することが好ましい。   Further, as described in claim 4, the elongation strain of the outermost layer surface is calculated from a value obtained by scoring a ruled line on the cross section of the test piece, reading the coordinates of the intersection of the ruled line with the outer surface of the test piece after forming, Further, as in claim 5, the elongation strain is calculated from the coordinates of the intersection of the ruled line marked on the cross section of the test piece and the outer surface of the test piece. From the above, it is preferable to calculate using an elongation strain calculation formula calculated in consideration of the curvature.

また上記の課題を解決するためになされた本発明の曲げ割れ判定方法は、請求項1〜5の何れかに記載の方法により板状素材の曲げ限界ひずみを測定し、この板状素材からなる曲げ成形品の成形解析出力結果から、曲げ成形部位とその最外層曲げ中心部の伸びひずみとを抽出し、この伸びひずみを前記曲げ限界ひずみと比較して曲げ割れの有無を判定することを特徴とするものである。   Moreover, the bending crack determination method of the present invention made to solve the above-mentioned problem is to measure the bending limit strain of a plate material by the method according to any one of claims 1 to 5, and is made of this plate material. The bending analysis part of the bending molded part and its outermost bending center strain are extracted from the bending analysis output result, and the elongation strain is compared with the bending limit strain to determine the presence or absence of bending cracks. It is what.

なお請求項7のように、成形解析出力結果が、接点座標、数値積分点の応力値、ひずみ値のデータを含むものであることが好ましい。また請求項8のように、曲げ部位の抽出は、最外層表面の伸びひずみと最内層の伸びひずみの差分を評価し、曲げ半径を判定することによって行うことが好ましい。また請求項9のように、曲げ割れの判定は、成形解析出力結果を基に曲げ部位の最外層伸びひずみを算出し、曲げ部の曲げ半径を算出し、解析で用いた解析要素寸法に対応して曲げ限界評価値を変換し、比較検討して行うことが好ましい。   As in claim 7, it is preferable that the molding analysis output result includes data on the contact coordinates, the stress value of the numerical integration point, and the strain value. Further, as in claim 8, it is preferable to extract the bending site by evaluating the difference between the elongation strain of the outermost layer surface and the elongation strain of the innermost layer and determining the bending radius. In addition, as described in claim 9, the determination of the bending crack is based on the result of molding analysis, and calculates the outermost layer elongation strain of the bending part, calculates the bending radius of the bending part, and corresponds to the analysis element size used in the analysis. Then, it is preferable to carry out a comparative study by converting the bending limit evaluation value.

さらに請求項10のように、予め求めた曲げ中心部近傍の伸びひずみ分布に基づいて、要素寸法に応じて変化する最外層伸びひずみを、評点間距離の依存性を実験データをもとに外挿して、解析で用いた解析要素寸法に変換することが好ましく、その場合には請求項11のように、評点間距離の依存性を実験データをもとに外挿する際に、曲げ半径に応じて板厚方向ひずみ勾配の影響を補正、または中間の曲げ半径では補正曲線を外挿することで板厚方向ひずみ勾配の影響を反映させることが好ましい。   Further, as in claim 10, based on the elongation strain distribution in the vicinity of the bending center determined in advance, the outermost layer elongation strain that changes according to the element dimensions is determined, and the dependence of the inter-score distance is determined based on experimental data. In this case, it is preferable to convert to the analysis element size used in the analysis. In this case, as described in claim 11, when extrapolating the dependency of the distance between the scores based on the experimental data, Accordingly, it is preferable to reflect the influence of the strain gradient in the thickness direction by correcting the influence of the strain gradient in the thickness direction or extrapolating a correction curve at an intermediate bending radius.

また上記の課題を解決するためになされた本発明の曲げ割れ判定プログラムは、板状素材からなる曲げ成形品の曲げ割れ判定を行わせるためにコンピュータを、板状素材の曲げ限界ひずみと、曲げ成形品の成形解析出力とを入力する手段と、成形解析出力結果から曲げ成形部位を抽出する手段と、抽出された曲げ成形部位の最外層曲げ中心部の伸びひずみを曲げ半径に応じて補正する手段と、補正された伸びひずみを前記曲げ限界ひずみと比較して割れ判定を行う手段と、して機能させることを特徴とするものである。   In addition, the bending crack determination program of the present invention made to solve the above-described problems is a computer program for making a bending crack determination of a bent molded article made of a plate material, bending strain limit of the plate material, and bending. A means for inputting a molding analysis output of a molded product, a means for extracting a bending molding part from the molding analysis output result, and an extension strain at the bending center portion of the outermost layer of the extracted bending molding part is corrected according to the bending radius. And a means for comparing the corrected elongation strain with the bending limit strain to perform crack determination.

本発明の曲げ限界ひずみの測定方法によれば、素材断面に罫書いた極細線の罫書き線を成形後に直接読み取ることで、従来の手法にあった誤差要因を排除し、板状素材の曲げ限界ひずみを正確に実測することができる。また本発明の曲げ割れ判定方法及びそのプログラムによれば、プレス成形される曲げ成形品の曲げ部に生ずる割れの予測が有限要素法によって可能になり、金型製作期間の短縮、コスト削減が可能となる。   According to the method for measuring the bending limit strain of the present invention, by directly reading the ruled line of the fine line marked on the cross section of the material after forming, the error factor in the conventional method is eliminated, and the bending of the plate-like material is performed. The critical strain can be measured accurately. In addition, according to the bending crack determination method and the program of the present invention, it is possible to predict cracks occurring in the bent portion of a press-molded bent product by the finite element method, and it is possible to shorten the die manufacturing period and cost. It becomes.

本発明に適用される、板厚方向にひずみ分布を持つ曲げ加工を模式的に表した図である。It is the figure which represented typically the bending process which has a strain distribution in a plate | board thickness direction applied to this invention. 本発明の曲げ破断ひずみの測定法を現す図で、曲げ中心部近傍の断面に罫書かれた極細線と外表面との交点p1、p、pを模式的に表した図である。In FIG representing the method of measuring the flexural strain at break of the present invention, it is a diagram of the intersection p 1, p 2, p 3 of the central portion sectional ruffled written filament and the outer surface of the near bend schematically illustrating. 成形解析結果から、曲げ成形破断を予測するプログラムのアルゴリズムの説明図である。It is explanatory drawing of the algorithm of the program which estimates a bending shaping | molding fracture | rupture from a shaping | molding analysis result. 解析に用いた要素寸法が破断限界ひずみを求めたときの評点間距離と異なる場合に寸法によって換算するための図及び曲げ半径によって評点間距離依存の影響度が異なることを表す図である。FIG. 5 is a diagram for converting according to dimensions when the element dimensions used in the analysis are different from the distance between scores when the fracture limit strain is obtained, and a diagram showing that the degree of influence depending on the distance between scores differs depending on the bending radius. 解析に用いた素材板厚が基準板厚と異なる場合の評点間距離依存の関係を示した図で、この関係を持って、破断限界ひずみを変換するための図である。It is the figure which showed the relationship of the distance dependence between grades when the raw material board thickness used for the analysis differs from a reference | standard board thickness, and is a figure for converting the fracture limit strain with this relation. 線幅20ミクロン、極細線間距離200ミクロンで罫書いた線のダイ肩R0.5mmとダイ肩R3.0mmで成形した後の状態を表す例。An example showing the state after forming a line with a die shoulder of R0.5mm and a die shoulder of R3.0mm with a line width of 20 microns and a distance between ultrafine wires of 200 microns. 、p、pの座標値を、590MPaの2鋼種について数式1〜5を用いてひずみ分布として求めた例である。In this example, the coordinate values of p 1 , p 2 , and p 3 are obtained as strain distributions using Formulas 1 to 5 for two steel types of 590 MPa. 比較のために200ミクロンのSolid要素で曲げ解析を行なったときの板厚方向ひずみ分布例である。For comparison, this is an example of strain distribution in the thickness direction when bending analysis is performed with a 200-micron solid element. 590MPa材を適用した成形解析で、曲げ部の破断限界を評価し、破断危険部位を示した例である。This is an example in which the fracture limit of the bent portion was evaluated by forming analysis using a 590 MPa material, and the fracture risk portion was shown. 解析に用いた要素寸法が破断限界ひずみを求めたときの評点間距離と異なる場合に変換する図が、曲げ半径によって伸びひずみのピーク形状が異なることを示した図である。The figure converted when the element size used for the analysis is different from the distance between the scores when the fracture limit strain is obtained is a figure showing that the peak shape of the elongation strain differs depending on the bending radius.

以下に本発明を更に詳細に説明する。
(曲げ限界ひずみの測定方法)
本発明では、曲げ成形品の素材となる板状素材の曲げ限界ひずみを正確に測定するために、その板状素材と同一の板状の試験片を用い、V曲げ試験またはL曲げ試験を行う。この試験片の曲げ部位に該当する断面には、図6に示されるように板厚方向の罫書き線を入れておく。そして曲げ半径を次第に小さくしながら、割れに至るまで曲げ試験を繰り返す。そして割れに至る直前の曲げ半径で成形した試験片の最外層表面の曲げ中心部における曲げ曲面の伸びひずみを測定し、板状素材の曲げ限界ひずみとする。
The present invention is described in further detail below.
(Measurement method of bending limit strain)
In the present invention, in order to accurately measure the bending limit strain of a plate-shaped material that is a material of a bent molded product, a V-bending test or an L-bending test is performed using the same plate-shaped test piece as the plate-shaped material. . In the cross section corresponding to the bent portion of the test piece, a ruled line in the thickness direction is provided as shown in FIG. Then, the bending test is repeated until cracking while gradually reducing the bending radius. And the elongation distortion of the bending curved surface in the bending center part of the outermost layer surface of the test piece shape | molded with the bending radius just before reaching a crack is measured, and it is set as the bending limit distortion of a plate-shaped raw material.

この罫書き線は、線幅1ミクロン以上20ミクロン以下のレーザーマーキングもしくはインクジェット、電解エッチングなどの手法で罫書かれた極細線とすることが好ましい。線幅が1ミクロン未満では素材断面の粗さにより直線状を保てない。また、20ミクロン以上では極細線同士の幅に対する線幅が大きすぎて測定誤差が10%近くなるため適切でない。さらに、極細線同士の幅は50ミクロン以上、1,000ミクロン以下で罫書くことが好ましい。極細線同士の幅が50ミクロン以下では、極細線幅との差が小さくなり、測定誤差が大きくなるため適切でない。また、1,000ミクロン以上の線幅では1mmRや0.5mmRなどの厳しい曲げRでのひずみ測定では評点間距離が大きすぎて、破断限界ひずみの計測に適さない。   It is preferable that the ruled line is an ultrathin line marked by a method such as laser marking, ink jet, or electrolytic etching with a line width of 1 to 20 microns. If the line width is less than 1 micron, it cannot be kept straight due to the roughness of the material cross section. On the other hand, if it is 20 microns or more, the line width with respect to the width of the ultra-thin lines is too large and the measurement error is close to 10%. Furthermore, it is preferable that the width of the fine wires is 50 microns or more and 1,000 microns or less. If the width between the extra fine wires is 50 microns or less, the difference from the extra fine wire width becomes smaller and the measurement error becomes larger. In addition, when the line width is 1,000 microns or more, the strain measurement at severe bending radius such as 1mmR and 0.5mmR is not suitable for measuring the fracture limit strain because the distance between points is too large.

従来のひずみ測定方法は、素材の曲げ外側表面に罫書き線を罫書き、曲面上にある罫書き線間の距離を測定するために、曲面に沿って貼り付けた延性の小さいセロテープ(登録商標)や樹脂フィルムに罫書き線を転写し、平面に貼り付けた状態で極細線間距離を測定し、ひずみを計算する方法、もしくは3次元的な画像処理によりひずみの計算を行なうことが一般的に行なわれていたが、これらの方法では、テープ転写の際に人為的な誤差を生じたり、テープの伸縮が誤差となって残る。また、画像処理の場合、曲げ変形のように被写体の焦点深度が深い場合には測定誤差が大きくなる欠点がある。これに対して本発明では、素材断面に罫書いた極細線の罫書き線を成形後に直接読み取ることで、従来の手法にあった誤差要因を排除することが可能である。   The conventional strain measurement method is a low-ductility cellophane tape (registered trademark) pasted along a curved surface in order to measure the distance between the crease lines on the curved surface of the material. ) And the method of calculating the strain by transferring the ruled lines to the resin film and measuring the distance between the ultrathin wires in a state of being applied to a flat surface, or calculating the strain by three-dimensional image processing. However, in these methods, an artificial error is generated at the time of tape transfer, and expansion / contraction of the tape remains as an error. In addition, in the case of image processing, there is a drawback that the measurement error becomes large when the depth of focus of the subject is deep like bending deformation. On the other hand, according to the present invention, it is possible to eliminate an error factor in the conventional method by directly reading the ruled line of the fine line marked on the cross section of the material after forming.

なお最外層表面の伸びひずみは、試験片断面にあらかじめ罫書いた線を拡大投影機または写真で読み取り、その座標値をひずみに変換することによって測定することができる。また最外層表面の伸びひずみは、成形後に罫書き線の試験片外表面との交点の座標を読み取り、その値から計算して求めることができる。この伸びひずみを計算するのは、3点の座標位置から曲率を考慮して算出する伸びひずみ計算式を用いて計算することができる。この点について詳述すると次の通りである。   The elongation strain on the outermost layer surface can be measured by reading a line marked in advance on the cross section of the test piece with an magnifying projector or a photograph, and converting the coordinate value into strain. Further, the elongation strain on the outermost layer surface can be obtained by reading the coordinates of the intersection point of the ruled line with the outer surface of the test piece after forming and calculating from the value. The elongation strain can be calculated using an elongation strain calculation formula calculated from the coordinate position of the three points in consideration of the curvature. This will be described in detail as follows.

本発明の曲げ限界ひずみの測定方法における伸びひずみは、曲げ成形後に罫書き線と外表面の交点座標(x,y)を3点について測定し、以下の手順で伸びひずみεp1~p2を計算する。本発明のひずみ計算手法は、図2に示すような曲げ成形品の断面と最外層表面の交点で、p1,p2,p3の3点の(x,y)座標を読み取ることでp1からp2にいたる曲面部の伸びひずみを計算するものである。 The elongation strain in the measuring method of bending limit strain according to the present invention is measured at three points of intersection coordinates (x, y) between the score line and the outer surface after bending, and the elongation strain ε p1 to p2 is calculated by the following procedure. To do. The strain calculation method of the present invention reads the (x, y) coordinates of the three points p 1 , p 2 , and p 3 at the intersection of the cross-section of the bent product and the outermost layer surface as shown in FIG. The elongation strain of the curved surface part from 1 to p 2 is calculated.

まず次の数1の式により、p1とp3を直線で結んだ距離W1-3を求める。
First, a distance W 1-3 obtained by connecting p 1 and p 3 with a straight line is obtained by the following equation (1).

つぎに、p1とpを結んだ線とp2との間の垂線の距離dを幾何学問題として解くと次の数2の式を得る。
Next, when the perpendicular distance d between the line connecting p 1 and p 3 and p 2 is solved as a geometric problem, the following equation (2) is obtained.

このdをもとに、p1からp3にかけての曲率rを次の数3の式により計算する。
Based on this d, the curvature r from p 1 to p 3 is calculated by the following equation (3).

この曲率rをもとにp1からp2にかけての曲面の長さLp1〜p2を、次の数4の式によって求める。
Based on this curvature r, the lengths L p1 to p2 of the curved surface from p 1 to p 2 are obtained by the following equation (4).

このLp1〜p2より、初期のp1とp2の直線距離L0から伸びひずみεp1-p2を、次の数5の式によって計算する。
From this L P1 to P2, the initial p 1 and elongation strain from the straight line distance L 0 of p 2 ε p1-p2, calculated by the formula for a number of 5.

このようにして本発明では、V曲げ試験もしくはフランジアップ試験などの簡易曲げ試験において、破断せずに成形できる最小曲げ半径で成形された成形品の最外層伸びひずみを、破断限界曲げひずみとして用いる。   Thus, in the present invention, in the simple bending test such as the V-bending test or the flange-up test, the outermost layer elongation strain of the molded product formed with the minimum bending radius that can be formed without breaking is used as the breaking limit bending strain. .

(曲げ割れ判定方法及びそのプログラム)
次に、本発明における曲げ割れを判定する解析方法について説明する。このために、図3に示すアルゴリズムを有するコンピュータプログラムが用いられる。
(Bending crack judgment method and its program)
Next, an analysis method for determining a bending crack in the present invention will be described. For this purpose, a computer program having the algorithm shown in FIG. 3 is used.

このプログラムは、板状素材の曲げ限界ひずみと、曲げ成形品の成形解析出力とを入力する入力手段10と、成形解析出力結果から曲げ成形部位を抽出する抽出手段20と、抽出された曲げ成形部位の最外層曲げ中心部の伸びひずみを曲げ半径に応じて補正する補正手段30と、補正された伸びひずみを前記曲げ限界ひずみと比較して割れ判定を行う判定手段40とを備えており、コンピュータにこれらの各手段を実行させる機能を有するものである。   This program includes an input means 10 for inputting a bending limit strain of a plate-like material and a molding analysis output of a bent molded product, an extracting means 20 for extracting a bending molding site from the molding analysis output result, and an extracted bending molding. Correction means 30 for correcting the elongation strain of the outermost layer bending center portion of the part according to the bending radius, and determination means 40 for performing crack determination by comparing the corrected elongation strain with the bending limit strain, The computer has a function to execute each of these means.

まず、有限要素法などの数値解析プログラムによって出力された成形解析Output Dataを、入力手段10において入力する。またこの入力手段10において、前述の方法によって求められた板状素材の曲げ限界ひずみも入力される。   First, the forming analysis output data output by a numerical analysis program such as the finite element method is input in the input means 10. The input means 10 also inputs the bending limit strain of the plate-like material obtained by the above-described method.

次に、解析対象部品である曲げ成形品の曲げ部位を抽出手段20において抽出する。図3に示されるように、曲げ部位の抽出は、要素ごとの外層ひずみの計算、曲げ成形品の表裏面のひずみ差から曲げRの計算、曲げRと板厚比R/tの計算の各ステップを含む。なお、曲げ部を抽出した後に、R/tが10以下である部位のみ、破断判定に供する。これは、R/t>10の場合、曲げ半径が十分に大きく、割れ判定するまでもなく、曲げ割れの生じる条件外となるためである。   Next, the extraction part 20 extracts the bending part of the bending molded product which is the analysis target part. As shown in Fig. 3, the bending part is extracted by calculating the outer layer strain for each element, calculating the bending R from the difference in strain between the front and back surfaces of the bent molded product, and calculating the bending R and the thickness ratio R / t. Includes steps. In addition, after extracting a bending part, only a site | part whose R / t is 10 or less is used for a fracture | rupture determination. This is because when R / t> 10, the bending radius is sufficiently large, and it is not necessary to determine the crack, and the condition for causing the bending crack is not satisfied.

次に、実験により求めた破断限界曲げひずみと解析結果の最外層伸びひずみを比較するために、補正手段30において、解析に用いた要素寸法に応じて解析結果の伸びひずみを評点間距離に応じて変換する。   Next, in order to compare the fracture limit bending strain obtained by the experiment and the outermost layer elongation strain of the analysis result, the correction means 30 determines the elongation strain of the analysis result according to the distance between the scores according to the element dimensions used for the analysis. To convert.

この解析に用いた要素寸法に応じて評点間距離を変換する操作は、曲げ成形における破断限界曲げひずみが曲げ中心部にピークを持つ分布を示すために、実験で求めた評点間距離の破断限界ひずみと解析で用いた要素寸法が異なる場合には、解析結果を比較検討する上で評点間距離を実験で求めた評点間距離と同一にしてやる必要があるためである。   The operation to convert the distance between the scores according to the element dimensions used in this analysis is the fracture limit of the distance between the scores obtained in the experiment in order to show the distribution of the fracture limit bending strain in bending forming with a peak in the bending center. This is because, when the strain and the element dimensions used in the analysis are different, it is necessary to make the distance between the scores the same as the distance between the scores obtained through experiments in order to compare the analysis results.

図4には、実験により求めた曲げ限界ひずみの評点間距離による変化を示す。この実験では罫書き線間距離を200ミクロンとしているため、成形解析で要素寸法を2.0mmや4.0mmとしたときには、曲げ半径に応じて解析結果の曲げ部伸びひずみ値を、評点間距離依存の関係に反映させて変換したうえで、実験で求めた曲げ限界ひずみの値と比較する必要がある。この操作を行わないと、解析結果の曲げ部伸びひずみ値は実際の値よりも低くなってしまい、正確に曲げ割れ判定を行うことができない。   FIG. 4 shows a change in the bending limit strain obtained by the experiment depending on the distance between the scores. In this experiment, the distance between the crease lines is set to 200 microns. Therefore, when the element size is set to 2.0 mm or 4.0 mm in the forming analysis, the bending strain elongation strain value of the analysis result depends on the bend radius. It is necessary to compare it with the value of the bending limit strain obtained by experiment after reflecting it in the relationship. If this operation is not performed, the bending strain elongation value of the analysis result will be lower than the actual value, and the bending crack determination cannot be performed accurately.

さらに、この曲げ限界ひずみの評点間距離の依存関係は、曲げ限界ひずみの値が板厚方向ひずみ勾配の影響を受け、図4に示すようにひずみ勾配が大きくなる曲げ半径小の条件(例えば曲げ半径0.5mmRや1.0mmRなど)では曲げ限界ひずみが急激に大きくなる特徴があるので、曲げ半径に応じて評点間距離依存の補正(ひずみ勾配の影響の補正)を行なう必要がある。   Furthermore, the dependency of the bend limit strain on the distance between the scores is that the value of the bend limit strain is affected by the strain gradient in the thickness direction, and as shown in FIG. (Because of radius 0.5mmR, 1.0mmR, etc.), the bending limit strain is abruptly increased, so it is necessary to perform correction depending on the distance between scores (correction of the effect of strain gradient) according to the bending radius.

また、破断限界曲げひずみの評点間距離依存の曲線は、対象とする素材の板厚によって、曲げ中心部の曲げ限界ひずみのピーク形状が異なるため、曲率半径Rと素材板厚tの比、R/tに応じて変換してやる必要がある。その一例として、590MPa DP材での補正図を図5に示す。   In addition, the curve depending on the inter-score distance of the breaking limit bending strain is different in the peak shape of the bending limit strain at the bending center depending on the thickness of the target material. It is necessary to convert according to / t. As an example, FIG. 5 shows a correction diagram using a 590 MPa DP material.

このような補正を行ったうえで、判定手段40において、補正された伸びひずみを前記曲げ限界ひずみと比較して割れ判定を行う。さらに、ポスト処理にて曲げ部位の破断判定箇所を表示する。   After performing such correction, the determination means 40 compares the corrected elongation strain with the bending limit strain to perform crack determination. Furthermore, the fracture determination location of the bending site is displayed by post processing.

上記のように、本発明の曲げ割れ判定方法によれば、有限要素法などの数値解析プログラムによって出力された成形解析と、実験により求めた曲げ限界ひずみとに基づいて、曲げ成形品の曲げ割れの有無を正確に判定することができる。
以下に本発明の実施例を示す。
As described above, according to the bending crack determination method of the present invention, based on the molding analysis output by the numerical analysis program such as the finite element method and the bending limit strain obtained by the experiment, the bending crack of the bending molded product is performed. The presence or absence of can be accurately determined.
Examples of the present invention are shown below.

[実施例1]
曲げ中心部近傍の板状素材の断面に、罫書き線を罫書いた。図6には、レーザーマーキングにより20ミクロンの線幅で、200ミクロンの線間隔に罫書き線を入れたサンプルの曲げ成形後の状態を示した。罫書かれた極細線と外表面との交点p1、p、pについて、拡大投影機などで座標点を計測し、前記数1〜5の数式を用いて伸びひずみεp1-p2を求め、曲げ中心部に添って伸びひずみ分布を測定した例を図7に示す。伸びひずみは曲げ中心部にピークを示し、割れを生じる限界の伸びひずみのピーク値を破断限界ひずみとする。また、曲げ中心部近傍のピーク値の位置を原点に、評点間距離を変えた場合の破断限界曲げひずみの値を計算することで、図4に示すような評点間距離依存の変換図を作成することができる。
[Example 1]
A ruled line was drawn on the cross section of the plate-like material near the center of bending. FIG. 6 shows a state after bending of a sample having a line width of 20 microns and a ruled line with a line interval of 200 microns by laser marking. Measure the coordinate points of the intersections p 1 , p 2 , and p 3 between the marked fine line and the outer surface with an magnifying projector, and obtain the elongation strain ε p1-p2 using the formulas 1-5 above. FIG. 7 shows an example of measuring the strain distribution along the bending center. The elongation strain shows a peak at the center of bending, and the peak value of the elongation strain at which cracking occurs is the fracture limit strain. In addition, by calculating the value of the fracture limit bending strain when the distance between grades is changed with the position of the peak value in the vicinity of the bending center as the origin, a conversion diagram dependent on the distance between grades is created as shown in FIG. can do.

図8には、曲げ成形をSolid要素を用いて、板厚方向、長さ方向、奥行き方向、ともに200ミクロンで離散化した曲げ成形解析モデルで、曲げ半径0.5mmでの曲げ成形後の相当塑性ひずみ分布を示す。図からわかるように、板厚方向には最外層に引張りひずみが曲げ中心部をピークに分布し、最内層には圧縮による塑性ひずみが生じている。   Fig. 8 shows a bending analysis model in which bending is performed using a solid element and discretized at 200 microns in the thickness direction, length direction, and depth direction, and the equivalent plasticity after bending at a bending radius of 0.5 mm. The strain distribution is shown. As can be seen from the figure, in the thickness direction, tensile strain is distributed in the outermost layer with a peak at the bending center, and plastic strain due to compression is generated in the innermost layer.

通常の成形解析では、計算コストの関係でShell要素による解析が一般的であるため、数値積分点の板厚方向積分点を5以上とすることで、最外層伸びひずみと最内層圧縮ひずみの計算の精度を高めることができる。ここでは、1辺2mmのShell要素で、数値積分点7点で成形解析を行い、その数値計算結果のファイルから最外層ひずみを求め、曲げ部を図3のアルゴリズムを有するプログラムにより判別し、図4の評点間距離の変換図などを用いて曲げ部位の破断限界ひずみを比較し、破断判定した結果を図9に示す。これにより、曲げの厳しい部位を型設計段階で検出することができ、型製作期間の短縮に貢献できた。   In ordinary forming analysis, analysis by the Shell element is common due to the calculation cost. Therefore, the outermost layer compressive strain and innermost layer compressive strain can be calculated by setting the plate thickness direction integration point of the numerical integration point to 5 or more. Can improve the accuracy. Here, a shell element with a side of 2 mm is subjected to molding analysis at 7 numerical integration points, the outermost layer strain is obtained from the numerical calculation result file, the bending part is determined by a program having the algorithm of FIG. FIG. 9 shows the result of determining the fracture by comparing the fracture limit strains of the bent parts using a conversion diagram of the distance between the four grades. As a result, it was possible to detect severely bent parts at the mold design stage, which contributed to shortening the mold production period.

[実施例2]
本発明の曲げ限界ひずみ測定法において、実験結果から曲げ割れ限界ひずみを求めるに当たり、従来手法の電解エッチングやスタンプ、さらにレーザーマーキングやインクジェットなどにより、罫書き線幅と罫書き線間距離をいろいろ変えて、曲げ半径1.0mmの曲げ部の伸びひずみを測定したときの判断結果を表1に示す。
[Example 2]
In the bending limit strain measurement method of the present invention, when determining the bending crack limit strain from the experimental results, various changes are made in the line width and the distance between the ruled lines using conventional methods such as electrolytic etching, stamping, laser marking, and inkjet. Table 1 shows the determination results when the elongation strain of the bending portion having a bending radius of 1.0 mm was measured.

読み取り誤差は±5%以内を○、±10%以内を△、それ以外を×とした。また、曲げ部ひずみの判断は、初等解法により求めた最外層伸びひずみの値を正として、この値から±10%以内を○、±20%以内を△、それ以外を×とした。総合判断は○もしくは△の割合で判断し、×がひとつでもある場合は×とした。   The reading error was marked with ○ within ± 5%, Δ within ± 10%, and x otherwise. In addition, the determination of the bending section strain was made positive with the value of the outermost layer elongation strain obtained by the primary solution as positive, within ± 10% from this value, Δ within ± 20%, and x otherwise. Comprehensive judgment was judged by the ratio of ○ or △, and when there was at least one x, it was taken as x.

この結果、従来の電解エッチングやスタンプは線幅が大きく、曲げ限界ひずみの測定には適さないこと、レーザーマーキングやインクジェットによる罫書き線を適切に設定することで曲げ限界ひずみの測定に用いることができることが判明した。   As a result, conventional electrolytic etching and stamps have a large line width and are not suitable for measurement of bending limit strain, and can be used for measurement of bending limit strain by appropriately setting a marking line by laser marking or inkjet. It turns out that you can.

[実施例3]
次に、実施例3として、図7に相当する曲げ中心部近傍の曲げひずみ分布を曲げ半径を変えた状態で測定して図10に示した。この図のように、ひずみのピークは曲げ半径によって異なるため、図5に示したように曲げ半径に応じて、曲げ限界ひずみの変換を行なうことが好ましい。
[Example 3]
Next, as Example 3, the bending strain distribution in the vicinity of the bending center corresponding to FIG. 7 was measured with the bending radius changed, and is shown in FIG. Since the strain peak varies depending on the bending radius as shown in this figure, it is preferable to convert the bending limit strain according to the bending radius as shown in FIG.

10 入力手段
20 抽出手段
30 補正手段
40 判定手段
DESCRIPTION OF SYMBOLS 10 Input means 20 Extraction means 30 Correction means 40 Determination means

Claims (12)

断面に板厚方向の罫書き線を入れた板状の試験片を用いてV曲げ試験またはL曲げ試験を行い、割れに至る直前の曲げ半径で成形した試験片の最外層表面の曲げ中心部における曲げ曲面の伸びひずみを測定し、板状素材の曲げ限界ひずみとすることを特徴とする曲げ限界ひずみ測定法。   Bending center part of the outermost layer surface of the test piece formed with a bending radius just before reaching the crack by performing a V-bending test or L-bending test using a plate-shaped test piece with a score line in the thickness direction in the cross section The bending limit strain measurement method characterized by measuring the elongation strain of the bending curved surface in to obtain the bending limit strain of the plate material. 前記最外層表面の伸びひずみは、試験片断面にあらかじめ罫書いた線を拡大投影機または写真で読み取り、その座標値をひずみに変換することによって測定することを特徴とする請求項1に記載の曲げ限界ひずみ測定法。   2. The elongation strain on the outermost layer surface is measured by reading a line marked in advance on the cross section of the test piece with an magnifying projector or a photograph, and converting the coordinate value into strain. Bending limit strain measurement method. 前記罫書き線は、線幅1ミクロン以上50ミクロン未満の極細線のレーザーやインクジェットなどを用いて、線間隔50ミクロン以上1,000ミクロン未満で罫書くことを特徴とする請求項1に記載の曲げ限界ひずみ測定法。   2. The bending limit according to claim 1, wherein the ruled lines are marked with a line interval of 50 μm or more and less than 1,000 μm using an ultra-fine laser or ink jet having a line width of 1 μm or more and less than 50 μm. Strain measurement method. 前記最外層表面の伸びひずみは、試験片断面に罫書き線を罫書き、成形後に罫書き線の試験片外表面との交点の座標を読み取り、その値から計算して求めることを特徴とする請求項3に記載の曲げ限界ひずみ測定法。   The elongation strain of the outermost layer surface is obtained by scoring a crease line on the cross section of the test piece, reading the coordinates of the intersection of the crease line with the outer surface of the test piece after forming, and calculating from the value. The bending limit strain measuring method according to claim 3. 前記試験片断面に罫書いた罫書き線と試験片外表面との交点の座標から伸びひずみを計算するのは、3点の座標位置から曲率を考慮して算出する伸びひずみ計算式を用いて計算することを特徴とする請求項4に記載の曲げ限界ひずみ測定法。   The elongation strain is calculated from the coordinates of the intersection of the scribe line marked on the cross section of the test piece and the outer surface of the test piece using an elongation strain calculation formula that is calculated considering the curvature from the coordinate position of the three points. The bending limit strain measuring method according to claim 4, wherein the bending limit strain measuring method is calculated. 請求項1〜5の何れかに記載の方法により板状素材の曲げ限界ひずみを測定し、この板状素材からなる曲げ成形品の成形解析出力結果から、曲げ成形部位とその最外層曲げ中心部の伸びひずみとを抽出し、この伸びひずみを前記曲げ限界ひずみと比較して曲げ割れの有無を判定することを特徴とする曲げ割れ判定方法。   The bending limit strain of the plate-shaped material is measured by the method according to any one of claims 1 to 5, and the bending-formed portion and its outermost layer bending center portion are obtained from the result of molding analysis output of the bent-shaped product made of the plate-shaped material. A bending crack determination method characterized by extracting the elongation strain of the sample and comparing the elongation strain with the bending limit strain to determine the presence or absence of a bending crack. 成形解析出力結果が、接点座標、数値積分点の応力値、ひずみ値のデータを含むものであることを特徴とする請求項6に記載の曲げ割れ判定方法。   7. The bending crack determination method according to claim 6, wherein the forming analysis output result includes data of contact coordinates, a stress value of a numerical integration point, and a strain value. 曲げ部位の抽出は、最外層表面の伸びひずみと最内層の伸びひずみの差分を評価し、曲げ半径を判定することによって行うことを特徴とする請求項7に記載の曲げ割れ判定方法。   8. The bending crack determination method according to claim 7, wherein the extraction of the bending portion is performed by evaluating a difference between an elongation strain of the outermost layer surface and an elongation strain of the innermost layer and determining a bending radius. 曲げ割れの判定は、成形解析出力結果を基に曲げ部位の最外層伸びひずみを算出し、曲げ部の曲げ半径を算出し、解析で用いた解析要素寸法に対応して曲げ限界評価値を変換し、比較検討して行うことを特徴とする請求項6に記載の曲げ割れ判定方法。   Judgment of bending cracks is based on the results of molding analysis, and calculates the outermost layer elongation strain of the bending part, calculates the bending radius of the bending part, and converts the bending limit evaluation value according to the analysis element size used in the analysis. The method for determining a bending crack according to claim 6, wherein the method is performed by comparative examination. 予め求めた曲げ中心部近傍の伸びひずみ分布に基づいて、要素寸法に応じて変化する最外層伸びひずみを、評点間距離の依存性を実験データをもとに外挿して、解析で用いた解析要素寸法に変換することを特徴とする請求項9に記載の曲げ割れ判定方法。   Based on the elongation strain distribution in the vicinity of the bending center determined in advance, the outermost layer elongation strain that changes according to the element dimensions is extrapolated based on the experimental data on the dependency of the distance between the scores, and the analysis used in the analysis The bending crack determination method according to claim 9, wherein the method is converted into an element size. 評点間距離の依存性を実験データをもとに外挿する際に、曲げ半径に応じて板厚方向ひずみ勾配の影響を補正、または中間の曲げ半径では補正曲線を外挿することで板厚方向ひずみ勾配の影響を反映させることを特徴とする請求項10に記載の曲げ割れ判定方法。   When extrapolating the dependency of the distance between scores based on experimental data, the effect of the strain gradient in the thickness direction is corrected according to the bending radius, or the correction curve is extrapolated at an intermediate bending radius. The bending crack determination method according to claim 10, wherein an influence of a directional strain gradient is reflected. 板状素材からなる曲げ成形品の曲げ割れ判定を行わせるためにコンピュータを、
板状素材の曲げ限界ひずみと、曲げ成形品の成形解析出力とを入力する手段と、
成形解析出力結果から曲げ成形部位を抽出する手段と、
抽出された曲げ成形部位の最外層曲げ中心部の伸びひずみを曲げ半径に応じて補正する手段と、
補正された伸びひずみを前記曲げ限界ひずみと比較して割れ判定を行う手段と、
して機能させるための曲げ割れ判定プログラム。
In order to make a bending crack judgment of a bent molded product made of a plate-like material,
Means for inputting the bending limit strain of the plate-like material and the molding analysis output of the bent molded product;
Means for extracting a bending part from a molding analysis output result;
Means for correcting the elongation strain at the outermost layer bending center portion of the extracted bending forming portion according to the bending radius;
Means for determining the crack by comparing the corrected elongation strain with the bending limit strain;
Bending crack judgment program to make it function.
JP2009192863A 2009-08-24 2009-08-24 Bending limit strain measurement method, bending crack determination method, and bending crack determination program Active JP5294082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192863A JP5294082B2 (en) 2009-08-24 2009-08-24 Bending limit strain measurement method, bending crack determination method, and bending crack determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192863A JP5294082B2 (en) 2009-08-24 2009-08-24 Bending limit strain measurement method, bending crack determination method, and bending crack determination program

Publications (2)

Publication Number Publication Date
JP2011043452A true JP2011043452A (en) 2011-03-03
JP5294082B2 JP5294082B2 (en) 2013-09-18

Family

ID=43830981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192863A Active JP5294082B2 (en) 2009-08-24 2009-08-24 Bending limit strain measurement method, bending crack determination method, and bending crack determination program

Country Status (1)

Country Link
JP (1) JP5294082B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166252A (en) * 2011-02-16 2012-09-06 Jfe Steel Corp Method of creating forming limit diagram in press forming, method of predicting crack, and method of manufacturing pressed part
WO2013094183A1 (en) * 2011-12-21 2013-06-27 Jfeスチール株式会社 Metal sheet for press forming
JP2014016807A (en) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal Integrated breakage evaluation device, control method and control program
JP5472518B1 (en) * 2012-11-19 2014-04-16 Jfeスチール株式会社 Method for determining limit strain of stretch flange and method for determining press forming possibility
CN104624739A (en) * 2014-12-24 2015-05-20 广东高鑫科技股份有限公司 Capacitor thickness detection and crack feedback plate bending machine based on PLC
TWI501853B (en) * 2011-12-21 2015-10-01 Jfe Steel Corp Press forming die and design method for the same
WO2016002880A1 (en) * 2014-07-02 2016-01-07 新日鐵住金株式会社 Stretch-flange crack prediction method, stretch-flange crack prediction device, computer program, and recording medium
JP2017159208A (en) * 2016-03-08 2017-09-14 日新製鋼株式会社 Scribed circle printed matter manufacturing method, and scribed circle printed matter
CN106825132B (en) * 2017-03-06 2018-06-15 广东工业大学 A kind of outside plate processing method and system
CN108519061A (en) * 2018-03-29 2018-09-11 中原工学院 A kind of method and apparatus measuring deformation of member strain gradient
WO2019017136A1 (en) * 2017-07-20 2019-01-24 Jfeスチール株式会社 Method for evaluating deformation limit and method for predicting cracks in sheared surface of metal plate, and method for designing press die
WO2019039134A1 (en) * 2017-08-23 2019-02-28 Jfeスチール株式会社 Deformation limit evaluation method for sheared surface of metallic sheet, crack prediction method, and press die designing method
WO2019064922A1 (en) * 2017-09-26 2019-04-04 Jfeスチール株式会社 Method for evaluating deformation limit, crack prediction method, and method for designing press die
US10338561B2 (en) 2014-11-21 2019-07-02 Brother Kogyo Kabushiki Kaisha Data generating device that generates drawing data representing index pattern to be drawn on workpiece by laser beam for measuring deformation of workpiece
JP6773255B1 (en) * 2019-02-26 2020-10-21 Jfeスチール株式会社 Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts
CN112752963A (en) * 2019-08-29 2021-05-04 汤浅系统机器株式会社 Deformation testing machine
CN113790977A (en) * 2021-08-10 2021-12-14 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of metal plate
CN114544383A (en) * 2021-12-23 2022-05-27 武汉上善仿真科技有限责任公司 Test method for measuring ultimate sharp cold bend angle and equivalent fracture strain
CN112752963B (en) * 2019-08-29 2024-05-24 汤浅系统机器株式会社 Deformation testing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568611B (en) * 2015-01-08 2017-09-01 泛亚汽车技术中心有限公司 Sheet forming ability and deformation homogenizing merit rating method based on DIC strain measurement systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298606A (en) * 1988-10-05 1990-04-11 Shimizu Corp Measuring method for in-plane displacement
JP2004148363A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Method for deciding specification to platy material and method for producing platy material
JP2006075884A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Press formation system, press formation method and computer program
JP2006162548A (en) * 2004-12-10 2006-06-22 Kansai Tlo Kk Crack detection system and crack detection method
JP2006231384A (en) * 2005-02-25 2006-09-07 Kobe Steel Ltd Method for predicting forging crack in cold forging process
JP2009061477A (en) * 2007-09-07 2009-03-26 Nippon Steel Corp Method for estimating stretch flange crack in thin plate press forming simulation
JP2009145138A (en) * 2007-12-12 2009-07-02 Nippon Steel Corp Side bend testing device and side bend testing method
JP2009162545A (en) * 2007-12-28 2009-07-23 Nippon Steel Corp Anisotropy evaluation method of extension flange formability
JP2009172609A (en) * 2008-01-21 2009-08-06 Nippon Steel Corp Evaluation method of stretch-flange crack

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298606A (en) * 1988-10-05 1990-04-11 Shimizu Corp Measuring method for in-plane displacement
JP2004148363A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Method for deciding specification to platy material and method for producing platy material
JP2006075884A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Press formation system, press formation method and computer program
JP2006162548A (en) * 2004-12-10 2006-06-22 Kansai Tlo Kk Crack detection system and crack detection method
JP2006231384A (en) * 2005-02-25 2006-09-07 Kobe Steel Ltd Method for predicting forging crack in cold forging process
JP2009061477A (en) * 2007-09-07 2009-03-26 Nippon Steel Corp Method for estimating stretch flange crack in thin plate press forming simulation
JP2009145138A (en) * 2007-12-12 2009-07-02 Nippon Steel Corp Side bend testing device and side bend testing method
JP2009162545A (en) * 2007-12-28 2009-07-23 Nippon Steel Corp Anisotropy evaluation method of extension flange formability
JP2009172609A (en) * 2008-01-21 2009-08-06 Nippon Steel Corp Evaluation method of stretch-flange crack

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166252A (en) * 2011-02-16 2012-09-06 Jfe Steel Corp Method of creating forming limit diagram in press forming, method of predicting crack, and method of manufacturing pressed part
TWI501853B (en) * 2011-12-21 2015-10-01 Jfe Steel Corp Press forming die and design method for the same
WO2013094183A1 (en) * 2011-12-21 2013-06-27 Jfeスチール株式会社 Metal sheet for press forming
JP2013128957A (en) * 2011-12-21 2013-07-04 Jfe Steel Corp Metal sheet for press forming
JP2014016807A (en) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal Integrated breakage evaluation device, control method and control program
EP2921841A4 (en) * 2012-11-19 2016-07-13 Jfe Steel Corp Method for determining stretch flange limit strain and method for assessing press forming feasibility
US9953115B2 (en) 2012-11-19 2018-04-24 Jfe Steel Corporation Method for specifying stretch flange limit strain and method for determining feasibility of press forming
EP2921841A1 (en) * 2012-11-19 2015-09-23 JFE Steel Corporation Method for determining stretch flange limit strain and method for assessing press forming feasibility
WO2014077060A1 (en) * 2012-11-19 2014-05-22 Jfeスチール株式会社 Method for determining stretch flange limit strain and method for assessing press forming feasibility
JP5472518B1 (en) * 2012-11-19 2014-04-16 Jfeスチール株式会社 Method for determining limit strain of stretch flange and method for determining press forming possibility
WO2016002880A1 (en) * 2014-07-02 2016-01-07 新日鐵住金株式会社 Stretch-flange crack prediction method, stretch-flange crack prediction device, computer program, and recording medium
JP5967321B2 (en) * 2014-07-02 2016-08-10 新日鐵住金株式会社 Stretch flange crack prediction method, stretch flange crack prediction apparatus, computer program, and recording medium
KR20170013325A (en) * 2014-07-02 2017-02-06 신닛테츠스미킨 카부시키카이샤 Stretch-flange crack prediction method, stretch-flange crack prediction device, computer program, and recording medium
CN106470776A (en) * 2014-07-02 2017-03-01 新日铁住金株式会社 Stretch flanging crack prediction method, stretch flanging crackle prediction meanss, computer program and recording medium
KR101886556B1 (en) 2014-07-02 2018-08-07 신닛테츠스미킨 카부시키카이샤 Stretch-flange crack prediction method, stretch-flange crack prediction device, computer program, and recording medium
US10467361B2 (en) 2014-07-02 2019-11-05 Nippon Steel Corporation Stretch flange crack prediction method, stretch flange crack prediction apparatus, computer program, and recording medium
US10338561B2 (en) 2014-11-21 2019-07-02 Brother Kogyo Kabushiki Kaisha Data generating device that generates drawing data representing index pattern to be drawn on workpiece by laser beam for measuring deformation of workpiece
CN104624739A (en) * 2014-12-24 2015-05-20 广东高鑫科技股份有限公司 Capacitor thickness detection and crack feedback plate bending machine based on PLC
JP2017159208A (en) * 2016-03-08 2017-09-14 日新製鋼株式会社 Scribed circle printed matter manufacturing method, and scribed circle printed matter
CN106825132B (en) * 2017-03-06 2018-06-15 广东工业大学 A kind of outside plate processing method and system
CN110740821A (en) * 2017-07-20 2020-01-31 杰富意钢铁株式会社 Method for evaluating deformation limit of metal plate on sheared surface, method for predicting crack, and method for designing press die
WO2019017136A1 (en) * 2017-07-20 2019-01-24 Jfeスチール株式会社 Method for evaluating deformation limit and method for predicting cracks in sheared surface of metal plate, and method for designing press die
CN110740821B (en) * 2017-07-20 2021-04-20 杰富意钢铁株式会社 Method for evaluating deformation limit of metal plate on sheared surface, method for predicting crack, and method for designing press die
JPWO2019017136A1 (en) * 2017-07-20 2019-07-18 Jfeスチール株式会社 Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method
JPWO2019039134A1 (en) * 2017-08-23 2019-11-07 Jfeスチール株式会社 Method for evaluating deformation limit on sheared surface of metal plate, method for predicting cracks, and method for designing press dies
WO2019039134A1 (en) * 2017-08-23 2019-02-28 Jfeスチール株式会社 Deformation limit evaluation method for sheared surface of metallic sheet, crack prediction method, and press die designing method
US11609166B2 (en) 2017-08-23 2023-03-21 Jfe Steel Corporation Deformation limit evaluation method for sheared surface of metal sheet, crack prediction method, and press die designing method
US11590591B2 (en) 2017-09-26 2023-02-28 Jfe Steel Corporation Press die designing method using an index value obtained from two stress gradients in sheet thickness direction and gradient of surface stress distribution in direction
JPWO2019064922A1 (en) * 2017-09-26 2020-01-16 Jfeスチール株式会社 Deformation limit evaluation method, crack prediction method, and press die design method
WO2019064922A1 (en) * 2017-09-26 2019-04-04 Jfeスチール株式会社 Method for evaluating deformation limit, crack prediction method, and method for designing press die
CN108519061A (en) * 2018-03-29 2018-09-11 中原工学院 A kind of method and apparatus measuring deformation of member strain gradient
JP6773255B1 (en) * 2019-02-26 2020-10-21 Jfeスチール株式会社 Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts
CN112752963A (en) * 2019-08-29 2021-05-04 汤浅系统机器株式会社 Deformation testing machine
CN112752963B (en) * 2019-08-29 2024-05-24 汤浅系统机器株式会社 Deformation testing machine
CN113790977A (en) * 2021-08-10 2021-12-14 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of metal plate
CN113790977B (en) * 2021-08-10 2023-07-07 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of sheet metal
CN114544383A (en) * 2021-12-23 2022-05-27 武汉上善仿真科技有限责任公司 Test method for measuring ultimate sharp cold bend angle and equivalent fracture strain
CN114544383B (en) * 2021-12-23 2024-03-15 武汉上善仿真科技有限责任公司 Test method for measuring extreme tip cold bending angle and equivalent fracture strain

Also Published As

Publication number Publication date
JP5294082B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5294082B2 (en) Bending limit strain measurement method, bending crack determination method, and bending crack determination program
CN104220185B (en) The manufacture method of the method for making of stamping forming limit line chart, fracturing shape method and punching parts
KR102334109B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
JP5630312B2 (en) Forming limit diagram creation method, crack prediction method and press part manufacturing method in press forming
JP4814851B2 (en) Estimation method of stretch flange crack in thin plate press forming simulation
CN104010745B (en) Press forming die assembly method for designing, press forming die assembly
JP6547920B2 (en) Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method
JP5434622B2 (en) Break determination method and break determination apparatus in press forming simulation of thin plate
JP2009204427A (en) Method for determining propriety of shaping of sheared edge of press article
JP5098901B2 (en) Calculation method of material property parameters
Zhang et al. An analytical model for predicting sheet springback after V-bending
CN112683652A (en) Method for testing critical bending angle of metal plate
JP7327595B1 (en) METHOD AND DEVICE FOR ACQUIRING FORMING LIMIT OF METAL PLATE
JP6107411B2 (en) Evaluation method for cracking of thin plate
JP2017100165A (en) Press wrinkle generation determining method
Zheng et al. Investigation on the plastic deformation during the stamping of ellipsoidal heads for pressure vessels
JP5900751B2 (en) Evaluation method and prediction method of bending inner crack
Dokšanović et al. Stress–strain relationships and influence of testing parameters on coupon test results
Gao et al. Finite element simulation on the deep drawing of titanium thin-walled surface part
WO2024062822A1 (en) Press forming fracture determination method, device and program, and method for manufacturing press formed part
JP2024054822A (en) Method, device and program for determining press-molded cracks, and method for manufacturing press-molded products
JP6919742B1 (en) How to identify the constriction limit strain of a metal plate
Miksza et al. Kałdu nski, P.; Patyk, R.; Kukiełka, L. Forecasting the Fatigue Strength of DC01 Cold-Formed Angles Using the Anisotropic Barlat Model
JP2023072125A (en) Press molding crack determination method, press molding crack determination device, press molding crack determination program and press molding crack suppression method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R151 Written notification of patent or utility model registration

Ref document number: 5294082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350