JPWO2019012582A1 - Refrigeration and air conditioning system - Google Patents

Refrigeration and air conditioning system Download PDF

Info

Publication number
JPWO2019012582A1
JPWO2019012582A1 JP2019529335A JP2019529335A JPWO2019012582A1 JP WO2019012582 A1 JPWO2019012582 A1 JP WO2019012582A1 JP 2019529335 A JP2019529335 A JP 2019529335A JP 2019529335 A JP2019529335 A JP 2019529335A JP WO2019012582 A1 JPWO2019012582 A1 JP WO2019012582A1
Authority
JP
Japan
Prior art keywords
load
circuit
cooling
heating
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019529335A
Other languages
Japanese (ja)
Inventor
貴司 久保
貴司 久保
光史 新海
光史 新海
前田 浩一
浩一 前田
秀弥 平野
秀弥 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019012582A1 publication Critical patent/JPWO2019012582A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍空調システムは、圧縮機、凝縮器、膨張機構及び蒸発器を備え、冷媒が循環するように構成された冷媒回路を3つと、暖房側負荷回路と、冷房側負荷回路とを備える。そして、3つの冷媒回路は、暖房側冷媒回路、冷房側冷媒回路及び排熱低減回路であり、暖房側負荷回路は、暖房側冷媒回路の凝縮器と、暖房負荷と、排熱低減回路の凝縮器とに、暖房側熱媒体が循環する回路であり、冷房側負荷回路は、冷房側冷媒回路の蒸発器と、冷房負荷と、排熱低減回路の蒸発器に、冷房側熱媒体が循環する回路である。The refrigeration / air-conditioning system includes a compressor, a condenser, an expansion mechanism, and an evaporator, and includes three refrigerant circuits configured to circulate refrigerant, a heating-side load circuit, and a cooling-side load circuit. The three refrigerant circuits are a heating-side refrigerant circuit, a cooling-side refrigerant circuit, and a waste heat reduction circuit. The cooling side load circuit circulates the evaporator of the cooling side refrigerant circuit, the cooling load, and the evaporator of the exhaust heat reduction circuit. Circuit.

Description

本発明は、冷凍空調システムに関し、更に詳しくは暖房と冷房の両方を同時に行える冷凍空調システムに関する。   The present invention relates to a refrigeration and air conditioning system, and more particularly, to a refrigeration and air conditioning system that can perform both heating and cooling simultaneously.

従来より、一つの施設内で同時に冷房と暖房の両方を可能とするシステムがある(例えば、特許文献1参照)。特許文献1では、圧縮機、凝縮器、膨張機構及び蒸発器を環状に繋いで構成され、内部に冷媒を循環させる冷媒回路を備えている。そして、このシステムでは更に、凝縮器にて水を加熱して温水を生成し、その温水を暖房負荷に供給する暖房側負荷回路と、蒸発器で水を冷却して冷水を生成し、その冷水を冷房負荷に供給する冷房側負荷回路とを備えている。このような構成とすることで、暖房と冷房の両方を同時に可能としている。   BACKGROUND ART Conventionally, there is a system that enables both cooling and heating at the same time in one facility (for example, see Patent Document 1). In Patent Literature 1, a compressor, a condenser, an expansion mechanism, and an evaporator are connected in a ring shape, and a refrigerant circuit for circulating a refrigerant therein is provided. Further, in this system, the condenser further heats the water to generate hot water and supplies the hot water to a heating load, and a heating-side load circuit, and cools the water with an evaporator to generate cold water. And a cooling-side load circuit that supplies the cooling load to the cooling load. With such a configuration, both heating and cooling can be simultaneously performed.

この種の暖房と冷房の両方を同時に可能なシステムでは、暖房負荷と冷房負荷とのバランスが崩れると、一方で熱量が余剰となり、その余剰熱量が利用せずに捨てられることで、効率の低下を招く。このため、特許文献1では、吸収式冷凍機を用いて余剰熱量を捨てることなく回収及び利用して効率を上げるようにしている。   In this type of system that can perform both heating and cooling at the same time, if the balance between the heating load and the cooling load is lost, the amount of heat will be surplus on the other hand, and the surplus heat will be discarded without being used, resulting in lower efficiency. Invite. For this reason, in Patent Literature 1, the efficiency is improved by recovering and using the excess heat amount without discarding it using an absorption refrigerator.

特許文献1では冷媒回路が1つであったが、冷媒回路を2つ備え、暖房専用の暖房側冷媒回路と、冷房専用の冷房側冷媒回路とを構成し、同時に暖房と冷房の両方を可能とするシステムもある。このシステムでは、暖房側冷媒回路と冷房側冷媒回路とがそれぞれ独立して設置されるため、暖房と冷房のそれぞれで必要とされる熱量を独立して確保することができる。   In Patent Document 1, there is one refrigerant circuit, but two refrigerant circuits are provided, and a heating-side refrigerant circuit dedicated to heating and a cooling-side refrigerant circuit dedicated to cooling are configured, and both heating and cooling can be performed simultaneously. Some systems use it. In this system, the heating-side refrigerant circuit and the cooling-side refrigerant circuit are installed independently of each other, so that the amounts of heat required for heating and cooling can be independently secured.

特開2012−141097号公報JP 2012-141097 A

特許文献1では、冷媒回路が1つの構成において、暖房負荷と冷房負荷との差分に基づく余剰熱量を回収することで、効率向上を図る技術であり、冷媒回路が2つの構成に適用されることについて検討されていない。また、冷媒回路が2つの構成においては、冷房負荷と暖房負荷とをそれぞれ専用の冷媒回路で処理するため、暖房負荷と冷房負荷との差分に基づく余剰熱量がそもそも発生しない。このため、排熱自体を低減することが有効であると考えられるが、この点について特許文献1では何ら言及されていない。   Patent Literature 1 discloses a technique for improving efficiency by recovering an excess amount of heat based on a difference between a heating load and a cooling load in a configuration having one refrigerant circuit. The refrigerant circuit is applied to two configurations. Has not been considered. Further, in the configuration having two refrigerant circuits, the cooling load and the heating load are each processed by the dedicated refrigerant circuit, so that no surplus heat amount based on the difference between the heating load and the cooling load is generated. For this reason, it is considered effective to reduce the exhaust heat itself, but Patent Document 1 does not mention this point at all.

本発明はこのような問題を解決するためになされたもので、暖房専用と冷房専用のそれぞれの冷媒回路を独立して備えた構成において、排熱の低減が可能な冷凍空調システムを提供することを目的とする。   The present invention has been made to solve such a problem, and to provide a refrigeration / air-conditioning system capable of reducing exhaust heat in a configuration in which respective refrigerant circuits dedicated to heating and cooling are independently provided. With the goal.

本発明に係る冷凍空調システムは、圧縮機、凝縮器、膨張機構及び蒸発器を備え、冷媒が循環するように構成された冷媒回路を3つと、暖房側負荷回路と、冷房側負荷回路とを備え、3つの冷媒回路は、暖房側冷媒回路、冷房側冷媒回路及び排熱低減回路であり、暖房側負荷回路は、暖房側冷媒回路の凝縮器と、暖房負荷と、排熱低減回路の凝縮器とに、暖房側熱媒体が循環する回路であり、冷房側負荷回路は、冷房側冷媒回路の蒸発器と、冷房負荷と、排熱低減回路の蒸発器とに、冷房側熱媒体が循環する回路である。   The refrigeration / air-conditioning system according to the present invention includes a compressor, a condenser, an expansion mechanism, and an evaporator, and includes three refrigerant circuits configured to circulate refrigerant, a heating-side load circuit, and a cooling-side load circuit. The three refrigerant circuits include a heating-side refrigerant circuit, a cooling-side refrigerant circuit, and an exhaust heat reduction circuit. The heating-side load circuit includes a condenser of the heating-side refrigerant circuit, a heating load, and a condensation of the exhaust heat reduction circuit. The cooling-side load circuit circulates the cooling-side heat medium through the evaporator of the cooling-side refrigerant circuit, the cooling load, and the evaporator of the exhaust-heat reduction circuit. Circuit.

本発明によれば、暖房専用と冷房専用のそれぞれの冷媒回路を独立して備えた構成において、排熱の低減が可能である。   ADVANTAGE OF THE INVENTION According to this invention, in the structure provided with each refrigerant circuit only for heating and only for cooling independently, reduction of exhaust heat is possible.

本発明の実施の形態1に係る冷凍空調システムの冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of the refrigeration and air conditioning system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調システムにおける制御フローチャートである。It is a control flowchart in the refrigerating air conditioning system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調システムにおける動作例1の排熱低減の説明図である。FIG. 4 is an explanatory diagram of a reduction in exhaust heat of Operation Example 1 in the refrigeration / air-conditioning system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調システムにおける動作例2の排熱低減の説明図である。FIG. 4 is an explanatory diagram of reduction of exhaust heat in Operation Example 2 in the refrigeration / air-conditioning system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調システムにおける動作例3の排熱低減の説明図である。FIG. 6 is an explanatory diagram of a reduction in exhaust heat of Operation Example 3 in the refrigeration / air-conditioning system according to Embodiment 1 of the present invention.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調システムの冷媒回路図である。
冷凍空調システムは、暖房側冷媒回路10と冷房側冷媒回路20とを独立して備え、暖房と冷房とを同時に行えるシステムである。冷凍空調システムは、更に暖房側負荷回路15と、冷房側負荷回路25と、排熱低減回路30と、を備えている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration / air-conditioning system according to Embodiment 1 of the present invention.
The refrigeration / air-conditioning system is a system that independently includes the heating-side refrigerant circuit 10 and the cooling-side refrigerant circuit 20, and can simultaneously perform heating and cooling. The refrigeration / air-conditioning system further includes a heating-side load circuit 15, a cooling-side load circuit 25, and an exhaust heat reduction circuit 30.

暖房側冷媒回路10は、圧縮機11と、凝縮器12と、膨張機構13と、蒸発器14とを備え、冷媒が循環する回路である。そして、蒸発器14には、ファン14aからの空気が送風されるようになっている。   The heating-side refrigerant circuit 10 includes a compressor 11, a condenser 12, an expansion mechanism 13, and an evaporator 14, and is a circuit in which the refrigerant circulates. The air from the fan 14a is sent to the evaporator 14.

暖房側負荷回路15は、暖房側冷媒回路10の凝縮器12と、暖房負荷100と、排熱低減回路30の後述の凝縮器32とに、暖房側熱媒体が循環する回路である。暖房負荷100とは、例えば、暖房を行う室内機、床暖房パネル又は浴室暖房装置等が該当する。また、暖房側熱媒体は、水又はブライン等が該当する。以下では、暖房側熱媒体が水であるものとして説明する。暖房側負荷回路15では、暖房側冷媒回路10の凝縮器12で加熱された温水が暖房負荷100に供給された後、排熱低減回路30の凝縮器32を通過し、その後、暖房側冷媒回路10の凝縮器12に戻るようになっている。   The heating-side load circuit 15 is a circuit in which a heating-side heat medium circulates through the condenser 12 of the heating-side refrigerant circuit 10, the heating load 100, and a condenser 32 of the exhaust heat reduction circuit 30, which will be described later. The heating load 100 corresponds to, for example, an indoor unit that performs heating, a floor heating panel, a bathroom heating device, or the like. In addition, the heating side heat medium corresponds to water, brine, or the like. Hereinafter, the description will be made on the assumption that the heating-side heat medium is water. In the heating-side load circuit 15, the hot water heated by the condenser 12 of the heating-side refrigerant circuit 10 is supplied to the heating load 100, and then passes through the condenser 32 of the exhaust heat reduction circuit 30. It returns to the condenser 12 of 10.

冷房側冷媒回路20は、圧縮機21と、凝縮器22と、膨張機構23と、蒸発器24とを備え、冷媒が循環する回路である。そして、蒸発器24には、ファン24aからの空気が送風されるようになっている。   The cooling-side refrigerant circuit 20 includes a compressor 21, a condenser 22, an expansion mechanism 23, and an evaporator 24, and is a circuit in which the refrigerant circulates. The air from the fan 24a is sent to the evaporator 24.

冷房側負荷回路25は、冷房側冷媒回路20の蒸発器24と、冷房負荷200と、排熱低減回路30の後述の蒸発器34とに、冷房側熱媒体が循環する回路である。冷房負荷200とは例えば、冷房を行う室内機等が該当する。また、冷房側熱媒体は、水又はブライン等が該当する。以下では、冷房側熱媒体が水であるものとして説明する。冷房側負荷回路25では、冷房側冷媒回路20の蒸発器24で冷却された冷水が、冷房負荷200側に供給された後、排熱低減回路30の蒸発器34を通過し、その後、冷房側冷媒回路20の蒸発器24に戻るようになっている。   The cooling-side load circuit 25 is a circuit in which a cooling-side heat medium circulates through the evaporator 24 of the cooling-side refrigerant circuit 20, the cooling load 200, and an evaporator 34 described later of the exhaust heat reduction circuit 30. The cooling load 200 corresponds to, for example, an indoor unit that performs cooling. In addition, the cooling-side heat medium corresponds to water, brine, or the like. Hereinafter, description will be made on the assumption that the cooling-side heat medium is water. In the cooling side load circuit 25, the chilled water cooled by the evaporator 24 of the cooling side refrigerant circuit 20 is supplied to the cooling load 200 side, and then passes through the evaporator 34 of the exhaust heat reduction circuit 30. It returns to the evaporator 24 of the refrigerant circuit 20.

排熱低減回路30は、圧縮機31と、凝縮器32と、膨張機構33と、蒸発器34とを備え、冷媒が循環する回路である。排熱低減回路30は、暖房側又は冷房側の負荷の一部又は全部を、暖房側冷媒回路10又は冷房側冷媒回路20に代えて処理する。そして、排熱低減回路30は、その負担した負荷の処理に必要な熱量にバランスする熱量を冷房側又は暖房側に提供する。これにより、暖房側負荷回路15及び冷房側負荷回路25からの排熱の低減を図るものである。なお、排熱低減回路30は、その他、冷凍サイクルの状態を調整するために設ける構成部品を備えた冷凍サイクルであっても良い。例えば、油分離器、受液器及びアキュムレータ等の構成部品を備えた冷凍サイクルとしてもよい。   The exhaust heat reduction circuit 30 includes a compressor 31, a condenser 32, an expansion mechanism 33, and an evaporator 34, and is a circuit in which the refrigerant circulates. The exhaust heat reduction circuit 30 processes part or all of the heating-side or cooling-side load in place of the heating-side refrigerant circuit 10 or the cooling-side refrigerant circuit 20. Then, the exhaust heat reduction circuit 30 provides the cooling side or the heating side with an amount of heat balanced with the amount of heat necessary for processing the burdened load. In this way, the exhaust heat from the heating side load circuit 15 and the cooling side load circuit 25 is reduced. In addition, the exhaust heat reduction circuit 30 may be a refrigeration cycle including components provided for adjusting the state of the refrigeration cycle. For example, a refrigeration cycle including components such as an oil separator, a liquid receiver, and an accumulator may be used.

従来より、暖房側冷媒回路10と冷房側冷媒回路20とを独立して備えると共に、暖房側負荷回路15及び冷房側負荷回路25を備え、暖房と冷房とを同時に行えるシステムがある。本実施の形態1の冷凍空調システムは、その既存システムに更に排熱低減回路30を備えると共に、排熱低減回路30の凝縮器32を暖房側負荷回路15に配管接続し、排熱低減回路30の蒸発器34を冷房側負荷回路25に配管接続した構成であると言える。   2. Description of the Related Art Conventionally, there is a system that includes a heating-side refrigerant circuit 10 and a cooling-side refrigerant circuit 20 independently and includes a heating-side load circuit 15 and a cooling-side load circuit 25, and can simultaneously perform heating and cooling. The refrigeration / air-conditioning system according to the first embodiment further includes an exhaust heat reduction circuit 30 in the existing system, and connects a condenser 32 of the exhaust heat reduction circuit 30 to the heating side load circuit 15 by piping. It can be said that the evaporator 34 is connected to the cooling-side load circuit 25 by piping.

ここで、暖房側冷媒回路10、冷房側冷媒回路20及び排熱低減回路30のそれぞれを構成する、圧縮機、凝縮器、膨張機構及び蒸発器についてそれぞれ簡単に説明する。   Here, the compressor, the condenser, the expansion mechanism, and the evaporator that constitute each of the heating-side refrigerant circuit 10, the cooling-side refrigerant circuit 20, and the exhaust heat reduction circuit 30 will be briefly described.

圧縮機は、冷媒を吸入し、その冷媒を圧縮して高温且つ高圧の状態にするものである。圧縮機は、運転容量を可変させることが可能な容積式圧縮機で構成されている。運転容量を可変させる制御方法は、例えば、インバータにより制御されるモータの駆動による方法がある。   The compressor draws refrigerant and compresses the refrigerant to a high temperature and high pressure state. The compressor is constituted by a positive displacement compressor whose operating capacity can be varied. As a control method for varying the operation capacity, for example, there is a method by driving a motor controlled by an inverter.

凝縮器は、圧縮機から吐出された高温高圧の冷媒と周囲からの熱源としてファンから供給される空気とを熱交換し、冷媒の熱を放熱するものである。暖房側冷媒回路10の凝縮器12及び排熱低減回路30の凝縮器32は例えばプレート式熱交換器で構成される。冷房側冷媒回路20の凝縮器22は例えばフィンチューブ式熱交換器で構成される。   The condenser exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor and air supplied from a fan as a heat source from the surroundings, and radiates heat of the refrigerant. The condenser 12 of the heating-side refrigerant circuit 10 and the condenser 32 of the exhaust heat reduction circuit 30 are configured by, for example, a plate heat exchanger. The condenser 22 of the cooling-side refrigerant circuit 20 is constituted by, for example, a fin tube type heat exchanger.

膨張機構は、冷媒を減圧して膨張させるものである。膨張機構は、ステッピングモータ(図示せず)により絞りの開度を可変に調整することが可能な電子膨張弁で構成するとよい。なお、電子膨張弁以外にも、受圧部にダイアフラムを採用した機械式膨張弁、又は温度式膨張弁、キャピラリーチューブ等、同様な役割を成すものであれば、他の形式のものを用いてもよい。   The expansion mechanism decompresses and expands the refrigerant. The expansion mechanism may be constituted by an electronic expansion valve capable of variably adjusting the opening of the throttle by a stepping motor (not shown). In addition, besides the electronic expansion valve, any other type of mechanical expansion valve employing a diaphragm in the pressure receiving portion, or a temperature expansion valve, a capillary tube, or the like may be used as long as it plays a similar role. Good.

蒸発器は、膨張機構で減圧された低温低圧の冷媒と、暖房側負荷回路15の熱媒体とを熱交換させるものである。暖房側冷媒回路10の蒸発器14は例えばフィンチューブ式熱交換器で構成され、冷房側冷媒回路20の蒸発器24及び排熱低減ユニットの蒸発器34は例えばプレート式熱交換器で構成される。   The evaporator exchanges heat between the low-temperature and low-pressure refrigerant depressurized by the expansion mechanism and the heat medium of the heating-side load circuit 15. The evaporator 14 of the heating-side refrigerant circuit 10 is configured by, for example, a fin tube heat exchanger, and the evaporator 24 of the cooling-side refrigerant circuit 20 and the evaporator 34 of the exhaust heat reduction unit are configured by, for example, a plate-type heat exchanger. .

また、冷媒は、例えば、R410A、R407C若しくはR404AなどのHFC冷媒、又はR22若しくはR134aなどのHCFC冷媒を用いることができる。なお、冷媒はこれら限定されず、同様の冷媒作用をするものであれば上記以外のものであってもよい。   As the refrigerant, for example, an HFC refrigerant such as R410A, R407C or R404A, or an HCFC refrigerant such as R22 or R134a can be used. Note that the refrigerant is not limited to these, and any refrigerant other than the above may be used as long as it performs the same refrigerant operation.

冷凍空調システムは更に、温度センサt1及び温度センサt2と、冷凍空調システム全体を制御する制御装置40とを備えている。温度センサt1は、暖房負荷100に流入する温水の温度を計測する。温度センサt2は、冷房負荷200に流入する冷水の温度を計測する。   The refrigeration and air conditioning system further includes a temperature sensor t1 and a temperature sensor t2, and a control device 40 that controls the entire refrigeration and air conditioning system. The temperature sensor t1 measures the temperature of the hot water flowing into the heating load 100. The temperature sensor t2 measures the temperature of the cold water flowing into the cooling load 200.

制御装置40は、温度センサt1及び温度センサt2で計測された温度が暖房負荷100及び冷房負荷200から要求された温度となるように、暖房側冷媒回路10、冷房側冷媒回路20及び排熱低減回路30を制御する。制御装置40は、例えばマイクロコンピュータ又はDSP等で構成され、CPU、RAM及びROM等を備えている。制御装置40は、暖房運転のみ、冷房運転のみ、又は暖房運転と冷房運転との両方を行う同時運転の制御を行う。同時運転には、冷房側の負荷が暖房側の負荷よりも大きい冷房主体運転と、暖房側の負荷が冷房側の負荷よりも大きい暖房主体運転と、がある。   The control device 40 controls the heating-side refrigerant circuit 10, the cooling-side refrigerant circuit 20, and the exhaust heat reduction so that the temperatures measured by the temperature sensors t1 and t2 become the temperatures requested by the heating load 100 and the cooling load 200. The circuit 30 is controlled. The control device 40 is configured by, for example, a microcomputer or a DSP, and includes a CPU, a RAM, a ROM, and the like. The control device 40 controls only the heating operation, only the cooling operation, or the simultaneous operation of performing both the heating operation and the cooling operation. The simultaneous operation includes a cooling main operation in which the load on the cooling side is larger than the load on the heating side, and a heating main operation in which the load on the heating side is larger than the load on the cooling side.

そして、本実施の形態1では、暖房側及び冷房側の負荷を処理する排熱低減回路30を備えたことで、暖房側冷媒回路10及び冷房側冷媒回路20のそれぞれにおける排熱を低減することを可能にしている。   In the first embodiment, the exhaust heat reduction circuit 30 that processes the loads on the heating side and the cooling side is provided, so that the exhaust heat in each of the heating side refrigerant circuit 10 and the cooling side refrigerant circuit 20 is reduced. Is possible.

ここで、排熱低減回路30を用いた排熱低減について説明する。
冷凍空調システムでは、暖房負荷100及び冷房負荷200から要求された温度となるように暖房側冷媒回路10、冷房側冷媒回路20及び排熱低減回路30を制御する。ここでは冷暖房の負荷を説明の便宜上、以下の表現で記載する。暖房側冷媒回路10と冷房側冷媒回路20とを運転しない状態で排熱低減回路3の圧縮機31が100%運転した際に得られる冷暖房能力を100%とし、またその時の暖房負荷100の要求する温水温度をT1とする。これに対して、暖房負荷100の要求する温度がT1から下げられた場合、暖房負荷100での必要能力は低下するが、この低下した時の必要暖房能力が100%に対してX%の場合の負荷を「暖房X%負荷」という。冷房側も同様の記載とし「冷房Y%負荷」という。
Here, the exhaust heat reduction using the exhaust heat reduction circuit 30 will be described.
In the refrigeration / air-conditioning system, the heating-side refrigerant circuit 10, the cooling-side refrigerant circuit 20, and the exhaust heat reduction circuit 30 are controlled so that the temperatures required by the heating load 100 and the cooling load 200 are attained. Here, the cooling and heating loads are described by the following expressions for convenience of explanation. The cooling / heating capacity obtained when the compressor 31 of the exhaust heat reduction circuit 3 is operated at 100% without operating the heating-side refrigerant circuit 10 and the cooling-side refrigerant circuit 20 is assumed to be 100%, and the heating load 100 at that time is required. The hot water temperature to be set is T1. On the other hand, when the temperature required by the heating load 100 is reduced from T1, the required capacity at the heating load 100 is reduced. Is referred to as “heating X% load”. The same applies to the cooling side and is referred to as “cooling Y% load”.

暖房X%負荷及び冷房Y%負荷を処理するにあたり、仮に排熱低減回路30を利用せず、暖房側冷媒回路10及び冷房側冷媒回路20のそれぞれの運転だけで各負荷に対する熱量を得ようとした場合の排熱は以下のようになる。まず、暖房側冷媒回路10では、蒸発器14において暖房X%分の排熱が発生する。具体的には、暖房側冷媒回路10の凝縮器12では、暖房X%分の熱量が暖房側負荷回路15に与えられるが、蒸発器14では、凝縮器12から暖房側負荷回路15に与えられる熱量と同等の熱量がファン14aから送風される空気から吸熱される。つまり、この吸熱分の熱量が空気に排熱される。よって、暖房側冷媒回路10の蒸発器14側では、暖房X%分の排熱が発生することになる。また、冷房側冷媒回路20側でも同様であり、冷房側冷媒回路20の凝縮器12側で冷房X%分の排熱が発生する。   In processing the heating X% load and the cooling Y% load, the amount of heat for each load may be obtained only by operating the heating-side refrigerant circuit 10 and the cooling-side refrigerant circuit 20 without using the exhaust heat reduction circuit 30. Exhausted heat in this case is as follows. First, in the heating-side refrigerant circuit 10, exhaust heat corresponding to heating X% is generated in the evaporator 14. Specifically, in the condenser 12 of the heating-side refrigerant circuit 10, the heat amount corresponding to the heating X% is given to the heating-side load circuit 15, whereas in the evaporator 14, the heat amount is given from the condenser 12 to the heating-side load circuit 15. An amount of heat equivalent to the amount of heat is absorbed from the air blown from the fan 14a. That is, the heat quantity of the heat absorption is exhausted to the air. Therefore, on the side of the evaporator 14 of the heating-side refrigerant circuit 10, exhaust heat corresponding to heating X% is generated. Further, the same applies to the cooling-side refrigerant circuit 20 side, and exhaust heat corresponding to the cooling X% is generated on the condenser 12 side of the cooling-side refrigerant circuit 20.

このように、暖房と冷房のそれぞれの負荷を、暖房側冷媒回路10の運転と冷房側冷媒回路20の運転とだけで処理しようとした場合、上記のような排熱が行われる分、冷凍空調システムの効率が低下する。   As described above, when the respective loads of the heating and the cooling are to be processed only by the operation of the heating-side refrigerant circuit 10 and the operation of the cooling-side refrigerant circuit 20, the refrigeration and air conditioning is performed by the amount of the exhaust heat as described above. System efficiency is reduced.

これに対し、排熱低減回路30を用いて以下の運転を行うことで、排熱を低減して効率低下を抑制する。
暖房X%負荷及び冷房Y%負荷の運転要求があると、まず、X%とY%とのうち、少ない方の負荷を排熱低減回路30で処理する。すなわち、ここでは、X<Yとすると、暖房X%負荷を処理できる運転容量で排熱低減回路30の圧縮機31を運転する。
On the other hand, by performing the following operation using the exhaust heat reduction circuit 30, the exhaust heat is reduced and the decrease in efficiency is suppressed.
When there is an operation request for the heating X% load and the cooling Y% load, first, the smaller one of X% and Y% is processed by the exhaust heat reduction circuit 30. That is, here, if X <Y, the compressor 31 of the exhaust heat reduction circuit 30 is operated with an operation capacity that can handle the heating X% load.

この運転容量で排熱低減回路30の圧縮機31を運転することで、排熱低減回路30が暖房X%負荷を処理でき、暖房負荷100側で必要とされる能力が排熱低減回路30の運転のみで得られることになる。このため、暖房側冷媒回路10は運転不要であり、暖房側冷媒回路10の運転は行わない。これにより暖房側冷媒回路10の蒸発器14からの排熱は0%となる。   By operating the compressor 31 of the exhaust heat reduction circuit 30 with this operating capacity, the exhaust heat reduction circuit 30 can process the heating X% load, and the capacity required on the heating load 100 side becomes the capacity of the exhaust heat reduction circuit 30. It can be obtained only by driving. Therefore, the heating-side refrigerant circuit 10 does not need to be operated, and the heating-side refrigerant circuit 10 is not operated. Thus, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 becomes 0%.

ここで、排熱低減回路30では、暖房X%負荷を処理する運転を行っているため、暖房X%運転にバランスした熱量を蒸発器34から冷房側冷媒回路20に提供できる。このバランスする熱量は、排熱低減回路30の能力により異なるが、ここでは、バランスした熱量を、暖房側で処理できる熱量X%分と同じ冷房X%分として説明する。以下の動作例の説明でも同様とする。   Here, in the exhaust heat reduction circuit 30, since the operation for processing the heating X% load is performed, the heat amount balanced with the heating X% operation can be provided from the evaporator 34 to the cooling-side refrigerant circuit 20. The amount of heat to be balanced varies depending on the capacity of the exhaust heat reduction circuit 30. Here, the balanced amount of heat will be described as the amount of cooling X% that is the same as the amount of heat X% that can be processed on the heating side. The same applies to the following description of the operation example.

このように、冷房側冷媒回路20は、排熱低減回路30から冷房X%分の熱量を得ることができるため、冷房負荷200で必要とされている冷房Y%負荷のうち、X%負荷は排熱低減回路30によって賄える。よって、冷房側冷媒回路20は、不足分のY%−X%負荷を運転にて補えばよい。つまり、冷房側冷媒回路20は、Y%−X%負荷を満足するように運転を行えばよく、冷房側冷媒回路20側の排熱はY%−X%分となる。   As described above, since the cooling-side refrigerant circuit 20 can obtain the heat amount corresponding to the cooling X% from the exhaust heat reduction circuit 30, the X% load of the cooling Y% load required by the cooling load 200 is It can be covered by the exhaust heat reduction circuit 30. Therefore, the cooling-side refrigerant circuit 20 only needs to compensate for the insufficient Y% -X% load by operation. That is, the cooling-side refrigerant circuit 20 may be operated so as to satisfy the Y% -X% load, and the exhaust heat on the cooling-side refrigerant circuit 20 side is Y% -X%.

以上より、冷凍空調システム全体としての排熱は、暖房側冷媒回路10側で0%、冷房側冷媒回路20側でY%−X%分となる。   As described above, the exhaust heat of the entire refrigeration / air-conditioning system is 0% on the heating-side refrigerant circuit 10 side and Y% -X% on the cooling-side refrigerant circuit 20 side.

排熱低減回路30の設置前後で比較すると、排熱低減回路30の設置前では、暖房側冷媒回路10側でX%、冷房側冷媒回路20側でY%である。これに対し、設置後では暖房側冷媒回路10側で0%、冷房側冷媒回路20側でY%−X%となり、設置前後で排熱を低減することができる。   Comparing before and after the installation of the exhaust heat reduction circuit 30, before installation of the exhaust heat reduction circuit 30, it is X% on the heating side refrigerant circuit 10 side and Y% on the cooling side refrigerant circuit 20 side. On the other hand, after installation, it becomes 0% on the heating-side refrigerant circuit 10 side and Y% -X% on the cooling-side refrigerant circuit 20 side, so that exhaust heat can be reduced before and after installation.

図2は、本発明の実施の形態1に係る冷凍空調システムにおける制御フローチャートである。
制御装置40は、暖房負荷100及び冷房負荷200に対して運転要求があると(ステップS1)、それぞれに要求される負荷を比較する。すなわち、ここでは、制御装置40は、暖房X%負荷と冷房Y%負荷とを比較する(ステップS2)。X%とY%とが等しくなければ、制御装置40は、少ない方の負荷を排熱低減回路30で処理する制御を行う。ここでは、X<Yとすると、制御装置40は、X%負荷を処理できる運転容量で排熱低減回路30の圧縮機31を運転する(ステップS3)。なお、以下では、負荷が少ない方を「要求小負荷」、負荷が多い方を「要求大負荷」ということがある。
FIG. 2 is a control flowchart in the refrigeration / air-conditioning system according to Embodiment 1 of the present invention.
When there is an operation request for the heating load 100 and the cooling load 200 (step S1), the control device 40 compares the respective required loads. That is, here, the control device 40 compares the heating X% load with the cooling Y% load (step S2). If X% and Y% are not equal, control device 40 performs control for processing the smaller load by exhaust heat reduction circuit 30. Here, assuming that X <Y, the control device 40 operates the compressor 31 of the exhaust heat reduction circuit 30 with an operation capacity capable of processing the X% load (step S3). In the following, the one with a smaller load may be referred to as a “small required load” and the one with a larger load may be referred to as a “large required load”.

そして、制御装置40は、排熱低減回路30の運転で要求小負荷のX%負荷の処理が終了したかを判断する(ステップS4)。具体的には、制御装置40は、要求小負荷で要求された温度が達成されたかで判断すればよい。よって、制御装置40は、温度センサt1で計測した、暖房負荷100の入口の温水温度t_1と暖房負荷100側で要求する温水温度t_0とを比較する。そして、t_1≧t_0の場合、制御装置40は、暖房X%負荷を排熱低減回路30の運転で処理できたと判断する。一方、t_1<t_0の場合、制御装置40は、暖房X%負荷を排熱低減回路30の運転でまだ処理できていないと判断する。   Then, the control device 40 determines whether or not the processing of the required small load X% load has been completed in the operation of the exhaust heat reduction circuit 30 (step S4). Specifically, the control device 40 may determine whether the required temperature has been achieved with the required small load. Therefore, control device 40 compares hot water temperature t_1 at the entrance of heating load 100 measured by temperature sensor t1 with hot water temperature t_0 required on the heating load 100 side. Then, when t_1 ≧ t_0, the control device 40 determines that the heating X% load has been processed by the operation of the exhaust heat reduction circuit 30. On the other hand, if t_1 <t_0, the control device 40 determines that the heating X% load has not been processed yet by the operation of the exhaust heat reduction circuit 30.

なお、ここでは要求小負荷が暖房負荷100である場合を例に述べたが、要求小負荷が冷房負荷200である場合、制御装置40は、排熱低減回路30の運転で要求小負荷のY%負荷の処理が終了したかを判断する。具体的には、制御装置40は、温度センサt2で計測した、冷房負荷200の入口の冷水温度t_2と冷房負荷200側で要求する冷水温度t_3とを比較する。そして、t_2≦t_3の場合、制御装置40は、冷房X%負荷を排熱低減回路30の運転で処理できたと判断する。一方、t_2>t_3の場合、制御装置40は、冷房X%負荷を排熱低減回路30の運転でまだ処理できていないと判断する。   Here, the case where the required small load is the heating load 100 has been described as an example. However, when the required small load is the cooling load 200, the control device 40 performs the operation of the exhaust heat reduction circuit 30 to reduce the required small load to Y. It is determined whether the processing of the% load has been completed. Specifically, control device 40 compares chilled water temperature t_2 at the inlet of cooling load 200 and chilled water temperature t_3 required on cooling load 200 side, measured by temperature sensor t2. If t_2 ≦ t_3, the control device 40 determines that the cooling X% load has been processed by the operation of the exhaust heat reduction circuit 30. On the other hand, when t_2> t_3, the control device 40 determines that the cooling X% load has not been processed by the operation of the exhaust heat reduction circuit 30 yet.

そして、要求小負荷の負荷処理が終了すると、制御装置40は、要求大負荷に接続された冷媒回路、ここでは冷房側冷媒回路20の圧縮機21を、|X−Y|%の負荷を処理できる運転容量で運転する(ステップS5)。   Then, when the load processing of the required small load is completed, the control device 40 processes the refrigerant circuit connected to the required large load, here, the compressor 21 of the cooling-side refrigerant circuit 20, for the load of | X−Y |%. The operation is performed with a possible operation capacity (step S5).

ステップS2の判断でX%とY%とが等しければ、制御装置40は、排熱低減回路30を、X%負荷を処理できる運転容量で運転する(ステップS6)。   If X% and Y% are equal in the determination of step S2, control device 40 operates exhaust heat reduction circuit 30 with an operation capacity that can handle the X% load (step S6).

なお、「X%負荷を処理できる運転容量」は、予め負荷と運転容量との関係を求めておき、負荷が決まると一意に運転容量が決まるようにしてもよいし、次のようにしてもよい。すなわち、運転容量を例えば設定制御間隔毎に設定容量ずつ増加させていき、要求された温度が達成された場合に運転容量の増加を停止し、その停止時の運転容量で運転を継続するようにしてもよい。X%とY%とが等しい場合において、運転容量を例えば設定制御間隔毎に設定容量ずつ増加する際には、以下のように制御すればよい。すなわち、排熱低減回路30で暖房X%負荷と冷房Y%負荷の両方を処理できるように、t_1≧t_0と、t_2≦t_3との両方を満足するかをチェックし、両方を満足したときの運転容量で運転を継続すればよい。   The "operation capacity capable of processing the X% load" may be obtained in advance by determining the relationship between the load and the operation capacity, and when the load is determined, the operation capacity may be uniquely determined, or as follows. Good. That is, the operating capacity is increased by the set capacity, for example, at each set control interval, and when the requested temperature is achieved, the increase in the operating capacity is stopped, and the operation is continued at the operating capacity at the time of the stop. You may. In the case where X% and Y% are equal, when the operating capacity is increased by the set capacity at every set control interval, for example, the following control may be performed. That is, it is checked whether both t_1 ≧ t_0 and t_2 ≦ t_3 are satisfied so that the exhaust heat reduction circuit 30 can process both the heating X% load and the cooling Y% load. Operation may be continued at the operation capacity.

以下、具体的な動作例で説明する。   Hereinafter, a specific operation example will be described.

<動作例1>
次に、冷房主体運転における排熱低減動作について説明する。ここでは、暖房20%負荷、冷房100%負荷の場合を例に説明する。
<Operation example 1>
Next, the exhaust heat reduction operation in the cooling main operation will be described. Here, a case of a heating 20% load and a cooling 100% load will be described as an example.

図3は、本発明の実施の形態1に係る冷凍空調システムにおける動作例1の排熱低減の説明図である。
この場合、暖房及び冷房のうち、負荷の小さい暖房20%負荷を処理するように排熱低減回路30を運転する。つまり、排熱低減回路30は、暖房20%負荷を処理できる運転容量で圧縮機31を運転する。
FIG. 3 is an explanatory diagram of reduction of exhaust heat in Operation Example 1 in the refrigeration / air-conditioning system according to Embodiment 1 of the present invention.
In this case, the exhaust heat reduction circuit 30 is operated to process a heating 20% load with a small load among heating and cooling. That is, the exhaust heat reduction circuit 30 operates the compressor 31 with an operation capacity that can handle the heating 20% load.

排熱低減回路30が暖房20%負荷を処理できるように運転することで、暖房側冷媒回路10の運転が停止し、これにより暖房側冷媒回路10の蒸発器14からの排熱は0%となる。   By operating the exhaust heat reduction circuit 30 to process the heating 20% load, the operation of the heating-side refrigerant circuit 10 is stopped, whereby the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is reduced to 0%. Become.

そして、排熱低減回路30では、暖房20%負荷を処理する運転を行っているため、暖房20%運転にバランスした20%分の熱量が排熱低減回路30から冷房側負荷回路25に提供される。これにより、冷房負荷200で必要とされている100%負荷のうち、20%負荷は排熱低減回路30の運転によって賄える。よって、冷房側冷媒回路20は、不足分の80%負荷を処理する運転を行えばよい。つまり、冷房側冷媒回路20は、冷房80%負荷を処理できる運転容量で圧縮機21を運転すればよい。その結果、冷房側冷媒回路20の凝縮器22からの排熱は80%分となる。   Since the exhaust heat reduction circuit 30 performs an operation of processing a heating 20% load, a heat amount of 20% balanced with the heating 20% operation is provided from the exhaust heat reduction circuit 30 to the cooling-side load circuit 25. You. Thus, of the 100% load required by the cooling load 200, a 20% load can be covered by the operation of the exhaust heat reduction circuit 30. Therefore, the cooling-side refrigerant circuit 20 may be operated to process the shortage of the 80% load. That is, the cooling-side refrigerant circuit 20 only needs to operate the compressor 21 with an operation capacity that can handle the cooling 80% load. As a result, the heat exhausted from the condenser 22 of the cooling-side refrigerant circuit 20 is equivalent to 80%.

ここで、排熱低減回路30を設置しない場合と設置する場合とで排熱量について比較すると、設置しない場合では暖房側冷媒回路10の蒸発器14からの排熱は20%分、冷房側冷媒回路20の凝縮器22からの排熱は100%分となる。これに対し、排熱低減回路30を設置することで、上述したように、暖房側冷媒回路10の蒸発器14からの排熱は0%、冷房側冷媒回路20の凝縮器22からの排熱は80%分となり、排熱低減回路30を設置しない場合に比べて排熱量を低減できる。   Here, comparing the amount of exhaust heat between the case where the exhaust heat reduction circuit 30 is not installed and the case where the exhaust heat reduction circuit 30 is installed, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is 20% and the cooling-side refrigerant circuit is not installed. The exhaust heat from the 20 condensers 22 is 100%. On the other hand, by installing the exhaust heat reduction circuit 30, as described above, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is 0%, and the exhaust heat from the condenser 22 of the cooling-side refrigerant circuit 20. Is equivalent to 80%, and the amount of exhaust heat can be reduced as compared with the case where the exhaust heat reduction circuit 30 is not installed.

<動作例2>
次に暖房主体運転における排熱低減動作について説明する。ここでは、暖房100%負荷、冷房20%負荷の場合を例に説明する。
<Operation example 2>
Next, the exhaust heat reduction operation in the heating main operation will be described. Here, a case of a 100% load for heating and a 20% load for cooling will be described as an example.

図4は、本発明の実施の形態1に係る冷凍空調システムにおける動作例2の排熱低減の説明図である。
まず、負荷の小さい冷房20%負荷を処理するように排熱低減回路30を運転する。つまり、排熱低減回路30は、冷房20%負荷を処理できる運転容量で圧縮機31を運転する。
FIG. 4 is an explanatory diagram of reduction of exhaust heat in Operation Example 2 in the refrigeration / air-conditioning system according to Embodiment 1 of the present invention.
First, the exhaust heat reduction circuit 30 is operated so as to process a cooling 20% load with a small load. That is, the exhaust heat reduction circuit 30 operates the compressor 31 with an operation capacity that can handle the cooling 20% load.

排熱低減回路30が冷房20%負荷を処理できるように運転することで、冷房側冷媒回路20の運転が停止し、これにより冷房側冷媒回路20の凝縮器12からの排熱は0%となる。   By operating the exhaust heat reduction circuit 30 to process the cooling 20% load, the operation of the cooling refrigerant circuit 20 is stopped, whereby the exhaust heat from the condenser 12 of the cooling refrigerant circuit 20 is reduced to 0%. Become.

そして、排熱低減回路30では、冷房20%負荷を処理する運転を行っているため、冷房20%運転にバランスした20%分の熱量が排熱低減回路30から暖房側負荷回路15に提供される。これにより、暖房負荷100で必要とされている100%負荷のうち、20%負荷は排熱低減回路30の運転によって賄える。よって、暖房側冷媒回路10は、不足分の80%負荷を処理する運転を行えばよい。つまり、暖房側冷媒回路10は、暖房80%負荷を処理できる運転容量で圧縮機11を運転すればよい。その結果、暖房側冷媒回路10の蒸発器14からの排熱は80%分となる。   In the exhaust heat reduction circuit 30, the operation for processing the cooling 20% load is performed. Therefore, a heat amount of 20% balanced with the cooling 20% operation is provided from the exhaust heat reduction circuit 30 to the heating side load circuit 15. You. Thus, of the 100% load required by the heating load 100, a 20% load can be covered by the operation of the exhaust heat reduction circuit 30. Therefore, the heating-side refrigerant circuit 10 may be operated to process the shortage of the 80% load. That is, the heating-side refrigerant circuit 10 only needs to operate the compressor 11 with an operation capacity that can handle a heating 80% load. As a result, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is equivalent to 80%.

ここで、排熱低減回路30を設置しない場合と設置する場合とで排熱量について比較すると、設置しない場合では暖房側冷媒回路10の蒸発器14からの排熱は100%分、冷房側冷媒回路20の凝縮器からの排熱は20%分となる。これに対し、排熱低減回路30を設置することで、上述したように、暖房側冷媒回路10の蒸発器14からの排熱は80%分、冷房側冷媒回路20の凝縮器からの排熱は0%となり、排熱低減回路30を設置しない場合に比べて排熱量を低減できる。   Here, comparing the amount of exhaust heat between the case where the exhaust heat reduction circuit 30 is not installed and the case where the exhaust heat reduction circuit 30 is installed, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is 100% and the cooling-side refrigerant circuit is not installed. The exhaust heat from the 20 condensers is equivalent to 20%. On the other hand, by installing the exhaust heat reduction circuit 30, as described above, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is reduced by 80%, and the exhaust heat from the condenser of the cooling-side refrigerant circuit 20 is reduced. Is 0%, and the amount of exhaust heat can be reduced as compared with the case where the exhaust heat reduction circuit 30 is not installed.

<動作例3>
次に、冷凍空調システム全体として排熱を0%とする動作例3について説明する。ここでは、暖房100%負荷及び冷房100%負荷の場合について説明する。
<Operation example 3>
Next, an operation example 3 in which exhaust heat is set to 0% in the entire refrigeration / air-conditioning system will be described. Here, the case of a heating 100% load and a cooling 100% load will be described.

図5は、本発明の実施の形態1に係る冷凍空調システムにおける動作例3の排熱低減の説明図である。
ここでは、暖房負荷100側と冷房負荷200側とで要求されている負荷が同じ100%であるため、排熱低減回路30は、暖房100%負荷を処理できる運転容量で圧縮機31を運転する。
FIG. 5 is an explanatory diagram of reduction of exhaust heat in Operation Example 3 in the refrigeration / air-conditioning system according to Embodiment 1 of the present invention.
Here, since the required load on the heating load 100 side and the cooling load 200 side is the same 100%, the exhaust heat reduction circuit 30 operates the compressor 31 with an operation capacity that can handle the heating 100% load. .

排熱低減回路30が暖房100%負荷を処理できるように運転することで、暖房側冷媒回路10の運転が停止し、これにより暖房側冷媒回路10の蒸発器14からの排熱は0%となる。   By operating the exhaust heat reduction circuit 30 so as to be able to process the heating 100% load, the operation of the heating-side refrigerant circuit 10 is stopped, whereby the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is reduced to 0%. Become.

そして、排熱低減回路30では、暖房100%負荷を処理する運転を行っているため、暖房100%運転にバランスした100%分の熱量が排熱低減回路30から冷房側負荷回路25に提供される。これにより、冷房負荷200で必要とされている冷房100%負荷の全てが排熱低減回路30の運転によって賄える。よって、冷房側冷媒回路20についても運転を停止できる。これにより、冷房側冷媒回路20の凝縮器22からの排熱も0%となる。   Since the exhaust heat reduction circuit 30 performs an operation for processing a 100% heating load, a heat amount of 100% balanced with the 100% heating operation is provided from the exhaust heat reduction circuit 30 to the cooling-side load circuit 25. You. Accordingly, all of the 100% cooling load required by the cooling load 200 can be covered by the operation of the exhaust heat reduction circuit 30. Therefore, the operation of the cooling-side refrigerant circuit 20 can also be stopped. As a result, the heat exhausted from the condenser 22 of the cooling-side refrigerant circuit 20 also becomes 0%.

ここで、排熱低減回路30を設置しない場合と設置する場合とで排熱量について比較すると、設置しない場合では暖房側冷媒回路10の蒸発器14からの排熱は100%分、冷房側冷媒回路20の凝縮器22からの排熱も100%分となる。これに対し、排熱低減回路30を設置することで、上述したように、暖房側冷媒回路10の蒸発器14からの排熱は0%、冷房側冷媒回路20の凝縮器22からの排熱も0%となり、排熱低減回路30を設置しない場合に比べて排熱量を低減できる。   Here, comparing the amount of exhaust heat between the case where the exhaust heat reduction circuit 30 is not installed and the case where the exhaust heat reduction circuit 30 is installed, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is 100% and the cooling-side refrigerant circuit is not installed. The exhaust heat from the 20 condensers 22 is also 100%. On the other hand, by installing the exhaust heat reduction circuit 30, as described above, the exhaust heat from the evaporator 14 of the heating-side refrigerant circuit 10 is 0%, and the exhaust heat from the condenser 22 of the cooling-side refrigerant circuit 20. Is also 0%, and the amount of heat exhausted can be reduced as compared with the case where the exhaust heat reduction circuit 30 is not installed.

以上説明したように、本実施の形態1によれば、暖房及び冷房のそれぞれ専用の冷媒回路に加えて更に排熱低減回路30を備え、凝縮器32を暖房側負荷回路15に接続すると共に、蒸発器34を冷房側負荷回路25に接続した構成とした。これにより、排熱低減回路30の2つの熱交換器の一方で暖房側及び冷房側の負荷の一方を処理しつつ、排熱低減回路30の2つの熱交換器の他方の熱量については排熱せずに暖房側及び冷房側の負荷の他方の処理に利用できる。その結果、暖房側冷媒回路10及び冷房側冷媒回路20における排熱を低減することができる。   As described above, according to the first embodiment, the exhaust heat reduction circuit 30 is further provided in addition to the dedicated refrigerant circuits for heating and cooling, and the condenser 32 is connected to the heating-side load circuit 15. The evaporator 34 was connected to the cooling load circuit 25. Thus, while one of the two heat exchangers of the exhaust heat reduction circuit 30 processes one of the loads on the heating side and the cooling side, the other heat amount of the two heat exchangers of the exhaust heat reduction circuit 30 is exhausted. Instead, it can be used for the other processing of the loads on the heating side and the cooling side. As a result, exhaust heat in the heating-side refrigerant circuit 10 and the cooling-side refrigerant circuit 20 can be reduced.

また、暖房負荷100及び冷房負荷200の一方に対する負荷がX%、他方に対する負荷がX%よりも大きいY%であるとき、制御装置40は、X%の負荷を処理する運転容量で排熱低減回路30の圧縮機31を運転する。これによりX%の負荷を有する負荷回路の運転を停止する。そして、Y%の負荷を有する負荷回路の圧縮機を、Y%−X%の負荷を処理する運転容量で運転する。これにより、冷凍空調システム全体の排熱を、排熱低減回路30の設置前後で、X%+Y%からY%−X%に低減できる。   Further, when the load on one of the heating load 100 and the cooling load 200 is X% and the load on the other is Y%, which is larger than X%, the control device 40 reduces the exhaust heat with the operating capacity for processing the load of X%. The compressor 31 of the circuit 30 is operated. Thus, the operation of the load circuit having the load of X% is stopped. Then, the compressor of the load circuit having the load of Y% is operated with the operating capacity for processing the load of Y% -X%. Thus, the exhaust heat of the entire refrigeration / air-conditioning system can be reduced from X% + Y% to Y% -X% before and after the installation of the exhaust heat reduction circuit 30.

暖房負荷100及び冷房負荷200の両方に対する負荷が共にX%であるとき、制御装置40は、X%の負荷を処理する運転容量で排熱低減回路30の圧縮機31を運転し、暖房側冷媒回路10及び冷房側冷媒回路20の両方の運転を停止する。これにより、冷凍空調システム全体の排熱を、X%+X%から0%に低減できる。   When the loads for both the heating load 100 and the cooling load 200 are both X%, the control device 40 operates the compressor 31 of the exhaust heat reduction circuit 30 with the operation capacity for processing the X% load, and supplies the heating-side refrigerant. The operation of both the circuit 10 and the cooling-side refrigerant circuit 20 is stopped. Thus, the exhaust heat of the entire refrigeration / air-conditioning system can be reduced from X% + X% to 0%.

また、本実施の形態1の冷凍空調システムは、暖房と冷房とを同時に行える既存のシステムに、排熱低減回路30を新たに接続するだけであるので、容易に構築できる。   In addition, the refrigeration / air-conditioning system according to the first embodiment can be easily constructed because the exhaust heat reduction circuit 30 is simply newly connected to an existing system that can simultaneously perform heating and cooling.

なお、上記実施の形態の各動作例における負荷の具体的数値は、説明を容易にするために一例を示したに過ぎず、請求範囲を限定するものではない。   It should be noted that the specific numerical values of the load in each operation example of the above embodiment are merely examples for ease of explanation, and do not limit the scope of the claims.

10 暖房側冷媒回路、11 圧縮機、12 凝縮器、13 膨張機構、14 蒸発器、14a ファン、15 暖房側負荷回路、20 冷房側冷媒回路、21 圧縮機、22 凝縮器、23 膨張機構、24 蒸発器、24a ファン、25 冷房側負荷回路、30 排熱低減回路、31 圧縮機、32 凝縮器、33 膨張機構、34 蒸発器、40 制御装置、100 暖房負荷、200 冷房負荷、t1 温度センサ、t2 温度センサ。   Reference Signs List 10 heating side refrigerant circuit, 11 compressor, 12 condenser, 13 expansion mechanism, 14 evaporator, 14a fan, 15 heating side load circuit, 20 cooling side refrigerant circuit, 21 compressor, 22 condenser, 23 expansion mechanism, 24 Evaporator, 24a fan, 25 cooling side load circuit, 30 exhaust heat reduction circuit, 31 compressor, 32 condenser, 33 expansion mechanism, 34 evaporator, 40 control device, 100 heating load, 200 cooling load, t1 temperature sensor, t2 Temperature sensor.

Claims (3)

圧縮機、凝縮器、膨張機構及び蒸発器を備え、冷媒が循環するように構成された冷媒回路を3つと、
暖房側負荷回路と、
冷房側負荷回路とを備え、
前記3つの冷媒回路は、暖房側冷媒回路、冷房側冷媒回路及び排熱低減回路であり、
前記暖房側負荷回路は、前記暖房側冷媒回路の前記凝縮器と、暖房負荷と、前記排熱低減回路の前記凝縮器とに、暖房側熱媒体が循環する回路であり、
前記冷房側負荷回路は、前記冷房側冷媒回路の前記蒸発器と、冷房負荷と、前記排熱低減回路の前記蒸発器とに、冷房側熱媒体が循環する回路である冷凍空調システム。
Three refrigerant circuits comprising a compressor, a condenser, an expansion mechanism and an evaporator, and configured to circulate the refrigerant,
Heating side load circuit,
A cooling-side load circuit,
The three refrigerant circuits are a heating-side refrigerant circuit, a cooling-side refrigerant circuit, and a waste heat reduction circuit,
The heating-side load circuit is a circuit in which a heating-side heat medium circulates through the condenser of the heating-side refrigerant circuit, a heating load, and the condenser of the exhaust heat reduction circuit.
The refrigeration / air-conditioning system, wherein the cooling-side load circuit is a circuit in which a cooling-side heat medium circulates through the evaporator of the cooling-side refrigerant circuit, the cooling load, and the evaporator of the exhaust heat reduction circuit.
制御装置を備え、
前記暖房負荷及び前記冷房負荷の一方に対する負荷がX%、他方に対する負荷が前記X%よりも大きいY%であるとき、
前記制御装置は、前記X%の負荷を処理する運転容量で前記排熱低減回路の前記圧縮機を運転する一方、前記暖房側負荷回路及び前記冷房側負荷回路のうち、前記X%の負荷を有する負荷回路の運転を停止し、
前記暖房側負荷回路及び前記冷房側負荷回路のうち、前記Y%の負荷を有する負荷回路の前記圧縮機を、Y%−X%の負荷を処理する運転容量で運転する請求項1記載の冷凍空調システム。
Equipped with a control device,
When the load on one of the heating load and the cooling load is X%, and the load on the other is Y%, which is larger than X%,
The control device operates the compressor of the exhaust heat reduction circuit with an operation capacity for processing the load of X%, while controlling the load of X% among the heating-side load circuit and the cooling-side load circuit. Stopping the operation of the load circuit having
2. The refrigeration system according to claim 1, wherein the compressor of the load circuit having the load of Y% of the heating-side load circuit and the cooling-side load circuit is operated at an operating capacity for processing a load of Y% −X%. 3. Air conditioning system.
前記暖房負荷及び前記冷房負荷の両方に対する負荷が共にX%であるとき、
前記制御装置は、前記X%の負荷を処理する運転容量で前記排熱低減回路の前記圧縮機を運転し、前記暖房側負荷回路及び前記冷房側負荷回路の運転を停止する請求項2記載の冷凍空調システム。
When the loads for both the heating load and the cooling load are both X%,
3. The control device according to claim 2, wherein the controller operates the compressor of the exhaust heat reduction circuit with an operation capacity for processing the X% load, and stops the operations of the heating-side load circuit and the cooling-side load circuit. 4. Refrigeration and air conditioning system.
JP2019529335A 2017-07-10 2017-07-10 Refrigeration and air conditioning system Pending JPWO2019012582A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025148 WO2019012582A1 (en) 2017-07-10 2017-07-10 Refrigeration air conditioning system

Publications (1)

Publication Number Publication Date
JPWO2019012582A1 true JPWO2019012582A1 (en) 2020-02-06

Family

ID=65002589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019529335A Pending JPWO2019012582A1 (en) 2017-07-10 2017-07-10 Refrigeration and air conditioning system

Country Status (3)

Country Link
JP (1) JPWO2019012582A1 (en)
GB (1) GB2578022B (en)
WO (1) WO2019012582A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639809B2 (en) 2020-09-30 2023-05-02 Trane International Inc. Heat recovery or heating unit load balance and adaptive control
US11680733B2 (en) * 2020-12-30 2023-06-20 Trane International Inc. Storage source and cascade heat pump systems
JP7424408B2 (en) 2022-05-31 2024-01-30 三浦工業株式会社 Cold and hot water production system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627411B2 (en) * 2010-11-18 2014-11-19 株式会社三菱地所設計 Double bundle type refrigerator system, heat source system and control method thereof
JP2017003158A (en) * 2015-06-08 2017-01-05 三菱電機株式会社 Heat pump device and hot water storage type water heater

Also Published As

Publication number Publication date
WO2019012582A1 (en) 2019-01-17
GB201918193D0 (en) 2020-01-22
GB2578022B (en) 2021-05-12
GB2578022A (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US10006678B2 (en) Air-conditioning apparatus
US9903601B2 (en) Air-conditioning apparatus
JP5674572B2 (en) Air conditioner
US20130180274A1 (en) Refrigeration cycle apparatus and refrigeration cycle control method
US9494363B2 (en) Air-conditioning apparatus
EP2722604B1 (en) Air conditioner
US9303906B2 (en) Air-conditioning apparatus
US20150059380A1 (en) Air-conditioning apparatus
US9557083B2 (en) Air-conditioning apparatus with multiple operational modes
JP5677570B2 (en) Air conditioner
WO2011030429A1 (en) Air conditioning device
US9080778B2 (en) Air-conditioning hot-water supply combined system
JPWO2019012582A1 (en) Refrigeration and air conditioning system
EP2963353B1 (en) Air conditioning device
US9587861B2 (en) Air-conditioning apparatus
US20210207834A1 (en) Air-conditioning system
JPWO2012164608A1 (en) Air conditioning and hot water supply complex system
JP2006220335A (en) Composite type air conditioner
WO2016162954A1 (en) Refrigeration/air-conditioning device
WO2017179166A1 (en) Air-conditioning device
JP2003106683A (en) Refrigerator
JP6716037B2 (en) Air conditioning system
WO2012160605A1 (en) Air conditioning device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222