JPWO2018229890A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JPWO2018229890A1
JPWO2018229890A1 JP2019524618A JP2019524618A JPWO2018229890A1 JP WO2018229890 A1 JPWO2018229890 A1 JP WO2018229890A1 JP 2019524618 A JP2019524618 A JP 2019524618A JP 2019524618 A JP2019524618 A JP 2019524618A JP WO2018229890 A1 JPWO2018229890 A1 JP WO2018229890A1
Authority
JP
Japan
Prior art keywords
compressor
refrigeration cycle
liquid level
cycle apparatus
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019524618A
Other languages
English (en)
Other versions
JP6716036B2 (ja
Inventor
弘文 松田
宗希 石山
謙作 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018229890A1 publication Critical patent/JPWO2018229890A1/ja
Application granted granted Critical
Publication of JP6716036B2 publication Critical patent/JP6716036B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressor (AREA)

Abstract

本発明に係る冷凍サイクル装置においては、冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順の第1循環方向に循環する。冷凍サイクル装置は、油分離器と、流調弁と、バイパス流路と、液面検知部と、制御装置とを備える。油分離器は、圧縮機からの冷媒から潤滑油を分離して貯留する。バイパス流路は、流調弁を介して油分離器から圧縮機へ、潤滑油を移動させる。液面検知部は、潤滑油と気化した冷媒との密度差を利用して、圧縮機内または油分離器内の液面を検知する。制御装置は、液面の検知結果を用いて、流調弁の開度を調整する。制御装置は、予め定められた条件が成立する場合、検知結果を用いずに開度を増加させる。

Description

本発明は、返油制御が行なわれる冷凍サイクル装置に関する。
従来から、圧縮機から吐出される気体の冷媒(ガス冷媒)と潤滑油とを分離するために、圧縮機と凝縮器との間に油分離器が配置された冷凍サイクル装置が知られている。当該冷凍サイクル装置においては、圧縮機内の潤滑油量が不足した場合に油分離器から圧縮機へ潤滑油を戻す制御(返油制御)が行なわれる場合がある。
たとえば、特開2015−38407号公報(特許文献1)に開示されている冷凍装置においては、圧縮機の潤滑が十分に行われるようにするため、圧縮機内の潤滑油面が基準位置より低いことを油面センサの出力信号が示す場合に、緊急油戻し通路に設けられた開閉弁が開かれ、油分離器に貯留された潤滑油が圧縮機に戻される。
特開2015−38407号公報
流体の密度には、気体と液体との境界面である流体の液面を境にして、気体と液体との密度差が生じる。圧縮機内または油分離器内の基準位置における流体の密度が当該密度差だけ変化したことを検知することにより、液面が基準位置を通過したことを検知することができる。以下では、液面の検知とは、液面が基準位置を通過したことを検知することを意味するものとする。
運転中の冷凍サイクル装置においては、圧縮機から吐出される流体はガス冷媒および潤滑油から成るのが通常である。当該流体の液面を検知するためには、液面検出部が、ガス冷媒と潤滑油との密度差を検出することが可能な分解能を有している必要がある。
冷凍サイクル装置においては、蒸発器における液体の冷媒(液冷媒)の気化が不十分であることにより、蒸発器から液冷媒が流出して液冷媒が圧縮機に吸入される現象(液戻り)が発生する場合がある。液戻りが発生した場合、圧縮機から吐出される流体には、ガス冷媒および潤滑油以外に、液冷媒が含まれる。液戻りが発生した場合、圧縮機から吐出される流体の液面を検知するためには、ガス冷媒と、潤滑油および液冷媒を含む液体との密度差を検知する必要がある。
ガス冷媒と、潤滑油および液冷媒を含む液体との密度差は、ガス冷媒と潤滑油との密度差よりも小さくなり得る。液戻りを想定することなく、ガス冷媒と潤滑油との密度差を検出することが可能な分解能を有する液面検出部を用いて流体の液面を検知している場合、液面検出部の分解能によっては、ガス冷媒と、潤滑油および液冷媒を含む液体との密度差を検出することが困難になり得る。
液戻りが発生した場合、圧縮機から吐出される流体の液面の検知が困難になり得る。その結果、圧縮機において潤滑油が不足しているにも関わらず、油分離機から圧縮機へ潤滑油が戻されないという事態が生じ得る。潤滑油が不足している状態で圧縮機の運転が継続されると、圧縮機が故障する可能性が高まる。
本発明は、上述のような課題を解決するためになされたものであり、その目的は、圧縮機における潤滑油の不足の発生を抑制することである。
本発明に係る冷凍サイクル装置においては、冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順の第1循環方向に循環する。冷凍サイクル装置は、油分離器と、流調弁と、バイパス流路と、液面検知部と、制御装置とを備える。油分離器は、圧縮機からの冷媒から潤滑油を分離して貯留する。バイパス流路は、流調弁を介して油分離器から圧縮機へ、潤滑油を移動させる。液面検知部は、潤滑油と気化した冷媒との密度差を利用して、圧縮機内または油分離器内の液面を検知する。制御装置は、液面の検知結果を用いて、流調弁の開度を調整する。制御装置は、予め定められた条件が成立する場合、検知結果を用いずに開度を増加させる。
本発明に係る冷凍サイクル装置によれば、予め定められた条件が成立する場合に、液面検知部による液面の検知結果を用いることなく流調弁の開度を増加させて、油分離器から圧縮機に戻す潤滑油を増加させる。その結果、圧縮機における潤滑油の不足の発生が抑制され、冷凍サイクル装置の信頼性を向上させることができる。
実施の形態1に係る冷凍サイクル装置の構成を示す機能ブロック図である。 図1の冷凍サイクル装置において、圧縮機内の潤滑油が不足している状態を示す図である。 図1の冷凍サイクル装置において行なわれる、液面検知による返油制御の処理の流れの一例を示すフローチャートである。 自己発熱センサの構成の一例を示す図である。 周囲流体が潤滑油である場合の自己発熱センサの特性と、周囲流体がガス冷媒である場合の自己発熱センサの特性とを併せて示す図である。 図1の冷凍サイクル装置において、除霜モードが開始された場合の構成を示す機能ブロック図である。 図1の冷凍サイクル装置において、除霜モードが終了した場合の構成を示す機能ブロック図である。 周囲流体が潤滑油である場合の自己発熱センサの特性と、周囲流体がガス冷媒である場合の自己発熱センサの特性と、周囲流体が潤滑油および液冷媒を含む液体である場合の自己発熱センサの特性とを併せて示す図である。 環境温度とセンサ電圧差との対応関係を示す図である。 実施の形態1における返油制御の処理の流れの一例を示すフローチャートである。 図10に示される、液面検知によらない返油制御の処理の流れの一例を示すフローチャートである。 実施の形態1の変形例1に係る冷凍サイクル装置の構成を示す機能ブロック図である。 図12の冷凍サイクル装置において行なわれる、液面検知による返油制御の処理の流れの一例を示すフローチャートである。 実施の形態1の変形例2に係る冷凍サイクル装置の構成を示す機能ブロック図である。 実施の形態2における液面検知によらない返油制御の処理の流れの一例を示すフローチャートである。 実施の形態3における液面検知によらない返油制御の処理の流れの一例を示すフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。冷凍サイクル装置100の運転モードは、暖房モード、冷房モード、および除霜モードを含む。図1においては、暖房モードにおける冷媒の流れが示されている。
図1のように、冷凍サイクル装置100は、圧縮機1と、油分離器2と、四方弁3と、室内に配置される熱交換器4と、膨張弁5と、室外に配置される熱交換器6と、開閉弁7と、バイパス流路8と、液面検知部10と、制御装置30とを備える。暖房モードにおいて冷媒は、圧縮機1、油分離器2、熱交換器4、膨張弁5、および熱交換器6の順に循環する。
圧縮機1は、低圧のガス冷媒を断熱圧縮し、高圧のガス冷媒を油分離器2へ吐出する。ガス冷媒の断熱圧縮を行なう機構において金属同士が直接に接触して摩耗および摩擦熱が発生することを抑制するために、圧縮機1の内部には潤滑油LB1が貯留されている。圧縮機1からは、冷媒とともに潤滑油LB1が吐出される。
油分離器2は、圧縮機1と熱交換器4との間に接続され、圧縮機1からのガス冷媒から潤滑油LB1を分離して貯留する。油分離器2の形式としては、たとえば遠心分離型、多孔板式、金網式、デミスタ式を挙げることができる。
圧縮機1から吐出された潤滑油LB1をそのまま循環させておくと、圧力損失の増大、および熱交換器4,6の伝熱性能の低下が生じ、冷凍サイクル装置100の性能が低下し得る。また、冷媒よりも一般に粘度が高い潤滑油LB1は圧縮機1から吐出されてから圧縮機1に戻ってくるまで冷媒よりも時間が掛かる。圧縮機1から吐出される潤滑油LB1の量よりも、圧縮機1に吸入される潤滑油LB1の量が小さいと、圧縮機1内の潤滑油LB1の量が減少し、圧縮機1内の潤滑油LB1の量が必要量を下回る可能性がある。圧縮機1から吐出された潤滑油LB1を一旦油分離器2に貯留することにより、熱交換器4以降に流出する潤滑油LB1の量を抑制することができるとともに、圧縮機1内の潤滑油LB1が不足した場合に潤滑油LB1を戻すことができる。
四方弁3は、暖房モードにおいては図1のように、冷媒が圧縮機1、油分離器2、熱交換器4、膨張弁5、および熱交換器6の順に循環するように流路を形成する。冷房モードおよび除霜モードにおいては、冷媒が圧縮機1、油分離器2、熱交換器6、膨張弁5、および熱交換器4の順に循環するように流路を形成する。冷房モードおよび除霜モードにおいて冷媒は、圧縮機1、油分離器2、熱交換器6、膨張弁5、および熱交換器4の順に循環する。
熱交換器4は、暖房モードにおいては凝縮器として機能する。熱交換器4において圧縮機1からのガス冷媒は、凝縮熱を放出して凝縮する。暖房モードにおいて熱交換器4には、液冷媒RL1が貯留される。熱交換器4は、冷房モードおよび除霜モードにおいては蒸発器として機能する。
膨張弁5は、液冷媒を断熱膨張させて減圧し、気液二相状態の湿り蒸気として流出させる。膨張弁5としては、たとえば電子制御式膨張弁(LEV:Linear Expansion Valve)を用いることができる。
熱交換器6は、暖房モードの場合には蒸発器として機能する。膨張弁5からの湿り蒸気は、外気から気化熱を吸収して気化する。熱交換器4は、冷房モードおよび除霜モードにおいては凝縮器として機能する。
バイパス流路8は、開閉弁7を介して油分離器2から圧縮機1へ、潤滑油LB1を移動させる。バイパス流路8は、油分離器2の吐出口と圧縮機1の吸入口とを接続している。
液面検知部10は、油分離器2内の液面を検知する。液面検知部10は、温度センサ11と、自己発熱センサ12とを含む。自己発熱センサ12は、油分離器2の内部の基準位置SP1に配置されている。自己発熱センサ12は、基準位置SP1の周囲の流体(周囲流体)の密度に応じた電圧値を検出する。温度センサ11は、周囲流体の温度(環境温度)を検出する。液面検知部10は、静電容量式センサを含み、周囲流体の密度に応じた容量値を検出してもよい。自己発熱センサ12の構成および液面検知部10の液面検知の仕組みについては後に詳細に説明する。
制御装置30は、液面検知部10からの液面の検知結果を用いて開閉弁7の開閉を制御し、油分離器2に貯留されている潤滑油LB1を圧縮機1へ戻す制御(返油制御)を行なう。返油制御は、圧縮機1内の潤滑油LB1が不足している場合に行なわれる。油分離器2内に貯留されている潤滑油LB1の量が多いほど、圧縮機1内に貯留されている潤滑油LB1の量は少なくなる。冷凍サイクル装置100においては、油分離器2内の潤滑油LB1の液面が基準位置SP1よりも高い場合を、圧縮機1内の潤滑油LB1が不足している場合としている。図1においては、油分離器2内の潤滑油LB1の液面は基準位置SP1よりも低いため、圧縮機1内の潤滑油LB1は不足しておらず、返油制御は行なわれない。
制御装置30は、圧縮機1の駆動周波数を制御して圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置30は、四方弁3を制御して、冷媒の循環方向を切り替える。制御装置30は、温度センサ21から圧縮機1の温度を取得する。
図2は、図1の冷凍サイクル装置100において、圧縮機1内の潤滑油LB1が不足している状態を示す図である。図2に示されるように、油分離器2内の潤滑油LB1の液面は基準位置SP1よりも高い。この場合、制御装置30は、液面検知による返油制御を行なう。
図3は、図1の冷凍サイクル装置100において行なわれる、液面検知による返油制御の処理の流れの一例を示すフローチャートである。以下ではステップを単にSと記載する。
図3に示されるように、制御装置30は、S101において油分離器2内の潤滑油LB1の液面が基準位置SP1よりも高いか否かを判定する。制御装置30は、油分離器2内の潤滑油LB1の液面が基準位置SP1よりも高い場合(S101においてYES)、処理をS102へ進める。制御装置30は、S102において開閉弁7を開いて処理をS103へ進める。制御装置30は、S103において基準時間待機した後、処理をS104へ進める。当該基準時間は、油分離器2から圧縮機1へ基準量の潤滑油LB1が移動するのに必要な時間であり、実機実験あるいはシミュレーションにより適宜決定することができる。制御装置30は、S104において開閉弁を閉じてから液面検知による返油制御を終了する。制御装置30は、油分離器2内の潤滑油LB1の液面が基準位置SP1以下である場合(S101においてNO)、液面検知による返油制御を終了する。
図4は、自己発熱センサ12の構成の一例を示す図である。自己発熱センサ12は、電極121,122と、抵抗素子123とを含む。電極121と電極122との間に、抵抗素子123が設置される。抵抗素子123は、抵抗素子123の温度の上昇に伴い抵抗値が単調に減少する特性(負の温度特性)を有するサーミスタを含む。抵抗素子123は、温度の変化に伴って抵抗値が変化する素子であればよく、たとえば抵抗素子123の温度の上昇に伴い抵抗値が単調に増加する特性(正の温度特性)を有するサーミスタであってもよい。自己発熱センサ12は、電極121と電極122との間の電圧を出力する。電極121と電極122との間の電圧は、環境温度および周囲流体の密度によって変化する。
潤滑油LB1の密度は、ガス冷媒の密度よりも大きい。流体の密度が大きいほど、流体の熱伝導率は大きくなる。抵抗素子123に基準電流が流れたときに抵抗素子123に発生する熱は、周囲流体が潤滑油LB1である場合の方が、周囲流体がガス冷媒である場合よりも、周囲流体に伝わりやすい。抵抗素子123に基準電流が流れたときの抵抗素子123から周囲流体への放熱量は、周囲流体が潤滑油LB1である場合の方が、周囲流体がガス冷媒である場合よりも大きい。抵抗素子123に基準電流が流れたときの抵抗素子123に発生する熱量のうち周囲流体へ移動せずに抵抗素子123に残存する熱量は、抵抗素子123から周囲流体への放熱量が大きいほど小さい。そのため、抵抗素子123に基準電流が流れたときの抵抗素子123の温度変化は、周囲流体が潤滑油LB1である場合の方が、周囲流体がガス冷媒である場合よりも小さい。抵抗素子123の抵抗値の変化は、抵抗素子123の温度変化が小さいほど小さい。そのため、抵抗素子123の抵抗値の変化は、周囲流体が潤滑油LB1である場合の方が、周囲流体がガス冷媒である場合よりも小さい。抵抗素子123の抵抗値の変化が小さいほど、電極121と電極122との間の電圧(自己発熱センサ12の出力値)の変化が小さい。そのため、抵抗素子123に基準電流が流れたときの自己発熱センサ12の出力値の変化は、周囲流体が潤滑油LB1である場合の方が、周囲流体がガス冷媒である場合よりも小さい。
図5は、周囲流体が潤滑油LB1である場合の自己発熱センサ12の特性VC1と、周囲流体がガス冷媒である場合の自己発熱センサ12の特性VC2とを併せて示す図である。特性VC1およびVC2は、環境温度Tatmと自己発熱センサ12の出力値(センサ電圧)Vsとの関係として表されている。図5において、電圧V1soは、環境温度がT1であって周囲流体が潤滑油LB1である場合のセンサ電圧Vsである。電圧V1sgは、環境温度がT1であって周囲流体がガス冷媒である場合のセンサ電圧Vsである。図5に示されるように、環境温度TatmがT1である場合、潤滑油LB1とガス冷媒との密度の差は、電圧V1soとV1sgとのセンサ電圧差ΔV1sとして検出される。そのため、周囲流体がガス冷媒から潤滑油LB1へ変わった場合、あるいは潤滑油LB1からガス冷媒へ変わった場合、センサ電圧Vsにはセンサ電圧差ΔV1sの変化が生じる。冷凍サイクル装置100においては、環境温度Tatmに応じて閾値を決定しておき、センサ電圧Vsの変化が当該閾値を超えたときに液面が検知されたと判定される。
センサ電圧Vsが閾値以上の減少をした場合、周囲流体が潤滑油LB1からガス冷媒に変化したことを意味する。この場合、油分離器2内の液面は、図1に示されるように基準位置SP1よりも下にあり、圧縮機1内の潤滑油は不足していない。逆に、センサ電圧Vsが閾値以上の増加をした場合、周囲流体がガス冷媒から潤滑油LB1に変化したことを意味する。油分離器2内の液面は、図2に示されるように基準位置SP1よりも上にあるため、圧縮機1内の潤滑油LB1が不足しており、返油制御が行なわれる。
運転中の冷凍サイクル装置100においては、圧縮機1から吐出される流体はガス冷媒および潤滑油LB1から成るのが通常である。当該流体の液面を検知するためには、自己発熱センサ12が、ガス冷媒と潤滑油LB1との密度差を検出することが可能な分解能を有している必要がある。
冷凍サイクル装置100においては、液戻りが発生する場合がある。液戻りが発生する場合としては、たとえば除霜モードが開始された場合(図6)、除霜モードが終了した場合(図7)、暖房モードが開始された場合(図7)、および四方弁3によって冷媒の循環方向が切り替えられた場合(図6および図7)を挙げることができる。
図6に示されるように、暖房モードを中断して除霜モードを開始する場合には、四方弁3によって冷媒の循環方向が切り替えられる。除霜モードにおいては、暖房モードにおいて蒸発器として機能していた熱交換器6に着いた霜を、冷媒の凝縮熱によって溶解させて除去する。冷凍サイクル装置100の除霜モードにおいては、リバースサイクルデフロストが行なわれる。暖房モードにおいて凝縮器として機能していた熱交換器4は、除霜モードにおいては蒸発器として機能する。除霜モードの開始時には、暖房モードにおいて凝縮器として機能していた熱交換器4に液冷媒RL1が貯留されている。除霜モードが開始してからしばらくの間、圧縮機1には熱交換器4から液冷媒RL1が流入するため、液戻りが発生する。
除霜モードが終了し暖房モードが再開する場合には、図7に示されるように四方弁3によって冷媒の循環方向が切り替えられる。除霜モードにおいて凝縮器として機能していた熱交換器6には液冷媒が貯留されている。暖房モードが再開してからしばらくの間、圧縮機1には熱交換器6から液冷媒RL1が流入するため、液戻りが発生する。
冷凍サイクル装置100が停止されている間、室外に配置されている熱交換器6においてはガス冷媒が冷却されて液冷媒となり、当該液冷媒が図7に示されるように熱交換器6に貯留される。外気温が低いほど、熱交換器6に貯留される液冷媒量は多くなる。運転モードを暖房モードとして冷凍サイクル装置100が起動された場合、暖房モードが開始されてからしばらくの間、圧縮機1には熱交換器6から液冷媒RL1が流入するため、液戻りが発生する。
液戻りが発生した場合、圧縮機1から吐出される流体には、ガス冷媒および潤滑油LB1の他に、液冷媒が含まれる。液戻りが発生した場合、圧縮機1から吐出される流体の液面を検知するためには、ガス冷媒と、潤滑油LB1および液冷媒を含む液体との密度差を検知する必要がある。
図8は、周囲流体が潤滑油LB1である場合の自己発熱センサ12の特性VC1と、周囲流体がガス冷媒である場合の自己発熱センサ12の特性VC2と、周囲流体が潤滑油LB1および液冷媒を含む液体である場合の自己発熱センサ12の特性VC3とを併せて示す図である。図8において示される特性VC1,VC2、センサ電圧V1so,V1sg、センサ電圧差ΔV1s、および環境温度T1は、図5に示される特性VC1,VC2、センサ電圧V1so,V1sg、センサ電圧差ΔV1s、および環境温度T1とそれぞれ同様である。図8においてセンサ電圧V1smは、環境温度がT1であって周囲流体が潤滑油LB1および液冷媒を含む液体である場合のセンサ電圧Vsである。センサ電圧差ΔV2sは、センサ電圧V1smとV1sgとの差である。
液冷媒の密度が潤滑油LB1よりも小さい場合、ガス冷媒と、潤滑油LB1および液冷媒を含む液体との密度差は、ガス冷媒と潤滑油LB1との密度差よりも小さくなる。その結果、図8に示されるように、ガス冷媒と、潤滑油LB1および液冷媒を含む液体との密度差を表すセンサ電圧差ΔV2sは、ガス冷媒と潤滑油LB1との密度差を表すセンサ電圧差ΔV1sよりも小さい。
図9は、環境温度Tatmとセンサ電圧差ΔV1sとの対応関係、および環境温度Tatmとセンサ電圧差ΔV2sとの対応関係を併せて示す図である。図9において、センサ電圧差ΔVrsは、自己発熱センサ12によって検出可能な電圧値の変化(分解能)を表す。センサ電圧差ΔVrsよりも小さい電圧値の変化(差)は、自己発熱センサ12によっては検出することが不可能である。環境温度T2〜T4(T2<T4)の範囲は、冷凍サイクル装置100の運転中に想定される温度の範囲を表す。
図9に示されるように、センサ電圧差ΔV1sは、環境温度T2〜T4の範囲において分解能ΔVrsを超えている。しかし、センサ電圧差ΔV2sは、環境温度がT3(T2<T3<T4)よりも高くなると、分解能ΔVrsを下回る。液戻りが環境温度T3〜T4の範囲で生じた場合、自己発熱センサ12による油分離器2内の液面の検知が困難になる。その結果、圧縮機1において潤滑油が不足しているにも関わらず、返油制御が行なわれないという事態が生じ得る。潤滑油が不足している状態で圧縮機1の運転が継続されると、圧縮機1が故障する可能性が高まる。
そこで、冷凍サイクル装置100においては、液冷媒が圧縮機1に吸入されることにより液面検知部10による液面検知が困難になり得る場合(予め定められた条件が成立する場合)には、液面検知部10による液面の検知結果を用いずに返油制御を行なう。その結果、圧縮機1における潤滑油LB1の不足の発生が抑制され、冷凍サイクル装置100の信頼性を向上させることができる。予め定められた条件とは、液戻りが発生し易い条件として予め定義された条件である。液戻りとは、たとえば液冷媒が圧縮機1に吸入されることにより液面検知部10による液面検知が困難になる場合、あるいは圧縮機1に単位時間に吸入される液冷媒の量が基準量より大きい場合と考えることもできる。
図10は、実施の形態1における返油制御の処理の流れの一例を示すフローチャートである。図9に示される処理は不図示のメインルーチンによって一定時間間隔で行なわれる。予め定められた条件は、除霜モードが開始されたという条件、および除霜モードが終了したという条件、および暖房モードが開始されたという条件を含む。予め定められた条件は、除霜モードが開始されたという条件および除霜モードが終了したという条件に代えて冷媒の循環方向が切り替えられたという条件を含んでいてもよい。
図10に示されるように、制御装置30は、S10において予め定められた条件が成立したか否かを判定する。予め定められた条件が成立している場合(S10においてYES)、制御装置30は、処理をS200に進める。制御装置30は、S200において液面検知部10の液面の検知結果を用いずに返油制御を行なった後、処理をメインルーチンに返す。予め定められた条件が不成立の場合(S10においてNO)、制御装置30は、処理をS100に進める。制御装置30は、S100において液面検知部10の液面検知結果を用いて返油制御を行なった後、処理をメインルーチンに返す。S100に示される液面検知による返油制御の処理は、図3に示される処理と同様である。
図11は、図10の液面検知によらない返油制御の処理の流れの一例を示すフローチャートである。図11に示されるように、制御装置30は、S201において開閉弁7を開き、処理をS202に進める。制御装置30は、S202において開閉弁7を開いてから基準時間経過したか否かを判定する。当該基準時間は、油分離器2から圧縮機1へ基準量の潤滑油LB1が移動するのに必要な時間であり、実機実験あるいはシミュレーションにより適宜決定することができる。開閉弁7を開いてから基準時間経過した場合(S202においてYES)、制御装置30は、S203において開閉弁7を閉じた後、処理をメインルーチンに返す。開閉弁7を開いてから基準時間経過していない場合(S202においてNO)、制御装置30は、処理をS202に戻す。
以上、実施の形態1に係る冷凍サイクル装置によれば、圧縮機内の冷媒の液量が基準液量を超えることにより液面検知部による液面の検知が困難になり得る場合に、液面検知部からの情報を用いることなく開閉弁の開度を増加させて、油分離器から圧縮機に戻す潤滑油を増加させる。その結果、圧縮機における潤滑油の不足が生じ難くなり、冷凍サイクル装置の信頼性を向上させることができる。
実施の形態1の変形例1.
実施の形態1においては、液面検知部が油分離器内の液面を検知する場合について説明した。本発明に係る冷凍サイクル装置においては、図12に示される冷凍サイクル装置100Aのように、液面検知部20が圧縮機1内の液面を検知してもよい。
図12に示されるように、液面検知部20は、圧縮機1内の液面を検知する。液面検知部20は、温度センサ21と、自己発熱センサ22とを含む。自己発熱センサ22は、圧縮機1の内部の基準位置SP2に配置されている。自己発熱センサ22は、基準位置SP2の周囲の流体の密度に応じた電圧値を検出する。温度センサ21は、環境温度を検出する。制御装置30Aは、液面検知部20からの液面の検知結果を用いて返油制御を行なう。
図13は、図12に示される冷凍サイクル装置100Aにおいて行なわれる、液面検知による返油制御の処理の流れの一例を示すフローチャートである。図13に示されるように、制御装置30Aは、S121において圧縮機1内の潤滑油LB1の液面が基準位置SP2よりも低い否かを判定する。圧縮機1内の潤滑油LB1の液面が基準位置SP2よりも低い場合(S121においてYES)、制御装置30Aは、実施の形態1と同様にS102〜S104の返油制御を行なって処理をメインルーチンへ戻す。圧縮機1内の潤滑油LB1の液面が基準位置SP2以上である場合(S121においてNO)、処理をメインルーチンへ戻す。
実施の形態1の変形例2.
実施の形態1においては、流路切替装置としての四方弁を備え、除霜モードにおいてリバースサイクルデフロストが行なわれる冷凍サイクル装置について説明した。本発明に係る冷凍サイクル装置は、図14に示される冷凍サイクル装置100Bのように四方弁を備えていなくてもよい。冷凍サイクル装置100Bの除霜モードにおいては、圧縮機1が停止された状態での除霜運転(オフサイクルデフロスト)が制御装置30Bによって行なわれる。オフサイクルデフロストにおいては、たとえば不図示のヒータによって熱交換器6(蒸発器)が加熱されることにより、熱交換器6に生じた霜が溶解して除去される。冷凍サイクル装置100Bにおいて、液面検知によらない返油制御が制御装置30Bによって行なわれる予め定められた条件には、暖房モードが開始されたという条件、および除霜モードが終了したという条件が含まれる。
以上、実施の形態1の変形例1および変形例2に係る冷凍サイクル装置によっても、実施の形態1と同様の効果を得ることができる。
実施の形態2.
実施の形態1において、油分離器から圧縮機へ基準量の潤滑油が移動したことを示す終了条件は、開閉弁7を開いてから基準時間経過したという条件(図11のS202)である。基準時間は固定の値であるため、油分離器から圧縮機へ基準量の潤滑油が移動した場合でも、基準時間が経過していないときは開閉弁7が閉じられない。油分離器内の潤滑油の量が十分に減少した状態で開閉弁7が開いたままであると、圧縮機から油分離器へ吐出されたガス冷媒までも圧縮機へ戻され得る。圧縮機から吐出されたガス冷媒の一部が油分離器から圧縮機へ戻されると、凝縮器として機能する熱交換器へ流入するガス冷媒の量が減少する。その結果、相変化を繰り返しながら冷凍サイクル装置を循環する冷媒の量(循環冷媒量)が減少するため、冷凍サイクル装置の性能が低下する。一方、液面検知による返油制御においては、液面を検知することにより油分離器から圧縮機へ基準量の潤滑油が移動したことを検知するため、油分離器内の潤滑油の量が十分に減少しているにも関わらず開閉弁7が開いたままにされるという事態が生じ難い。
液面検知によらない返油制御が行なわれている場合に液戻りが解消された場合には、できるだけ早く開閉弁7を閉じて液面検知による返油制御に移行するのが望ましい。そこで実施の形態2においては、液面検知によらない返油制御の終了条件として、圧縮機内の温度が基準温度よりも大きいという条件を採用する。これ以外の実施の形態2の構成は実施の形態1と同様であるため、説明を繰り返さない。
液戻りが生じた場合、液冷媒の温度はガス冷媒よりも低いため、圧縮機1の温度は一時的に低下する。圧縮機1に流入する液冷媒の量が減少するにつれて圧縮機1の温度は上昇する。そのため、圧縮機1の温度が基準温度よりも高くなった場合に、液戻りが解消したと判定することができる。圧縮機1の温度上昇率(温度変化を時間間隔で割った値)が基準値を超えた場合に液戻りが解消したと判定してもよい。
以上、実施の形態2に係る冷凍サイクル装置によれば、実施の形態1と同様の効果を得ることができる。さらに、実施の形態2においては、液戻りが解消したと判定された場合、液面検知によらない返油制御が終了する。その結果、循環冷媒量の減少を抑制することができるため、冷凍サイクル装置の性能低下を抑制することができる。
実施の形態3.
液面検知によらない返油制御の終了条件が成立し、開閉弁7が閉じられると、圧縮機から膨張弁までの高圧側の冷媒の圧力(凝縮圧力)が上昇し、冷凍サイクル装置の性能および安全性が低下し得る。そこで実施の形態3においては、液面検知によらない返油制御の終了条件が成立し、開閉弁7が閉じられた後、圧縮機の駆動周波数を基準値まで低下させて、圧縮機の単位時間あたりの吐出量を基準吐出量まで減少させる。圧縮機の単位時間あたりの吐出量を減少させることにより、高圧側の冷媒の圧力を低下させることができる。
実施の形態3と実施の形態1との違いは、液面検知によらない返油制御の終了条件が成立し、開閉弁7が閉じた後、圧縮機の駆動周波数を基準値まで低下させる点である。これ以外の構成については同様であるため、説明を繰り返さない。
図16は、実施の形態3における液面検知によらない返油制御の処理の流れの一例を示すフローチャートである。図16に示さるように、制御装置は、S201において開閉弁を開いた後(S201)、基準時間が経過するのを待って(S202)、開閉弁を閉じる(S203)。その後、制御装置は、S204において圧縮機1の駆動周波数を基準値まで低下させた後、処理をメインルーチンに返す。
以上、実施の形態3に係る冷凍サイクル装置によれば、実施の形態1と同様の効果を得ることができる。さらに実施の形態3においては、液面検知によらない返油制御の終了条件が成立して開閉弁が閉じられた後、圧縮機の駆動周波数を基準値まで低下させる。その結果、冷凍サイクル装置の高圧側の圧力の上昇を抑制することができ、冷凍サイクル装置の性能および安全性の低下を抑制することができる。
今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 圧縮機、2 油分離器、3 四方弁、4,6 熱交換器、5 膨張弁、7 開閉弁、8 バイパス流路、10,20 液面検知部、11,21 温度センサ、12,22 自己発熱センサ、30,30A,30B 制御装置、100,100A,100B 冷凍サイクル装置、121,122 電極、123 抵抗素子、LB1 潤滑油。

Claims (13)

  1. 冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順の第1循環方向に循環する冷凍サイクル装置であって、
    前記圧縮機からの前記冷媒から潤滑油を分離して貯留するように構成された油分離器と、
    流調弁と、
    前記流調弁を介して前記油分離器から前記圧縮機へ、前記潤滑油を移動させるように構成されたバイパス流路と、
    前記潤滑油と気化した前記冷媒との密度差を利用して、前記圧縮機内または前記油分離器内の液面を検知するように構成された液面検知部と、
    前記液面の検知結果を用いて、前記流調弁の開度を調整するように構成された制御装置とを備え、
    前記制御装置は、予め定められた条件が成立する場合、前記検知結果を用いずに前記開度を増加させるように構成されている、冷凍サイクル装置。
  2. 前記冷凍サイクル装置の運転モードは、暖房モードを含み、
    前記予め定められた条件は、前記暖房モードが開始されたという条件を含む、請求項1に記載の冷凍サイクル装置。
  3. 前記運転モードは、除霜モードをさらに含み、
    前記冷媒の循環方向を、前記第1循環方向と、前記第1循環方向とは逆方向の第2循環方向との間で切り替えるように構成された流路切替装置をさらに備え、
    前記制御装置は、前記流路切替装置を制御して、前記循環方向を前記暖房モードにおいては前記第1循環方向とし、前記除霜モードにおいては、前記第2循環方向とするように構成されている、請求項2に記載の冷凍サイクル装置。
  4. 前記予め定められた条件は、前記除霜モードが開始されたという条件および前記除霜モードが終了したという条件をさらに含む、請求項3に記載の冷凍サイクル装置。
  5. 前記予め定められた条件は、前記循環方向が切り替えられたという条件をさらに含む、請求項3に記載の冷凍サイクル装置。
  6. 前記運転モードは、除霜モードをさらに含み、
    前記予め定められた条件は、前記除霜モードが終了したという条件をさらに含む、請求項2に記載の冷凍サイクル装置。
  7. 前記制御装置は、前記予め定められた条件が成立した場合において、前記開度を増加させた後、前記油分離器から前記圧縮機へ基準量の前記潤滑油が移動したことを示す終了条件が成立したとき、前記開度を減少させるように構成されている、請求項1〜請求項6のいずれか1項に記載の冷凍サイクル装置。
  8. 前記終了条件は、前記開度の増加が完了してから基準時間経過したという条件を含む、請求項7に記載の冷凍サイクル装置。
  9. 前記終了条件は、前記圧縮機内の温度が基準温度よりも大きいという条件を含む、請求項7に記載の冷凍サイクル装置。
  10. 前記制御装置は、前記開度の減少が完了した後、前記圧縮機の単位時間あたりの吐出量を基準吐出量まで減少させるように構成されている、請求項7〜請求項9のいずれか1項に記載の冷凍サイクル装置。
  11. 前記液面検知部は、前記油分離器内の液面を検知するように構成され、
    前記制御装置は、前記予め定められた条件が不成立の場合、前記液面が前記油分離器内の基準位置よりも高いとき、前記開度を増加させるように構成されている、請求項1〜請求項10のいずれか1項に記載の冷凍サイクル装置。
  12. 前記液面検知部は、前記圧縮機内の液面を検知するように構成され、
    前記制御装置は、前記予め定められた条件が不成立の場合、前記液面が前記圧縮機内の基準位置よりも低いとき、前記開度を増加させるように構成されている、請求項1〜請求項10のいずれか1項に記載の冷凍サイクル装置。
  13. 前記液面検知部は、自己発熱式センサを含む、請求項1〜請求項12のいずれか1項に記載の冷凍サイクル装置。
JP2019524618A 2017-06-14 2017-06-14 冷凍サイクル装置 Active JP6716036B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021936 WO2018229890A1 (ja) 2017-06-14 2017-06-14 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2018229890A1 true JPWO2018229890A1 (ja) 2019-11-07
JP6716036B2 JP6716036B2 (ja) 2020-07-01

Family

ID=64660988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019524618A Active JP6716036B2 (ja) 2017-06-14 2017-06-14 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP6716036B2 (ja)
WO (1) WO2018229890A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479551A (en) * 1987-09-18 1989-03-24 Matsushita Refrigeration Heat pump type air conditioner
JPH01179229U (ja) * 1988-06-09 1989-12-22
JPH04186062A (ja) * 1990-11-20 1992-07-02 Matsushita Seiko Co Ltd ヒートポンプ式空気調和機
JP2005076902A (ja) * 2003-08-28 2005-03-24 Daikin Ind Ltd 冷凍機の圧縮ユニット
WO2015045854A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
WO2015045011A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 冷凍サイクル装置
WO2016157282A1 (ja) * 2015-03-27 2016-10-06 三菱電機株式会社 冷凍サイクル装置
WO2017085887A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル装置の制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217460A (ja) * 1983-05-25 1984-12-07 三菱電機株式会社 空気調和機
JPS59217461A (ja) * 1983-05-25 1984-12-07 三菱電機株式会社 空気調和機の冷凍サイクル
JPH01302072A (ja) * 1988-05-30 1989-12-06 Matsushita Refrig Co Ltd ヒートポンプ式空気調和機
JP2015038407A (ja) * 2013-08-19 2015-02-26 ダイキン工業株式会社 冷凍装置
GB2545844B (en) * 2014-10-16 2021-05-19 Mitsubishi Electric Corp Liquid reservoir

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479551A (en) * 1987-09-18 1989-03-24 Matsushita Refrigeration Heat pump type air conditioner
JPH01179229U (ja) * 1988-06-09 1989-12-22
JPH04186062A (ja) * 1990-11-20 1992-07-02 Matsushita Seiko Co Ltd ヒートポンプ式空気調和機
JP2005076902A (ja) * 2003-08-28 2005-03-24 Daikin Ind Ltd 冷凍機の圧縮ユニット
WO2015045011A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 冷凍サイクル装置
WO2015045854A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
WO2015045129A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
WO2016157282A1 (ja) * 2015-03-27 2016-10-06 三菱電機株式会社 冷凍サイクル装置
WO2017085887A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル装置の制御方法

Also Published As

Publication number Publication date
WO2018229890A1 (ja) 2018-12-20
JP6716036B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
CN106461253B (zh) 空调机及其除霜运行方法
EP1826513B1 (en) Refrigerating air conditioner
JP4831247B2 (ja) コンテナ用冷凍装置
KR101237216B1 (ko) 공기조화기 및 그 제어방법
EP2833075A2 (en) Air conditioner and control method thereof
JP2011252702A5 (ja)
BE1016734A3 (nl) Verbeterde inrichting voor het koeldrogen.
KR102341711B1 (ko) 냉장고 및 그 제어 방법
KR20130041712A (ko) 냉동 사이클 장치
CN112219075A (zh) 通过使用空气温度测量来终止蒸发器除霜的方法
JP2007139244A (ja) 冷凍装置
JP2015038388A (ja) コンテナ用冷凍装置
CN112189120B (zh) 终止蒸发器除霜的方法
JP6437120B2 (ja) チリングユニット
JP6716036B2 (ja) 冷凍サイクル装置
JP4869320B2 (ja) 冷凍サイクル装置及びこれを搭載した給湯機
JP5992076B1 (ja) 冷凍サイクル装置、その冷凍サイクル装置を備えた冷蔵庫、冷凍サイクル装置の除霜方法
JP2015048988A (ja) アキュムレータ及び冷凍装置
JP6372307B2 (ja) ヒートポンプ装置
KR102572457B1 (ko) 냉장고 및 냉장고의 제어 방법
AU2015410544A1 (en) Refrigerator
JP6072178B1 (ja) 冷凍サイクル装置
US11802722B2 (en) Refrigeration cycle apparatus
JP6795680B2 (ja) 冷凍サイクル装置
TWI642884B (zh) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200609

R150 Certificate of patent or registration of utility model

Ref document number: 6716036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250