JPWO2018216804A1 - Method of joining resin molded products - Google Patents

Method of joining resin molded products Download PDF

Info

Publication number
JPWO2018216804A1
JPWO2018216804A1 JP2019520330A JP2019520330A JPWO2018216804A1 JP WO2018216804 A1 JPWO2018216804 A1 JP WO2018216804A1 JP 2019520330 A JP2019520330 A JP 2019520330A JP 2019520330 A JP2019520330 A JP 2019520330A JP WO2018216804 A1 JPWO2018216804 A1 JP WO2018216804A1
Authority
JP
Japan
Prior art keywords
molded product
molded article
resin
resin composition
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019520330A
Other languages
Japanese (ja)
Inventor
晋一 廣田
晋一 廣田
光宏 権田
光宏 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Publication of JPWO2018216804A1 publication Critical patent/JPWO2018216804A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

樹脂組成物からなる樹脂成形品を接合する接合方法であって、レーザー光を透過する第1成形品(101)及び/又はレーザー光を吸収する第2成形品(102)の接合が予定される照射面(101a)及び/又は照射面(102a)に真空紫外光を照射した後、照射面(101a)と照射面(102a)を接するように配置し、第1成形品(101)側からレーザー光を照射して第1成形品(101)を透過したレーザー光を第2成形品(102)の照射面(102a)において吸収させ、加熱溶融してレーザー溶着する。A joining method for joining a resin molded product made of a resin composition, wherein a joining of a first molded product (101) transmitting laser light and / or a second molded product (102) absorbing laser light is scheduled. After irradiating the irradiation surface (101a) and / or the irradiation surface (102a) with vacuum ultraviolet light, the irradiation surface (101a) and the irradiation surface (102a) are arranged so as to be in contact with each other, and the laser is irradiated from the first molded article (101) side. The laser light that has been irradiated and transmitted through the first molded article (101) is absorbed by the irradiation surface (102a) of the second molded article (102), and is heated and melted to perform laser welding.

Description

本発明は、紫外光を照射してからレーザー溶着を行う樹脂成形品の接合方法に関する。   The present invention relates to a method for joining resin molded articles, which is performed by irradiating ultraviolet light and then performing laser welding.

従来、自動車部品、電機・電子機器部品、日用品など様々な分野において、熱可塑性樹脂を射出成形してなる樹脂成形品が用いられている。このような樹脂成形品は、三次元中空体の形成や部品組立時の工程簡略化といった目的で、複数の樹脂成形品が、互いに接合されて構成された複合成形品として用いられる場合がある。   BACKGROUND ART Conventionally, resin molded products obtained by injection molding a thermoplastic resin have been used in various fields such as automobile parts, electric / electronic device parts, and daily necessities. Such a resin molded product may be used as a composite molded product in which a plurality of resin molded products are joined to each other for the purpose of forming a three-dimensional hollow body and simplifying the process of assembling parts.

樹脂成形品を接合するためには、接着剤や熱溶着など、各種の接合技術が提供されている。ただし、樹脂成形品を接着剤で接合する技術は、樹脂成形品を変形させることなく接合することができるが、一般的に接着剤の硬化には数時間かかるため生産性に劣る上、流路部品のような微細な中空部を有する三次元中空体においては、接着剤が中空部に漏出して溝が埋没するといった問題があった。そして、樹脂成形品を熱溶着する技術は、数分で接合することが可能であるが、熱板溶着や振動溶着、超音波溶着のような溶着技術では接合した樹脂成形品にバリや熱変形が発生したり、内部に収納する部品に損傷を与えたりすることがあった。なお、特許文献1のようなレーザー溶着を用いれば、バリや変形、内部の部品への影響は抑えられるものの、これらの熱溶着技術は、接合対象の樹脂成形品の表面同士を溶融させて相溶した状態で固化させるものであるため、化学的に親和性(相溶性)の高い樹脂からなる成形品同士、すなわち基本的に同材同士の接合に限られるという問題があった。   In order to join resin molded products, various joining techniques such as adhesives and heat welding are provided. However, the technique of joining the resin molded product with an adhesive can be performed without deforming the resin molded product. However, in general, it takes several hours to cure the adhesive, resulting in poor productivity and flow path. In a three-dimensional hollow body having a fine hollow portion such as a part, there is a problem that the adhesive leaks into the hollow portion and the groove is buried. The technique of heat-welding resin molded products can be joined in a matter of minutes, but welding techniques such as hot plate welding, vibration welding, and ultrasonic welding cause burrs or thermal deformation on the joined resin molded products. In some cases, or damage to components housed inside. Although the use of laser welding as disclosed in Patent Document 1 suppresses burrs, deformation, and the effects on internal components, these heat welding techniques melt the surfaces of the resin molded articles to be joined together to form a joint. Since it is solidified in a melted state, there is a problem that molded products made of resins having high chemical affinity (compatibility), that is, basically limited to joining of the same material.

また、真空紫外光(VUV)により樹脂成形品を処理して接合する技術が提供されている(特許文献2−5、非特許文献1を参照)。この技術によると、樹脂成形品の接合に数分から数十分程度の時間を要するが、接合した樹脂成形品の変形は小さい。ただし、特許文献2、3、非特許文献1は、樹脂成形品にポリメタクリル酸メチル(PMMA)樹脂や環状オレフィン樹脂等の非晶性樹脂でなるものを想定し、接合強度は1MPa以下である。特許文献4、5は、シリコーン接着を想定している。   In addition, there is provided a technique of processing and joining a resin molded product by vacuum ultraviolet light (VUV) (see Patent Literature 2-5 and Non-Patent Literature 1). According to this technique, it takes several minutes to several tens of minutes to join the resin molded products, but deformation of the joined resin molded products is small. However, Patent Literatures 2 and 3 and Non-Patent Literature 1 assume that a resin molded product is made of an amorphous resin such as polymethyl methacrylate (PMMA) resin or cyclic olefin resin, and the bonding strength is 1 MPa or less. . Patent documents 4 and 5 assume silicone bonding.

さらに、樹脂組成物により樹脂成形品を一次成形し、この樹脂成形品に樹脂組成物を併せて二次成形することにより最終的な樹脂成形品を作製する二重成形(double shot molding)の技術が提供されている。二重成形の技術によって、異なる性質の材料や異なる色の材料を組み合わせた樹脂成形品が一体に成形され、多様な製品に利用されている。しかし、二重成形においては、二次成形により樹脂を接合する部分の強度を確保するため、接合する部分に貫通穴やアンダーカット等のアンカーを設けるなど機械的に補強することがあった。また、二重成形では、一次成形品を金型にインサートしてから二次成形を行うという工程を踏むため、金型内への設置や離型を考慮した形状設計を行う必要があり、形状自由度に劣るという問題があった。さらに、複合成形品の内部に電子部品等を収容して二重成形を行う場合、それらの部品を一次成形品とともに金型内に配置して二次成形を行うが、二次成形時の熱や圧力によっては内部に収容される部品が損傷する可能性があることから、接合技術として二重成形を適用できない場合があった。   Furthermore, a double molding (double shot molding) technique in which a resin molded article is primarily molded with the resin composition, and the resin molded article is additionally molded with the resin molded article to form a final resin molded article. Is provided. By the technique of double molding, resin molded articles combining materials of different properties or materials of different colors are integrally molded and used for various products. However, in double molding, in order to secure the strength of the portion where the resin is joined by the secondary molding, mechanical reinforcement such as provision of an anchor such as a through hole or an undercut may be provided at the joining portion. In addition, in double molding, since the step of inserting the primary molded product into the mold and then performing the secondary molding is performed, it is necessary to perform the shape design taking into account the installation in the mold and the release. There was a problem that the degree of freedom was poor. Furthermore, when performing double molding by housing electronic components and the like inside a composite molded product, these components are placed in a mold together with the primary molded product and secondary molding is performed. In some cases, double molding cannot be applied as a joining technique because parts housed inside may be damaged depending on pressure and pressure.

特表平9−510930号公報Japanese Patent Publication No. 9-510930 特開2006−187730号公報JP 2006-187730 A 特開2009−173894号公報JP 2009-173894 A 特開2011−148104号公報JP 2011-148104 A 特開2013−147018号公報JP 2013-147018 A

谷口義尚、他4名、「光表面活性化によるシクロオレフィンポリマーの接合:接合強度評価とマイクロ流路への応用」、表面技術、表面技術協会、2014、第65巻、第5号、p.36−41Yoshinao Taniguchi and 4 others, "Jointing of cycloolefin polymer by photosurface activation: Evaluation of joining strength and application to microchannel", Surface Technology, Surface Technology Association, 2014, Vol. 65, No. 5, p. 36-41

一方、機械的強度や耐熱性、耐薬品性が要求される成形品には、堅牢で安定した性質を有するポリブチレンテレフタレート(PBT)樹脂やポリフェニレンサルファイド(PPS)樹脂のような熱可塑性結晶性樹脂を利用することができる。また、樹脂組成物でなる樹脂成形品を接合することにより複合成形品を作製する際には、接合による樹脂成形品の変形が小さく、高い接合強度を有する複合成形品を、生産性よく製造できることが求められる。   On the other hand, molded articles requiring mechanical strength, heat resistance and chemical resistance include thermoplastic crystalline resins such as polybutylene terephthalate (PBT) resin and polyphenylene sulfide (PPS) resin, which have robust and stable properties. Can be used. In addition, when a composite molded article is produced by joining resin molded articles made of a resin composition, the deformation of the resin molded article due to joining is small, and a composite molded article having high joining strength can be manufactured with high productivity. Is required.

前述の真空紫外光で樹脂成形品を処理して接合する技術は、樹脂成形品の変形を小さく抑えることができたが、非晶性樹脂でなる樹脂成形品の接合やシリコーン接着剤の硬化を想定したものであり、また十分な接合強度を確保することもできなかった。   The above-mentioned technology of processing and joining resin molded products with vacuum ultraviolet light was able to suppress deformation of the resin molded products to a small extent.However, joining of resin molded products made of amorphous resin and curing of silicone adhesives were difficult. It was assumed, and sufficient bonding strength could not be secured.

一方、樹脂組成物を二重成形により接合する場合には、一次成形品の樹脂を溶融させるために多くの熱量を要し、十分な溶着状態が得られずに接合強度が確保できないことがあった。特に一次成形品に結晶性熱可塑性樹脂組成物を用いる場合、結晶化した樹脂を溶融させるには、より多くの熱量を必要とする。また、相溶性の低い樹脂同士を接合するためには、接合強度を高めるためにアンカーのような物理的構造による補強を行う必要があり、当然ながら樹脂成形品にそのような補強構造を設けるためのスペースを確保する必要があることから、設計上の制約が生じ、形状の自由度が低下する問題があった。そして熱溶着による接合においては、樹脂成形品の表層部のみを溶融させて接合する技術であることから、物理的なアンカーによる補強はそもそも困難であり、相溶性の低い樹脂同士の接合は困難であることは前述の通りである。   On the other hand, when the resin composition is joined by double molding, a large amount of heat is required to melt the resin of the primary molded article, so that a sufficient welding state cannot be obtained and the joining strength may not be secured. Was. In particular, when a crystalline thermoplastic resin composition is used for a primary molded product, a larger amount of heat is required to melt the crystallized resin. In addition, in order to join resins having low compatibility, it is necessary to reinforce with a physical structure such as an anchor in order to increase the joining strength. Naturally, such a reinforcing structure is provided in a resin molded product. Since there is a need to secure such a space, there is a problem in that the design is restricted and the degree of freedom in shape is reduced. And, in the joining by heat welding, since it is a technique of melting only the surface layer portion of the resin molded article and joining, it is difficult to reinforce with a physical anchor in the first place, and it is difficult to join resins having low compatibility with each other. That is as described above.

本発明は、上述の実情に鑑みて提案されるものであって、樹脂組成物を用いて作製した樹脂成形品について、樹脂成形品の変形を小さく抑えつつ、高い接合強度が得られるような複合成形品を、生産性よく、かつ高い形状自由度で製造するための接合方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and relates to a resin molded article manufactured using a resin composition, which is capable of obtaining a high bonding strength while suppressing deformation of the resin molded article to be small. An object of the present invention is to provide a joining method for manufacturing a molded product with high productivity and high degree of freedom in shape.

本発明に係る樹脂成形品の接合方法は、樹脂組成物からなる樹脂成形品を接合する接合方法であって、レーザー光を透過する樹脂組成物からなる第1成形品及び/又はレーザー光を吸収する樹脂組成物からなる第2成形品の、接合が予定される領域に紫外光を照射し、前記第1成形品の前記領域に第2成形品の前記領域が接するように配置した上で、第1成形品側からレーザー光を照射して、第1成形品を透過したレーザー光を第2成形品の前記領域において吸収させ、第1成形品及び第2成形品それぞれの前記領域が接する界面を加熱溶融した後、冷却固化して、第1成形品と第2成形品を接合する。第1成形品及び第2成形品それぞれの前記領域が接する界面のレーザー光による加熱溶融は、界面において第1成形品及び第2成形品を構成する樹脂組成物を撹拌することを含んでもよい。   The method for joining a resin molded article according to the present invention is a joining method for joining a resin molded article made of a resin composition, wherein the first molded article made of a resin composition that transmits a laser beam and / or a laser beam is absorbed. After irradiating the region of the second molded product made of the resin composition to be joined with ultraviolet light to the region where bonding is to be performed, and arranging the region of the second molded product in contact with the region of the first molded product, The first molded article is irradiated with laser light to absorb the laser light transmitted through the first molded article in the area of the second molded article, and the interface where the areas of the first molded article and the second molded article are in contact with each other Is heated and melted, and then cooled and solidified to join the first molded article and the second molded article. The heating and melting of the interface between the first molded article and the second molded article in contact with the region may include stirring the resin composition constituting the first molded article and the second molded article at the interface.

樹脂組成物は、熱可塑性結晶性樹脂を含んでもよい。また紫外光は真空紫外光であってもよい。さらに第1成形品及び第2成形品を構成する樹脂組成物は、当該樹脂の融点+30℃、1000sec−1で測定した溶融粘度が300Pa・s以下であってもよい。なお、第1成形品及び第2成形品を形成する樹脂組成物は、同一であってもよく、異なっていてもよい。The resin composition may include a thermoplastic crystalline resin. The ultraviolet light may be vacuum ultraviolet light. Furthermore, the resin composition constituting the first molded article and the second molded article may have a melt viscosity of 300 Pa · s or less measured at a melting point of the resin + 30 ° C. and 1000 sec −1 . The resin compositions forming the first molded article and the second molded article may be the same or different.

本発明によると、レーザー溶着により作製した複合成形品は、高い接合強度を有する。また、樹脂成形品の変形、特に三次元中空体を構成する樹脂成形品における中空部の変形を小さく抑えつつ、生産性及び形状自由度に優れた複合成形品を製造することができる。
さらに本発明によると、接合される前の複数の樹脂成形品を構成する樹脂組成物が異材同士の場合であっても、高い接合強度を有し、変形が小さく、生産性及び形状自由度に優れた複合成形品を製造することができる。
According to the present invention, a composite molded article produced by laser welding has high bonding strength. In addition, it is possible to manufacture a composite molded product excellent in productivity and shape flexibility while suppressing deformation of the resin molded product, particularly deformation of the hollow portion in the resin molded product constituting the three-dimensional hollow body.
Furthermore, according to the present invention, even when the resin compositions constituting the plurality of resin molded articles before being joined are made of different materials, the resin composition has high joining strength, small deformation, productivity and shape freedom. An excellent composite molded article can be manufactured.

樹脂成形品の接合方法の一連の工程を概略的に示す図である。It is a figure showing roughly a series of steps of a joining method of a resin molding. 真空紫外光照射装置の例を示す写真である。It is a photograph which shows the example of a vacuum ultraviolet light irradiation apparatus. 実施例で作製した複合成形品の形状を示す図である。It is a figure showing the shape of the composite molded article produced in the example.

以下、本発明に係る樹脂成形品の接合方法の実施の形態について、図面を参照して詳細に説明する。本実施の形態では、樹脂組成物を射出成形した樹脂成形品を、レーザー溶着で接合した複合成形品を作製し、樹脂組成物として熱可塑性樹脂組成物を用いることを想定している。レーザー溶着により接合される樹脂成形品において、便宜上、レーザー光を透過させる側を第1成形品、レーザー光を吸収させる側を第2成形品と称することにする。   Hereinafter, embodiments of a method for joining resin molded articles according to the present invention will be described in detail with reference to the drawings. In the present embodiment, it is assumed that a composite molded article in which a resin molded article obtained by injection-molding a resin composition is joined by laser welding is produced, and a thermoplastic resin composition is used as the resin composition. In a resin molded product joined by laser welding, for convenience, the side that transmits laser light is referred to as a first molded product, and the side that absorbs laser light is referred to as a second molded product.

熱可塑性樹脂組成物は、熱可塑性結晶性樹脂及び/又は熱可塑性非晶性樹脂を含む組成物からなる。熱可塑性結晶性樹脂には、例えば、ポリオキシメチレン(POM)やポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)を使用してもよい。熱可塑性非晶性樹脂には、例えばポリカーボネート(PC)、環状ポリオレフィン(COP)、環状ポリオレフィン共重合体(COC)を使用してもよい。熱可塑性結晶性樹脂は、一般的に不透明であるが、結晶化度が低い樹脂では半透明ないしは透明であってもよい。また、熱可塑性樹脂組成物にはガラス繊維などの充填剤、酸化防止剤や安定剤、核剤、滑剤、可塑剤、離型剤、着色剤といった、一般的に樹脂組成物に添加される各種添加剤を、第1成形品のレーザー透過率を著しく損なわない範囲で添加してもよい。なお、熱可塑性樹脂組成物の粘度は、得たい樹脂成形品の肉厚に応じ、必要な成形性が得られる範囲で適宜選択することが可能だが、レーザー溶着の接合界面における樹脂の混ざり合いやすさの観点では、熱可塑性樹脂組成物の溶融粘度は低い方が好ましく、融点+30℃で測定した、1000sec−1での溶融粘度が、300Pa・s以下であることが好ましい。なお、溶融粘度の下限は特に限定されないが、極端に低い場合、樹脂の分子量が低すぎることによる物性の低下が懸念されるため、好ましくは5Pa・s以上であることが好ましい。The thermoplastic resin composition comprises a composition containing a thermoplastic crystalline resin and / or a thermoplastic amorphous resin. As the thermoplastic crystalline resin, for example, polyoxymethylene (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), or liquid crystal polymer (LCP) may be used. As the thermoplastic amorphous resin, for example, polycarbonate (PC), cyclic polyolefin (COP), or cyclic polyolefin copolymer (COC) may be used. Thermoplastic crystalline resins are generally opaque, but resins with low crystallinity may be translucent or transparent. In addition, the thermoplastic resin composition includes various fillers generally added to the resin composition, such as fillers such as glass fibers, antioxidants and stabilizers, nucleating agents, lubricants, plasticizers, release agents, and coloring agents. The additive may be added in a range that does not significantly impair the laser transmittance of the first molded article. The viscosity of the thermoplastic resin composition can be appropriately selected according to the thickness of the resin molded product to be obtained, within a range where the necessary moldability is obtained, but the resin is easily mixed at the bonding interface of laser welding. In light of the viewpoint, the melt viscosity of the thermoplastic resin composition is preferably low, and the melt viscosity at 1000 sec -1 measured at the melting point + 30 ° C is preferably 300 Pa · s or less. The lower limit of the melt viscosity is not particularly limited. However, if the melt viscosity is extremely low, there is a concern that the physical properties of the resin may be deteriorated due to an excessively low molecular weight.

本実施の形態では、樹脂組成物を射出成形することにより作製された第1成形品と第2成形品を、それぞれの接合予定領域(真空紫外光を照射した面)が接するように配置し、レーザー光を透過する樹脂組成物からなる第1成形品側から、接合予定領域に向けてレーザー光を照射し、レーザー光を吸収する樹脂組成物からなる第2成形品の、接合予定領域でレーザー光を吸収させて、第1成形品と第2成形品の接合予定領域の界面を発熱させ、加熱溶融後に冷却固化することで、これらを互いに接合する。第1成形品及び第2成形品の接合予定領域には、表面が互いに接触可能な対向面が含まれる。第2成形品の対向面と、第1成形品の対向面が隙間なく密着していることで、溶融した界面が効率よく溶着されるため、これらの対向面は対応するような形状を有している。例えば、第1成形品の対向面が略平坦であれば、第2成形品の対向面もそれに対応した略平坦となる。また、対向面は、凹凸を有する面であってもよい。例えば、第1成形品の対向面が凹凸形状であれば、第2成形品の対向面にもそれに対応した凹凸形状となる。   In the present embodiment, a first molded article and a second molded article produced by injection molding of a resin composition are arranged such that respective joining scheduled areas (surfaces irradiated with vacuum ultraviolet light) are in contact with each other, The first molded article made of a resin composition that transmits laser light is irradiated with a laser beam toward the joining area, and a laser beam is applied to the second molded article made of the resin composition that absorbs the laser light. Light is absorbed to generate heat at the interface of the region where the first molded article and the second molded article are to be joined, and after heating and melting, they are cooled and solidified to join them. The joining planned area of the first molded article and the second molded article includes opposing surfaces whose surfaces can come into contact with each other. Since the opposing surface of the second molded article and the opposing surface of the first molded article are in close contact with each other without gaps, the melted interface is efficiently welded, so that these opposing surfaces have corresponding shapes. ing. For example, if the opposing surface of the first molded product is substantially flat, the opposing surface of the second molded product is also substantially flat corresponding thereto. Further, the facing surface may be a surface having irregularities. For example, if the opposing surface of the first molded product has an uneven shape, the opposing surface of the second molded product also has a corresponding uneven shape.

図1は、本実施の形態の一連の工程を概略的に説明する図である。図1(a)に示すように、第1成形品10と第2成形品10を用意し、紫外光照射装置20を用いて第1成形品10の照射面10a及び第2成形品10の照射面10aに紫外光(UV)を照射する。第1成形品10の照射面10aと、第2成形品10の照射面10aとは、互いに接合が予定される領域(対向面)である。FIG. 1 is a diagram schematically illustrating a series of steps of the present embodiment. Figure 1 (a), the first molded product 10 1 and providing a second molded article 10 2, a first molded article with ultraviolet light irradiation device 20 10 1 of the irradiated surface 10 1 a and the second irradiating ultraviolet light (UV) to the irradiated surface 10 2 a of the molded product 10 2. 1 and a radiation surface 10 of the first molded product 10 1, and the second molded product 10 second irradiation surface 10 2 a, an area (opposing surface) of the bonding is scheduled together.

ここで、紫外光とは、波長が380nm以下のものを指す。特に紫外光の内で波長が200nm以下のものは真空紫外光(VUV)という。なお、真空紫外光は、必ずしも真空中で照射しなければならないものではないが、当該波長域の紫外光は空気による吸収が大きいため、空気中で照射する場合は、真空紫外光が伝播する距離を短くする必要がある。紫外光の波長は、接合強度の観点では短い方が有利であるため、真空紫外光を用いることが好ましいが、波長が短い真空紫外光では、照射による樹脂の劣化が懸念されるため、真空紫外光にするかどうかは使用する樹脂種に応じて適宜調整すればよい。   Here, ultraviolet light refers to light having a wavelength of 380 nm or less. In particular, ultraviolet light having a wavelength of 200 nm or less is called vacuum ultraviolet light (VUV). Note that the vacuum ultraviolet light does not necessarily have to be irradiated in a vacuum, but since ultraviolet light in the wavelength range has a large absorption by air, when irradiated in air, the distance over which the vacuum ultraviolet light propagates Need to be shorter. It is preferable to use vacuum ultraviolet light because the shorter the wavelength of ultraviolet light is from the viewpoint of bonding strength, the more advantageous it is to use vacuum ultraviolet light. Whether or not to emit light may be appropriately adjusted depending on the type of resin used.

図1(a)において、紫外光照射装置20は、Xeエキシマランプなどの光源21と、光源21から放出された光を照射物に向けて反射する反射板22とを有する真空紫外光照射装置である。図2は、真空紫外光照射装置の一例を示す写真である。この写真に示す真空紫外光照射装置は、筐体上面に形成された開口から上部に向けて紫外光を照射することができる。以下、紫外光照射装置20及び紫外光を、真空紫外光照射装置20及び真空紫外光と記載する場合がある。   In FIG. 1A, an ultraviolet light irradiation device 20 is a vacuum ultraviolet light irradiation device having a light source 21 such as a Xe excimer lamp and a reflector 22 for reflecting light emitted from the light source 21 toward an irradiation object. is there. FIG. 2 is a photograph showing an example of a vacuum ultraviolet light irradiation device. The vacuum ultraviolet light irradiation device shown in this photograph can irradiate ultraviolet light upward from an opening formed in the upper surface of the housing. Hereinafter, the ultraviolet light irradiation device 20 and the ultraviolet light may be referred to as the vacuum ultraviolet light irradiation device 20 and the vacuum ultraviolet light.

図1(a)に示すように、第1成形品10は略平坦な照射面10aを有し、第2成形品10は略平坦な照射面10aを有している。本実施の形態では、真空紫外光照射装置20から第1成形品10の照射面10a及び第2成形品10の照射面10aに向けて真空紫外光を照射する。このような照射処理によって、第1成形品10の照射面10a及び第2成形品10の照射面10aには、照射面10a及び照射面10aから所定深さまで樹脂組成物の性状が変化した処理層11及び処理層11が形成される。As shown in FIG. 1 (a), first molded product 10 1 has a generally flat illumination surface 10 1 a, the second molded product 10 2 has a substantially flat illumination surface 10 2 a. In this embodiment, the vacuum ultraviolet light irradiation toward the vacuum ultraviolet light irradiation device 20 in the first molded product 10 1 of the irradiated surface 10 1 a and the irradiation surface 10 2 a of the second molded product 10 2. Such irradiation treatment, the first molded product 10 1 of the irradiated surface 10 1 a and the second irradiated surface 10 2 a of the molded product 10 2, to a predetermined depth from the irradiated surface 10 1 a and the irradiation surface 10 2 a treatment layer 11 1 and the processing layer 11 2 that property changes of the resin composition is formed.

本実施の形態では、第1成形品10及び第2成形品10への紫外光(真空紫外光)の照射時間は、照射面における照度を考慮して適宜設定することができる。例えば照射距離10mm、照度6mW/cmの条件で紫外光(真空紫外光)を照射する場合、照射時間は例えば7分とすることが挙げられるが、7分に限られることはなく、0分を超え15分以下の時間であってもよい。また、30秒以上10分以下(例えば1分以上8分以下)の時間であってもよい。紫外光の照射により、第1成形品10の照射面10a及び第2成形品10の照射面10aの劣化が進むことで、かえって接合強度が低下する場合があるため、第1成形品10及び第2成形品10への紫外光の照射は所定の時間内であることが好ましい。In this embodiment, the irradiation time of the first molded product 10 1 and the second molded product 10 ultraviolet light to 2 (vacuum ultraviolet light) can be set as appropriate in consideration of the illuminance on the irradiated surface. For example, when irradiating ultraviolet light (vacuum ultraviolet light) under the conditions of an irradiation distance of 10 mm and an illuminance of 6 mW / cm 2 , the irradiation time may be, for example, 7 minutes, but is not limited to 7 minutes, and is 0 minutes. The time may be longer than 15 minutes. Further, the time may be 30 seconds or more and 10 minutes or less (for example, 1 minute or more and 8 minutes or less). By irradiation with ultraviolet light, since that deterioration of the first molded product 10 1 of the irradiated surface 10 1 a and the second molded product 10 second irradiation surface 10 2 a proceeds, the rather bonding strength may be lowered, the 1 irradiation of the ultraviolet light to the molded article 10 1 and the second molded product 10 2 is preferably within a predetermined time.

ここで照度は、照射距離(光源から照射面までの距離)や照射装置の出力等により変わるため、紫外光の照射条件としては、照度と照射時間の積から得られる照射エネルギー量をもとに決定してもよい。照射エネルギー量としては、0.1J/cm以上10J/cm以下であってもよく、また0.5J/cm以上6J/cm以下(例えば1J/cm以上3J/cm以下)であってもよい。すなわち、照射装置の出力を上げ、照射距離を短くすることで、照度を高くした場合、照射時間を短くできるため、より短時間での処理が可能となる。ただし、その場合、接合面の凹凸や反りなどの影響による処理ムラが出やすくなる可能性がある。なお、紫外光の照射は、第1成形品10及び第2成形品10の両方でなければならない訳ではなく、第1成形品10又は第2成形品10のいずれか一方のみへの照射でもよい。Since the illuminance varies depending on the irradiation distance (distance from the light source to the irradiation surface) and the output of the irradiation device, the irradiation condition of the ultraviolet light is based on the irradiation energy amount obtained from the product of the illuminance and the irradiation time. You may decide. The irradiation energy amount may be at 0.1 J / cm 2 or more 10J / cm 2 or less, also 0.5 J / cm 2 or more 6J / cm 2 or less (e.g., 1 J / cm 2 or more 3J / cm 2 or less) It may be. That is, when the illuminance is increased by increasing the output of the irradiation device and shortening the irradiation distance, the irradiation time can be shortened, so that the processing can be performed in a shorter time. However, in that case, there is a possibility that processing unevenness is likely to occur due to the influence of unevenness or warpage of the bonding surface. The irradiation of ultraviolet light, not must be both the first molded product 10 1 and the second molded product 10 2, first forming 10 1 or the second molded product 10 2 either to only one Irradiation.

図1(b)に示すように、真空紫外光が照射された第1成形品10及び第2成形品10をそれぞれの照射面10a及び照射面10aが接するように配置する。As shown in FIG. 1 (b), arranging the first molded product 10 1 and the second molded product 10 2 vacuum ultraviolet light is irradiated so that respective irradiation surface 10 1 a and the irradiation surface 10 2 a contact .

ここで、より高い接合強度を確保するためには、第1成形品10及び第2成形品10を配置する操作は、第1成形品10及び第2成形品10に紫外光(真空紫外光)を照射する工程(図1(a)を参照)を終えてから、できるだけ短時間で行うことが望ましい。前記時間は、例えば、好ましくは10日以内、より好ましくは1日以内、さらに好ましくは2時間以内、特に好ましくは30分以内、最も好ましくは5分以内である。Here, in order to secure higher bonding strength, the operation of placing the first molded product 10 1 and the second molded product 10 2, first forming 10 1 and the second molded product 10 2 to ultraviolet light ( It is desirable that the irradiation be performed in as short a time as possible after the step of irradiating (vacuum ultraviolet light) (see FIG. 1A) is completed. The time is, for example, preferably within 10 days, more preferably within 1 day, further preferably within 2 hours, particularly preferably within 30 minutes, most preferably within 5 minutes.

図1(c)に示すように、レーザー光照射装置30を用いて、第1成形品10側からレーザー光を照射し、第1成形品10を透過したレーザー光が第2成形品10に吸収されることで、照射面10a及び照射面10aの界面が発熱し、第1成形品10と第2成形品10を構成する樹脂組成物が加熱溶融される。図中において、レーザー光照射装置30から出射されたレーザー光のビーム200は、照射面10a及び照射面10aの界面の付近に集光点201が位置するように集光される。As shown in FIG. 1 (c), by using a laser beam irradiation apparatus 30 irradiates a laser beam from the first molded product 10 1 side, the laser beam transmitted through the first molded product 10 1 second forming 10 by being absorbed into 2, and heating the interface of the irradiated surface 10 1 a and the irradiation surface 10 2 a is, the resin composition constituting the first molded product 10 1 and the second molded product 10 2 is heated and melted. In the figure, a laser beam 200 emitted from a laser beam irradiation device 30 is focused so that a focus point 201 is located near the interface between the irradiation surface 10 1 a and the irradiation surface 10 2 a.

図1(d)に第1成形品10と第2成形品10の集光点201の付近を拡大して示すように、第1成形品10と第2成形品10を構成する樹脂組成物は、照射面10a及び照射面10aの界面の付近に位置するレーザー光の集光点201において溶融され、溶融部12を形成する。溶融部12においては、樹脂組成物が溶融された状態でさらにレーザー光のエネルギーを受けることによって、界面に湯流れ(撹拌)12aが発生し、第1成形品10と第2成形品10のそれぞれの樹脂組成物が混ざり合った状態となる。As shown enlarged in the vicinity of the first molded product 10 1 and the second molded product 10 and second focal point 201 in FIG. 1 (d), constituting the first molded product 10 1 and the second molded product 10 2 The resin composition is melted at the laser beam converging point 201 located near the interface between the irradiation surface 10 1 a and the irradiation surface 10 2 a to form a fusion portion 12. In the melting section 12, by receiving the energy of the further laser beam while the resin composition is melted, the molten metal flow (stirring) 12a is generated at the interface, the first molded product 10 1 and the second molded product 10 2 Are in a mixed state.

ここで、第1成形品10と第2成形品10を構成する樹脂組成物の相溶性が高ければ、界面が混ざり合った状態のまま冷却固化されるが、相溶性の低い樹脂組成物の組合せである場合、通常のレーザー溶着では冷却固化の過程で樹脂組成物が相分離し、十分な接合性は得られない。しかし、本実施の形態のように、あらかじめ紫外光の照射により、第1成形品10と第2成形品10の表面が活性化されていれば、それぞれを構成する樹脂組成物の相溶性が低い場合であっても、界面が混ざり合った状態を保持したまま冷却固化される。これによって、第1成形品10及び第2成形品10は、一体として接合され、単一の複合成形品(例えば三次元中空体)を構成するようになる。なお、相溶性の高い樹脂組成物の組合せの場合であっても、本実施の形態のように、紫外光の照射を行っていれば、界面での樹脂の混ざり合いが促進され、紫外光を照射しない場合に比べ、さらに良好な接合性が得られる。Here, the higher the compatibility of the resin composition constituting the first molded product 10 1 and the second molded product 10 2, but still are cooled and solidified in a state where the interface is mixed, the compatibility is resin composition In the case of the combination, the resin composition undergoes phase separation in the process of cooling and solidifying by ordinary laser welding, and sufficient bonding properties cannot be obtained. However, as in the present embodiment, the irradiation of the pre-ultraviolet light, if the first molded product 10 1 and the second molded product 10 second surface if activated, the compatibility of the resin composition constituting each Is low, the mixture is cooled and solidified while maintaining a mixed state of the interfaces. Accordingly, the first molded product 10 1 and the second molded product 10 2 are joined integrally, so constituting a single composite molded article (e.g., three-dimensional hollow bodies). Note that, even in the case of a combination of highly compatible resin compositions, if irradiation with ultraviolet light is performed as in this embodiment, mixing of the resin at the interface is promoted, and ultraviolet light is emitted. Even better bonding properties can be obtained than when no irradiation is performed.

近年では、小型化・軽量化のために複数の部品を統合・一体化する要求から、相溶性の低い樹脂からなる樹脂成形品同士を接合した、いわゆる異材接合による複合成形品も求められるようにもなっている。本実施の形態の接合方法は、異材接合による複合成形品の製造においても、接合強度、生産性、形状自由度に優れている。   In recent years, demands for integrating and integrating multiple components for miniaturization and weight reduction have led to the demand for so-called dissimilar composite moldings, which are made by joining resin molded products made of resins with low compatibility. Has also become. The joining method of the present embodiment is excellent in joining strength, productivity, and shape freedom even in the production of a composite molded article by dissimilar material joining.

第1成形品10と第2成形品10との接合は、真空紫外光により活性化された第1成形品10の処理層11と第2成形品10の処理層11が、レーザー光のエネルギーにより加熱溶融・撹拌されるものである。したがって、第1成形品10及び第2成形品10の接続は、機械的に堅牢であり、化学的にも安定である。The first molded product 10 1 and the bonding between the second molded product 10 2, the processing layer 11 second treatment layer 11 1 and the second molded product 10 2 of first molded product 10 1 is activated by the vacuum ultraviolet light It is heated, melted and stirred by the energy of laser light. Therefore, the connection of the first molded product 10 1 and the second molded product 10 2 are mechanically robust, which is chemically stable.

本実施の形態では、第1成形品10及び第2成形品10に処理層11及び処理層11を形成し、レーザー溶着により処理層11及び処理層11のみを溶融・撹拌し第1成形品10に第2成形品10を接続するものである。したがって、成形品全体に過大な熱や圧力、振動等が加えられる訳ではないため、接合による変形やバリの発生が抑えられ、内部に部品が収容される場合も、それらの部品を損傷させることもない。In this embodiment, the processing layer 11 1 and the processing layer 11 2 is formed on the first molded article 10 1 and the second molded product 10 2, melting and stirring only treatment layer 11 1 and the processing layer 11 2 by laser welding to the first molded product 10 1 is intended to connect the second molded product 10 2. Therefore, since excessive heat, pressure, vibration, etc. are not applied to the entire molded product, deformation and burrs due to joining are suppressed, and even if components are housed inside, they may be damaged. Nor.

本実施の形態は、樹脂組成物として、熱可塑性結晶性樹脂及び/又は熱可塑性非晶性樹脂を含む熱可塑性樹脂組成物を用いることができる。熱可塑性結晶性樹脂としては、堅牢で安定した性質を有するポリオキシメチレン(POM)やポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリフェニレンサルファイド(PPS)樹脂、液晶ポリマー(LCP)のような熱可塑性結晶性樹脂を利用することができ、熱可塑性非晶性樹脂としては、ポリカーボネート(PC)、環状ポリオレフィン(COP)、環状ポリオレフィン共重合体(COC)のような熱可塑性非晶性樹脂を利用することができる。特に熱可塑性結晶性樹脂は、機械的強度や耐熱性、耐薬品性が要求される樹脂成形品の作製に利用することができる。   In the present embodiment, a thermoplastic resin composition containing a thermoplastic crystalline resin and / or a thermoplastic amorphous resin can be used as the resin composition. Examples of the thermoplastic crystalline resin include polyoxymethylene (POM), polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, polyphenylene sulfide (PPS) resin, and liquid crystal polymer (LCP) having robust and stable properties. Such thermoplastic crystalline resins can be used, and examples of the thermoplastic amorphous resin include thermoplastic amorphous resins such as polycarbonate (PC), cyclic polyolefin (COP), and cyclic polyolefin copolymer (COC). Resin can be used. In particular, a thermoplastic crystalline resin can be used for producing a resin molded product requiring mechanical strength, heat resistance, and chemical resistance.

上述の本実施の形態を適用した実施例について説明する。図3に複合成形品の形状を示す。図3の例では、レーザー透過性の樹脂組成物を射出成形して40×10×1mmの第1成形品10を作製し、レーザー吸収性の樹脂組成物を射出成形して50×13×3mmの第2成形品10を作製し、第1成形品10の40×10mmの照射面10a及び第2成形品10の50×13mmの照射面10aにそれぞれ真空紫外光(波長172nm、出力電圧16kV、照射距離10mm(照度6mW/cm)、照射時間7分)を照射した。真空紫外光の照射により、第1成形品10の照射面10a及び第2成形品10の照射面10aには、照射面10a及び照射面10aから所定深さまで樹脂組成物の性状が変化した処理層11及び処理層11が形成された。An example to which the above-described embodiment is applied will be described. FIG. 3 shows the shape of the composite molded product. In the example of FIG. 3, the laser-transmissible resin composition to prepare a first shaped article 10 1 of the injection molded to 40 × 10 × 1mm, 50 × 13 × injection molded laser absorptive resin composition to produce a second molded product 10 2 3 mm, the first molded product 10 1 of 40 × 10 mm irradiated surface 10 1 a and the respective vacuum ultraviolet light irradiation surface 10 2 a of the second 50 × 13 mm of the molded product 10 2 (Wavelength 172 nm, output voltage 16 kV, irradiation distance 10 mm (illuminance 6 mW / cm 2 ), irradiation time 7 minutes). By irradiation with vacuum ultraviolet light, the first molded product 10 1 of the irradiated surface 10 1 a and the second irradiated surface 10 2 a of the molded product 10 2, to a predetermined depth from the irradiated surface 10 1 a and the irradiation surface 10 2 a treatment layer 11 1 and the processing layer 11 2 that property changes of the resin composition is formed.

第1成形品10及び第2成形品10に真空紫外光を照射した後、第1成形品10の照射面10a及び第2成形品10の照射面10aが互いに10×10mmの面積で接するように、第1成形品10と第2成形品10それぞれの長手方向の端部から所定距離までの部分をオーバーラップさせて配置した。そして、オーバーラップした部分の略中央部に、第1成形品10側からレーザー光(波長940nm、出力24W、ビーム径1.6mmφ、走査速度20mm/sec)を、複合成形品の長手方向に対し直角方向に走査させるように照射し、1.6mm×6mmの領域に溶融部12を形成して第1成形品10及び第2成形品10をレーザー溶着し、複合成形品を作製した。After irradiation with vacuum ultraviolet light to the first molded product 10 1 and the second molded product 10 2, first molded product 10 1 of the irradiated surface 10 1 a and the second molded product 10 second irradiation surface 10 2 a from each other 10 in contact with an area of × 10 mm, it was first molded article 10 1 and be overlapped portion of the predetermined distance from the second molded product 10 2 each longitudinal end disposed. Then, at a substantially central portion of the overlapping portion, the laser beam from the first molded product 10 1 side (wavelength 940 nm, output 24W, a beam diameter 1.6 mm, the scanning speed of 20 mm / sec) and, in the longitudinal direction of the composite molded article irradiated so as to scan in a perpendicular direction against the first molded product 10 1 and the second molded product 10 2 laser welding to form a molten part 12 in the region of 1.6 mm × 6 mm, to prepare a composite molded article .

第1成形品及び第2成形品には下記の樹脂組成物の組合せを用いた。
・実施例1
第1成形品:ウィンテックポリマー社製PBT ジュラネックス(登録商標) 2002(非強化のPBT樹脂組成物、250℃、1000sec−1での溶融粘度260Pa・s)
第2成形品:ポリプラスチックス社製PPS ジュラファイド(登録商標) 1130A1(ガラス繊維30質量%強化のPPS樹脂組成物、310℃、1000sec−1での溶融粘度350Pa・s)
・実施例2
第1成形品:ウィンテックポリマー社製PBT ジュラネックス(登録商標) 2002(非強化のPBT樹脂組成物、250℃、1000sec−1での溶融粘度260Pa・s)
第2成形品:ポリプラスチックス社製PPS ジュラファイド(登録商標) 1130A6(ガラス繊維30質量%強化のPPS樹脂組成物、310℃、1000sec−1での溶融粘度220Pa・s)
A combination of the following resin compositions was used for the first molded article and the second molded article.
-Example 1
First molded product: PBT Duranex (registered trademark) 2002 manufactured by Wintech Polymer Co., Ltd. (non-reinforced PBT resin composition, melt viscosity at 250 ° C., 1000 sec −1 260 Pa · s)
Second molded product: PPS DURAFIDE (registered trademark) 1130A1 (PPS resin composition reinforced with 30% by mass of glass fiber, melt viscosity at 310 ° C., 1000 sec −1 at 350 sec · 1 ) manufactured by Polyplastics Co., Ltd.
-Example 2
First molded product: PBT Duranex (registered trademark) 2002 manufactured by Wintech Polymer Co., Ltd. (non-reinforced PBT resin composition, melt viscosity at 250 ° C., 1000 sec −1 260 Pa · s)
Second molded product: PPS DURAFIDE (registered trademark) 1130A6 (PPS resin composition reinforced by 30% by mass of glass fiber, melt viscosity at 310 ° C., 1000 sec −1 at 220 sec · 1 ) manufactured by Polyplastics Co., Ltd.

なお、比較例1として、レーザー溶着の前に真空紫外光の照射を行わない以外は実施例1と同様に操作したものについても評価を行った。また、相溶性の高い樹脂組成物の組合せとして、同材同士の接合についても評価を行った。具体的には、実施例3として、第1成形品と第2成形品の両方にウィンテックポリマー社製PBT ジュラネックス(登録商標) 2002(非強化のPBT樹脂組成物、250℃、1000sec−1での溶融粘度260Pa・s)を用いた以外は実施例1と同様に操作したもの、及び比較例2として、レーザー溶着の前に真空紫外光の照射を行わない以外は実施例3と同様に操作したものについても評価を行った。In addition, as Comparative Example 1, the same operation as in Example 1 except that vacuum ultraviolet light irradiation was not performed before laser welding was also evaluated. In addition, as a combination of resin compositions having high compatibility, bonding of the same materials was also evaluated. Specifically, as Example 3, PBT Duranex (registered trademark) 2002 (non-reinforced PBT resin composition, 250 ° C., 1000 sec −1 ) manufactured by Wintech Polymer Co., Ltd. Of Comparative Example 2 except that the melt viscosity at 260 Pa · s was used, and Comparative Example 2 was the same as Example 3 except that vacuum ultraviolet light was not irradiated before laser welding. The operation was also evaluated.

上記により作製した複合成形品を、引張試験機(島津製作所製、オートグラフAG−20kNXDplus)を用いて5mm/minで引張試験を行い、引張剪断強度を測定した結果、実施例1の複合成形品では12.1MPa、実施例2の複合成形品では18.5MPaであったのに対し、比較例1では0MPa(接合せず)であった。また、実施例3の複合成形品では32.0MPaであったのに対し、比較例2では28.2MPaであった。   The composite molded product of Example 1 was subjected to a tensile test at 5 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AG-20kNXDplus) to measure the tensile shear strength. Was 12.1 MPa for the composite molded product of Example 2 and 18.5 MPa for the composite molded product of Example 2, whereas it was 0 MPa (no bonding) in Comparative Example 1. The composite molded product of Example 3 had a pressure of 32.0 MPa, while Comparative Example 2 had a pressure of 28.2 MPa.

比較例1の通り、紫外光を照射しない通常のレーザー溶着では、相溶性の低い異材であるPBT樹脂組成物とPPS樹脂組成物からなる樹脂成形品を接合することはできなかったが、紫外光を照射した後でレーザー溶着を行った実施例1及び実施例2では、異材同士の樹脂成形品を接合した複合成形品において十分な接合強度が得られた。なお、実施例2では実施例1よりも高い接合強度が得られており、樹脂組成物の溶融粘度は低い方が接合強度面で有利となることが分かる。これは溶融した界面における湯流れ(撹拌)の起こりやすさによるものと考えられる。また、比較例2と実施例3の対比で分かる通り、同材同士の組合せでのレーザー溶着においても、紫外光照射による前処理を行うことで、さらに高い接合強度が得られた。   As in Comparative Example 1, in the case of ordinary laser welding without irradiation with ultraviolet light, it was not possible to join a resin molded product made of a PBT resin composition and a PBT resin composition, which are dissimilar materials with low compatibility. In Example 1 and Example 2 in which laser welding was performed after the irradiation, the composite molded article in which resin molded articles of different materials were joined to each other had sufficient bonding strength. In addition, in Example 2, a higher bonding strength was obtained than in Example 1, and it is understood that a lower melt viscosity of the resin composition is more advantageous in terms of bonding strength. This is considered to be due to the easiness of the molten metal flow (stirring) at the molten interface. Further, as can be seen from a comparison between Comparative Example 2 and Example 3, even in laser welding using a combination of the same materials, even higher bonding strength was obtained by performing a pretreatment by ultraviolet light irradiation.

さらに実施例4として、樹脂組成物の組合せを下記に変更し、溶着時のレーザー光の出力を30Wにした以外は実施例1と同様に操作したものについても評価を行った。
第1成形品:ウィンテックポリマー社製PBT ジュラネックス(登録商標) 2002(非強化のPBT樹脂組成物、250℃、1000sec−1での溶融粘度260Pa・s)
第2成形品:ポリプラスチックス社製PPS ジュラファイド(登録商標) 0220A9(非強化のPPS樹脂組成物、310℃、1000sec−1での溶融粘度500Pa・s)
Further, as Example 4, evaluation was also made on the same operation as in Example 1 except that the combination of the resin compositions was changed as follows and the output of the laser beam during welding was set to 30 W.
First molded product: PBT Duranex (registered trademark) 2002 manufactured by Wintech Polymer Co., Ltd. (non-reinforced PBT resin composition, melt viscosity at 250 ° C., 1000 sec −1 260 Pa · s)
Second molded product: PPS DURAFIDE (registered trademark) 0220A9 (non-reinforced PPS resin composition, 310 ° C., melt viscosity at 1000 sec −1 500 Pa · s) manufactured by Polyplastics Co., Ltd.

また、紫外光の波長による影響を確認するため、実施例5として、真空紫外光の代わりに、波長254nmの紫外光を、照度6mW/cmで7分間照射した以外は実施例4と同様に操作したもの、及び比較例3として、レーザー溶着の前に真空紫外光の照射を行わない以外は実施例4と同様に操作したものについても評価を行った。Further, in order to confirm the influence of the wavelength of ultraviolet light, as Example 5, in the same manner as in Example 4 except that ultraviolet light having a wavelength of 254 nm was irradiated for 7 minutes at an illuminance of 6 mW / cm 2 instead of vacuum ultraviolet light. The operation and the comparative example 3 were also evaluated in the same manner as in Example 4 except that vacuum ultraviolet light was not irradiated before laser welding.

上記により作製した複合成形品を、引張試験機(島津製作所製、オートグラフAG−20kNXDplus)を用いて5mm/minで引張試験を行い、引張剪断強度を測定した結果、実施例4では19.8MPa、実施例5では11.0MPa、比較例3では9.8MPaとなっており、前処理として紫外光、特に真空紫外光を照射することで、レーザー溶着の接合強度が高くなることが確認された。   The composite molded article produced as described above was subjected to a tensile test at 5 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AG-20kNXDplus), and the tensile shear strength was measured. As a result, in Example 4, 19.8 MPa was obtained. In Example 5, it was 11.0 MPa, and in Comparative Example 3, it was 9.8 MPa. By irradiating ultraviolet light, particularly vacuum ultraviolet light as pretreatment, it was confirmed that the bonding strength of laser welding was increased. .

なお、樹脂組成物として、第1成形品と第2成形品の両方にウィンテックポリマー社製PBT ジュラネックス(登録商標) 2002(非強化のPBT樹脂組成物、250℃、1000sec−1での溶融粘度260Pa・s)の同材同士の組合せを用い、溶着時のレーザー光の出力を24Wにした以外は、実施例4、実施例5、比較例3とそれぞれ同様に操作した実施例6、実施例7、比較例4についても評価を行った結果、引張剪断強度は、真空紫外光を照射した実施例6が27.2MPa、紫外光を照射した実施例7が15.7MPa、(真空)紫外光を照射しなかった比較例4が10.1MPaとなっており、異材での接合を行った実施例4、実施例5、比較例3での傾向と同様に、前処理として紫外光、特に真空紫外光を照射することで、レーザー溶着の接合強度が高くなることが確認された。In addition, as a resin composition, PBT Duranex (registered trademark) 2002 (a non-reinforced PBT resin composition manufactured by Wintech Polymer Co., Ltd., melted at 250 ° C. and 1000 sec −1 ) is used for both the first molded article and the second molded article. Example 6 and Example 6, each operated in the same manner as Example 4, Example 5, and Comparative Example 3 except that a laser beam output during welding was set to 24 W using a combination of the same materials having a viscosity of 260 Pa · s). As a result of evaluation of Example 7 and Comparative Example 4, the tensile shear strength was 27.2 MPa in Example 6 irradiated with vacuum ultraviolet light, 15.7 MPa in Example 7 irradiated with ultraviolet light, and (vacuum) ultraviolet. In Comparative Example 4 in which no light was irradiated, the pressure was 10.1 MPa, and, similarly to the tendency in Examples 4, 5, and Comparative Example 3 in which bonding was performed using dissimilar materials, ultraviolet light, Irradiates vacuum ultraviolet light And, the bonding strength of the laser welding that increases was confirmed.

10 第1成形品
10 第2成形品
12 溶融部
12a 湯流れ(撹拌)
20 紫外光照射装置(真空紫外光照射装置)
30 レーザー光照射装置
10 1 First molded product 10 2 Second molded product 12 Melting part 12a Hot water flow (stirring)
20 UV light irradiation device (Vacuum UV light irradiation device)
30 Laser light irradiation device

Claims (6)

樹脂組成物からなる樹脂成形品を接合する接合方法であって、
レーザー光を透過する樹脂組成物からなる第1成形品及び/又はレーザー光を吸収する樹脂組成物からなる第2成形品の、接合が予定される領域に紫外光を照射し、
前記第1成形品の前記領域に前記第2成形品の前記領域が接するように配置した上で、
前記第1成形品側からレーザー光を照射し、前記第1成形品を透過したレーザー光を、前記第2成形品の前記領域において吸収させ、
前記第1成形品及び前記第2成形品それぞれの前記領域が接する界面をレーザー光で加熱溶融した後、冷却固化して、前記第1成形品と前記第2成形品を接合すること
を含む接合方法。
A joining method for joining a resin molded product made of a resin composition,
Irradiating ultraviolet light to a region where bonding is planned, of a first molded product made of a resin composition that transmits laser light and / or a second molded product made of a resin composition that absorbs laser light,
After arranging the area of the second molded article in contact with the area of the first molded article,
Irradiating a laser beam from the first molded product side, the laser light transmitted through the first molded product is absorbed in the region of the second molded product,
After heating and melting the interface where the regions of the first molded article and the second molded article are in contact with each other with a laser beam, solidify by cooling, and join the first molded article and the second molded article. Method.
前記第1成形品及び前記第2成形品それぞれの前記領域が接する界面のレーザー光による加熱溶融は、前記界面において前記第1成形品及び前記第2成形品を構成する樹脂組成物を撹拌することを含む請求項1に記載の接合方法。   The heating and melting by the laser light at the interface where the regions of the first molded article and the second molded article are in contact with each other is to stir the resin composition constituting the first molded article and the second molded article at the interface. The bonding method according to claim 1, comprising: 前記樹脂組成物は、熱可塑性結晶性樹脂を含む請求項1又は2に記載の接合方法。   The bonding method according to claim 1, wherein the resin composition includes a thermoplastic crystalline resin. 前記紫外光は、真空紫外光である請求項1から3のいずれか1項に記載の接合方法。   The bonding method according to claim 1, wherein the ultraviolet light is vacuum ultraviolet light. 前記第1成形品及び/又は前記第2成形品を構成する前記樹脂組成物は、融点+30℃、1000sec−1で測定した溶融粘度が300Pa・s以下である請求項1から4のいずれか1項に記載の接合方法。The resin composition constituting the first molded article and / or the second molded article has a melting viscosity of 300 Pa · s or less measured at a melting point of + 30 ° C. and 1000 sec −1. The joining method according to the paragraph. 前記第1成形品を構成する前記樹脂組成物と、前記第2成形品を構成する前記樹脂組成物が、主として異なる樹脂を母材とする樹脂組成物である請求項1から5のいずれか1項に記載の接合方法。   6. The resin composition according to claim 1, wherein the resin composition constituting the first molded article and the resin composition constituting the second molded article are resin compositions mainly composed of different resins. The joining method according to the paragraph.
JP2019520330A 2017-05-25 2018-05-25 Method of joining resin molded products Pending JPWO2018216804A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017103651 2017-05-25
JP2017103651 2017-05-25
PCT/JP2018/020186 WO2018216804A1 (en) 2017-05-25 2018-05-25 Resin molded article bonding method

Publications (1)

Publication Number Publication Date
JPWO2018216804A1 true JPWO2018216804A1 (en) 2020-03-26

Family

ID=64396634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019520330A Pending JPWO2018216804A1 (en) 2017-05-25 2018-05-25 Method of joining resin molded products

Country Status (2)

Country Link
JP (1) JPWO2018216804A1 (en)
WO (1) WO2018216804A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246621A (en) * 1985-08-23 1987-02-28 Toyota Motor Corp Joint of synthetic resin material
JPS6475078A (en) * 1987-09-18 1989-03-20 Agency Ind Science Techn Surface decorating method for molded product of polyolefinics
JP2005119300A (en) * 2003-10-09 2005-05-12 Weidmann Plastics Technology Ag Method of jointing two work materials without accompanied by impurity, and work material jointed by said method
JP2005336229A (en) * 2004-05-24 2005-12-08 Polyplastics Co Polyarylene sulfide resin composition for laser welding and molding
JP2006187730A (en) * 2005-01-06 2006-07-20 Nippon Filcon Co Ltd Method for manufacturing resin-made micro flow passage chemical device and structure of resin-made micro flow passage chemical device manufactured thereby
JP2007517966A (en) * 2004-01-06 2007-07-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Laser weldable polyester composition and method for laser welding
WO2008087800A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Opto, Inc. Process for producing microchip, and microchip
JP2012045730A (en) * 2010-08-24 2012-03-08 Hamamatsu Photonics Kk Method of jointing dissimilar materials
US20150107752A1 (en) * 2012-04-26 2015-04-23 Alere San Diego, Inc. Laser joining device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246621A (en) * 1985-08-23 1987-02-28 Toyota Motor Corp Joint of synthetic resin material
JPS6475078A (en) * 1987-09-18 1989-03-20 Agency Ind Science Techn Surface decorating method for molded product of polyolefinics
JP2005119300A (en) * 2003-10-09 2005-05-12 Weidmann Plastics Technology Ag Method of jointing two work materials without accompanied by impurity, and work material jointed by said method
JP2007517966A (en) * 2004-01-06 2007-07-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Laser weldable polyester composition and method for laser welding
JP2005336229A (en) * 2004-05-24 2005-12-08 Polyplastics Co Polyarylene sulfide resin composition for laser welding and molding
JP2006187730A (en) * 2005-01-06 2006-07-20 Nippon Filcon Co Ltd Method for manufacturing resin-made micro flow passage chemical device and structure of resin-made micro flow passage chemical device manufactured thereby
WO2008087800A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Opto, Inc. Process for producing microchip, and microchip
JP2012045730A (en) * 2010-08-24 2012-03-08 Hamamatsu Photonics Kk Method of jointing dissimilar materials
US20150107752A1 (en) * 2012-04-26 2015-04-23 Alere San Diego, Inc. Laser joining device

Also Published As

Publication number Publication date
WO2018216804A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
CN108788470B (en) Grooved resin molded article
JP4311158B2 (en) Resin molded product and manufacturing method thereof
JP2008230224A (en) Thermoplastic composite body
EP1939254A1 (en) Material for laser fusion bonding
JP5918451B2 (en) Composite molded article and manufacturing method thereof
JP3630298B2 (en) Bonding method of resin molded products
KR101240408B1 (en) Method of assembling housing of photoelectric sensor and photoelectric sensor
JP2002283457A (en) Laser fusing method for resin parts
JP2010201695A (en) Laser welding method and housing
JPWO2018216804A1 (en) Method of joining resin molded products
JP2002284895A (en) Resin molded article
JP2004209916A (en) Resin bonding method and resin component
US20050079360A1 (en) Resin mold and method for manufacturing the same
KR102309105B1 (en) Manufacturing method of different material joint body
JP6379323B1 (en) Bonding method of resin molded products
JP4439290B2 (en) Manufacturing method of thermoplastic resin part
JP6861043B2 (en) How to join resin molded products
JP3596456B2 (en) Method for manufacturing resin molded products
WO2018012543A1 (en) Joining method for resin molded articles
JP6330113B1 (en) Bonding method of resin molded products
JP2004058581A (en) Method for laser welding of resin member
WO2019065301A1 (en) Resin joined body and method for manufacturing same
JP2009143217A (en) Control method of laser beam irradiation condition and laser weld processing method
JP2021178432A (en) Composite molded product and grooved resin molded product
JP2021195465A (en) Junction structure and junction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220906