JP2004209916A - Resin bonding method and resin component - Google Patents

Resin bonding method and resin component Download PDF

Info

Publication number
JP2004209916A
JP2004209916A JP2003002254A JP2003002254A JP2004209916A JP 2004209916 A JP2004209916 A JP 2004209916A JP 2003002254 A JP2003002254 A JP 2003002254A JP 2003002254 A JP2003002254 A JP 2003002254A JP 2004209916 A JP2004209916 A JP 2004209916A
Authority
JP
Japan
Prior art keywords
welding
resin
resin material
contact
resin materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003002254A
Other languages
Japanese (ja)
Inventor
Fumio Nomizo
文夫 野溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003002254A priority Critical patent/JP2004209916A/en
Publication of JP2004209916A publication Critical patent/JP2004209916A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/301Three-dimensional joints, i.e. the joined area being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • B29C66/5472Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes for making elbows or V-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors
    • B29L2031/7492Intake manifold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding method of resin materials, which has an enough high strength to pressure and a nearly perfect welding-together can be possible even between large members having complicated shapes. <P>SOLUTION: The resin bonding method, in which the resin materials are bonded together, comprises a step (SO 3), in which the abutting end parts of the respective resin materials are abutted against each other, a step (SO 4), in which the clearance between the abutted abutting end parts is nearly extinguished, and a step (SO 5), in which the abutting end parts, the clearance formed between which is nearly extinguished, are welded together. According to this method, the clearance between the abutting end parts is extinguished after the resin materials are abutted at their abutting end parts, resulting in an enhancement of the welding strength in the welding step as high as possible. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、接合強度を高めることのできる樹脂溶着方法およびその方法で製造される樹脂製品に関する。
【0002】
【従来の技術】
自動車製造業界等において、金属によって構成されていた部材を樹脂により成型することにより、車両の軽量化と低コスト化を図る試みがなされている。このような樹脂部品を溶着するためには金属溶着とは異なる溶着方法が必要となり、そのような溶着方法として摩擦溶着法やレーザ溶着法が知られている。
【0003】
例えば、特開平11−311157号公報には、変形防止用リブを設けた二つの分割体を振動溶着して樹脂製のサージタンクを形成する技術が開示されている(特許文献1)。また特開昭60−214931号公報には、重ね合わせた合成樹脂材料をレーザ光により溶着させる接合方法が開示されている(特許文献2)。さらにまた特開2000−86567号公報には、複数の樹脂材における溶着面積を広くしてレーザ光で溶着することによりインテークマニホールドを製造する技術が開示されている(特許文献3)。
【0004】
【特許文献1】
特開平11−311157号公報
【0005】
【特許文献2】
特開昭60−214931号公報
【0006】
【特許文献3】
特開2000−86567号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上述した従来技術の摩擦溶着やレーザ光による溶着では溶着部位の強度が不十分であった。すなわち、上記特許文献1に開示されたような摩擦溶着では溶着部位が他の部位に比べて1/3程度以下の耐圧強度しかないため、内燃機関等の部品、例えばサージタンクやインテークマニホールドに使用する部品にこのような摩擦溶着を用いると十分な動力性能を確保できない可能性があった。また、特許文献1のように変形防止用リブを設け耐圧強度を高めることは、外側に突出した構造を設けることになるため、コンパクト化や製造上の容易化の観点からは好ましいとは言えなかった。さらに、上記特許文献2や3に開示されたようなレーザ光による溶着では、接合面の間隙を無くすことができれば耐圧強度こそ高められるものの、その間隙を完全に無くすことが困難である。このため、車両に用いられる部材のように比較的大きく複雑な形状の樹脂材の接合に適用すると、部分的な変形やゆがみによってレーザ溶着に必要な間隙(例えば0.4mm以内)より大きくなり、全体的に完全な溶着をすることが困難できず、全体としての溶着強度が下がる場合があった。
【0008】
【課題を解決する手段】
そこで本発明は、上記課題に鑑み、十分高い耐圧強度を備え、かつ、大きく複雑な形状の部材であってもほぼ完全に溶着することが可能な樹脂材の接合方法を提供することを目的とする。
【0009】
本発明は、樹脂材どうしを接合するための樹脂接合方法であって、それぞれの樹脂材の当接端部を当接させる工程と、当接された当接端部の間隙をほぼ消滅させる工程と、間隙がほぼ消滅した当接端部を溶着する工程と、を備えている。
【0010】
上記方法によれば、樹脂材が互いに当接端部において当接させられた後、その間隙をほぼ消滅させられるので、溶着工程において行われる溶着の強度を最大限に高めることができる。すなわち、従来の技術では、溶着の前における間隙を無くすための工程が存在しなかったため、当接端部間にキャップが存在している場合があった。このような状態で溶着しても、溶着における本来の耐圧強度が得られず、全体としての最大耐圧を期待通りに高めることができなかった。この点、本発明によれば、当接端部間の間隙を消滅させているため、溶着工程において得られるべき最大耐圧をいずれの溶着部位についても確保出来るようになる。
【0011】
ここで、「樹脂材」に限定は無いが、溶着工程において溶着させることができる材料であることを要する。例えばレーザ光等による溶着を利用する場合には、一方の樹脂材が比較的光を通し易く、他方の樹脂材が比較的光と通しにくくなっており、他方の樹脂材における発熱が期待できるように、材料を選択する。
【0012】
また「間隙をほぼ消滅させる」とは、実質的に端面間に間隙が無くなることを意味し、必ずしも接合力が端面間に働いていなくてもよい。例えば、摩擦によって熱を発生させ表面の凸部を軟化させ実質的に端面の間隙を零にしたり、直接熱を加えて材料を軟化させ端面の間隙を無くしたりすることが考えられる。
【0013】
さらに「溶着」には限定はなく、樹脂に適用可能な溶着方法を種々に適用可能である。例えば、熱風溶着法、熱板溶着法、高周波溶着法、超音波溶着法等を適用可能である。具体的には、レーザ光、アークまたはプラズマ等の熱源を利用して樹脂を溶融させることが可能である。
【0014】
また本発明は、樹脂材どうしを接合するための樹脂接合方法であって、それぞれの樹脂材の当接端部を当接させる工程と、当接された当接端部を溶着することにより間隙をほぼ消滅させる工程と、溶着された当接端部にレーザ光を照射して溶着強度を高める工程と、を備える。
【0015】
上記方法によれば、樹脂材が互いに当接端部において当接させられた後、溶着によって両部材間の間隙はほぼ消滅させられる。この状態において、レーザ光が照射されれば、間隙が存在していないため当該レーザ光溶着の強度を最大限に高めることができる。すなわち、従来の技術では、摩擦熱による溶着のみまたはレーザ光によう溶着のみが行われていたが、摩擦熱による溶着のみでは本来の溶着強度が低く、また、レーザ光溶着では、部材間に存在する間隙により本来の耐圧強度が得られなかった。この点、本方法によれば、摩擦熱による溶着によって当接端部間の間隙を消滅させた後にレーザ光が照射されるため、両者の欠点を補いあい、相乗的な耐圧強度増大の効果を奏することになる。なお、本発明における溶着は、レーザ光溶着以外の方法で樹脂材間の間隙を実質的に無くすことができる溶着法を種々に適用可能である。例えば、熱風溶着法、熱板溶着法、高周波溶着法、超音波溶着法等を適用可能である。
【0016】
また本発明は、樹脂材どうしを接合するための樹脂接合方法であって、 それぞれの樹脂材の当接端部を当接させる工程と、当接された当接端部を樹脂材間に生ずる摩擦熱で溶着する工程と、溶着された当接端部にレーザ光を照射して溶着強度を高める工程と、を備える。
【0017】
上記方法によれば、樹脂材が互いに当接端部において当接させられた後、摩擦熱が及ぼされるので一定の強度で両部材は接合され、両部材間の間隙はほぼ消滅させられる。この状態において、レーザ光が照射されれば、間隙が存在していないため当該レーザ光溶着の強度を最大限に高めることができる。すなわち、従来の技術では、摩擦熱による溶着のみまたはレーザ光によう溶着のみが行われていたが、摩擦熱による溶着のみでは本来の溶着強度が低く、また、レーザ光溶着では、部材間に存在する間隙により本来の耐圧強度が得られなかった。この点、本方法によれば、摩擦熱による溶着によって当接端部間の間隙を消滅させた後にレーザ光が照射されるため、両者の欠点を補いあい、相乗的な耐圧強度増大の効果を奏することになる。
【0018】
ここで、「摩擦熱による溶着」に限定は無いが、樹脂材どうしの相対運動によって当接面に発生する摩擦熱等を利用した溶着をいう。例えば、一方の樹脂材を他方の樹脂材の方向へ押圧した状態の下で、少なくとも一方の樹脂材に所定周波数の振動を加えることにより当接端部を溶着することが挙げられる。 また「レーザ光」には限定はなく、当接端部における局所的な熱を高め樹脂を溶融させることができる光を供給できればよい。例えば、レーザ光の他に、アークやプラズマ等の熱源を用いることが可能である。
【0019】
ここで、レーザ光を利用する場合には、樹脂材どうしが、光透過性が相対的に高い透過性樹脂材と光透過性が相対的に低い非透過性樹脂材とからなることが好ましい。このとき、レーザ光を照射する工程では、透過性樹脂材を通して当接端部にレーザ光を照射する。このような方法によれば、レーザ光が光透過性樹脂材を熱の発生無しに透過し、当接端部において非透過性樹脂材に照射される。非透過性樹脂材ではレーザ光を透過しないためにその表面の分子にエネルギーが供給され端面において熱を発生させる。この熱が樹脂材を溶融させ、溶着が行われるのである。
【0020】
また、レーザ光を照射する工程では、当接端部のうち、摩擦による溶着による溶着強度を上回る強度が必要な領域のみに選択的にレーザ光を照射してもよい。すなわち、摩擦による溶着でもある程度の耐圧強度を備えているため、この摩擦による溶着の耐圧強度を超える部位が明らかになっているのであれば、この部位のみレーザ光照射による溶着強度の増大措置をしておけばよいことになる。このような措置をすれば、レーザ光を照射する時間を必要最小限にでき、工数を下げ、全体の製造コストを低減できることになる。
【0021】
また本発明は、本発明に係る樹脂接合方法によって製造された樹脂部品でもある。ここで、「樹脂部品」には限定はなく、部分的に溶解することにより溶着可能な材料、すなわち熱可塑性を備える樹脂材によって構成されうるあらゆる部品を含む。例えば、内燃機関のサージタンク等、高い溶着強度や耐圧強度が必要な部品がこの樹脂部品として挙げられ、このような部品に本発明に係る樹脂接合方法を適用することは好ましい。
【0022】
【発明の実施の形態】
以下、本発明の好適な実施の形態について図面を参照しながら説明する。
【0023】
本実施形態は、本発明に係る樹脂接合方法を車両の内燃機関等に用いられるインテークマニホールドの製造に適用したものである。図1に、本発明の樹脂接合方法によって製造されるインテークマニホールドの斜視図を示す。
【0024】
図1に示すように、インテークマニホールド1は、内燃機関の各気筒に空気を供給するための複数のポート10を備えており、二つの樹脂材100と110とを接合端部120において接合することにより構成されている。従来、金属により構成されていたインテークマニホールドを樹脂製にしたことにより、大幅な軽量化とコンパクト化が図れる他、吸気温度の低減とポート内側の面粗度向上による高出力化が図れるという効果を奏する。
【0025】
図2に、図1のA−A切断面におけるインテークマニホールド1の一つのポートについての断面図を示す。図2に示すように、樹脂材100は非光透過性樹脂によって成型されており、樹脂材110は光透過性樹脂によって成型されている。そして非光透過性樹脂材100と光透過性樹脂材110とを当接端部120において溶着することにより、内燃機関への空気の流通路121を提供する中空構造を提供している。
【0026】
ここで非光透過性樹脂材100は、発熱源であるレーザ光を吸収し発熱するようなプラスチック材料で構成されており、光透過性樹脂材110は、レーザ光を所定の透過率以上で透過しうるようなプラスチック材料で構成されている。これらの樹脂はインテークマニホールドとして利用するに十分な機械的強度や熱耐性を備えていればよい。但し、非光透過性樹脂材100については、少なくとも後に説明する振動溶着やレーザ光溶着工程において溶着可能な溶融点を備えていることを要する。例えば、樹脂材料としては、ポリアミドにガラス繊維を含有させたPA−GF30(「30」はガラス繊維の重量(wt)%を示す。)等を用いることが可能である。
【0027】
図4に示すように、当接端部120は、非光透過性樹脂材100側の当接端部101と光透過性樹脂材110側の当接端部111とが接合して構成されている。非光透過性樹脂材100側の当接端部101における当接面102と、光透過性樹脂材110側の当接端部111における当接面112と、がともに間隙無く当接し、溶着されている。非光透過性樹脂材100側の当接端部101は、フランジ105を残して形成された凹部形状から前記当接面102の突起103が突き出すように成型されている。このため当接面102の突起103とフランジ102との間には摩擦溶着時に発生するバリ106が流通路121へはみ出ることを防止するために、溝104が形成された状態になっている。一方、光透過性樹脂材110側の当接端部111は、突起113が設けられ当接面112を形成している。非光透過性樹脂材100における突起103は後述する摩擦溶着により光透過性樹脂材110と組み合わされる前より若干高さが減少している。
【0028】
なお、接合部に摩擦溶着の痕跡があり、耐圧強度が例えば母材強度の1/2程度以上ある場合には、本発明の樹脂接合方法を使用したものと推定可能である。
【0029】
次に本実施形態における樹脂接合方法を、図3に示すフローチャート、図4に示す当接端部の拡大断面図、図5に示す樹脂材の組合せの説明図、及び図6に示すレーザ光照射の説明図を参照しながら説明する。
【0030】
まず、公知の樹脂成形方法を利用して、非光透過性樹脂材100及び光透過性樹脂材110をそれぞれ成型する(図3:S01〜S02)。例えば、射出成型法を適用し、インテークマニホールドを形成するための型に樹脂材料を射出し硬化させて樹脂材100・110を製造する。
【0031】
このとき、非光透過性樹脂材100には、熱可塑性を有し、加熱源となるレーザ光を吸収し、当該接合方法のレーザ光の照射によって可塑状態となりうるようなプラスチック材料を用いる。例えば、ナイロン6(PA6)、ナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレンーアクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC),ポリブチレンテレフタレート(PBT)、PSS等の樹脂材料に、カーボンブラックや染料、顔料等の着色剤を混入させたものが挙げられる。上述したPA−GF30のように、必要に応じてさらに補強用のガラス繊維、カーボン繊維等を添加してもよい。
【0032】
また光透過性樹脂材110には、熱可塑性を有し、加熱源であるレーザ光を所定の透過率以上で透過させ、当該接合方法によるレーザ光の照射時間では塑性変形を生じないようなプラスチック材料を用いる。例えば、上述したPA−GF30の他に、ナイロン6(PA6)、ナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレンーアクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC),ポリブチレンテレフタレート(PBT)等の樹脂材料に、必要に応じて、ガラス繊維やカーボン繊維等の補強繊維や着色材を添付したものを用いてもよい。
【0033】
また、非光透過性樹脂材と光透過性樹脂材との組合せは、互いに相溶性のあるもの同士で組み合わせる。例えば、ナイロン6同士やナイロン66同士の組合せ等、同種の樹脂同士を組み合わせることが考えられる。また、ナイロン6とナイロン66との組合せ、PETとPCとの組合せ、及びPCとPBTとの組合せ等も相溶性のある組合せである。
【0034】
本実施形態では、光透過性樹脂材の樹脂材料としてポリイミドに補強繊維としてガラスファイバーを30wt%添加した強化プラスチック(PA−GF30)を用いる。非光透過性樹脂材の樹脂材料としては、同様に補強繊維としてガラスファイバーを30wt%添加したPA−GF30に、さらに着色剤であるカーボンブラックを若干量添加した強化プラスチックを用いる。
【0035】
次いで、図4S03または図5に示すように、非光透過性樹脂材100と光透過性樹脂材110とを組合せる(図3:S03)。組み合わされる前における非光透過性樹脂材100の突起103の当接面102までの高さをh1、光透過性樹脂材110の突起113の当接面112までの高さをh2、非透過性樹脂材100のフランジ105の高さをh3とすると、
h1+h2 > h3
となるように突起103・113、フランジ105の各高さを調整する。このため、組み合わせられた場合に、必ず非光透過性樹脂材100の当接面102と光透過性樹脂材110の当接面112とが最初に当接する。ここで、樹脂製の成型部品は大きくなるほど、また、複雑な形状になるほど、歪みを発生しやすい。そのため、本実施形態のようにある接合面で樹脂製の一対の成型部材を結合する場合であっても、互いに当接している部分と当接せず間隙を生じている部分が多くの場合に生ずる。このような状態で結合強度の高いレーザ光照射による溶着を試みても、その間隙が一定量(例えば0.4mm以上)あるため完全な溶着ができない。そこで、本実施形態では次のような振動(摩擦)溶着によって一対の成型部材間の間隙を消滅させる。
【0036】
すなわち、図4S04に示すように、互いに当接した当接端部101・111に対し振動溶着を行う(図3:S04)。当該実施形態では振動によって両樹脂材間に摩擦熱を発生させ、その摩擦熱で当接面において接する突起103・113を溶融させる。具体的には、一方の樹脂材を他方の樹脂材に所定の加圧力(例えば1.0〜10MPa)で押圧した状態で、樹脂材の加圧方向と略直交する方向に、所定の周波数(例えば120〜240Hz)で所定振幅(例えば1〜2mm)の振動を加え、両樹脂材を相対運動させ、当接端部に摩擦熱を発生させ溶着する。但し、本発明に係る溶着は、上記のような振動溶着法に限られるものではなく、超音波溶着法、熱板溶着法、高周波誘導加熱溶着法等を用いてもよい。なお、超音波を加える方法では、例えば、一方の樹脂材に超音波、例えば20kHz以上の周波数の振動を加えて当接面103と113との間に摩擦を生じさせ、その熱で両当接面の樹脂材料を溶融させ互いに溶着する。かかる超音波による溶着方法では、バリの発生を最小限に抑えることができる、という利点がある。
【0037】
このような摩擦溶着または振動溶着が行われた場合、当接面102や112の表面が溶融する。非光透過性樹脂材100と光透過性樹脂材110とは一定の力で組み合わせられているため、当接面が溶融すると溶融した樹脂材料が押し出され溝104に溶着バリ106が堆積していく。すなわち溶着で発生する樹脂くずである溶着バリ106および溶着時に発生する煙はフランジ105によって遮られる。その溶着バリ106の体積分、突起103や113の高さが減少していく。
【0038】
その結果、非光透過性樹脂材100における突起103の高さと光透過性樹脂材110における突起113の高さとの合計がh4(<h1+h2 かつ >h3)となる。突起103・113が溶着によってその高さが低くなり、このような高さの関係となって、当接面間の間隙が消滅する程度に、振動溶接の強度(振動振幅またはエネルギー)と実行時間を調整する。このような振動溶着の強度や実行時間は、経験的に、かつ、部材ごとにさだめられる。図4:S04のような状態になった場合には、大凡、非光透過性樹脂100の当接面102と光透過性樹脂材110の当接面112との間隙はどの部分においても消滅し結局総ての部分において当接面が互いに当接している。このような振動溶着または摩擦溶着による耐圧強度は、一般に母材の1/3程度から1/10程度といわれている。このままでは圧力のかかる車両の部品に対する溶着としては十分な強度とは言えない。そこでさらにこの溶着の強度を高めるための措置、レーザ光の照射を施すのである。
【0039】
但し、本発明において、当該振動溶着工程は、溶着して耐圧を高める工程というよりは、両樹脂材の当接面間に生じている間隙を消滅させるという意味合いが強いため、万が一実質的な溶着による強度が生じていなくても問題無いといえる。本実施形態において溶着強度は主としてレーザ光照射による溶着に負っており、当該振動溶着工程は、当接面間を完全に当接させることができれば十分だからである。
【0040】
当接面間の間隙が消滅した後、図4:S05及び図6に示すように、レーザ光照射を行う(図3:S05)。レーザ光Lは、光透過性樹脂材110の側から非光透過性樹脂材100の当接面102に向けて行う。フランジ105の高さh3を踏まえ、レーザ光Lがフランジ105に遮られないような角度から照射する。レーザ光Lは、レーザ光を透過させる透過性樹脂材料の吸収スペクトルやその厚みとの関係で、透過性樹脂材料における透過率が所定値、つまり、透過性樹脂材料内部で発生する熱が樹脂材料の溶融点以下に収まるようなものを選定する。例えば、YAG:Nd3+レーザ(波長:1060nm)や半導体レーザ(波長500〜1000nm)を用いることが好ましい。その他、ガラス:ネオジウム3+レーザ、ルビーレーザ、ヘリウム−ネオンレーザ、クリプトンレーザ、アルゴンレーザ、Hレーザ、Nレーザ等を挙げることができる。レーザ光の出力は、透過性樹脂材料の透過率や厚みにも依存するが、例えば500Wの出力とすることができる。レーザ光Lのスポット径(焦点径)は当接面102・112の幅にも依存するが、例えば直径6mm程度のものを利用できる。
【0041】
図6に示すように、このようなレーザ光Lのスポットを、非光透過性樹脂材料に十分な溶融を生じさせる程度の移動速度、例えば30mm/秒の速度で、溶着すべき当接端部120全周に沿って移動させる。
【0042】
このレーザ光による溶着は、当接面間の間隙が0.4mm以下でないと十分な溶着強度が得られないといわれているが、本実施形態では、レーザ光溶着工程の前に当接面間の間隙を消滅させる処理を施しているので、当該実施形態の非光透過性樹脂材100と光透過性樹脂材110とは高い耐圧強度で溶着されていることになる。すなわち、本実施形態によれば、総ての当接面においてほぼ完全にレーザ光の照射による溶着が行われているので、母材の1/2以上というレーザ光等による溶着の耐圧強度をほぼ完全に享有できるのである。
(実施例)
上記実施形態にしたがい、インテークマニホールド用の樹脂材料としてPA−GF30を利用し、二つの樹脂材を振動溶着してから、半導体レーザを出力500W、スポット径6mm、移動速度30mm/秒の条件で当接面に沿って移動させた。比較例として、同様の樹脂材量で振動溶着のみを行ったものを製作した。双方の溶着方法による溶着強度および耐圧強度の相対値を以下に示す。従来の溶着方法である振動溶着のみの場合の強度を1とした場合の実施例における強度の相対値を示している。
【0043】
【表1】

Figure 2004209916
表1に示すように、溶着強度及び耐圧強度が振動溶着のみの場合に比べ、約1.5倍以上に向上していることが確認できた。また、レーザ光による溶着のみの場合と本実施形態との比較から判るように、レーザ光のみでは、溶着前における樹脂材どうしの間隙がどの程度であるか、樹脂材の形状がどのようなものであるか、等に大きく依存して溶着強度や耐圧強度が定まるが、振動溶着を組み合わせることにより、レーザ光による溶着によって期待可能な最大レベルの溶着強度や耐圧強度が確保できることが判った。
【0044】
【発明の効果】
以上説明したように、本発明によれば、樹脂材が互いに当接端部において当接させられた後、その間隙をほぼ消滅させられるので、溶着工程において行われる溶着の強度を最大限に高めることができる。すなわち、従来の技術では、溶着の前における間隙を無くすための工程が存在しなかったため、当接端部間にキャップが存在している場合があった。このような状態で溶着しても、溶着における本来の耐圧強度が得られず、全体としての最大耐圧を期待通りに高めることができなかった。この点、本発明によれば、当接端部間の間隙を消滅させているため、溶着工程において得られるべき最大耐圧をいずれの溶着部位についても確保出来るようになる。
【図面の簡単な説明】
【図1】図1は、本発明の樹脂接合方法によって製造される、実施形態に係るインテークマニホールドの斜視図である。
【図2】図2は、本実施形態に係るインテークマニホールドの断面図である(図1のA−A切断面)。
【図3】図3は、本実施形態に適用される樹脂接合方法を説明するフローチャートである。
【図4】図4は、本実施形態に適用される樹脂接合方法を説明する当接端部の拡大断面図である。
【図5】図5は、本実施形態におけるインテークマニホールドの樹脂材の組合せを説明する図である。
【図6】図6は、本実施形態におけるレーザ光の照射の様子を説明する図である。
【符号の説明】
1…インテークマニホールド、10…ポート、100…非光透過性樹脂材、110…光透過性樹脂材、120…当接端部、103、112…当接面、104…逃げ溝、105…溶着バリ、L…レーザ光[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin welding method capable of increasing bonding strength and a resin product manufactured by the method.
[0002]
[Prior art]
In the automobile manufacturing industry and the like, attempts have been made to reduce the weight and cost of a vehicle by molding a member made of metal with resin. In order to weld such a resin component, a welding method different from metal welding is required, and a friction welding method and a laser welding method are known as such welding methods.
[0003]
For example, Japanese Patent Application Laid-Open No. H11-31157 discloses a technique in which two divided bodies provided with deformation preventing ribs are vibration-welded to form a resin surge tank (Patent Document 1). Japanese Patent Application Laid-Open No. Sho 60-214931 discloses a joining method of welding superposed synthetic resin materials by a laser beam (Patent Document 2). Furthermore, Japanese Patent Application Laid-Open No. 2000-86567 discloses a technique for manufacturing an intake manifold by increasing the welding area of a plurality of resin materials and welding them with a laser beam (Patent Document 3).
[0004]
[Patent Document 1]
JP-A-11-31157 [0005]
[Patent Document 2]
JP-A-60-214931
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-86567
[Problems to be solved by the invention]
However, in the above-described conventional friction welding and laser beam welding, the strength of the welded portion is insufficient. That is, in the friction welding disclosed in Patent Document 1, since the welded portion has a pressure resistance of about 1/3 or less of that of other portions, it is used for parts such as an internal combustion engine, for example, a surge tank or an intake manifold. If such friction welding is used for a component to perform, sufficient power performance may not be able to be secured. Further, increasing the pressure resistance by providing deformation preventing ribs as in Patent Literature 1 involves providing a structure protruding outward, which is not preferable from the viewpoint of compactness and ease of manufacturing. Was. Further, in the welding using laser light as disclosed in Patent Documents 2 and 3, if the gap between the joining surfaces can be eliminated, the pressure resistance can be increased, but it is difficult to completely eliminate the gap. For this reason, when applied to the joining of a resin material having a relatively large and complicated shape such as a member used for a vehicle, a gap required for laser welding (for example, within 0.4 mm) becomes larger due to partial deformation or distortion, In some cases, it was difficult to perform perfect welding as a whole, and the overall welding strength was sometimes reduced.
[0008]
[Means to solve the problem]
In view of the above problems, an object of the present invention is to provide a method of joining a resin material having a sufficiently high pressure resistance and capable of almost completely welding even a member having a large and complicated shape. I do.
[0009]
The present invention relates to a resin joining method for joining resin materials, wherein a step of contacting a contact end of each resin material and a step of substantially eliminating a gap between the contacted contact ends are provided. And a step of welding the contact end where the gap has almost disappeared.
[0010]
According to the above method, after the resin materials are brought into contact with each other at the contact ends, the gap is almost eliminated, so that the strength of the welding performed in the welding step can be maximized. That is, in the related art, since there was no step for eliminating the gap before welding, there was a case where a cap was present between the contact ends. Even if welding is performed in such a state, the original pressure resistance in welding cannot be obtained, and the maximum pressure resistance as a whole cannot be increased as expected. In this regard, according to the present invention, since the gap between the contact ends is eliminated, the maximum withstand pressure to be obtained in the welding step can be ensured for any of the welded portions.
[0011]
Here, the “resin material” is not limited, but needs to be a material that can be welded in the welding step. For example, when using welding by laser light or the like, one resin material is relatively easy to transmit light, the other resin material is relatively hard to transmit light, and heat generation in the other resin material can be expected. Next, select the material.
[0012]
Further, “to substantially eliminate the gap” means that there is substantially no gap between the end faces, and the joining force does not necessarily have to act between the end faces. For example, it is conceivable to generate heat by friction to soften the convex portion on the surface to substantially reduce the gap between the end faces, or to apply heat directly to soften the material to eliminate the gap between the end faces.
[0013]
Further, the “welding” is not limited, and various welding methods applicable to resin can be applied. For example, a hot air welding method, a hot plate welding method, a high frequency welding method, an ultrasonic welding method, or the like can be applied. Specifically, the resin can be melted using a heat source such as a laser beam, an arc, or plasma.
[0014]
The present invention also relates to a resin joining method for joining resin materials, wherein a step of contacting the contact ends of the respective resin materials and a step of welding the contacted end portions are performed. And a step of irradiating the welded contact end with laser light to increase the welding strength.
[0015]
According to the above method, after the resin materials are brought into contact with each other at the contact ends, the gap between the two members is almost eliminated by welding. In this state, if the laser beam is irradiated, since the gap does not exist, the intensity of the laser beam welding can be maximized. That is, in the conventional technology, only welding by friction heat or welding only by laser light was performed. However, only welding by friction heat has a low original welding strength. Due to the gap, the original pressure resistance could not be obtained. In this regard, according to this method, since the laser beam is irradiated after the gap between the contact ends is eliminated by welding due to frictional heat, the defects of both are compensated for, and the effect of synergistic increase in pressure resistance is achieved. Will play. In the welding in the present invention, various welding methods that can substantially eliminate the gap between the resin materials by a method other than the laser beam welding can be applied. For example, a hot air welding method, a hot plate welding method, a high frequency welding method, an ultrasonic welding method, or the like can be applied.
[0016]
Further, the present invention is a resin joining method for joining resin materials, wherein a step of contacting a contact end portion of each resin material and a step of forming the contacted contact end portion between the resin materials are provided. A step of welding by frictional heat; and a step of irradiating the welded contact end with a laser beam to increase the welding strength.
[0017]
According to the above method, after the resin materials are brought into contact with each other at the contact ends, frictional heat is applied, so that the two members are joined with a certain strength, and the gap between the two members is almost eliminated. In this state, if the laser beam is irradiated, since the gap does not exist, the intensity of the laser beam welding can be maximized. That is, in the conventional technology, only welding by friction heat or welding only by laser light was performed. However, only welding by friction heat has a low original welding strength. Due to the gap, the original pressure resistance could not be obtained. In this regard, according to this method, since the laser beam is irradiated after the gap between the contact ends is eliminated by welding due to frictional heat, the defects of both are compensated for, and the effect of synergistic increase in pressure resistance is achieved. Will play.
[0018]
Here, "welding by frictional heat" is not limited, but refers to welding using frictional heat or the like generated on a contact surface by relative motion between resin materials. For example, the contact end may be welded by applying vibration of a predetermined frequency to at least one of the resin materials while one resin material is pressed in the direction of the other resin material. The “laser light” is not limited, and it is sufficient that light capable of increasing local heat at the contact end and melting the resin can be supplied. For example, it is possible to use a heat source such as an arc or plasma in addition to laser light.
[0019]
Here, in the case of using laser light, it is preferable that the resin materials include a transparent resin material having relatively high light transmittance and a non-transparent resin material having relatively low light transmittance. At this time, in the step of irradiating the laser beam, the contact end is irradiated with the laser beam through the transparent resin material. According to such a method, the laser beam passes through the light-transmitting resin material without generating heat, and is applied to the non-transmitting resin material at the contact end. Since the non-transparent resin material does not transmit laser light, energy is supplied to molecules on the surface and heat is generated at the end face. This heat melts the resin material, and welding is performed.
[0020]
Further, in the step of irradiating the laser beam, the laser beam may be selectively irradiated only to a region in the contact end portion which requires a strength higher than the welding strength by welding by friction. That is, since a certain degree of pressure resistance is provided even in welding by friction, if a portion exceeding the pressure resistance of welding by friction is known, measures for increasing the welding strength by laser beam irradiation only at this portion are taken. It will be good if you keep it. By taking such measures, the time for irradiating the laser beam can be minimized, the number of steps can be reduced, and the overall manufacturing cost can be reduced.
[0021]
The present invention is also a resin component manufactured by the resin joining method according to the present invention. Here, the “resin component” is not limited, and includes any component that can be made of a material that can be welded by being partially melted, that is, a resin material having thermoplasticity. For example, parts requiring high welding strength and pressure resistance, such as a surge tank of an internal combustion engine, are mentioned as this resin part, and it is preferable to apply the resin bonding method according to the present invention to such parts.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0023]
In this embodiment, the resin joining method according to the present invention is applied to the manufacture of an intake manifold used for an internal combustion engine of a vehicle. FIG. 1 shows a perspective view of an intake manifold manufactured by the resin joining method of the present invention.
[0024]
As shown in FIG. 1, the intake manifold 1 has a plurality of ports 10 for supplying air to each cylinder of the internal combustion engine, and two resin materials 100 and 110 are joined at a joining end 120. It consists of. Conventionally, the intake manifold, which was made of metal, is made of resin, so that it is possible to significantly reduce weight and size, and also to achieve higher output by lowering the intake air temperature and improving the surface roughness inside the port. Play.
[0025]
FIG. 2 is a cross-sectional view of one port of the intake manifold 1 taken along the line AA in FIG. As shown in FIG. 2, the resin material 100 is molded of a non-light transmitting resin, and the resin material 110 is molded of a light transmitting resin. The non-light-transmitting resin material 100 and the light-transmitting resin material 110 are welded at the contact end 120 to provide a hollow structure that provides an air passage 121 to the internal combustion engine.
[0026]
Here, the non-light-transmitting resin material 100 is made of a plastic material that absorbs laser light as a heat source and generates heat, and the light-transmitting resin material 110 transmits laser light at a predetermined transmittance or higher. It is made of a plastic material that can be used. These resins only need to have sufficient mechanical strength and heat resistance to be used as an intake manifold. However, the non-light-transmitting resin material 100 needs to have a melting point at which welding can be performed at least in a vibration welding or laser beam welding process described later. For example, as the resin material, PA-GF30 (“30” indicates the weight (wt)% of glass fiber) made of polyamide containing glass fiber can be used.
[0027]
As shown in FIG. 4, the contact end portion 120 is formed by joining the contact end portion 101 on the non-light-transmitting resin material 100 side and the contact end portion 111 on the light-transmitting resin material 110 side. I have. The contact surface 102 at the contact end portion 101 on the non-light-transmitting resin material 100 side and the contact surface 112 at the contact end portion 111 on the light-transmitting resin material 110 side are in contact with no gap and are welded. ing. The contact end portion 101 on the side of the non-light-transmitting resin material 100 is molded so that the projection 103 of the contact surface 102 protrudes from a concave shape formed by leaving the flange 105. Therefore, a groove 104 is formed between the protrusion 103 of the contact surface 102 and the flange 102 in order to prevent the burr 106 generated during friction welding from protruding into the flow passage 121. On the other hand, the contact end portion 111 on the light transmissive resin material 110 side is provided with a protrusion 113 to form a contact surface 112. The height of the projections 103 on the non-light-transmitting resin material 100 is slightly reduced before being combined with the light-transmitting resin material 110 by friction welding described later.
[0028]
If there is a trace of friction welding at the joint and the pressure resistance is, for example, about 1/2 or more of the strength of the base material, it can be estimated that the resin joining method of the present invention is used.
[0029]
Next, a resin bonding method according to the present embodiment will be described with reference to a flowchart shown in FIG. 3, an enlarged sectional view of a contact end shown in FIG. 4, an explanatory diagram of a combination of resin materials shown in FIG. 5, and a laser beam irradiation shown in FIG. This will be described with reference to the explanatory diagram of FIG.
[0030]
First, the non-light-transmitting resin material 100 and the light-transmitting resin material 110 are molded using a known resin molding method (FIG. 3: S01 to S02). For example, resin materials 100 and 110 are manufactured by injecting a resin material into a mold for forming an intake manifold and curing the resin material by applying an injection molding method.
[0031]
At this time, a plastic material that has thermoplasticity, absorbs laser light serving as a heating source, and can be in a plastic state by irradiation with the laser light in the bonding method is used for the non-light-transmitting resin material 100. For example, polyamide (PA) such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET), polystyrene, ABS, acrylic (PMMA) ), Polycarbonate (PC), polybutylene terephthalate (PBT), PSS, and other resin materials mixed with a colorant such as carbon black, a dye, or a pigment. As in the case of PA-GF30 described above, glass fibers, carbon fibers, and the like for reinforcement may be further added as necessary.
[0032]
Further, the light-transmitting resin material 110 is made of a plastic that has thermoplasticity, transmits laser light as a heating source at a predetermined transmittance or more, and does not cause plastic deformation during the laser light irradiation time by the bonding method. Use materials. For example, in addition to the above-mentioned PA-GF30, polyamide (PA) such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET) ), Resin materials such as polystyrene, ABS, acrylic (PMMA), polycarbonate (PC), and polybutylene terephthalate (PBT) to which reinforcing fibers and coloring materials such as glass fibers and carbon fibers are attached as necessary. May be used.
[0033]
In addition, the combination of the non-light-transmitting resin material and the light-transmitting resin material is a combination of mutually compatible ones. For example, it is conceivable to combine resins of the same type, such as a combination of nylons 6 and nylons 66. Further, a combination of nylon 6 and nylon 66, a combination of PET and PC, a combination of PC and PBT, and the like are also compatible combinations.
[0034]
In this embodiment, a reinforced plastic (PA-GF30) obtained by adding 30 wt% of glass fiber as a reinforcing fiber to polyimide is used as the resin material of the light-transmitting resin material. As the resin material of the non-light-transmitting resin material, a reinforced plastic obtained by adding a small amount of carbon black as a coloring agent to PA-GF30 similarly containing 30 wt% of glass fiber as a reinforcing fiber is used.
[0035]
Next, as shown in FIG. 4S03 or FIG. 5, the non-light-transmitting resin material 100 and the light-transmitting resin material 110 are combined (FIG. 3: S03). Before the combination, the height of the projection 103 of the non-light-transmitting resin material 100 to the contact surface 102 is h1, the height of the projection 113 of the light-transmitting resin material 110 to the contact surface 112 is h2, Assuming that the height of the flange 105 of the resin material 100 is h3,
h1 + h2> h3
The heights of the protrusions 103 and 113 and the flange 105 are adjusted so that Therefore, when they are combined, the contact surface 102 of the non-light-transmitting resin material 100 always comes into contact with the contact surface 112 of the light-transmitting resin material 110 first. Here, as the resin molded part becomes larger and has a more complicated shape, distortion tends to occur. Therefore, even in a case where a pair of resin-made molding members are joined at a certain joining surface as in the present embodiment, there are many cases where there is a gap that is not in contact with a part that is in contact with each other. Occurs. Even if welding is performed by irradiating a laser beam with high bonding strength in such a state, complete welding cannot be performed because the gap is a certain amount (for example, 0.4 mm or more). Therefore, in the present embodiment, the gap between the pair of molded members is eliminated by the following vibration (friction) welding.
[0036]
That is, as shown in FIG. 4S04, vibration welding is performed on the contact ends 101 and 111 that have come into contact with each other (FIG. 3: S04). In this embodiment, frictional heat is generated between the two resin materials by vibration, and the frictional heat causes the protrusions 103 and 113 that are in contact with each other at the contact surfaces to be melted. Specifically, in a state where one resin material is pressed against the other resin material at a predetermined pressure (for example, 1.0 to 10 MPa), a predetermined frequency (in a direction substantially perpendicular to the pressing direction of the resin material) is applied. Vibration of a predetermined amplitude (for example, 1 to 2 mm) is applied at a frequency of, for example, 120 to 240 Hz, and the two resin materials are caused to move relative to each other to generate frictional heat at the abutting ends and to weld them. However, the welding according to the present invention is not limited to the vibration welding method as described above, but may be an ultrasonic welding method, a hot plate welding method, a high frequency induction heating welding method, or the like. In the method of applying ultrasonic waves, for example, ultrasonic waves, for example, vibration of a frequency of 20 kHz or more are applied to one of the resin materials to generate friction between the contact surfaces 103 and 113, and the heat is applied to both the contact surfaces. The resin materials on the surfaces are melted and welded to each other. Such an ultrasonic welding method has an advantage that generation of burrs can be minimized.
[0037]
When such friction welding or vibration welding is performed, the surfaces of the contact surfaces 102 and 112 are melted. Since the non-light-transmitting resin material 100 and the light-transmitting resin material 110 are combined with a constant force, when the contact surface is melted, the melted resin material is pushed out and the welding burrs 106 are deposited in the grooves 104. . That is, the welding burrs 106, which are resin chips generated by welding, and the smoke generated during welding are blocked by the flange 105. The volume of the welding burr 106 and the height of the protrusions 103 and 113 decrease.
[0038]
As a result, the sum of the height of the protrusion 103 in the non-light-transmitting resin material 100 and the height of the protrusion 113 in the light-transmitting resin material 110 is h4 (<h1 + h2 and> h3). The heights of the vibration welding (vibration amplitude or energy) and the execution time are reduced to such an extent that the height of the projections 103 and 113 is reduced by welding and the gap between the contact surfaces disappears due to such a height relationship. To adjust. The strength and execution time of such vibration welding are determined empirically and for each member. FIG. 4: When the state is as shown in S04, the gap between the contact surface 102 of the non-light-transmitting resin 100 and the contact surface 112 of the light-transmitting resin material 110 generally disappears in any part. After all, the contact surfaces are in contact with each other in all parts. The pressure resistance by such vibration welding or friction welding is generally said to be about 1/3 to 1/10 of that of the base material. In this state, the strength is not sufficient for welding to parts of a vehicle under pressure. Therefore, a measure for further increasing the strength of this welding, ie, irradiation with laser light is performed.
[0039]
However, in the present invention, the vibration welding step has a strong meaning of eliminating a gap formed between the abutting surfaces of the two resin materials, rather than a step of increasing the pressure resistance by welding. It can be said that there is no problem even if the strength is not caused by the above. In the present embodiment, the welding strength mainly depends on welding by laser beam irradiation, and the vibration welding step is sufficient if the contact surfaces can be completely brought into contact.
[0040]
After the gap between the contact surfaces disappears, laser light irradiation is performed as shown in FIG. 4: S05 and FIG. 6 (FIG. 3: S05). The laser light L is directed from the light-transmitting resin material 110 side to the contact surface 102 of the non-light-transmitting resin material 100. Based on the height h <b> 3 of the flange 105, the laser light L is emitted from an angle such that the flange 105 does not block the laser light L. The laser light L has a predetermined value of transmittance in the transparent resin material, that is, heat generated inside the transparent resin material, due to the absorption spectrum of the transparent resin material transmitting the laser light and its thickness. Is selected so as to be below the melting point of For example, it is preferable to use a YAG: Nd 3+ laser (wavelength: 1060 nm) or a semiconductor laser (wavelength 500 to 1000 nm). Other glass: neodymium 3+ laser, a ruby laser, a helium - neon laser, krypton laser, argon laser, H 2 laser, an N 2 laser, or the like. The output of the laser beam depends on the transmittance and thickness of the transparent resin material, but may be, for example, 500 W. Although the spot diameter (focal diameter) of the laser beam L also depends on the width of the contact surfaces 102 and 112, for example, a spot diameter of about 6 mm can be used.
[0041]
As shown in FIG. 6, the spot of the laser light L is moved at a moving speed enough to cause sufficient melting of the non-light-transmitting resin material, for example, at a speed of 30 mm / sec. 120 is moved along the entire circumference.
[0042]
It is said that sufficient welding strength cannot be obtained unless the gap between the contact surfaces is 0.4 mm or less. However, in this embodiment, the welding between the contact surfaces is performed before the laser beam welding step. Is performed, the non-light-transmitting resin material 100 and the light-transmitting resin material 110 of the present embodiment are welded with high pressure resistance. That is, according to this embodiment, since the welding is performed almost completely on all the contact surfaces by the irradiation of the laser beam, the pressure resistance of the welding by the laser beam or the like of 1/2 or more of the base material is substantially reduced. It is completely enjoyable.
(Example)
According to the above embodiment, PA-GF30 was used as the resin material for the intake manifold, and the two resin materials were vibration-welded. Then, the semiconductor laser was irradiated under the conditions of an output of 500 W, a spot diameter of 6 mm, and a moving speed of 30 mm / sec. Moved along the interface. As a comparative example, one manufactured only by vibration welding with the same amount of resin material was manufactured. The relative values of the welding strength and the pressure resistance by both welding methods are shown below. The relative value of the strength in the embodiment when the strength in the case of only the vibration welding which is the conventional welding method is set to 1 is shown.
[0043]
[Table 1]
Figure 2004209916
As shown in Table 1, it was confirmed that the welding strength and the pressure resistance were improved about 1.5 times or more as compared with the case of only vibration welding. Further, as can be seen from a comparison between the case of only welding by laser light and the present embodiment, only the laser light indicates the gap between resin materials before welding and the shape of the resin material. The welding strength and the pressure resistance are determined largely depending on whether the welding strength or the pressure resistance is determined. However, it was found that the maximum welding strength and the pressure resistance that can be expected by the welding with the laser beam can be secured by combining the vibration welding.
[0044]
【The invention's effect】
As described above, according to the present invention, after the resin materials are brought into contact with each other at the contact end portions, the gap is almost eliminated, so that the strength of the welding performed in the welding process is maximized. be able to. That is, in the related art, since there was no step for eliminating the gap before welding, there was a case where a cap was present between the contact ends. Even if welding is performed in such a state, the original pressure resistance in welding cannot be obtained, and the maximum pressure resistance as a whole cannot be increased as expected. In this regard, according to the present invention, since the gap between the contact ends is eliminated, the maximum withstand pressure to be obtained in the welding step can be ensured for any of the welded portions.
[Brief description of the drawings]
FIG. 1 is a perspective view of an intake manifold according to an embodiment, which is manufactured by a resin bonding method of the present invention.
FIG. 2 is a cross-sectional view of the intake manifold according to the present embodiment (section taken along line AA in FIG. 1).
FIG. 3 is a flowchart illustrating a resin bonding method applied to the present embodiment.
FIG. 4 is an enlarged cross-sectional view of a contact end illustrating a resin bonding method applied to the embodiment.
FIG. 5 is a diagram illustrating a combination of resin materials of an intake manifold according to the present embodiment.
FIG. 6 is a diagram illustrating a state of laser light irradiation in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Intake manifold, 10 ... Port, 100 ... Non-light-transmitting resin material, 110 ... Light-transmitting resin material, 120 ... Contact end part, 103, 112 ... Contact surface, 104 ... Escape groove, 105 ... Welding burr , L ... Laser light

Claims (7)

樹脂材どうしを接合するための樹脂接合方法であって、
それぞれの前記樹脂材の当接端部を当接させる工程と、
当接された前記当接端部の間隙をほぼ消滅させる工程と、
間隙がほぼ消滅した前記当接端部を溶着する工程と、を備えたことを特徴とする樹脂接合方法。
A resin joining method for joining resin materials,
Contacting the contact end of each of the resin materials,
A step of substantially eliminating a gap between the abutted contact ends,
Welding the contact end where the gap is substantially eliminated.
樹脂材どうしを接合するための樹脂接合方法であって、
それぞれの前記樹脂材の当接端部を当接させる工程と、
当接された前記当接端部を溶着することにより間隙をほぼ消滅させる工程と、溶着された前記当接端部にレーザ光を照射して溶着強度を高める工程と、を備えたことを特徴とする樹脂接合方法。
A resin joining method for joining resin materials,
Contacting the contact end of each of the resin materials,
A step of substantially eliminating the gap by welding the contacted contact ends, and a step of irradiating the welded contact ends with laser light to increase the welding strength. Resin joining method.
樹脂材どうしを接合するための樹脂接合方法であって、
それぞれの前記樹脂材の当接端部を当接させる工程と、
当接された前記当接端部を前記樹脂材間に生ずる摩擦熱で溶着する工程と、
溶着された前記当接端部にレーザ光を照射して溶着強度を高める工程と、を備えたことを特徴とする樹脂接合方法。
A resin joining method for joining resin materials,
Contacting the contact end of each of the resin materials,
Welding the contacted end portions by frictional heat generated between the resin materials;
Irradiating the welded contact end with a laser beam to increase welding strength.
前記摩擦熱で溶着する工程では、少なくとも一方の前記樹脂材に高周波または超音波を加えることにより前記当接端部を溶着するものである、請求項3に記載の樹脂接合方法。The resin joining method according to claim 3, wherein in the step of welding by the frictional heat, the contact end is welded by applying high frequency or ultrasonic waves to at least one of the resin materials. 前記樹脂材どうしは、光透過性が相対的に高い透過性樹脂材と光透過性が相対的に低い非透過性樹脂材とからなり、
前記レーザ光を照射する工程では、前記透過性樹脂材を通して前記当接端部に前記レーザ光を照射する、請求項2乃至4のいずれか一項に記載の樹脂接合方法。
The resin materials are composed of a transmissive resin material having a relatively high light transmittance and a non-transmissive resin material having a relatively low light transmittance,
5. The resin bonding method according to claim 2, wherein in the step of irradiating the laser beam, the abutting end is irradiated with the laser beam through the transparent resin material. 6.
前記レーザ光を照射する工程では、前記当接端部のうち前記振動溶着による溶着強度を上回る強度が必要な領域のみに選択的に前記レーザ光を照射する、請求項2乃至5のいずれか一項に記載の樹脂接合方法。6. The laser beam irradiation step according to claim 2, wherein the laser beam is selectively irradiated only to a region of the contact end that requires a strength higher than a welding strength by the vibration welding. The resin joining method described in the paragraph. 請求項1乃至5のいずれか一項に記載の樹脂接合方法によって製造された樹脂部品。A resin component manufactured by the resin joining method according to claim 1.
JP2003002254A 2003-01-08 2003-01-08 Resin bonding method and resin component Pending JP2004209916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002254A JP2004209916A (en) 2003-01-08 2003-01-08 Resin bonding method and resin component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002254A JP2004209916A (en) 2003-01-08 2003-01-08 Resin bonding method and resin component

Publications (1)

Publication Number Publication Date
JP2004209916A true JP2004209916A (en) 2004-07-29

Family

ID=32820054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002254A Pending JP2004209916A (en) 2003-01-08 2003-01-08 Resin bonding method and resin component

Country Status (1)

Country Link
JP (1) JP2004209916A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093059A1 (en) * 2005-03-02 2006-09-08 Toyota Jidosha Kabushiki Kaisha Gas container and method of producing the same
KR100870811B1 (en) * 2007-04-20 2008-11-27 미쓰비시덴키 가부시키가이샤 Resin welded body and manufacturing method thereof
KR100870812B1 (en) * 2007-04-10 2008-11-27 미쓰비시덴키 가부시키가이샤 Method for producing welded resin material and welded resin material
JP2009014759A (en) * 2007-06-29 2009-01-22 Canon Inc Light amount regulating blade and light amount regulator
JP2013173322A (en) * 2012-02-27 2013-09-05 Hayakawa Rubber Co Ltd Intermediate member for laser bonding and bonding method using laser beam
WO2014156322A1 (en) * 2013-03-25 2014-10-02 日立オートモティブシステムズ株式会社 Flow sensor
WO2014156323A1 (en) * 2013-03-25 2014-10-02 日立オートモティブシステムズ株式会社 Flow sensor
KR101475218B1 (en) * 2014-06-19 2014-12-22 코리아웨코스타 주식회사 Air duct for vehicle and manufacturing method of the same
WO2016147478A1 (en) * 2015-03-18 2016-09-22 大豊工業株式会社 Welded synthetic resin body, and production method therefor
EP3117980A1 (en) * 2015-07-15 2017-01-18 Hamanakodenso Co., Ltd. Resin molded product and method for manufacturing the same
EP2977186B1 (en) 2014-07-18 2018-06-20 Airbus Operations GmbH Method for sealing the edges of composite carbon fibre components

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093059A1 (en) * 2005-03-02 2006-09-08 Toyota Jidosha Kabushiki Kaisha Gas container and method of producing the same
KR100904028B1 (en) 2005-03-02 2009-06-22 도요타 지도샤(주) Gas container and method of producing the same
US7943884B2 (en) 2005-03-02 2011-05-17 Toyota Jidosha Kabushiki Kaisha Gas container and method of producing the same
KR100870812B1 (en) * 2007-04-10 2008-11-27 미쓰비시덴키 가부시키가이샤 Method for producing welded resin material and welded resin material
US7862874B2 (en) 2007-04-10 2011-01-04 Mitsubishi Electric Corporation Welded resin material
KR100870811B1 (en) * 2007-04-20 2008-11-27 미쓰비시덴키 가부시키가이샤 Resin welded body and manufacturing method thereof
US8597755B2 (en) 2007-04-20 2013-12-03 Mitsubishi Electric Corporation Resin welded body and manufacturing method thereof
JP2009014759A (en) * 2007-06-29 2009-01-22 Canon Inc Light amount regulating blade and light amount regulator
JP2013173322A (en) * 2012-02-27 2013-09-05 Hayakawa Rubber Co Ltd Intermediate member for laser bonding and bonding method using laser beam
CN105008869A (en) * 2013-03-25 2015-10-28 日立汽车系统株式会社 Flow sensor
US9880034B2 (en) 2013-03-25 2018-01-30 Hitachi Automotive Systems, Ltd. Flow sensor
CN105008869B (en) * 2013-03-25 2018-05-29 日立汽车系统株式会社 Flow sensor
WO2014156322A1 (en) * 2013-03-25 2014-10-02 日立オートモティブシステムズ株式会社 Flow sensor
CN105026897A (en) * 2013-03-25 2015-11-04 日立汽车系统株式会社 Flow sensor
US9880040B2 (en) 2013-03-25 2018-01-30 Hitachi Automotive Systems, Ltd. Flow sensor
WO2014156323A1 (en) * 2013-03-25 2014-10-02 日立オートモティブシステムズ株式会社 Flow sensor
JPWO2014156323A1 (en) * 2013-03-25 2017-02-16 日立オートモティブシステムズ株式会社 Flow sensor
JPWO2014156322A1 (en) * 2013-03-25 2017-02-16 日立オートモティブシステムズ株式会社 Flow sensor
KR101475218B1 (en) * 2014-06-19 2014-12-22 코리아웨코스타 주식회사 Air duct for vehicle and manufacturing method of the same
EP2977186B1 (en) 2014-07-18 2018-06-20 Airbus Operations GmbH Method for sealing the edges of composite carbon fibre components
US10647063B2 (en) 2014-07-18 2020-05-12 Airbus Operations Gmbh Method and sealing device for sealing the edges of composite fiber components
US11214011B2 (en) 2014-07-18 2022-01-04 Airbus Operations Gmbh Method and sealing device for sealing the edges of composite fiber components
JP2016175198A (en) * 2015-03-18 2016-10-06 大豊工業株式会社 Synthetic resin welded body, and method for manufacturing the same
WO2016147478A1 (en) * 2015-03-18 2016-09-22 大豊工業株式会社 Welded synthetic resin body, and production method therefor
EP3117980A1 (en) * 2015-07-15 2017-01-18 Hamanakodenso Co., Ltd. Resin molded product and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3973792B2 (en) Manufacturing method of vehicular lamp
JP4716512B2 (en) VEHICLE LIGHT AND METHOD FOR PRODUCING VEHICLE LIGHT
US6478451B2 (en) Vehicular lamp unit and method for manufacturing same
Kagan et al. Laser transmission welding of semicrystalline thermoplastics-Part II: Analysis of mechanical performance of welded nylon
JP2019528182A (en) Hybrid composite material of metal surface and polymer material surface, and method for producing hybrid composite material
JP2004209916A (en) Resin bonding method and resin component
JP5918451B2 (en) Composite molded article and manufacturing method thereof
JP3630298B2 (en) Bonding method of resin molded products
JP3551157B2 (en) Laser welding method for resin parts
JP4009432B2 (en) Laser welding method for vehicular lamp
KR100837709B1 (en) Vehicular lamp
JP5505079B2 (en) High pressure tank liner manufacturing apparatus, high pressure tank liner manufacturing method, and high pressure tank manufacturing method
JP3674479B2 (en) Plastic molded product
JP2007210203A (en) Laser welding method and laser-welded resin member
JP2004188802A (en) Laser welding method of resin member
JP2005119051A (en) Resin molded product and its manufacturing method
JP4439290B2 (en) Manufacturing method of thermoplastic resin part
JP4010757B2 (en) Resin molded product and manufacturing method thereof
JP3596456B2 (en) Method for manufacturing resin molded products
JP4032862B2 (en) Laser welding method for resin parts
JP4164678B2 (en) Composite product manufacturing method and manufacturing apparatus
JP3918845B2 (en) Resin molded product and joining method thereof
JP2004223719A (en) Method for joining thermoplastic resins by laser
JP3596421B2 (en) How to increase the strength of resin molded products
JP2010076246A (en) Method for welding resin material