JP2006187730A - Method for manufacturing resin-made micro flow passage chemical device and structure of resin-made micro flow passage chemical device manufactured thereby - Google Patents

Method for manufacturing resin-made micro flow passage chemical device and structure of resin-made micro flow passage chemical device manufactured thereby Download PDF

Info

Publication number
JP2006187730A
JP2006187730A JP2005001417A JP2005001417A JP2006187730A JP 2006187730 A JP2006187730 A JP 2006187730A JP 2005001417 A JP2005001417 A JP 2005001417A JP 2005001417 A JP2005001417 A JP 2005001417A JP 2006187730 A JP2006187730 A JP 2006187730A
Authority
JP
Japan
Prior art keywords
resin
chemical device
substrate
flow passage
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005001417A
Other languages
Japanese (ja)
Other versions
JP4993243B2 (en
Inventor
Kenji Obara
健嗣 小原
Yoshiyuki Ikegami
義之 池上
Mitsuru Saito
満 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Filcon Co Ltd
Original Assignee
Nippon Filcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Filcon Co Ltd filed Critical Nippon Filcon Co Ltd
Priority to JP2005001417A priority Critical patent/JP4993243B2/en
Publication of JP2006187730A publication Critical patent/JP2006187730A/en
Application granted granted Critical
Publication of JP4993243B2 publication Critical patent/JP4993243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a micro flow passage chemical device having specific high quality in large quantities inexpensively in a short period of time in order to solve the preblem of the conventional micro flow passage chemical device that an inorganic material is used mainly from standpoints of the workability and accuracy however it is difficult to form a micro flow passage and obtain specific joining strength and it takes much times to manufacture the micro flow passage chemical device. <P>SOLUTION: The method for manufacturing the resin-made micro flow passage chemical device is provided by which a substrate which is made of resin and is formed with a groove for a micro flow passage and a cover substrate which is made of the resin and is used for forming the groove into the micro flow passage are joined to each other, the resin capable of being joined by being subjected to irradiation of ultraviolet rays in vacuum and pressurization. The method comprises the steps of: pretreating the substrate and the cover substrate by irradiating the surfaces to be joined of these substrates with ultraviolet rays (having 200-120 nm, preferably, 172 nm wavelength, for example) in vacuum; laminating these substrates thus irradiated on each other; and joining the laminated substrates to each other by heating them to the temperature lower than the plastic deformation temperature of the resin or pressurizing them without heating them. The micro flow passage chemical device manufactured by this method is excellent in stability of a cross-sectional structure of the micro flow passage and pressure-resistant performance. The micro flow passage chemical device can be easily manufactured inexpensively according to this simple method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微小流路を利用した化学反応や、分離・分析・検出等に用いられる樹脂製微小流路化学デバイスの製造方法とそれによって製造された樹脂製微小流路化学デバイスに関するものである。   The present invention relates to a method of manufacturing a resin microchannel chemical device used for chemical reactions utilizing microchannels, separation, analysis, detection, and the like, and a resin microchannel chemical device manufactured thereby. .

近年、微小領域における化学反応の特異性に着目し、それらを生体高分子計測や有機合成、その他の分野に応用するべく盛んに研究が進められている。これらは、ミリメートルからマイクロメートルオーダーの微小な流路(微小流路)を有するものであって、この微小流路の空間で化学反応や、分離・分析・検出等を行おうとするもので、これらの微小流路を有する素子・チップなどを通常μ−TAS(Micro Total Analysis System)、マイクロリアクター、微小流路化学デバイスなどとよんでいる。
従来、この微小流路化学デバイスを製造する場合(商業ベースの生産および実験室レベルでの作製)には、ガラス、合成石英ガラス、ポリジメチルシロキサン(PDMS)(シリコンゴム系)等の材料を用いて微小流路を形成して製造するか、あるいは、樹脂を材料として使用する場合には、微小流路を形成した樹脂基板を接着剤の使用により積層するかあるいは、加熱融着して積層することにより製造されている。
In recent years, attention has been focused on the specificity of chemical reactions in the microscopic area, and research is being actively conducted to apply them to biopolymer measurement, organic synthesis, and other fields. These have minute channels (microchannels) on the order of millimeters to micrometers, and are intended to perform chemical reactions, separation, analysis, detection, etc. in the space of these microchannels. A device / chip having a micro flow channel is generally called a micro total analysis system (μ-TAS), a microreactor, a micro flow channel chemical device, or the like.
Conventionally, materials such as glass, synthetic quartz glass, polydimethylsiloxane (PDMS) (silicon rubber-based) are used to manufacture this microchannel chemical device (commercial production and production at the laboratory level). If the resin is used as a material, the resin substrate on which the microchannel is formed is laminated by using an adhesive, or is laminated by heating and fusing. It is manufactured by.

これらは、基板の表面および裏面に平坦面を有する少なくとも2枚以上の複数の基板により構成され、基板の平坦面の一部に微小流路が構成されており、この微小流路に成分分析・合成など目的とするガス・液体を流入させて分析・反応などを行わせるものである。   These are composed of at least two or more substrates having a flat surface on the front surface and back surface of the substrate, and a micro flow path is formed on a part of the flat surface of the substrate. The target gas or liquid, such as synthesis, is allowed to flow in for analysis and reaction.

この微小流路化学デバイスにおける微小流路自体の寸法は、現在のところミリメートルからマイクロメートルオーダーのものが主である。とくに、マイクロメートルオーダーの細管中では、異なる液相が合流する際、相互分子の拡散が効率よく行われるために反応時間が短縮されるとか、また、微小領域では液液界面での反応の効率及び加熱冷却の効率が上がるため、少ない試料で短時間の反応が達成することなどの利点がある。このようなことから、生体分析や臨床応用化学分野、更にはナノメートルサイズの粒子生成などの技術開発には、従来の実験室での試験管サイズの反応から微小流路化学デバイスを用いた反応への要求が高まってきている。   The dimensions of the microchannel itself in this microchannel chemical device are currently mainly in the order of millimeters to micrometers. Especially in micrometer-order capillaries, when different liquid phases merge, the reaction time is shortened due to the efficient diffusion of mutual molecules, and in the micro region, the reaction efficiency at the liquid-liquid interface is reduced. In addition, since the efficiency of heating and cooling is increased, there is an advantage that a short time reaction can be achieved with a small number of samples. For this reason, in the field of bioanalysis and clinical application chemistry, as well as in the development of nanometer-sized particles, reaction using a microchannel chemical device from a conventional test tube-sized reaction in a laboratory. The demand for is increasing.

そして、この微小流路の作製技術は、マイクロメートルオーダーである流路ディメンションの要求により、一般的にはフォトリソグラフィに代表されるマイクロ加工技術が採用されることが多い。とくに寸法精度や加工安定性から、マイクロ加工技術には半導体プロセスを基本とした加工技術が好んで利用された背景があり、微小流路形成もマイクロリソグラフィを用いることが知られ、さらにこの技術と機械加工や電鋳技術との融合等による作製技術の開発も盛んに研究されている。   In general, a microfabrication technique typified by photolithography is often employed as a manufacturing technique of the microchannel, depending on a requirement of a channel dimension on the order of micrometers. In particular, due to dimensional accuracy and processing stability, there is a background in which micro processing technology favored processing technology based on semiconductor processes, and it is known that microlithography is also used for microchannel formation. Development of manufacturing technology by fusion with machining and electroforming technology is also actively studied.

例えば、フォトリソグラフィを基本に、ガラスやシリコン基板のフッ化水素酸系エッチ液(エッチャント)を用いた等方性エッチング、シリコン基板への異方性エッチング、高アスペクト比を狙うDeep RIE(RIE:反応性イオンエッチング)や厚膜形成用化学増幅型フォトレジストをシンクロトロン放射光で光化反応させた高アスペクト比造形物を鋳型として電鋳する等、流路形成に多大な費用と時間が費やされているのが現状である。   For example, based on photolithography, isotropic etching using a hydrofluoric acid-based etchant (etchant) of glass or a silicon substrate, anisotropic etching to a silicon substrate, Deep RIE (RIE: Aiming at high aspect ratio) Reactive ion etching) and thick film formation chemically amplified photoresists are photocast with synchrotron radiation and electrocasted using high-aspect-ratio shaped products as molds. The current situation is being done.

このため、上述のようなマイクロ加工技術を用いて、その加工性や精度の点から、主としてガラス板や石英板、シリコン板、金属・セラミックス等の無機材料が用いられているが、これらの無機材料に微小流路を形成して流路基板と蓋基板を製造し、それぞれを強固に接合し求められる細管(微小流路)を埋設した微小流路化学デバイスとしたのでは、製造費用が高くさらに製造に長時間を費やさざるをえないため、低価格で、1回限りの使い捨てが可能な(ディスポーザブルな)用途への適用などには程遠いものであった。   For this reason, inorganic materials such as glass plates, quartz plates, silicon plates, metals and ceramics are mainly used from the viewpoint of processability and accuracy using the above-described micromachining technology. Manufacturing a flow channel substrate and a lid substrate by forming a micro flow channel in the material, and joining them firmly to form a micro flow channel chemical device with the required narrow tubes (micro flow channels) embedded, is expensive to manufacture. In addition, since manufacturing has to spend a long time, it was far from being applicable to low-cost, disposable (disposable) applications.

他方、微小流路を形成した流路基板と蓋基板とを接合する技術をみてみると、上記微小加工物を雄型とし、樹脂に反転する手法が近年報告され、この手法を使用して実験室レベルではシリコンゴム系のポリジメチルシロキサン(PDMS)で雄型を封止し、硬化後に剥離し微小流路の転写を得て、これをガラス基板に接合することが一般的である。しかし、支持基板となるガラスヘの接合はPDMSの自己接着性によるのみであるために、大きな内圧を必要としない用途に限定され、液体クロマトグラフィ等の高圧通液には適用できない。そこで高耐圧化を達成するために、シリコンウエハー、ガラス、一部金属等で微小流路構造材料を作成し、高温下で固相接合を行えば、耐圧性能の高い微小流路化学デバイスが作成可能であるが、先に述べたとおり製造コストと量産に向かないなどの点から実用的でないなどの問題点がある。   On the other hand, looking at the technology for joining the flow channel substrate with the micro flow channel and the lid substrate, a method of making the micro-processed product male and then inverting it to a resin has recently been reported. At the room level, it is common to seal the male mold with silicon rubber-based polydimethylsiloxane (PDMS), peel off after curing, obtain a microchannel transfer, and bond it to a glass substrate. However, since the bonding to the glass serving as the support substrate is only due to the self-adhesive property of PDMS, it is limited to applications that do not require a large internal pressure, and cannot be applied to high-pressure liquid passage such as liquid chromatography. Therefore, in order to achieve high pressure resistance, a microchannel chemical device with high pressure resistance performance can be created by creating a microchannel structure material with silicon wafer, glass, some metals, etc., and performing solid phase bonding at high temperatures. Although it is possible, there is a problem that it is not practical because it is not suitable for manufacturing cost and mass production as described above.

これらのことから、近年樹脂を使用したデバイスが提案されている。
たとえば、液体試料が流動する微小な流路を有する下部基板と、上部基板とを少なくとも有する、液体試料の電気的及び/又は光学的計測を行うためのマイクロチップであって、少なくとも下部基板が特定の透明炭化水素系重合体からなり、かつ少なくとも下部基板の流路を有する側の表面を酸素プラズマ処理した後、下部基板と上部基板を上記透明炭化水素系重合体のガラス転移温度(Tg)未満の温度で熱圧着させて得られたマイクロチップが提案されている(たとえば、特許文献1など参照。)。
しかしながら、基板の表面を均一に酸素プラズマ処理するのが困難であるとか、わざわざ酸素プラズマを製造しなければならないなどの問題がある。
また、分析対象試料の注入口及び排出口、並びに分析用媒体の注入口及び排出口を有する流路を備え、紫外線又は可視光領域における透過性を有する2つの樹脂成型部品の貼合わせ体からなる微小流路素子の製造方法であって、少なくとも一方の樹脂成型部品の表面に前記流路となる溝が形成された樹脂成型部品同士を貼り合わせて内部に前記流路が形成された貼合わせ体を作製する貼合わせ体の作製工程と、前記貼合わせ体を二酸化珪素膜で被覆する被覆工程とを有することを特徴とする微小流路素子の製造方法も提案されている(たとえば、特許文献2参照)。
しかしながら、二酸化珪素膜で被覆しならず、製造コストと製造に時間がかかるなどの問題があるところから、実用的であるとはいいがたい。
For these reasons, devices using resin have been proposed in recent years.
For example, a microchip for performing electrical and / or optical measurement of a liquid sample, which has at least a lower substrate having a minute flow path through which the liquid sample flows and an upper substrate, and at least the lower substrate is specified After the oxygen plasma treatment is performed on at least the surface of the lower substrate having the flow path, the lower substrate and the upper substrate are less than the glass transition temperature (Tg) of the transparent hydrocarbon polymer. There has been proposed a microchip obtained by thermocompression bonding at a temperature of (see, for example, Patent Document 1).
However, there is a problem that it is difficult to uniformly treat the surface of the substrate with oxygen plasma or that oxygen plasma must be produced.
Also, it comprises a flow path having an inlet and an outlet for the sample to be analyzed and an inlet and an outlet for the medium for analysis, and consists of a laminate of two resin molded parts having transparency in the ultraviolet or visible light region. A method for manufacturing a micro-channel device, in which a resin-molded part in which a groove serving as the channel is formed on the surface of at least one resin-molded part is bonded to each other, and the bonded body having the channel formed therein There is also proposed a manufacturing method of a micro-channel device characterized by having a manufacturing process of a bonded body for manufacturing a film and a coating process for coating the bonded body with a silicon dioxide film (for example, Patent Document 2). reference).
However, it is difficult to say that it is practical because it is not covered with a silicon dioxide film, and there are problems such as production cost and production time.

このように、従来の微小流路化学デバイスはガラス、合成石英ガラス、ポリジメチルシロキサン(PDMS)(シリコンゴム系)などの材料を使用するため微小流路の形成と接合強度のある積層体の形成などが難しく、しかも製造に時間がかかるなどの問題があり、接着剤や加熱融着によって製造される樹脂製の微小流路化学デバイスも存在するが、流路の断面形状を全流路に沿って一定のものに維持できないなどの問題があり、一定の高品質の微小流路化学デバイスを量産可能でかつ安価で、短時間で製造することができる技術は確立されていないというのが実情である。   In this way, conventional microchannel chemical devices use materials such as glass, synthetic quartz glass, and polydimethylsiloxane (PDMS) (silicon rubber), so that microchannels are formed and laminates with bonding strength are formed. There are also problems such as difficulty in manufacturing and time-consuming manufacturing, and there are resin-made micro-channel chemical devices manufactured by adhesives and heat fusion, but the cross-sectional shape of the channel follows the entire channel In fact, there is no established technology that can produce a certain high-quality microchannel chemical device in a mass production, at a low cost, and in a short time. is there.

特開2003−240755号公報JP 2003-240755 A 特開2002−139419号公報JP 2002-139419 A

以上のような状況から、ガラスやセラミックス、シリコン基板などを使用することなく、樹脂で微小流路を形成した流路基板と蓋基板を接合した樹脂製微小流路化学デバイスが求められてきている。しかし、接合に接着剤を使用した場合は、接着剤が微小流路に染みだして流路が塞がれてしまったり、また流路壁面の均質な特性を乱すことが問題となるし、さらに微小流路の一部が狭くなって流路が均一でなくなったりするために好ましくなく、また加熱溶融温度以上で融着すると加熱段階で流路がつぶれてしまうとか、流路が所定の断面形状に保持できないなどの問題が生じる。
そこで、従来、ガラス板、石英板、シリコン板、金属、セラミックス等の無機材料を使用して達成される加工性や精度と同程度あるいはそれ以上のものを得るために、 樹脂材料を使用して、接着剤を使用することなく、簡便な方法により、微小流路断面形状を保持可能で、耐圧性能の高い高品質の微小流路化学デバイスの製造方法の確立が求められている。
From the above situation, there has been a demand for a resin-made microchannel chemical device in which a microchannel is formed with a resin and a lid substrate joined without using glass, ceramics, a silicon substrate, or the like. . However, when an adhesive is used for bonding, the adhesive oozes out into the micro flow path and the flow path is blocked, and the homogeneous characteristics of the flow path wall surface are disturbed. It is not preferable because a part of the micro flow path becomes narrow and the flow path becomes non-uniform, and if it is fused at a temperature higher than the heating melting temperature, the flow path may be collapsed in the heating stage, or the flow path may have a predetermined cross-sectional shape. Problems such as inability to hold.
Therefore, resin materials are used in order to obtain the same or better workability and accuracy achieved by using inorganic materials such as glass plates, quartz plates, silicon plates, metals, and ceramics. There is a need to establish a method for producing a high-quality micro-channel chemical device that can maintain the micro-channel cross-sectional shape by a simple method without using an adhesive and has high pressure resistance.

そこで、本発明者らは、樹脂製の微小流路基板と蓋基板を簡便な方法で製作し、接着剤を使用することなく、材料樹脂の種類と表面状態、流路の断面構造安定性、耐圧性能などを勘案して微小流路断面形状を保持可能な安定加工手法の開発を鋭意研究した結果、接合界面の改質と圧着の組み合わせにより、微小流路を形成した樹脂製の流路基板と蓋基板とを接合すると流路の断面構造安定性、耐圧性能などに優れた樹脂製の微小流路化学デバイスを製造することができるという知見を得て本発明に至った。
すなわち、本発明は、微小流路の溝を形成した樹脂製の流路基板あるいは蓋基板で接着しようとする面をまず真空紫外線を照射して前処理を行い、ついで、両者を加圧接合することによって、樹脂製の微小流路化学デバイスを製造する方法である。このような方法により製造された微小流路化学デバイスは、流路の断面構造安定性、耐圧性能などに優れており、簡便な方法により安価に、かつ容易に製造することができるものである。
Therefore, the present inventors manufactured a resin-made micro-channel substrate and a lid substrate by a simple method, without using an adhesive, the type and surface state of the material resin, the cross-sectional structure stability of the channel, As a result of earnestly researching the development of a stable processing method that can maintain the micro-channel cross-sectional shape in consideration of pressure resistance performance, etc., a resin-based channel substrate that forms micro-channels by combining the modification of the bonding interface and crimping The present inventors have obtained the knowledge that a resin-made microchannel chemical device having excellent cross-sectional structure stability, pressure resistance performance, and the like can be manufactured by joining the lid substrate to the lid substrate.
That is, according to the present invention, the surface to be bonded with the resin flow path substrate or the cover substrate in which the groove of the micro flow path is formed is first subjected to pretreatment by irradiating with vacuum ultraviolet rays, and then both are pressure bonded. This is a method of manufacturing a resin microchannel chemical device. The microchannel chemical device manufactured by such a method is excellent in cross-sectional structure stability of the channel, pressure resistance, etc., and can be manufactured easily and inexpensively by a simple method.

より詳細に本発明を説明する。   The present invention will be described in more detail.

本発明で使用する微小流路の溝を形成する樹脂基板および樹脂蓋基板の材料樹脂としては、真空紫外線により樹脂表面が処理された場合加圧手段により接着する樹脂であればどのような樹脂でも使用することができる。代表的な樹脂としては、たとえばポリメチルメタクリレート、シクロオレフィンポリマー(COP)およびポリエーテルエーテルケトン(PEEK)が挙げられる。
これらの樹脂の中には、加圧手段により接着させる場合、常温下では接着力が弱いが、塑性変形温度未満までの加熱条件下で非常によく接着する樹脂もある。
本発明において、加圧接着する場合、常温下で加圧接着させる場合あるいは塑性変形温度未満までの加熱条件下で加圧接着させる場合のいずれかを意味する。
The material resin for the resin substrate and the resin lid substrate for forming the groove of the micro flow path used in the present invention may be any resin as long as the resin surface adheres by the pressurizing means when the resin surface is treated with vacuum ultraviolet rays. Can be used. Representative resins include, for example, polymethyl methacrylate, cycloolefin polymer (COP), and polyether ether ketone (PEEK).
Among these resins, there is a resin that adheres very well under heating conditions up to a temperature lower than the plastic deformation temperature, although the adhesive strength is weak at room temperature when bonded by a pressure means.
In the present invention, in the case of pressure bonding, it means either pressure bonding at normal temperature or pressure bonding under heating conditions up to less than the plastic deformation temperature.

微小流路の溝を形成した樹脂基板および樹脂蓋基板は、同種の樹脂であっても、異種の樹脂であってもよいが、接着性の観点からはなるべく同種の樹脂であるほうが好ましい。   The resin substrate and the resin lid substrate in which the grooves of the microchannels are formed may be the same type of resin or different types of resin, but the same type of resin is preferable from the viewpoint of adhesiveness.

また、これらの樹脂は、2種類以上の樹脂をブレンドしたものを使用することができる。しかし、均一に混合するものでないと接合したときに接合不良を起こしたり、耐圧性が低下するために、実際的でない。   Moreover, what blended two or more types of resin can be used for these resin. However, if they are not mixed uniformly, bonding failure may occur when bonded, and pressure resistance decreases, which is not practical.

ポリメチルメタクリレートとしては、ホモポリマーであってもコポリマーであっても差し支えない。メチルメタクリレートに共重合させることができるコモノマーとしてはポリメチルメタクリレートの性質を損なわないものであればどのようなものであっても使用することができる。   The polymethyl methacrylate may be a homopolymer or a copolymer. Any comonomer that can be copolymerized with methyl methacrylate can be used as long as it does not impair the properties of polymethyl methacrylate.

ポリエーテルエーテルケトン樹脂は、フェニルケトンとフェニルエーテルの組合せ構造からなるもので、通常PEEKと略称されることが多く、すでにビクトレックス、ケーデル、PEKK、ウルトラペックなどの商品名で上市されている周知の樹脂である。   Polyetheretherketone resin is composed of a combination of phenylketone and phenylether, and is usually abbreviated as PEEK. It is well known that it has already been marketed under trade names such as Victrex, Kedell, PEKK, and Ultrapec. Resin.

シクロオレフィンポリマー(COP)は、シクロオレフィン類をモノマーとして合成される主鎖に脂環構造を有するポリマーである。このポリマーとしては、たとえば、ノルボルネン系のモノマーを開環メタセシス重合した後、重合体中の二重結合を水素化して得られる開環メタセシス重合体水素化ポリマーなどがあげられる。市販されているものとしては商品名ZEONEX(日本ゼオン社製)などがある。   The cycloolefin polymer (COP) is a polymer having an alicyclic structure in the main chain synthesized using cycloolefins as monomers. Examples of the polymer include a ring-opening metathesis polymer hydrogenated polymer obtained by ring-opening metathesis polymerization of a norbornene-based monomer and then hydrogenating a double bond in the polymer. Examples of commercially available products include ZEONEX (manufactured by Nippon Zeon Co., Ltd.).

基板の形状としては、板状のものであっても、シート状のものであってフイルム状のものであってもよい。微小流路の溝をあらかじめ形成した樹脂基板の集合体をまず製造し、ついで必要な寸法の樹脂基板に切断してもよいし、まず必要な寸法の樹脂基板の原版とした後、その表面に微小流路の溝を形成してもよい。製造のしやすさからは微小流路の溝をあらかじめ形成した樹脂基板の集合体をまず製造し、ついで個別の樹脂基板に切断するほうがよい。   The shape of the substrate may be a plate shape, a sheet shape, or a film shape. An assembly of resin substrates on which microchannel grooves are formed in advance may be manufactured first, and then cut into resin substrates with the required dimensions. You may form the groove | channel of a microchannel. From the standpoint of ease of manufacture, it is better to first manufacture an assembly of resin substrates in which the grooves of the microchannels are formed in advance, and then cut into individual resin substrates.

さらに、シート状またはフイルム状のものをそのまま使用する場合には、まず表面に微小流路を形成し、真空紫外線処理をしてこの処理をしたものと蓋基板となるシート状またはフイルム状のものと接合して後に、所定寸法に切断して製品としてもよい。   In addition, when using a sheet-like or film-like one as it is, first, a microchannel is formed on the surface, vacuum ultraviolet treatment is performed and this treatment is performed, and a sheet-like or film-like one that becomes a lid substrate After joining, it is good also as a product cut | disconnected to a predetermined dimension.

つぎに、樹脂基板の表面に微小流路を形成する方法を説明する。
微小流路の形成技術としては、たとえばフォトリソグラフィによる方法、あるいは射出成形による方法などがある。
フォトリソグラフィは、被加工樹脂基板上にフォトレジストの皮膜を塗布し、この塗布膜にあらかじめ定められた図形パターンを有するフォトマスクを介して図形状に露光し、ついで現像液を用いてフォトレジストを現像し、現像後基板上に残ったフォトレジストを保護膜として基板をエッチングし最後にフォトレジスト膜を除去して、必要な形状の微小流路を形成するものである。可視光、紫外線、遠紫外線、X線を用いるものばかりでなく電子線(EB)を使用したリソグラフィにより微小流路を形成してもよい。
Next, a method for forming a microchannel on the surface of the resin substrate will be described.
As a technique for forming the micro flow path, for example, there are a photolithography method and an injection molding method.
In photolithography, a photoresist film is coated on a resin substrate to be processed, and the coated film is exposed to a figure through a photomask having a predetermined graphic pattern, and then the photoresist is coated using a developer. The development is performed, the photoresist remaining on the substrate after development is used as a protective film, the substrate is etched, and finally the photoresist film is removed to form a microchannel having a required shape. The minute flow path may be formed by lithography using an electron beam (EB) as well as those using visible light, ultraviolet light, far ultraviolet light, and X-rays.

エッチングする試薬としては、樹脂により異なるが、周知のエッチング液を使用してエッチングすればよく、特定のものには限定されない。
エッチングする方法としてはさらにドライエッチングする方法も適用される。このドライエッチング方法としてはリアクティブイオンエッチング(RIE)、プラズマアッシングなど通常の公知のドライエッチング法が適用することができる。
Although the reagent for etching varies depending on the resin, it may be etched using a known etching solution and is not limited to a specific one.
As an etching method, a dry etching method is also applied. As this dry etching method, an ordinary known dry etching method such as reactive ion etching (RIE) or plasma ashing can be applied.

射出成形法による場合には、補助金型として金属基板上に、たとえば、ネガ型フォトレジストを塗布し、露光し、現像しエッチングしレジストを除去して形成された必要形状の凸状部を形成した補助金型を作製しこの補助金型を金型内に設け、射出成形により樹脂表面に必要形状の微小流路を形成したものとすることにより得られる。この補助金型を使用して圧縮成形法により製造することもできる。   In the case of the injection molding method, for example, a negative photoresist is applied on a metal substrate as an auxiliary mold, exposed, developed, etched, and the resist is removed to form a convex portion of a required shape. The auxiliary mold is prepared, and the auxiliary mold is provided in the mold, and a microchannel having a required shape is formed on the resin surface by injection molding. It is also possible to manufacture by the compression molding method using this auxiliary mold.

柔軟な物性を呈する樹脂シート状物を使用して微小流路の溝を形成した樹脂基板を製造する場合には、長尺なロール状のシート状物をフォトリソグラフィによりその表面に連続的に微小流路の溝を形成し、必要な形状の寸法に切断して樹脂基板としてから172nm単一波長の高エネルギー真空紫外線による処理を施すか、あるいはその逆の高エネルギー真空紫外線による処理を施してから必要な形状の寸法に切断して樹脂基板とすることもできる。   When manufacturing a resin substrate with a microchannel groove formed using a resin sheet that exhibits flexible physical properties, a long roll-shaped sheet is continuously micropatterned on the surface by photolithography. After forming the groove of the flow path and cutting it into the required shape and forming it as a resin substrate, it is treated with high-energy vacuum ultraviolet light with a single wavelength of 172 nm, or vice versa. It can also be cut into a required shape to form a resin substrate.

つぎに、真空紫外線による処理について説明する。
紫外線の中でも200nm以下の波長領域のものは真空の雰囲気が必要なので、これ以下の領域を真空紫外線とよんでいる。本発明は、この真空紫外線を用いて接合するべき樹脂材料を前処理するものである。この真空紫外線の波長領域ならばどのような波長のものであっても利用することができるが、この波長領域の中でも200〜120nmの波長領域、さらには172nmの波長のものが好ましい。172nmの場合は単一波長である。
Next, processing using vacuum ultraviolet rays will be described.
Among the ultraviolet rays, those having a wavelength region of 200 nm or less require a vacuum atmosphere, and the region below this is called vacuum ultraviolet rays. In the present invention, the resin material to be bonded is pretreated using this vacuum ultraviolet ray. Any wavelength range of this vacuum ultraviolet ray can be used, but among these wavelength ranges, a wavelength range of 200 to 120 nm, and further a wavelength of 172 nm is preferable. In the case of 172 nm, it is a single wavelength.

本発明で、真空紫外線を照射すると、表面が改質され、加圧圧着により接合できるが、その原因ははっきりしない。
樹脂基板の表面の濡れ性を高める方法としては、紫外線照射、酸素プラズマ処理、コロナ放電処理などが一般に知られている。これらの処理により表面には樹脂の酸化分解物が形成され堆積するために濡れ特性が改善されると考えられている。紫外線照射を例にとると、大気中の酸素が紫外線(UV)照射によりオゾンOを発生し、更にUVを吸収したOから活性酸素Oxが生成される。Oxの高い酸化力により表基板の樹脂は分子間の結合が切断され揮発し清浄表面が得られる。
これら酸化分解プロセスの効果を飛躍的に高め短時間で処理可能とするのが真空紫外線である。誘電体バリア放電エキシマランプを用いると、OのみならずOからも直接活性酸素種を励起生成するため、酸化分解に寄与する活性酸素種濃度が高く、高効率な酸化分解が可能となる。また、少なくとも非結晶性樹脂に真空紫外線を照射すると、ポリマー自身も結合にダメージを受けることを見出した。この理由ははっきりしないが、単なる酸化分解による親水化効果ではなく、カルボニル基、カルボキシル基、ヒドロシル基、その他のフリーラジカルの生成や、ポリマーヘのダメージにより活性種が随所に発現したことが、つぎの工程の圧着処理による強固な結合に大きく寄与するものであると考えられる。
In the present invention, when irradiated with vacuum ultraviolet rays, the surface is modified and can be joined by pressure bonding, but the cause is not clear.
As methods for increasing the wettability of the surface of the resin substrate, ultraviolet irradiation, oxygen plasma treatment, corona discharge treatment, and the like are generally known. These treatments are thought to improve wettability because oxidative degradation products of the resin are formed and deposited on the surface. Taking ultraviolet irradiation as an example, oxygen in the atmosphere generates ozone O 3 by ultraviolet (UV) irradiation, and active oxygen Ox is generated from O 3 that has absorbed UV. Due to the high oxidizing power of Ox, the resin on the front substrate is cut off by bonding between molecules, and a clean surface is obtained.
Vacuum ultraviolet rays make it possible to dramatically improve the effects of these oxidative decomposition processes and allow them to be processed in a short time. When a dielectric barrier discharge excimer lamp is used, active oxygen species are excited and generated directly from O 2 as well as O 3 , so that the concentration of active oxygen species contributing to oxidative decomposition is high, and highly efficient oxidative decomposition is possible. . Further, it has been found that when at least an amorphous resin is irradiated with vacuum ultraviolet rays, the polymer itself is damaged by bonding. The reason for this is not clear, but it is not just a hydrophilization effect by oxidative decomposition, but the active species are expressed everywhere due to the generation of carbonyl groups, carboxyl groups, hydrosyl groups, other free radicals, and damage to the polymer. It is thought that this greatly contributes to the strong bonding by the pressure bonding process.

真空紫外線を照射する場合の処理時間は、一般に光源の強さ、処理するべき材料と光源との間隔(距離)、さらには波長とが関係する。光源の強さが強ければ強いほど、また間隔が狭まると照射時間は短くなり、さらに波長が短くなると照射時間も短縮される。一般的には、照射時間は、数秒ないし数十秒ないし数分程度までで十分である。   The processing time in the case of irradiation with vacuum ultraviolet rays generally relates to the intensity of the light source, the distance (distance) between the material to be processed and the light source, and the wavelength. The stronger the light source, the shorter the irradiation time when the interval is narrowed, and the shorter the wavelength, the shorter the irradiation time. In general, the irradiation time is from several seconds to several tens of seconds to several minutes.

さらに、172nm単一波長の真空紫外線を得る光源としては上述の誘電体バリア放電ランプがある。処理は、172nm単一波長の高エネルギー真空紫外線を大気圧下で数秒から数分間照射して行う。真空紫外線が大気中で吸収されやすい点に鑑み、光源と処理するべき材料との間隙は数mm、好ましくは1.0mmがよい。なお、接合のための加圧処理に際しては、接合界面の化学的活性種の状態により大気成分が効果を妨げる可能性が予想されるが、このような場合には減圧したり不活性ガス、さらには反応性ガスを適宜封入しても構わないが、プロセスコスト低減のためには大気中での処理が可能であることが肝要である。   Further, as a light source for obtaining vacuum ultraviolet light having a single wavelength of 172 nm, there is the above-described dielectric barrier discharge lamp. The treatment is performed by irradiating high-energy vacuum ultraviolet light having a single wavelength of 172 nm for several seconds to several minutes under atmospheric pressure. In view of the fact that vacuum ultraviolet rays are easily absorbed in the atmosphere, the gap between the light source and the material to be processed should be several mm, preferably 1.0 mm. In the pressure treatment for bonding, it is expected that atmospheric components may hinder the effect depending on the state of chemically active species at the bonding interface. In such a case, the pressure may be reduced, inert gas, However, it is important to be able to perform processing in the atmosphere in order to reduce the process cost.

この処理は、接合するべき基板の表面の一方、あるいは両方の面に適用することができる。   This treatment can be applied to one or both surfaces of the substrates to be joined.

この処理に先立って、処理するべき基板の表面を適宜脱脂洗浄し油脂並びに異物を除去し、乾燥処理しておくことが望ましい。   Prior to this treatment, it is desirable that the surface of the substrate to be treated is appropriately degreased and cleaned to remove oils and fats and foreign matters, and dried.

さらに、接合の方法について説明する。
接合は、接合しようとする樹脂の基板を塑性変形温度未満までの温度に加熱するかあるいは加熱することなく高エネルギー真空紫外線の処理をしたものを重ね合わせて加圧接合する。このようにすることにより強固な接合が得られる。一般に、塑性変形温度未満までの温度まで加熱して加圧接合するほうが強固な接合が得られるようである。
Further, a joining method will be described.
In the bonding, the substrates of the resin to be bonded are heated to a temperature below the plastic deformation temperature, or those subjected to high energy vacuum ultraviolet ray treatment without heating are superposed and pressure bonded. In this way, a strong bond can be obtained. In general, it seems that stronger bonding is obtained when pressure bonding is performed by heating to a temperature below the plastic deformation temperature.

加圧接合する手段としては、プレス手段およびロール加圧手段などがある。   Examples of the pressure bonding means include a press means and a roll pressure means.

本発明での基板を加圧接合する場合、微小流路の溝を樹脂基板の両面に形成してもよいし、片面だけに形成してもよい。両面に形成する場合には、基板を積層した場合に、別の基板に形成した溝と重なり合わないように溝の設計をする必要があるが、微小流路の設計によっては重なり合うようにしてもよいことはもちろんである。
単純な場合には一枚の微小流路の溝を形成した樹脂基板と溝を微小流路に形成する樹脂蓋基板とを重合して接合して一体化して樹脂製の微小流路化学デバイスとする。
When the substrates in the present invention are pressure bonded, the grooves of the microchannels may be formed on both sides of the resin substrate or only on one side. When forming on both sides, it is necessary to design the groove so that it does not overlap with the groove formed on another substrate when the substrates are stacked. Of course it is good.
In a simple case, a resin substrate formed with a single microchannel groove and a resin lid substrate that forms a groove in the microchannel are polymerized and joined together to form a resin microchannel chemical device. To do.

微小流路に流すべき液や気体などの量が多くなる場合には、複数枚の微小流路の溝を形成した樹脂基板と樹脂蓋基板とを重合して接合し一体化して樹脂製の微小流路化学デバイスとする。このような場合には、樹脂基板同士が他の樹脂基板の表面に形成された微小流路となるべき溝を微小流路に形成する樹脂蓋基板の役目をすることになる。そして、最後に残った溝を微小流路とする蓋基板を重合して接合し一体化することになる。多数の基板を重合して接合し一体化する場合の順序としては、必要とする基板全部を同時に接合し一体化してもよいし、順次基板を接合し一体化してもよいし、複数枚の基板をまず接合し、このようなものをいくつか順次、あるいは同時に重ね合わせて接合し一体化してもよい。   When the amount of liquid or gas to be flowed through the microchannel increases, the resin substrate and the resin lid substrate on which a plurality of microchannel grooves are formed are joined and integrated to form a resin microchannel. A channel chemical device. In such a case, the resin substrates serve as a resin lid substrate that forms grooves in the microchannel that should become microchannels formed on the surface of another resin substrate. Then, the lid substrate having the last remaining groove as a minute flow path is polymerized and joined to be integrated. As a sequence in the case of superposing and joining a large number of substrates, all the necessary substrates may be joined and integrated simultaneously, or the substrates may be joined and integrated sequentially, or a plurality of substrates. May be joined together, and several of these may be joined one after the other or simultaneously.

プレス手段としては、接合する必要枚数の基板を積層したものを挟み込んで加圧する形式のものであればどのようなプレス機械でも使用することができる。通常プレス機械は、機械プレスと液圧プレスに大別されるが、いずれも使用することができる。製造する規模と大きさとかける圧力により目的にあったものが使用することができる。   As the pressing means, any pressing machine can be used as long as it is a type that sandwiches and pressurizes a laminate of a required number of substrates to be joined. Usually, the press machine is roughly classified into a mechanical press and a hydraulic press, and any of them can be used. Depending on the scale to be produced, the size and the pressure applied, a product suitable for the purpose can be used.

ロール加圧手段は、回転ロールの間に積層するべき基板材料を通して加圧接合するものであり、任意の枚数の基板を重合してこのロール間に通して短時間で加圧して接合することができるので非常に便利である。また接合する材料がシート状あるいはフィルム状などの形状の長尺ものの場合に連続的に加圧接合することができるロールラミネーション手段がとくに便利である。このロール加圧手段では、一対の回転ロールをいくつか並べてこれらを順次通して接合操作を実施してもよい。   The roll pressurizing means pressurizes and joins through the substrate material to be laminated between the rotating rolls, and can superpose and bond any number of substrates through the rolls and pressurize them in a short time. It is very convenient because it can. In addition, roll lamination means capable of continuous pressure bonding when the material to be bonded is a long sheet or film is particularly convenient. In this roll pressurizing means, a pair of rotating rolls may be arranged side by side and these may be sequentially passed to perform the joining operation.

本発明において、微小流路の溝を表面に形成した任意の枚数の樹脂基板と前記溝を微小流路に形成する樹脂蓋基板とを接合して樹脂製微小流路化学デバイスを製造する方法とは上述のような場合のすべてを包含するものである。   In the present invention, a method for producing a resin-made microchannel chemical device by bonding an arbitrary number of resin substrates having microchannel grooves formed on the surface thereof and a resin lid substrate for forming the grooves in the microchannels; Includes all of the above cases.

微小流路化学デバイスの外部との接続を可能とするための補助手段としては大型溝あるいは孔がある。大型溝は、外部との接続を可能とする大型溝をあらかじめ設けこれに続いて微小流路の溝を表面に形成してもよい。孔としては、基板に外部との接続を可能とする貫通孔をあらかじめ穿設しておいてもよい。   As an auxiliary means for enabling connection to the outside of the microchannel chemical device, there is a large groove or hole. The large groove may be provided in advance with a large groove that can be connected to the outside, and subsequently, a groove of a microchannel may be formed on the surface. As the hole, a through hole that allows connection to the outside may be formed in the substrate in advance.

本発明の製造方法を図面を用いて説明する。   The production method of the present invention will be described with reference to the drawings.

図1は、基板の表面の真空紫外線処理を示す模式図を示す。ここで10は真空紫外線発生のための真空紫外線光源を、11は光源10より照射される真空紫外線11を、3は微小流路の溝5を表面に形成した樹脂基板を、4は溝を微小流路に形成する樹脂蓋基板を、7および8は真空紫外線11により改質された樹脂基板3と樹脂蓋基板4のそれぞれの表面改質層を、5は微小流路の溝をそれぞれ示す。
まず、樹脂基板3と樹脂蓋基板4の接合するべき表面を、必要に応じて溶剤などを用いて洗浄した後、真空紫外線光源10から真空紫外線11を照射して樹脂基板3の表面に表面改質層7と樹脂蓋基板4の表面に表面改質層8を形成させる。
FIG. 1 is a schematic diagram showing vacuum ultraviolet treatment of the surface of a substrate. Here, 10 is a vacuum ultraviolet light source for generating vacuum ultraviolet light, 11 is a vacuum ultraviolet light 11 irradiated from the light source 10, 3 is a resin substrate on which a groove 5 of a micro flow path is formed, and 4 is a micro groove. The resin lid substrate formed in the flow path, 7 and 8 are the surface modification layers of the resin substrate 3 and the resin lid substrate 4 modified by the vacuum ultraviolet ray 11, and 5 is the groove of the minute flow path.
First, the surface to be bonded between the resin substrate 3 and the resin lid substrate 4 is cleaned with a solvent or the like as necessary, and then the surface of the resin substrate 3 is modified by irradiating the vacuum ultraviolet light 11 from the vacuum ultraviolet light source 10. A surface modification layer 8 is formed on the surface of the quality layer 7 and the resin lid substrate 4.

図2は、図1で処理した両基板を接合する場合のプロセスの模式図を示す。
図1で処理した樹脂基板3と樹脂蓋基板4とをそれぞれ表面改質層7と8とを向かい合わせて重合し、ついで加熱・加圧し両基板を接合する。この際、微小流路の溝5は、樹脂蓋基板により最終的に微小流路となる。
FIG. 2 is a schematic diagram of a process in the case of bonding both substrates processed in FIG.
The resin substrate 3 and the resin lid substrate 4 processed in FIG. 1 are polymerized with the surface modification layers 7 and 8 facing each other, and then heated and pressurized to join the two substrates. At this time, the groove 5 of the minute channel finally becomes a minute channel by the resin lid substrate.

図3は、図2の微小流路の溝5の長手方向の断面の模式図である。ここでは、外部への接続を可能とする大型溝6に続いて微小流路の溝5を形成したものを示してある。   FIG. 3 is a schematic view of a cross section in the longitudinal direction of the groove 5 of the microchannel in FIG. In this example, a large channel 6 that enables connection to the outside is formed, followed by the formation of a micro flow channel 5.

図4は、樹脂基板と樹脂蓋基板とを加熱・加圧して接合した後の一体化した微小流路化学デバイス1を示すもので、図2で示されたものに対応するものである。   FIG. 4 shows the integrated micro-channel chemical device 1 after the resin substrate and the resin lid substrate are joined by heating and pressurizing, and corresponds to the one shown in FIG.

図5は、シート状あるいはフィルム状のものを使用して微小流路化学デバイスを量産化する場合の概念図である。ここでは、あらかじめ微小流路の溝などを設けたシート状の樹脂基板と微小流路に形成するシート状の樹脂蓋基板をそれぞれロール状に巻いたものを順次繰り出して真空紫外線光源からの真空紫外線で処理し、ついでロールラミネーション手段により両者と接合することにより一体化し、最後にそれぞれに裁断して微小流路化学デバイスにするものである。ここでは、樹脂基板となるシート状のものと樹脂蓋基板となるシート状のものとそれぞれ1つの場合を示してあるが、樹脂基板となるシート状のものを複数枚用意して同時にロールラミネーション手段により積層・接合してよいし、それぞれのシート状のものを2シートまず接合し、さらにそれに別のシート状のものを接合するという操作を繰り返して必要枚数の基板を積層・接合して、微小流路化学デバイスとしてもよい。   FIG. 5 is a conceptual diagram in the case of mass production of a microchannel chemical device using a sheet or film. Here, a sheet-shaped resin substrate provided with a groove for a micro-channel in advance and a sheet-shaped resin lid substrate formed in the micro-channel are each rolled out in order to obtain a vacuum ultraviolet ray from a vacuum ultraviolet light source. Then, they are integrated by joining with both by roll lamination means, and finally cut into each to form a microchannel chemical device. Here, there is shown one case each of a sheet-like material to be a resin substrate and a sheet-like material to be a resin lid substrate, but a plurality of sheet-like materials to be a resin substrate are prepared simultaneously and roll lamination means The two sheets can be laminated and joined together, and two sheets of each sheet are joined first, and then another sheet is joined again to laminate and join the required number of substrates. It is good also as a channel chemical device.

本件発明の奏する効果としては、高エネルギー真空紫外線の照射処理し加圧手段により接合が可能な樹脂で微小流路を形成した基板および蓋基板で接着しようとする面をまず172nm単一波長の高エネルギー真空紫外線を照射して前処理を行い、ついで基板を積層し塑性変形温度未満までの温度に加熱し、あるいは加熱することなく加圧して両者を接合することによって簡便で容易に樹脂製微小流路化学デバイスを製造できるという効果を奏する。そして、この製造方法により樹脂製微小流路化学デバイスの懸案であった流路構造を保持した状態での強固な接合が可能となり、その加工プロセスの簡便さから低コストの樹脂製微小流路化学デバイスを広く市場に提供可能となる。   The effect exerted by the present invention is that the surface to be bonded with the substrate having the micro flow path formed of the resin that can be bonded by the high-pressure vacuum ultraviolet ray and bonded by the pressurizing means and the surface to be bonded with the lid substrate is first a high wavelength of 172 nm. Pretreatment by irradiating energy vacuum ultraviolet rays, then laminating the substrate and heating it to a temperature below the plastic deformation temperature, or pressurizing without heating and joining the two together is easy and easy. This produces the effect that a road chemical device can be manufactured. This manufacturing method enables strong bonding while maintaining the flow channel structure, which has been a concern for resin microchannel chemical devices. Devices can be widely marketed.

以下に、本発明を具体化した例を示すが、これに限定されるものではない。   Although the example which actualized this invention is shown below, it is not limited to this.

[実施例1]
蛍光分析用として高透明非晶質樹脂による微小流路化学デバイスを製作した。
最初に、微小流路を形成した基板と貫通孔付き蓋基板の2種類の基板を射出成形法により製作した。使用した樹脂は、ポリメチルメタクリレート樹脂(三菱レイヨン製、商品名アクリペットVH、溶融温度245℃)であって、成形条件は、標準条件で、外形30mm×70mm、厚さ1.0mmのプレート状の基板を成形した。微小流路を形成した基板を成形する場合には、あらかじめ所望の微小流路パターンの雄型を形成した金型を用いた。各基板は厚さ1.0mm、外形30mm×70mmのプレート状のものである。
まず、これらの2枚の基板をイソプロピルアルコールに浸漬して超音波洗浄し、続いて窒素ガスの吹きつけにより乾操後、172nm単一波長誘電体バリア放電ランプを用いて真空紫外線(VUV)を2分間照射し前処理とした。VUVの酸素や水分への吸収効率と被処理表面への到達効率の点から、光源と処理すべき基板との間隙は1.0mmとした。
そして、この前処理した2枚の基板を治具で圧着し雰囲気温度80℃にて加熱、徐冷後に高透明で強固な接合強度を備えた微小流路化学デバイスを得た。徐冷後の2枚の基板の接合強度は、接合後に48時間静置した後にJIS K 6850 に準拠し引張せん断接着強さを実測したところ、検査数10検体にわたり、6.3kgf/cm(=62.1N/cm)〜6.8kgf/cm(=66.7N/cm)の接合強度であった。また、接合後基板の短辺をそれぞれ左右の第1指・第2指で保持し、捻(ひね)っても剥離しなかった。更に、雰囲気温度の80℃の代わりに70℃にて加熱、徐冷後に高透明で強固な接合強度を備えた微小流路化学デバイスを得たものも同様の結果であった。
[Example 1]
A microchannel chemical device using a highly transparent amorphous resin was fabricated for fluorescence analysis.
First, two types of substrates, a substrate on which a microchannel was formed and a lid substrate with a through hole, were manufactured by an injection molding method. The resin used was a polymethyl methacrylate resin (product name: Acrypet VH, manufactured by Mitsubishi Rayon, melting temperature: 245 ° C.), and the molding conditions were standard, with a plate shape having an outer shape of 30 mm × 70 mm and a thickness of 1.0 mm. The substrate was molded. In the case of molding a substrate on which a microchannel was formed, a mold in which a male mold having a desired microchannel pattern was formed in advance was used. Each substrate is a plate having a thickness of 1.0 mm and an outer shape of 30 mm × 70 mm.
First, these two substrates are immersed in isopropyl alcohol and subjected to ultrasonic cleaning, followed by drying by blowing nitrogen gas, and then applying vacuum ultraviolet rays (VUV) using a 172 nm single wavelength dielectric barrier discharge lamp. Irradiated for 2 minutes for pretreatment. The gap between the light source and the substrate to be processed was set to 1.0 mm from the viewpoint of the absorption efficiency of VUV into oxygen and moisture and the efficiency of reaching the surface to be processed.
Then, the two pretreated substrates were pressure-bonded with a jig, heated at an ambient temperature of 80 ° C., and slowly cooled to obtain a highly transparent and strong microchannel chemical device having strong bonding strength. The bonded strength of the two substrates after slow cooling was measured for tensile shear adhesive strength in accordance with JIS K 6850 after standing for 48 hours after bonding. As a result, 6.3 kgf / cm 2 ( = 62.1 N / cm 2 ) to 6.8 kgf / cm 2 (= 66.7 N / cm 2 ). Further, the short sides of the substrates after bonding were respectively held by the first and second fingers on the left and right sides, and did not peel off even when twisted. Furthermore, the same result was obtained when a microchannel chemical device having a high transparent and strong bonding strength after heating and slow cooling at 70 ° C. instead of the atmospheric temperature of 80 ° C. was obtained.

[実施例2]
実施例1と全く同じ部材を準備し、真空紫外線を2分間照射し、直ちに常温雰囲気下において治具で圧着し、治具より解放した後48時間静置して試料を作製した。この試料を用いてJIS K6850に準拠し引張せん断接着強さを実測したところ、検査数10検体にわたり、5.5kgf/cm(=53.9N/cm)〜6.9kgf/cm(=67.7N/cm)の接合強度であった。また、接合後基板の短辺をそれぞれ左右の第1指・第2指で保持し、捻(ひね)っても剥離しなかった。
[Example 2]
The same member as in Example 1 was prepared, irradiated with vacuum ultraviolet rays for 2 minutes, immediately crimped with a jig in a normal temperature atmosphere, released from the jig and allowed to stand for 48 hours to prepare a sample. Using this sample, the tensile shear bond strength was measured in accordance with JIS K6850, and 5.5 kgf / cm 2 (= 53.9 N / cm 2 ) to 6.9 kgf / cm 2 (= 67.7 N / cm 2 ). Further, the short sides of the substrates after bonding were respectively held by the first and second fingers on the left and right sides, and did not peel off even when twisted.

[比較例1]
真空紫外光照射処理のみを行わなかった基板を用いた点を除いて、実施例1と同じ操作を繰り返した。接合された基板は、加熱・徐冷後は一見接合したかにみえたが、JIS K 6850に準拠し引張せん断接着強さを実測したところ0.5kgf/cm
(=4.9N/cm)以下の接合強度でしかなく、捻(ひね)った瞬間に剥離した。
[Comparative Example 1]
The same operation as in Example 1 was repeated except that a substrate that was not subjected to only the vacuum ultraviolet light irradiation treatment was used. The bonded substrate seemed to be bonded at first glance after heating and slow cooling, but when the tensile shear bond strength was measured in accordance with JIS K 6850, it was 0.5 kgf / cm 2.
The bond strength was not more than (= 4.9 N / cm 2 ) and peeled at the moment of twisting.

[比較例2]
真空紫外光照射処理のみを行わなかった基板を用いた点と加熱温度(雰囲気温度)を90℃とした点を除いて、実施例1と同じ操作を繰り返した加熱・徐冷後の微小流路は変形により部分的に過大な深さ変動が発生した。また、一見接合したかにみえたが、JIS K 6850に準拠し引張せん断接着強さを実測したところ0.5kgf/cm(4.9N/ cm)以下の接合強度でしかなく、捻(ひね)った瞬間に剥離した。
[Comparative Example 2]
A micro-channel after heating / slow cooling in which the same operation as in Example 1 was repeated except that a substrate that was not subjected to only the vacuum ultraviolet light irradiation treatment was used and the heating temperature (atmosphere temperature) was 90 ° C. The deformation caused partly excessive depth variation. Moreover, although it seemed to be joined at first glance, when the tensile shear adhesive strength was measured in accordance with JIS K 6850, the joint strength was 0.5 kgf / cm 2 (4.9 N / cm 2 ) or less. It peeled at the moment of twist.

[比較例3]
真空紫外光照射処理のみを行わなかった基板を用いた点と加熱温度(雰囲気温度)を120℃とした点を除いて、実施例1と同じ操作を繰り返した。加熱・徐冷後の微小流路は変形により部分的に過大な深さ変動が発生し、埋没した。微小流路基板と蓋基板は完全に融和した。
[Comparative Example 3]
The same operation as in Example 1 was repeated except that a substrate that was not subjected only to the vacuum ultraviolet light irradiation treatment was used and the heating temperature (atmosphere temperature) was 120 ° C. The microchannel after heating / slow cooling partially buried an excessive depth variation due to deformation. The microchannel substrate and the lid substrate were completely integrated.

[実施例3]
高透明非晶質樹脂としてシクロオレフィンポリマー(ZEONEX330R,日本ゼオン社製)に代えるとともに加熱操作温度(雰囲気温度)を90℃に変更したほかは、実施例1と同じ操作を繰り返した。徐冷後に48時間静置後、JIS K 6850に準拠し引張せん断接着強さを実測したところ、検査数10検体にわたり、7.2kgf/cm(=70.6N/cm)〜7.8kgf/cm(=76.5N/cm)の接合強度であった。また、接合後基板の短辺をそれぞれ左右の第1指・第2指で保持し、捻(ひね)っても剥離しなかった。また、微小流路の深さ寸法を測度したところ、幅100μm、深さ40μmに対して1%以下の変化率であった。また、加熱操作温度(雰囲気温度)の90℃の代わりに80℃で行ったものも同様の結果を得た。
[Example 3]
The same operation as in Example 1 was repeated except that the highly transparent amorphous resin was changed to a cycloolefin polymer (ZEONEX 330R, manufactured by Nippon Zeon Co., Ltd.) and the heating operation temperature (atmosphere temperature) was changed to 90 ° C. When the tensile shear bond strength was measured according to JIS K 6850 after standing still for 48 hours after slow cooling, it was 7.2 kgf / cm 2 (= 70.6 N / cm 2 ) to 7.8 kgf over 10 specimens. The bonding strength was / cm 2 (= 76.5 N / cm 2 ). Further, the short sides of the substrates after bonding were respectively held by the first and second fingers on the left and right sides, and did not peel off even when twisted. Further, when the depth dimension of the microchannel was measured, the change rate was 1% or less with respect to a width of 100 μm and a depth of 40 μm. Similar results were obtained when the heating operation temperature (atmosphere temperature) was 90 ° C. instead of 90 ° C.

[比較例4]
高エネルギー真空紫外光照射処理のみを行わなかった基板を用いた点を除いて、実施例3と同じ操作を繰り返した。接合された基板は、加熱・徐冷後は一見接合したかにみえたが、JIS K 6850に準拠し引張せん断接着強さを実測したところ0.4kgf/cm(=3.9N/cm)以下の接合強度でしかなく、捻(ひね)った瞬間に剥離した。
[Comparative Example 4]
The same operation as in Example 3 was repeated except that a substrate on which only the high energy vacuum ultraviolet light irradiation treatment was not used was used. Although the bonded substrate seemed to be bonded at first glance after heating and slow cooling, when the tensile shear bond strength was measured in accordance with JIS K 6850, 0.4 kgf / cm 2 (= 3.9 N / cm 2). ) It had only the following bonding strength, and peeled off at the moment of twisting.

[実施例4]
マイクロリアクター用として、非透明半結晶性、線状芳香性樹脂による微小流路化学デバイスを作成した。微小流路を形成した基板と貫通孔付き蓋基板の2種類の基板は、ポリエーテルエーテルケトン(PEEK 151G,ビクトレツクス・エムシー社製)を用いて、公知の条件の下に射出成型法により製作した。
真空紫外光の照射時間を5分間とした以外の前処理は、実施例1と同様に行った。圧着条件は高透明非晶質樹脂群とは全く異なり、雰囲気を133.32Pa〜399.96Pa(=1Torr〜3Torr)に減圧し、加熱操作温度(雰囲気温度)を300℃とし緩やかに昇温させた後に一定時間その温度に保ち、ついで徐冷する。その後48時間静置後、JIS K 6850に準拠し引張せん断接着強さを実測したところ、10.2kgf/cm(=100N/cm)〜11.0kgf/cm(=107.9N/cm)の接合強度であった。また、接合後基板の短辺をそれぞれ左右の第1指・第2指で保持し、捻(ひね)っても剥難しなかった。また、微小流路の深さ寸法を測定したところ、幅100μm、深さ40μmに対して10%以下の変化率であった。
[Example 4]
For microreactors, a microchannel chemical device with non-transparent semi-crystalline, linear aromatic resin was prepared. Two types of substrates, a substrate with a microchannel and a lid substrate with a through-hole, were manufactured by injection molding under known conditions using polyetheretherketone (PEEK 151G, manufactured by Victorex MC). .
Pretreatment was performed in the same manner as in Example 1 except that the irradiation time of vacuum ultraviolet light was 5 minutes. The pressure bonding conditions are completely different from those of the highly transparent amorphous resin group, and the atmosphere is reduced to 133.32 Pa to 399.96 Pa (= 1 Torr to 3 Torr), and the heating operation temperature (atmosphere temperature) is set to 300 ° C., and the temperature is gradually increased. After that, the temperature is kept for a certain time and then gradually cooled. Thereafter, after standing for 48 hours, the tensile shear bond strength was measured according to JIS K 6850, and 10.2 kgf / cm 2 (= 100 N / cm 2 ) to 11.0 kgf / cm 2 (= 107.9 N / cm). 2 ). Further, the short sides of the substrates after bonding were held by the first and second fingers on the left and right sides, respectively, and were not peeled off even when twisted. Moreover, when the depth dimension of the microchannel was measured, the change rate was 10% or less with respect to a width of 100 μm and a depth of 40 μm.

[比較例5]
真空紫外光照射処理のみを行わなかった基板を用いた点を除いて、実施例4と同じ操作を繰り返したところ、2枚の基板は全く接合しなかった。
[Comparative Example 5]
The same operation as in Example 4 was repeated except that a substrate that was not subjected to only the vacuum ultraviolet light irradiation treatment was used. As a result, the two substrates were not joined at all.

[実施例5]
2枚の基板を、それぞれの厚さを125μmのフィルムとし、公知の圧縮成型法により流路を形成した微小流路フィルムと蓋フィルムを作成した。該フィルム同士は接合後に外形を切り出す工程を経て、フィルム状樹脂製微小流路化学デバイスの個片として完成する。
微小流路と外部の接続の為の貫通孔は予め機械加工により施しても良かったが、貫通孔の無い蓋フィルムにより微小流路を封止した。外部との接続は、予め微小流路に連続して形成した大型溝部を切断することにより断面に露呈する大型溝が貫通孔として機能する。
使用した樹脂は、ポリメチルメタクリレートフィルム(テクノロイS003、住友化学社製)であり、フォトリソグラフィ法により作成した雄型を用いて公知の圧縮成型法により微小流路と大型流路を形成した。その後、真空紫外線を30秒間照射し、連続して圧着に供した。連続圧着には、ロールラミネーショで加熱・加圧した。ロールラミネーションにはゴムライニング付きロール内に加熱機構を具備するフィルムラミネーターを用い、適切な加圧力とロール表面温度を設定し加工した。ロールラミネーションのロール表面の温度95℃で接合後48時間静置した後にJIS K 6850に準拠し引張せん断接着強さを実測したところ、実施例1と同様の接合強度を得た。更に、ロール温度を常温として操作した場合には接合強度が15%〜5%程度低下するが、基本的に同様の効果が認められた。
[Example 5]
The two substrates were each made into a film having a thickness of 125 μm, and a micro-channel film and a lid film in which channels were formed by a known compression molding method were prepared. The films are completed as individual pieces of a film-like resin microchannel chemical device through a process of cutting out the outer shape after joining.
The through hole for connecting the micro channel to the outside may be previously machined, but the micro channel was sealed with a lid film having no through hole. For connection to the outside, the large groove exposed in the cross section functions as a through hole by cutting a large groove portion formed continuously in advance in the micro flow path.
The resin used was a polymethyl methacrylate film (Technoloy S003, manufactured by Sumitomo Chemical Co., Ltd.), and a microchannel and a large channel were formed by a known compression molding method using a male mold prepared by a photolithography method. Then, vacuum ultraviolet rays were irradiated for 30 seconds, and it used for crimping | bonding continuously. For continuous pressure bonding, heat and pressure were applied by roll lamination. For roll lamination, a film laminator equipped with a heating mechanism was used in a roll with rubber lining, and an appropriate pressure and roll surface temperature were set and processed. When the tensile shear bond strength was measured in accordance with JIS K 6850 after standing for 48 hours after bonding at a temperature of 95 ° C. on the roll surface of the roll lamination, the same bonding strength as in Example 1 was obtained. Furthermore, when the roll temperature is operated at room temperature, the bonding strength is reduced by about 15% to 5%, but basically the same effect is recognized.

[実施例6]
2枚の基板を、それぞれの厚さを188μmのシクロオレフィンポリマー(ZEONORフィルムZF14、日本ゼオン社製)に代えるとともにロールラミネーションのロール表面の温度を105℃に変更したほかは、実施例5と同じ操作を繰り返した。ロールラミネーション後48時間静置した後にJIS K 6850 に準拠し引張せん断接着強さを実測したところ、実施例5と同様の結果を得た。
[Example 6]
The same as Example 5 except that the two substrates were each replaced with a cycloolefin polymer (ZEONOR film ZF14, manufactured by Nippon Zeon Co., Ltd.) having a thickness of 188 μm and the roll lamination roll surface temperature was changed to 105 ° C. The operation was repeated. After standing for 48 hours after roll lamination, the tensile shear bond strength was measured according to JIS K 6850, and the same result as in Example 5 was obtained.

基板の表面の真空紫外線処理のプロセスの模式図を示す。The schematic diagram of the process of the vacuum ultraviolet-ray process of the surface of a board | substrate is shown. 図1で処理した両基板を接合する場合のプロセスの模式図を示す。The schematic diagram of the process in the case of joining both the board | substrates processed in FIG. 1 is shown. 図2の微小流路の溝5の長手方向の断面の模式図である。It is a schematic diagram of the cross section of the longitudinal direction of the groove | channel 5 of the microchannel of FIG. 図2ないし図3で接合することにより得られた微小流路化学デバイス1を示すものである。The microchannel chemical device 1 obtained by joining in FIG. 2 thru | or FIG. 3 is shown. シート状あるいはフィルム状のものを使用して微小流路化学デバイスを量産化する場合の概念図を示す。The conceptual diagram in the case of mass-producing a microchannel chemical device using a sheet form or a film form is shown.

符号の説明Explanation of symbols

1:微小流路化学デバイス
2:微小流路
3:樹脂基板
4:樹脂蓋基板
5:微小流路の溝
6:大型溝
7,8:表面改質層
10:真空紫外線光源
11:真空紫外線
1: Micro-channel chemical device 2: Micro-channel 3: Resin substrate 4: Resin lid substrate 5: Micro-channel groove 6: Large groove 7, 8: Surface modification layer 10: Vacuum ultraviolet light source 11: Vacuum ultraviolet

Claims (10)

任意の枚数の微小流路の溝を表面に形成した樹脂基板と前記溝を微小流路に形成する樹脂蓋基板とを接合して樹脂製微小流路化学デバイスを製造する方法において、
樹脂の材料が真空紫外線の照射処理し加圧手段により接合が可能な樹脂であり、
両基板あるいはその一方の基板の表面を真空紫外線を照射し、ついで基板を積層し塑性変形温度未満までの温度に加熱し、あるいは加熱することなく加圧して両者を接合することを特徴とする上記樹脂製微小流路化学デバイスを製造する方法。
In a method of manufacturing a resin-made microchannel chemical device by joining a resin substrate in which grooves of an arbitrary number of microchannels are formed on a surface and a resin lid substrate that forms the grooves in the microchannels,
The resin material is a resin that can be bonded by means of pressurizing means after irradiation with vacuum ultraviolet rays,
The surface of both substrates or one of the substrates is irradiated with vacuum ultraviolet rays, and then the substrates are laminated and heated to a temperature below the plastic deformation temperature, or pressed without heating and bonded to each other. A method of manufacturing a resin microchannel chemical device.
請求項1記載の樹脂製微小流路化学デバイスを製造する方法において、加圧手段が
プレス手段またはロール加圧手段であることを特徴とする製造方法。
The method for producing a resin microchannel chemical device according to claim 1, wherein the pressurizing means is a press means or a roll pressurizing means.
両基板の何れか一方あるいは双方に外部との接続を可能とする貫通孔をあらかじめ穿設した基板を使用することを特徴とする請求項1または請求項2に記載の樹脂製微小流路化学デバイスを製造する方法。   The resin microchannel chemical device according to claim 1 or 2, wherein a substrate in which a through-hole capable of being connected to the outside is formed in either one or both of the substrates in advance is used. How to manufacture. 外部との接続を可能とする大型溝に続いて微小流路の溝を表面に形成した樹脂基板を使用することを特徴とする請求項1または請求項2に記載の樹脂製微小流路化学デバイスを製造する方法。   3. A resin microchannel chemical device according to claim 1 or 2, wherein a resin substrate having a microchannel groove formed on the surface thereof following a large groove capable of being connected to the outside is used. How to manufacture. 真空紫外線の波長が200〜120nmであることを特徴とする請求項1ないし4のいずれか1項に記載の樹脂製微小流路化学デバイスを製造する方法。   The method for producing a resin microchannel chemical device according to any one of claims 1 to 4, wherein the wavelength of the vacuum ultraviolet ray is 200 to 120 nm. 真空紫外線の波長が172nmであることを特徴とする請求項5に記載の樹脂製微小流路化学デバイスを製造する方法。   6. The method for producing a resin microchannel chemical device according to claim 5, wherein the wavelength of the vacuum ultraviolet ray is 172 nm. 微小流路の溝および外部との接続を可能とする貫通孔のいずれかあるいは双方がフォトリソグラフィにより形成されたものであることを特徴とする請求項1ないし6のいずれか1項に記載の樹脂製微小流路化学デバイスを製造する方法。   The resin according to any one of claims 1 to 6, wherein either or both of the groove of the microchannel and the through hole enabling connection to the outside are formed by photolithography. A method of manufacturing a manufactured microchannel chemical device. 微小流路の溝を表面に形成した樹脂基板と前記溝を微小流路に形成する樹脂蓋基板として長尺なロール状物で供給され、接合後に樹脂製微小流路化学デバイスに切断加工することを特徴とする請求項1ないし7のいずれか1項に記載の樹脂製微小流路化学デバイスを製造する方法。   A resin substrate having a micro-channel groove formed on the surface and a resin-cover substrate that forms the groove in the micro-channel, supplied as a long roll, and cut into a resin micro-channel chemical device after bonding A method for producing a resin microchannel chemical device according to any one of claims 1 to 7. 基板樹脂がポリメチルメタクリレート、シクロオレフィンポリマーおよびポリエーテルエーテルケトンなる群より選ばれる樹脂であることを特徴とする請求項1ないし8のいずれか1項に記載の樹脂製微小流路化学デバイスを製造する方法。   9. The resin microchannel chemical device according to claim 1, wherein the substrate resin is a resin selected from the group consisting of polymethyl methacrylate, cycloolefin polymer, and polyether ether ketone. how to. 請求項1ないし9に記載のいずれか1項の方法によって製造された樹脂製微小流路化学デバイス。
A resin microchannel chemical device manufactured by the method according to any one of claims 1 to 9.
JP2005001417A 2005-01-06 2005-01-06 Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method Active JP4993243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001417A JP4993243B2 (en) 2005-01-06 2005-01-06 Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001417A JP4993243B2 (en) 2005-01-06 2005-01-06 Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method

Publications (2)

Publication Number Publication Date
JP2006187730A true JP2006187730A (en) 2006-07-20
JP4993243B2 JP4993243B2 (en) 2012-08-08

Family

ID=36795386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001417A Active JP4993243B2 (en) 2005-01-06 2005-01-06 Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method

Country Status (1)

Country Link
JP (1) JP4993243B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130836A (en) * 2005-11-09 2007-05-31 Ushio Inc Joining method
JP2008051788A (en) * 2006-08-28 2008-03-06 Takasago Electric Inc Fluid manifold
WO2008065868A1 (en) * 2006-12-01 2008-06-05 Konica Minolta Opto, Inc. Microchip substrate bonding method and microchip
WO2008087799A1 (en) * 2007-01-18 2008-07-24 Konica Minolta Opto, Inc. Microchip and method for manufacturing the microchip
WO2008087800A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Opto, Inc. Process for producing microchip, and microchip
JP2009098465A (en) * 2007-10-17 2009-05-07 Seiko Epson Corp Polarization plate, and image display device
JP2009098464A (en) * 2007-10-17 2009-05-07 Seiko Epson Corp Polarizer having junctional membrane, and image display
WO2009101845A1 (en) * 2008-02-15 2009-08-20 Konica Minolta Opto, Inc. Microchip and method for manufacturing the same
WO2010016371A1 (en) * 2008-08-08 2010-02-11 コニカミノルタオプト株式会社 Microchip, microchip manufacturing method and microchip manufacturing device
JPWO2008065880A1 (en) * 2006-12-01 2010-03-04 コニカミノルタオプト株式会社 Microchip substrate bonding method and microchip
JP2011047708A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing same
JP2011047707A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing the same
JP2011047709A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing the same
EP2460646A1 (en) 2010-12-01 2012-06-06 Arkray, Inc. Microfluidic device and method for manufacturing the same
WO2012077383A1 (en) * 2010-12-06 2012-06-14 アルプス電気株式会社 Method for manufacturing microchip
WO2012144408A1 (en) * 2011-04-20 2012-10-26 ウシオ電機株式会社 Method for bonding work and apparatus for bonding work
US8499794B2 (en) 2008-10-28 2013-08-06 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
WO2015025424A1 (en) * 2013-08-23 2015-02-26 株式会社朝日Fr研究所 Microchemical chip and reaction device
US9283562B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9696253B2 (en) 2013-06-04 2017-07-04 Ushio Denki Kabushiki Kaisha Microchip and film forming method for metal thin film of microchip
JP2018009924A (en) * 2016-07-15 2018-01-18 ウシオ電機株式会社 Bonding method for substrate and manufacturing method for microchip
US9977043B2 (en) 2012-05-22 2018-05-22 Ushio Denki Kabushiki Kaisha Method of supplying reagent to microchip, microchip, and device for supplying reagent to microchip
JP2018083294A (en) * 2016-11-21 2018-05-31 ウシオ電機株式会社 Method of laminating substrate, microchip and manufacturing method therefor
WO2018143274A1 (en) * 2017-02-03 2018-08-09 ポリプラスチックス株式会社 Method for bonding resin molded articles
JP2018122567A (en) * 2017-02-03 2018-08-09 ポリプラスチックス株式会社 Method for bonding resin molded article
WO2018180508A1 (en) 2017-03-30 2018-10-04 日本ゼオン株式会社 Microchannel chip manufacturing method
WO2018216804A1 (en) * 2017-05-25 2018-11-29 ポリプラスチックス株式会社 Resin molded article bonding method
WO2019082471A1 (en) 2017-10-27 2019-05-02 ウシオ電機株式会社 Microchip
US10286640B2 (en) 2015-03-19 2019-05-14 Ushio Denki Kabushiki Kaisha Process for laminating works together
WO2019138855A1 (en) 2018-01-15 2019-07-18 パイクリスタル株式会社 Flexible substrate, electronic device, and method for manufacturing electronic device
US11110451B2 (en) 2015-09-30 2021-09-07 Sony Corporation Micro-channel device and method for manufacturing micro-channel device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289718B2 (en) 2019-05-13 2023-06-12 東京応化工業株式会社 Flow path device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027813A (en) * 1998-07-14 2000-01-25 Rikagaku Kenkyusho Trace liquid control mechanism
JP2003515645A (en) * 1999-12-02 2003-05-07 ダウ コーニング リミテッド Surface treatment of organic polymer substances
JP2003516223A (en) * 1999-12-08 2003-05-13 インスティトゥート フュア ミクロテクニック マアインズ ゲーエムベーハー Modular micro reaction system
JP2003139661A (en) * 2001-11-02 2003-05-14 Kawamura Inst Of Chem Res Microfluid device with laminated structure and method of manufacturing the same
WO2004008132A1 (en) * 2002-07-11 2004-01-22 Mitsubishi Denki Kabushiki Kaisha Bio-molecule separation cell, manufacturing method thereof, and dna fragmentation apparatus
JP2004325158A (en) * 2003-04-23 2004-11-18 Ushio Inc Joining method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027813A (en) * 1998-07-14 2000-01-25 Rikagaku Kenkyusho Trace liquid control mechanism
JP2003515645A (en) * 1999-12-02 2003-05-07 ダウ コーニング リミテッド Surface treatment of organic polymer substances
JP2003516223A (en) * 1999-12-08 2003-05-13 インスティトゥート フュア ミクロテクニック マアインズ ゲーエムベーハー Modular micro reaction system
JP2003139661A (en) * 2001-11-02 2003-05-14 Kawamura Inst Of Chem Res Microfluid device with laminated structure and method of manufacturing the same
WO2004008132A1 (en) * 2002-07-11 2004-01-22 Mitsubishi Denki Kabushiki Kaisha Bio-molecule separation cell, manufacturing method thereof, and dna fragmentation apparatus
JP2004325158A (en) * 2003-04-23 2004-11-18 Ushio Inc Joining method

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130836A (en) * 2005-11-09 2007-05-31 Ushio Inc Joining method
JP4760315B2 (en) * 2005-11-09 2011-08-31 ウシオ電機株式会社 Joining method
JP2008051788A (en) * 2006-08-28 2008-03-06 Takasago Electric Inc Fluid manifold
WO2008065868A1 (en) * 2006-12-01 2008-06-05 Konica Minolta Opto, Inc. Microchip substrate bonding method and microchip
JP4992123B2 (en) * 2006-12-01 2012-08-08 コニカミノルタアドバンストレイヤー株式会社 Microchip substrate bonding method and microchip
JPWO2008065880A1 (en) * 2006-12-01 2010-03-04 コニカミノルタオプト株式会社 Microchip substrate bonding method and microchip
JPWO2008065868A1 (en) * 2006-12-01 2010-03-04 コニカミノルタオプト株式会社 Microchip substrate bonding method and microchip
WO2008087800A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Opto, Inc. Process for producing microchip, and microchip
WO2008087799A1 (en) * 2007-01-18 2008-07-24 Konica Minolta Opto, Inc. Microchip and method for manufacturing the microchip
JP5239871B2 (en) * 2007-01-18 2013-07-17 コニカミノルタアドバンストレイヤー株式会社 Microchip and manufacturing method of microchip
JP2009098464A (en) * 2007-10-17 2009-05-07 Seiko Epson Corp Polarizer having junctional membrane, and image display
JP2009098465A (en) * 2007-10-17 2009-05-07 Seiko Epson Corp Polarization plate, and image display device
WO2009101845A1 (en) * 2008-02-15 2009-08-20 Konica Minolta Opto, Inc. Microchip and method for manufacturing the same
JPWO2009101845A1 (en) * 2008-02-15 2011-06-09 コニカミノルタオプト株式会社 Microchip and manufacturing method thereof
US9283561B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9579653B2 (en) 2008-06-26 2017-02-28 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9283562B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
WO2010016371A1 (en) * 2008-08-08 2010-02-11 コニカミノルタオプト株式会社 Microchip, microchip manufacturing method and microchip manufacturing device
US8499794B2 (en) 2008-10-28 2013-08-06 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
JP2011047709A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing the same
JP2011047707A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing the same
JP2011047708A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing same
EP2460646A1 (en) 2010-12-01 2012-06-06 Arkray, Inc. Microfluidic device and method for manufacturing the same
US9039880B2 (en) 2010-12-01 2015-05-26 Arkray, Inc. Device and method for manufacturing the same
CN103249480B (en) * 2010-12-06 2015-07-08 阿尔卑斯电气株式会社 Method for manufacturing microchip
JP5570616B2 (en) * 2010-12-06 2014-08-13 アルプス電気株式会社 Microchip manufacturing method
CN103249480A (en) * 2010-12-06 2013-08-14 阿尔卑斯电气株式会社 Method for manufacturing microchip
WO2012077383A1 (en) * 2010-12-06 2012-06-14 アルプス電気株式会社 Method for manufacturing microchip
JP2012223858A (en) * 2011-04-20 2012-11-15 Ushio Inc Method for bonding workpiece, and apparatus for bonding workpiece
WO2012144408A1 (en) * 2011-04-20 2012-10-26 ウシオ電機株式会社 Method for bonding work and apparatus for bonding work
US9511574B2 (en) 2011-04-20 2016-12-06 Ushio Denki Kabushiki Kaisha Method and apparatus for bonding workpieces together
US9977043B2 (en) 2012-05-22 2018-05-22 Ushio Denki Kabushiki Kaisha Method of supplying reagent to microchip, microchip, and device for supplying reagent to microchip
US9696253B2 (en) 2013-06-04 2017-07-04 Ushio Denki Kabushiki Kaisha Microchip and film forming method for metal thin film of microchip
US10261007B2 (en) 2013-06-04 2019-04-16 Ushio Denki Kabushiki Kaisha Microchip
WO2015025424A1 (en) * 2013-08-23 2015-02-26 株式会社朝日Fr研究所 Microchemical chip and reaction device
CN105474018A (en) * 2013-08-23 2016-04-06 株式会社朝日精细橡胶研究所 Microchemical chip and reaction device
JPWO2015025424A1 (en) * 2013-08-23 2017-03-02 株式会社朝日Fr研究所 Micro chemical chip and reaction device
US10286640B2 (en) 2015-03-19 2019-05-14 Ushio Denki Kabushiki Kaisha Process for laminating works together
US11110451B2 (en) 2015-09-30 2021-09-07 Sony Corporation Micro-channel device and method for manufacturing micro-channel device
US10487183B2 (en) 2016-07-15 2019-11-26 Ushio Denki Kabushiki Kaisha Method of bonding substrates and method of producing microchip
KR101985639B1 (en) * 2016-07-15 2019-06-03 우시오덴키 가부시키가이샤 Method of attaching substrate and manufacturing method of microchip
WO2018012276A1 (en) * 2016-07-15 2018-01-18 ウシオ電機株式会社 Substrate bonding method and microchip manufacturing method
JP2018009924A (en) * 2016-07-15 2018-01-18 ウシオ電機株式会社 Bonding method for substrate and manufacturing method for microchip
KR20190003801A (en) 2016-07-15 2019-01-09 우시오덴키 가부시키가이샤 Method of attaching substrate and manufacturing method of microchip
JP2018083294A (en) * 2016-11-21 2018-05-31 ウシオ電機株式会社 Method of laminating substrate, microchip and manufacturing method therefor
JP2018122567A (en) * 2017-02-03 2018-08-09 ポリプラスチックス株式会社 Method for bonding resin molded article
WO2018143274A1 (en) * 2017-02-03 2018-08-09 ポリプラスチックス株式会社 Method for bonding resin molded articles
JP6379323B1 (en) * 2017-02-03 2018-08-22 ポリプラスチックス株式会社 Bonding method of resin molded products
WO2018180508A1 (en) 2017-03-30 2018-10-04 日本ゼオン株式会社 Microchannel chip manufacturing method
US11484878B2 (en) 2017-03-30 2022-11-01 Zeon Corporation Method of manufacturing microchannel chip
WO2018216804A1 (en) * 2017-05-25 2018-11-29 ポリプラスチックス株式会社 Resin molded article bonding method
JPWO2018216804A1 (en) * 2017-05-25 2020-03-26 ポリプラスチックス株式会社 Method of joining resin molded products
WO2019082471A1 (en) 2017-10-27 2019-05-02 ウシオ電機株式会社 Microchip
US11542157B2 (en) 2017-10-27 2023-01-03 Ushio Denki Kabushiki Kaisha Microchip
WO2019138855A1 (en) 2018-01-15 2019-07-18 パイクリスタル株式会社 Flexible substrate, electronic device, and method for manufacturing electronic device
KR20200108879A (en) 2018-01-15 2020-09-21 파이 크리스탈 가부시키가이샤 Flexible substrate, electronic device, manufacturing method of electronic device
US20200344880A1 (en) 2018-01-15 2020-10-29 Pi-Crystal Incorporation Flexible substrate, electronic device, and method for manufacturing electronic device
US11178764B2 (en) 2018-01-15 2021-11-16 Pi-Crystal Incorporation Flexible substrate, electronic device, and method for manufacturing electronic device

Also Published As

Publication number Publication date
JP4993243B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4993243B2 (en) Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method
Shinohara et al. Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer
Tsao et al. Bonding of thermoplastic polymer microfluidics
JP4998462B2 (en) Manufacturing method of resin composite molded body
US6838156B1 (en) Method for linking two plastic work pieces without using foreign matter
US20040112518A1 (en) Polymer bonding by means of plasma activation
JP6394651B2 (en) Substrate bonding method and microchip manufacturing method
US8715446B2 (en) Latent solvent-based microfluidic apparatus, methods, and applications
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
JPWO2008087800A1 (en) Microchip manufacturing method and microchip
WO2009084622A1 (en) Method for bonding resin by vacuum ultraviolet irradiation, process for producing resin article or microchip using the method, and resin article or microchip produced by the process.
US8246774B2 (en) Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
CN100507569C (en) Process for preparing polymer microfluidic chips
JP4516606B2 (en) Stratified microfluidic structure and method for forming a stratified polymer microfluidic structure
Shinohara et al. Low‐temperature direct bonding of poly (methyl methacrylate) for polymer microchips
Zhang et al. Non-silicon substrate bonding mediated by poly (dimethylsiloxane) interfacial coating
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
El Fissi et al. Direct assembly of cyclic olefin copolymer microfluidic devices helped by dry photoresist
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JP2011214838A (en) Resin microchannel chip
Gutierrez-Rivera et al. Multilayer bonding using a conformal adsorbate film (CAF) for the fabrication of 3D monolithic microfluidic devices in photopolymer
Mahmoodi et al. Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices
JP2005199394A (en) Adhesion method of pdms substrate and the other synthetic resin substrate, and method for manufacturing microchip
US20040031558A1 (en) Method for the connection of plastic pieces
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250