JPWO2018212007A1 - Method for producing germane electrochemically - Google Patents

Method for producing germane electrochemically Download PDF

Info

Publication number
JPWO2018212007A1
JPWO2018212007A1 JP2019519183A JP2019519183A JPWO2018212007A1 JP WO2018212007 A1 JPWO2018212007 A1 JP WO2018212007A1 JP 2019519183 A JP2019519183 A JP 2019519183A JP 2019519183 A JP2019519183 A JP 2019519183A JP WO2018212007 A1 JPWO2018212007 A1 JP WO2018212007A1
Authority
JP
Japan
Prior art keywords
cathode
geh
electrochemically
germane
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519183A
Other languages
Japanese (ja)
Other versions
JP7110185B2 (en
Inventor
鈴木 淳
淳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2018212007A1 publication Critical patent/JPWO2018212007A1/en
Application granted granted Critical
Publication of JP7110185B2 publication Critical patent/JP7110185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

隔膜、陽極および銀を含む陰極を有する電気化学セル中で、ゲルマニウム化合物を含む電解液に通電して、陰極においてゲルマンを発生させて、電気化学的にゲルマンを製造する方法。A method for producing germane electrochemically by energizing an electrolytic solution containing a germanium compound in an electrochemical cell having a diaphragm, an anode and a cathode containing silver to generate germane at the cathode.

Description

本発明は、電気化学的にゲルマンを製造する方法に関する。   The present invention relates to a method for electrochemically producing germane.

従来、半導体デバイスの高速化・低消費電力化は、該デバイスの微細化等によって達成されてきたが、さらなる高速化・低消費電力化のための技術として、SiGe基板などの歪シリコンが注目されている。
該SiGe基板を作製する際の原料として、ゲルマン(GeH4)が使用されており、SiGe基板の使用の増加に伴い、GeH4の使用量も増加すると予想される。
Conventionally, high speed and low power consumption of a semiconductor device have been achieved by miniaturization of the device. However, strained silicon such as a SiGe substrate has attracted attention as a technology for further speeding up and lowering power consumption. ing.
Germane (GeH 4 ) is used as a raw material for producing the SiGe substrate, and the use amount of GeH 4 is expected to increase as the use of the SiGe substrate increases.

このようなGeH4の製造方法として、例えば、特許文献1には、陰極として、Cu合金またはSn合金を使用することで、GeH4を高い電流効率で電気化学的に製造できたことが記載されている。As such a method for producing GeH 4 , for example, Patent Document 1 describes that GeH 4 could be electrochemically produced with high current efficiency by using a Cu alloy or a Sn alloy as a cathode. ing.

また、非特許文献1には、電気化学的にGeH4を製造する際に用いる陰極として、Pt、Zn、Ti、グラファイト、Cu、Ni、Cd、Pb、Snをスクリーニングした結果、CdまたはCuが電流効率や汚染等の点で最適であったことが記載されている。Further, Non-Patent Document 1 discloses that as a cathode used when electrochemically producing GeH 4 , as a result of screening Pt, Zn, Ti, graphite, Cu, Ni, Cd, Pb, and Sn, Cd or Cu is obtained. It is described that it was optimal in terms of current efficiency, contamination, and the like.

さらに、非特許文献2には、電気化学的にGeH4を製造する際に用いる陰極として複数の陰極を調査した結果、陰極としてHgを使用した場合に、水素化率が99%以上になったことを開示している。Further, in Non-Patent Document 2, as a result of investigating a plurality of cathodes as cathodes used for electrochemically producing GeH 4 , when Hg was used as the cathode, the hydrogenation rate was 99% or more. It is disclosed that.

特開2012−52234号公報JP 2012-52234 A

Turygin et. al., Inorganic Materials, 2008, vol.44, No.10, pp.1081-1085Turygin et.al., Inorganic Materials, 2008, vol.44, No.10, pp.1081-1085 Djurkovic et. al., Glanik Hem. Drustva, Beograd, 1961, vol.25/26, pp.469-475Djurkovic et.al., Glanik Hem.Drustva, Beograd, 1961, vol.25 / 26, pp.469-475

前記文献に記載されているような従来のGeH4を電気化学的に製造する方法は、例えば、前記特許文献1の実施例で用いている陰極(McMaster-Carr社製の青銅)がメッキやコーティング等で表面にだけ有効な元素を存在させるといった方法を適用し難いことや、前記非特許文献2で用いている陰極(Hg)の毒性が高いなどの理由により、工業的にGeH4を製造する方法としては不向きであった。The conventional method for electrochemically producing GeH 4 as described in the above-mentioned literature is based on, for example, plating or coating a cathode (a bronze made by McMaster-Carr) used in an example of the above-mentioned Patent Literature 1. GeH 4 is manufactured industrially because it is difficult to apply a method of allowing an effective element to exist only on the surface, and the toxicity of the cathode (Hg) used in Non-Patent Document 2 is high. It was unsuitable as a method.

本発明の一実施形態は、GeH4を電気化学的に製造する方法として工業的に有利な方法を提供する。One embodiment of the present invention to provide an industrially advantageous method as a method for producing a GeH 4 electrochemically.

本発明者は、前記課題を解決すべく鋭意検討した結果、下記製造方法等によれば、前記課題を解決できることを見出し、本発明を完成するに至った。
本発明の構成例は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by the following manufacturing method and the like, and have completed the present invention.
The configuration example of the present invention is as follows.

[1] 隔膜、陽極および銀を含む陰極を有する電気化学セル中で、ゲルマニウム化合物を含む電解液に通電して、陰極においてゲルマンを発生させて、電気化学的にゲルマンを製造する方法。   [1] A method for producing germane electrochemically by energizing an electrolytic solution containing a germanium compound in an electrochemical cell having a diaphragm, an anode and a cathode containing silver to generate germane at the cathode.

[2] 前記電解液が、二酸化ゲルマニウムとイオン性物質とを含む電解液である、[1]に記載の製造方法。
[3] 前記イオン性物質が、水酸化カリウムまたは水酸化ナトリウムである、[2]に記載の製造方法。
[4] 前記イオン性物質が水酸化カリウムであり、前記電解液中の水酸化カリウムの濃度が1〜8mol/Lである、[2]または[3]に記載の製造方法。
[2] The method according to [1], wherein the electrolytic solution is an electrolytic solution containing germanium dioxide and an ionic substance.
[3] The production method according to [2], wherein the ionic substance is potassium hydroxide or sodium hydroxide.
[4] The method according to [2] or [3], wherein the ionic substance is potassium hydroxide, and the concentration of potassium hydroxide in the electrolyte is 1 to 8 mol / L.

[5] 前記通電の際の陰極の電流密度が30〜500mA/cm2である、[1]〜[4]のいずれかに記載の製造方法。
[6] 前記ゲルマンを発生させる際の反応温度が5〜100℃である、[1]〜[5]のいずれかに記載の製造方法。
[5] The production method according to any one of [1] to [4], wherein the current density of the cathode at the time of energization is 30 to 500 mA / cm 2 .
[6] The production method according to any one of [1] to [5], wherein a reaction temperature at which the germane is generated is 5 to 100 ° C.

本発明の一実施形態によれば、工業的に有利な方法、特に高い電流効率でGeH4を電気化学的に製造することができる。According to an embodiment of the present invention, GeH 4 can be electrochemically produced with an industrially advantageous method, particularly with high current efficiency.

図1は、実施例で用いた装置の概略模式図である。FIG. 1 is a schematic diagram of the apparatus used in the examples.

≪電気化学的にGeH4を製造する方法≫
本発明の一実施形態に係る電気化学的にGeH4を製造する方法(以下「本方法」ともいう。)は、隔膜、陽極および銀を含む陰極を有する電気化学セル中で、ゲルマニウム化合物を含む電解液に通電して、陰極においてGeH4を発生させて、電気化学的にGeH4を製造する。
本方法によれば、工業的に有利な方法、特に高い電流効率でGeH4を電気化学的に製造することができる。従って、本方法で得られたGeH4を用いることで、SiGe基板を工業的に有利に製造することもできる。
<< Method of producing GeH 4 electrochemically >>
A method for electrochemically producing GeH 4 according to an embodiment of the present invention (hereinafter also referred to as “the present method”) includes a germanium compound in an electrochemical cell having a diaphragm, an anode, and a cathode containing silver. The electrolyte is energized to generate GeH 4 at the cathode, thereby producing GeH 4 electrochemically.
According to this method, GeH 4 can be electrochemically produced with an industrially advantageous method, particularly with high current efficiency. Therefore, by using GeH 4 obtained by the present method, a SiGe substrate can be industrially advantageously produced.

このような工業的な反応としては、例えば、電解液容量が500〜2500Lで、セル数が30〜150個、使用する電流が100〜300Aといったような規模の反応が挙げられる。   As such an industrial reaction, for example, a reaction having a volume of 500 to 2500 L, a number of cells of 30 to 150, and a current of 100 to 300 A is used.

本方法によれば、好ましくは10〜90%、より好ましくは12〜40%の電流効率でGeH4を製造することができる。
なお、前記電流効率は、具体的には、下記実施例に記載の方法で測定することができる。
According to this method, GeH 4 can be produced with a current efficiency of preferably 10 to 90%, more preferably 12 to 40%.
The current efficiency can be specifically measured by the method described in the following example.

<電気化学セル>
前記電気化学セルとしては、隔膜、陽極および前記陰極を有すれば特に制限されず、従来公知のセルを用いることができる。
該セルとしては、具体的には、陽極を含む陽極室と、陰極を含む陰極室とを隔膜を用いて隔てたセル等が挙げられる。
<Electrochemical cell>
The electrochemical cell is not particularly limited as long as it has a diaphragm, an anode, and the cathode, and a conventionally known cell can be used.
Specific examples of the cell include a cell in which an anode chamber including an anode and a cathode chamber including a cathode are separated using a diaphragm.

<陰極>
前記陰極は、Agを含めば特に制限されない。
該陰極は、金属Agからなる電極やAgを主成分とするAg基合金からなる電極であってもよいし、金属AgまたはAg合金をメッキまたはコーティングした電極であってもよい。
前記メッキまたはコーティングした電極としては、Ni等の基材に金属AgまたはAg合金をメッキまたはコーティングした電極等が挙げられる。
これらの中でも、金属Agは高価であるため、コストの面からは、金属AgまたはAg合金をメッキまたはコーティングした電極であることが好ましい。
<Cathode>
The cathode is not particularly limited as long as Ag is included.
The cathode may be an electrode made of metal Ag, an electrode made of an Ag-based alloy containing Ag as a main component, or an electrode plated or coated with metal Ag or an Ag alloy.
Examples of the plated or coated electrode include an electrode in which a metal such as Ni is plated or coated with metal Ag or an Ag alloy.
Among them, metal Ag is expensive, and therefore, from the viewpoint of cost, it is preferable to use an electrode plated or coated with metal Ag or an Ag alloy.

前記陰極の形状は特に制限されず、板状、柱状、中空状等のいずれであってもよい。
また、前記陰極の大きさ、表面積等も特に制限されない。
The shape of the cathode is not particularly limited, and may be any one of a plate shape, a column shape, a hollow shape, and the like.
Further, the size, surface area and the like of the cathode are not particularly limited.

<陽極>
前記陽極としては、特に制限されず、電気化学的にGeH4を製造する際に従来用いられてきた陽極を用いればよいが、NiおよびPt等の導電性金属からなる電極、該導電性金属を主成分とする合金からなる電極等が好ましく、コストの面から、Niからなる電極が好ましい。
また、前記陽極は、陰極と同様に、前記導電性金属または該金属を含む合金をメッキまたはコーティングした電極を使用してもよい。
前記陽極の形状、大きさ、表面積等も、前記陰極と同様に特に制限されない。
<Anode>
The anode is not particularly limited, and may be an anode conventionally used when electrochemically producing GeH 4. An electrode made of a conductive metal such as Ni and Pt may be used as the anode. An electrode made of an alloy as a main component is preferable, and an electrode made of Ni is preferable in terms of cost.
The anode may be an electrode formed by plating or coating the conductive metal or an alloy containing the metal, similarly to the cathode.
The shape, size, surface area and the like of the anode are not particularly limited as well as the cathode.

<隔膜>
前記隔膜としては、特に制限されず、電気化学セルに従来用いられてきた、陽極室と陰極室とを隔てることが可能な隔膜を用いればよい。
このような隔膜としては、種々の電解質膜や多孔質膜を用いることができる。
電解質膜としては、高分子電解質膜、例えばイオン交換固体高分子電解質膜、具体的には、NAFION(登録商標)115、117、NRE−212(シグマアルドリッチ社製)等が挙げられる。
多孔質膜としては、多孔質ガラス、多孔質アルミナ、多孔質チタニア等の多孔質セラミックス、多孔質ポリエチレン、多孔質プロピレン等の多孔質ポリマー等を用いることができる。
<Diaphragm>
The diaphragm is not particularly limited, and any diaphragm conventionally used in an electrochemical cell and capable of separating an anode compartment and a cathode compartment may be used.
Various electrolyte membranes and porous membranes can be used as such a diaphragm.
Examples of the electrolyte membrane include a polymer electrolyte membrane, for example, an ion-exchange solid polymer electrolyte membrane, specifically, NAFION (registered trademark) 115, 117, NRE-212 (manufactured by Sigma-Aldrich) and the like.
As the porous membrane, porous ceramics such as porous glass, porous alumina and porous titania, and porous polymers such as porous polyethylene and porous propylene can be used.

本発明の一実施形態では、隔膜により、電気化学セルを陽極室と陰極室とに分けるため、陽極で発生するO2ガスと陰極で発生するGeH4とを混合させず、それぞれの電極室の独立した出口から取り出すことができる。
2ガスとGeH4とが混合すると、O2ガスとGeH4とが反応して、GeH4の収率が低下する傾向にある。
In one embodiment of the present invention, the diaphragm separates the electrochemical cell into an anode chamber and a cathode chamber, so that O 2 gas generated at the anode and GeH 4 generated at the cathode are not mixed, and the respective electrode chambers are not mixed. Can be taken out of a separate exit.
When the O 2 gas and GeH 4 are mixed, the O 2 gas and GeH 4 react with each other, and the yield of GeH 4 tends to decrease.

<ゲルマニウム化合物を含む電解液>
本方法では、ゲルマニウム化合物を含む電解液からGeH4を製造する。
該電解液は、好ましくは水溶液である。
<Electrolyte containing germanium compound>
In this method, GeH 4 is produced from an electrolytic solution containing a germanium compound.
The electrolyte is preferably an aqueous solution.

前記ゲルマニウム化合物としては、GeO2が好ましい。
前記電解液中のGeO2の濃度は、高い方が反応速度が速くなり、効率的にGeH4を合成できるため、溶媒、好ましくは水に対する飽和濃度にすることが好ましい。
GeO 2 is preferable as the germanium compound.
The higher the concentration of GeO 2 in the electrolytic solution is, the higher the reaction rate becomes and the more efficient the synthesis of GeH 4 can be.

前記電解液は、電解液の導電性を向上させ、GeO2の水への溶解性を促進させるために、イオン性物質を含むことが好ましい。
該イオン性物質としては、電気化学に用いられる従来公知のイオン性物質を用いることができるが、前記効果に優れる等の点から、KOHまたはNaOHが好ましい。これらの中でも、KOH水溶液は、NaOH水溶液に比べより導電性に優れるため、KOHが好ましい。
The electrolyte preferably contains an ionic substance in order to improve the conductivity of the electrolyte and promote the solubility of GeO 2 in water.
As the ionic substance, a conventionally known ionic substance used in electrochemistry can be used, but KOH or NaOH is preferable from the viewpoint of excellent effects. Among these, KOH aqueous solution is more preferable than NaOH aqueous solution, and thus KOH is preferable.

前記電解液中のKOHの濃度は、好ましくは1〜8mol/L、より好ましくは2〜5mol/Lである。
KOHの濃度が前記範囲にあると、GeO2濃度の高い電解液を容易に得ることができ、高い電流効率でGeH4を効率的に製造することができる。
KOHの濃度が前記範囲の下限未満であると、電解液の導電性が低くなる傾向にあり、GeH4の製造に高電圧が必要になる場合があり、また、GeO2の水への溶解量が低下する傾向にあり、反応効率が低下する場合がある。一方、KOHの濃度が前記範囲の上限を超えると、電極やセルの材質として耐食性の高い材質が必要になる傾向にあり、装置のコストが高くなる場合がある。
The concentration of KOH in the electrolytic solution is preferably 1 to 8 mol / L, more preferably 2 to 5 mol / L.
When the concentration of KOH is in the above range, an electrolyte having a high GeO 2 concentration can be easily obtained, and GeH 4 can be efficiently produced with high current efficiency.
If the concentration of KOH is less than the lower limit of the above range, the conductivity of the electrolytic solution tends to be low, a high voltage may be required for the production of GeH 4 , and the amount of GeO 2 dissolved in water And the reaction efficiency may decrease. On the other hand, when the concentration of KOH exceeds the upper limit of the above range, a material having high corrosion resistance tends to be required as a material of the electrode or the cell, which may increase the cost of the apparatus.

<反応条件>
本方法において、GeH4を製造する際(前記通電の際)の陰極の単位面積当たりの電流の大きさ(電流密度)は、反応速度に優れ、高い電流効率でGeH4を製造できる等の点から、好ましくは30〜500mA/cm2、より好ましくは50〜400mA/cm2である。
電流密度が前記範囲にあると、単位時間当たりのGeH4の発生速度や反応効率を低下させることなく、水の電気分解による水素ガスの発生量を適度に制御することもできる。
<Reaction conditions>
In the present method, the magnitude (current density) of the current per unit area of the cathode when producing GeH 4 (at the time of energization) is such that GeH 4 can be produced with high reaction efficiency and high current efficiency. Therefore, it is preferably 30 to 500 mA / cm 2 , more preferably 50 to 400 mA / cm 2 .
When the current density is in the above range, the amount of hydrogen gas generated by the electrolysis of water can be appropriately controlled without lowering the generation rate and reaction efficiency of GeH 4 per unit time.

GeH4を製造する際(GeH4を発生させる際)の反応温度は、反応速度に優れ、低コストでGeH4を製造できる等の点から、好ましくは5〜100℃、より好ましくは10〜40℃である。
反応温度が前記範囲にあると、反応効率を低下させることなく、セルの加熱のための電力消費を適度に制御することもできる。
The reaction temperature in (when generating the GeH 4) for producing a GeH 4 is excellent in reaction rate, in terms of such can be produced GeH 4 at a low cost, preferably 5 to 100 ° C., more preferably 10 to 40 ° C.
When the reaction temperature is in the above range, the power consumption for heating the cell can be appropriately controlled without lowering the reaction efficiency.

GeH4を製造する際の反応雰囲気(陽極室および陰極室の気相部分)は特に制限されないが、不活性ガス雰囲気であることが好ましく、該不活性ガスとしては、窒素ガスが好ましい。The reaction atmosphere (the gas phase portion of the anode chamber and the cathode chamber) for producing GeH 4 is not particularly limited, but is preferably an inert gas atmosphere, and nitrogen gas is preferable as the inert gas.

本方法では、電気化学セル中の前記電解液は、静止させたままでもよいし、撹拌してもよいし、別途他の液槽を設けて循環流通させてもよい。
前記他の液槽を設けて循環流通させた場合、反応液濃度の変化が相対的に小さくなり、電流効率の安定化が期待できるとともに、電極表面のGeO2濃度が高く保たれ、反応速度の向上が期待できる。このため、電気化学セル中の前記電解液は循環流通させることが好ましい。
In this method, the electrolytic solution in the electrochemical cell may be kept stationary, may be stirred, or may be separately circulated and provided with another liquid tank.
When the other liquid tank is provided and circulated, the change in the reaction solution concentration is relatively small, stabilization of the current efficiency can be expected, and the GeO 2 concentration on the electrode surface is kept high, and the reaction speed is reduced. Improvement can be expected. For this reason, it is preferable that the electrolytic solution in the electrochemical cell is circulated and circulated.

<GeH4の製造装置>
本方法では、前記電気化学セルを用いれば特に制限されないが、該セル以外に、例えば、図1に示すような、電源、測定手段(FT−IR、圧力計(PI)、積算計等)、窒素ガス(N2)供給路、マスフローコントローラー(MFC)、排気路など、従来公知の部材を有する装置を用いることができる。
また、図示しない、前述の循環流路等を有する装置を用いてもよい。
<GeH 4 manufacturing equipment>
In the present method, there is no particular limitation as long as the electrochemical cell is used. In addition to the cell, for example, a power source, a measuring means (FT-IR, pressure gauge (PI), integrator, etc.) as shown in FIG. An apparatus having a conventionally known member such as a nitrogen gas (N 2 ) supply path, a mass flow controller (MFC), and an exhaust path can be used.
Further, a device having the above-described circulation flow path and the like (not shown) may be used.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

[実施例1]
以下の材料を用い、図1に示すような、隔膜で陽極室と陰極室とを隔てた塩化ビニル製電気化学セルを作製した。
・陰極:0.5cm×0.5cm×厚さ0.5mmのAg板
・陽極:2cm×2cm×厚さ0.5mmのNi板
・隔膜:ナフィオン(登録商標) NRE−212(シグマアルドリッチ社製)
・電解液:4mol/LのKOH水溶液に90g/Lの濃度でGeO2を溶解させた液体
・陰極室への電解液導入量:100mL
・陽極室への電解液導入量:100mL
・標準電極:銀−塩化銀電極を陰極に設置
[Example 1]
Using the following materials, an electrochemical cell made of vinyl chloride in which an anode chamber and a cathode chamber were separated by a diaphragm as shown in FIG.
-Cathode: Ag plate of 0.5cm x 0.5cm x 0.5mm thickness-Anode: Ni plate of 2cm x 2cm x 0.5mm thickness-Diaphragm: Nafion (registered trademark) NRE-212 (manufactured by Sigma-Aldrich) )
・ Electrolyte: A liquid obtained by dissolving GeO 2 at a concentration of 90 g / L in a 4 mol / L KOH aqueous solution ・ Amount of electrolyte introduced into the cathode chamber: 100 mL
・ Amount of electrolyte introduced into anode chamber: 100mL
・ Standard electrode: Silver-silver chloride electrode is installed on the cathode

得られた電気化学セルにおける、陽極室および陰極室の気相部分を窒素ガス(N2)でパージした後、電源として、北斗電工(株)製Hz−5000を用い、−57mAで10分間電流を流すことで、電気化学的にGeH4を製造した。このときの電流密度は、99mA/cm2であった。
なお、電流を流す際に電気化学セルの温度をコントロールしなかったところ、反応温度は14℃であった。
陰極室の出口ガスを、積算計を用いて測定することで、反応により生じた出口ガス全量(GeH4および水素ガスを含むガス)を測定し、FT−IRを用いることで、出口ガス全量中のGeH4濃度を測定した。これらの測定結果から、GeH4の発生量を算出した。
In the obtained electrochemical cell, the gas phase portions of the anode chamber and the cathode chamber were purged with nitrogen gas (N 2 ), and then a current was supplied at −57 mA for 10 minutes using Hz-5000 manufactured by Hokuto Denko Corporation as a power source. Was flowed to electrochemically produce GeH 4 . The current density at this time was 99 mA / cm 2 .
The reaction temperature was 14 ° C. when the temperature of the electrochemical cell was not controlled when applying a current.
By measuring the outlet gas of the cathode chamber using an integrator, the total amount of the outlet gas generated by the reaction (gas containing GeH 4 and hydrogen gas) is measured, and by using FT-IR, the total amount of the outlet gas is measured. Was measured for GeH 4 concentration. From these measurement results, the amount of GeH 4 generated was calculated.

電流を印加してから、0〜10分の間のGeH4の発生量と、印加した電流量とから、下記式に基づいて電流効率を算出し、該電流効率を反応時間10分間の電流効率とした。結果を表1に示す。
電流効率(%)=[前記発生量(mmol/min)のGeH4が発生するのに相当する電気量(C/min)×10(min)×100]/[印加した全電気量(C/min)×10(min)]
The current efficiency is calculated based on the following equation from the amount of GeH 4 generated between 0 and 10 minutes after the current is applied and the amount of the applied current, and the current efficiency is calculated based on the current efficiency for a reaction time of 10 minutes. And Table 1 shows the results.
Current efficiency (%) = [the amount of electricity (C / min) × 10 (min) × 100 corresponding to the generation of GeH 4 of the above-mentioned amount (mmol / min)] / [total amount of electricity applied (C / min) min) × 10 (min)]

[比較例1]
陰極として0.5cm×0.5cm×厚さ0.5mmのCu板を使用し、印加する電流を−85mAで10分間に変更した以外は実施例1と同様の条件で反応を行った。結果を表1に示す。
[Comparative Example 1]
The reaction was carried out under the same conditions as in Example 1 except that a Cu plate of 0.5 cm × 0.5 cm × 0.5 mm thickness was used as the cathode, and the applied current was changed to −85 mA for 10 minutes. Table 1 shows the results.

[比較例2]
陰極として0.5cm×0.5cm×厚さ0.5mmのCd板を使用し、印加する電流を−55mAで10分間に変更した以外は実施例1と同様の条件で反応を行った。結果を表1に示す。
[Comparative Example 2]
The reaction was carried out under the same conditions as in Example 1 except that a Cd plate of 0.5 cm × 0.5 cm × 0.5 mm thick was used as the cathode, and the applied current was changed to −55 mA for 10 minutes. Table 1 shows the results.

Figure 2018212007
Figure 2018212007

Claims (6)

隔膜、陽極および銀を含む陰極を有する電気化学セル中で、ゲルマニウム化合物を含む電解液に通電して、陰極においてゲルマンを発生させて、電気化学的にゲルマンを製造する方法。   A method for producing germane electrochemically by energizing an electrolytic solution containing a germanium compound in an electrochemical cell having a diaphragm, an anode and a cathode containing silver to generate germane at the cathode. 前記電解液が、二酸化ゲルマニウムとイオン性物質とを含む電解液である、請求項1に記載の製造方法。   The method according to claim 1, wherein the electrolytic solution is an electrolytic solution containing germanium dioxide and an ionic substance. 前記イオン性物質が、水酸化カリウムまたは水酸化ナトリウムである、請求項2に記載の製造方法。   The method according to claim 2, wherein the ionic substance is potassium hydroxide or sodium hydroxide. 前記イオン性物質が水酸化カリウムであり、前記電解液中の水酸化カリウムの濃度が1〜8mol/Lである、請求項2または3に記載の製造方法。   The method according to claim 2, wherein the ionic substance is potassium hydroxide, and the concentration of potassium hydroxide in the electrolyte is 1 to 8 mol / L. 前記通電の際の陰極の電流密度が30〜500mA/cm2である、請求項1〜4のいずれか1項に記載の製造方法。The current density of the cathode during energization is 30~500mA / cm 2, the production method according to any one of claims 1 to 4. 前記ゲルマンを発生させる際の反応温度が5〜100℃である、請求項1〜5のいずれか1項に記載の製造方法。   The method according to any one of claims 1 to 5, wherein a reaction temperature at which the germane is generated is 5 to 100 ° C.
JP2019519183A 2017-05-19 2018-05-07 Method for producing germane electrochemically Active JP7110185B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017099787 2017-05-19
JP2017099787 2017-05-19
PCT/JP2018/017649 WO2018212007A1 (en) 2017-05-19 2018-05-07 Method for electrochemically producing germane

Publications (2)

Publication Number Publication Date
JPWO2018212007A1 true JPWO2018212007A1 (en) 2020-03-26
JP7110185B2 JP7110185B2 (en) 2022-08-01

Family

ID=64274277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519183A Active JP7110185B2 (en) 2017-05-19 2018-05-07 Method for producing germane electrochemically

Country Status (5)

Country Link
JP (1) JP7110185B2 (en)
KR (1) KR20190140026A (en)
CN (1) CN110621810A (en)
TW (1) TWI743360B (en)
WO (1) WO2018212007A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501783A (en) * 1995-12-06 2000-02-15 エレクトロン・トランスファー・テクノロジーズ・インコーポレーテッド Method and apparatus for supplying hydride gas of constant composition for semiconductor processing
JP2007527467A (en) * 2003-07-08 2007-09-27 リンデ アクチエンゲゼルシヤフト Production method of high purity germanium hydride
JP2011137241A (en) * 2006-04-13 2011-07-14 Air Products & Chemicals Inc Method and apparatus for achieving maximum yield in electrolytic preparation of group iv and v hydrides
JP2012052234A (en) * 2010-09-02 2012-03-15 Air Products & Chemicals Inc Electrode for electrolytic germane process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1732697A1 (en) * 1990-01-19 1995-10-27 Институт химии высокочистых веществ АН СССР Method of synthesis of germanium hydride
JP2001028342A (en) * 1999-07-15 2001-01-30 Hitachi Ltd Thin-film forming method and liquid crystalline display
RU2203983C2 (en) * 2001-03-13 2003-05-10 Государственное унитарное предприятие "Государственный научно-исследовательский институт органической химии и технологии" Process of electrochemical winning of hydrogen arsenide
US8399349B2 (en) * 2006-04-18 2013-03-19 Air Products And Chemicals, Inc. Materials and methods of forming controlled void
CN100558941C (en) * 2007-12-03 2009-11-11 浙江树人大学 Binode electro-chemistry hydride generator
CN102249188B (en) * 2011-05-21 2012-12-26 南京中锗科技股份有限公司 Preparation method of germane gas
US9228267B1 (en) * 2011-11-07 2016-01-05 Ardica Technologies, Inc. Use of fluidized-bed electrode reactors for alane production
CN102560589B (en) * 2012-03-08 2015-05-13 厦门大学 Method for preparing Ge-Sb-Te ternary phase-change material film
CN102912374B (en) * 2012-10-24 2015-04-22 中国科学院大连化学物理研究所 Electrochemical reduction CO2 electrolytic tank using bipolar membrane as diaphragm and application of electrochemical reduction CO2 electrolytic tank
CN103160347A (en) * 2012-12-11 2013-06-19 云南亿星之光新能源科技开发有限公司 Synthetic method of synthetic hydrogen fuels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501783A (en) * 1995-12-06 2000-02-15 エレクトロン・トランスファー・テクノロジーズ・インコーポレーテッド Method and apparatus for supplying hydride gas of constant composition for semiconductor processing
JP2007527467A (en) * 2003-07-08 2007-09-27 リンデ アクチエンゲゼルシヤフト Production method of high purity germanium hydride
JP2011137241A (en) * 2006-04-13 2011-07-14 Air Products & Chemicals Inc Method and apparatus for achieving maximum yield in electrolytic preparation of group iv and v hydrides
JP2012052234A (en) * 2010-09-02 2012-03-15 Air Products & Chemicals Inc Electrode for electrolytic germane process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOLEA E., LABORDA F., CASTILLO J.R., STURGEON R.E., SPECTROCHIMICA ACTA PART B, vol. 59, JPN6018024918, 2004, GB, pages 505 - 513, ISSN: 0004689501 *
TURYGIN V.V., SMIRNOV M.K., SHALASHOVA N.N., KHUDENKO A.V., NIKOLASHIN S.V., FEDOROV V.A., TOMILOV A, INORGANIC MATERIALS, vol. 44, no. 10, JPN6012053110, 2008, pages 1081 - 1085, ISSN: 0004689500 *

Also Published As

Publication number Publication date
KR20190140026A (en) 2019-12-18
TWI743360B (en) 2021-10-21
CN110621810A (en) 2019-12-27
JP7110185B2 (en) 2022-08-01
TW201900931A (en) 2019-01-01
WO2018212007A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP2017521555A (en) Method and system for electrochemical reduction of carbon dioxide using a gas diffusion electrode
JP5320173B2 (en) Sulfuric acid electrolysis method
JP5816802B2 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
KR101300668B1 (en) Electrodes for Electrolytic Germane Process
JP2018150596A (en) Organic substance production system and manufacturing method thereof
JP7030115B2 (en) How to electrochemically produce Germanic
JP7030114B2 (en) How to electrochemically produce Germanic
JP7110185B2 (en) Method for producing germane electrochemically
JP2015224392A (en) Oxygen-consuming electrode and method for its production
CA2503244C (en) One-step electrosynthesis of borohydride
CA3092601A1 (en) System for process intensification of water electrolysis
JP5816803B2 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
CZ304861B6 (en) Electrolytic cell for preparing hydrogen
JP2017115223A (en) Manufacturing method of l-cysteine mineral acid salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7110185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350