JPWO2018181498A1 - Polyolefin foam sheet, production method thereof and pressure-sensitive adhesive tape - Google Patents

Polyolefin foam sheet, production method thereof and pressure-sensitive adhesive tape Download PDF

Info

Publication number
JPWO2018181498A1
JPWO2018181498A1 JP2018519888A JP2018519888A JPWO2018181498A1 JP WO2018181498 A1 JPWO2018181498 A1 JP WO2018181498A1 JP 2018519888 A JP2018519888 A JP 2018519888A JP 2018519888 A JP2018519888 A JP 2018519888A JP WO2018181498 A1 JPWO2018181498 A1 JP WO2018181498A1
Authority
JP
Japan
Prior art keywords
polyolefin
foam sheet
resin
sheet
sheet according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018519888A
Other languages
Japanese (ja)
Other versions
JP7201431B2 (en
Inventor
健人 永井
健人 永井
麻美 永井
麻美 永井
和幸 矢原
和幸 矢原
康成 日下
康成 日下
奈未 中島
奈未 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2018181498A1 publication Critical patent/JPWO2018181498A1/en
Application granted granted Critical
Publication of JP7201431B2 publication Critical patent/JP7201431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Abstract

本発明のポリオレフィン系発泡シートは、ポリオレフィン樹脂を含む発泡性組成物を発泡させてなるポリオレフィン系発泡シートであって、パルスNMRHahnEcho法測定による時間20ミリ秒での強度が0.02〜0.07の範囲にある。The polyolefin foam sheet of the present invention is a polyolefin foam sheet obtained by foaming a foamable composition containing a polyolefin resin, and has a strength of 0.02 to 0.07 at a time of 20 milliseconds measured by a pulsed NMR Hahn Echo method. In the range.

Description

本発明は、ポリオレフィン系発泡シート、その製造方法及びポリオレフィン系発泡シートを有する粘着テープに関する。   The present invention relates to a polyolefin foam sheet, a method for producing the same, and an adhesive tape having the polyolefin foam sheet.

携帯電話、カメラ、ゲーム機器、電子手帳、パーソナルコンピュータ等の電子機器では、発泡シートからなるシール材又は衝撃吸収材、さらには、発泡シートを基材とした粘着テープ等が使用されている。例えば、上記した電子機器で使用される表示装置は、一般的に、LCD等の表示パネルの上に保護パネルを設置した構造を有するが、その保護パネルを、表示パネル外側の額縁部分と貼り合わせるために、発泡シートを基材とした粘着テープが使用される。
従来、電子機器内部に使用される発泡シートとしては、熱分解型発泡剤を含む発泡性ポリオレフィン系樹脂シートを発泡かつ架橋させて得られる架橋ポリオレフィン系樹脂発泡シートが知られている(例えば、特許文献1参照)。
BACKGROUND ART In electronic devices such as mobile phones, cameras, game machines, electronic organizers, and personal computers, a sealing material or a shock absorbing material made of a foamed sheet, and an adhesive tape made of a foamed sheet as a base material are used. For example, a display device used in the above-described electronic device generally has a structure in which a protection panel is installed on a display panel such as an LCD, and the protection panel is attached to a frame portion outside the display panel. For this purpose, an adhesive tape based on a foamed sheet is used.
BACKGROUND ART Conventionally, as a foamed sheet used inside an electronic device, a crosslinked polyolefin-based resin foamed sheet obtained by foaming and cross-linking a foamable polyolefin-based resin sheet containing a pyrolytic foaming agent is known (for example, see Patents). Reference 1).

国際公開2005/007731号International Publication No. 2005/007731

ところで、昨今、電子機器は小型化が進む一方で各種部品の高機能化も進み、電気機器内部のスペースの制約が大きくなってきている。例えば、表示パネル外側の額縁部分は、電子機器の小型化と、表示装置の大型化によりスペースが狭くなってきている。したがって、発泡シートは、比較的厚いものののみならず薄くした場合でも、高い柔軟性及び耐久性を有するものが求められている。   By the way, in recent years, electronic devices have been miniaturized, while various components have advanced functions, and the space inside the electric devices has been increasingly restricted. For example, the frame portion outside the display panel has been reduced in space due to the downsizing of the electronic device and the upsizing of the display device. Therefore, a foamed sheet is required to have high flexibility and durability even when it is made not only relatively thick but also thin.

発泡シートは、柔軟性を高めるために見かけ密度を低くすることが知られている。また、衝撃吸収材などでは、耐衝撃性などの耐久性を高めるために、層間剥離強度を高くすることが試みられている。しかし、発泡シートの見かけ密度と機械強度は、トレードオフの関係にあるのが一般的であり、例えば、見かけ密度を低くして柔軟性を高くしようとすると層間剥離強度が低くなるため、高い柔軟性と機械強度を両立するのは難しい。   Foamed sheets are known to reduce apparent density to increase flexibility. In addition, in the case of a shock absorbing material or the like, attempts have been made to increase the delamination strength in order to increase durability such as impact resistance. However, the apparent density and the mechanical strength of the foamed sheet are generally in a trade-off relationship.For example, if the apparent density is reduced to increase the flexibility, the delamination strength decreases, so It is difficult to achieve both good performance and mechanical strength.

本発明は、以上の事情に鑑みてなされたものであり、薄厚の発泡シートにおいても、柔軟性及び機械強度がいずれも良好になる発泡シートを提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a foamed sheet having excellent flexibility and mechanical strength even in a thin foamed sheet.

本発明者らは鋭意検討の結果、パルスNMR測定による時間20ミリ秒での強度を一定の範囲にすると、層間剥離強度/密度の値が高くなり、発泡シートの柔軟性及び機械強度のいずれも良好にしやすくなることを見出し、以下の本発明を完成させた。
すなわち、本発明は、以下の[1]〜[11]を提供するものである。
[1]ポリオレフィン樹脂を含む発泡性組成物を発泡させてなるポリオレフィン系発泡シートであって、パルスNMR Hahn Echo法測定による時間20ミリ秒での強度が0.02〜0.07の範囲にあるポリオレフィン系発泡シート。
[2]前記ポリオレフィン樹脂が、ポリエチレン樹脂である上記[1]に記載のポリオレフィン系発泡シート。
[3]前記ポリオレフィン樹脂が、メタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンを含む上記[2]に記載のポリオレフィン系発泡シート。
[4]前記ポリオレフィン樹脂が、さらにエチレン−酢酸ビニル共重合体を含む上記[3]に記載のポリオレフィン系発泡シート。
[5]架橋度が30〜70質量%である、上記[1]〜[4]のいずれか1項に記載のポリオレフィン系発泡シート。
[6]厚さが0.02〜0.8mmである、上記[1]〜[5]のいずれか1項に記載のポリオレフィン系発泡シート。
[7]発泡倍率が、1.2〜12cm/gである上記[1]〜[6]のいずれか1項に記載のポリオレフィン系発泡シート。
[8]熱分解型発泡剤をさらに含む発泡性組成物を発泡してなる上記[1]〜[7]のいずれか1項に記載のポリオレフィン系発泡シート。
[9]上記[1]〜[8]のいずれか1項に記載のポリオレフィン系発泡シートの製造方法であって、ポリオレフィン系樹脂及び熱分解型発泡剤を含み、かつ架橋された発泡性組成物を加熱し、前記熱分解型発泡剤を発泡させるポリオレフィン系発泡シートの製造方法。
[10]前記発泡性組成物を発泡させ、さらに延伸させる上記[9]に記載のポリオレフィン系発泡シートの製造方法。
[11]上記[1]〜[8]のいずれか1項に記載のポリオレフィン系発泡シートと、前記ポリオレフィン系発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備える粘着テープ。
As a result of intensive studies, the present inventors have found that when the strength at a time of 20 milliseconds by pulse NMR measurement is within a certain range, the value of the delamination strength / density increases, and both the flexibility and mechanical strength of the foamed sheet are reduced. The present inventors have found that it is easy to improve the condition, and have completed the present invention described below.
That is, the present invention provides the following [1] to [11].
[1] A polyolefin foam sheet obtained by foaming a foamable composition containing a polyolefin resin, wherein the strength at a time of 20 milliseconds measured by the pulsed NMR Hahn Echo method is in the range of 0.02 to 0.07. Polyolefin foam sheet.
[2] The polyolefin foam sheet according to the above [1], wherein the polyolefin resin is a polyethylene resin.
[3] The polyolefin foam sheet according to the above [2], wherein the polyolefin resin contains a linear low-density polyethylene polymerized with a metallocene compound polymerization catalyst.
[4] The polyolefin foam sheet according to the above [3], wherein the polyolefin resin further contains an ethylene-vinyl acetate copolymer.
[5] The polyolefin foam sheet according to any one of [1] to [4], wherein the degree of crosslinking is 30 to 70% by mass.
[6] The polyolefin foam sheet according to any one of [1] to [5], wherein the thickness is 0.02 to 0.8 mm.
[7] The polyolefin foam sheet according to any one of the above [1] to [6], which has an expansion ratio of 1.2 to 12 cm 3 / g.
[8] The polyolefin foam sheet according to any one of the above [1] to [7], which is obtained by foaming a foamable composition further containing a pyrolytic foaming agent.
[9] The method for producing a polyolefin-based foamed sheet according to any one of the above [1] to [8], wherein the crosslinked foamable composition comprises a polyolefin-based resin and a pyrolytic foaming agent. A method for producing a polyolefin-based foam sheet, wherein the foam is heated to foam the pyrolytic foaming agent.
[10] The method for producing a polyolefin foam sheet according to [9], wherein the foamable composition is foamed and further stretched.
[11] An adhesive tape, comprising: the polyolefin-based foam sheet according to any one of [1] to [8]; and an adhesive layer provided on at least one surface of the polyolefin-based foam sheet.

本発明によれば、シートを薄くしたような場合であっても、柔軟性及び耐久性のいずれも良好な発泡シートを提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where a sheet | seat is thinned, it is possible to provide a foamed sheet with favorable both flexibility and durability.

層間強度測定方法の説明図である。It is explanatory drawing of the interlayer strength measuring method.

以下、本発明について実施形態を用いて詳細に説明する。
[ポリオレフィン系発泡シート]
本発明に係る架橋ポリオレフィン系発泡シート(以下、単に“発泡シート”ともいう)は、ポリオレフィン樹脂を含む発泡性組成物を発泡させてなる発泡体であって、本発泡シートのパルスNMRHahnEcho法測定による時間20ミリ秒での強度が0.02〜0.07の範囲にあるものである。
本発明においては、上記強度が0.07を超えると、後述する層間剥離強度/密度の値が低くなり、柔軟性及び耐久性のいずれも良好にすることが困難になる。一方、上記強度が0.02未満であると、発泡状態の制御が難しく、発泡体シートとして実用的に製造することが難しくなる。
また、耐久性及び柔軟性のいずれも良好にする観点から、上記強度は、0.03〜0.07が好ましく、0.04〜0.065がより好ましい。
Hereinafter, the present invention will be described in detail using embodiments.
[Polyolefin foam sheet]
The crosslinked polyolefin-based foam sheet according to the present invention (hereinafter, also simply referred to as “foam sheet”) is a foam obtained by foaming a foamable composition containing a polyolefin resin, and the foamed sheet is measured by a pulse NMR Hahn Echo method. The intensity at a time of 20 milliseconds is in the range of 0.02 to 0.07.
In the present invention, when the above-mentioned strength exceeds 0.07, the value of delamination strength / density described later becomes low, and it is difficult to improve both flexibility and durability. On the other hand, if the strength is less than 0.02, it is difficult to control the foaming state, and it is difficult to produce a foam sheet practically.
In addition, from the viewpoint of improving both the durability and the flexibility, the strength is preferably from 0.03 to 0.07, and more preferably from 0.04 to 0.065.

(ポリオレフィン樹脂)
発泡シートに使用されるポリオレフィン樹脂は、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体等が挙げられ、これらの中ではポリエチレン樹脂が好ましい。
ポリエチレン樹脂としては、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン樹脂が挙げられ、好ましくは、メタロセン化合物の重合触媒で重合されたポリエチレン樹脂が用いられる。
(Polyolefin resin)
Examples of the polyolefin resin used for the foamed sheet include a polyethylene resin, a polypropylene resin, an ethylene-vinyl acetate copolymer, and the like. Among these, a polyethylene resin is preferable.
Examples of the polyethylene resin include a polyethylene resin polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound. Preferably, a polyethylene resin polymerized with a metallocene compound polymerization catalyst is used.

また、ポリエチレン樹脂としては、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンを用いることにより、得られる発泡シートに高い柔軟性が得られるとともに、発泡シートの薄肉化が可能になる。この直鎖状低密度ポリエチレンは、メタロセン化合物等の重合触媒を用いて得たものがより好ましい。また、直鎖状低密度ポリエチレンは、エチレン(例えば、全モノマー量に対して75質量%以上、好ましくは90質量%以上)と必要に応じて少量のα−オレフィンとを共重合することにより得られる直鎖状低密度ポリエチレンがより好ましい。
α−オレフィンとして、具体的には、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、及び1−オクテン等が挙げられる。なかでも、炭素数4〜10のα−オレフィンが好ましい。
ポリエチレン樹脂、例えば上記した直鎖状低密度ポリエチレンの密度は、0.870〜0.910g/cmが好ましく、0.875〜0.907g/cmがより好ましく、0.880〜0.903g/cmが更に好ましい。ポリエチレン樹脂としては、複数のポリエチレン樹脂を用いることもでき、また、上記した密度範囲以外のポリエチレン樹脂を加えてもよい。
As the polyethylene resin, a linear low-density polyethylene is preferable. By using a linear low-density polyethylene, the obtained foamed sheet can have high flexibility and can have a reduced thickness. This linear low-density polyethylene is more preferably obtained using a polymerization catalyst such as a metallocene compound. The linear low-density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and a small amount of α-olefin as required. The resulting linear low density polyethylene is more preferred.
Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene and the like. Among them, α-olefins having 4 to 10 carbon atoms are preferred.
Polyethylene resin, for example the density of the linear low density polyethylene as described above is preferably 0.870~0.910g / cm 3, more preferably 0.875~0.907g / cm 3, 0.880~0.903g / Cm 3 is more preferred. As the polyethylene resin, a plurality of polyethylene resins can be used, and a polyethylene resin having a density other than the above-described range may be added.

(メタロセン化合物)
メタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物を挙げることができる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物を挙げることができる。
メタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高いため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に発泡されるため、気泡径のばらつきを小さくしやすい。また、均一に延伸できるため、発泡シートの厚さを均一にできる。
(Metallocene compound)
Examples of the metallocene compound include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, a tetravalent transition metal such as titanium, zirconium, nickel, palladium, hafnium, and platinum has one or more cyclopentadienyl rings or analogs thereof as a ligand (ligand). Can be mentioned.
Metallocene compounds have uniform active site properties, and each active site has the same activity. Since the polymer synthesized using the metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., when the sheet containing the polymer synthesized using the metallocene compound is cross-linked, the cross-linking is uniform. Proceed to The uniformly cross-linked sheet is uniformly foamed, so that it is easy to reduce the variation in the cell diameter. Further, since the stretching can be performed uniformly, the thickness of the foamed sheet can be made uniform.

リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等を挙げることができる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素−置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2−エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n−、sec−、tert−、iso−を含む各種異性体を意味する。
また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted by a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group. Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like. In addition, "various" means various isomers including n-, sec-, tert-, and iso-.
Further, a compound obtained by polymerizing a cyclic compound as an oligomer may be used as a ligand.
Further, besides the π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphides and the like may be used.

四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル−t−ブチルアミドジルコニウムジクロリド等が挙げられる。
メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10〜100万モル倍が好ましく、50〜5,000モル倍がより好ましい。
Examples of the metallocene compound containing a tetravalent transition metal or a ligand include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
The metallocene compound, when combined with a specific co-catalyst (co-catalyst), exhibits a function as a catalyst when polymerizing various olefins. Specific co-catalysts include methylaluminoxane (MAO), boron compounds and the like. The use ratio of the cocatalyst to the metallocene compound is preferably 100,000 to 1,000,000 times, more preferably 50 to 5,000 times.

ポリオレフィン樹脂として使用するエチレン−酢酸ビニル共重合体は、例えば、エチレンを50質量%以上含有するエチレン−酢酸ビニル共重合体が挙げられる。また、エチレン−酢酸ビニル共重合体は、酢酸ビニル含有率が例えば5〜50質量%、好ましくは10〜40質量%、より好ましくは15〜35質量%である。なお、酢酸ビニル含有率は、JIS K6924−1に準拠して測定したものである。
また、ポリプロピレン樹脂としては、例えば、ポリプロピレン、プロピレンを50質量%以上含有するプロピレン−α−オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
プロピレン−α−オレフィン共重合体を構成するα−オレフィンとしては、具体的には、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等が挙げることができ、これらの中では、炭素数6〜12のα−オレフィンが好ましい。
The ethylene-vinyl acetate copolymer used as the polyolefin resin includes, for example, an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene. The ethylene-vinyl acetate copolymer has a vinyl acetate content of, for example, 5 to 50% by mass, preferably 10 to 40% by mass, and more preferably 15 to 35% by mass. The vinyl acetate content is measured according to JIS K6924-1.
Examples of the polypropylene resin include polypropylene and a propylene-α-olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
As the α-olefin constituting the propylene-α-olefin copolymer, specifically, ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Octene and the like can be mentioned, and among these, α-olefins having 6 to 12 carbon atoms are preferable.

発泡シートに含まれるポリオレフィン樹脂は、上記した直鎖状低密度ポリエチレンを使用する場合、上記の直鎖状低密度ポリエチレンを単独で使用してもよいが、他のポリオレフィン樹脂と併用してもよく、例えば、上記した他のポリオレフィン樹脂と併用してもよい。
他のポリオレフィン樹脂を含有する場合、直鎖状低密度ポリエチレンと他のポリオレフィン樹脂との合計量に対する他のポリオレフィン樹脂の割合は、75質量%以下であることが好ましく、50質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。ここで、他のポリオレフィン樹脂は、エチレン−酢酸ビニル共重合体であることが好ましい。
The polyolefin resin contained in the foamed sheet, when using the above-described linear low-density polyethylene, the above-described linear low-density polyethylene may be used alone, or may be used in combination with another polyolefin resin. For example, you may use together with the other polyolefin resin mentioned above.
When containing another polyolefin resin, the ratio of the other polyolefin resin to the total amount of the linear low-density polyethylene and the other polyolefin resin is preferably 75% by mass or less, and more preferably 50% by mass or less. Is more preferable, and it is further preferable that it is 20 mass% or less. Here, the other polyolefin resin is preferably an ethylene-vinyl acetate copolymer.

また、発泡性組成物に含有される樹脂としては、ポリオレフィン樹脂を単独で使用してもよいが、本発明の効果を損なわない限り、ポリオレフィン樹脂以外の樹脂を含んでもよい。発泡シートにおいて、ポリオレフィン樹脂の樹脂全量に対する割合は、60〜100質量%が好ましく、70〜100質量%がより好ましく、80〜100質量%が更に好ましい。ポリオレフィン樹脂以外の樹脂としては、スチレン系熱可塑性エラストマー、EPDM等の熱可塑性エラストマー、ゴム成分が挙げられる。   As the resin contained in the foamable composition, a polyolefin resin may be used alone, but may include a resin other than the polyolefin resin as long as the effects of the present invention are not impaired. In the foamed sheet, the ratio of the polyolefin resin to the total amount of the resin is preferably from 60 to 100% by mass, more preferably from 70 to 100% by mass, and still more preferably from 80 to 100% by mass. Examples of the resin other than the polyolefin resin include a styrene-based thermoplastic elastomer, a thermoplastic elastomer such as EPDM, and a rubber component.

本発明では、その原理は定かではないが、例えば、架橋後の樹脂シートの抗張力を高くすることで、パルスNMR測定による時間20ミリ秒での強度が低くなりやすくなる。また、例えば、上記のようにメタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンなどのポリエチレン樹脂を使用し、かつ後述するように比較的高い架橋度とすることで、パルスNMR測定による時間20ミリ秒での強度が上記したように0.07以下となりやすくなる。   In the present invention, although the principle is not clear, for example, by increasing the tensile strength of the resin sheet after crosslinking, the strength at a time of 20 milliseconds by the pulse NMR measurement tends to decrease. Further, for example, by using a polyethylene resin such as a linear low-density polyethylene polymerized with a polymerization catalyst of a metallocene compound as described above, and by using a relatively high degree of crosslinking as described below, by pulse NMR measurement The intensity at a time of 20 milliseconds tends to be 0.07 or less as described above.

(架橋度)
発泡シートは、架橋された発泡体であり、その架橋度は、30〜70質量%であることが好ましく、35〜65質量%がより好ましく、40〜60質量%がさらに好ましい。架橋度を下限値以上とすると、パルスNMR法測定による時間20ミリ秒での強度が0.07以下としやすくなる。また、架橋度を下限値以上とすると、微細な気泡を形成しやすくなる。
(Degree of crosslinking)
The foamed sheet is a crosslinked foam, and the degree of crosslinking is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and still more preferably 40 to 60% by mass. When the degree of crosslinking is equal to or more than the lower limit, the intensity at a time of 20 milliseconds measured by the pulse NMR method tends to be 0.07 or less. Further, when the degree of crosslinking is equal to or more than the lower limit, fine bubbles are easily formed.

(発泡倍率)
発泡シートの発泡倍率は、1.2〜12cm/gであることが好ましく、より好ましくは1.3〜10cm/gである。本発明では、パルスNMR測定による時間20ミリ秒での強度を上記したような所定の範囲内とすることで、広範な発泡倍率において、所望の柔軟性を確保しながら耐衝撃性等の機械強度を向上させることが可能になる。
また、発泡シートは、上記した範囲内でも発泡倍率を低くすることで、機械強度が高くなり耐久性をより向上させやすくなる。そのような観点から発泡シートの発泡倍率は、さらに好ましくは1.5〜3cm/gである。
また、発泡シートは、柔軟性の観点からは、発泡倍率は高いほうがよく、その観点からは、7〜12cm/gが好ましい。
なお、本発明では、JISK7222に従い発泡シートの見かけ密度を求め、その逆数を発泡倍率とする。
(Expansion ratio)
The expansion ratio of the foam sheet is preferably 1.2~12cm 3 / g, more preferably 1.3~10cm 3 / g. In the present invention, by setting the strength at a time of 20 milliseconds by the pulse NMR measurement within the above-mentioned predetermined range, mechanical strength such as impact resistance can be secured while securing desired flexibility in a wide range of expansion ratios. Can be improved.
Further, the foamed sheet has a high mechanical strength and a further improved durability by reducing the foaming ratio even within the above range. From such a viewpoint, the expansion ratio of the foam sheet is more preferably 1.5 to 3 cm 3 / g.
The foam sheet preferably has a higher expansion ratio from the viewpoint of flexibility, and from that viewpoint, preferably has a foaming ratio of 7 to 12 cm 3 / g.
In the present invention, the apparent density of the foam sheet is determined according to JIS K7222, and the reciprocal thereof is defined as the expansion ratio.

(独立気泡率)
発泡シートは、気泡が独立気泡であることが好ましい。気泡が独立気泡であるとは、全気泡に対する独立気泡の割合(独立気泡率という)が70%以上となることを意味する。独立気泡率は、好ましくは75%以上、より好ましくは90%以上である。
独立気泡率は、ASTMD2856(1998)に準拠して求めることができる。市販の測定器では、乾式自動密度計アキュピック1330などが挙げられる。
(Closed cell rate)
In the foam sheet, the cells are preferably closed cells. The expression that the bubbles are closed cells means that the ratio of the closed cells to all the bubbles (referred to as a closed cell ratio) is 70% or more. The closed cell rate is preferably at least 75%, more preferably at least 90%.
The closed cell rate can be determined based on ASTM D2856 (1998). A commercially available measuring instrument includes a dry automatic densimeter Acupic 1330.

独立気泡率は、より具体的には下記の要領で測定される。発泡シートから一辺が5cmの平面正方形状で、且つ一定厚みの試験片を切り出す。試験片の厚みを測定し、試験片の見掛け体積Vを算出するとともに試験片の重量Wを測定する。次に、気泡の占める見掛け体積Vを下記式に基づいて算出する。なお、試験片を構成している樹脂の密度は、1g/cmとする。
気泡の占める見掛け体積V=V−W
続いて、試験片を23℃の蒸留水中に水面から100mmの深さに沈めて、試験片に15kPaの圧力を3分間に亘って加える。しかる後、試験片を水中から取り出して試験片の表面に付着した水分を除去し、試験片の重量Wを測定し、下記式に基づいて連続気泡率F及び独立気泡率Fを算出する。
連続気泡率F(%)=100×(W−W)/V
独立気泡率F(%)=100−F
The closed cell ratio is measured more specifically as follows. From the foamed sheet, a test piece having a square shape with a side of 5 cm and a constant thickness is cut out. The thickness of the test piece was measured, to measure the weight W 1 of the specimen to calculate the apparent volume V 1 of the test piece. Then calculated based on the apparent volume V 2 occupied by the bubbles in the following formula. The density of the resin constituting the test piece is 1 g / cm 3 .
Apparent volume occupied by bubbles V 2 = V 1 −W 1
Subsequently, the test piece is immersed in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece for 3 minutes. Thereafter, the test piece is taken out of the water to remove water adhering to the surface of the test piece, the weight W 2 of the test piece is measured, and the open cell rate F 1 and the closed cell rate F 2 are calculated based on the following equation. I do.
Open cell rate F 1 (%) = 100 × (W 2 −W 1 ) / V 2
Closed cell rate F 2 (%) = 100−F 1

(発泡シートの寸法)
発泡シートの厚さは、0.02〜0.8mmであることが好ましい。本発明では、このように比較的広い厚さ範囲内でも、上記した時間20ミリ秒での強度を所定の範囲内とすることで、発泡シートの柔軟性を確保しながら耐衝撃性等の機械強度を向上させることが可能になる。また、発泡シートの厚さは、0.08〜0.50mmであることがより好ましく、0.10〜0.40mmであることがさらに好ましい。
発泡シートは、特に限定されないが、細線状に加工したものでもよく、例えば発泡シートの幅を10mm以下にして使用してもよい。また、例えば5mm以下、さらには1mm以下であってもよい。発泡シートの幅を狭くすると、小型化された電子機器内部において好適に使用することが可能である。また、本発明の発泡シートは、幅を狭くしても、耐久性が良好に維持される。発泡シートの幅の下限値は特に限定されないが、例えば0.1mm以上のものであってもよいし、0.2mm以上のものであってもよい。なお、発泡シートの平面形状は、特に限定されず、細長矩形状、枠状、L字状、コの字状等でもよいし、四角形、円形等いかなる形状であってもよい。
(Dimensions of foam sheet)
The thickness of the foam sheet is preferably 0.02 to 0.8 mm. According to the present invention, even in such a relatively wide thickness range, by setting the strength at the above-mentioned time of 20 milliseconds within a predetermined range, it is possible to secure the flexibility of the foamed sheet while maintaining mechanical strength such as impact resistance. Strength can be improved. Further, the thickness of the foamed sheet is more preferably 0.08 to 0.50 mm, and further preferably 0.10 to 0.40 mm.
The foamed sheet is not particularly limited, but may be processed into a fine line shape. For example, the foamed sheet may be used with a width of 10 mm or less. Also, for example, it may be 5 mm or less, or even 1 mm or less. When the width of the foam sheet is reduced, the foam sheet can be suitably used inside a miniaturized electronic device. Further, the foamed sheet of the present invention maintains good durability even when the width is reduced. The lower limit of the width of the foam sheet is not particularly limited, but may be, for example, 0.1 mm or more, or 0.2 mm or more. The planar shape of the foam sheet is not particularly limited, and may be an elongated rectangular shape, a frame shape, an L shape, a U shape, or the like, or may be any shape such as a square or a circle.

(機械的特性)
発泡シートの25%圧縮強度は、10〜2000kPaであることが好ましく、1000〜1500kPaであることがより好ましく、500〜1500kPaがさらに好ましい。25%圧縮強度を2000kPa以下とすることで、発泡シートに衝撃吸収性、シール性を持たせ、緩衝吸収材及びシール材として好適に使用可能になる。また、圧縮強度を高くすることで機械強度を良好にしやすくなる。なお、25%圧縮強度は、発泡シートをJISK6767に準拠して測定したものをいう。
(Mechanical properties)
The 25% compressive strength of the foam sheet is preferably from 10 to 2,000 kPa, more preferably from 1,000 to 1,500 kPa, and still more preferably from 500 to 1,500 kPa. By setting the 25% compressive strength to 2000 kPa or less, the foamed sheet is provided with a shock absorbing property and a sealing property, and can be suitably used as a buffer absorbing material and a sealing material. Further, by increasing the compressive strength, it becomes easy to improve the mechanical strength. The 25% compressive strength refers to a value obtained by measuring a foamed sheet in accordance with JIS K6767.

発泡シートは、層間剥離強度が0.7MPa以上であることが好ましく、0.8MPa以上であることがさらに好ましく、4.5MPa以上であることがより好ましい。なお、層間剥離強度の値は、後述する実施例の方法に従って測定したものである。
また、発泡シートは、層間剥離強度(MPa)を見かけ密度(g/cm3)で割った値(層間剥離強度/密度)が、8以上であることが好ましく、8.5以上であることがより好ましい。層間剥離強度/密度が高いほど、同じ見かけ密度でありながらも層間剥離強度が高いことを示し、柔軟性と機械強度の両立を図りやすいことを意味する。層間剥離強度/密度は、高ければ高いほどよいが、実用的には15以下程度である。
The foamed sheet preferably has an interlayer peel strength of 0.7 MPa or more, more preferably 0.8 MPa or more, and even more preferably 4.5 MPa or more. In addition, the value of the delamination strength was measured according to the method of Examples described later.
In the foamed sheet, the value (interlayer peel strength / density) obtained by dividing the interlayer peel strength (MPa) by the apparent density (g / cm 3 ) is preferably 8 or more, and more preferably 8.5 or more. More preferred. The higher the delamination strength / density, the higher the delamination strength while having the same apparent density, which means that it is easier to achieve both flexibility and mechanical strength. The higher the delamination strength / density, the better, but practically it is about 15 or less.

(熱分解型発泡剤)
本発明の発泡シートは、上記樹脂に加えて、熱分解型発泡剤を含む発泡性組成物を発泡してなることが好ましい。
熱分解型発泡剤としては、有機発泡剤、無機発泡剤が使用可能である。有機系発泡剤としては、アゾジカルボンアミド、アゾジカルボン酸金属塩(アゾジカルボン酸バリウム等)、アゾビスイソブチロニトリル等のアゾ化合物、N,N’−ジニトロソペンタメチレンテトラミン等のニトロソ化合物、ヒドラゾジカルボンアミド、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジド等のヒドラジン誘導体、トルエンスルホニルセミカルバジド等のセミカルバジド化合物等が挙げられる。
無機系発泡剤としては、酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等が挙げられる。
これらの中では、微細な気泡を得る観点、及び経済性、安全面の観点から、アゾ化合物が好ましく、アゾジカルボンアミドが特に好ましい。これらの熱分解型発泡剤は、単独で又は2以上を組み合わせて使用することができる。
発泡性組成物における熱分解型発泡剤の配合量は、樹脂100質量部に対して、好ましくは1〜15質量部、より好ましくは1〜12質量部、さらに好ましくは1.5〜5質量部である。
(Pyrogenic foaming agent)
The foamed sheet of the present invention is preferably formed by foaming a foamable composition containing a pyrolytic foaming agent in addition to the resin.
As the thermal decomposition type foaming agent, an organic foaming agent and an inorganic foaming agent can be used. Examples of the organic blowing agent include azo compounds such as azodicarbonamide, metal salts of azodicarboxylic acid (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, nitroso compounds such as N, N'-dinitrosopentamethylenetetramine, Examples thereof include hydrazine derivatives such as hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
Examples of the inorganic foaming agent include ammonium acid, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous sodium citrate and the like.
Among these, azo compounds are preferred, and azodicarbonamide is particularly preferred, from the viewpoint of obtaining fine bubbles, and from the viewpoints of economy and safety. These pyrolytic foaming agents can be used alone or in combination of two or more.
The amount of the thermal decomposition type foaming agent in the foamable composition is preferably 1 to 15 parts by mass, more preferably 1 to 12 parts by mass, and still more preferably 1.5 to 5 parts by mass with respect to 100 parts by mass of the resin. It is.

また、発泡性組成物は、上記樹脂と熱分解型発泡剤に加えて、気泡核調整剤を含有することが好ましい。気泡核調整剤としては、酸化亜鉛、ステアリン酸亜鉛等の亜鉛化合物、クエン酸、尿素の有機化合物等が挙げられるが、これらの中では、酸化亜鉛がより好ましい。気泡核調整剤の配合量は、樹脂100質量部に対して、好ましくは0.4〜8質量部、より好ましくは0.5〜5質量部、さらに好ましくは0.8〜2.5質量部である。気泡核調整剤を配合することで、微細気泡の気泡径のばらつきを抑えることが可能になる。
発泡性組成物は、必要に応じて、上記以外にも、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材等の発泡体に一般的に使用する添加剤を含有していてもよい。
Further, the foamable composition preferably contains a cell nucleus modifier in addition to the resin and the pyrolytic foaming agent. Examples of the cell nucleus adjusting agent include zinc compounds such as zinc oxide and zinc stearate, and organic compounds of citric acid and urea. Of these, zinc oxide is more preferable. The compounding amount of the cell nucleating agent is preferably 0.4 to 8 parts by mass, more preferably 0.5 to 5 parts by mass, and still more preferably 0.8 to 2.5 parts by mass with respect to 100 parts by mass of the resin. It is. By blending the cell nucleus adjusting agent, it is possible to suppress variations in the cell diameter of the fine cells.
The foamable composition contains, if necessary, additives generally used for foams such as antioxidants, heat stabilizers, colorants, flame retardants, antistatic agents, fillers, etc., in addition to the above. It may be.

[発泡シートの製造方法]
発泡シートの製造方法は、特に制限はないが、例えば、ポリオレフィン樹脂および熱分解型発泡剤を含み、かつ架橋された発泡性組成物を加熱し、熱分解型発泡剤を発泡させることで製造する。また、発泡させた発泡性組成物は、さらに延伸させてもよいし、延伸させなくてもよい。発泡シートは、延伸させることで、厚さを比較的薄くすることが可能である。また、耐久性を良好に維持しつつ、発泡シートの柔軟性を高めやすくなる。
[Production method of foam sheet]
The method for producing the foamed sheet is not particularly limited. For example, the foamed sheet contains a polyolefin resin and a thermal decomposition type foaming agent, and is manufactured by heating a crosslinked foamable composition to foam the thermal decomposition type foaming agent. . In addition, the expanded foamable composition may or may not be further stretched. The foamed sheet can be made relatively thin by stretching. Further, the flexibility of the foam sheet can be easily increased while maintaining good durability.

発泡シートの製造方法は、より具体的には、以下の工程(1)〜(3)を含む。
工程(1):ポリオレフィン樹脂、及び熱分解型発泡剤を含む添加剤を混合して、シート状の発泡性組成物(樹脂シート)に成形する工程
工程(2):シート状の発泡性組成物に電離性放射線を照射して発泡性組成物を架橋させる工程
工程(3):架橋させた発泡性組成物を加熱し、熱分解型発泡剤を発泡させて、気泡を形成する工程
More specifically, the method for producing a foamed sheet includes the following steps (1) to (3).
Step (1): Step of mixing a polyolefin resin and an additive containing a pyrolytic foaming agent to form a sheet-like foamable composition (resin sheet) Step (2): Sheet-like foamable composition (3): irradiating the composition with an ionizing radiation to crosslink the foamable composition, and heating the crosslinked foamable composition to foam the pyrolytic foaming agent to form bubbles.

工程(1)において、樹脂シートを成形する方法は、特に限定されないが、例えば、ポリオレフィン樹脂及び添加剤を押出機に供給して溶融混練し、押出機から発泡性組成物をシート状に押出すことによって樹脂シートを成形すればよい。
工程(2)において発泡性組成物を架橋する方法としては、樹脂シートに電子線、α線、β線、γ線等の電離性放射線を照射する方法を用いる。上記電離放射線の照射量は、得られる発泡シートの架橋度が上記した所望の範囲となるように調整すればよいが、5〜15Mradであることが好ましく、6〜13Mradであることがより好ましく、6〜8Mradであることがさらに好ましい。
本製造方法においては、架橋後の樹脂シートの抗張力を高くすることが好ましい。架橋後の樹脂シートの抗張力を高くすると、その原理は定かではないが、パルスNMRによる時間20ミリ秒での強度を低くしやすくなる。架橋後の樹脂シートの抗張力は、110℃において、好ましくは0.2〜0.7MPa、より好ましくは0.25〜0.60MPa、さらに好ましくは0.25〜0.50MPaである。なお、架橋後の樹脂シートの抗張力は、樹脂の種類を上記したものとしつつ、電離放射線の照射量などを調整することで上記範囲内とすることが可能である。
工程(3)において、発泡性組成物を加熱し熱分解型発泡剤を発泡させるときの加熱温度は、熱分解型発泡剤の発泡温度以上であればよいが、好ましくは200〜300℃、より好ましくは220〜280℃である。
In the step (1), the method of forming the resin sheet is not particularly limited. For example, a polyolefin resin and an additive are supplied to an extruder, melt-kneaded, and the foamable composition is extruded from the extruder into a sheet. In this way, the resin sheet may be formed.
As a method for crosslinking the foamable composition in the step (2), a method of irradiating the resin sheet with ionizing radiation such as an electron beam, α-ray, β-ray, and γ-ray is used. The irradiation amount of the ionizing radiation may be adjusted so that the degree of crosslinking of the obtained foamed sheet falls within the above-described desired range, but is preferably 5 to 15 Mrad, more preferably 6 to 13 Mrad, More preferably, it is 6 to 8 Mrad.
In this production method, it is preferable to increase the tensile strength of the crosslinked resin sheet. If the tensile strength of the crosslinked resin sheet is increased, its principle is not clear, but the strength at a time of 20 milliseconds by pulsed NMR is easily reduced. The tensile strength of the crosslinked resin sheet at 110 ° C. is preferably 0.2 to 0.7 MPa, more preferably 0.25 to 0.60 MPa, and further preferably 0.25 to 0.50 MPa. The tensile strength of the crosslinked resin sheet can be set within the above range by adjusting the irradiation amount of ionizing radiation while keeping the above-mentioned type of resin.
In the step (3), the heating temperature when the foamable composition is heated to foam the thermal decomposition type foaming agent may be at least the foaming temperature of the thermal decomposition type foaming agent, but is preferably 200 to 300 ° C, Preferably it is 220-280 degreeC.

また、本製造方法は、MD方向又はTD方向のいずれか一方又は双方の方向に発泡シートを延伸する工程(工程(4))を含んでもよい。
工程(4)における発泡シートの延伸は、樹脂シートを発泡させて発泡シートを得た後に行ってもよいし、樹脂シートを発泡させつつ行ってもよい。なお、樹脂シートを発泡させて発泡シートを得た後、発泡シートを延伸する場合には、発泡シートを冷却することなく発泡時の溶融状態を維持したまま続けて発泡シートを延伸してもよく、発泡シートを冷却した後、再度、発泡シートを加熱して溶融又は軟化状態とした上で発泡シートを延伸してもよい。延伸時に発泡シートは、例えば100〜280℃、好ましくは150〜260℃に加熱すればよい。
In addition, the present production method may include a step (step (4)) of stretching the foamed sheet in one or both of the MD direction and the TD direction.
The stretching of the foam sheet in the step (4) may be performed after foaming the resin sheet to obtain a foam sheet, or may be performed while foaming the resin sheet. When the foamed sheet is stretched after foaming the resin sheet to obtain the foamed sheet, the foamed sheet may be continuously stretched while maintaining the molten state at the time of foaming without cooling the foamed sheet. After cooling the foamed sheet, the foamed sheet may be stretched after the foamed sheet is heated again to be in a molten or softened state. At the time of stretching, the foamed sheet may be heated to, for example, 100 to 280 ° C, preferably 150 to 260 ° C.

ただし、本製造方法は、上記に限定されずに、上記以外の方法により、発泡シートを得てもよい。例えば、電離性放射線を照射する代わりに、発泡性組成物に予め有機過酸化物を配合しておき、発泡性組成物を加熱して有機過酸化物を分解させる方法等により架橋を行ってもよい。   However, the present production method is not limited to the above, and a foamed sheet may be obtained by a method other than the above. For example, instead of irradiating with ionizing radiation, an organic peroxide may be previously blended in the foamable composition, and the foaming composition may be heated and crosslinked by a method of decomposing the organic peroxide. Good.

発泡シートの用途は、特に限定されないが、例えば電子機器内部で使用することが好ましい。本発明の発泡シートは、薄くしても高い耐久性を有するので、特に、発泡シートを配置するスペースが小さい各種の携帯電子機器内部で好適に使用できる。携帯電子機器としては、携帯電話、カメラ、ゲーム機器、電子手帳、タブレット端末、ノート型パーソナルコンピュータ等が挙げられる。発泡シートは、電子機器内部において、衝撃吸収材、シール材として使用可能である。また、発泡シートを基材とする粘着テープに使用してもよい。   The use of the foam sheet is not particularly limited, but is preferably used, for example, inside an electronic device. Since the foamed sheet of the present invention has high durability even when it is thin, it can be suitably used especially in various portable electronic devices having a small space for disposing the foamed sheet. Examples of the portable electronic device include a mobile phone, a camera, a game device, an electronic organizer, a tablet terminal, a notebook personal computer, and the like. The foam sheet can be used as an impact absorbing material and a sealing material inside the electronic device. Moreover, you may use for the adhesive tape which uses a foamed sheet as a base material.

[粘着テープ]
本発明の粘着テープは、例えば、発泡シートと、発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備えるものであるが、両面に粘着剤層を設けた両面粘着テープが好ましい。
粘着テープを構成する粘着剤層の厚さは、5〜200μmであることが好ましい。粘着剤層の厚さは、より好ましくは7〜150μmであり、更に好ましくは10〜100μmである。粘着剤層の厚さが5〜200μmの範囲であると、粘着テープを用いて固定した構成体の厚さを薄くできる。
粘着剤層に使用する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等を用いることができる。
また、粘着剤層の上には、さらに離型紙等の剥離シートが貼り合わされてもよい。
発泡シートの少なくとも一面に粘着剤層を形成する方法は、特に限定されないが、例えば、発泡シートの少なくとも一面にコーター等の塗工機を用いて粘着剤を塗布する方法、発泡シートの少なくとも一面にスプレーを用いて粘着剤を噴霧、塗布する方法、発泡シートの少なくとも一面に刷毛を用いて粘着剤を塗布する方法などが挙げられる。また、剥離シート上に形成した粘着剤層を発泡シートの少なくとも一面に転写する方法等も挙げられる。
[Adhesive tape]
The pressure-sensitive adhesive tape of the present invention includes, for example, a foamed sheet and a pressure-sensitive adhesive layer provided on at least one surface of the foamed sheet, and is preferably a double-sided pressure-sensitive adhesive tape provided with a pressure-sensitive adhesive layer on both sides.
The thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape is preferably from 5 to 200 μm. The thickness of the pressure-sensitive adhesive layer is more preferably 7 to 150 μm, and still more preferably 10 to 100 μm. When the thickness of the pressure-sensitive adhesive layer is in the range of 5 to 200 μm, the thickness of the structure fixed using the pressure-sensitive adhesive tape can be reduced.
The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is not particularly limited, and for example, an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, or the like can be used.
Further, a release sheet such as release paper may be further laminated on the pressure-sensitive adhesive layer.
The method of forming the pressure-sensitive adhesive layer on at least one surface of the foam sheet is not particularly limited.For example, a method of applying a pressure-sensitive adhesive on at least one surface of the foam sheet using a coating machine such as a coater, and at least one surface of the foam sheet. Examples include a method of spraying and applying an adhesive using a spray, and a method of applying an adhesive using a brush on at least one surface of a foamed sheet. Further, a method of transferring the pressure-sensitive adhesive layer formed on the release sheet to at least one surface of the foamed sheet may be used.

本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[測定方法]
各物性の測定方法及び評価方法は、次の通りである。
<時間20ミリ秒での強度>
パルスNMRHahnEcho法測定による時間20ミリ秒での強度を測定した。測定条件は、以下のとおりである。
(パルスNMR Hahn Echo法測定)
BrukerBiospin社製パルスNMR:Minispecmq20を用いて測定を実施した。
1)サンプル
発泡シート100〜500mgを直径10mmのNMR管に量り取り測定に用いた。サンプルをパルスNMR装置に設置し、120℃で10時間以上養生した。
2)測定条件
Hahn Echo法
First90°−180°Pulse Separation:0.01msec
Final Pulse Separation:50msec
Number of Data Poins Fitting:50points
Scans:8〜64times
温度:120℃
(時間20ミリ秒での強度の算出)
上記手法で得られた、横磁化ベクトルの減衰曲線(緩和曲線)の横軸(時間)が20ミリ秒の強度を読み取り、時間20ミリ秒での強度とした。
[Measuring method]
The measuring method and evaluation method of each physical property are as follows.
<Intensity at time 20 ms>
The intensity at a time of 20 milliseconds was measured by pulsed NMR HahnEcho method measurement. The measurement conditions are as follows.
(Pulse NMR Hahn Echo method measurement)
The measurement was carried out using Bruker Biospin pulse NMR: Minispeccmq20.
1) Sample 100 to 500 mg of the foamed sheet was weighed into an NMR tube having a diameter of 10 mm and used for measurement. The sample was set on a pulse NMR apparatus and cured at 120 ° C. for 10 hours or more.
2) Measurement conditions
Hahn Echo method
First 90 ° -180 ° Pulse Separation: 0.01 msec
Final Pulse Separation: 50msec
Number of Data Points Fitting: 50 points
Scans: 8 to 64 times
Temperature: 120 ° C
(Calculation of intensity at time 20 ms)
The horizontal axis (time) of the decay curve (relaxation curve) of the transverse magnetization vector obtained by the above method was read for an intensity of 20 milliseconds, and was taken as the intensity at a time of 20 milliseconds.

<見かけ密度及び発泡倍率>
発泡シートについてJISK7222に準拠して見かけ密度を測定し、その逆数を発泡倍率とした。
<架橋度>
発泡シートから約100mgの試験片を採取し、試験片の重量A(mg)を精秤する。次に、この試験片を120℃のキシレン30cm中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の重量B(mg)を精秤する。得られた値から、下記式により架橋度(質量%)を算出した。
架橋度(質量%)=100×(B/A)
<25%圧縮強度>
発泡シートについてJISK6767に準拠して25%圧縮強度を測定した。
<架橋後の樹脂シートの抗張力>
架橋後の樹脂シートの抗張力は、110℃の環境下、JIS K 7161に準拠して測定した。
<Apparent density and expansion ratio>
The apparent density of the foam sheet was measured in accordance with JIS K7222, and the reciprocal thereof was defined as the expansion ratio.
<Degree of crosslinking>
About 100 mg of a test piece is collected from the foamed sheet, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 120 ° C. and allowed to stand for 24 hours, then filtered through a 200-mesh wire gauze to collect the insoluble matter on the wire gauze, vacuum-dried, and weighed the insoluble matter. Weigh B (mg) precisely. From the obtained values, the degree of crosslinking (% by mass) was calculated by the following equation.
Degree of crosslinking (% by mass) = 100 × (B / A)
<25% compressive strength>
The 25% compressive strength of the foamed sheet was measured in accordance with JIS K6767.
<Tensile strength of resin sheet after crosslinking>
The tensile strength of the crosslinked resin sheet was measured at 110 ° C. in accordance with JIS K7161.

<層間剥離強度>
(層間剥離強度測定用サンプルの作製)
図1に示すように、発泡シート7の25mm角範囲にプライマー(セメダイン株式会社製「PPXプライマー」)を塗布した後、塗布部分の中央に直径5mm分の接着剤8(セメダイン株式会社製「PPX」)を滴下した。その後直ちに、接着剤滴下部分に25mm角のアルミ製の治具9を置き、発泡シート7と治具9とを接着剤8により圧着した。その後、治具9の大きさに沿って発泡シートをカットした。カットした発泡シート7の治具9を接着していない面にプライマーを塗布し、塗布部分の中央に直径5mm分の接着剤10を滴下した。その後直ちに、接着剤滴下部分に10mm角のアルミ製の治具11を置き、発泡シート7と治具11とを接着剤10により圧着した。治具11の周辺にはみ出した接着剤をふき取った後、治具11の大きさに沿って発泡シートに切り込み12を入れた。これを室温で30分間放置することで接着剤を養生し、層間剥離強度測定用サンプルとした。
(層間剥離強度の測定)
続いて、1kNのロードセルを設置した試験機(株式会社エー・アンド・デイ製「テンシロン万能材料試験機」)に、発泡シート7のシート面が引張方向に対して垂直になるように層間剥離強度測定用サンプルを取り付けた。治具9を速度100mm/分で垂直上向きに引っ張り、発泡シートの1cm角の範囲のみを層間剥離させた。このときの最大荷重を測定し、1回目の測定結果とした。同様の操作を3回繰り返し、その平均値を層間剥離強度とした。
<Delamination strength>
(Preparation of sample for measuring delamination strength)
As shown in FIG. 1, after applying a primer (“PPX primer” manufactured by Cemedine Co., Ltd.) to a 25 mm square area of the foam sheet 7, an adhesive 8 having a diameter of 5 mm (“PPX manufactured by Cemedine Co., Ltd.”) is applied to the center of the applied portion. )) Was added dropwise. Immediately thereafter, a 25 mm square aluminum jig 9 was placed on the adhesive dropping portion, and the foam sheet 7 and the jig 9 were pressed with the adhesive 8. Thereafter, the foam sheet was cut along the size of the jig 9. A primer was applied to the surface of the cut foam sheet 7 to which the jig 9 was not bonded, and an adhesive 10 having a diameter of 5 mm was dropped at the center of the applied portion. Immediately thereafter, a 10 mm square aluminum jig 11 was placed on the adhesive dropping portion, and the foamed sheet 7 and the jig 11 were pressed with the adhesive 10. After the adhesive protruding around the jig 11 was wiped off, a cut 12 was made in the foam sheet along the size of the jig 11. This was allowed to stand at room temperature for 30 minutes to cure the adhesive, and used as a sample for measuring delamination strength.
(Measurement of delamination strength)
Subsequently, a delamination strength was set on a testing machine (“A Tensilon Universal Material Testing Machine” manufactured by A & D Corporation) having a load cell of 1 kN so that the sheet surface of the foamed sheet 7 was perpendicular to the tensile direction. A measurement sample was attached. The jig 9 was pulled vertically upward at a speed of 100 mm / min, and only a 1 cm square area of the foam sheet was delaminated. The maximum load at this time was measured, and the result was used as the first measurement result. The same operation was repeated three times, and the average value was defined as the delamination strength.

<層間剥離強度/密度>
上記で得られた層間剥離強度(MPa)を、見かけ密度(g/cm3)で割った値を、層間剥離強度/密度として算出した。層間剥離強度/密度が8以上であると、同程度の見かけ密度の発泡シートに対して機械強度が良好になるとして“A”と評価した。一方で、8未満であると、同程度の見かけ密度の発泡シートに対して機械強度が良好にならないとして“B”と評価した。さらに、良好な発泡性が見られず、シート状の発泡体が作製できなかったものを“C”と評価した。
<Delamination strength / density>
The value obtained by dividing the delamination strength (MPa) obtained above by the apparent density (g / cm 3 ) was calculated as delamination strength / density. When the delamination strength / density was 8 or more, the mechanical strength was improved with respect to a foamed sheet having the same apparent density, and was evaluated as “A”. On the other hand, when it is less than 8, it was evaluated as “B” because the mechanical strength was not good for a foamed sheet having the same apparent density. Further, a sheet in which good foamability was not observed and a sheet-like foam could not be produced was evaluated as “C”.

[実施例1]
メタロセン化合物の重合触媒によって得られた直鎖状低密度ポリエチレン樹脂(ダウケミカル社製、商品名「アフィニティーPL1850」、密度:0.902g/cm)100質量部と、熱分解型発泡剤としてのアゾジカルボンアミド2.1質量部と、気泡核調整剤としての酸化亜鉛1.0質量部と、酸化防止剤0.5質量部とを押出機に供給した。押出機において、これらを130℃で溶融混練し、厚さが250μmの長尺状の樹脂シートに押出した。
次に、上記長尺状の樹脂シートの両面に加速電圧500kVの電子線を7Mrad照射して樹脂シートを架橋した。架橋した樹脂シートの110℃下での抗張力は、0.3MPaであった。その後、架橋した樹脂シートを熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して発泡させて、厚さ300μmの発泡シートを得た。
次いで、得られた発泡シートを発泡炉から連続的に送り出した後、この発泡シートをその両面の温度が200〜250℃となるように維持した状態で、TD方向、MD方向に延伸して変形させ厚さ150μmの発泡シートを得た。得られた発泡シートを上記評価方法に従って評価し、その結果を表1に示す。
[Example 1]
100 parts by mass of a linear low-density polyethylene resin (manufactured by Dow Chemical Company, trade name “Affinity PL1850”, density: 0.902 g / cm 3 ) obtained by a metallocene compound polymerization catalyst, and a pyrolytic foaming agent 2.1 parts by mass of azodicarbonamide, 1.0 part by mass of zinc oxide as a cell nucleus modifier, and 0.5 part by mass of an antioxidant were supplied to an extruder. These were melt-kneaded at 130 ° C. in an extruder and extruded into a long resin sheet having a thickness of 250 μm.
Next, both sides of the long resin sheet were irradiated with an electron beam having an acceleration voltage of 500 kV for 7 Mrad to crosslink the resin sheet. The tensile strength of the crosslinked resin sheet at 110 ° C. was 0.3 MPa. Thereafter, the crosslinked resin sheet was continuously fed into a foaming furnace maintained at 250 ° C. by hot air and an infrared heater, heated and foamed to obtain a foamed sheet having a thickness of 300 μm.
Next, after continuously feeding the obtained foamed sheet from the foaming furnace, the foamed sheet is deformed by stretching in the TD direction and the MD direction while maintaining the temperature of both sides of the foamed sheet at 200 to 250 ° C. Then, a foamed sheet having a thickness of 150 μm was obtained. The obtained foamed sheet was evaluated according to the above evaluation method, and the results are shown in Table 1.

[実施例2]
熱分解型発泡剤の配合量を10質量部に変更し、かつ発泡シートをTD、MD方向に延伸させなかった点を除いて実施例1と同様に実施した。
[実施例3]
電子線照射量を6.2Mradに変更した点を除いて実施例1と同様に実施した。
[実施例4]
樹脂組成を上記した直鎖状低密度ポリエチレン樹脂30質量部と、エチレン−酢酸ビニル共重合体(東ソー株式会社製「ウルトラセン636」、酢酸ビニル含有率:19質量%)70質量部とに変更した点を除いて実施例1と同様に実施した。
[実施例5]
樹脂組成を上記した直鎖状低密度ポリエチレン樹脂30質量部と、エチレン−酢酸ビニル共重合体(東ソー株式会社製「ウルトラセン636」)70質量部とに変更し、かつ熱分解型発泡剤の配合量を5.5質量部に変更し、さらに発泡シートをTD、MD方向に延伸させなかった点を除いて実施例1と同様に実施した。
[Example 2]
The procedure was performed in the same manner as in Example 1 except that the amount of the pyrolytic foaming agent was changed to 10 parts by mass, and the foamed sheet was not stretched in the TD and MD directions.
[Example 3]
The same operation as in Example 1 was carried out except that the electron beam irradiation amount was changed to 6.2 Mrad.
[Example 4]
The resin composition was changed to 30 parts by mass of the above-described linear low-density polyethylene resin and 70 parts by mass of an ethylene-vinyl acetate copolymer ("Ultracene 636" manufactured by Tosoh Corporation, vinyl acetate content: 19% by mass). The procedure was performed in the same manner as in Example 1 except for the following.
[Example 5]
The resin composition was changed to 30 parts by mass of the above-mentioned linear low-density polyethylene resin and 70 parts by mass of an ethylene-vinyl acetate copolymer ("Ultracene 636" manufactured by Tosoh Corporation), and The operation was carried out in the same manner as in Example 1 except that the blending amount was changed to 5.5 parts by mass and the foamed sheet was not stretched in the TD and MD directions.

[比較例1]
発泡剤の配合量を1.6質量部に変更し、電子線照射量を4.2Mradとした点を除いて実施例1と同様に実施した。
[比較例2]
熱分解型発泡剤の配合量を7.5質量部に変更し、電子線照射量を4.5Mradとし、発泡シートをTD、MD方向に延伸させなかった点を除いて比較例1と同様に実施した。
[比較例3]
熱分解型発泡剤の配合量を4.5質量部に変更し、かつ発泡シートをTD、MD方向に延伸させなかった点を除いて比較例1と同様に実施した。
[比較例4]
電子線照射量を9.0Mradとした以外は、実施例1と同様に実施したが、発泡シートが得られなかった。
[Comparative Example 1]
Example 1 was carried out in the same manner as in Example 1 except that the blending amount of the foaming agent was changed to 1.6 parts by mass and the electron beam irradiation amount was changed to 4.2 Mrad.
[Comparative Example 2]
The same as Comparative Example 1 except that the blending amount of the thermal decomposition type foaming agent was changed to 7.5 parts by mass, the electron beam irradiation amount was set to 4.5 Mrad, and the foamed sheet was not stretched in the TD and MD directions. Carried out.
[Comparative Example 3]
The procedure was performed in the same manner as in Comparative Example 1 except that the amount of the pyrolytic foaming agent was changed to 4.5 parts by mass, and the foamed sheet was not stretched in the TD and MD directions.
[Comparative Example 4]
The same operation as in Example 1 was performed except that the electron beam irradiation amount was changed to 9.0 Mrad, but no foam sheet was obtained.

Figure 2018181498
Figure 2018181498

以上のように、実施例1〜5では、パルスNMR測定による時間20ミリ秒での強度が所定の範囲内であったため、層間剥離強度/密度が8以上となり、柔軟性と機械強度のいずれも良好にすることができた。それに対して、比較例1〜3では、パルスNMR測定による時間20ミリ秒での強度が大きくなったため、層間剥離強度/密度が8未満となり、柔軟性と機械強度の両方を良好にすることができなかった。また、比較例4では、パルスNMR測定による時間20ミリ秒での強度が小さかったため、発泡状態の制御が難しく、発泡体シートとして実用的に製造することが難しかった。   As described above, in Examples 1 to 5, the strength at a time of 20 milliseconds by the pulse NMR measurement was within the predetermined range, so that the delamination strength / density was 8 or more, and both the flexibility and the mechanical strength Could be good. On the other hand, in Comparative Examples 1 to 3, since the strength at a time of 20 milliseconds by the pulse NMR measurement was increased, the delamination strength / density was less than 8, and both the flexibility and the mechanical strength could be improved. could not. In Comparative Example 4, since the strength at a time of 20 milliseconds by the pulse NMR measurement was small, it was difficult to control the foaming state, and it was difficult to produce a foam sheet practically.

7 発泡シート
8 接着剤
9 治具
10 接着剤
11 治具
12 切り込み
7 Foam sheet 8 Adhesive 9 Jig 10 Adhesive 11 Jig 12 Cut

Claims (11)

ポリオレフィン樹脂を含む発泡性組成物を発泡させてなるポリオレフィン系発泡シートであって、パルスNMRHahnEcho法測定による時間20ミリ秒での強度が0.02〜0.07の範囲にあるポリオレフィン系発泡シート。   A polyolefin foam sheet obtained by foaming a foamable composition containing a polyolefin resin, wherein the strength at a time of 20 milliseconds measured by a pulsed NMR Hahn Echo method is in the range of 0.02 to 0.07. 前記ポリオレフィン樹脂がポリエチレン樹脂である、請求項1に記載のポリオレフィン系発泡シート。   The polyolefin foam sheet according to claim 1, wherein the polyolefin resin is a polyethylene resin. 前記ポリオレフィン樹脂が、メタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンを含む請求項1又は2に記載のポリオレフィン系発泡シート。   3. The polyolefin foam sheet according to claim 1, wherein the polyolefin resin includes a linear low-density polyethylene polymerized with a metallocene compound polymerization catalyst. 4. 前記ポリオレフィン樹脂が、さらにエチレン−酢酸ビニル共重合体を含む請求項3に記載のポリオレフィン系発泡シート。   The polyolefin foam sheet according to claim 3, wherein the polyolefin resin further contains an ethylene-vinyl acetate copolymer. 架橋度が30〜70質量%である、請求項1〜4のいずれか1項に記載のポリオレフィン系発泡シート。   The polyolefin foam sheet according to any one of claims 1 to 4, wherein a degree of crosslinking is 30 to 70% by mass. 厚さが0.02〜0.8mmである、請求項1〜5のいずれか1項に記載のポリオレフィン系発泡シート。   The polyolefin foam sheet according to any one of claims 1 to 5, having a thickness of 0.02 to 0.8 mm. 発泡倍率が1.2〜12cm/gである、請求項1〜6のいずれか1項に記載のポリオレフィン系発泡シート。Expansion ratio is 1.2~12cm 3 / g, a polyolefin foamed sheet according to any one of claims 1-6. 熱分解型発泡剤をさらに含む発泡性組成物を発泡してなる請求項1〜7のいずれか1項に記載のポリオレフィン系発泡シート。   The foamed polyolefin sheet according to any one of claims 1 to 7, wherein the foamable composition further contains a pyrolytic foaming agent. 請求項1〜8のいずれか1項に記載のポリオレフィン系発泡シートの製造方法であって、ポリオレフィン系樹脂及び熱分解型発泡剤を含み、かつ架橋された発泡性組成物を加熱し、前記熱分解型発泡剤を発泡させるポリオレフィン系発泡シートの製造方法。   The method for producing a polyolefin-based foamed sheet according to any one of claims 1 to 8, comprising heating a crosslinked foamable composition containing a polyolefin-based resin and a pyrolytic foaming agent, and heating the foamed composition. A method for producing a polyolefin foam sheet for foaming a decomposable foaming agent. 前記発泡性組成物を発泡させ、さらに延伸させる請求項9に記載のポリオレフィン系発泡シートの製造方法。   The method for producing a polyolefin foam sheet according to claim 9, wherein the foamable composition is foamed and further stretched. 請求項1〜8のいずれか1項に記載のポリオレフィン系発泡シートと、前記ポリオレフィン系発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備える粘着テープ。   An adhesive tape, comprising: the polyolefin-based foam sheet according to any one of claims 1 to 8; and an adhesive layer provided on at least one surface of the polyolefin-based foam sheet.
JP2018519888A 2017-03-31 2018-03-28 POLYOLEFIN FOAM SHEET, MANUFACTURING METHOD THEREOF AND ADHESIVE TAPE Active JP7201431B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017071385 2017-03-31
JP2017071385 2017-03-31
PCT/JP2018/012812 WO2018181498A1 (en) 2017-03-31 2018-03-28 Polyolefin-based foamed sheet, production method therefor, and pressure-sensitive adhesive tape

Publications (2)

Publication Number Publication Date
JPWO2018181498A1 true JPWO2018181498A1 (en) 2020-02-06
JP7201431B2 JP7201431B2 (en) 2023-01-10

Family

ID=63676004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018519888A Active JP7201431B2 (en) 2017-03-31 2018-03-28 POLYOLEFIN FOAM SHEET, MANUFACTURING METHOD THEREOF AND ADHESIVE TAPE

Country Status (4)

Country Link
JP (1) JP7201431B2 (en)
KR (1) KR102597457B1 (en)
CN (1) CN110461922A (en)
WO (1) WO2018181498A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020581A1 (en) * 2019-07-31 2021-02-04 積水化学工業株式会社 Polyolefin-based resin foam sheet and pressure-sensitive adhesive tape including same
JP6974655B1 (en) * 2020-03-31 2021-12-01 積水化学工業株式会社 Foam sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281827A (en) * 1999-03-31 2000-10-10 Toray Ind Inc Production of polyolefin crosslinked foamed body
JP2011173941A (en) * 2010-02-23 2011-09-08 Toray Ind Inc Polyolefin-based resin crosslinked foam
WO2015152222A1 (en) * 2014-03-31 2015-10-08 積水化学工業株式会社 Polyolefin foam sheet and pressure-sensitive adhesive tape
WO2016052557A1 (en) * 2014-09-30 2016-04-07 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
WO2016052556A1 (en) * 2014-09-30 2016-04-07 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
JP2017061669A (en) * 2015-03-31 2017-03-30 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563253B1 (en) 2003-07-11 2006-03-27 한국과학기술원 A carbon nanometer tube aligning method using magnetic field in an microgap and a carbon nanometer tube tip manufacturing method using thereof
CN104774356B (en) * 2014-01-14 2020-10-30 积水化学工业株式会社 Foam and method for producing foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281827A (en) * 1999-03-31 2000-10-10 Toray Ind Inc Production of polyolefin crosslinked foamed body
JP2011173941A (en) * 2010-02-23 2011-09-08 Toray Ind Inc Polyolefin-based resin crosslinked foam
WO2015152222A1 (en) * 2014-03-31 2015-10-08 積水化学工業株式会社 Polyolefin foam sheet and pressure-sensitive adhesive tape
WO2016052557A1 (en) * 2014-09-30 2016-04-07 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
WO2016052556A1 (en) * 2014-09-30 2016-04-07 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
JP2017061669A (en) * 2015-03-31 2017-03-30 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape

Also Published As

Publication number Publication date
KR20190131039A (en) 2019-11-25
KR102597457B1 (en) 2023-11-03
CN110461922A (en) 2019-11-15
JP7201431B2 (en) 2023-01-10
WO2018181498A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6987178B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6672439B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6207009B2 (en) Cross-linked polyolefin resin foam sheet
US11046871B2 (en) Polyolefin resin foam sheet and adhesive tape
WO2015046526A1 (en) Crosslinked polyolefin resin foam sheet
JP2019214737A (en) Closed-celled foam sheet
KR102557823B1 (en) Resin foam sheet, manufacturing method of resin foam sheet, and adhesive tape
JP7201431B2 (en) POLYOLEFIN FOAM SHEET, MANUFACTURING METHOD THEREOF AND ADHESIVE TAPE
JP6625032B2 (en) Closed-cell resin foam and method for producing the same
JP2018172643A (en) Foam sheet, and adhesive tape
JP6901476B2 (en) Crosslinked resin foam sheet, its manufacturing method, and adhesive tape
JP6918701B2 (en) Polyolefin-based foam sheet, its manufacturing method and adhesive tape
JP7209473B2 (en) Resin foam sheet and adhesive tape
JP6789053B2 (en) Resin foam sheet, method of manufacturing resin foam sheet, and adhesive tape
JP2020023723A (en) Closed-cell resin foam and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221222

R151 Written notification of patent or utility model registration

Ref document number: 7201431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151