WO2015152222A1 - Polyolefin foam sheet and pressure-sensitive adhesive tape - Google Patents

Polyolefin foam sheet and pressure-sensitive adhesive tape Download PDF

Info

Publication number
WO2015152222A1
WO2015152222A1 PCT/JP2015/060085 JP2015060085W WO2015152222A1 WO 2015152222 A1 WO2015152222 A1 WO 2015152222A1 JP 2015060085 W JP2015060085 W JP 2015060085W WO 2015152222 A1 WO2015152222 A1 WO 2015152222A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
foam sheet
styrene
resin
foamed sheet
Prior art date
Application number
PCT/JP2015/060085
Other languages
French (fr)
Japanese (ja)
Inventor
康司 谷内
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201580016366.0A priority Critical patent/CN106133040B/en
Priority to KR1020167026548A priority patent/KR102125916B1/en
Priority to JP2016511924A priority patent/JP6469085B2/en
Publication of WO2015152222A1 publication Critical patent/WO2015152222A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/24Presence of a foam
    • C09J2400/243Presence of a foam in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/006Presence of polyolefin in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2425/00Presence of styrenic polymer
    • C09J2425/006Presence of styrenic polymer in the substrate

Definitions

  • the present invention relates to a polyolefin-based foamed sheet used in, for example, electronic equipment applications, and an adhesive tape provided with an adhesive layer on the foamed sheet.
  • Foamed sheets in which a large number of bubbles are formed inside the resin are widely used as sealing materials and shock absorbing materials in electronic devices used in the information technology field such as mobile phones, tablet terminals, and personal computers.
  • the foamed sheet used in these electronic devices is required to have high flexibility in order to maintain the sealing performance by improving the followability to the level difference and to improve the shock absorption.
  • polyolefin-based resins are widely used for foam sheets, and flexibility and mechanical strength are enhanced by adjusting the expansion ratio and the degree of crosslinking.
  • Patent Document 1 it is also known to improve the flexibility and breaking strength of a foamed sheet by mixing two types of resins having different densities as a polyolefin resin (see, for example, Patent Document 1). ).
  • the present invention has been made in view of the above circumstances, and the problem of the present invention is that it has good flexibility, breaking strength, and withstand voltage characteristics even when it is thinned and narrowed. It is providing the polyolefin-type foam sheet which can be made.
  • the present inventors have found that the above problem can be solved by mixing a styrene-based thermoplastic elastomer having a maximum peak of tan ⁇ within a predetermined temperature range into the polyolefin-based resin constituting the foam sheet,
  • the following invention was completed. That is, the present invention provides the following (1) to (7).
  • the ratio (A / B) of the polyolefin resin (A) to the styrene thermoplastic elastomer (B) is 50/50 to 90/10 in terms of mass ratio, and the thickness is 0.05 to 1.0 mm.
  • the styrenic thermoplastic elastomer (B) is selected from a styrene / isoprene block copolymer, a hydrogenated styrene / isoprene block copolymer, and a hydrogenated styrene / isoprene / butadiene block copolymer or The polyolefin-based foamed sheet according to the above (1) or (2), which is two or more kinds. (4) The polyolefin-based foamed sheet according to any one of (1) to (3), wherein the polyolefin-based resin (A) is a polyethylene-based resin.
  • the foamed sheet of the present invention it is possible to improve the flexibility, breaking strength, and withstand voltage characteristics even when it is thinned and narrowed.
  • the polyolefin foam sheet of the present invention (hereinafter sometimes simply referred to as “foam sheet”) includes a polyolefin resin (A) and styrene having a maximum peak temperature of tan ⁇ of ⁇ 30 to 10 ° C. as measured by dynamic viscoelasticity.
  • a resin composition containing the thermoplastic elastomer (B) is foamed.
  • the ratio (A / B) of the polyolefin resin (A) to the styrene thermoplastic elastomer (B) is 50/50 to 90/10 in mass ratio. If the mass ratio is less than 50/50, the amount of the component (A) is insufficient and it becomes difficult to obtain the mechanical strength required for the foamed sheet. If the mass ratio exceeds 90/10, the amount of the component (B) is insufficient, and it becomes difficult to obtain a foam sheet having good withstand voltage characteristics and flexibility. From these viewpoints, the mass ratio is preferably 60/40 to 80/20.
  • polyolefin resin (A) examples include a polyethylene resin, a polypropylene resin, or a mixture thereof.
  • a polyethylene resin is preferable. More specifically, examples thereof include polyethylene resins, polypropylene resins, or mixtures thereof polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound. Among these, polymerization of a metallocene compound is included. A polyethylene resin polymerized with a catalyst is preferred.
  • the melting point of the polyolefin resin (A) is not particularly limited, but is preferably 60 ° C.
  • the thermal stability of the resin composition is increased, stickiness and blocking during the production of the foamed sheet are prevented, and the processability is easily improved.
  • the melting point is measured by a differential scanning calorimetry (DSC) method.
  • the polyethylene resin preferably has a low density in order to increase the flexibility of the foam sheet.
  • the density of the polyethylene resin particularly preferably from 0.920 g / cm 3 or less, more preferably 0.865 ⁇ 0.915g / cm 3, particularly preferably at 0.870 ⁇ 0.910g / cm 3 is there.
  • the density is measured in accordance with JIS K 7112.
  • polyethylene resin examples include an ethylene homopolymer, an ethylene-vinyl acetate copolymer, and an ethylene- ⁇ -olefin copolymer. Of these, an ethylene- ⁇ -olefin copolymer is preferable.
  • the ethylene- ⁇ -olefin copolymer is a polyethylene-based copolymer obtained by copolymerizing ethylene with a small amount of ⁇ -olefin as required (for example, 30% by mass or less, preferably 10% by mass or less of all monomers). Among them, linear low density polyethylene obtained by a polymerization catalyst of a metallocene compound is preferable.
  • ⁇ -olefin constituting the polyethylene resin examples include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. . Of these, ⁇ -olefins having 4 to 10 carbon atoms are preferable, and among these, 4-methyl-1-pentene, 1-hexene, and 1-octene are more preferable.
  • the ethylene-vinyl acetate copolymer usually includes a copolymer containing 50% by mass or more of ethylene units.
  • a foamed sheet having high flexibility and high breaking strength can be easily obtained by using a polyethylene-based resin, particularly a linear low density polyethylene, obtained by a polymerization catalyst of a metallocene compound. Moreover, as will be described later, it is easy to maintain high performance even if the foam sheet is thinned.
  • the polyethylene resin obtained by the polymerization catalyst of the metallocene compound is preferably contained in the foamed sheet in an amount of 50% by mass or more of the entire polyolefin resin (A), more preferably 70 to 100% by mass, and still more preferably 90 to 90% by mass. 100% by mass, most preferably 100% by mass is contained.
  • polypropylene resin examples include a propylene homopolymer, a propylene- ⁇ -olefin copolymer containing 50% by mass or more of propylene units, and the like. These may be used alone or in combination of two or more.
  • Specific examples of the ⁇ -olefin constituting the propylene- ⁇ -olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, ⁇ -olefins having 6 to 12 carbon atoms are preferable.
  • Suitable metallocene compounds include compounds such as bis (cyclopentadienyl) metal complexes having a structure in which a transition metal is sandwiched between ⁇ -electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). The compound to be mentioned is mentioned. Such metallocene compounds have uniform active site properties and each active site has the same activity. A polymer synthesized using a metallocene compound has high uniformity such as molecular weight, molecular weight distribution, composition, and composition distribution.
  • Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group.
  • Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like.
  • the “various” means various isomers including n-, sec-, tert-, and iso-. Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand. In addition to ⁇ -electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
  • the metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst).
  • specific cocatalyst include methylaluminoxane (MAO) and boron compounds.
  • the proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
  • the Ziegler-Natta compound is a triethylaluminum-titanium tetrachloride solid composite, which is obtained by reducing titanium tetrachloride with an organoaluminum compound and then treating with various electron donors and electron acceptors.
  • a method of combining a composition, an organoaluminum compound, and an aromatic carboxylic acid ester see JP-A 56-1000080, JP-A 56-120712, JP-A 58-104907), halogens Method of supported catalyst in which magnesium tetrachloride is brought into contact with magnesium tetrachloride and various electron donors (see JP-A-57-63310, JP-A-63-43915, JP-A-63-83116), etc. What was manufactured by is preferable.
  • the styrenic thermoplastic elastomer (B) used in the present invention has a structural unit derived from styrene, specifically, a co-weight of styrene and a conjugated diene selected from isoprene, butadiene and the like. Coalescence is mentioned.
  • the styrenic thermoplastic elastomer (B) has a maximum peak temperature of tan ⁇ of ⁇ 30 to 10 ° C. as measured by dynamic viscoelasticity. As described above, when the maximum peak temperature of tan ⁇ is relatively low, heat loss in a high-speed deformation region such as impact fracture increases, and the fracture strength of the foamed sheet is easily improved. On the other hand, if the maximum peak temperature of tan ⁇ is outside the above range, it may be difficult to improve the fracture strength and flexibility of the foam sheet.
  • the maximum peak temperature of tan ⁇ of the styrenic thermoplastic elastomer is preferably ⁇ 25 to 5 ° C., and more preferably ⁇ 20 to 0 ° C.
  • the maximum peak temperature of tan ⁇ refers to a value measured by a dynamic viscoelasticity measuring device in a tensile mode, a temperature rising rate of 10 ° C./min, and a frequency of 10 Hz.
  • Examples of the dynamic viscoelasticity measuring apparatus that can be used for the measurement include “Leovibron DDV-III” manufactured by Orientec Co., Ltd.
  • the styrene-based thermoplastic elastomer (B) has a structural unit derived from styrene, it is possible to improve the withstand voltage characteristics of the foamed sheet.
  • the styrene content in the styrenic thermoplastic elastomer (B) is preferably 5 to 25% by mass.
  • the styrene content in the styrene-based thermoplastic elastomer (B) is more preferably 7 to 20% by mass, and further preferably 7 to 15% by mass.
  • the number average molecular weight of the styrenic thermoplastic elastomer (B) is not particularly limited, but is preferably 30,000 to 800,000, more preferably 120,000 to 180,000 from the viewpoints of fracture strength and processability.
  • a number average molecular weight is a pothistyrene conversion value measured using gel permeation chromatography (GPC).
  • the styrenic thermoplastic elastomer (B) may or may not be hydrogenated. Hydrogenation can be performed by a known method. Specifically, it can be obtained by dissolving a hydrogen-free styrene-based thermoplastic elastomer in a solvent inert to the hydrogenation reaction and hydrogenation catalyst, and reacting hydrogen using a known hydrogenation catalyst. .
  • a catalyst a heterogeneous catalyst in which a metal such as Raney nickel, Pt, Pd, Ru, Rh, Ni is supported on a carrier such as carbon, alumina, diatomaceous earth, or a transition metal and an alkylaluminum compound, an alkyllithium compound, etc. And Ziegler-based catalysts composed of the above combinations.
  • the hydrogen pressure is preferably from normal pressure to 200 kg / cm 2
  • the reaction temperature is preferably from room temperature to 250 ° C.
  • the reaction time is preferably from 0.1 to 100 hours.
  • the polymer after the reaction is solidified with methanol or the like and then heated or dried under reduced pressure, or the reaction solution is poured into boiling water and the solvent is removed azeotropically, and then heated or dried under reduced pressure. Obtainable.
  • the styrenic thermoplastic elastomer (B) is usually a block copolymer.
  • block copolymer block portions at both ends are made of polystyrene, and an intermediate block is a block of isoprene or a conjugated diene such as isoprene and butadiene. The thing which is is mentioned.
  • the intermediate block preferably contains vinyl-polyisoprene.
  • Specific examples of the block copolymer include styrene / isoprene block copolymers and styrene / isoprene / butadiene block copolymers. Among these, styrene / isoprene / butadiene block copolymers are exemplified. Is preferred.
  • the styrene / isoprene block copolymer may be a hydrogenated hydrogenated styrene / isoprene block copolymer or may not be hydrogenated.
  • the styrene / isoprene / butadiene block copolymer is preferably hydrogenated.
  • the styrenic thermoplastic elastomer (B), which is a block copolymer, can be produced, for example, by anionic copolymerization of styrene and a conjugated diene such as isoprene and / or butadiene with an alkyl lithium compound as an initiator.
  • alkyl lithium compound include alkyl lithium having an alkyl group having 1 to 10 carbon atoms such as methyl lithium, ethyl lithium, pentyl lithium, and butyl lithium, and dilithium compounds such as naphthalenedi lithium and dithiohexylbenzene.
  • the coupling agent include dichloromethane, dibromomethane, dibromobenzene and the like.
  • a solvent in order to appropriately control the reaction.
  • the solvent include organic solvents inert to the polymerization initiator, for example, hexane, heptane, cyclohexane, methylcyclohexane, benzene, and other aliphatic, alicyclic, and aromatic hydrocarbons having 6 to 12 carbon atoms. It is preferable to use it.
  • the polymerization is preferably performed at a temperature range of 0 to 80 ° C. for 0.5 to 50 hours.
  • the maximum peak temperature of tan ⁇ of the block copolymer can be adjusted by a method of adjusting the number of 3, 4 bonds or 1, 2 bonds of isoprene or butadiene, and a Lewis base is used as a cocatalyst. Can be adjusted relatively easily.
  • Lewis bases include ethers such as dimethyl ether, diethyl ether and tetrahydrofuran, glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, triethylamine, N, N, N ′, N′-tetramethylethylenediamine (TMEDA), and N-methyl. Examples thereof include amine compounds such as morpholine.
  • These Lewis bases are preferably used in an amount of 0.1 to 1000 times the number of moles of lithium in the polymerization initiator.
  • the maximum peak temperature can also be adjusted by adjusting the presence or absence of hydrogenation and the hydrogenation rate.
  • the resin component of the resin composition may be composed of the component (A) and the component (B), but contains a resin component other than the components (A) and (B) as long as the object of the present invention is not impaired. Also good.
  • the total amount of the components (A) and (B) is usually 70% by mass or more, preferably 90% by mass or more based on the total amount of the resin components.
  • various additives other than a resin component may be mix
  • the thickness of the foam sheet is 0.05 to 1.0 mm. If the thickness is less than 0.05 mm, the mechanical strength such as the breaking strength may be deteriorated, or the sealing property and the impact absorption property may be deteriorated. Moreover, when it becomes thicker than 1.0 mm, it becomes difficult to use a foam sheet for the electronic device reduced in size.
  • the thickness of the foam sheet is more preferably 0.06 to 0.5 mm. Within this range, various performances required for the foamed sheet of the present invention can be improved, and it can be suitably used for various electronic devices that have been miniaturized.
  • the foamed sheet of the present invention has good sealing properties and impact absorbability even when the width is narrow, but the width of the foamed sheet is specifically 0.5 to 2.5 mm.
  • the thickness is preferably 0.5 to 2.0 mm.
  • the apparent magnification of the foamed sheet is preferably 1.1 to 10 cc / g, and more preferably 1.3 to 6 cc / g.
  • the apparent magnification is in the above range, it becomes possible to have good flexibility while having an appropriate breaking strength, and the sealing performance, impact absorption performance, and the like are improved.
  • the foamed sheet of the present invention is preferably cross-linked.
  • the gel% indicating the degree of cross-linking of the foamed sheet is preferably 10 to 70% by mass, and more preferably 15 to 65% by mass.
  • the gel% is equal to or higher than the above lower limit value, sufficient crosslinking is formed in the foamed sheet, and the fracture strength and the like can be further improved.
  • the foam sheet of the present invention has a large number of bubbles, but the bubbles are preferably closed cells.
  • the term “bubbles are closed cells” means that the ratio of closed cells to all bubbles (referred to as closed cell ratio) is 70% or more.
  • the closed cell ratio is more preferably 80% or more.
  • the closed cell ratio is determined according to JIS K 7138 (2006).
  • Commercially available measuring instruments include Beckman's air comparison specific gravity meter MODEL930, dry automatic density meter Accupic 1330, and the like.
  • the closed cell ratio is measured as follows. A test piece having a flat square shape with a side of 5 cm and a constant thickness is cut out from the foam sheet.
  • the thickness of the test piece is measured, the apparent volume V 1 of the test piece is calculated, and the weight W 1 of the test piece is measured.
  • the apparent volume V 2 occupied by the bubbles is calculated based on the following formula.
  • the density of the resin constituting the test piece is 1 g / cm 3 .
  • Apparent volume occupied by bubbles V 2 V 1 ⁇ W 1
  • the test piece is submerged in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece over 3 minutes.
  • the 25% compressive strength of the foamed sheet is not particularly limited, but is preferably 10 to 1000 kPa, and more preferably 20 to 800 kPa. When the 25% compressive strength is in the above range, the flexibility of the foamed sheet is likely to be enhanced, and the impact absorption and sealing properties are easily improved. In addition, 25% compressive strength means what measured the foamed sheet based on JISK6767.
  • the breaking strength of the foam sheet is preferably 2 MPa or more, more preferably 2.5 MPa or more.
  • the fracture strength is a value indicating the tensile strength in the thickness direction (Z direction) and is measured by a measurement method described later.
  • the breaking strength is preferably 8 MPa or less, and more preferably 7.5 MPa or less.
  • the foamed sheet of the present invention is not particularly limited, but the resin composition is preferably produced by crosslinking and foaming.
  • the production method includes the following steps (1) to (3): Is industrially advantageous.
  • Step (1) The component (A), the component (B), the pyrolytic foaming agent, and other additives are supplied to an extruder, melt-kneaded, and extruded into a sheet form from the extruder.
  • Step (2) Step of cross-linking the sheet-shaped resin composition
  • the foam sheet can be manufactured by the method described in WO2005 / 007731. It is.
  • the pyrolytic foaming agent is not particularly limited, and examples thereof include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, p-toluenesulfonyl semicarbazide and the like. Of these, azodicarbonamide is preferred.
  • a thermal decomposition type foaming agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the pyrolytic foaming agent in the resin composition is preferably 0.4 to 12 parts by mass, more preferably 0.6 to 8 parts by mass with respect to 100 parts by mass of the resin component.
  • the method of foaming the resin composition is not particularly limited, and examples thereof include a method of heating the resin composition with hot air, a method of heating with infrared rays, a method using a salt bath, a method using an oil bath, and the like. May be.
  • the foaming of the resin composition is not limited to the example using the pyrolytic foaming agent, and physical foaming with butane gas or the like may be used.
  • a method of crosslinking the resin composition for example, a method of irradiating the resin composition with ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, ⁇ ray, and the like, an organic peroxide is blended in advance with the resin composition.
  • ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, ⁇ ray, and the like
  • an organic peroxide is blended in advance with the resin composition.
  • the method include heating the resin composition to decompose the organic peroxide, and these methods may be used in combination.
  • the method of irradiating ionizing radiation is preferable.
  • the irradiation amount of ionizing radiation is preferably 0.5 to 10 Mrad, more preferably 1 to 8 Mrad so that the gel% is 10 to 70% by mass.
  • Examples of the organic peroxide used for crosslinking include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, and the like. It is done. These may be used alone or in combination of two or more.
  • the addition amount of the organic peroxide is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the resin component. When the addition amount of the organic peroxide is within the above range, crosslinking of the resin composition is likely to proceed, and the amount of decomposition residue of the organic peroxide is suppressed in the obtained foamed sheet.
  • the foamed sheet of the present invention is preferably stretched as described above. Stretching may be performed after foaming the resin composition to obtain a foamed sheet, or may be performed while foaming the resin composition. In addition, after foaming the resin composition to obtain a foamed sheet, when the foamed sheet is stretched, it is better to continue stretching the foamed sheet while maintaining the molten state at the time of foaming without cooling the foamed sheet However, after cooling the foamed sheet, the foamed sheet may be stretched again by heating it to a molten or softened state.
  • the stretch ratio in the MD direction of the foamed sheet is preferably 1.1 to 3.0 times, and more preferably 1.3 to 2.8 times.
  • the draw ratio in the MD direction of the foamed sheet is set to the above lower limit value or more, the flexibility and tensile strength of the foamed sheet are likely to be good.
  • the upper limit value is not exceeded, the foamed sheet is prevented from breaking during stretching, or the foaming gas escapes from the foamed sheet being foamed and the foaming ratio is reduced, thereby reducing the flexibility and tensile strength of the foamed sheet. It becomes good and it becomes easy to make the quality uniform.
  • the foam sheet may be stretched in the TD direction at a stretch ratio in the above range.
  • Resin compositions include antioxidants such as 2,6-di-t-butyl-p-cresol, foaming aids such as zinc oxide, decomposition temperature regulators, cell core modifiers, and heat stability as needed.
  • Various additives such as a colorant, a colorant, a flame retardant, an antistatic agent, and a filler may be blended within a range that does not impair the physical properties of the foamed sheet. These additives are kneaded together with the components (A) and (B) in the normal step (1).
  • the pressure-sensitive adhesive tape of the present invention uses the foamed sheet as a base material, and includes a foamed sheet and a pressure-sensitive adhesive layer provided on at least one surface of the foamed sheet.
  • the thickness of the adhesive tape is usually 0.06 to 2 mm, preferably 0.06 to 1 mm.
  • the thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape of the present invention is preferably 5 to 200 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is more preferably 7 to 150 ⁇ m, still more preferably 10 to 100 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape is in the range of 5 to 200 ⁇ m, the thickness of the pressure-sensitive adhesive tape can be reduced while ensuring high and stable pressure-sensitive adhesiveness.
  • an adhesive which comprises an adhesive layer For example, an acrylic adhesive, a urethane adhesive, a rubber adhesive, a silicone adhesive, etc. are mentioned.
  • Examples of the method of laminating the pressure-sensitive adhesive layer by applying a pressure-sensitive adhesive to at least one surface of the foamed sheet include, for example, a method of applying a pressure-sensitive adhesive using a coating machine such as a coater to at least one surface of the foamed sheet, Examples thereof include a method of spraying and applying an adhesive using a spray on one side, a method of applying an adhesive using a brush on at least one side of a foamed sheet, and the like.
  • Adhesive tapes using foam sheets are shock absorbers that prevent impacts on the electronic components built in the electronic device bodies such as mobile phones and tablet terminals, and dust and moisture in the electronic device bodies. It can be used as a sealing material that prevents entry.
  • the foamed sheet of the present invention is excellent in flexibility, and therefore, the adhesive tape is excellent in step following ability and easy to ensure airtightness when used as a fixing tape for fixing various parts in electronic equipment, for example. In addition, it is possible to improve the shock absorption. Moreover, since it is excellent in breaking strength and a withstand voltage characteristic, the malfunction by static electricity at the time of using for an electronic device and the damage of an adhesive tape become difficult to occur.
  • the measuring method of each physical property in this specification is as follows.
  • ⁇ Apparent magnification> For the density of the foam sheet, the apparent density was measured in accordance with JIS K 7222, and the reciprocal thereof was used as the apparent magnification.
  • ⁇ Degree of crosslinking (gel%)> A test piece of about 50 mg is taken from the foamed sheet, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 105 ° C. and allowed to stand for 24 hours, and then filtered through a 200-mesh wire mesh to collect the insoluble matter on the wire mesh, vacuum dried, and the weight of the insoluble matter. Weigh B (mg) precisely.
  • the gel% (mass%) is calculated by the following formula.
  • Gel% (mass%) 100 ⁇ (B / A) ⁇ Closed cell ratio> Based on JIS K7138 (2006), it measured by the method as described in the specification with the air comparison specific gravity meter MODEL930 by Beckman.
  • a fracture strength measurement sample 10 shown in FIG. 1 was prepared. That is, after applying a primer (trade name. PPX primer, manufactured by Cemedine Co., Ltd.) to a 25 mm square area of the foamed sheet 11, an adhesive for 5 mm in diameter (trade name: PPX manufactured by Cemedine Co., Ltd.) is applied to the center of the applied portion. ) was added dropwise. Immediately thereafter, a 25 mm square aluminum jig A was placed on the adhesive dripping portion, and the foamed sheet 11 and the jig A were pressure-bonded via the adhesive 12. Thereafter, the foam sheet 11 was cut along the size of the jig A.
  • a primer trade name. PPX primer, manufactured by Cemedine Co., Ltd.
  • a primer was applied to the surface of the cut foam sheet 11 on which the jig A was not adhered, and an adhesive having a diameter of 5 mm was dropped onto the center of the applied portion.
  • a 10 mm square aluminum jig B was placed on the adhesive dripping portion, and the foamed sheet 11 and the jig B were pressure-bonded via the adhesive 13.
  • cuts 14 were made in the foam sheet 11 along the size of the jig B. This was allowed to stand at room temperature for 30 minutes to cure the adhesive, and the sample 10 for fracture strength measurement shown in FIG. 1 was obtained.
  • test piece manufactured by A & D Co., Ltd., trade name: Tensilon Universal Material Testing Machine
  • a 1 kN load cell was broken so that the sheet surface of the foamed sheet 11 was perpendicular to the tensile direction.
  • a sample 10 for strength measurement was attached. Thereafter, one jig A was pulled vertically upward at a speed of 100 mm / min, and only the 1 cm square area of the foamed sheet 11 was delaminated. The maximum load at this time was measured and used as the first measurement result. The same operation was repeated three times, and the average value was taken as the breaking strength.
  • a 1 mm x 100 mm tape-shaped foam sheet is sandwiched in the thickness direction between two acrylic plates, and is sandwiched in the width direction between two aluminum plates arranged between the acrylic plates, withstanding voltage test Kikusui Electronics Using a TOS501 (maximum voltage of 12 kV) manufactured by the company, a voltage is applied in the width direction with a direct current, and if no voltage is applied for 30 seconds at that voltage, the applied voltage is increased in increments of 0.5 kV. The voltage when energized is taken as the result of the withstand voltage. In this measurement, each of MD and TD was measured in the width direction of the tape.
  • Resin component 100 comprising 70 parts by mass of a polyolefin resin (manufactured by Nippon Polyethylene Co., Ltd., trade name: Kernel KF370) and 30 parts by mass of a styrene thermoplastic elastomer (manufactured by Kuraray Co., Ltd., trade name: Hibler (registered trademark) 7311)
  • a resin composition obtained by feeding 1 part by mass of a mass part, 1 part by mass of a pyrolytic foaming agent, 1 part by mass of a decomposition temperature adjusting agent, and 0.5 parts by mass of an antioxidant to an extruder and melt-kneading at 140 ° C.
  • Extrusion molding was performed to form a long sheet having a thickness of 0.3 mm.
  • the resin composition was crosslinked by irradiating an electron beam with an acceleration voltage of 500 kV for 4.5 Mrad on both surfaces of the long sheet-shaped resin composition. Thereafter, this resin composition was continuously fed into a foaming furnace maintained at 250 ° C. by hot air and an infrared heater, heated and foamed, and at the same time, stretched in the MD direction and the TD direction. Got.
  • the obtained foamed sheet was evaluated according to the above evaluation method, and the results are shown in Table 1.
  • Example 2 The blending amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the electron beam applied to the resin composition was changed to 5 Mrad so that the gel% was higher, and the thickness was 0.15 mm. The same operation as in Example 1 was performed except for the points.
  • Example 3 The amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the same procedure as in Example 1 was carried out except that the expansion ratio was 3 cc / g and the thickness was 0.15 mm.
  • Example 1 The resin component supplied to the extruder was changed to only 100 parts by mass of polyethylene resin, and the same procedure as in Example 1 was performed except that the expansion ratio was 2.5 cc / g and the thickness was 0.12 mm.
  • Comparative Example 2 The amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the same procedure as in Comparative Example 1 was performed except that the expansion ratio was 3 cc / g and the thickness was 0.15 mm.
  • Comparative Example 4 The same operation as in Comparative Example 3 was performed except that the thickness was 0.15 mm.
  • Comparative Example 5 The amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the same procedure as in Comparative Example 3 was carried out except that the expansion ratio was 2.7 cc / g and the thickness was 0.1 mm.
  • Kernel KF370 linear low density polyethylene which is an ethylene-1-hexene copolymer obtained using a polymerization catalyst of a metallocene compound, density: 0.905 g / cm 3 , melting point (DSC method) Tm: 97 ° C
  • Affinity KC8852 linear low-density polyethylene which is an ethylene-1-octene copolymer obtained using a metallocene compound polymerization catalyst, density 0.875 g / cm 3 , melting point (DSC method) Tm: 66 °C
  • Hibler (registered trademark) 7311 hydrogenated styrene / isoprene / butadiene block copolymer, styrene content: 12% by mass, maximum peak temperature of tan ⁇ : ⁇ 17 ° C.
  • the additive used by each Example and the comparative example is as follows.
  • Thermally decomposable foaming agent Eizo Kasei Co., Ltd., Azodicarbonamide AC # K3
  • Decomposition temperature regulator ADEKA Corporation, trade name.
  • ADK STAB registered trademark
  • CDA-1 Antioxidant ADEKA Corporation, trade name.
  • ADK STAB registered trademark
  • the foamed sheets of Examples 1 to 3 contain a styrene-based thermoplastic elastomer having a relatively low maximum peak temperature of tan ⁇ in addition to the olefin resin. Became good. In addition, the foam sheets of Examples 1 to 3 had an appropriate value of 25% compressive strength, and had moderate flexibility. On the other hand, Comparative Examples 1 to 5 did not contain a styrenic thermoplastic elastomer, so that at least the withstand voltage characteristics were inferior to those of Examples 1 to 3.

Abstract

This polyolefin foam sheet is obtained by foaming a resin composition containing a polyolefin resin (A) and a styrene thermoplastic elastomer (B) for which the temperature that maximizes the peak value of tan δ, as per dynamic-viscoelasticity measurement, is between −30°C and 10°C, inclusive. The ratio (A/B) of the mass of the polyolefin resin (A) to the mass of the styrene thermoplastic elastomer (B) is between 50:50 and 90:10, inclusive, and the thickness of the polyolefin foam sheet is between 0.05 and 1.0 mm, inclusive.

Description

ポリオレフィン系発泡シート及び粘着テープPolyolefin foam sheet and adhesive tape
 本発明は、例えば電子機器用途において使用されるポリオレフィン系発泡シート、及びその発泡シートに粘着剤層を設けた粘着テープに関する。 The present invention relates to a polyolefin-based foamed sheet used in, for example, electronic equipment applications, and an adhesive tape provided with an adhesive layer on the foamed sheet.
 樹脂内部に多数の気泡が形成された発泡シートは、携帯電話機、タブレット型端末、パーソナルコンピュータ等の情報技術分野で使用される電子機器において、シール材や衝撃吸収材として広く使用されている。これら電子機器で使用される発泡シートは、段差への追従性を高めてシール性を保持したり、衝撃吸収性を高めたりするために高い柔軟性が必要とされている。また、強い衝撃を受けたときに発泡シート自体が破損されるのを防止するために、破壊強度を高くすることも必要とされている。
 従来、発泡シートには、ポリオレフィン系樹脂が広く使用されるとともに、発泡倍率や架橋度が調整されることで、柔軟性及び機械強度が高められている。また、特許文献1のように、ポリオレフィン系樹脂として、密度の異なる2種類の樹脂を混合して、発泡シートの柔軟性及び破壊強度を向上させることも知られている(例えば、特許文献1参照)。
Foamed sheets in which a large number of bubbles are formed inside the resin are widely used as sealing materials and shock absorbing materials in electronic devices used in the information technology field such as mobile phones, tablet terminals, and personal computers. The foamed sheet used in these electronic devices is required to have high flexibility in order to maintain the sealing performance by improving the followability to the level difference and to improve the shock absorption. In addition, it is also necessary to increase the breaking strength in order to prevent the foam sheet itself from being damaged when subjected to a strong impact.
Conventionally, polyolefin-based resins are widely used for foam sheets, and flexibility and mechanical strength are enhanced by adjusting the expansion ratio and the degree of crosslinking. In addition, as in Patent Document 1, it is also known to improve the flexibility and breaking strength of a foamed sheet by mixing two types of resins having different densities as a polyolefin resin (see, for example, Patent Document 1). ).
特開2014-28925号公報JP 2014-28925 A
 近年、情報技術分野で使用される電子機器は、小型化され、かつ表示部が大面積化されてきており、それに伴い発泡シートも薄層化、かつ狭幅化されつつある。また、電子機器は、静電気による影響で不具合が生じることがある。特に、携帯型電話機やタブレット型端末では、タッチパネル式の表示装置が多く使用されるため、静電気の影響で表示装置が点灯しなくなる等の不具合が生じやすくなってきている。そのため、発泡シートには、電子機器の静電気耐性を高める機能を備えることも求められている。 In recent years, electronic devices used in the information technology field have been reduced in size and the display area has been increased, and the foam sheet has been made thinner and narrower accordingly. In addition, electronic devices may be defective due to the influence of static electricity. In particular, in mobile phones and tablet terminals, since a touch panel type display device is often used, problems such as the display device not being turned on due to the influence of static electricity are likely to occur. For this reason, the foam sheet is also required to have a function of increasing the electrostatic resistance of the electronic device.
 しかしながら、発泡シートは、薄層化、狭幅化されることで、柔軟性、破壊強度、耐電圧特性の不足が顕在化してきており、単純に発泡倍率や架橋度を調整したのみでは、十分な柔軟性や破壊強度を得ることが難しくなってきている。また、特許文献1に記載される方法では、柔軟性や破壊強度は改善するものの、静電気耐性を高めることは難しい。 However, foam sheets are becoming thinner and narrower, and shortages of flexibility, breaking strength, and withstand voltage characteristics have become apparent. Simply adjusting the expansion ratio and degree of crosslinking is sufficient. It is becoming difficult to obtain a good flexibility and breaking strength. Moreover, in the method described in Patent Document 1, although flexibility and breaking strength are improved, it is difficult to increase electrostatic resistance.
 本発明は、以上の事情に鑑みて成されたものであり、本発明の課題は、薄層化、幅狭化された場合であっても、柔軟性、破壊強度、及び耐電圧特性を良好にすることが可能なポリオレフィン系発泡シートを提供することである。 The present invention has been made in view of the above circumstances, and the problem of the present invention is that it has good flexibility, breaking strength, and withstand voltage characteristics even when it is thinned and narrowed. It is providing the polyolefin-type foam sheet which can be made.
 本発明者は、鋭意検討の結果、発泡シートを構成するポリオレフィン系樹脂に、tanδの最大ピークが所定の温度範囲にあるスチレン系熱可塑性エラストマーを混合することで、上記課題が解決できることを見出し、以下の本発明を完成させた。
 すなわち、本発明は、以下の(1)~(7)を提供するものである。
(1)ポリオレフィン系樹脂(A)と、動的粘弾性測定によるtanδの最大ピーク温度が-30~10℃の範囲にあるスチレン系熱可塑性エラストマー(B)とを含有する樹脂組成物を発泡させてなり、ポリオレフィン系樹脂(A)のスチレン系熱可塑性エラストマー(B)に対する比(A/B)が、質量比で50/50~90/10であり、かつ厚みが0.05~1.0mmであるポリオレフィン系発泡シート。
(2)スチレン系熱可塑性エラストマー(B)のスチレン含有量が、5~25質量%である上記(1)に記載のポリオレフィン系発泡シート。
(3)スチレン系熱可塑性エラストマー(B)が、スチレン・イソプレンブロック共重合体、水添スチレン・イソプレンブロック共重合体、及び水添スチレン・イソプレン・ブタジエンブロック共重合体から選択される1種又は2種以上である上記(1)又は(2)に記載のポリオレフィン系発泡シート。
(4)ポリオレフィン系樹脂(A)が、ポリエチレン系樹脂である上記(1)~(3)のいずれかに記載のポリオレフィン系発泡シート。
(5)前記ポリエチレン系樹脂が、メタロセン化合物の重合触媒で重合されたものである上記(4)に記載のポリオレフィン系発泡シート。
(6)ポリオレフィン系発泡シートは、架橋されたものである上記(1)~(5)のいずれかに記載のポリオレフィン系発泡シート。
(7)上記(1)~(6)のいずれかに記載されたポリオレフィン系発泡シートと、前記ポリオレフィン系発泡シートの少なくとも一方の面に設けた粘着剤層とを備える粘着テープ。
As a result of intensive studies, the present inventors have found that the above problem can be solved by mixing a styrene-based thermoplastic elastomer having a maximum peak of tan δ within a predetermined temperature range into the polyolefin-based resin constituting the foam sheet, The following invention was completed.
That is, the present invention provides the following (1) to (7).
(1) Foaming a resin composition containing a polyolefin resin (A) and a styrene thermoplastic elastomer (B) having a maximum tan δ peak temperature in the range of −30 to 10 ° C. by dynamic viscoelasticity measurement. The ratio (A / B) of the polyolefin resin (A) to the styrene thermoplastic elastomer (B) is 50/50 to 90/10 in terms of mass ratio, and the thickness is 0.05 to 1.0 mm. A polyolefin foam sheet.
(2) The polyolefin-based foamed sheet according to the above (1), wherein the styrene-based thermoplastic elastomer (B) has a styrene content of 5 to 25% by mass.
(3) The styrenic thermoplastic elastomer (B) is selected from a styrene / isoprene block copolymer, a hydrogenated styrene / isoprene block copolymer, and a hydrogenated styrene / isoprene / butadiene block copolymer or The polyolefin-based foamed sheet according to the above (1) or (2), which is two or more kinds.
(4) The polyolefin-based foamed sheet according to any one of (1) to (3), wherein the polyolefin-based resin (A) is a polyethylene-based resin.
(5) The polyolefin-based foamed sheet according to (4) above, wherein the polyethylene-based resin is polymerized with a metallocene compound polymerization catalyst.
(6) The polyolefin foamed sheet according to any one of the above (1) to (5), wherein the polyolefin foamed sheet is crosslinked.
(7) A pressure-sensitive adhesive tape comprising the polyolefin-based foamed sheet described in any of (1) to (6) above and a pressure-sensitive adhesive layer provided on at least one surface of the polyolefin-based foamed sheet.
 本発明の発泡シートでは、薄層化、幅狭化された場合であっても、柔軟性、破壊強度、及び耐電圧特性を良好にすることが可能になる。 In the foamed sheet of the present invention, it is possible to improve the flexibility, breaking strength, and withstand voltage characteristics even when it is thinned and narrowed.
破壊強度の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of fracture strength.
 以下、本発明について実施形態を用いてさらに詳細に説明する。
 本発明のポリオレフィン系発泡シート(以下、単に「発泡シート」ということがある)は、ポリオレフィン系樹脂(A)と、動的粘弾性測定によるtanδの最大ピーク温度が-30~10℃であるスチレン系熱可塑性エラストマー(B)とを含有する樹脂組成物を発泡させてなるものである。
Hereinafter, the present invention will be described in more detail using embodiments.
The polyolefin foam sheet of the present invention (hereinafter sometimes simply referred to as “foam sheet”) includes a polyolefin resin (A) and styrene having a maximum peak temperature of tan δ of −30 to 10 ° C. as measured by dynamic viscoelasticity. A resin composition containing the thermoplastic elastomer (B) is foamed.
 本発明では、ポリオレフィン系樹脂(A)のスチレン系熱可塑性エラストマー(B)に対する比(A/B)が、質量比で50/50~90/10となるものである。質量比が50/50未満となれば、(A)成分の量が不足して、発泡シートにおいて必要とされる機械強度を得にくくなる。質量比が90/10を超えると、(B)成分の量が不足して良好な耐電圧特性、及び柔軟性を有する発泡シートを得にくくなる。これら観点から上記質量比は、60/40~80/20であることが好ましい。 In the present invention, the ratio (A / B) of the polyolefin resin (A) to the styrene thermoplastic elastomer (B) is 50/50 to 90/10 in mass ratio. If the mass ratio is less than 50/50, the amount of the component (A) is insufficient and it becomes difficult to obtain the mechanical strength required for the foamed sheet. If the mass ratio exceeds 90/10, the amount of the component (B) is insufficient, and it becomes difficult to obtain a foam sheet having good withstand voltage characteristics and flexibility. From these viewpoints, the mass ratio is preferably 60/40 to 80/20.
[ポリオレフィン系樹脂(A)]
 ポリオレフィン系樹脂(A)としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、またはこれらの混合物が挙げられ、これらの中ではポリエチレン系樹脂が好ましい。より具体的には、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン系樹脂、ポリプロピレン系樹脂、又はこれらの混合物が挙げられ、これらの中では、メタロセン化合物の重合触媒で重合されたポリエチレン系樹脂が好ましい。
 ポリオレフィン系樹脂(A)の融点は、特に限定されないが、60℃以上が好ましく、80~110℃がより好ましい。これにより、樹脂組成物の熱安定性を高めて、発泡シート製造中のべたつきやブロッキングを防止し、加工性を良好にしやすくなる。なお、本明細書において、融点は、示差走査熱量分析(DSC)法により測定されたものである。
[Polyolefin resin (A)]
Examples of the polyolefin resin (A) include a polyethylene resin, a polypropylene resin, or a mixture thereof. Among these, a polyethylene resin is preferable. More specifically, examples thereof include polyethylene resins, polypropylene resins, or mixtures thereof polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound. Among these, polymerization of a metallocene compound is included. A polyethylene resin polymerized with a catalyst is preferred.
The melting point of the polyolefin resin (A) is not particularly limited, but is preferably 60 ° C. or higher, and more preferably 80 to 110 ° C. Thereby, the thermal stability of the resin composition is increased, stickiness and blocking during the production of the foamed sheet are prevented, and the processability is easily improved. In the present specification, the melting point is measured by a differential scanning calorimetry (DSC) method.
 ポリエチレン系樹脂は、発泡シートの柔軟性を高めるために、低密度であることが好ましい。ポリエチレン系樹脂の密度は、具体的には、0.920g/cm以下が好ましく、より好ましくは0.865~0.915g/cm、特に好ましくは0.870~0.910g/cmである。なお、密度はJIS K 7112に準拠して測定したものである。 The polyethylene resin preferably has a low density in order to increase the flexibility of the foam sheet. The density of the polyethylene resin, particularly preferably from 0.920 g / cm 3 or less, more preferably 0.865 ~ 0.915g / cm 3, particularly preferably at 0.870 ~ 0.910g / cm 3 is there. The density is measured in accordance with JIS K 7112.
 ポリエチレン系樹脂は、エチレン単独重合体、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィン共重合体が挙げられるが、これらの中ではエチレン-α-オレフィン共重合体が好ましい。エチレン-α-オレフィン共重合体は、エチレンと必要に応じて少量(例えば、全モノマーの30質量%以下、好ましくは10質量%以下)のα-オレフィンとを共重合することにより得られるポリエチレン系樹脂であり、中でも、メタロセン化合物の重合触媒により得られた直鎖状低密度ポリエチレンが好ましい。
 ポリエチレン系樹脂を構成するα-オレフィンとして、具体的には、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、及び1-オクテン等が挙げられる。なかでも、炭素数4~10のα-オレフィンが好ましく、これらのなかでは、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンがより好ましい。
 また、エチレン-酢酸ビニル共重合体としては、通常、エチレン単位を50質量%以上含有する共重合体が挙げられる。
Examples of the polyethylene resin include an ethylene homopolymer, an ethylene-vinyl acetate copolymer, and an ethylene-α-olefin copolymer. Of these, an ethylene-α-olefin copolymer is preferable. The ethylene-α-olefin copolymer is a polyethylene-based copolymer obtained by copolymerizing ethylene with a small amount of α-olefin as required (for example, 30% by mass or less, preferably 10% by mass or less of all monomers). Among them, linear low density polyethylene obtained by a polymerization catalyst of a metallocene compound is preferable.
Specific examples of the α-olefin constituting the polyethylene resin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. . Of these, α-olefins having 4 to 10 carbon atoms are preferable, and among these, 4-methyl-1-pentene, 1-hexene, and 1-octene are more preferable.
The ethylene-vinyl acetate copolymer usually includes a copolymer containing 50% by mass or more of ethylene units.
 本発明では、メタロセン化合物の重合触媒により得られた、ポリエチレン系樹脂、特に直鎖状低密度ポリエチレンを用いることにより、柔軟性や破壊強度が高い発泡シートを得やすくなる。また、後述するように、発泡シートを薄肉化しても高い性能を維持しやすくなる。
 メタロセン化合物の重合触媒により得られたポリエチレン系樹脂は、発泡シートにおいてポリオレフィン系樹脂(A)全体の50質量%以上含有されることが好ましく、より好ましくは70~100質量%、さらに好ましくは90~100質量%、最も好ましくは100質量%含有される。
In the present invention, a foamed sheet having high flexibility and high breaking strength can be easily obtained by using a polyethylene-based resin, particularly a linear low density polyethylene, obtained by a polymerization catalyst of a metallocene compound. Moreover, as will be described later, it is easy to maintain high performance even if the foam sheet is thinned.
The polyethylene resin obtained by the polymerization catalyst of the metallocene compound is preferably contained in the foamed sheet in an amount of 50% by mass or more of the entire polyolefin resin (A), more preferably 70 to 100% by mass, and still more preferably 90 to 90% by mass. 100% by mass, most preferably 100% by mass is contained.
 ポリプロピレン系樹脂としては、例えば、プロピレン単独重合体、プロピレン単位を50質量%以上含有するプロピレン-α-オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 プロピレン-α-オレフィン共重合体を構成するα-オレフィンとしては、具体的には、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられ、これらの中では、炭素数6~12のα-オレフィンが好ましい。
Examples of the polypropylene resin include a propylene homopolymer, a propylene-α-olefin copolymer containing 50% by mass or more of propylene units, and the like. These may be used alone or in combination of two or more.
Specific examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, α-olefins having 6 to 12 carbon atoms are preferable.
 <メタロセン化合物>
 好適なメタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物が挙げられる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物が挙げられる。
 このようなメタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高くなるため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に延伸しやすくなるため、発泡シートの厚みを均一にしやすくなり、薄肉化しても高い性能を維持しやすくなる。
<Metalocene compounds>
Suitable metallocene compounds include compounds such as bis (cyclopentadienyl) metal complexes having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). The compound to be mentioned is mentioned.
Such metallocene compounds have uniform active site properties and each active site has the same activity. A polymer synthesized using a metallocene compound has high uniformity such as molecular weight, molecular weight distribution, composition, and composition distribution. Therefore, when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, crosslinking occurs. Progress evenly. The uniformly cross-linked sheet is easily stretched uniformly, so that the thickness of the foamed sheet is easily uniformed, and high performance is easily maintained even when the thickness is reduced.
 リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等が挙げられる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素-置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2-エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
 更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group. Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like. The “various” means various isomers including n-, sec-, tert-, and iso-.
Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand.
In addition to π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
 四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル-t-ブチルアミドジルコニウムジクロリド等が挙げられる。
 メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10~100万モル倍が好ましく、50~5,000モル倍がより好ましい。
Examples of metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
The metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst). Specific examples of the cocatalyst include methylaluminoxane (MAO) and boron compounds. The proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
 <チーグラー・ナッタ化合物>
 チーグラー・ナッタ化合物は、トリエチルアルミニウム-四塩化チタン固体複合物であって、四塩化チタンを有機アルミニウム化合物で還元し、更に各種の電子供与体及び電子受容体で処理して得られた三塩化チタン組成物と、有機アルミニウム化合物と、芳香族カルボン酸エステルとを組み合わせる方法(特開昭56-100806号、特開昭56-120712号、特開昭58-104907号の各公報参照)、及びハロゲン化マグネシウムに四塩化チタンと各種の電子供与体を接触させる担持型触媒の方法(特開昭57-63310号、特開昭63-43915号、特開昭63-83116号の各公報参照)等で製造されたものが好ましい。
<Ziegler-Natta compound>
The Ziegler-Natta compound is a triethylaluminum-titanium tetrachloride solid composite, which is obtained by reducing titanium tetrachloride with an organoaluminum compound and then treating with various electron donors and electron acceptors. A method of combining a composition, an organoaluminum compound, and an aromatic carboxylic acid ester (see JP-A 56-1000080, JP-A 56-120712, JP-A 58-104907), halogens Method of supported catalyst in which magnesium tetrachloride is brought into contact with magnesium tetrachloride and various electron donors (see JP-A-57-63310, JP-A-63-43915, JP-A-63-83116), etc. What was manufactured by is preferable.
[スチレン系熱可塑性エラストマー(B)]
 本発明において使用されるスチレン系熱可塑性エラストマー(B)は、スチレン由来の構成単位を有するものであって、具体的には、スチレンと、イソプレン及びブタジエン等から選択される共役ジエンとの共重合体が挙げられる。
[Styrenic thermoplastic elastomer (B)]
The styrenic thermoplastic elastomer (B) used in the present invention has a structural unit derived from styrene, specifically, a co-weight of styrene and a conjugated diene selected from isoprene, butadiene and the like. Coalescence is mentioned.
 スチレン系熱可塑性エラストマー(B)は、動的粘弾性測定によるtanδの最大ピーク温度が-30~10℃となるものである。このようにtanδの最大ピーク温度が比較的低温となると、衝撃破壊のような高速変形領域の熱損失が大きくなり、発泡シートの破壊強度が向上しやすくなる。一方、tanδの最大ピーク温度が上記範囲外であると、発泡シートの破壊強度及び柔軟性を良好にすることが難しくなるおそれがある。以上の観点から、スチレン系熱可塑性エラストマーのtanδの最大ピーク温度は、-25~5℃であることが好ましく、-20~0℃であることがより好ましい。
 なお、本明細書において、「tanδの最大ピーク温度」とは、動的粘弾性測定装置により、引張りモード、昇温速度10℃/分、周波数10Hzで測定した値のことを指す。測定に使用することができる動的粘弾性測定装置としては、(株)オリエンテック製「レオバイブロンDDV-III」等が挙げられる。
The styrenic thermoplastic elastomer (B) has a maximum peak temperature of tan δ of −30 to 10 ° C. as measured by dynamic viscoelasticity. As described above, when the maximum peak temperature of tan δ is relatively low, heat loss in a high-speed deformation region such as impact fracture increases, and the fracture strength of the foamed sheet is easily improved. On the other hand, if the maximum peak temperature of tan δ is outside the above range, it may be difficult to improve the fracture strength and flexibility of the foam sheet. From the above viewpoint, the maximum peak temperature of tan δ of the styrenic thermoplastic elastomer is preferably −25 to 5 ° C., and more preferably −20 to 0 ° C.
In the present specification, “the maximum peak temperature of tan δ” refers to a value measured by a dynamic viscoelasticity measuring device in a tensile mode, a temperature rising rate of 10 ° C./min, and a frequency of 10 Hz. Examples of the dynamic viscoelasticity measuring apparatus that can be used for the measurement include “Leovibron DDV-III” manufactured by Orientec Co., Ltd.
 スチレン系熱可塑性エラストマー(B)は、スチレン由来の構成単位を有することで、発泡シートの耐電圧特性を良好にすることが可能になる。スチレン系熱可塑性エラストマー(B)におけるスチレン含有量は、5~25質量%であることが好ましい。スチレン含有量を上記上限値以下とすることで、ポリオレフィン系樹脂(A)との相溶性が良好になり、架橋性及び発泡性が良好になりやすくなる。また、上記下限値以上とすることで、耐電圧特性をより向上させることが可能になる。これら観点から、スチレン系熱可塑性エラストマー(B)中のスチレン含有量は、7~20質量%がより好ましく、7~15質量%がさらに好ましい。
 スチレン系熱可塑性エラストマー(B)の数平均分子量は特に限定されないが、破壊強度、及び加工性の観点から30,000~800,000が好ましく、120,000~180,000がより好ましい。
 なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定されたポチスチレン換算値である。
When the styrene-based thermoplastic elastomer (B) has a structural unit derived from styrene, it is possible to improve the withstand voltage characteristics of the foamed sheet. The styrene content in the styrenic thermoplastic elastomer (B) is preferably 5 to 25% by mass. By setting the styrene content to be the upper limit or less, the compatibility with the polyolefin resin (A) is improved, and the crosslinkability and the foamability are easily improved. Moreover, it becomes possible to improve a withstand voltage characteristic more by setting it as the said lower limit or more. From these viewpoints, the styrene content in the styrene-based thermoplastic elastomer (B) is more preferably 7 to 20% by mass, and further preferably 7 to 15% by mass.
The number average molecular weight of the styrenic thermoplastic elastomer (B) is not particularly limited, but is preferably 30,000 to 800,000, more preferably 120,000 to 180,000 from the viewpoints of fracture strength and processability.
In addition, a number average molecular weight is a pothistyrene conversion value measured using gel permeation chromatography (GPC).
 スチレン系熱可塑性エラストマー(B)は、水素添加していてもよいし、していなくてもよい。
 水素添加は、公知の方法で行うことができる。具体的には、水添反応及び水添触媒に不活性な溶媒に水素未添加のスチレン系熱可塑性エラストマーを溶解させて、公知の水添触媒を用いて水素を反応させることにより得ることができる。触媒としては、ラネーニッケル、Pt、Pd、Ru、Rh、Ni等の金属を、カーボン、アルミナ、硅藻土等の担体に担持させた不均一触媒、又は遷移金属とアルキルアルミニウム化合物、アルキルリチウム化合物等の組み合わせからなるチーグラー系の触媒等を挙げることができる。水素圧は、常圧~200kg/cmが好ましく、反応温度は、常温~250℃、反応時間は0.1~100時間が好ましい。反応後の重合体は、反応液をメタノール等により凝固させた後、加熱又は減圧乾燥させるか、反応液を沸騰水中に注ぎ、溶媒を共沸させて除去した後、加熱又は減圧乾燥することにより得ることができる。
The styrenic thermoplastic elastomer (B) may or may not be hydrogenated.
Hydrogenation can be performed by a known method. Specifically, it can be obtained by dissolving a hydrogen-free styrene-based thermoplastic elastomer in a solvent inert to the hydrogenation reaction and hydrogenation catalyst, and reacting hydrogen using a known hydrogenation catalyst. . As a catalyst, a heterogeneous catalyst in which a metal such as Raney nickel, Pt, Pd, Ru, Rh, Ni is supported on a carrier such as carbon, alumina, diatomaceous earth, or a transition metal and an alkylaluminum compound, an alkyllithium compound, etc. And Ziegler-based catalysts composed of the above combinations. The hydrogen pressure is preferably from normal pressure to 200 kg / cm 2 , the reaction temperature is preferably from room temperature to 250 ° C., and the reaction time is preferably from 0.1 to 100 hours. The polymer after the reaction is solidified with methanol or the like and then heated or dried under reduced pressure, or the reaction solution is poured into boiling water and the solvent is removed azeotropically, and then heated or dried under reduced pressure. Obtainable.
 また、スチレン系熱可塑性エラストマー(B)は、通常ブロック共重合体であり、ブロック共重合体としては、両端のブロック部がポリスチレンからなり、中間ブロックがイソプレン又はイソプレン及びブタジエン等の共役ジエンのブロックであるものが挙げられる。なお、ブロック共重合体においては、中間ブロックがビニル-ポリイソプレンを含むことが好ましい。
 具体的なブロック共重合体としては、例えば、スチレン・イソプレンブロック共重合体、スチレン・イソプレン・ブタジエンブロック共重合体等が例示されるが、これらの中では、スチレン・イソプレン・ブタジエンブロック共重合体が好ましい。
The styrenic thermoplastic elastomer (B) is usually a block copolymer. As the block copolymer, block portions at both ends are made of polystyrene, and an intermediate block is a block of isoprene or a conjugated diene such as isoprene and butadiene. The thing which is is mentioned. In the block copolymer, the intermediate block preferably contains vinyl-polyisoprene.
Specific examples of the block copolymer include styrene / isoprene block copolymers and styrene / isoprene / butadiene block copolymers. Among these, styrene / isoprene / butadiene block copolymers are exemplified. Is preferred.
 スチレン・イソプレンブロック共重合体は、水素添加された水添スチレン・イソプレンブロック共重合体であってもよいし、水素添加されていなくてもよい。水素添加されていないスチレン・イソプレンブロック共重合体の市販品としては、株式会社クラレ製、商品名「ハイブラー(登録商標)5125」(スチレン含有量20質量%、tanδの最大ピーク温度=-3℃)が挙げられる。また、水添スチレン・イソプレンブロック共重合体の市販品としては、株式会社クラレ製、商品名「ハイブラー(登録商標)7125」(スチレン含有量20質量%、tanδの最大ピーク温度=-5℃)が挙げられる。
 一方、スチレン・イソプレン・ブタジエンブロック共重合体は、水素添加されていることが好ましい。その水添スチレン・イソプレン・ブタジエンブロック共重合体の市販品としては、株式会社クラレ製、商品名「ハイブラー(登録商標)7311」(スチレン含有量12質量%、最大ピーク温度=-17℃)が挙げられる。
The styrene / isoprene block copolymer may be a hydrogenated hydrogenated styrene / isoprene block copolymer or may not be hydrogenated. As a commercial product of a non-hydrogenated styrene / isoprene block copolymer, Kuraray Co., Ltd., trade name “HIBLER (registered trademark) 5125” (styrene content 20 mass%, maximum peak temperature of tan δ = −3 ° C.) ). As a commercially available product of hydrogenated styrene / isoprene block copolymer, Kuraray Co., Ltd., trade name “HIBLER (registered trademark) 7125” (styrene content 20 mass%, maximum peak temperature of tan δ = −5 ° C.) Is mentioned.
On the other hand, the styrene / isoprene / butadiene block copolymer is preferably hydrogenated. As a commercially available product of the hydrogenated styrene / isoprene / butadiene block copolymer, there is a product name “HIBLER (registered trademark) 7311” (styrene content 12 mass%, maximum peak temperature = −17 ° C.) manufactured by Kuraray Co., Ltd. Can be mentioned.
 ブロック共重合体であるスチレン系熱可塑性エラストマー(B)は、例えば、スチレンと、イソプレン及び/又はブタジエン等の共役ジエンを、アルキルリチウム化合物を開始剤とするアニオン共重合により製造することができる。
 アルキルリチウム化合物としては、メチルリチウム、エチルリチウム、ペンチルリチウム、ブチルリチウム等の炭素数1~10のアルキル基を有するアルキルリチウム、ナフタレンジリチウム、ジチオヘキシルベンゼン等のジリチウム化合物を挙げることができる。
 重合方法としては、(1)アルキルリチウム化合物を開始剤としてスチレンに続いてイソプレン、必要に応じて更にブタジエン又はイソプレン-ブタジエンを逐次重合し、次いで、スチレンを逐次重合する方法、(2)スチレンに続いてイソプレン、必要に応じて更にブタジエン又はイソプレン-ブタジエンを重合し、これをカップリング剤によりカップリングする方法等が挙げられる。カップリング剤としてはジクロロメタン、ジブロモメタン、ジブロモベンゼン等が挙げられる。
The styrenic thermoplastic elastomer (B), which is a block copolymer, can be produced, for example, by anionic copolymerization of styrene and a conjugated diene such as isoprene and / or butadiene with an alkyl lithium compound as an initiator.
Examples of the alkyl lithium compound include alkyl lithium having an alkyl group having 1 to 10 carbon atoms such as methyl lithium, ethyl lithium, pentyl lithium, and butyl lithium, and dilithium compounds such as naphthalenedi lithium and dithiohexylbenzene.
As a polymerization method, (1) a method in which an alkyl lithium compound is used as an initiator followed by styrene, then isoprene, and if necessary, further butadiene or isoprene-butadiene is successively polymerized, and then styrene is sequentially polymerized; (2) styrene Subsequently, a method of polymerizing isoprene and, if necessary, further butadiene or isoprene-butadiene, and coupling this with a coupling agent can be mentioned. Examples of the coupling agent include dichloromethane, dibromomethane, dibromobenzene and the like.
 重合の際には反応を適切に制御するために溶媒を使用することが好ましい。この溶媒としては重合開始剤に対して不活性な有機溶媒、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、及びベンゼン等の炭素数が6~12の脂肪族、脂環族、芳香族炭化水素を用いることが好ましい。
 前記重合は0~80℃の温度範囲で0.5~50時間行うことが好ましい。
In the polymerization, it is preferable to use a solvent in order to appropriately control the reaction. Examples of the solvent include organic solvents inert to the polymerization initiator, for example, hexane, heptane, cyclohexane, methylcyclohexane, benzene, and other aliphatic, alicyclic, and aromatic hydrocarbons having 6 to 12 carbon atoms. It is preferable to use it.
The polymerization is preferably performed at a temperature range of 0 to 80 ° C. for 0.5 to 50 hours.
 ブロック共重合体のtanδの最大ピーク温度は、イソプレン、ブタジエンの3,4結合、又は1,2結合の数を調整する方法等により調整することが可能であり、共触媒としてルイス塩基を用いることにより比較的容易に調整することができる。ルイス塩基としては、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のグリコールエーテル類、トリエチルアミン、N,N,N′,N′-テトラメチルエチレンジアミン(TMEDA)、N-メチルモルホリン等のアミン化合物等が挙げられる。これらのルイス塩基は、重合開始剤のリチウムのモル数に対して0.1~1000倍用いることが好ましい。また、水素添加の有無や水素添加率を調整することによっても、最大ピーク温度は調整可能である。 The maximum peak temperature of tan δ of the block copolymer can be adjusted by a method of adjusting the number of 3, 4 bonds or 1, 2 bonds of isoprene or butadiene, and a Lewis base is used as a cocatalyst. Can be adjusted relatively easily. Examples of Lewis bases include ethers such as dimethyl ether, diethyl ether and tetrahydrofuran, glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, triethylamine, N, N, N ′, N′-tetramethylethylenediamine (TMEDA), and N-methyl. Examples thereof include amine compounds such as morpholine. These Lewis bases are preferably used in an amount of 0.1 to 1000 times the number of moles of lithium in the polymerization initiator. The maximum peak temperature can also be adjusted by adjusting the presence or absence of hydrogenation and the hydrogenation rate.
 樹脂組成物の樹脂成分は、(A)成分及び(B)成分からなってもよいが、本発明の目的を損なわない限り、(A)及び(B)成分以外の樹脂成分を含有していてもよい。そのような場合、(A)及び(B)成分の合計量は、樹脂成分全量に対して、通常70質量%以上、好ましくは90質量%以上含有される。また、樹脂組成物には、後述するように樹脂成分以外にも各種添加剤が配合されてもよい。 The resin component of the resin composition may be composed of the component (A) and the component (B), but contains a resin component other than the components (A) and (B) as long as the object of the present invention is not impaired. Also good. In such a case, the total amount of the components (A) and (B) is usually 70% by mass or more, preferably 90% by mass or more based on the total amount of the resin components. Moreover, various additives other than a resin component may be mix | blended with the resin composition so that it may mention later.
[発泡シート]
<厚み>
 本発明において、発泡シートの厚みは、0.05~1.0mmである。厚みが0.05mm未満となると、破壊強度等の機械強度が悪化したり、シール性及び衝撃吸収性が低下したりするおそれがある。また、1.0mmより厚くなると、発泡シートを小型化された電子機器に使用しにくくなる。発泡シートの厚みは、より好ましくは0.06~0.5mmである。この範囲内であると、本発明の発泡シートに求められる各種性能を向上させしつつ、小型化された各種電子機器に好適に使用可能である。
 また、本発明の発泡シートは、幅が狭くなってもシール性や衝撃吸収性が良好になるものであるが、発泡シートの幅は、具体的には、0.5~2.5mmであることが好ましく、0.5~2.0mmであることがより好ましい。
[Foamed sheet]
<Thickness>
In the present invention, the thickness of the foam sheet is 0.05 to 1.0 mm. If the thickness is less than 0.05 mm, the mechanical strength such as the breaking strength may be deteriorated, or the sealing property and the impact absorption property may be deteriorated. Moreover, when it becomes thicker than 1.0 mm, it becomes difficult to use a foam sheet for the electronic device reduced in size. The thickness of the foam sheet is more preferably 0.06 to 0.5 mm. Within this range, various performances required for the foamed sheet of the present invention can be improved, and it can be suitably used for various electronic devices that have been miniaturized.
In addition, the foamed sheet of the present invention has good sealing properties and impact absorbability even when the width is narrow, but the width of the foamed sheet is specifically 0.5 to 2.5 mm. The thickness is preferably 0.5 to 2.0 mm.
<見掛け倍率>
 本発明において、発泡シートの見掛け倍率は1.1~10cc/gであることが好ましく、1.3~6cc/gであることがより好ましい。見掛け倍率は、以上の範囲となることで、適度な破壊強度を有しつつ、良好な柔軟性を有することが可能になり、シール性、衝撃吸収性等が向上する。
<Apparent magnification>
In the present invention, the apparent magnification of the foamed sheet is preferably 1.1 to 10 cc / g, and more preferably 1.3 to 6 cc / g. When the apparent magnification is in the above range, it becomes possible to have good flexibility while having an appropriate breaking strength, and the sealing performance, impact absorption performance, and the like are improved.
<ゲル%(架橋度)>
 本発明の発泡シートは、架橋されたものであることが好ましい。発泡シートの架橋度を示すゲル%は、10~70質量%であることが好ましく、15~65質量%であることがより好ましい。ゲル%が上記下限値以上となると、発泡シートにおいて十分な架橋が形成されて、破壊強度等をより良好にすることが可能になる。また、上記上限値以下とすることで、発泡シートの柔軟性をより良好にすることが可能になり、シール性、衝撃吸収性等が向上しやすくなる。
<Gel% (degree of crosslinking)>
The foamed sheet of the present invention is preferably cross-linked. The gel% indicating the degree of cross-linking of the foamed sheet is preferably 10 to 70% by mass, and more preferably 15 to 65% by mass. When the gel% is equal to or higher than the above lower limit value, sufficient crosslinking is formed in the foamed sheet, and the fracture strength and the like can be further improved. Moreover, it becomes possible to make the softness | flexibility of a foam sheet more favorable by setting it as the said upper limit or less, and it becomes easy to improve a sealing performance, an impact-absorbing property, etc.
<独立気泡>
 本発明の発泡シートは、多数の気泡を有するものであるが、その気泡は独立気泡であることが好ましい。なお、本明細書において、気泡が独立気泡であるとは、全気泡に対する独立気泡の割合(独立気泡率という)が70%以上であることを意味する。独立気泡率は、80%以上であることがより好ましい。
 独立気泡率は、JIS K 7138(2006)に準拠して求める。市販の測定器では、Beckman社製空気比較比重計MODEL930、乾式自動密度計アキュピック1330などが挙げられる。
 なお、独立気泡率は、下記の要領で測定される。発泡シートから一辺が5cmの平面正方形状で、且つ一定厚みの試験片を切り出す。試験片の厚みを測定し、試験片の見掛け体積Vを算出するとともに試験片の重量W1を測定する。次に、気泡の占める見掛け体積Vを下記式に基づいて算出する。なお、試験片を構成している樹脂の密度は、1g/cmとする。
   気泡の占める見掛け体積V=V-W
 続いて、試験片を23℃の蒸留水中に水面から100mmの深さに沈めて、試験片に15kPaの圧力を3分間に亘って加える。水中で圧力を解放後、試験片を水中から取り出して試験片の表面に付着した水分を除去し、試験片の重量W2を測定し、下記式に基づいて連続気泡率F及び独立気泡率Fを算出する。
   連続気泡率F(%)=100×(W-W)/V
   独立気泡率F(%)=100-F
<Independent bubbles>
The foam sheet of the present invention has a large number of bubbles, but the bubbles are preferably closed cells. In the present specification, the term “bubbles are closed cells” means that the ratio of closed cells to all bubbles (referred to as closed cell ratio) is 70% or more. The closed cell ratio is more preferably 80% or more.
The closed cell ratio is determined according to JIS K 7138 (2006). Commercially available measuring instruments include Beckman's air comparison specific gravity meter MODEL930, dry automatic density meter Accupic 1330, and the like.
The closed cell ratio is measured as follows. A test piece having a flat square shape with a side of 5 cm and a constant thickness is cut out from the foam sheet. The thickness of the test piece is measured, the apparent volume V 1 of the test piece is calculated, and the weight W 1 of the test piece is measured. Next, the apparent volume V 2 occupied by the bubbles is calculated based on the following formula. The density of the resin constituting the test piece is 1 g / cm 3 .
Apparent volume occupied by bubbles V 2 = V 1 −W 1
Subsequently, the test piece is submerged in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece over 3 minutes. After releasing the pressure in water, the test piece is taken out of the water to remove the water adhering to the surface of the test piece, the weight W 2 of the test piece is measured, and the open cell rate F 1 and the closed cell rate are calculated based on the following formulas: F 2 is calculated.
Open cell ratio F 1 (%) = 100 × (W 2 −W 1 ) / V 2
Closed cell ratio F 2 (%) = 100−F 1
 <25%圧縮強度>
 発泡シートの25%圧縮強度は、特に限定されないが、10~1000kPaであることが好ましく、20~800kPaであることがより好ましい。25%圧縮強度を上記範囲とすると、発泡シートの柔軟性が高められやすくなり、衝撃吸収性及びシール性が向上しやすくなる。なお、25%圧縮強度は、発泡シートをJIS K 6767に準拠して測定したものをいう。
<25% compressive strength>
The 25% compressive strength of the foamed sheet is not particularly limited, but is preferably 10 to 1000 kPa, and more preferably 20 to 800 kPa. When the 25% compressive strength is in the above range, the flexibility of the foamed sheet is likely to be enhanced, and the impact absorption and sealing properties are easily improved. In addition, 25% compressive strength means what measured the foamed sheet based on JISK6767.
<破壊強度>
 本発明において、発泡シートの破壊強度は、2MPa以上であることが好ましく、より好ましくは2.5MPa以上である。本明細書において破壊強度とは、厚み方向(Z方向)の引張強度を示す値であって、後述する測定方法により測定されるものである。本発明のように薄厚の発泡シートに衝撃が与えられると、その衝撃力により厚み方向に大きな応力が作用する。そのため、破壊強度を上記下限値以上とすることで、応力に対する強度を高め、発泡シートの耐衝撃性を良好にしやすくなる。
 また、破壊強度は、8MPa以下であることが好ましく、7.5MPa以下であることがより好ましい。破壊強度をこれら上限値以下とすることで、発泡シートの柔軟性を維持し、衝撃吸収性やシール性の高い発泡シートを得やすくなる。
<Destructive strength>
In the present invention, the breaking strength of the foam sheet is preferably 2 MPa or more, more preferably 2.5 MPa or more. In this specification, the fracture strength is a value indicating the tensile strength in the thickness direction (Z direction) and is measured by a measurement method described later. When an impact is applied to a thin foam sheet as in the present invention, a large stress acts in the thickness direction due to the impact force. Therefore, by setting the breaking strength to the lower limit value or more, the strength against stress is increased, and the impact resistance of the foamed sheet is easily improved.
Further, the breaking strength is preferably 8 MPa or less, and more preferably 7.5 MPa or less. By making the breaking strength below these upper limit values, the flexibility of the foamed sheet is maintained, and it becomes easy to obtain a foamed sheet having high impact absorption and sealing properties.
 [発泡シートの製造方法]
 本発明の発泡シートは、特に制限はないが、樹脂組成物を、好ましくは架橋し、かつ発泡することにより製造するものであり、例えば、以下の工程(1)~(3)を含む製造方法により製造するのが工業的に有利である。
 工程(1):(A)成分、(B)成分、熱分解型発泡剤、及びその他の添加剤を押出機に供給して溶融混練し、押出機からシート状に押出すことによってシート状にされた樹脂組成物を得る工程
 工程(2):シート状にされた樹脂組成物を架橋する工程
 工程(3):架橋させたシート状の樹脂組成物を加熱し、熱分解型発泡剤を発泡させて、好ましくはMD方向又はTD方向の何れか一方又は双方に延伸する工程
 なお、発泡シートの製造方法としては、この方法のほかに、WO2005/007731に記載された方法により製造することも可能である。
[Method for producing foam sheet]
The foamed sheet of the present invention is not particularly limited, but the resin composition is preferably produced by crosslinking and foaming. For example, the production method includes the following steps (1) to (3): Is industrially advantageous.
Step (1): The component (A), the component (B), the pyrolytic foaming agent, and other additives are supplied to an extruder, melt-kneaded, and extruded into a sheet form from the extruder. Step (2): Step of cross-linking the sheet-shaped resin composition Step (3): Heating the cross-linked sheet-shaped resin composition to foam a pyrolytic foaming agent And, preferably, a step of stretching in either or both of the MD direction and the TD direction. In addition to this method, the foam sheet can be manufactured by the method described in WO2005 / 007731. It is.
 熱分解型発泡剤としては、特に制限はなく、例えば、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、p-トルエンスルホニルセミカルバジド等が挙げられる。これらの中では、アゾジカルボンアミドが好ましい。なお、熱分解型発泡剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 樹脂組成物中における熱分解型発泡剤の含有量は、樹脂成分100質量部に対して0.4~12質量部が好ましく、0.6~8質量部がより好ましい。熱分解型発泡剤の含有量が上記範囲内であると、樹脂組成物の発泡性が向上し、所望の発泡倍率を有する発泡シートを得やすくなる。
 樹脂組成物を発泡させる方法としては、特に制限はなく、例えば、樹脂組成物を熱風により加熱する方法、赤外線により加熱する方法、塩浴による方法、オイルバスによる方法等が挙げられ、これらは併用してもよい。
 なお、樹脂組成物の発泡は、熱分解型発泡剤を用いる例に限定されず、ブタンガス等による物理発泡を用いてもよい。
The pyrolytic foaming agent is not particularly limited, and examples thereof include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, p-toluenesulfonyl semicarbazide and the like. Of these, azodicarbonamide is preferred. In addition, a thermal decomposition type foaming agent may be used individually by 1 type, and may use 2 or more types together.
The content of the pyrolytic foaming agent in the resin composition is preferably 0.4 to 12 parts by mass, more preferably 0.6 to 8 parts by mass with respect to 100 parts by mass of the resin component. When the content of the pyrolytic foaming agent is within the above range, the foamability of the resin composition is improved, and it becomes easy to obtain a foamed sheet having a desired foaming ratio.
The method of foaming the resin composition is not particularly limited, and examples thereof include a method of heating the resin composition with hot air, a method of heating with infrared rays, a method using a salt bath, a method using an oil bath, and the like. May be.
The foaming of the resin composition is not limited to the example using the pyrolytic foaming agent, and physical foaming with butane gas or the like may be used.
 樹脂組成物を架橋する方法としては、例えば、樹脂組成物に電子線、α線、β線、γ線等の電離性放射線を照射する方法、樹脂組成物に予め有機過酸化物を配合しておき、樹脂組成物を加熱して有機過酸化物を分解させる方法等が挙げられ、これらの方法は併用されてもよい。これらの中では、電離性放射線を照射する方法が好ましい。
 電離性放射線の照射量は、ゲル%が10~70質量%となるように、0.5~10Mradが好ましく、1~8Mradがより好ましい。
As a method of crosslinking the resin composition, for example, a method of irradiating the resin composition with ionizing radiation such as electron beam, α ray, β ray, γ ray, and the like, an organic peroxide is blended in advance with the resin composition. Examples of the method include heating the resin composition to decompose the organic peroxide, and these methods may be used in combination. In these, the method of irradiating ionizing radiation is preferable.
The irradiation amount of ionizing radiation is preferably 0.5 to 10 Mrad, more preferably 1 to 8 Mrad so that the gel% is 10 to 70% by mass.
 架橋に使用する有機過酸化物としては、例えば、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。有機過酸化物の添加量は、樹脂成分100質量部に対し、0.01~5質量部が好ましく、0.1~3質量部がより好ましい。有機過酸化物の添加量が上記範囲内であると、樹脂組成物の架橋が進行しやすく、また、得られる発泡シート中に有機過酸化物の分解残渣の量を抑制する。 Examples of the organic peroxide used for crosslinking include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, and the like. It is done. These may be used alone or in combination of two or more. The addition amount of the organic peroxide is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the resin component. When the addition amount of the organic peroxide is within the above range, crosslinking of the resin composition is likely to proceed, and the amount of decomposition residue of the organic peroxide is suppressed in the obtained foamed sheet.
 本発明の発泡シートは、上記したように、延伸されていることが好ましい。延伸は樹脂組成物を発泡させて発泡シートを得た後に行ってもよいし、樹脂組成物を発泡させつつ行ってもよい。なお、樹脂組成物を発泡させて発泡シートを得た後、発泡シートを延伸する場合には、発泡シートを冷却することなく発泡時の溶融状態を維持したまま続けて発泡シートを延伸したほうがよいが、発泡シートを冷却した後、再度、発泡シートを加熱して溶融又は軟化状態とした上で発泡シートを延伸してもよい。 The foamed sheet of the present invention is preferably stretched as described above. Stretching may be performed after foaming the resin composition to obtain a foamed sheet, or may be performed while foaming the resin composition. In addition, after foaming the resin composition to obtain a foamed sheet, when the foamed sheet is stretched, it is better to continue stretching the foamed sheet while maintaining the molten state at the time of foaming without cooling the foamed sheet However, after cooling the foamed sheet, the foamed sheet may be stretched again by heating it to a molten or softened state.
 また、発泡シートのMD方向における延伸倍率は、1.1~3.0倍が好ましく、1.3~2.8倍がより好ましい。発泡シートのMD方向における延伸倍率を上記下限値以上とすると、発泡シートの柔軟性及び引張強度が良好になりやすくなる。一方、上限値以下とすると、発泡シートが延伸中に破断したり、発泡中の発泡シートから発泡ガスが抜けて発泡倍率が低下したりすることが防止され、発泡シートの柔軟性や引張強度が良好になり、品質も均一なものとしやすくなる。また、発泡シートは、TD方向にも上記範囲の延伸倍率で延伸されてもよい。 Further, the stretch ratio in the MD direction of the foamed sheet is preferably 1.1 to 3.0 times, and more preferably 1.3 to 2.8 times. When the draw ratio in the MD direction of the foamed sheet is set to the above lower limit value or more, the flexibility and tensile strength of the foamed sheet are likely to be good. On the other hand, if the upper limit value is not exceeded, the foamed sheet is prevented from breaking during stretching, or the foaming gas escapes from the foamed sheet being foamed and the foaming ratio is reduced, thereby reducing the flexibility and tensile strength of the foamed sheet. It becomes good and it becomes easy to make the quality uniform. In addition, the foam sheet may be stretched in the TD direction at a stretch ratio in the above range.
 樹脂組成物には、必要に応じて、2,6-ジ-t-ブチル-p-クレゾール等の酸化防止剤、酸化亜鉛等の発泡助剤、分解温度調整剤、気泡核調整剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材等の各種添加剤が、発泡シートの物性を損なわない範囲で配合されていてもよい。これら添加剤は、通常工程(1)において、(A)及び(B)成分とともに混練されるものである。 Resin compositions include antioxidants such as 2,6-di-t-butyl-p-cresol, foaming aids such as zinc oxide, decomposition temperature regulators, cell core modifiers, and heat stability as needed. Various additives such as a colorant, a colorant, a flame retardant, an antistatic agent, and a filler may be blended within a range that does not impair the physical properties of the foamed sheet. These additives are kneaded together with the components (A) and (B) in the normal step (1).
 [粘着テープ]
 本発明の粘着テープは、上記発泡シートを基材として用いるものであり、発泡シートと、その発泡シートの少なくとも一方の面に設けられた粘着剤層とを備えるものである。粘着テープの厚みは、通常0.06~2mmで、好ましくは0.06~1mmである。
 本発明の粘着テープを構成する粘着剤層の厚みは、5~200μmであることが好ましい。粘着剤層の厚みは、より好ましくは7~150μmであり、更に好ましくは10~100μmである。粘着テープを構成する粘着剤層の厚みが5~200μmの範囲であると、高く安定した粘着性を確保しつつ粘着テープの厚みを薄くできる。
 粘着剤層を構成する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等が挙げられる。
[Adhesive tape]
The pressure-sensitive adhesive tape of the present invention uses the foamed sheet as a base material, and includes a foamed sheet and a pressure-sensitive adhesive layer provided on at least one surface of the foamed sheet. The thickness of the adhesive tape is usually 0.06 to 2 mm, preferably 0.06 to 1 mm.
The thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape of the present invention is preferably 5 to 200 μm. The thickness of the pressure-sensitive adhesive layer is more preferably 7 to 150 μm, still more preferably 10 to 100 μm. When the thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape is in the range of 5 to 200 μm, the thickness of the pressure-sensitive adhesive tape can be reduced while ensuring high and stable pressure-sensitive adhesiveness.
There is no restriction | limiting in particular as an adhesive which comprises an adhesive layer, For example, an acrylic adhesive, a urethane adhesive, a rubber adhesive, a silicone adhesive, etc. are mentioned.
 発泡シートの少なくとも一面に粘着剤を塗布して粘着剤層を積層させる方法としては、例えば、発泡シートの少なくとも一面にコーター等の塗工機を用いて粘着剤を塗布する方法、発泡シートの少なくとも一面にスプレーを用いて粘着剤を噴霧、塗布する方法、発泡シートの少なくとも一面に刷毛を用いて粘着剤を塗布する方法等が挙げられる。
 発泡シートを用いた粘着テープは、携帯電話機、タブレット型端末等の電子機器本体内に内装される電子部品に衝撃が加わるのを防止する衝撃吸収材や、電子機器本体内に埃や水分等が進入するのを防止するシール材として用いることができる。
 本発明の発泡シートは柔軟性に優れ、そのため、粘着テープは、例えば電子機器において各種部品を固定するための固定用テープとして使用された際に、段差追従性に優れ、気密性を確保しやすくなり、さらには、衝撃吸収性も高めることが可能になる。また、破壊強度及び耐電圧特性に優れるため、電子機器に使用した際の静電気による不具合、及び粘着テープの破損が生じにくくなる。
Examples of the method of laminating the pressure-sensitive adhesive layer by applying a pressure-sensitive adhesive to at least one surface of the foamed sheet include, for example, a method of applying a pressure-sensitive adhesive using a coating machine such as a coater to at least one surface of the foamed sheet, Examples thereof include a method of spraying and applying an adhesive using a spray on one side, a method of applying an adhesive using a brush on at least one side of a foamed sheet, and the like.
Adhesive tapes using foam sheets are shock absorbers that prevent impacts on the electronic components built in the electronic device bodies such as mobile phones and tablet terminals, and dust and moisture in the electronic device bodies. It can be used as a sealing material that prevents entry.
The foamed sheet of the present invention is excellent in flexibility, and therefore, the adhesive tape is excellent in step following ability and easy to ensure airtightness when used as a fixing tape for fixing various parts in electronic equipment, for example. In addition, it is possible to improve the shock absorption. Moreover, since it is excellent in breaking strength and a withstand voltage characteristic, the malfunction by static electricity at the time of using for an electronic device and the damage of an adhesive tape become difficult to occur.
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 [測定方法]
 本明細書における各物性の測定方法は、次の通りである。
<見掛け倍率>
 発泡シートの密度を、JIS K 7222に準拠して見掛け密度を測定し、その逆数を見掛け倍率とした。
<架橋度(ゲル%)>
 発泡シートから約50mgの試験片を採取し、試験片の重量A(mg)を精秤する。次に、この試験片を105℃のキシレン30cm3中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の重量B(mg)を精秤する。得られた値から、下記式によりゲル%(質量%)を算出する。
      ゲル%(質量%)=100×(B/A)
<独立気泡率>
 JIS K 7138(2006)に準拠し、Beckman社製空気比較比重計MODEL930にて、明細書中に記載の方法で測定した。
<25%圧縮強度>
 25%圧縮強度は、発泡シートをJIS K 6767に準拠して測定したものをいう。なお、本実施例においては、発泡シートを合計厚みが10mmになるように複数枚重ねて測定を行った。
[Measuring method]
The measuring method of each physical property in this specification is as follows.
<Apparent magnification>
For the density of the foam sheet, the apparent density was measured in accordance with JIS K 7222, and the reciprocal thereof was used as the apparent magnification.
<Degree of crosslinking (gel%)>
A test piece of about 50 mg is taken from the foamed sheet, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 105 ° C. and allowed to stand for 24 hours, and then filtered through a 200-mesh wire mesh to collect the insoluble matter on the wire mesh, vacuum dried, and the weight of the insoluble matter. Weigh B (mg) precisely. From the obtained value, the gel% (mass%) is calculated by the following formula.
Gel% (mass%) = 100 × (B / A)
<Closed cell ratio>
Based on JIS K7138 (2006), it measured by the method as described in the specification with the air comparison specific gravity meter MODEL930 by Beckman.
<25% compressive strength>
The 25% compressive strength refers to a foamed sheet measured according to JIS K 6767. In this example, the measurement was performed by stacking a plurality of foam sheets so that the total thickness was 10 mm.
<破壊強度>
 まず、図1に示す破壊強度測定用サンプル10を作成した。すなわち、発泡シート11の25mm角の範囲にプライマー(セメダイン株式会社製、商品名.PPXプライマー)を塗布した後、塗布部分の中央に直径5mm分の接着剤(セメダイン株式会社製、商品名.PPX)を滴下した。その後直ちに、接着剤滴下部分に25mm角のアルミ製治具Aを置き、発泡シート11と治具Aを、接着剤12を介して圧着した。その後、治具Aの大きさに沿って発泡シート11をカットした。カットした発泡シート11の、治具Aを接着していない面にプライマーを塗布し、塗布部分の中央に直径5mm分の接着剤を滴下した。その後直ちに、接着剤滴下部分に10mm角のアルミ製治具Bを置き、発泡シート11と治具Bを、接着剤13を介して圧着した。治具Bの周辺にはみ出した接着剤をふき取った後、治具Bの大きさに沿って発泡シート11に切り込み14を入れた。これを室温で30分間放置することで接着剤を養生し、図1に示す破壊強度測定用サンプル10とした。
 続いて、1kNのロードセルを設置した試験機(株式会社エー・アンド・デイ製、商品名.テンシロン万能材料試験機)に、発泡シート11のシート面が引張方向に対して垂直になるように破壊強度測定用サンプル10を取り付けた。その後、一方の治具Aを速度100mm/分で垂直上向きに引っ張り、発泡シート11の1cm角の範囲のみを層間剥離させた。このときの最大荷重を測定し、1回目の測定結果とした。同様の操作を3回繰り返し、その平均値を破壊強度とした。
<Destructive strength>
First, a fracture strength measurement sample 10 shown in FIG. 1 was prepared. That is, after applying a primer (trade name. PPX primer, manufactured by Cemedine Co., Ltd.) to a 25 mm square area of the foamed sheet 11, an adhesive for 5 mm in diameter (trade name: PPX manufactured by Cemedine Co., Ltd.) is applied to the center of the applied portion. ) Was added dropwise. Immediately thereafter, a 25 mm square aluminum jig A was placed on the adhesive dripping portion, and the foamed sheet 11 and the jig A were pressure-bonded via the adhesive 12. Thereafter, the foam sheet 11 was cut along the size of the jig A. A primer was applied to the surface of the cut foam sheet 11 on which the jig A was not adhered, and an adhesive having a diameter of 5 mm was dropped onto the center of the applied portion. Immediately thereafter, a 10 mm square aluminum jig B was placed on the adhesive dripping portion, and the foamed sheet 11 and the jig B were pressure-bonded via the adhesive 13. After the adhesive sticking out around the jig B was wiped off, cuts 14 were made in the foam sheet 11 along the size of the jig B. This was allowed to stand at room temperature for 30 minutes to cure the adhesive, and the sample 10 for fracture strength measurement shown in FIG. 1 was obtained.
Subsequently, the test piece (manufactured by A & D Co., Ltd., trade name: Tensilon Universal Material Testing Machine) with a 1 kN load cell was broken so that the sheet surface of the foamed sheet 11 was perpendicular to the tensile direction. A sample 10 for strength measurement was attached. Thereafter, one jig A was pulled vertically upward at a speed of 100 mm / min, and only the 1 cm square area of the foamed sheet 11 was delaminated. The maximum load at this time was measured and used as the first measurement result. The same operation was repeated three times, and the average value was taken as the breaking strength.
<耐電圧試験>
 1mm×100mmのテープ形状の発泡シートを、2枚のアクリル板の間に厚さ方向に挟みこみ、かつ、アクリル板間に配置された2枚のアルミ板で幅方向に挟んで、耐電圧試験 菊水電子社製 TOS501(最大電圧12kV)を用いて、直流で幅方向に電圧を印加して、その電圧で30秒間通電がなければ0.5kV刻みで印加電圧を上昇させていく。通電した時の電圧を耐電圧の結果とする。なお、本測定は、MD,TDそれぞれをテープの幅方向として測定した。
(評価基準)
MD,TDの測定値のいずれも10kV以上であれば、耐電圧性能が良好であるとしてAと評価した。
MD,TDの測定値のいずれか一方が10kV未満で、両方が8kV以上であれば、耐電圧性能が実使用可能であるとしてBと評価した。
MD,TDの測定値のいずれか一方が8kV未満であれば、耐電圧性能が良好ではないとしてCと評価した。
<Withstand voltage test>
A 1 mm x 100 mm tape-shaped foam sheet is sandwiched in the thickness direction between two acrylic plates, and is sandwiched in the width direction between two aluminum plates arranged between the acrylic plates, withstanding voltage test Kikusui Electronics Using a TOS501 (maximum voltage of 12 kV) manufactured by the company, a voltage is applied in the width direction with a direct current, and if no voltage is applied for 30 seconds at that voltage, the applied voltage is increased in increments of 0.5 kV. The voltage when energized is taken as the result of the withstand voltage. In this measurement, each of MD and TD was measured in the width direction of the tape.
(Evaluation criteria)
If both the measured values of MD and TD were 10 kV or more, it was evaluated as A because the withstand voltage performance was good.
When either one of the measured values of MD and TD was less than 10 kV and both were 8 kV or more, the withstand voltage performance was evaluated as B, and it was evaluated as B.
If either one of the measured values of MD and TD was less than 8 kV, the withstand voltage performance was not good and was evaluated as C.
[実施例1]
 ポリオレフィン系樹脂(日本ポリエチレン株式会社製、商品名.カーネルKF370)70質量部、及びスチレン系熱可塑性エラストマー(株式会社クラレ製、商品名.ハイブラー(登録商標)7311)30質量部からなる樹脂成分100質量部、熱分解型発泡剤1質量部、分解温度調整剤1質量部、及び酸化防止剤0.5質量部を、押出機に供給して140℃で溶融混練して得た樹脂組成物を押出成形し、厚み0.3mmの長尺シート状にした。
 次に、上記長尺シート状の樹脂組成物の両面に加速電圧500kVの電子線を4.5Mrad照射して樹脂組成物を架橋した。
 その後、この樹脂組成物を熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して発泡させると同時に、MD方向及びTD方向に延伸し、実施例1の発泡シートを得た。
 得られた発泡シートを上記評価方法に従って評価し、その結果を表1に示す。
[Example 1]
Resin component 100 comprising 70 parts by mass of a polyolefin resin (manufactured by Nippon Polyethylene Co., Ltd., trade name: Kernel KF370) and 30 parts by mass of a styrene thermoplastic elastomer (manufactured by Kuraray Co., Ltd., trade name: Hibler (registered trademark) 7311) A resin composition obtained by feeding 1 part by mass of a mass part, 1 part by mass of a pyrolytic foaming agent, 1 part by mass of a decomposition temperature adjusting agent, and 0.5 parts by mass of an antioxidant to an extruder and melt-kneading at 140 ° C. Extrusion molding was performed to form a long sheet having a thickness of 0.3 mm.
Next, the resin composition was crosslinked by irradiating an electron beam with an acceleration voltage of 500 kV for 4.5 Mrad on both surfaces of the long sheet-shaped resin composition.
Thereafter, this resin composition was continuously fed into a foaming furnace maintained at 250 ° C. by hot air and an infrared heater, heated and foamed, and at the same time, stretched in the MD direction and the TD direction. Got.
The obtained foamed sheet was evaluated according to the above evaluation method, and the results are shown in Table 1.
[実施例2]
 熱分解型発泡剤の配合量を表1に示す量に変更し、さらにゲル%が高くなるよう、樹脂組成物に照射する電子線を5Mradと変更して、また、厚みを0.15mmとした点を除いて実施例1と同様に実施した。
[Example 2]
The blending amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the electron beam applied to the resin composition was changed to 5 Mrad so that the gel% was higher, and the thickness was 0.15 mm. The same operation as in Example 1 was performed except for the points.
[実施例3]
 熱分解型発泡剤の配合量を表1に示す量に変更して発泡倍率を3cc/g、厚みを0.15mmとした点を除いて実施例1と同様に実施した。
[Example 3]
The amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the same procedure as in Example 1 was carried out except that the expansion ratio was 3 cc / g and the thickness was 0.15 mm.
[比較例1]
 押出機に供給する樹脂成分をポリエチレン系樹脂100質量部のみに変更し、さらに発泡倍率を2.5cc/g、厚みを0.12mmとした点を除いて実施例1と同様に実施した。
[Comparative Example 1]
The resin component supplied to the extruder was changed to only 100 parts by mass of polyethylene resin, and the same procedure as in Example 1 was performed except that the expansion ratio was 2.5 cc / g and the thickness was 0.12 mm.
[比較例2]
 熱分解型発泡剤の配合量を表1に示す量に変更し、さらに発泡倍率を3cc/g、厚みを0.15mmとした点を除いて比較例1と同様に実施した。
[Comparative Example 2]
The amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the same procedure as in Comparative Example 1 was performed except that the expansion ratio was 3 cc / g and the thickness was 0.15 mm.
[比較例3]
 押出機に供給する樹脂成分のうち、スチレン系熱可塑性エラストマー30質量部を、ポリエチレン系樹脂(ダウケミカル社製、商品名.アフィニティーKC8852)30質量部に変更し、さらに発泡倍率を2cc/g、厚みを0.1mmとした点を除いて比較例1と同様に実施した。
[Comparative Example 3]
Of the resin components supplied to the extruder, 30 parts by mass of the styrene thermoplastic elastomer is changed to 30 parts by mass of a polyethylene resin (trade name: Affinity KC8852, manufactured by Dow Chemical Co., Ltd.), and the expansion ratio is 2 cc / g, It carried out similarly to the comparative example 1 except the point which made thickness 0.1mm.
[比較例4]
 厚みを0.15mmとした点を除いて比較例3と同様に実施した。
[Comparative Example 4]
The same operation as in Comparative Example 3 was performed except that the thickness was 0.15 mm.
[比較例5]
 熱分解型発泡剤の配合量を表1に示す量に変更し、さらに発泡倍率を2.7cc/g、厚みを0.1mmとした点を除いて比較例3と同様に実施した。
[Comparative Example 5]
The amount of the pyrolytic foaming agent was changed to the amount shown in Table 1, and the same procedure as in Comparative Example 3 was carried out except that the expansion ratio was 2.7 cc / g and the thickness was 0.1 mm.
 なお、各実施例、比較例で使用した樹脂成分の詳細は、以下のとおりである。
(1)カーネルKF370:メタロセン化合物の重合触媒を用いて得られたエチレン-1-ヘキセン共重合体である直鎖状低密度ポリエチレン、密度:0.905g/cm、融点(DSC法)Tm:97℃
(2)アフィニティーKC8852:メタロセン化合物の重合触媒を用いて得られたエチレン-1-オクテン共重合体である直鎖状低密度ポリエチレン、密度0.875g/cm、融点(DSC法)Tm:66℃
(3)ハイブラー(登録商標)7311:水添スチレン・イソプレン・ブタジエンブロック共重合体、スチレン含有量:12質量%、tanδの最大ピーク温度:-17℃
 また、各実施例、比較例で使用した添加剤は、以下の通りである。
 熱分解型発泡剤:永和化成株式会社製、アゾジカルボンアミド AC#K3
 分解温度調節剤:株式会社ADEKA製、商品名.アデカスタブ(登録商標)CDA-1
 酸化防止剤:株式会社ADEKA製、商品名.アデカスタブ(登録商標)FP-2000のリン系酸化防止剤
In addition, the detail of the resin component used by each Example and the comparative example is as follows.
(1) Kernel KF370: linear low density polyethylene which is an ethylene-1-hexene copolymer obtained using a polymerization catalyst of a metallocene compound, density: 0.905 g / cm 3 , melting point (DSC method) Tm: 97 ° C
(2) Affinity KC8852: linear low-density polyethylene which is an ethylene-1-octene copolymer obtained using a metallocene compound polymerization catalyst, density 0.875 g / cm 3 , melting point (DSC method) Tm: 66 ℃
(3) Hibler (registered trademark) 7311: hydrogenated styrene / isoprene / butadiene block copolymer, styrene content: 12% by mass, maximum peak temperature of tan δ: −17 ° C.
Moreover, the additive used by each Example and the comparative example is as follows.
Thermally decomposable foaming agent: Eizo Kasei Co., Ltd., Azodicarbonamide AC # K3
Decomposition temperature regulator: ADEKA Corporation, trade name. ADK STAB (registered trademark) CDA-1
Antioxidant: ADEKA Corporation, trade name. ADK STAB (registered trademark) FP-2000 phosphorus antioxidant
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように、実施例1~3の発泡シートは、オレフィン系樹脂に加えて、tanδの最大ピーク温度が比較的低いスチレン系熱可塑性エラストマーを含有するので、破壊強度を高めつつ、耐電圧特性が良好となった。また、実施例1~3の発泡シートは、25%圧縮強度が適切な値を有しており、適度な柔軟性も有していた。それに対して、比較例1~5では、スチレン系熱可塑性エラストマーを含有しないので、少なくとも耐電圧特性が実施例1~3よりも劣っているものとなった。 As described above, the foamed sheets of Examples 1 to 3 contain a styrene-based thermoplastic elastomer having a relatively low maximum peak temperature of tan δ in addition to the olefin resin. Became good. In addition, the foam sheets of Examples 1 to 3 had an appropriate value of 25% compressive strength, and had moderate flexibility. On the other hand, Comparative Examples 1 to 5 did not contain a styrenic thermoplastic elastomer, so that at least the withstand voltage characteristics were inferior to those of Examples 1 to 3.

Claims (7)

  1.  ポリオレフィン系樹脂(A)と、動的粘弾性測定によるtanδの最大ピーク温度が-30~10℃の範囲にあるスチレン系熱可塑性エラストマー(B)とを含有する樹脂組成物を発泡させてなり、ポリオレフィン系樹脂(A)のスチレン系熱可塑性エラストマー(B)に対する比(A/B)が、質量比で50/50~90/10であり、かつ厚みが0.05~1.0mmであるポリオレフィン系発泡シート。 Foaming a resin composition containing a polyolefin resin (A) and a styrene thermoplastic elastomer (B) having a maximum peak temperature of tan δ of −30 to 10 ° C. measured by dynamic viscoelasticity; A polyolefin having a ratio (A / B) of the polyolefin resin (A) to the styrene thermoplastic elastomer (B) of 50/50 to 90/10 in terms of mass ratio and a thickness of 0.05 to 1.0 mm. Foam sheet.
  2.  スチレン系熱可塑性エラストマー(B)のスチレン含有量が、5~25質量%である請求項1に記載のポリオレフィン系発泡シート。 The polyolefin foam sheet according to claim 1, wherein the styrene thermoplastic elastomer (B) has a styrene content of 5 to 25% by mass.
  3.  スチレン系熱可塑性エラストマー(B)が、スチレン・イソプレンブロック共重合体、水添スチレン・イソプレンブロック共重合体、及び水添スチレン・イソプレン・ブタジエンブロック共重合体から選択される1種又は2種以上である請求項1又は2に記載のポリオレフィン系発泡シート。 The styrene thermoplastic elastomer (B) is one or more selected from a styrene / isoprene block copolymer, a hydrogenated styrene / isoprene block copolymer, and a hydrogenated styrene / isoprene / butadiene block copolymer. The polyolefin-based foamed sheet according to claim 1 or 2.
  4.  ポリオレフィン系樹脂(A)が、ポリエチレン系樹脂である請求項1~3のいずれかに記載のポリオレフィン系発泡シート。 The polyolefin foam sheet according to any one of claims 1 to 3, wherein the polyolefin resin (A) is a polyethylene resin.
  5.  前記ポリエチレン系樹脂が、メタロセン化合物の重合触媒で重合されたものである請求項4に記載のポリオレフィン系発泡シート。 The polyolefin-based foamed sheet according to claim 4, wherein the polyethylene-based resin is polymerized with a metallocene compound polymerization catalyst.
  6.  ポリオレフィン系発泡シートは、架橋されたものである請求項1~5のいずれかに記載のポリオレフィン系発泡シート。 The polyolefin foam sheet according to any one of claims 1 to 5, wherein the polyolefin foam sheet is cross-linked.
  7.  請求項1~6のいずれかに記載されたポリオレフィン系発泡シートと、前記ポリオレフィン系発泡シートの少なくとも一方の面に設けた粘着剤層とを備える粘着テープ。 An adhesive tape comprising the polyolefin-based foam sheet according to any one of claims 1 to 6 and an adhesive layer provided on at least one surface of the polyolefin-based foam sheet.
PCT/JP2015/060085 2014-03-31 2015-03-31 Polyolefin foam sheet and pressure-sensitive adhesive tape WO2015152222A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580016366.0A CN106133040B (en) 2014-03-31 2015-03-31 Polyolefin foamed sheet and adhesive tape
KR1020167026548A KR102125916B1 (en) 2014-03-31 2015-03-31 Polyolefin foam sheet and pressure-sensitive adhesive tape
JP2016511924A JP6469085B2 (en) 2014-03-31 2015-03-31 Polyolefin foam sheet and adhesive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014073670 2014-03-31
JP2014-073670 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152222A1 true WO2015152222A1 (en) 2015-10-08

Family

ID=54240542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060085 WO2015152222A1 (en) 2014-03-31 2015-03-31 Polyolefin foam sheet and pressure-sensitive adhesive tape

Country Status (4)

Country Link
JP (1) JP6469085B2 (en)
KR (1) KR102125916B1 (en)
CN (2) CN110256746A (en)
WO (1) WO2015152222A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170941A1 (en) * 2016-03-30 2017-10-05 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
WO2018181498A1 (en) * 2017-03-31 2018-10-04 積水化学工業株式会社 Polyolefin-based foamed sheet, production method therefor, and pressure-sensitive adhesive tape
WO2018181982A1 (en) * 2017-03-31 2018-10-04 積水化学工業株式会社 Cross-linked resin foam sheet, production method therefor, and adhesive tape
WO2018181486A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Resin foam sheet, method for producing resin foam sheet, and adhesive tape
WO2021201044A1 (en) * 2020-03-31 2021-10-07 積水化学工業株式会社 Foam sheet
WO2022071453A1 (en) * 2020-10-01 2022-04-07 積水化学工業株式会社 Foam sheet
EP4122978A1 (en) * 2021-07-20 2023-01-25 Sekisui Alveo AG Polyolefin-based closed-cell foams

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714815B (en) * 2016-12-26 2021-01-01 日商迪愛生股份有限公司 Articles, article manufacturing methods and void filling methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277339A (en) * 1995-02-08 1996-10-22 Toray Ind Inc Electron beam-crosslinked polyolefin foam
JP2010163492A (en) * 2009-01-13 2010-07-29 Asahi Kasei Chemicals Corp Crosslinkable and foamable composition, crosslinked foamed object, as well as footwear and layered product using the same
WO2013191222A1 (en) * 2012-06-20 2013-12-27 積水化学工業株式会社 Shock-absorbing material and sealing material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786406A (en) * 1995-02-08 1998-07-28 Toray Industries, Inc. Polyolefin based crosslinked foam
JP2005146137A (en) * 2003-11-17 2005-06-09 Jsr Corp Thermoplastic elastomer composition molded article and its manufacturing method
WO2008146739A1 (en) * 2007-05-25 2008-12-04 Kuraray Co., Ltd. Thermoplastic polymer composition
JP2009242671A (en) * 2008-03-31 2009-10-22 Sekisui Chem Co Ltd Heat-resistant foamed sheet and heat-resistant damping tape
US7867433B2 (en) * 2008-05-30 2011-01-11 Exxonmobil Chemical Patents Inc. Polyolefin-based crosslinked articles
JP2011104993A (en) * 2009-10-22 2011-06-02 Nitto Lifetech Kk Porous film for heat sealable bag constituent member, heat sealable bag constituent member and disposable body warmer
JP5702776B2 (en) * 2010-06-03 2015-04-15 株式会社カネカ Solar cell backsheet and solar cell module
WO2012081561A1 (en) * 2010-12-13 2012-06-21 積水化学工業株式会社 Impact-absorbing material and sealing material comprising same
JP5899027B2 (en) * 2011-03-31 2016-04-06 積水化学工業株式会社 Cross-linked polyolefin resin foam sheet, adhesive tape and sealing material
JP6207009B2 (en) 2012-07-03 2017-10-04 積水化学工業株式会社 Cross-linked polyolefin resin foam sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277339A (en) * 1995-02-08 1996-10-22 Toray Ind Inc Electron beam-crosslinked polyolefin foam
JP2010163492A (en) * 2009-01-13 2010-07-29 Asahi Kasei Chemicals Corp Crosslinkable and foamable composition, crosslinked foamed object, as well as footwear and layered product using the same
WO2013191222A1 (en) * 2012-06-20 2013-12-27 積水化学工業株式会社 Shock-absorbing material and sealing material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218563A (en) * 2016-03-30 2019-12-26 積水化学工業株式会社 Polyolefin resin foamed sheet and adhesive tape
JP2019178341A (en) * 2016-03-30 2019-10-17 積水化学工業株式会社 Polyolefin resin foamed sheet and adhesive tape
CN113308041A (en) * 2016-03-30 2021-08-27 积水化学工业株式会社 Polyolefin resin foam sheet and adhesive tape
KR102078236B1 (en) 2016-03-30 2020-02-17 세키스이가가쿠 고교가부시키가이샤 Polyolefin resin foam sheet and adhesive tape
WO2017170941A1 (en) * 2016-03-30 2017-10-05 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
JPWO2017170941A1 (en) * 2016-03-30 2018-12-06 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
KR20180127337A (en) * 2016-03-30 2018-11-28 세키스이가가쿠 고교가부시키가이샤 Polyolefin-based resin foam sheet and adhesive tape
WO2018181486A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Resin foam sheet, method for producing resin foam sheet, and adhesive tape
CN110461922A (en) * 2017-03-31 2019-11-15 积水化学工业株式会社 Polyolefin foamed sheet, its manufacturing method and adhesive tape
WO2018181498A1 (en) * 2017-03-31 2018-10-04 積水化学工業株式会社 Polyolefin-based foamed sheet, production method therefor, and pressure-sensitive adhesive tape
JPWO2018181498A1 (en) * 2017-03-31 2020-02-06 積水化学工業株式会社 Polyolefin foam sheet, production method thereof and pressure-sensitive adhesive tape
WO2018181982A1 (en) * 2017-03-31 2018-10-04 積水化学工業株式会社 Cross-linked resin foam sheet, production method therefor, and adhesive tape
JP7201431B2 (en) 2017-03-31 2023-01-10 積水化学工業株式会社 POLYOLEFIN FOAM SHEET, MANUFACTURING METHOD THEREOF AND ADHESIVE TAPE
WO2021201044A1 (en) * 2020-03-31 2021-10-07 積水化学工業株式会社 Foam sheet
WO2022071453A1 (en) * 2020-10-01 2022-04-07 積水化学工業株式会社 Foam sheet
EP4122978A1 (en) * 2021-07-20 2023-01-25 Sekisui Alveo AG Polyolefin-based closed-cell foams

Also Published As

Publication number Publication date
JPWO2015152222A1 (en) 2017-04-13
CN106133040A (en) 2016-11-16
CN106133040B (en) 2019-07-05
CN110256746A (en) 2019-09-20
KR102125916B1 (en) 2020-06-23
KR20160140648A (en) 2016-12-07
JP6469085B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6987178B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6672439B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6469085B2 (en) Polyolefin foam sheet and adhesive tape
JP6773817B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6379040B2 (en) Cross-linked polyolefin resin foam sheet
JP6207009B2 (en) Cross-linked polyolefin resin foam sheet
EP3385315B1 (en) Polyolefin resin foam sheet and adhesive tape
JP6773816B2 (en) Polyolefin resin foam sheet and adhesive tape
WO2017057628A1 (en) Polyolefin resin foamed sheet and adhesive tape
JP6974655B1 (en) Foam sheet
WO2018062514A1 (en) Polyolefin foam sheet, production method therefor, and adhesive tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511924

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167026548

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772808

Country of ref document: EP

Kind code of ref document: A1