JP2000281827A - Production of polyolefin crosslinked foamed body - Google Patents

Production of polyolefin crosslinked foamed body

Info

Publication number
JP2000281827A
JP2000281827A JP11092228A JP9222899A JP2000281827A JP 2000281827 A JP2000281827 A JP 2000281827A JP 11092228 A JP11092228 A JP 11092228A JP 9222899 A JP9222899 A JP 9222899A JP 2000281827 A JP2000281827 A JP 2000281827A
Authority
JP
Japan
Prior art keywords
foam
decomposition
polyolefin
foaming agent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11092228A
Other languages
Japanese (ja)
Inventor
Shigeo Kamijukkoku
成夫 上拾石
Motoi Naito
基 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11092228A priority Critical patent/JP2000281827A/en
Publication of JP2000281827A publication Critical patent/JP2000281827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the generation of sublimates attributable to decomposition residues of a decomposition-type chemical foaming agent, decrease the amount of the sublimable compound remaining in a foamed body and widely decrease the generation of sublimates when a foamed body product is heated again. SOLUTION: When a crosslinked foamed body is produced from a polyolefin resin by azodicarbonamide and a high-decomposition exothermic type foaming agent whose calorific value is twice or more that of azodicarbonamide and whose gas generation value is equal to or more than that of azodicarbonamide is used as a heat decomposition-type chemical foaming agent, and 0.5-20 wt.% of an alkali metal chloride and/or an oxide of a 2A-group element in the periodic table is used together, based on the heat decomposition-type chemical foaming agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリオレフィン系
架橋発泡体の製造工程や加工工程などにおいて、加熱時
に架橋発泡体から発生する昇華物を低減する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing a sublimate generated from a crosslinked foam at the time of heating in a process for producing or processing a polyolefin crosslinked foam.

【0002】[0002]

【従来の技術】耐熱性、軽量性、断熱性、遮音性等に優
れていることや各種の加工法による成形が容易であるこ
とから、近年、ポリオレフィン系架橋発泡体は自動車内
装用の緩衝材として、建築分野における断熱材として、
また、産業資材分野における粘着テープやパッキンなど
として広く利用されている。しかし、一般にポリオレフ
ィン系架橋発泡体は分解型化学発泡剤を用いて製造さ
れ、例えば、アゾ系発泡剤ではアンモニア、尿素化合物
などの窒素系分解残渣の昇華性物質等が発生する。その
発泡工程で発生する発泡剤分解残渣は、その一部分は昇
華物となって飛散するが、残りは製品の架橋発泡体中に
残留する。
2. Description of the Related Art Recently, polyolefin cross-linked foams have been used as cushioning materials for automobile interiors because of their excellent heat resistance, light weight, heat insulating properties, sound insulation properties, etc., and their ease of molding by various processing methods. As a heat insulating material in the construction field,
Further, it is widely used as an adhesive tape or packing in the field of industrial materials. However, a polyolefin-based cross-linked foam is generally produced using a decomposition-type chemical blowing agent. For example, an azo-based blowing agent generates a sublimable substance such as ammonia and a urea compound, which is a nitrogen-based decomposition residue. A part of the foaming agent decomposition residue generated in the foaming step is scattered as a sublimate, but the rest remains in the crosslinked foam of the product.

【0003】製品発泡体の内部に発泡剤分解残渣が残留
していると、その発泡体を後加工する際の加熱工程によ
り、あるいは加熱雰囲気中で連続的に使用されることに
より、発泡体から昇華物が発生し飛散する。発泡剤分解
残渣に起因して発生する昇華物の中には安全性や加工後
の最終製品の品質安定性などの面から好ましくない物質
も多少含まれている。その発泡剤残渣を製造工程におい
て除去することが望ましいが、従来法ではその残渣を発
泡体製造工程で除去することは困難と考えられてきた。
[0003] If a foaming agent decomposition residue remains inside the product foam, the foam is removed from the foam by a heating step in post-processing the foam or by being continuously used in a heating atmosphere. Sublimates are generated and scatter. The sublimate generated due to the decomposition residue of the foaming agent contains some unfavorable substances in terms of safety and quality stability of the final product after processing. It is desirable to remove the foaming agent residue in the production process, but it has been considered difficult to remove the residue in the foam production process in the conventional method.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、分
解型化学発泡剤を用いてポリオレフィン系架橋発泡体を
製造する方法において、分解型化学発泡剤からの分解残
渣に起因する昇華物の発生を抑制し、かつ、発泡体中に
残存する昇華性化合物の量を低減させ、製品発泡体の再
加熱時の昇華物の発生を大幅に低減させることを主たる
目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention relates to a method for producing a crosslinked polyolefin foam using a decomposable chemical foaming agent, the generation of sublimates resulting from decomposition residues from the decomposable chemical foaming agent. It is a main object of the present invention to suppress the occurrence of sublimates in the foam and to reduce the amount of the sublimable compound remaining in the foam to significantly reduce the occurrence of sublimates when the product foam is reheated.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の本発明法は、ポリオレフィン系樹脂か
ら熱分解型化学発泡剤を用いて架橋発泡体を製造する
際、熱分解型化学発泡剤として分解発熱量が異なる複数
を用い、かつ熱分解型化学発泡剤に対し0.5〜20重
量%のアルカリ金属塩化物及び/周期表2A族元素酸化
物を併用することを特徴とする。請求項2、3の本発明
法は、さらに、熱分解型化学発泡剤として、アゾジカル
ボンアミドと、該アゾジカルボンアミドに比べ分解発熱
量が2倍以上でかつ発生ガス量が等量以上である高分解
発熱型化学発泡剤とを所定量で併用するものであり、ま
た、請求項4の本発明法は、さらに、発泡完了後の発泡
体の表面に水分の存在下で波長が2nmからマイクロ波
領域までの赤外線を2〜12KW/cm3の密度で照射
するものである。
In order to achieve the above-mentioned object, according to the present invention, there is provided a method for producing a crosslinked foam from a polyolefin resin by using a pyrolytic chemical foaming agent. It is characterized by using a plurality of different types of chemical blowing agents having different calorific values and using 0.5 to 20% by weight of an alkali metal chloride and / or a Group 2A element oxide in the periodic table with respect to the pyrolytic type chemical blowing agent. And In the method of the present invention according to claims 2 and 3, azodicarbonamide is used as a thermal decomposition type chemical foaming agent, and the amount of heat generated by decomposition is twice or more and the amount of generated gas is equal to or more than that of azodicarbonamide. The method of the present invention according to claim 4 further comprises using a high-decomposition exothermic type chemical blowing agent in a predetermined amount, and further comprising the step of reducing the wavelength from 2 nm to 2 μm in the presence of moisture on the surface of the foam after completion of foaming. Irradiation up to the wave region is performed at a density of 2 to 12 KW / cm 3 .

【0006】本発明は、発泡剤の分解メカニズムや発生
する分解残渣の特性、あるいはその反応可能性に着目し
て検討を重ねることによってなされたものであり、本発
明法のように熱分解型化学発泡剤として特定の複数種を
併用すると、発泡剤の分解を発泡性シート成形時には起
こさせずに、かつ、加熱発泡時には低温で完全分解させ
ることができるので昇華性の分解残渣の発生量を大幅に
抑制できる。さらに、特定の無機系化合物の併用により
その昇華性を抑制できる。昇華性の分解残渣発生量の大
幅抑制のメカニズムは定かではないが、例えば、アゾジ
カルボンアミドを用いる場合、その分解において気泡核
を形成すると推測される初期分解の時期か、又はそれか
ら急速分解にかけての時期に、併用した発泡剤が分解を
始め同時に高発熱するので、アゾジカルボンアミドの分
解が単一組成の場合よりも急速に分解が進むので、昇華
物と目される尿素系化合物が生成する前に昇華性の極め
て小さい窒素化合物が生成されるためではないかと考え
られる。
The present invention has been made by repeatedly examining the decomposition mechanism of the blowing agent, the characteristics of the generated decomposition residue, or the possibility of its reaction. When a plurality of specific foaming agents are used in combination, the decomposition of the foaming agent can be completely prevented at low temperature during foaming without decomposing the foaming agent at the time of foaming sheet molding. Can be suppressed. Furthermore, the sublimability can be suppressed by using a specific inorganic compound in combination. Although the mechanism of the significant suppression of the amount of sublimable decomposition residue generated is not clear, for example, when azodicarbonamide is used, it is assumed that the initial decomposition time, which is presumed to form a bubble nucleus in the decomposition, or from that to rapid decomposition At the same time, since the combined blowing agent starts to decompose and generates high heat at the same time, the decomposition of azodicarbonamide progresses more rapidly than in the case of a single composition, so before the urea compound considered as a sublimate is formed It is considered that a nitrogen compound having extremely low sublimability is generated.

【0007】さらに、請求項4の本発明のように発泡体
の表面に水分の存在下で赤外線処理すると、発泡体の表
面や比較的浅い部分に残存する昇華性化合物を除去する
ことができるので、製品発泡体を再度発生温度まで加熱
しても昇華物の発生をさらに減少できる。これらの結
果、本発明法によると、発泡体品位を低下させることな
く、発泡体の再加熱時の昇華物の発生を大幅に低減でき
るのである。
Further, when the surface of the foam is subjected to infrared treatment in the presence of moisture as in the present invention, the sublimable compound remaining on the surface of the foam or a relatively shallow portion can be removed. Even if the product foam is heated again to the generation temperature, the generation of sublimates can be further reduced. As a result, according to the method of the present invention, it is possible to greatly reduce the occurrence of sublimates when the foam is reheated without deteriorating the quality of the foam.

【0008】[0008]

【発明の実施の形態】本発明法で架橋発泡に用いるポリ
オレフィン系樹脂としては、プロピレンにエチレンもし
くは炭素数が4〜8のαオレフィンを2〜15重量%ラ
ンダムもしくはブロック共重合してなる、融点が125
〜155℃、MFRが0.5〜10g/10分のポリプ
ロピレン系樹脂(A)、エチレンに炭素数が4〜12の
αオレフィンを共重合してなる、密度が0.915〜
0.940g/cm3、MFRが1.0〜30g/10
分のポリエチレン系樹脂(B)、及び、該ポリエチレン
系樹脂(B)とは重合組成が異なるエチレン主成分の重
合体であって、密度が0.915〜950g/cm3
MFRが1〜20g/10分であるポリエチレン系樹脂
(C)、が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The polyolefin resin used for cross-linking and foaming in the method of the present invention is a polymer obtained by random or block copolymerization of propylene with 2 to 15% by weight of ethylene or an α-olefin having 4 to 8 carbon atoms. Is 125
Polypropylene resin (A) having an MFR of 0.5 to 10 g / 10 min and a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms at a density of 0.915 to 155 ° C.
0.940 g / cm 3 , MFR 1.0 to 30 g / 10
And a polyethylene-based polymer having a different polymerization composition from the polyethylene-based resin (B), having a density of 0.915 to 950 g / cm 3 ,
A polyethylene-based resin (C) having an MFR of 1 to 20 g / 10 minutes.

【0009】上記ポリプロピレン系樹脂(A)は、一般
にチーグラ型触媒、メタロセン型触媒によって、プロピ
レンに上記のα−オレフィンが所定量ランダムもしくは
ブロック共重合されてなる共重合体であって、その融点
が125〜155℃、MFRが0.5〜10g/10分
である。共重合されるエチレンもしくは炭素数が4〜8
のα−オレフィンの種数には特に制限はないが、エチレ
ン、ブテン、ヘキセン、あるいはエチレンとブテン、エ
チレンとヘキセンなどが挙げられる。発泡体の機械強度
を維持するには炭素数が極力大きいα−オレフィンが好
ましく、かつ、3元共重合のものが好ましい。
The polypropylene resin (A) is a copolymer obtained by random or block copolymerization of propylene with a predetermined amount of the above-mentioned α-olefin by a Ziegler-type catalyst or a metallocene-type catalyst. 125-155 ° C, MFR is 0.5-10 g / 10 min. Ethylene or 4-8 carbon atoms to be copolymerized
The number of species of the α-olefin is not particularly limited, and examples thereof include ethylene, butene, hexene, ethylene and butene, and ethylene and hexene. In order to maintain the mechanical strength of the foam, an α-olefin having as large a carbon number as possible is preferable, and a terpolymer is preferable.

【0010】共重合されるエチレンもしくは炭素数が4
〜8のα−オレフィンは2〜15重量%、好ましくは3
〜8重量%である。その共重合割合が少な過ぎると樹脂
の結晶性が高くなりまた融点も高くなるので、得られる
発泡体が硬くなり緩衝性が低下するとともに低温下での
耐衝撃性が悪化したり、発泡用シート製造時の剪断発熱
により発泡剤の分解が起こりやすくなり粗大気泡を発生
しやすくなるので好ましくない。一方、多すぎると緩衝
性、耐衝撃性の点では好ましいが融点が低下するため耐
熱性が低下するので好ましくない。
[0010] Ethylene or 4 carbon atoms to be copolymerized
To 8 to 8 to 15% by weight, preferably 3 to
88% by weight. If the copolymerization ratio is too low, the crystallinity of the resin will increase and the melting point will also increase, so the foam obtained will be hardened, the buffering properties will decrease, and the impact resistance at low temperatures will deteriorate, or the foam sheet It is not preferable because the foaming agent is easily decomposed due to heat generated by shearing during the production, and coarse bubbles are easily generated. On the other hand, if it is too large, it is preferable in terms of buffering properties and impact resistance, but it is not preferable because the melting point is lowered and the heat resistance is lowered.

【0011】樹脂の融点は125〜155℃、好ましく
は130〜145℃である。融点が125℃未満である
と耐熱性の点から用途的に制限が発生するので好ましく
ない。逆に、融点が155℃を越える程に高くなると、
用途的に広範囲をカバーできるものの、発泡用シート製
造時の剪断発熱により発泡剤の分解が起こりやすくなり
粗大気泡を発生しやすくので好ましくない。さらに、融
点が高過ぎると昇華物を発泡体より除去しにくくなるの
で好ましくない。MFRは0.5〜10g/10分、好
ましくは1.0〜3g/10分である。MFRが0.5
g/10分未満であると樹脂の溶融粘度が高くなるため
発泡用シート製造時の剪断発熱により発泡剤の分解が起
こりやすくなり粗大気泡を発生しやすくなるので好まし
くない。一方、10g/10分を越えると溶融粘度は低
くなるためシート製造上では好ましいが発泡体の伸びが
低下したり、真空成形など加熱成形加工時に形状の保持
力が悪化し、良好な成形品が得られにくくなるので好ま
しくない。
[0011] The melting point of the resin is from 125 to 155 ° C, preferably from 130 to 145 ° C. If the melting point is lower than 125 ° C., it is not preferable because the application is restricted from the viewpoint of heat resistance. Conversely, if the melting point is so high that it exceeds 155 ° C,
Although it can cover a wide range of uses, it is not preferable because the foaming agent is easily decomposed due to heat generated by shearing during the production of the foaming sheet, and coarse bubbles are easily generated. Further, if the melting point is too high, it is difficult to remove the sublimate from the foam, which is not preferable. The MFR is 0.5 to 10 g / 10 minutes, preferably 1.0 to 3 g / 10 minutes. MFR is 0.5
When the viscosity is less than g / 10 minutes, the melt viscosity of the resin becomes high, so that the shearing heat generated during the production of the sheet for foaming tends to cause the decomposition of the foaming agent and the generation of coarse bubbles, which is not preferable. On the other hand, when the melt viscosity exceeds 10 g / 10 minutes, the melt viscosity becomes low, so that it is preferable in sheet production. However, the elongation of the foam is reduced, and the shape holding force is deteriorated at the time of heat forming such as vacuum forming, and a good molded product is obtained. It is not preferable because it becomes difficult to obtain.

【0012】前記ポリエチレン系樹脂(B)は、エチレ
ンに特定のα−オレフィンを共重合してなる共重合体で
あり、密度が0.915〜0.940g/cm3、MF
Rが1.0〜30g/10分である。エチレンに共重合
されるα−オレフィンの種数は特に限定されないが、一
般的にはエチレンとα−オレフィンとの2元共重合体が
好ましく、炭素数4〜12のα−オレフィンの内炭素数
が4〜6を共重合したものが価格、物性の両面から有利
である。
The polyethylene resin (B) is a copolymer obtained by copolymerizing ethylene with a specific α-olefin, and has a density of 0.915 to 0.940 g / cm 3 and an MF
R is 1.0 to 30 g / 10 minutes. The number of species of the α-olefin to be copolymerized with ethylene is not particularly limited, but generally a binary copolymer of ethylene and an α-olefin is preferable, and the number of carbon atoms in the α-olefin having 4 to 12 carbon atoms is preferable. However, those obtained by copolymerizing 4 to 6 are advantageous in terms of both price and physical properties.

【0013】密度は0.915〜0.940g/c
3、好ましくは0.920〜0.935g/cm3であ
る。密度が0.915g/cm3未満であると樹脂の柔
軟性が顕著となりベタツキを生じ発泡体としたとブロッ
キングが発生したり、機械的強度が低下するので好まし
くない。一方、0.940g/cm3を越えると機械的
強度の点では好ましいが伸びが低下したり、発泡体とし
たときの圧縮回復性が低下するので好ましくない。MF
Rは1.0〜30g/10分、好ましくは2〜15g/
10分である。MFRが1.0g/10分未満であると
樹脂の溶融粘度が高くなるため発泡用シート製造時の剪
断発熱により発泡剤の分解が起こりやすくなり粗大気泡
を発生しやすくなるので好ましくない。一方、30g/
10分を越えると溶融粘度は低くなるためシート製造上
では好ましいが高温下での樹脂の抗張力が低下するため
成形加工したとき偏肉が発生しやすくなるので好ましく
ない。
The density is 0.915 to 0.940 g / c
m 3 , preferably 0.920 to 0.935 g / cm 3 . If the density is less than 0.915 g / cm 3 , the flexibility of the resin is remarkable, stickiness is caused, and if the foam is used, blocking occurs and the mechanical strength is unfavorably reduced. On the other hand, if it exceeds 0.940 g / cm 3 , it is preferable in terms of mechanical strength, but it is not preferable because elongation is reduced and the compression recovery of the foam is reduced. MF
R is 1.0 to 30 g / 10 min, preferably 2 to 15 g /
10 minutes. If the MFR is less than 1.0 g / 10 minutes, the melt viscosity of the resin becomes high, so that the foaming agent is liable to be decomposed due to the heat generated by shearing during the production of the foaming sheet, and coarse bubbles are easily generated, which is not preferable. On the other hand, 30g /
If the time is longer than 10 minutes, the melt viscosity becomes low, which is preferable in the production of sheets. However, the tensile strength of the resin at high temperature is reduced, and the uneven thickness tends to occur during molding, which is not preferable.

【0014】前記ポリプロピレン系樹脂(A)を用いる
場合には、ポリエチレン系樹脂(B)と併用することが
好ましく、その際の混合比率(A)/(B)は85/1
5〜15/85、さらに30/70〜70/30が好ま
しい。(A)/(B)が(15/85)未満であるとポ
リエチレン系樹脂(B)の特性が支配的となり耐熱性が
悪化したり、成形性が低下なるので好ましくない。一
方、(85/15)を越えると機械的強度、耐熱性、成
形性には良いが、発泡体の剛性が顕著となり緩衝性が悪
化したり、ポリエチレン系樹脂成分の影響が大となり本
発明による昇華物除去の点では好都合ではあるがポリプ
ロピレン系樹脂との混合系であるためポリエチレン系樹
脂用の加熱条件では除去が不十分となるので好ましくな
い。
When the polypropylene resin (A) is used, it is preferable to use it in combination with the polyethylene resin (B), and the mixing ratio (A) / (B) is 85/1.
5-15 / 85, more preferably 30 / 70-70 / 30. If (A) / (B) is less than (15/85), the properties of the polyethylene resin (B) are dominant, and heat resistance is deteriorated and moldability is deteriorated. On the other hand, when it exceeds (85/15), the mechanical strength, heat resistance and moldability are good, but the rigidity of the foam is remarkable, the buffering property is deteriorated, and the influence of the polyethylene resin component is large, and the effect of the present invention is large. Although it is convenient in terms of removing sublimates, it is not preferable because heating is not sufficient under a heating condition for a polyethylene resin because it is a mixed system with a polypropylene resin.

【0015】このようにポリプロピレン系樹脂(A)と
ポリエチレン系樹脂(B)とを併用する場合、得られる
発泡体の架橋度は20〜70%、好ましくは30〜60
%である。架橋度が20%未満であると加熱発泡時発泡
体表面から発泡ガスが逸散しやすく所定の発泡倍率が得
られなかったり、発泡体表面が荒れたり、また、発泡時
長さ方向への配向が顕著となりやすく物性に異方性を生
じるので好ましくなく、また、加熱により発泡体表面が
荒れやすくなるので好ましくない。一方、架橋度が70
%を越えると気泡径が小さくなり、かつ形状が完全球状
に近くなるため硬くなり緩衝性が低下したり、伸びが低
下するため加熱成形性が悪化したり、あるいは架橋網目
鎖の中に発泡剤残渣が取り込まれ、残渣が分解、空気中
へ昇華することを阻害するので好ましくない。
When the polypropylene resin (A) and the polyethylene resin (B) are used in combination as described above, the degree of crosslinking of the obtained foam is 20 to 70%, preferably 30 to 60%.
%. If the degree of cross-linking is less than 20%, the foaming gas easily escapes from the foam surface at the time of heating and foaming, and a predetermined foaming ratio cannot be obtained, the foam surface is roughened, and the foam is oriented in the length direction during foaming. Is not preferred because the properties tend to be remarkable and anisotropy occurs in the physical properties, and the surface of the foam is easily roughened by heating. On the other hand, the degree of crosslinking is 70
%, The cell diameter becomes small and the shape becomes almost spherical, so that the resin becomes hard and the buffering property decreases, the elongation decreases, the heat moldability deteriorates, or the foaming agent is contained in the crosslinked network chain. It is not preferable because the residue is taken in and hinders decomposition and sublimation of the residue into the air.

【0016】また、その場合の発泡体の発泡倍率は5〜
40倍、好ましくは5〜30倍である。発泡倍率が5倍
未満では高度の深絞り成形ができ最終加工成形品の付形
性には優れるが硬くなり緩衝性が乏しくなるので好まし
くない。一方、40倍を越えると緩衝性の点では好まし
いが、高発泡のため機械強度が低下し、成形性が悪化し
たりするので好ましくなく、また、発泡度が高くなるに
つれ発泡剤の添加量が増加する必要があり、発泡剤残渣
量も比例して増加するため、本発明による昇華物の低減
化のためには好ましくない。
In this case, the expansion ratio of the foam is 5 to 5.
It is 40 times, preferably 5 to 30 times. If the expansion ratio is less than 5 times, a high degree of deep drawing can be performed and the final processed product is excellent in formability, but hard and has poor buffering properties, which is not preferable. On the other hand, if it exceeds 40 times, it is preferable in terms of buffering property, but it is not preferable because the mechanical strength is reduced due to high foaming and the moldability is deteriorated, and the addition amount of the foaming agent increases as the foaming degree increases. It is necessary to increase the amount, and the amount of the foaming agent residue also increases in proportion, which is not preferable for reducing the sublimate according to the present invention.

【0017】本発明法で用いる樹脂成分として用いられ
る前記ポリエチレン系樹脂(C)としては、高圧法低密
度ポリエチレンや、エチレンに酢酸ビニルあるいはアル
キル(メタ)アクリレートが共重合されたポリエチレン
系樹脂であって、密度が0.915〜950g/c
3、MFRが1〜20g/10分、好ましくは密度が
0.920〜940g/cm3、、MFRが2〜10g/
10分である必要がある。密度が0.915/cm3
満では高圧法低密度ポリエチレンの場合、樹脂のベタツ
キや機械的特性、具体的には強度が大きく低下するので
好ましくなく、また後者の共重合体ではほとんど高圧法
低密度ポリエチレンと同じになるので好ましくない。一
方、0.950g/cm3 を越えると高圧法低密度ポリ
エチレンは硬くなり、弾性復元性が大きく低下するので
好ましくないし、後者の共重合体ではコモノマーの共重
合量が増加するため融点が低下、耐熱性が低下するとと
もにブロッキングが発生、製品を重ねて保管することが
できない、つまり、ロール状に巻いて保管できなくなる
ので好ましくない。
The polyethylene resin (C) used as the resin component used in the method of the present invention is a high-pressure low-density polyethylene or a polyethylene resin obtained by copolymerizing ethylene with vinyl acetate or an alkyl (meth) acrylate. And the density is 0.915 to 950 g / c
m 3 , MFR is 1 to 20 g / 10 min, preferably density is 0.920 to 940 g / cm 3 , and MFR is 2 to 10 g / min.
Should be 10 minutes. If the density is less than 0.915 / cm 3 , the high-pressure low-density polyethylene is not preferable because the stickiness and mechanical properties of the resin, specifically the strength, are greatly reduced. It is not preferable because it becomes the same as the density polyethylene. On the other hand, if it exceeds 0.950 g / cm 3 , the high-pressure method low-density polyethylene becomes hard and the elastic restorability is greatly reduced, which is not preferable. In the latter copolymer, the copolymerization amount of the comonomer increases and the melting point decreases. It is not preferable because heat resistance is reduced and blocking occurs, and products cannot be stored in piles. That is, the products cannot be stored in a roll shape.

【0018】本発明法で用いる樹脂成分には、前記した
ポリプロピレン系樹脂(A)、ポリエチレン系樹脂
(B)、ポリエチレン系樹脂(C)の他に、その他のポ
リオレフィン系樹脂を30重量%以下混入してもよい。
具体的にはエチレン−プロピレンゴム−ジエンゴム(E
PDM)、高密度ポリエチレン等やエチレンとの共重合
体に第三成分として無水マレイン酸を共重合した3元共
重合体等が例示される。中でもエチレン−プロピレンゴ
ム(EPM),エチレン−プロピレンゴム−ジエンゴム
(EPDM)、エチレン−(メタ)アルキルアクリレー
ト共重合体あるいはこれらのエチレンとの共重合体に第
三成分として無水マレイン酸を共重合した3元共重合体
が好ましい。混入量が30重量%をこえると、耐熱性、
機械強度、成形性が低下するので好ましくない。
In the resin component used in the present invention, in addition to the above-mentioned polypropylene resin (A), polyethylene resin (B) and polyethylene resin (C), 30% by weight or less of other polyolefin resin is mixed. May be.
Specifically, ethylene-propylene rubber-diene rubber (E
PDM), high-density polyethylene and the like, and terpolymers obtained by copolymerizing maleic anhydride as a third component with a copolymer with ethylene, and the like. Above all, maleic anhydride was copolymerized as a third component with ethylene-propylene rubber (EPM), ethylene-propylene rubber-diene rubber (EPDM), ethylene- (meth) alkyl acrylate copolymer or a copolymer with these ethylenes. Tertiary copolymers are preferred. If the amount exceeds 30% by weight, heat resistance,
It is not preferable because mechanical strength and moldability are reduced.

【0019】その他、必要に応じて、熱安定剤、耐候
剤、難燃助剤(例えばアンチモン化合物)、分散剤、架
橋剤、架橋助剤を添加してもよい。
In addition, if necessary, a heat stabilizer, a weathering agent, a flame retardant aid (for example, an antimony compound), a dispersant, a crosslinking agent, and a crosslinking aid may be added.

【0020】本発明法においては熱分解型化学発泡剤と
して、分解発熱量が異なる複数種を併用することが重要
であり、特に、アゾジカルボンアミドを基本とし、アゾ
ジカルボンアミドとは異なる構造で分解発熱量が2倍以
上、発生ガス量が等量以上である高分解型化学発泡剤を
併用することが好適である。その高分解型化学発泡剤と
しては、N,N′−ジニトロソペンタメチレンテトラミ
ンあるいはテトラゾール系化合物、具体的には5−フェ
ニルテトラゾールなどが例示できるが、アゾジカルボン
アミドより分解温度の低いP,P′−オキシベンゼンス
ルフォニルヒドラジド等や無機系の発泡剤は適さない。
なお、アゾジカルボンアミドとそれとは異なる構造の高
分解型化学発泡剤との混合比率は90:10〜99.
5:0.5が好ましい。混合する高分解型化学発泡剤の
量が多すぎると、その高分解型化学発泡剤は発熱量が高
いために発泡完了時に発泡体の中心部の温度が著しく上
昇し、熱劣化に伴う変色、いわゆる焼けを生じるので好
ましくない。
In the method of the present invention, it is important to use a plurality of types of pyrolytic chemical foaming agents having different calorific values, especially azodicarbonamide, which has a different structure from azodicarbonamide. It is preferable to use a high-decomposition type chemical foaming agent having a calorific value twice or more and an amount of generated gas equal to or more than an equivalent amount. Examples of the high-decomposition type chemical blowing agent include N, N'-dinitrosopentamethylenetetramine or a tetrazole-based compound, specifically, 5-phenyltetrazole, and P, P having a lower decomposition temperature than azodicarbonamide. '-Oxybenzenesulfonyl hydrazide and the like and inorganic foaming agents are not suitable.
The mixing ratio between azodicarbonamide and a high-resolution chemical blowing agent having a different structure is 90:10 to 99.
5: 0.5 is preferred. If the amount of the high-decomposition type chemical blowing agent to be mixed is too large, the high-decomposition type chemical blowing agent has a high calorific value, so that the temperature at the center of the foam at the time of completion of foaming is significantly increased, and discoloration due to thermal deterioration, This is not preferred because it causes so-called burning.

【0021】上記熱分解型化学発泡剤の他に、アルカリ
金属塩化物及び/又は周期表2A族元素の酸化物を併用
することが必要である。このアルカリ金属塩化物として
は、リチュウムを含むリチュウム化合物の塩化物が好ま
しい。また、周期表2A族元素の酸化物は、マグネシュ
ウムからバリウムまでの周期表2A族元素の中から選ば
れた金属元素を含む酸化物である。これらは水分率が
0.1%以下の物を総量で0.5〜20重量%、好まし
くは1〜10重量%含むことが好ましく、0.5重量%
未満では発生する昇華物を十分に防止するために好まし
くなく、20重量%を越えると防止効果は大きくなる
が、フィラーとしての作用が大きくなるため発泡体の機
械的強度を低下させるので好ましくない。
It is necessary to use an alkali metal chloride and / or an oxide of a Group 2A element of the periodic table in addition to the above-mentioned thermal decomposition type chemical blowing agent. As the alkali metal chloride, a chloride of a lithium compound containing lithium is preferable. The oxide of a Group 2A element in the periodic table is an oxide containing a metal element selected from Group 2A elements in the periodic table from magnesium to barium. These contain, in total, 0.5% to 20% by weight, preferably 1% to 10% by weight, of those having a moisture content of 0.1% or less, preferably 0.5% by weight.
When the amount is less than 20% by weight, the effect of preventing the sublimation is not sufficiently increased. However, when the amount exceeds 20% by weight, the effect as a filler is increased, and the mechanical strength of the foam is lowered.

【0022】本発明においては発泡体の樹脂部分が架橋
されていることが必要であるが、架橋方法としてはパー
オキサイド等の過酸化物を添加して行う、いわゆる化学
架橋法、電離性放射線を照射して行う放射線架橋法が例
示できる。化学架橋法の場合は、ジクミルパーオキサイ
ド、t−ブチルパー−ベンゾエート、ジターシャリーブ
チルパーオキサイド等の過酸化化合物を樹脂成分に対し
0.5〜5重量部添加して架橋させる公知の手法を適用
すればよい。電離性放射線を照射して行う放射線架橋法
の場合は電子線照射による公知の手法を適用すればよ
く、その電子線照射の程度は、発泡体としたときの架橋
度が25〜70%となる程度がよい。
In the present invention, it is necessary that the resin portion of the foam is cross-linked. As a cross-linking method, a so-called chemical cross-linking method, which is performed by adding a peroxide such as peroxide, is used. A radiation crosslinking method performed by irradiation can be exemplified. In the case of the chemical crosslinking method, a known method of adding a peroxide compound such as dicumyl peroxide, t-butyl per-benzoate, ditertiary butyl peroxide, etc. to the resin component in an amount of 0.5 to 5 parts by weight and performing crosslinking is applied. do it. In the case of the radiation crosslinking method performed by irradiating with ionizing radiation, a known method by electron beam irradiation may be applied, and the degree of electron beam irradiation is such that the degree of crosslinking when the foam is formed is 25 to 70%. Good degree.

【0023】本発明による発泡方法は公知の方法が適用
できるが、具体的には縦型熱風発泡法、横型熱風発泡
法、横型薬液発泡法などの連続シート状として製造でき
るものが挙げられる。例えば、電子線照射により架橋さ
れた連続シートを発泡剤の分解温度より30〜100℃
高い温度に加熱した薬液加熱方式の横型発泡炉に連続的
に導入し、発泡させ、次いで発泡槽から出たところで薬
液の一次洗浄と冷却を目的とした水冷却槽に導入し、更
に薬液の完全洗浄を目的とした30〜80℃に加熱した
水洗浄槽に導入して洗浄した後、表面が濡れた状態で発
泡体の表面から100mmの位置に石英管式の赤外線ヒ
ータと100〜120℃の熱風ノズルを設置した乾燥機
に導入し、発泡体の表面および表層から100μmまで
が100〜140℃として表面の水分と表層付近の昇華
物を除去した後、冷却ロールで表面を常温に戻してロー
ル状に巻き取る方法により行なうことができる。
Known foaming methods can be applied to the foaming method according to the present invention, and specific examples thereof include those which can be produced as a continuous sheet such as a vertical hot air foaming method, a horizontal hot air foaming method, and a horizontal chemical liquid foaming method. For example, a continuous sheet cross-linked by electron beam irradiation is heated to a temperature of 30 to 100 ° C. below the decomposition temperature of the foaming agent.
It is continuously introduced into a horizontal foaming furnace of the chemical heating system heated to a high temperature, foamed, and then out of the foaming tank, introduced into a water cooling tank for the purpose of primary cleaning and cooling of the chemical, and further complete After being introduced into a water washing tank heated to 30 to 80 ° C. for washing, the quartz tube type infrared heater and 100 to 120 ° C. are placed at a position 100 mm from the surface of the foam while the surface is wet. After being introduced into a dryer equipped with a hot-air nozzle, the surface and the surface of the foam were removed to 100 to 140 ° C. from the surface to 100 ° C. to remove the surface moisture and sublimates near the surface. It can be carried out by a winding method.

【0024】このようにして得られた昇華物の低減化さ
れたポリオレフィン系架橋発泡体は、更に、発泡完了後
に(例えば発泡体製造工程中で発泡完了以降に、または
発泡体の加工時に)発泡体の両面に、波長が2nmから
マイクロ波領域までの赤外線を照射させることが好適で
ある。例えば、発泡体の表面から50〜400mmの位
置に、石英、セラミック、ジルコニアなどからなる所定
波長の赤外線を発生させるヒータを配置し、幅、長さ方
向に照射密度が2〜12KW/cm3となるように調整
して赤外線を照射し、発泡体の温度が100〜140℃
となるようにする方法が適用され、これにより再加熱時
の昇華物の発生がほぼないに近い水準まで低減化でき
る。この時、発泡体の表面温度を急速に上げるために1
00〜120℃の熱風を併用してもよい。また、本発明
の目的とする昇華物の低減化のためには発泡体の表面に
水分、具体的には水の被膜があった方が発泡体そのもの
の劣化を押さえ、形態変化が生じない等効果的である。
本発明において、赤外線の照射密度が2KW/cm3
満では赤外線による昇華物自体の温度が十分に上がら
ず、昇華物を十分に除去することが難しく好ましくな
く、一方、12KW/cm 3を越えると昇華物自体の温
度が急速に上がり、昇華物を除去する点では好ましい
が、反面ヒータより発生する輻射熱により発泡体表面が
溶融し、荒れてくるので好ましくない。
The sublimate obtained in this manner is reduced.
The expanded polyolefin-based cross-linked foam is
(For example, after the completion of foaming in the foam manufacturing process, or
The wavelength from 2 nm on both sides of the foam (when processing the foam)
It is preferable to irradiate infrared rays up to the microwave range.
is there. For example, about 50 to 400 mm from the surface of the foam
Is made of quartz, ceramic, zirconia, etc.
A heater that generates infrared light of the wavelength is placed, and the width and length
The irradiation density is 2 to 12 KW / cmThreeAdjusted to be
To irradiate infrared rays, the temperature of the foam is 100-140 ° C
Is applied so that when reheating
Can be reduced to a level close to almost no sublimation
You. At this time, in order to rapidly raise the surface temperature of the foam, 1
Hot air of 00 to 120 ° C may be used in combination. In addition, the present invention
In order to reduce the amount of sublimate,
Moisture, specifically the foam itself is the one with the water film
Is effective, for example, by suppressing the deterioration of the shape and by preventing the form from changing.
In the present invention, the irradiation density of infrared rays is 2 KW / cmThreeNot yet
When full, the temperature of the sublimate itself due to infrared rays rises sufficiently
It is difficult to remove the sublimate sufficiently,
On the other hand, 12KW / cm ThreeBeyond the temperature of the sublimate itself
Degree of temperature rises rapidly and is preferable in removing sublimates
However, due to the radiant heat generated by the heater, the foam surface
It is not preferable because it melts and becomes rough.

【0025】[0025]

【実施例】次に実施例に基づいて本発明を説明する。本
発明における測定法、評価基準は次の通りである。
Next, the present invention will be described based on embodiments. The measuring method and evaluation criteria in the present invention are as follows.

【0026】1.昇華物確認試験 ハッケ社製フォギング試験機を使用し、発泡体を加熱温
度110℃で3時間加熱し、ガラス板面に付着したもの
を顕微鏡で目視観察して昇華物発生の有無を調べる。更
に、ヘイズ(表面)も測定する。ガラス板面への付着物
の目視観察により結晶が認められないもの、ヘイズ測定
値が60%以上のものを合格とする。
1. Sublimate Confirmation Test Using a fogging tester manufactured by Hacke Co., the foam is heated at a heating temperature of 110 ° C. for 3 hours, and what adheres to the glass plate surface is visually observed with a microscope to check for the occurrence of sublimate. Further, the haze (surface) is also measured. A sample in which no crystal was observed by visual observation of a substance attached to the glass plate surface and a sample whose haze measurement value was 60% or more were judged to be acceptable.

【0027】2.発泡体の架橋度 発泡体を細断し、0.2g精秤する。このものを130
℃のテトラリン中に浸積し、攪拌しながら3時間加熱し
溶解部分を溶解せしめ、不溶部分を取り出しアセトンで
洗浄してテトラリンを除去後、純水で洗浄しアセトンを
除去して120℃の熱風乾燥機にて水分を除去して室温
になるまで自然冷却する。このものの重量(W1)gを
測定し、次式で架橋度を求める。 架橋度=[(0.2−W1)/0.2]×100 (%)
2. Degree of crosslinking of foam The foam is cut into small pieces and precisely weighed at 0.2 g. This is 130
Immersed in tetralin at room temperature and heated with stirring for 3 hours to dissolve the dissolved part. The insoluble part was taken out and washed with acetone to remove tetralin. Moisture is removed with a dryer, and the mixture is naturally cooled to room temperature. The weight (W 1 ) g of this product is measured, and the degree of crosslinking is determined by the following equation. Degree of crosslinking = [(0.2−W 1 ) /0.2] × 100 (%)

【0028】3.成形性 直径(D)、深さ(L)のカップ状の成形金型を備えた
真空成形機で成形し、発泡体が破れることなくカップ状
に成形することができたL/D比の最大値を成形性の指
標とする。L/Dが0.5以上を合格とする。 4.機械強度、伸び JIS K−6767に準じて測定する。
3. Formability Formed by a vacuum forming machine equipped with a cup-shaped mold having a diameter (D) and depth (L), and the maximum L / D ratio that could be formed into a cup without breaking the foam. The value is used as an index of moldability. An L / D of 0.5 or more is considered acceptable. 4. Mechanical strength, elongation Measured according to JIS K-6767.

【0029】5.融点 示差走査熱量計(パーキンエルマ社製のDSCII)で測
定した溶融吸熱カーブの最も大きなピークを融点とす
る。 6.MFR ポリプロピレン系樹脂はJIS K−6758に準じ、
また、ポリエチレン系樹脂はJIS K−6760に準
じて測定する。 7.密度 ポリエチレン系樹脂はJIS K−6760に準じて測
定する。
5. Melting point The largest peak of the melting endothermic curve measured by a differential scanning calorimeter (DSCII manufactured by PerkinElmer) is defined as the melting point. 6. MFR polypropylene resin conforms to JIS K-6758,
The polyethylene resin is measured according to JIS K-6760. 7. Density The polyethylene resin is measured according to JIS K-6760.

【0030】[実施例1]プロピレンにエチレンを4重
量%ランダム共重合してなる融点が136℃、MFR
0.8g/10分のポリプロピレン系樹脂(A)と、エ
チレンにヘキセンを共重合させてなる密度が0.930
g/cm3、MFRが6.0g/10分のポリエチレン
系樹脂(B)とを、(A):(B)が75:25になる
ように混合して組成物とし、この組成物100kgにさ
らに熱安定剤としてIrgnox1010を0.2kg
混合して加圧ニーダーに投入し、第一段目の混練りし、
溶融状態で樹脂、難燃剤、安定剤を十分に分散させる。
更に、架橋助剤としてペンタエリスリトールトリアクリ
レート3kgを投入して第二段目の混練りし架橋助剤を
微分散させる。さらに、分解型発泡剤としてアゾジカル
ボンアミド6kgとN,N′ジニトロソペンタメチレン
テトラミン0.3kg、酸化マグネシュウム90gを投
入して第三段目の混練りを行い発泡用樹脂組成物とす
る。このものをロール混練り機に通し、厚さが2mmの
シート状に成形して取りだし、ペレタイザーで2mm角
のペレットにする。
Example 1 propylene obtained by random copolymerization of propylene with 4% by weight of ethylene has a melting point of 136.degree.
The density obtained by copolymerizing 0.8 g / 10 min of the polypropylene resin (A) and hexene with ethylene is 0.930.
g / cm 3 , and a polyethylene resin (B) having an MFR of 6.0 g / 10 minutes so that (A) :( B) is 75:25 to obtain a composition. Further, 0.2 kg of Irgnox1010 as a heat stabilizer
Mix and put into a pressure kneader, knead the first stage,
Disperse the resin, flame retardant, and stabilizer sufficiently in the molten state.
Further, 3 kg of pentaerythritol triacrylate is added as a crosslinking aid, and the mixture is kneaded in the second stage to finely disperse the crosslinking aid. Further, 6 kg of azodicarbonamide, 0.3 kg of N, N'-dinitrosopentamethylenetetramine and 90 g of magnesium oxide are added as decomposable foaming agents, and the mixture is kneaded in the third stage to obtain a foaming resin composition. This is passed through a roll kneader, formed into a sheet having a thickness of 2 mm, and taken out, and pelletized into a 2 mm square with a pelletizer.

【0031】この混合原料を発泡剤の分解しない温度の
150〜180℃に加熱したベント付き押出し機に導入
して、セットされているTダイから押し出し、空気巻込
みによる気泡のない厚さが1.5mm、幅が550mm
の連続シート状にして巻き取った。このシートに6.3
Mradの電子線を照射し、架橋せしめた。このシート
を 220℃→225℃→235℃の順に加熱したシリ
コーン薬液法の発泡装置に導入し発泡させ、次いで水槽
を通した後に、表面に付着した水滴除去を目的とした長
さ2mの100℃の熱風乾燥炉にヘレウス社製石英環に
金メッキ反射層を備えたツインツチュブ型赤外線ヒータ
が設置された装置を連続的に通過させ、連続シート状発
泡体としてロール状に巻き取った。
This mixed raw material is introduced into a vented extruder heated to a temperature of 150 to 180 ° C. at a temperature at which the foaming agent is not decomposed, and is extruded from a set T-die. 0.5mm, width 550mm
Into a continuous sheet and wound up. 6.3
It was irradiated with an electron beam of Mrad to cause crosslinking. The sheet was introduced into a silicone chemical solution foaming apparatus heated in the order of 220 ° C. → 225 ° C. → 235 ° C. to form a foam, then passed through a water tank, and then 100 ° C. of 2 m long for the purpose of removing water droplets adhering to the surface. Was passed through an apparatus equipped with a twin-tube type infrared heater provided with a gold-plated reflection layer on a quartz ring manufactured by Heraeus Co., Ltd. in a hot-air drying furnace, and wound into a roll as a continuous sheet-like foam.

【0032】このようにして得られた発泡体は厚みが
3.3mm,幅1250mm、発泡倍率が18倍の表面
の平滑な発泡体であった。この発泡体をハッケ社製のフ
ォギングテスターで昇華物発生状況を確認した結果、ガ
ラス板面に昇華物は付着せず、昇華物発生は目視観察で
は認められない程に低減化されていた。
The foam thus obtained was a smooth foam having a thickness of 3.3 mm, a width of 1250 mm and an expansion ratio of 18 times. As a result of confirming the state of sublimate generation of this foam using a fogging tester manufactured by Hacke Co., sublimate did not adhere to the glass plate surface, and sublimate generation was reduced to a level that was not observed by visual observation.

【0033】[実施例2]プロピレンにエチレンを4.
8重量%ランダム共重合した融点が134℃、MFR
0.8g/10分のポリプロピレン系樹脂(A)と、エ
チレンにオクテンを共重合した密度が0.935g/c
3、MFRが6.0g/10分のポリエチレン系樹脂
(B)とを準備し、(A):(B)が80:20になる
ように混合した。この混合樹脂100kgに、熱安定剤
としてIrgnox1010を0.2kg混合してヘン
シェルミキサーに投入し、第一段目の分散混合し、更
に、架橋助剤としてジビニルベンゼン4kg投入して均
一混合した。さらに分解型発泡剤としてアゾジカルボン
アミド12kgと5−フェニルテトラゾール0.3kg
とを、更に酸化マグネシュウムと塩化リチュウムの1:
1無機混合物120gを投入して混合し、発泡用樹脂組
成物とする。
Example 2 Ethylene is added to propylene.
8% by weight random copolymerized, melting point 134 ° C, MFR
0.8 g / 10 min of polypropylene resin (A) and ethylene with octene copolymerized with a density of 0.935 g / c
A polyethylene resin (B) having m 3 and MFR of 6.0 g / 10 min was prepared and mixed so that (A) :( B) was 80:20. To 100 kg of this mixed resin, 0.2 kg of Irgnox1010 as a heat stabilizer was mixed and charged into a Henschel mixer, and dispersed and mixed in the first stage. Further, 4 kg of divinylbenzene was charged as a crosslinking aid and uniformly mixed. Furthermore, 12 kg of azodicarbonamide and 0.3 kg of 5-phenyltetrazole are used as decomposition-type foaming agents.
And magnesium oxide and lithium chloride 1:
(1) 120 g of the inorganic mixture is charged and mixed to obtain a foaming resin composition.

【0034】この混合原料を発泡剤の分解しない温度の
150〜180℃に加熱したベント付き押出し機に導入
して、セットされているTダイから押し出し、空気巻込
みによる気泡のない厚さが1.7mm、幅が430mm
の連続シート状にして巻き取った。このシートに9.0
Mradの電子線を照射し、架橋せしめた。このシート
を220℃→230℃→235℃の順に加熱したシリコ
ーン薬液法の発泡装置に導入し発泡させて、次いで水槽
を通した後に、表面に付着した水滴除去を目的とした長
さ2mの100℃の熱風乾燥炉にヘレウス社製石英環に
金メッキ反射層を備えたツインツチュブ型赤外線ヒータ
が設置された装置を連続的に通過させ、連続シート状発
泡体として巻き取った。
This mixed raw material is introduced into a vented extruder heated to a temperature of 150 to 180 ° C. at a temperature at which the foaming agent is not decomposed, and extruded from a set T-die. 0.7mm, width 430mm
Into a continuous sheet and wound up. 9.0 on this sheet
It was irradiated with an electron beam of Mrad to cause crosslinking. This sheet is introduced into a silicone chemical solution foaming apparatus heated in the order of 220 ° C. → 230 ° C. → 235 ° C. to foam the foam, and then passed through a water tank, and then a 100 m 2 m long sheet for removing water droplets adhering to the surface. In a hot air drying oven at ℃, a device provided with a twin tube type infrared heater provided with a gold-plated reflection layer on a quartz ring manufactured by Heraeus Co., Ltd. was continuously passed through and wound up as a continuous sheet-like foam.

【0035】[比較例]樹脂の種類、発泡剤の種類、シ
ート厚み・幅条件、電子線照射量を表1のとおり変更
し、さらに、無機化合物の添加と遠赤外線照射とをしな
かった以外は、実施例と同様に実施した。
[Comparative Example] The type of resin, the type of foaming agent, the conditions of sheet thickness and width, the amount of electron beam irradiation were changed as shown in Table 1, and the addition of an inorganic compound and the irradiation with far infrared rays were not performed. Was carried out in the same manner as in Examples.

【0036】表1及び表2に示す結果からわかるよう
に、本発明法によって得られた架橋発泡体は、成形性、
機械強度、伸びなどの要求特性に優れ、かつ、ハッケの
フォギングテスターによる昇華物確認試験で昇華物発生
は認められず、ヘイズは82%と良好であった。これに
対し、比較例に示した従来のポリプロピレン系架橋発泡
体は尿素を含む昇華物の発生があり、また、後加工製
品、自動車内装用のPVC表皮とのラミネート品につい
てハッケのフォギングテスターで評価した結果でも、昇
華物が確認され、またヘイズは51%と極めて不満足な
ものであった。
As can be seen from the results shown in Tables 1 and 2, the crosslinked foam obtained by the method of the present invention has good moldability,
The required properties such as mechanical strength and elongation were excellent, and no sublimate generation was observed in a sublimate confirmation test using a Hagge fogging tester, and the haze was as good as 82%. On the other hand, the conventional polypropylene-based cross-linked foam shown in the comparative example generates sublimates containing urea, and a post-processed product and a laminate with a PVC skin for an automobile interior were evaluated by a Hakke fogging tester. As a result, sublimates were confirmed, and the haze was 51%, which was extremely unsatisfactory.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明法によると、特定配合の分解型発
泡剤と特定の無機系化合物とを併用して入るので、昇華
性の分解残渣の発生量を大幅に抑制でき、さらに、残留
する分解残渣の昇華性が抑制されている。しかも、得ら
れる発泡体は、機械物性、成形性などの品質低下がない
ので、製造時における昇華物の発生を抑制でき、製品の
後加工時等における再加熱時の昇華物発生が大幅に抑制
され、かつ品質的にも優れた発泡体を製造することがで
きる。本発明法により得られる発泡体は、発泡体分解残
渣に起因する昇華物の発生が大幅に低減されているの
で、昇華性尿素系物の弊害が懸念されるパイプカバー用
途に用いる場合や、加熱工程が数回にわたる加工を伴う
用途(例えば、各種の表皮と張り合わせた自動車内装用
緩衝材分野など)の場合や、あるいはパッキン分野など
に特に有用である。
According to the method of the present invention, the decomposition foaming agent of a specific composition and a specific inorganic compound are used in combination, so that the amount of sublimable decomposition residues generated can be greatly suppressed, and the sublimation decomposition residues remain. Sublimation of the decomposition residue is suppressed. Moreover, since the obtained foam does not deteriorate in mechanical properties, moldability, and the like, the occurrence of sublimates during production can be suppressed, and the occurrence of sublimates during reheating during post-processing of products is greatly suppressed. Thus, a foam having excellent quality can be manufactured. Since the foam obtained by the method of the present invention has significantly reduced the generation of sublimates due to the foam decomposition residue, it may be used for pipe cover applications where there is a concern about the harmful effects of sublimable urea-based materials, or when heated. It is particularly useful in applications involving several steps of processing (for example, in the field of cushioning materials for automobile interiors bonded to various skins) or in the field of packing.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA17A AA20A AA25B AB03 AB05 AC13 AC19 BA13 BA16 BA20 CA29 CC04Y CC28Z CC46 CC49 4J002 BB052 BB141 BB151 BP021 DD057 DE067 DE077 DE087 EQ016 ES006 EU156 FD207 FD326 GG02 GL00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F074 AA17A AA20A AA25B AB03 AB05 AC13 AC19 BA13 BA16 BA20 CA29 CC04Y CC28Z CC46 CC49 4J002 BB052 BB141 BB151 BP021 DD057 DE067 DE077 DE087 EQ016 ES006 EU156 FD207 FD00 GG326

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系樹脂から熱分解型化学
発泡剤を用いて架橋発泡体を製造する際、熱分解型化学
発泡剤として分解発熱量が異なる複数を用い、かつ熱分
解型化学発泡剤に対し0.5〜20重量%のアルカリ金
属塩化物及び/又は周期表2A族元素の酸化物を併用す
ることを特徴とするポリオレフィン系架橋発泡体の製造
方法。
1. When a crosslinked foam is produced from a polyolefin resin using a pyrolytic chemical foaming agent, a plurality of pyrolytic chemical foaming agents having different calorific values are used as the pyrolytic chemical foaming agent. A method for producing a crosslinked polyolefin foam, characterized in that 0.5 to 20% by weight of an alkali metal chloride and / or an oxide of a Group 2A element of the periodic table are used in combination.
【請求項2】 熱分解型化学発泡剤として、アゾジカル
ボンアミドと、該アゾジカルボンアミドに比べ分解発熱
量が2倍以上でかつ発生ガス量が等量以上である高分解
発熱型化学発泡剤とを併用する請求項1記載のポリオレ
フィン系架橋発泡体の製造方法。
2. A thermal decomposition type chemical foaming agent comprising: an azodicarbonamide; and a high decomposition heat generation type chemical foaming agent having an amount of generated gas equal to or more than twice that of the azodicarbonamide. The method for producing a polyolefin-based crosslinked foam according to claim 1, which is used in combination.
【請求項3】 高分解発熱型化学発泡剤が発泡剤全量に
対し0.5〜10%含まれることを特徴とする請求項2
記載のポリオレフィン系架橋発泡体の製造方法。
3. The high-decomposition exothermic chemical blowing agent is contained in an amount of 0.5 to 10% based on the total amount of the blowing agent.
The method for producing a crosslinked polyolefin-based foam according to the above.
【請求項4】 発泡完了後の発泡体の表面に水分の存在
下で波長が2nmからマイクロ波領域までの赤外線を2
〜12KW/cm3の密度で照射することを特徴とする
請求項1〜3のいずれか記載のポリオレフィン系架橋発
泡体の製造方法。
4. An infrared ray having a wavelength of from 2 nm to a microwave region is irradiated on the surface of the foam after completion of foaming in the presence of moisture.
Method for producing a polyolefin-based crosslinked foam according to any one of claims 1 to 3, characterized in that irradiation at a density of ~12KW / cm 3.
【請求項5】 ポリオレフィン系樹脂が、プロピレンに
エチレンもしくは炭素数が4〜8のαオレフィンを2〜
15重量%ランダムもしくはブロック共重合してなる、
融点が125〜155℃、MFRが0.5〜10g/1
0分のポリプロピレン系樹脂(A)と、エチレンに炭素
数が4〜12のαオレフィンを共重合してなる、密度が
0.915〜0.940g/cm3、MFRが1.0〜
30g/10分のポリエチレン系樹脂(B)とからな
り、その配合比(A)/(B)が15/85〜85/1
5であり、かつ、架橋発泡体の架橋度が20〜70%,
発泡倍率が5〜40倍であることを特徴とする請求項1
〜4のいずれか記載のポリオレフィン系架橋発泡体の製
造方法。
5. The polyolefin-based resin is obtained by adding ethylene or α-olefin having 4 to 8 carbon atoms to propylene.
15% by weight random or block copolymerized,
Melting point 125-155 ° C, MFR 0.5-10 g / 1
0-minute polypropylene resin (A), ethylene is copolymerized with an α-olefin having 4 to 12 carbon atoms, has a density of 0.915 to 0.940 g / cm 3 and an MFR of 1.0 to 1.0.
30 g / 10 min of the polyethylene resin (B), and the compounding ratio (A) / (B) is 15 / 85-85 / 1.
5, and the degree of crosslinking of the crosslinked foam is 20 to 70%,
The foaming ratio is 5 to 40 times.
5. The method for producing a polyolefin-based crosslinked foam according to any one of items 4 to 4.
JP11092228A 1999-03-31 1999-03-31 Production of polyolefin crosslinked foamed body Pending JP2000281827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11092228A JP2000281827A (en) 1999-03-31 1999-03-31 Production of polyolefin crosslinked foamed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11092228A JP2000281827A (en) 1999-03-31 1999-03-31 Production of polyolefin crosslinked foamed body

Publications (1)

Publication Number Publication Date
JP2000281827A true JP2000281827A (en) 2000-10-10

Family

ID=14048591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11092228A Pending JP2000281827A (en) 1999-03-31 1999-03-31 Production of polyolefin crosslinked foamed body

Country Status (1)

Country Link
JP (1) JP2000281827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181498A1 (en) * 2017-03-31 2020-02-06 積水化学工業株式会社 Polyolefin foam sheet, production method thereof and pressure-sensitive adhesive tape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181498A1 (en) * 2017-03-31 2020-02-06 積水化学工業株式会社 Polyolefin foam sheet, production method thereof and pressure-sensitive adhesive tape
JP7201431B2 (en) 2017-03-31 2023-01-10 積水化学工業株式会社 POLYOLEFIN FOAM SHEET, MANUFACTURING METHOD THEREOF AND ADHESIVE TAPE

Similar Documents

Publication Publication Date Title
EP1752485B1 (en) Soft polyolefin foams with high heat resistance
KR0157309B1 (en) Continuous sheet of electron beam crosslinked foam
JPH08277339A (en) Electron beam-crosslinked polyolefin foam
JP2004155454A (en) Heat insulating polyethylene container and manufacturing method for the same
JP3064777B2 (en) Polypropylene-based electron beam crosslinked foam with excellent moldability
JP2755109B2 (en) Continuous sheet flame-retardant polypropylene-based crosslinked foam
JP2000001561A (en) Crosslinked polyolefin resin foam
JP2000281827A (en) Production of polyolefin crosslinked foamed body
JP3012277B2 (en) Partially crosslinked thermoplastic elastomer foam and method for producing the same
JPH05214144A (en) Polypropylene-based resin crosslinked foam
JP4027730B2 (en) Polyolefin resin composition having foaming ability and method for producing the same
JP2002146075A (en) Polyolefin-based resin foam and polyolefin based resin composition
JP3346027B2 (en) Polyethylene-based electron beam cross-linked foam
JP2581354B2 (en) Composition for flame-retardant resin foam, flame-retardant resin foam, and method for producing flame-retardant resin foam
JP2000007810A (en) Polyolefin-based resin crosslinked foam and its production
JP2000044713A (en) Polyolefinic resin bridged foaming substance and its preparation
JPH04248847A (en) Foaming polyolefin-based rein composition
JP3139789B2 (en) Polyolefin foamable resin composition and crosslinked polyolefin resin foam
JP3542907B2 (en) Olefin resin crosslinked foam and method for producing the same
JP3533026B2 (en) Method for producing crosslinked polyolefin resin foam
JP3257897B2 (en) Expandable polyolefin resin composition and crosslinked polyolefin resin foam
JP3454739B2 (en) Crosslinked olefin resin foam and method for producing the same
JPH05295149A (en) Resin composition for crosslinked polyolefin foamed body
JPH0657025A (en) Polyolefinic resin composition for cross-linking expansion and cross-linked polyolefinic resin foam
JP2001098099A (en) Crosslinked polyethylene foam