JP2000007810A - Polyolefin-based resin crosslinked foam and its production - Google Patents

Polyolefin-based resin crosslinked foam and its production

Info

Publication number
JP2000007810A
JP2000007810A JP17709698A JP17709698A JP2000007810A JP 2000007810 A JP2000007810 A JP 2000007810A JP 17709698 A JP17709698 A JP 17709698A JP 17709698 A JP17709698 A JP 17709698A JP 2000007810 A JP2000007810 A JP 2000007810A
Authority
JP
Japan
Prior art keywords
foaming agent
decomposition type
agent
foam
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17709698A
Other languages
Japanese (ja)
Inventor
Shigeo Kamijukkoku
成夫 上拾石
Motoi Naito
基 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17709698A priority Critical patent/JP2000007810A/en
Publication of JP2000007810A publication Critical patent/JP2000007810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an polyolefin-based resin crosslinked foam having a smooth skin surface and larger diameters of cells and therefore having an excellent compression characteristics, and to provide its method. SOLUTION: When including both (A) an exothermically decomposable chemical foaming agent and (B) an endothermically decomposable foaming agent in an polyolefin-based resin and then applying electron beam curing, the polyolefin-based resin crosslinked foam of this invention has 10-50 times expansion ratio, 15-50% crosslinking degree, 0.6-1.5 mm average bubble diameter and a compression strength (25%) larger than that of the polyolefin-based resin crosslinked foam obtained from the resin composition having the same composition as the above resin composition except for not containing the agent B by 1.2-2.0 times. The polyolefin-based resin crosslinked foam is obtained by the extrusion molding of a polyolefin-based resin composition added with an agent A having >=25 kcal/mol decomposition calorific value and an B agent, in which the decomposition temperature is lower than that of the agent A, at the temperature lower than that of the decomposition temperature of the agent A, by electron beam curing of the foamable molded product and then by thermal foaming at the temperature 10-50 deg.C higher than that of the decomposition temperature of the agent A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリオレフィン系樹
脂架橋発泡体およびその製造方法に関し、さらに詳しく
は、平滑できれいなスキン表面を有すると共に、大きな
気泡径を含有することにより優れた圧縮特性を有するポ
リオレフィン系樹脂架橋発泡体およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crosslinked polyolefin resin foam and a method for producing the same, and more particularly, to a polyolefin having a smooth and clean skin surface and having excellent compression properties by containing a large cell diameter. The present invention relates to a crosslinked resin foam and a method for producing the same.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂架橋発泡体は、耐
熱性、軽量性、断熱性、緩衝性および遮音性などに優れ
ており、さらには各種の加工法により成形が容易である
ことから、近年では自動車内装用パッド材や建築用途な
どの断熱材や、パッキン、カーペットアンダレイ用途な
ど広範囲の分野で利用されている。
2. Description of the Related Art Crosslinked polyolefin resin foams are excellent in heat resistance, light weight, heat insulation, cushioning, sound insulation and the like, and are easy to mold by various processing methods. It is used in a wide range of fields, such as pad materials for automobile interiors and heat insulating materials for architectural applications, packing, and carpet underlay applications.

【0003】このポリオレフィン系樹脂架橋発泡体の製
造方法において、特にポリエチレン系樹脂やポリプロピ
レン系樹脂の架橋方法としては、過酸化物を用いる化学
架橋法と電子線照射による放射線架橋法とがあるが、前
者の化学架橋法から得られた発泡体は気泡構造が粗く、
スキン表面が粗くなるという問題があるが、反面気泡が
大きいために圧縮特性に優れるという利点がある。これ
に対して、放射線架橋法から得られた発泡体は、気泡が
細かいためスキン表面が平滑できれいであるという利点
があるが、気泡が細かいため圧縮特性が低くなってしま
うという欠点があった。
In the method for producing a crosslinked polyolefin resin foam, in particular, as a method of crosslinking a polyethylene resin or a polypropylene resin, there are a chemical crosslinking method using a peroxide and a radiation crosslinking method by electron beam irradiation. The foam obtained from the former chemical crosslinking method has a coarse cell structure,
There is a problem that the skin surface becomes rough, but on the other hand, there is an advantage that compression properties are excellent due to large bubbles. On the other hand, the foam obtained by the radiation crosslinking method has an advantage that the skin surface is smooth and clean because the cells are fine, but there is a disadvantage that the compression characteristics are low because the cells are fine. .

【0004】このような現状に鑑み、両架橋方法の利点
だけを有するポリオレフィン系樹脂架橋発泡体、すなわ
ち放射線架橋法から得られる平滑なスキン表面と共に、
化学架橋法から得られる気泡の粗大化による優れた圧縮
特性を有するポリオレフィン系樹脂架橋発泡体の実現が
切望されている。
[0004] In view of this situation, a cross-linked polyolefin resin foam having only the advantages of both cross-linking methods, that is, a smooth skin surface obtained from a radiation cross-linking method,
There is an urgent need to realize a crosslinked polyolefin resin foam having excellent compression properties due to coarsening of cells obtained by a chemical crosslinking method.

【0005】従来、放射線架橋法において気泡を粗大化
制御して圧縮特性を向上させる試みとして、融点が加熱
発泡温度付近にある添加物を添加することにより、気泡
内に被膜を形成させる方法がとられていた。しかし、こ
の方法では、気泡径の粗大化のために添加剤のサイズを
大きくする必要があり、添加剤サイズを大きくすると分
散不良になりやすいため気泡径の不揃いが発生するた
め、必ずしも満足しうる気泡径の制御方法とはいえなか
った。
Conventionally, as an attempt to improve the compression characteristics by controlling the coarsening of bubbles in the radiation crosslinking method, a method of forming a film in the bubbles by adding an additive having a melting point near the heating and foaming temperature has been proposed. Had been. However, in this method, it is necessary to increase the size of the additive in order to increase the bubble diameter, and when the additive size is increased, the dispersion tends to be poor, so that the bubble diameter becomes uneven, so that it is not always satisfactory. It could not be said to be a method of controlling the bubble diameter.

【0006】また、特開平8−302051号公報に
は、ポリオレフィン系樹脂に分解型化学発泡剤を配合す
ると共に、この樹脂組成物に加圧下に低沸点のガスや溶
媒を圧入せしめて、分解型化学発泡剤が分解しない温度
で発泡成形シートに押出成形し、これを電子線架橋・発
泡して、気泡径が大きくかつ均一な発泡体にする方法が
提案されている。しかし、この方法では、成形体にする
前段階で低沸点のガスや溶媒を圧入させる余分な工程を
必要とするため、コストアップを招くと共に、得られる
発泡体の圧縮特性も必ずしも満足しうるレベルのものに
ならないという問題があった。
Japanese Patent Application Laid-Open No. Hei 8-302051 discloses that a decomposable chemical blowing agent is mixed with a polyolefin resin, and a low-boiling gas or solvent is injected under pressure into the resin composition. A method has been proposed in which a foamed sheet is extruded at a temperature at which the chemical foaming agent does not decompose, and this is crosslinked and foamed with an electron beam to form a foam having a large and uniform cell diameter. However, this method requires an extra step of injecting a low-boiling gas or solvent at a stage prior to forming the molded body, so that the cost is increased and the compression characteristics of the obtained foam are not necessarily satisfied. There was a problem that did not become.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上述
した従来の問題を解消し、平滑なスキン表面を有すると
共に、大きな気泡径を含有して優れた圧縮特性を有する
ポリオレフィン系樹脂架橋発泡体およびその製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide a crosslinked polyolefin resin foam having a smooth skin surface, a large cell diameter and excellent compression properties. It is an object of the present invention to provide a body and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明のポリオレフィン系樹脂架橋発泡体は、発熱分解型化
学発泡剤と吸熱分解型発泡剤とを含有すると共に、電子
線架橋されたポリオレフィン系樹脂架橋発泡体であり、
該発泡体の発泡倍率が10〜50倍、架橋度が15〜5
0%、平均気泡径が0.6〜1.5mmであり、かつ25
%圧縮硬さが前記吸熱分解型発泡剤を除いた以外は同一
組成にして得たポリオレフィン系樹脂架橋発泡体の25
%圧縮硬さの1.2〜2.0倍であることを特徴とする
ものである。
The crosslinked polyolefin resin foam of the present invention, which achieves the above object, contains an exothermic decomposition type chemical blowing agent and an endothermic decomposition type foaming agent, and is crosslinked with an electron beam. Resin cross-linked foam,
The expansion ratio of the foam is 10 to 50 times, and the degree of crosslinking is 15 to 5
0%, the average bubble diameter is 0.6 to 1.5 mm, and 25
% Of the crosslinked polyolefin resin foam obtained with the same composition except that the endothermic decomposition type foaming agent was excluded.
% Compression hardness is 1.2 to 2.0 times.

【0009】また、本発明のポリオレフィン系樹脂架橋
発泡体の製造方法は、電子線架橋可能なポリオレフィン
系樹脂に、分解発熱量が25Kcal/mol以上の発熱分解型
化学発泡剤と、該発熱分解型化学発泡剤よりも分解温度
が低い吸熱分解型発泡剤とを添加し、該ポリオレフィン
系樹脂組成物を前記発熱分解型化学発泡剤の分解温度よ
りも低い温度で押出成形して発泡性成形体にした後、該
発泡性成形体に電子線照射して架橋を施し、次いで前記
発熱分解型化学発泡剤の分解温度よりも10〜50℃高
い温度で加熱発泡させることを特徴とするものである。
Further, the method for producing a crosslinked polyolefin resin foam of the present invention is characterized in that an exothermic decomposition type chemical foaming agent having a decomposition calorific value of 25 Kcal / mol or more, An endothermic decomposition type foaming agent having a decomposition temperature lower than that of the chemical blowing agent is added, and the polyolefin resin composition is extruded at a temperature lower than the decomposition temperature of the exothermic decomposition type chemical blowing agent to form an expandable molded article. After that, the foamable molded article is irradiated with an electron beam to perform crosslinking, and then heated and foamed at a temperature higher by 10 to 50 ° C. than the decomposition temperature of the exothermic decomposition type chemical foaming agent.

【0010】本発明では、ポリオレフィン系樹脂に、発
熱分解型化学発泡剤のほかに該発泡剤よりも分解温度が
低い吸熱分解型発泡剤を配合した組成物を使用したこと
により、押出し成形したときの成形体中に球状の微細気
泡を均一に分散形成することができ、この成形体に電子
線照射により架橋を施すと共に、加熱発泡させることに
より大きな気泡径を均一分布させた状態にすることがで
きる。その結果として、平滑なスキン表面を得ながら2
5%圧縮硬さに代表される圧縮特性の向上を図ることが
できる。
According to the present invention, when a composition is used in which an endothermic decomposition type foaming agent having a decomposition temperature lower than that of an exothermic decomposition type chemical blowing agent is added to a polyolefin resin, the composition is extruded. It is possible to uniformly disperse and form spherical microbubbles in a molded article of the present invention, and to form a state in which a large cell diameter is uniformly distributed by subjecting this molded article to cross-linking by electron beam irradiation and heating and foaming. it can. As a result, while obtaining a smooth skin surface, 2
The compression characteristics represented by 5% compression hardness can be improved.

【0011】[0011]

【発明の実施の形態】本発明において、ポリオレフィン
系樹脂架橋発泡体に使用されるポリオレフィン系樹脂と
しては、ポリエチレン系樹脂およびポリプロピレン系樹
脂が挙げられる。ポリエチレン系樹脂とは、エチレン単
独重合体(ポリエチレン)またはエチレンとα−オレフ
ィンとの共重合体をいう。このポリエチレン系樹脂とし
ては、密度が0.915〜0.940g/cm3 、好まし
くは0.920〜0.935g/cm3 の範囲で、MFR
(メルトフローレイト)が1.0〜30g/10分、好
ましくは2〜8g/10分の範囲にあるものが好ましく
使用される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, examples of the polyolefin resin used for the crosslinked polyolefin resin foam include a polyethylene resin and a polypropylene resin. The polyethylene resin refers to an ethylene homopolymer (polyethylene) or a copolymer of ethylene and an α-olefin. The polyethylene resin has a MFR of 0.915 to 0.940 g / cm 3 , preferably 0.920 to 0.935 g / cm 3.
Those having a (melt flow rate) in the range of 1.0 to 30 g / 10 min, preferably 2 to 8 g / 10 min are preferably used.

【0012】エチレンと共重合させるα−オレフィンの
種類は特に限定されないが、一般的には炭素数4〜8の
α−オレフィンを使用したエチレン/α−オレフィン2
元共重合体にしたものが、価格や物性の両面から有利で
ある。ポリエチレン系樹脂の密度が0.915g/cm3
未満であると、樹脂の柔軟性が顕著となってベタツキを
生じ、発泡体としたときにブロッキングが発生したり、
機械的強度が低下する傾向がある。また、0.940g
/cm3 を越えると、機械的強度の点では好ましいが、逆
に伸びが低下したり、発泡体としたときの圧縮回復性が
低下する傾向がある。
The type of α-olefin to be copolymerized with ethylene is not particularly limited, but is generally ethylene / α-olefin 2 using α-olefin having 4 to 8 carbon atoms.
The former copolymer is advantageous in terms of both price and physical properties. The density of the polyethylene resin is 0.915 g / cm 3
If less than, the flexibility of the resin is remarkable, stickiness occurs, and blocking occurs when the foam is used,
Mechanical strength tends to decrease. 0.940g
If it exceeds / cm 3 , it is preferable in terms of mechanical strength, but on the contrary, the elongation tends to decrease, and the compression recovery of the foam tends to decrease.

【0013】ポリエチレン系樹脂のMFRが1.0g/
10分未満であると、樹脂の溶融粘度が高くなるため、
発泡用シート製造時に剪断発熱により発熱分解型化学発
泡剤まで分解し、目的外の粗大気泡を発生しやすくなる
傾向がある。また、15g/10分を越えると、溶融粘
度が低くなるためシート製造上では好ましいが、反面吸
熱型発泡剤による発生ガスを保持する能力が低下し、結
果として成形体内に形成する微細気泡の不揃いを生じ
る。
The MFR of the polyethylene resin is 1.0 g /
If it is less than 10 minutes, the melt viscosity of the resin increases,
During the production of the foaming sheet, the exothermic decomposition-type chemical foaming agent is decomposed by shearing heat and tends to generate undesired coarse bubbles. If it exceeds 15 g / 10 minutes, the melt viscosity is low, which is preferable in sheet production. However, on the other hand, the ability to retain the gas generated by the endothermic foaming agent is reduced, and as a result, the unevenness of the fine bubbles formed in the molded body is uneven. Is generated.

【0014】本発明のポリオレフィン系樹脂架橋発泡体
には、エチレン単独重合体(具体的には高圧法低密度ポ
リエチレン樹脂)と、エチレンとα−オレフィンとの共
重合体とを混合して用いても良く、また直鎖状低密度ポ
リエチレン樹脂と高密度ポリエチレン樹脂とを混合して
用いても良い。
The crosslinked polyolefin resin foam of the present invention is prepared by mixing an ethylene homopolymer (specifically, a high-pressure low-density polyethylene resin) and a copolymer of ethylene and an α-olefin. Alternatively, a mixture of a linear low-density polyethylene resin and a high-density polyethylene resin may be used.

【0015】また、本発明において、ポリプロピレン系
樹脂とは、プロピレン単独重合体(ポリプロピレン)、
プロピレンとエチレンまたはα−オレフィンとのランダ
ムもしくはブロック共重合体であり、融点が125〜1
55℃、好ましくは130〜145℃の範囲、MFRが
0.5〜10g/10分、好ましくは1.5〜4g/1
0分の範囲のものが好ましく使用される。
[0015] In the present invention, the polypropylene resin is a propylene homopolymer (polypropylene),
It is a random or block copolymer of propylene and ethylene or an α-olefin, and has a melting point of 125 to 1
55 ° C, preferably in the range of 130 to 145 ° C, MFR of 0.5 to 10 g / 10 min, preferably 1.5 to 4 g / 1
Those having a range of 0 minutes are preferably used.

【0016】プロピレンに共重合させるα−オレフィン
の種類は特に制限されないが、エチレンまたは炭素数が
4〜8のα−オレフィンが好ましく、炭素数が4〜8の
α−オレフィンとしては、具体的にはブテン、ヘキセン
あるいはエチレン・ブテン、エチレン・ヘキセンなどが
挙げられるが、発泡体の機械強度を維持するには、炭素
数が極力大きく、かつ3元共重合であることが好まし
い。
The type of the α-olefin to be copolymerized with propylene is not particularly limited, but ethylene or an α-olefin having 4 to 8 carbon atoms is preferable. Specific examples of the α-olefin having 4 to 8 carbon atoms include: Examples thereof include butene, hexene, ethylene / butene, and ethylene / hexene. In order to maintain the mechanical strength of the foam, the foam preferably has as large a carbon number as possible and is a terpolymer.

【0017】プロピレンに共重合されるエチレンもしく
は炭素数4〜8のα−オレフィンの共重合量は2〜15
重量%、好ましくは3〜8重量%の範囲がよい。共重合
量が2重量%未満であると、樹脂の結晶性が高くなり、
また融点も高くなるため、得られる発泡体が硬くなり、
緩衝性が低下する。また、低温下での耐衝撃性が悪化し
たり、発泡用シート製造時の剪断発熱により発熱分解型
化学発泡剤までが分解し、目的外の粗大気泡を発生しや
すくなる傾向がある。また、共重合量が15重量%を越
えると、緩衝性、耐衝撃性の点では好ましいが、融点が
低下するため得られる発泡体の耐熱性が低下する傾向が
ある。
The copolymerization amount of ethylene or α-olefin having 4 to 8 carbon atoms copolymerized with propylene is 2 to 15
% By weight, preferably 3 to 8% by weight. When the copolymerization amount is less than 2% by weight, the crystallinity of the resin increases,
Also, since the melting point becomes higher, the obtained foam becomes harder,
The buffering property decreases. Further, the impact resistance at low temperatures is deteriorated, and even the exothermic decomposition type chemical foaming agent is decomposed due to shear heat generated during the production of the foaming sheet, and undesired large bubbles tend to be generated. When the copolymerization amount exceeds 15% by weight, although the buffering property and the impact resistance are preferable, the melting point is lowered, and the heat resistance of the obtained foam tends to be lowered.

【0018】ポリプロピレン系樹脂の融点は125℃未
満であると、耐熱性の点から用途的に制限される傾向が
大きくなる。また、155℃を越えると、用途が拡大す
る利点はあるが、発泡用シート製造時の剪断発熱により
発熱分解型化学発泡剤までが分解して、目的外の粗大気
泡を発生しやすくなる。
If the melting point of the polypropylene-based resin is lower than 125 ° C., there is a greater tendency to be restricted in terms of application in terms of heat resistance. On the other hand, when the temperature exceeds 155 ° C., there is an advantage that the use is expanded. However, the exothermic decomposition type chemical foaming agent is decomposed due to shear heat generated during the production of the sheet for foaming, and undesired large bubbles are easily generated.

【0019】ポリプロピレン系樹脂のMFRは0.5g
/10分未満であると、樹脂の溶融粘度が高くなるた
め、発泡用シート製造時の剪断発熱により発熱型化学発
泡剤の分解が起こりやすく、粗大気泡を発生しやすくな
る。また、5g/10分を越えると、溶融粘度が低くな
るためシート製造上からは好ましいが、吸熱型発泡剤に
よる発生ガス保持力が弱くなるため、微細気泡の大きさ
が不揃いになりやすくなるばかりか、発泡体の伸びが低
下したり、真空成形などによる加熱成形加工時に形状の
保持力が悪化し、良好な成形品が得られにくくなる。
The MFR of the polypropylene resin is 0.5 g
If it is less than / 10 minutes, the melt viscosity of the resin increases, so that the heat-generating chemical foaming agent is easily decomposed due to shearing heat generated during the production of the foaming sheet, and coarse bubbles are easily generated. On the other hand, if it exceeds 5 g / 10 minutes, the melt viscosity is low, which is preferable from the viewpoint of sheet production. However, since the generated gas holding power by the endothermic foaming agent becomes weak, the size of the fine bubbles tends to become uneven. Alternatively, the elongation of the foam is reduced, or the shape holding force is degraded during heat forming such as vacuum forming, and it is difficult to obtain a good molded product.

【0020】本発明のポリオレフィン系樹脂架橋発泡体
には、上記ポリプロピレン系樹脂とポリエチレン系樹脂
とを混合して用いても良い。その混合比率としては、ポ
リエチレン系樹脂が10〜50重量%、好ましくは15
〜40重量%で、ポリプロピレン系樹脂が50〜90重
量%、好ましくは60〜85重量%の割合にするのがよ
い。ポリプロピレン系樹脂とポリエチレン系樹脂との混
合物から得られる発泡体は、圧縮特性に加えて、耐熱
性、低温下の耐衝撃性および加熱成形性などの特性が同
時に要求される分野に特に好適である。
The crosslinked polyolefin resin foam of the present invention may be used by mixing the above polypropylene resin and polyethylene resin. The mixing ratio of the polyethylene resin is 10 to 50% by weight, preferably 15% by weight.
The content of the polypropylene resin is 50 to 90% by weight, preferably 60 to 85% by weight. Foams obtained from a mixture of a polypropylene-based resin and a polyethylene-based resin are particularly suitable for fields in which properties such as heat resistance, low-temperature impact resistance and heat moldability are simultaneously required in addition to compression properties. .

【0021】ポリプロピレン系樹脂を用いる場合は、電
子線架橋性を付与する必要がある。そのための添加剤と
しては、ビニル性2重結合を2個以上含有している反応
性モノマー、具体的には1・9ノナンジアクリレートや
p−ジビニルゼンなどをポリプロピレン系樹脂100重
量部当り2〜5重量部添加することが望ましい。また、
上記ポリオレフィン系樹脂成分には、上記ポリプロピレ
ン系樹脂およびポリエチレン系樹脂以外の他のポリオレ
フィン系樹脂を30重量%以下の範囲で混入するように
してもよい。
When a polypropylene resin is used, it is necessary to impart electron beam crosslinkability. As an additive therefor, a reactive monomer containing two or more vinylic double bonds, specifically, 1.9 nonanediacrylate or p-divinylzene is used in an amount of 2 to 5 per 100 parts by weight of the polypropylene resin. It is desirable to add parts by weight. Also,
The polyolefin-based resin component may be mixed with a polyolefin-based resin other than the polypropylene-based resin and the polyethylene-based resin in an amount of 30% by weight or less.

【0022】これら他のポリオレフィン系樹脂として
は、低密度ポリエチレン、エチレン−プロピレンゴム
(EPM)、エチレン−プロピレンゴム−ジエンゴム
(EPDM)、高密度ポリエチレン、エチレン−酢酸ビ
ニル共重合体、エチレン−アクリル酸共重合体、エチレ
ン−(メタ)アルキルアクリレート共重合体、或いはこ
れらのエチレンとの共重合体に第三成分として無水マレ
イン酸を共重合した3元共重合体などが挙げられる。
These other polyolefin resins include low-density polyethylene, ethylene-propylene rubber (EPM), ethylene-propylene rubber-diene rubber (EPDM), high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid. Copolymers, ethylene- (meth) alkyl acrylate copolymers, and terpolymers obtained by copolymerizing these copolymers with ethylene and maleic anhydride as a third component are exemplified.

【0023】中でもエチレン−プロピレンゴム(EP
M)、エチレン−プロピレンゴム−ジエンゴム(EPD
M)、エチレン−(メタ)アルキルアクリレート共重合
体或いはこれらのエチレンとの共重合体に第三成分とし
て無水マレイン酸を共重合した3元共重合体にしたもの
が好ましい。ただし、これら他のポリオレフィン系樹脂
は、混入量が30重量%をこえると、発泡体の柔軟性お
よび緩衝性の点では好ましいが、耐熱性、機械強度およ
び成形性などが低下するため好ましくない。
Among them, ethylene-propylene rubber (EP
M), ethylene-propylene rubber-diene rubber (EPD)
M), an ethylene- (meth) alkyl acrylate copolymer, or a terpolymer obtained by copolymerizing maleic anhydride as a third component with a copolymer of these ethylene and ethylene. However, when the content of these other polyolefin-based resins exceeds 30% by weight, it is preferable in terms of the flexibility and cushioning property of the foam, but it is not preferable because heat resistance, mechanical strength, moldability and the like are reduced.

【0024】さらに、上記発泡性ポリオレフィン系樹脂
成分には、その他必要に応じて熱安定剤、耐候剤、難燃
剤、難燃助剤、具体的にはアンチモン化合物、分散剤、
架橋剤、および架橋助剤などを添加しても良い。本発明
の電子線照射により架橋可能なポリオレフィン系樹脂組
成物には、発泡剤として、分解発熱量が25Kcal/mol以
上の発熱分解型化学発泡剤と、この発熱分解型化学発泡
剤よりも分解温度が低い吸熱分解型発泡剤とを含有させ
る。
The foamable polyolefin resin component may further contain a heat stabilizer, a weathering agent, a flame retardant, a flame retardant aid, specifically, an antimony compound, a dispersant,
A crosslinking agent, a crosslinking assistant, and the like may be added. The polyolefin-based resin composition which can be crosslinked by electron beam irradiation according to the present invention has, as a foaming agent, an exothermic decomposition type chemical blowing agent having a heating value of decomposition of 25 Kcal / mol or more, and a decomposition temperature higher than the exothermic decomposition type chemical blowing agent. And a low endothermic decomposition type foaming agent.

【0025】発熱分解型化学発泡剤としては、アゾ系化
学発泡剤、具体的にはアゾジカルボンアミド、アゾジカ
ルボン酸金属塩、N.N´−ジニトロソペンタメチレン
テトラミン、P.P´−オキシベンゼンスルフォニルヒ
ドラジド、およびテトラゾール化学発泡剤系、具体的に
は5−フェニルテトラゾールなどが例示される。また、
吸熱分解型発泡剤としては、きわめて種類が限定される
が、具体的には重炭酸アンモニウムの微粉末、好ましく
は平均粒経が20μm以下の重炭酸アンモニウム微粉末
が好ましく用いられる。
As the exothermic decomposition type chemical foaming agent, azo chemical foaming agents, specifically, azodicarbonamide, metal salt of azodicarboxylic acid, N.I. N'-dinitrosopentamethylenetetramine; Examples include P'-oxybenzenesulfonyl hydrazide and tetrazole chemical blowing agent systems, specifically 5-phenyltetrazole and the like. Also,
The type of the endothermic decomposition type foaming agent is extremely limited, but specifically, fine powder of ammonium bicarbonate, preferably fine powder of ammonium bicarbonate having an average particle diameter of 20 μm or less is preferably used.

【0026】本発明のポリオレフィン系樹脂架橋発泡体
は独立気泡架橋発泡体の形態であることが特徴である。
しかも、このポリオレフィン系樹脂架橋発泡体は、発泡
倍率が10〜50倍、架橋度が15〜50%、平均気泡
径が0.6〜1.5mmである。かつ、圧縮特性として、
その25%圧縮硬さが、発泡剤として上記2種類から吸
熱分解型発泡剤の方を除いた以外は同一組成にして得た
ポリオレフィン系樹脂架橋発泡体が有する25%圧縮硬
さの1.2〜2.0倍である。
The crosslinked polyolefin resin foam of the present invention is characterized in that it is in the form of a closed cell crosslinked foam.
Moreover, the crosslinked polyolefin resin foam has an expansion ratio of 10 to 50 times, a degree of crosslinking of 15 to 50%, and an average cell diameter of 0.6 to 1.5 mm. And as the compression characteristics,
The 25% compression hardness is 1.2% of the 25% compression hardness of a crosslinked polyolefin resin foam obtained with the same composition except that the endothermic decomposition type foaming agent is excluded from the above two types as the foaming agent. ~ 2.0 times.

【0027】換言すると、本発明のポリオレフィン系樹
脂架橋発泡体の25%圧縮硬さは、発泡剤として発熱分
解型化学発泡剤のみを使用した以外は同一組成にし、電
子線架橋させたポリオレフィン系樹脂架橋発泡体が有す
る25%圧縮硬さの1.2〜2.0倍を有している。
In other words, the 25% compression hardness of the polyolefin resin crosslinked foam of the present invention is the same composition except that only the exothermic decomposition type chemical blowing agent is used as a blowing agent, and the electron beam crosslinked polyolefin resin is used. It has 1.2 to 2.0 times the 25% compression hardness of the crosslinked foam.

【0028】本発明のポリオレフィン系樹脂架橋発泡体
において、発泡倍率が10倍未満では、発泡体用シート
に放射線を照射して架橋させる際に、放射線架橋の欠点
である放射線エネルギーディプスドーズによる発泡体用
シートの厚さ制限、最終的には製品厚さの任意性に問題
を生じるばかりか、シートが微細気泡を含んでいるた
め、放射線照射したとき微細気泡での放射線散乱が予想
され、従来以上に発泡体用シートの厚さ制限を生じる。
また、発泡倍率が50倍を越えると、いくら気泡径を大
きくしても圧縮回復性、緩衝性が低下するため好ましく
ない。
In the polyolefin resin crosslinked foam of the present invention, when the expansion ratio is less than 10 times, when the foam sheet is irradiated with radiation to crosslink, the foam due to radiation energy depth which is a drawback of radiation crosslinking is obtained. In addition to causing problems with the thickness limitation of the sheet for use and ultimately the arbitrariness of the product thickness, since the sheet contains fine bubbles, radiation scattering due to fine bubbles is expected when irradiated, Therefore, the thickness of the foam sheet is limited.
Further, if the expansion ratio exceeds 50 times, no matter how large the cell diameter is, the compression recovery property and the buffering property are undesirably reduced.

【0029】また、架橋度が15%未満では、発泡体と
したときに発泡ガスを保持する能力が不足し、気泡が破
れてガスが逸散して所定の発泡倍率にならない場合があ
る。また、架橋度が50%を越えると、発泡ガスを保持
する能力の点では好ましいが、発熱分解型化学発泡剤に
よる発泡過程での伸びが不足することによって気泡の一
部が破れ、結果として気泡分布が悪化するようになる。
If the degree of cross-linking is less than 15%, the ability to retain the foaming gas when the foam is formed is insufficient, and the foam may be broken and the gas may escape, so that the desired foaming ratio may not be achieved. If the degree of crosslinking exceeds 50%, it is preferable in terms of the ability to retain the foaming gas, but some of the bubbles are broken due to insufficient elongation in the foaming process by the exothermic decomposition type chemical foaming agent, and as a result, The distribution becomes worse.

【0030】本発明のポリオレフィン系樹脂架橋発泡体
は、上記発泡倍率および架橋度の範囲において、平均気
泡径が0.6〜1.5mmと大きくなり、圧縮特性の代表
値としての25%圧縮硬さを、上述したように上記2種
類の発泡剤から吸熱分解型発泡剤の方を除いた以外は同
一組成にして得たポリオレフィン系樹脂架橋発泡体が有
する25%圧縮硬さの1.2〜2.0倍にすることがで
きる。
The crosslinked polyolefin resin foam of the present invention has a large average cell diameter of 0.6 to 1.5 mm within the above-mentioned expansion ratio and degree of crosslinking, and has a 25% compression hardness as a representative value of the compression characteristics. As described above, the crosslinked polyolefin-based resin foam obtained by making the same composition except that the endothermic decomposition type foaming agent is removed from the above two types of foaming agents has a 25% compression hardness of 1.2 to 1.2. It can be 2.0 times.

【0031】一般に、従来の放射線架橋法で得たポリオ
レフィン系樹脂架橋発泡体の平均気泡径は、発泡剤とし
て発熱分解型化学発泡剤のみを使用しているため、上記
発泡倍率および架橋度の範囲を満たすものにおいて0.
2〜0.5mm程度であり、大きくても0.6mmまでが限
度である。そのため圧縮特性としての25%圧縮硬さ
は、0.3〜1.5Kg/cm2 程度でしかなかった。
Generally, the average cell diameter of a crosslinked polyolefin resin foam obtained by a conventional radiation crosslinking method is in the range of the above-mentioned expansion ratio and degree of crosslinking because only an exothermic decomposition type chemical blowing agent is used as a blowing agent. 0.
It is about 2 to 0.5 mm, and up to 0.6 mm at most. Therefore, the 25% compression hardness as compression characteristics was only about 0.3 to 1.5 kg / cm 2 .

【0032】本発明のポリオレフィン系樹脂架橋発泡体
では、放射線架橋法から得るものではあるが、平均気泡
径が0.6〜1.5mmの大きさになるように制御され、
それに伴って25%圧縮硬さが、発熱分解型化学発泡剤
のみを使用した従来のポリオレフィン系樹脂架橋発泡体
の25%圧縮硬さの1.2〜2.0倍となり、優れた圧
縮特性を有する。
The crosslinked polyolefin resin foam of the present invention, which is obtained by the radiation crosslinking method, is controlled so that the average cell diameter becomes 0.6 to 1.5 mm.
Accordingly, the 25% compression hardness is 1.2 to 2.0 times the 25% compression hardness of the conventional polyolefin resin crosslinked foam using only the exothermic decomposition type chemical foaming agent, and excellent compression characteristics are obtained. Have.

【0033】平均気泡径が0.6mmよりも小さく、25
%圧縮硬さの倍数が1.2倍未満では、圧縮特性を従来
の発泡体に比べて向上させた満足なレベルにすることが
できない。他方、平均気泡径が1.5mmよりも大きく、
25%圧縮硬さの倍数が2.0倍を越えたものは、気泡
径が大きくなりすぎてスキンの凹凸が大きくなるため品
位的に劣るだけでなく、製造も難しくなる。
When the average bubble diameter is smaller than 0.6 mm,
If the multiple of the% compression hardness is less than 1.2 times, the compression properties cannot be improved to a satisfactory level as compared with conventional foams. On the other hand, the average bubble diameter is larger than 1.5 mm,
When the multiple of the 25% compression hardness exceeds 2.0 times, the bubble diameter becomes too large and the unevenness of the skin becomes large, so that not only is the quality inferior, but also the production becomes difficult.

【0034】本発明において、上記のように平均気泡径
が大きくなるように制御され、25%圧縮硬さ(圧縮特
性)を大きくできるようになる要因については明らかで
はない。本発明者らの経験によれば、製造条件が不適当
な時に、発熱分解型化学発泡剤の部分分解により成形シ
ートに気泡を含んだものが発生する場合があり、この時
も架橋発泡すると気泡径は大きくなるものの、制御され
たものとはほど遠く、商品価値の劣るものと判断されて
いたが、発熱分解型化学発泡剤の部分分解で生じる気泡
は、樹脂部分に比べて発泡温度が高くなるため、樹脂の
部分的な温度上昇で樹脂粘度が低下し、気泡の会合が生
じるため不揃いになると考えられていた。また、発熱分
解型化学発泡剤の分解が始まると、温度を下げる以外そ
の制御法はないため、放射線架橋で気泡を大きくするこ
とはできないのが一般的と考えられていた。
In the present invention, it is not clear why the average bubble diameter is controlled to increase as described above, and the 25% compression hardness (compression characteristics) can be increased. According to the experience of the present inventors, when the manufacturing conditions are inappropriate, there may be cases where bubbles containing bubbles are generated in the molded sheet due to partial decomposition of the exothermic decomposition type chemical foaming agent. Although the diameter was large, it was far from the controlled one, and it was judged that it was inferior in commercial value, but the bubbles generated by the partial decomposition of the exothermic decomposition type chemical blowing agent have a higher foaming temperature than the resin part Therefore, it has been considered that the viscosity of the resin decreases due to a partial rise in the temperature of the resin, and the bubbles are associated with each other. Also, once the decomposition of the exothermic decomposition type chemical foaming agent starts, there is no control method other than lowering the temperature, so it was generally considered that the bubbles could not be increased by radiation crosslinking.

【0035】しかしながら、本発明のように発熱分解型
化学発泡剤と、この発熱分解型化学発泡剤よりも分解温
度が低い吸熱分解型発泡剤とを併用し、これにより吸熱
分解型発泡剤を積極的に分解させると、この時に生じる
ガスにより周辺温度が低下するため樹脂粘性が上昇す
る。したがって、発熱分解型化学発泡剤により生じた気
泡の会合の発生が少なく、独立した気泡として制御され
た状態で均一に分散するため、本発明の効果を発現する
ようになるものと考えられる。
However, as in the present invention, the exothermic decomposition type chemical foaming agent and the endothermic decomposition type foaming agent having a lower decomposition temperature than the exothermic decomposition type chemical foaming agent are used in combination, whereby the endothermic decomposition type foaming agent is actively used. When it is decomposed, the gas generated at this time lowers the ambient temperature, so that the resin viscosity increases. Therefore, it is considered that the effect of the present invention is exerted because the generation of bubbles caused by the exothermic decomposition type chemical foaming agent is small, and the bubbles are uniformly dispersed in a controlled state as independent bubbles.

【0036】本発明のポリオレフィン系樹脂架橋発泡体
は、電子線照射により架橋可能なポリオレフィン系樹脂
に、分解発熱量が25Kcal/mol以上の発熱分解型化学発
泡剤と、この発熱分解型化学発泡剤よりも分解温度が低
い吸熱分解型発泡剤とを添加し、次いでこの発泡性ポリ
オレフィン系樹脂組成物を、前記発熱分解型化学発泡剤
の分解温度よりも低い温度に設定した押出機により発泡
性成形体として成形した後、この発泡性成形体に電子線
を照射して架橋を施し、次いで前記発熱分解型化学発泡
剤の分解温度よりも10〜50℃高い温度に設定した発
泡装置により加熱発泡させて製造することができる。
The crosslinked polyolefin-based resin foam of the present invention is formed into a polyolefin-based resin crosslinkable by electron beam irradiation into an exothermic decomposition-type chemical foaming agent having a decomposition heating value of 25 Kcal / mol or more; And an endothermic decomposition type foaming agent having a lower decomposition temperature than that of the exothermic decomposition type chemical foaming agent. After being molded as a body, the foamable molded body is irradiated with an electron beam to perform crosslinking, and then heated and foamed by a foaming device set at a temperature 10 to 50 ° C. higher than the decomposition temperature of the exothermic decomposition type chemical foaming agent. Can be manufactured.

【0037】電子線照射としては、電離性放射線を照射
する従来公知の放射線架橋法がいずれも適用可能であ
る。また、加熱発泡方法としては、公知の方法をいずれ
も適用することができ、具体的には、縦型熱風発泡法、
横型熱風発泡法および横型薬液発泡法などの連続シート
状で処理できる方法の適用が好ましい。
As the electron beam irradiation, any conventionally known radiation crosslinking method of irradiating ionizing radiation can be applied. Further, as the heating foaming method, any known method can be applied, specifically, a vertical hot air foaming method,
It is preferable to apply a method capable of processing in a continuous sheet, such as a horizontal hot air foaming method and a horizontal chemical solution foaming method.

【0038】本発明のポリオレフィン系樹脂架橋発泡体
は,平均気泡径が大きいにもかかわらずスキン表面が平
滑であると共に、25%圧縮硬さが大きく圧縮特性に優
れているため、金属板と張り合わせて折板加工する建材
分野、硝子板或いは鋼板の運搬時の緩衝材分野に適合す
ることができ、さらにはスキン強度が極めて高い特性を
生かして、自動車のトランクマットなどのように耐引掻
き性が要求される被覆分野や、加熱成形した機械部品ケ
ースなどの成形品分野など、幅広く各種産業用途に適応
することができる。
The crosslinked polyolefin resin foam of the present invention has a smooth skin surface despite its large average cell diameter, and has a high 25% compression hardness and excellent compression characteristics. It can be applied to the field of building materials that are folded and processed, and the field of cushioning material when transporting glass sheets or steel sheets. Furthermore, taking advantage of its extremely high skin strength, it has scratch resistance like a car trunk mat. It can be widely applied to various industrial uses such as a required coating field and a molded article field such as a thermoformed mechanical part case.

【0039】[0039]

【実施例】以下の実施例において、各特性の測定法およ
び評価基準は次の通りである。 〔架橋度〕発泡体を細断し、その0.2gを精秤する。
この試料を130℃のテトラリン中に浸積し、攪拌しな
がら3時間加熱することにより溶解部分を溶解せしめる
と共に、不溶部分を取り出しアセトンで洗浄してテトラ
リンを除去し、さらに純水で洗浄してアセトンを除去
し、120℃の熱風乾燥機にて水分を除去して室温にな
るまで自然冷却する。この試料の重量W1 (g)を測定
し、次式から架橋度を求める。 架橋度=(0.2−W1 /0.2)×100(%)
EXAMPLES In the following examples, measuring methods and evaluation criteria for each characteristic are as follows. [Cross-linking degree] The foam was cut into small pieces and 0.2 g of the foam was precisely weighed.
This sample was immersed in tetralin at 130 ° C. and heated for 3 hours with stirring to dissolve the dissolved portion. The insoluble portion was taken out and washed with acetone to remove tetralin, and further washed with pure water. Acetone is removed, moisture is removed with a hot air dryer at 120 ° C., and the mixture is naturally cooled to room temperature. The weight W 1 (g) of this sample is measured, and the degree of crosslinking is determined from the following equation. Degree of crosslinking = (0.2−W 1 /0.2)×100(%)

【0040】〔発泡倍率〕発泡体から10cm×10cmの
試料を切り出し、その厚みt1 (cm)と重量W2(g)
とを測定し、次式から発泡倍率を算出する。 発泡倍率(g/cm3 )=W2 /(10×10×t1 ) 〔平均気泡径〕発泡体の長さ(MD)方向、幅(TD)
方向に切り出した断面を20倍に拡大観察し、各方向1
長に存在する気泡の短径(a)、長径(b)を測定し、
次式で算出した値を平均気泡径とする。 平均気泡径(mm)=Σ〔(a+b)/2〕/n
[Expansion Ratio] A sample of 10 cm × 10 cm was cut out from the foam, and its thickness t 1 (cm) and weight W 2 (g) were cut out.
And the expansion ratio is calculated from the following equation. Expansion ratio (g / cm 3 ) = W 2 / (10 × 10 × t 1 ) [Average cell diameter] Length (MD) direction and width (TD) of foam
The cross section cut out in each direction was observed at a magnification of 20 times.
Measure the minor axis (a) and major axis (b) of the bubbles existing in the long,
The value calculated by the following equation is defined as the average bubble diameter. Average bubble diameter (mm) = Σ [(a + b) / 2] / n

【0041】〔圧縮特性〕JIS K 6767に準
じ、本発明の発泡体の25%圧縮硬さ(c)と、吸熱分
解型発泡剤を除いて作成した発泡体の25%圧縮硬さ
(d)を測定し、次式により圧縮特性を算出する。 圧縮特性=c/d
[Compression Characteristics] According to JIS K 6767, the foam of the present invention has a 25% compression hardness (c) and the foam prepared by removing the endothermic decomposition type foaming agent has a 25% compression hardness (d). Is measured, and the compression characteristic is calculated by the following equation. Compression characteristics = c / d

【0042】〔表面平滑性〕発泡体の表面にトルエンで
5倍に希釈したマジックインキを塗布し、素早くガーゼ
で塗布面をふき取り、ふき取った後を観察し、表面に気
泡荒れに起因する点状のマジックインキ根の無いものを
合格、同じくマジックインキ根のあるものを不合格と判
定した。
[Surface smoothness] Magic ink diluted 5 times with toluene was applied to the surface of the foam, and the coated surface was quickly wiped off with gauze. After wiping, observation was made. Those having no magic ink root were judged to be acceptable, and those having the magic ink root were judged to be unacceptable.

【0043】実施例1 高圧法低密度ポリエチレン(密度:0.923g/c
m3 、融点:112℃、MFR:4.8g/10分)1
00Kg、熱安定剤としてIrganox1010を0.
3Kg、発熱分解型化学発泡剤としてアゾジカルボンアミ
ド(分解温度:197℃、分解発熱量:24Kcal/mol)
6.5Kg、吸熱分解型発泡剤として平均粒経8μmの重
炭酸ソーダ(分解温度:160℃、分解発熱量:−20
Kcal/mol)1Kgを、内容積450リットルのヘンシェル
ミキサーに投入し、第一次混合することにより発泡性樹
脂組成物を得た。
Example 1 High-pressure low-density polyethylene (density: 0.923 g / c)
m 3 , melting point: 112 ° C., MFR: 4.8 g / 10 min) 1
00 kg, Irganox 1010 as a heat stabilizer at 0.1 g.
3 kg, azodicarbonamide as an exothermic decomposition type chemical blowing agent (decomposition temperature: 197 ° C, calorific value of decomposition: 24 Kcal / mol)
6.5 kg, sodium bicarbonate having an average particle diameter of 8 μm as an endothermic decomposition type foaming agent (decomposition temperature: 160 ° C., decomposition heat value: -20
1 kg of Kcal / mol) was charged into a Henschel mixer having an internal volume of 450 liters, and subjected to primary mixing to obtain a foamable resin composition.

【0044】この発泡性樹脂組成物を、熱分解型発泡剤
が分解しない温度、すなわち140〜160℃に加熱し
たベント付き押出機に供給してシート状に押出し成形
し、次いでロール温度75℃のポリシングタイプのシー
ト成形機にかけて、空気巻込みによる気泡のない厚さが
3.0mm、幅が500mmの連続シート状物として巻き取
った。
This foamable resin composition is supplied to a vented extruder heated to a temperature at which the pyrolytic foaming agent does not decompose, that is, heated to 140 to 160 ° C., extruded into a sheet, and then extruded at a roll temperature of 75 ° C. The sheet was wound as a continuous sheet having a thickness of 3.0 mm and a width of 500 mm without air bubbles by a polishing type sheet forming machine.

【0045】次いで、このシート状物に電子線を照射
し、架橋度が32%となるように架橋を付与し、さらに
このシート状物を発熱分解型化学発泡剤の分解温度より
も20℃高い温度に加熱した熱媒浴上に連続的に供給し
て加熱発泡させた。このようにして得た発泡シートは、
厚みが6.1mm,幅が1300mm、発泡倍率が25倍、
平均気泡径が0.93mm、25%圧縮硬さが0.86Kg
/cm2 であり、スキン表面の平滑性は合格であった。一
方、2種類の発泡剤のうち吸熱分解型発泡剤(重炭酸ソ
ーダ)の方の添加を省いた以外は同一条件にして製造し
た発泡シートの25%圧縮硬さは0.61Kg/cm2 であ
ったので、本発明の上記ポリエチレン樹脂架橋発泡体の
圧縮特性は1.4倍に相当した。
Next, this sheet is irradiated with an electron beam to give a crosslink so that the degree of crosslinking becomes 32%, and the sheet is raised by 20 ° C. higher than the decomposition temperature of the exothermic decomposition type chemical foaming agent. The mixture was continuously supplied onto a heating medium bath heated to a temperature and foamed by heating. The foam sheet thus obtained is
6.1mm thick, 1300mm wide, 25x expansion ratio,
Average bubble diameter is 0.93mm, 25% compression hardness is 0.86kg
/ Cm 2 , and the smoothness of the skin surface was acceptable. On the other hand, the 25% compression hardness of the foamed sheet produced under the same conditions except that the addition of the endothermic decomposition type foaming agent (sodium bicarbonate) among the two foaming agents was 0.61 kg / cm 2 . Therefore, the compression characteristics of the polyethylene resin crosslinked foam of the present invention corresponded to 1.4 times.

【0046】実施例2 高圧法低密度ポリエチレン(密度:0.923g/c
m3 、融点:108℃、MFR:3.7g/10分)の
粉体:100Kg、熱安定剤としてMarkAO30:
0.5Kg,DSTDP:1.0Kg、発熱分解型化学発泡
剤としてアゾジカルボンアミド(分解温度:197℃、
分解発熱量:24Kcal/mol):8Kg,吸熱分解型発泡剤
として平均粒経が12μmの重炭酸ソーダ(分解温度:
160℃、分解発熱量:−20Kcal/mol):0.5Kg
を、内容積450リットルのヘンシェルミキサーに投入
し、第1次混合することにより発泡性樹脂組成物を得
た。
Example 2 High-pressure low-density polyethylene (density: 0.923 g / c)
m 3 , Melting point: 108 ° C., MFR: 3.7 g / 10 min) Powder: 100 kg, MarkAO30 as heat stabilizer:
0.5 kg, DSTDP: 1.0 kg, azodicarbonamide as an exothermic decomposition type chemical blowing agent (decomposition temperature: 197 ° C.,
Calorific value of decomposition: 24 Kcal / mol): 8 kg, sodium bicarbonate having an average particle diameter of 12 μm as an endothermic decomposition type foaming agent (decomposition temperature:
160 ° C, heat of decomposition: -20 Kcal / mol): 0.5 kg
Was charged into a Henschel mixer having an internal volume of 450 liters, and subjected to primary mixing to obtain a foamable resin composition.

【0047】次に、この発泡性樹脂組成物を、アゾジカ
ルボンアミドの分解しない140〜160℃に加熱した
ベント付き押出機に導入すると共に、Tダイから押し出
し、厚さが2.0mm、幅が500mmの連続シート状物と
して巻き取った。次いで、このシート状物に7Mrad
の電子線を照射して架橋せしめ、さらに210℃、22
5℃、225℃の順に加熱されたシリコーン薬液法の発
泡装置に供給して加熱発泡させた後、連続シート状発泡
体として巻き取った。
Next, this foamable resin composition was introduced into a vented extruder heated to 140 to 160 ° C. which does not decompose azodicarbonamide, and was extruded from a T-die to have a thickness of 2.0 mm and a width of 2.0 mm. It was wound up as a continuous sheet of 500 mm. Next, 7 Mrad is applied to this sheet.
Irradiation of electron beam to crosslink,
It was supplied to a silicone chemical solution foaming apparatus heated in the order of 5 ° C. and 225 ° C. to foam by heating, and then wound up as a continuous sheet foam.

【0048】得られたシート状発泡体の特性評価結果は
表1に示す通りであった。なお、上記シート状発泡体の
25%圧縮硬さは0.68Kg/cm2 であり、これに対し
て吸熱分解型発泡剤(重炭酸ソーダ)の添加を省いた以
外は同一条件にして得たシート状発泡体の25%圧縮硬
さは0.43Kg/cm2 であった。
The results of evaluation of the properties of the obtained sheet foam are as shown in Table 1. The 25% compression hardness of the sheet foam was 0.68 kg / cm 2 , and the sheet was obtained under the same conditions except that the addition of the endothermic decomposition type foaming agent (sodium bicarbonate) was omitted. The 25% compression hardness of the foam was 0.43 kg / cm 2 .

【0049】比較例1 実施例2において、発泡剤として吸熱分解型発泡剤(重
炭酸ソーダ)の添加を省き、発熱分解型化学発泡剤とし
てアゾジカルボンアミド(分解温度:197℃、分解発
熱量:24Kcal/mol)10Kgを配合すると共に、さらに
吸熱分解型発泡剤として液化ブタン0.1Kgを圧入した
発泡性樹脂組成物を使用したことと、電子線照射量を1
2Mradとした以外は同一条件にして、厚さが3.5
0mm、幅が550mmの発泡シートを得た。
Comparative Example 1 In Example 2, the addition of an endothermic decomposition type blowing agent (sodium bicarbonate) as a blowing agent was omitted, and azodicarbonamide (decomposition temperature: 197 ° C., decomposition heat value: 24 Kcal / mol), a foamable resin composition into which 0.1 kg of liquefied butane was injected as an endothermic decomposition type foaming agent, and an electron beam irradiation amount of 1 kg.
The thickness was 3.5 under the same conditions except that 2 Mrad was used.
A foam sheet having a thickness of 0 mm and a width of 550 mm was obtained.

【0050】この発泡シートの特性評価結果を表1に示
す。なお、上記シート状発泡体の25%圧縮硬さは0.
60Kg/cm2 であり、これに対して吸熱分解型発泡剤
(液化ブタン)の添加を省いた以外は同一条件にして得
たシート状発泡体の25%圧縮硬さは0.62Kg/cm2
であった。
Table 1 shows the results of evaluating the properties of the foamed sheet. In addition, the 25% compression hardness of the above-mentioned sheet-like foam is 0.1.
60 kg / cm 2, which 25% compressive hardness of the sheet-like foam except for omitting the addition of obtained in the same conditions endothermic decomposition type foaming agent (liquefied butane) with respect to 0.62 kg / cm 2
Met.

【0051】[0051]

【表1】 [Table 1]

【0052】表1の結果から明らかなように、本発明の
ポリオレフィン系樹脂架橋発泡体は、気泡形状(平均気
泡径)が大きいにもかかわらず、表面平滑性が電子線架
橋法により得られるスキン表面の水準を具備しており、
しかも圧縮特性が発熱分解型化学発泡剤だけを使用した
従来の発泡シートよりも優れている。
As is evident from the results in Table 1, the crosslinked polyolefin resin foam of the present invention has a skin whose surface smoothness can be obtained by the electron beam crosslinking method despite the large cell shape (average cell diameter). It has a surface level,
Moreover, the compression properties are superior to those of the conventional foam sheet using only the exothermic decomposition type chemical foaming agent.

【0053】一方、比較例1のポリオレフィン系樹脂架
橋発泡体は、吸熱分解型発泡剤が本発明の条件を満たし
ていないため、気泡形状がマバラであったり、気泡径が
小さくて電子線架橋法による欠点を脱しておらず、圧縮
特性が劣っている。
On the other hand, in the crosslinked polyolefin resin foam of Comparative Example 1, since the endothermic decomposition type foaming agent did not satisfy the conditions of the present invention, the cell shape was uneven or the cell diameter was small, and the electron beam crosslinking method was used. And the compression characteristics are inferior.

【0054】[0054]

【発明の効果】以上説明したように、本発明のポリオレ
フィン系樹脂架橋発泡体および製造方法によれば、大き
なサイズに制御された平均気泡径が得られ、しかも平均
気泡径が大きいにもかかわらずスキン表面が平滑である
と共に、優れた圧縮特性を有するようにすることができ
る。
As described above, according to the crosslinked polyolefin resin foam and the production method of the present invention, a controlled average cell diameter of a large size can be obtained. The skin surface can be smooth and have excellent compression properties.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F070 AA13 AA15 AA16 AC16 AC47 AE12 AE23 BA02 GA04 GC02 HA04 HB05 4F073 AA05 BA07 BA08 BA09 BA51 BB01 CA42 HA05 4F074 AA16 AA17 AA24 AA25 BA01 BA03 BA13 BA95 BB25 CA29 CC04Y CC32Y DA02 DA03 DA04 DA08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F070 AA13 AA15 AA16 AC16 AC47 AE12 AE23 BA02 GA04 GC02 HA04 HB05 4F073 AA05 BA07 BA08 BA09 BA51 BB01 CA42 HA05 4F074 AA16 AA17 AA24 AA25 BA01 BA03 BA03 BA04 BB25 DA29 CC DA08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 発熱分解型化学発泡剤と吸熱分解型発泡
剤とを含有すると共に、電子線架橋されたポリオレフィ
ン系樹脂架橋発泡体であり、該発泡体の発泡倍率が10
〜50倍、架橋度が15〜50%、平均気泡径が0.6
〜1.5mmであり、かつ25%圧縮硬さが前記吸熱分解
型発泡剤を除いた以外は同一組成にして得たポリオレフ
ィン系樹脂架橋発泡体の25%圧縮硬さの1.2〜2.
0倍であるポリオレフィン系樹脂架橋発泡体。
1. A crosslinked polyolefin resin foam which contains an exothermic decomposition type chemical foaming agent and an endothermic decomposition type foaming agent and is crosslinked by electron beam, and has a foaming ratio of 10
~ 50 times, degree of crosslinking is 15 ~ 50%, average cell diameter is 0.6
1.5 to 1.5 mm and a 25% compression hardness of 1.2 to 2.25% of a 25% compression hardness of a polyolefin resin crosslinked foam obtained with the same composition except that the endothermic decomposition type foaming agent is excluded.
A crosslinked polyolefin-based resin foam having 0 times.
【請求項2】 前記ポリオレフィン系樹脂が、ポリエチ
レン、ポリプロピレン、プロピレンとエチレンとの共重
合体、エチレンと炭素数4〜12のα−オレフィンとの
共重合体、プロピレンとエチレンまたは炭素数4〜8の
α−オレフィンとの共重合体のいずれかである請求項1
に記載のポリオレフィン系樹脂架橋発泡体。
2. The polyolefin resin is polyethylene, polypropylene, a copolymer of propylene and ethylene, a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms, propylene and ethylene or 4 to 8 carbon atoms. 2. The copolymer of claim 1, which is a copolymer with an α-olefin.
The crosslinked foam of a polyolefin resin described in the above.
【請求項3】 前記発熱分解型化学発泡剤がアゾジカル
ボンアミドであり、前記吸熱分解型発泡剤が重炭酸ソー
ダである請求項1または2に記載のポリオレフィン系樹
脂架橋発泡体。
3. The crosslinked polyolefin resin foam according to claim 1, wherein the exothermic decomposition type chemical blowing agent is azodicarbonamide, and the endothermic decomposition type blowing agent is sodium bicarbonate.
【請求項4】 電子線架橋可能なポリオレフィン系樹脂
に、分解発熱量が25Kcal/mol以上の発熱分解型化学発
泡剤と、該発熱分解型化学発泡剤よりも分解温度が低い
吸熱分解型発泡剤とを添加し、該ポリオレフィン系樹脂
組成物を前記発熱分解型化学発泡剤の分解温度よりも低
い温度で押出成形して発泡性成形体にした後、該発泡性
成形体に電子線照射して架橋を施し、次いで前記発熱分
解型化学発泡剤の分解温度よりも10〜50℃高い温度
で加熱発泡させるポリオレフィン系樹脂架橋発泡体の製
造方法。
4. An exothermic decomposition type foaming agent having an exothermic decomposition calorific value of 25 Kcal / mol or more and an endothermic decomposition type foaming agent having a lower decomposition temperature than the exothermic decomposition type chemical foaming agent. And then extruding the polyolefin-based resin composition at a temperature lower than the decomposition temperature of the exothermic decomposition type chemical foaming agent to form a foamable molded product, and then irradiating the foamable molded product with an electron beam. A method for producing a crosslinked polyolefin resin foam which is subjected to crosslinking and then heated and foamed at a temperature 10 to 50 ° C. higher than the decomposition temperature of the exothermic decomposition type chemical foaming agent.
【請求項5】 前記ポリオレフィン系樹脂が、ポリエチ
レン、ポリプロピレン、プロピレンとエチレンとの共重
合体、エチレンと炭素数4〜12のα−オレフィンとの
共重合体、プロピレンとエチレンまたは炭素数4〜8の
α−オレフィンとの共重合体のいずれかである請求項4
に記載のポリオレフィン系樹脂架橋発泡体の製造方法。
5. The polyolefin-based resin is polyethylene, polypropylene, a copolymer of propylene and ethylene, a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms, propylene and ethylene or 4 to 8 carbon atoms. 5. A copolymer of any one of the above with an α-olefin.
3. The method for producing a crosslinked polyolefin resin foam according to item 1.
【請求項6】 前記発熱分解型化学発泡剤がアゾジカル
ボンアミドであり、前記吸熱分解型発泡剤が重炭酸ソー
ダである請求項4または5に記載のポリオレフィン系樹
脂架橋発泡体の製造方法。
6. The method for producing a crosslinked polyolefin resin foam according to claim 4, wherein the exothermic decomposition type blowing agent is azodicarbonamide, and the endothermic decomposition type blowing agent is sodium bicarbonate.
JP17709698A 1998-06-24 1998-06-24 Polyolefin-based resin crosslinked foam and its production Pending JP2000007810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17709698A JP2000007810A (en) 1998-06-24 1998-06-24 Polyolefin-based resin crosslinked foam and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17709698A JP2000007810A (en) 1998-06-24 1998-06-24 Polyolefin-based resin crosslinked foam and its production

Publications (1)

Publication Number Publication Date
JP2000007810A true JP2000007810A (en) 2000-01-11

Family

ID=16025076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17709698A Pending JP2000007810A (en) 1998-06-24 1998-06-24 Polyolefin-based resin crosslinked foam and its production

Country Status (1)

Country Link
JP (1) JP2000007810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287293A (en) * 2000-04-05 2001-10-16 Honda Motor Co Ltd Laminated resin molding and manufacturing method for the same
JP2015054935A (en) * 2013-09-12 2015-03-23 ソマール株式会社 Adhesive composition and adhesive sheet
JP2021054900A (en) * 2019-09-27 2021-04-08 積水化学工業株式会社 Polyolefin resin foam sheet and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287293A (en) * 2000-04-05 2001-10-16 Honda Motor Co Ltd Laminated resin molding and manufacturing method for the same
JP2015054935A (en) * 2013-09-12 2015-03-23 ソマール株式会社 Adhesive composition and adhesive sheet
JP2021054900A (en) * 2019-09-27 2021-04-08 積水化学工業株式会社 Polyolefin resin foam sheet and method for producing the same
JP7377047B2 (en) 2019-09-27 2023-11-09 積水化学工業株式会社 Polyolefin resin foam sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP1752485B1 (en) Soft polyolefin foams with high heat resistance
JP4884635B2 (en) Sound absorbing polymer foam with improved thermal insulation performance
CA2330922C (en) Thermoformable polypropylene foam sheet
US6723793B2 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP4739686B2 (en) Non-crosslinked polyolefin resin composition and foam using the same
EP1373401B1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JPH07503269A (en) Dimensionally stable polypropylene foam expanded using inorganic blowing agents
JP2000007810A (en) Polyolefin-based resin crosslinked foam and its production
JP3064777B2 (en) Polypropylene-based electron beam crosslinked foam with excellent moldability
JP2755109B2 (en) Continuous sheet flame-retardant polypropylene-based crosslinked foam
EP0674578A1 (en) Extruded closed-cell propylene polymer foam and methods of making the same
JP2000001561A (en) Crosslinked polyolefin resin foam
JP3346027B2 (en) Polyethylene-based electron beam cross-linked foam
CA2375144C (en) Polymer foam and method of making using oil-containing furnace black as an insulation enhancer
JP2000044713A (en) Polyolefinic resin bridged foaming substance and its preparation
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JP7078381B2 (en) Polyolefin-based resin foam and its molded product
JP2001098101A (en) Polyethylene-based crosslinked foam
JP4027730B2 (en) Polyolefin resin composition having foaming ability and method for producing the same
JP3454739B2 (en) Crosslinked olefin resin foam and method for producing the same
JP2000219766A (en) Foamed polypropylene resin molding and automotive interior furnishing material
JP2000281827A (en) Production of polyolefin crosslinked foamed body
JP2005028597A (en) Foam molding method
JPH07102100A (en) Production of foamed cross-linked polypropylene resin sheet
JPH07188444A (en) Production of foam