JPWO2018177747A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2018177747A5 JPWO2018177747A5 JP2019553253A JP2019553253A JPWO2018177747A5 JP WO2018177747 A5 JPWO2018177747 A5 JP WO2018177747A5 JP 2019553253 A JP2019553253 A JP 2019553253A JP 2019553253 A JP2019553253 A JP 2019553253A JP WO2018177747 A5 JPWO2018177747 A5 JP WO2018177747A5
- Authority
- JP
- Japan
- Prior art keywords
- measuring radiation
- antireflection coating
- measuring
- microlithography
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
図4は、散乱光強度Iの「欠陥カウント(defect count)」(D.C.)として知られるものを示し、これは欠陥信号17と称する第1部分とヘイズ信号18と称する第2部分とを有する。ヘイズ信号18は、表面11全体で散乱した測定放射線9の、すなわち表面11全体にわたる部分領域Tの移動中に検出された全測定放射線9の度数分布を表し、表面11は測定中に例えば測定格子に分割され得る。これに対して、欠陥信号17は、(例えば測定格子の格子要素に対応する)部分領域Tで測定された散乱光強度Iである。図4で見ることができるように、欠陥信号17は、ヘイズ信号18よりも高い散乱光強度Iでその最大を有する。 FIG. 4 shows what is known as the "defect count" (D.C.) of the scattered light intensity I, which consists of a first portion called the defect signal 17 and a second portion called the haze signal 18. have The haze signal 18 represents the frequency distribution of the measuring radiation 9 scattered over the surface 11, i.e. of the total measuring radiation 9 detected during the movement of the subregion T over the surface 11, the surface 11 being e.g. can be divided into Correspondingly, the defect signal 17 is the scattered light intensity I measured in a partial region T (eg corresponding to a grid element of the measurement grid). As can be seen in FIG. 4 the defect signal 17 has its maximum at a higher scattered light intensity I than the haze signal 18 .
図4で見ることができるように、ヘイズ信号18は、比較的大きな半値全幅(FWHM)を有し、実質的にガウス性のヘイズ信号18の右端は欠陥信号17におそらく部分的に重なる。ヘイズ信号18の右端は、度数分布の比較的小さな部分しか構成しないが、ヘイズ信号18のみにより散乱光強度Iが強度閾値ISを上回る場合があり、これは粒子Pが表面11の部分領域に存在しないのに粒子Pがそこで検出されることを意味する。そのため、強度閾値IS、したがって検出可能な最小粒径DSは、粒子Pの検出の誤差を回避するために任意に小さくすることができない。
As can be seen in FIG. 4, the haze signal 18 has a relatively large full width at half maximum (FWHM) and the right edge of the substantially Gaussian haze signal 18 probably overlaps the defect signal 17 . Although the right end of the haze signal 18 constitutes only a relatively small portion of the frequency distribution, the haze signal 18 alone may cause the scattered light intensity I to exceed the intensity threshold IS, which is due to particles P in a subregion of the surface 11. It means that a particle P is detected there even though it is not there. As such, the intensity threshold I S , and thus the minimum detectable particle size D S , cannot be arbitrarily small to avoid erroneous detection of the particles P.
Claims (19)
前記物体(2、3、14)の前記表面(11)の部分領域(T)に測定放射線(9)を照射するステップと、
前記照射された部分領域(T)で散乱した測定放射線(9)を検出するステップと、
前記検出された測定放射線(9)に基づき前記物体(2、3、14)の前記表面(11)上の前記粒子(P)を検出するステップと
を含み、前記照射するステップ及び前記測定放射線(9)を検出するステップ中に、前記物体(2、3、14)の前記表面(11)に、前記測定放射線に関する前記表面(11)の反射率(R)を低下させる反射防止コーティング(13)及び/又は表面構造(15)を設け、前記反射防止コーティング(13)及び/又は前記表面構造(15)により粒子検出限界を下げることを特徴とし、
前記反射防止コーティング(13)及び/又は前記表面構造(15)は、強度閾値(Is)に基づく前記粒子検出限界を下げるために、前記表面(11)の粗さに起因するヘイズ散乱光強度の度数分布(18)のFWHMを、前記反射防止コーティング(13)及び/又は前記表面構造(15)を設けない場合に比べて減少させるように提供される方法。 A method for detecting deposited particles (P) on a surface (11) of an object (2, 3, 14), comprising:
irradiating a subregion (T) of the surface (11) of the object (2, 3, 14) with measuring radiation (9);
detecting the scattered measurement radiation (9) in the illuminated partial area (T);
detecting said particles (P) on said surface (11) of said object (2, 3, 14) based on said detected measuring radiation (9), said irradiating and said measuring radiation ( 9), an antireflection coating (13) on said surface (11) of said object (2, 3, 14) that reduces the reflectance (R) of said surface (11) with respect to said measuring radiation. and/or a surface structure (15) is provided, and the antireflection coating (13) and/or the surface structure (15) lowers the particle detection limit,
The antireflection coating (13) and/or the surface structure (15) reduce the haze scattered light intensity due to the roughness of the surface (11) to lower the particle detection limit based on the intensity threshold (Is). A method provided to reduce the FWHM of a power distribution (18) compared to not providing said antireflection coating (13) and/or said surface structure (15) .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017205212.0 | 2017-03-28 | ||
DE102017205212.0A DE102017205212A1 (en) | 2017-03-28 | 2017-03-28 | Method for detecting particles on the surface of an object, wafer and mask blank |
PCT/EP2018/056352 WO2018177747A1 (en) | 2017-03-28 | 2018-03-14 | Method for detecting particles on the surface of an object, wafer, and mask blank |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020515844A JP2020515844A (en) | 2020-05-28 |
JPWO2018177747A5 true JPWO2018177747A5 (en) | 2022-11-17 |
JP7300998B2 JP7300998B2 (en) | 2023-06-30 |
Family
ID=61691960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019553253A Active JP7300998B2 (en) | 2017-03-28 | 2018-03-14 | Method for detecting particles on surfaces of objects, wafers and mask blanks |
Country Status (6)
Country | Link |
---|---|
US (1) | US11555783B2 (en) |
EP (1) | EP3602198B1 (en) |
JP (1) | JP7300998B2 (en) |
KR (1) | KR102563712B1 (en) |
DE (1) | DE102017205212A1 (en) |
WO (1) | WO2018177747A1 (en) |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5072911A (en) * | 1973-10-30 | 1975-06-16 | ||
JPH0682727B2 (en) * | 1986-02-18 | 1994-10-19 | ホ−ヤ株式会社 | Inspection substrate and manufacturing method thereof |
JPH06103272B2 (en) * | 1988-01-21 | 1994-12-14 | 株式会社日立製作所 | Method for inspecting foreign matter on mask of X-ray exposure mask |
JP2731914B2 (en) * | 1988-08-25 | 1998-03-25 | ホーヤ株式会社 | Inspection board and manufacturing method thereof |
US5242711A (en) * | 1991-08-16 | 1993-09-07 | Rockwell International Corp. | Nucleation control of diamond films by microlithographic patterning |
JP3253177B2 (en) * | 1993-06-15 | 2002-02-04 | キヤノン株式会社 | Surface condition inspection device |
JP3624359B2 (en) * | 1995-10-18 | 2005-03-02 | 富士通株式会社 | LIGHT MODULATION ELEMENT, MANUFACTURING METHOD THEREOF, AND OPTICAL DEVICE |
US6137570A (en) * | 1998-06-30 | 2000-10-24 | Kla-Tencor Corporation | System and method for analyzing topological features on a surface |
US7061601B2 (en) * | 1999-07-02 | 2006-06-13 | Kla-Tencor Technologies Corporation | System and method for double sided optical inspection of thin film disks or wafers |
US6630996B2 (en) * | 2000-11-15 | 2003-10-07 | Real Time Metrology, Inc. | Optical method and apparatus for inspecting large area planar objects |
US6608321B1 (en) * | 2001-02-01 | 2003-08-19 | Advanced Micro Devices, Inc. | Differential wavelength inspection system |
JP2003177100A (en) | 2001-12-12 | 2003-06-27 | Sumitomo Mitsubishi Silicon Corp | Quality evaluation method of mirror-finished and chamfered wafer |
US6781688B2 (en) * | 2002-10-02 | 2004-08-24 | Kla-Tencor Technologies Corporation | Process for identifying defects in a substrate having non-uniform surface properties |
US20060008749A1 (en) * | 2004-07-08 | 2006-01-12 | Frank Sobel | Method for manufacturing of a mask blank for EUV photolithography and mask blank |
WO2007039161A1 (en) * | 2005-09-27 | 2007-04-12 | Schott Ag | Mask blanc and photomasks having antireflective properties |
JP2006270111A (en) * | 2006-04-21 | 2006-10-05 | Hitachi Ltd | Method for inspecting semiconductor device and its equipment |
DE102008022792A1 (en) * | 2008-05-08 | 2009-11-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electrostatic holding element with anti-reflection coating, measuring method and use of the holding element |
JP5564807B2 (en) | 2009-03-12 | 2014-08-06 | 株式会社日立ハイテクノロジーズ | Defect inspection apparatus and defect inspection method |
JP2010267934A (en) | 2009-05-18 | 2010-11-25 | Panasonic Corp | Solar cell, and method of manufacturing the same |
KR101422256B1 (en) | 2009-06-19 | 2014-07-22 | 케이엘에이-텐코어 코오포레이션 | Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks |
JP5297930B2 (en) | 2009-07-29 | 2013-09-25 | 株式会社日立ハイテクノロジーズ | Defect inspection apparatus and method |
CN102117850B (en) * | 2010-11-12 | 2012-09-19 | 北京大学 | Solar battery with micro-nano composite structure and production method thereof |
WO2012075351A2 (en) * | 2010-12-03 | 2012-06-07 | Bae Systems Information And Electronic Systems Integration Inc. | Asymmetric slotted waveguide and method for fabricating the same |
JP5988690B2 (en) | 2012-05-18 | 2016-09-07 | 浜松ホトニクス株式会社 | Spectroscopic sensor |
DE102014204171A1 (en) | 2014-03-06 | 2015-09-24 | Carl Zeiss Smt Gmbh | Optical element and optical arrangement with it |
JP6044849B2 (en) * | 2014-03-24 | 2016-12-14 | コニカミノルタ株式会社 | Processing apparatus and particle fixing method |
US9599573B2 (en) * | 2014-12-02 | 2017-03-21 | Kla-Tencor Corporation | Inspection systems and techniques with enhanced detection |
NL2017269A (en) * | 2015-08-12 | 2017-02-16 | Asml Netherlands Bv | Inspection apparatus, inspection method and manufacturing method |
JP6482993B2 (en) | 2015-09-04 | 2019-03-13 | シャープ株式会社 | Lighting device |
JP2017054105A (en) * | 2015-09-11 | 2017-03-16 | 旭硝子株式会社 | Mask Blank |
-
2017
- 2017-03-28 DE DE102017205212.0A patent/DE102017205212A1/en not_active Ceased
-
2018
- 2018-03-14 KR KR1020197031217A patent/KR102563712B1/en active IP Right Grant
- 2018-03-14 JP JP2019553253A patent/JP7300998B2/en active Active
- 2018-03-14 EP EP18712138.9A patent/EP3602198B1/en active Active
- 2018-03-14 WO PCT/EP2018/056352 patent/WO2018177747A1/en unknown
-
2019
- 2019-09-27 US US16/585,374 patent/US11555783B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3242079B2 (en) | Lithography process for device fabrication using multilayer mask | |
KR101552898B1 (en) | Soi wafer inspection method | |
KR20120039659A (en) | Object inspection systems and methods | |
TWI490963B (en) | Methods of inspecting and processing semiconductor wafers | |
JPS59186324A (en) | Foreign substance inspecting apparatus | |
US11131629B2 (en) | Apparatus and methods for measuring phase and amplitude of light through a layer | |
JPH075115A (en) | Surface condition inspection apparatus | |
JP5322841B2 (en) | Mask defect shape measurement method and mask quality determination method | |
JP5174697B2 (en) | Defect inspection equipment | |
KR102649117B1 (en) | Method of inspecting defects of a substrate and defect inspection apparatus | |
CN110658196B (en) | Defect detection device and defect detection method | |
US7046352B1 (en) | Surface inspection system and method using summed light analysis of an inspection surface | |
JPH0256626B2 (en) | ||
JPWO2018177747A5 (en) | ||
JP5241343B2 (en) | Microstructure transfer device | |
US5453830A (en) | Spatially isolated diffractor on a calibration substrate for a pellicle inspection system | |
US6919146B2 (en) | Planar reticle design/fabrication method for rapid inspection and cleaning | |
KR102563712B1 (en) | Methods for Detecting Particles on Surfaces of Objects, Wafers, and Mask Blanks | |
JP3166320B2 (en) | Method and apparatus for inspecting foreign matter in resist coating film | |
JPS63103951A (en) | Dust inspection device | |
JP2006038728A (en) | Method for inspecting antireflection transparent film | |
JPH052262A (en) | Foreign body inspection device | |
JPH0599639A (en) | Inspection device for small unevenness of planar object | |
KR100268778B1 (en) | Inspection method for process defect of semiconductor device | |
JP2001264262A (en) | Surface foreign matter inspecting method and surface foreign matter inspecting device |