JPWO2018177747A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2018177747A5
JPWO2018177747A5 JP2019553253A JP2019553253A JPWO2018177747A5 JP WO2018177747 A5 JPWO2018177747 A5 JP WO2018177747A5 JP 2019553253 A JP2019553253 A JP 2019553253A JP 2019553253 A JP2019553253 A JP 2019553253A JP WO2018177747 A5 JPWO2018177747 A5 JP WO2018177747A5
Authority
JP
Japan
Prior art keywords
measuring radiation
antireflection coating
measuring
microlithography
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019553253A
Other languages
Japanese (ja)
Other versions
JP7300998B2 (en
JP2020515844A (en
Publication date
Priority claimed from DE102017205212.0A external-priority patent/DE102017205212A1/en
Application filed filed Critical
Publication of JP2020515844A publication Critical patent/JP2020515844A/en
Publication of JPWO2018177747A5 publication Critical patent/JPWO2018177747A5/ja
Application granted granted Critical
Publication of JP7300998B2 publication Critical patent/JP7300998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

マイクロリソグラフィ用のマスクブランク又はウェハの表面を検査する、特に粒子を検出する測定装置の概略図である。1 is a schematic representation of a measuring apparatus for inspecting the surface of a mask blank or wafer for microlithography, in particular for particle detection; FIG. 測定装置により測定放射線を照射された部分領域を有するマスク又はウェハの平面を示す。1 shows a plane of a mask or wafer with partial areas irradiated with measuring radiation by a measuring device; 表面の照射に用いられて表面で検出角度範囲に散乱する測定放射線の概略図を示す。FIG. 2 shows a schematic representation of measurement radiation used to illuminate a surface and scattered at the surface into a detection angular range; 粒子が表面上に堆積した検査対象表面の概略図を示す。1 shows a schematic representation of a surface to be inspected with particles deposited on the surface; FIG. 反射防止コーティングが検査対象表面に施された検査対象物の概略図を示す。1 shows a schematic diagram of a test object with an antireflection coating applied to the test object surface; FIG. 反射防止コーティングが検査対象表面に施された検査対象物の概略図を示す。1 shows a schematic diagram of a test object with an antireflection coating applied to the test object surface; FIG. 検査対象表面の反射率を低下させる表面構造を有する検査対象物の概略図を示す。1 shows a schematic representation of a test object with surface structures that reduce the reflectance of the test surface; FIG. 従来の表面の検査中又は図3a~図3cに示す表面の検査中に記録された散乱光強度の度数分布の概略図を示す。Figure 3 shows a schematic representation of the frequency distribution of the scattered light intensity recorded during inspection of a conventional surface or during inspection of the surface shown in Figures 3a-3c; 測定装置の検出角度範囲内の2つの異なる反射防止コーティングを設けた図3aの表面の反射率の概略図を示すFig. 3b shows a schematic representation of the reflectance of the surface of Fig. 3a with two different antireflection coatings within the detection angle range of the measuring device;

図4は、散乱光強度Iの「欠陥カウント(defect count)」(D.C.)として知られるものを示し、これは欠陥信号17と称する第1部分とヘイズ信号18と称する第2部分とを有する。ヘイズ信号18は、表面11全体で散乱した測定放射線9の、すなわち表面11全体にわたる部分領域Tの移動中に検出された全測定放射線9の度数分布を表し、表面11は測定中に例えば測定格子に分割され得る。これに対して、欠陥信号17は、(例えば測定格子の格子要素に対応する)部分領域Tで測定された散乱光強度Iである。図4で見ることができるように、欠陥信号17は、ヘイズ信号18よりも高い散乱光強度Iでその最大を有する。 FIG. 4 shows what is known as the "defect count" (D.C.) of the scattered light intensity I, which consists of a first portion called the defect signal 17 and a second portion called the haze signal 18. have The haze signal 18 represents the frequency distribution of the measuring radiation 9 scattered over the surface 11, i.e. of the total measuring radiation 9 detected during the movement of the subregion T over the surface 11, the surface 11 being e.g. can be divided into Correspondingly, the defect signal 17 is the scattered light intensity I measured in a partial region T (eg corresponding to a grid element of the measurement grid). As can be seen in FIG. 4 the defect signal 17 has its maximum at a higher scattered light intensity I than the haze signal 18 .

図4で見ることができるように、ヘイズ信号18は、比較的大きな半値全幅(FWHM)を有し、実質的にガウス性のヘイズ信号18の右端は欠陥信号17におそらく部分的に重なる。ヘイズ信号18の右端は、度数分布の比較的小さな部分しか構成しないが、ヘイズ信号18のみにより散乱光強度Iが強度閾値Iを上回る場合があり、これは粒子Pが表面11の部分領域に存在しないのに粒子Pがそこで検出されることを意味する。そのため、強度閾値I、したがって検出可能な最小粒径Dは、粒子Pの検出の誤差を回避するために任意に小さくすることができない。
As can be seen in FIG. 4, the haze signal 18 has a relatively large full width at half maximum (FWHM) and the right edge of the substantially Gaussian haze signal 18 probably overlaps the defect signal 17 . Although the right end of the haze signal 18 constitutes only a relatively small portion of the frequency distribution, the haze signal 18 alone may cause the scattered light intensity I to exceed the intensity threshold IS, which is due to particles P in a subregion of the surface 11. It means that a particle P is detected there even though it is not there. As such, the intensity threshold I S , and thus the minimum detectable particle size D S , cannot be arbitrarily small to avoid erroneous detection of the particles P.

Claims (19)

物体(2、3、14)の表面(11)上の堆積粒子(P)を検出する方法であって、
前記物体(2、3、14)の前記表面(11)の部分領域(T)に測定放射線(9)を照射するステップと、
前記照射された部分領域(T)で散乱した測定放射線(9)を検出するステップと、
前記検出された測定放射線(9)に基づき前記物体(2、3、14)の前記表面(11)上の前記粒子(P)を検出するステップと
を含み、前記照射するステップ及び前記測定放射線(9)を検出するステップ中に、前記物体(2、3、14)の前記表面(11)に、前記測定放射線に関する前記表面(11)の反射率(R)を低下させる反射防止コーティング(13)及び/又は表面構造(15)を設け、前記反射防止コーティング(13)及び/又は前記表面構造(15)により粒子検出限界を下げることを特徴とし、
前記反射防止コーティング(13)及び/又は前記表面構造(15)は、強度閾値(Is)に基づく前記粒子検出限界を下げるために、前記表面(11)の粗さに起因するヘイズ散乱光強度の度数分布(18)のFWHMを、前記反射防止コーティング(13)及び/又は前記表面構造(15)を設けない場合に比べて減少させるように提供される方法。
A method for detecting deposited particles (P) on a surface (11) of an object (2, 3, 14), comprising:
irradiating a subregion (T) of the surface (11) of the object (2, 3, 14) with measuring radiation (9);
detecting the scattered measurement radiation (9) in the illuminated partial area (T);
detecting said particles (P) on said surface (11) of said object (2, 3, 14) based on said detected measuring radiation (9), said irradiating and said measuring radiation ( 9), an antireflection coating (13) on said surface (11) of said object (2, 3, 14) that reduces the reflectance (R) of said surface (11) with respect to said measuring radiation. and/or a surface structure (15) is provided, and the antireflection coating (13) and/or the surface structure (15) lowers the particle detection limit,
The antireflection coating (13) and/or the surface structure (15) reduce the haze scattered light intensity due to the roughness of the surface (11) to lower the particle detection limit based on the intensity threshold (Is). A method provided to reduce the FWHM of a power distribution (18) compared to not providing said antireflection coating (13) and/or said surface structure (15) .
請求項1に記載の方法において、前記粒子(P)を、マイクロリソグラフィ用のウェハ(3)又はマスクブランク(2)の形態の物体の前記表面(11)上で検出する方法。 A method according to claim 1, wherein said particles (P) are detected on said surface (11) of an object in the form of a wafer (3) or mask blank (2) for microlithography. 請求項1又は2に記載の方法において、前記測定放射線(9)は所定の測定波長(λ)を有する方法。 3. Method according to claim 1 or 2, wherein the measuring radiation (9) has a predetermined measuring wavelength ([lambda] M ). 請求項1~3のいずれか1項に記載の方法において、前記散乱した測定放射線(9)を、入射した測定放射線(9)に対して第1散乱角(α)~第2散乱角(α)の検出角度範囲で検出する方法。 A method according to any one of claims 1 to 3, characterized in that the scattered measuring radiation (9) is arranged at a first scattering angle (α 1 ) to a second scattering angle (α 1 ) with respect to the incident measuring radiation (9). A method of detecting in the detection angle range of α 2 ). 請求項1~4のいずれか1項に記載の方法において、前記反射防止コーティング(13)を多層コーティングとして形成する方法。 A method according to any one of claims 1 to 4, wherein the antireflection coating (13) is formed as a multi-layer coating. 請求項4に記載の方法において、前記反射防止コーティング(13)は、前記第1散乱角(α)~前記第2散乱角(α)の前記検出角度範囲で、前記反射率(R)の最大値(RMAX)と前記反射率(R)の最小値(RMIN)との差が5%未満である前記測定放射線(9)に関する角度依存反射率(R)を有する方法。 A method according to claim 4 , wherein said antireflection coating (13) is such that said reflectance ( R) A method having an angle dependent reflectance (R) for said measuring radiation (9) wherein the difference between the maximum value of (R MAX ) and the minimum value (R MIN ) of said reflectance (R) is less than 5%. 請求項1~6のいずれか1項に記載の方法において、前記測定放射線(9)に関する前記反射防止コーティング(13)の前記反射率(R)は、15%未満である方法。 A method according to any one of the preceding claims, wherein the reflectivity (R) of the antireflection coating (13) with respect to the measuring radiation (9) is less than 15%. 請求項1~7のいずれか1項に記載の方法において、前記表面構造(15)を針状微細構造として形成する方法。 A method according to any one of the preceding claims, wherein the surface structures (15) are formed as acicular microstructures. 請求項1~8のいずれか1項に記載の方法にのいて、前記物体(3)はシリコンからできている方法。 A method according to any one of claims 1 to 8, wherein said object (3) is made of silicon. 請求項9に記載の方法において、前記表面構造(15)をブラックシリコンとして形成する方法。 10. The method of claim 9, wherein the surface structure (15) is formed as black silicon. 請求項1~8のいずれか1項に記載の方法において、前記物体(14)を、前記測定放射線(9)をフィルタリングする光学フィルタガラスから形成する方法。 A method according to any one of claims 1 to 8, wherein said object (14) is formed from an optical filter glass for filtering said measuring radiation (9). 請求項1~11のいずれか1項に記載の方法において、前記物体(2、3、14)は、前記測定放射線(9)に関して1×101/cmを超える吸収係数を有する材料からできている方法。 A method according to any one of claims 1 to 11, wherein said object (2, 3, 14) is made of a material having an absorption coefficient of more than 1 x 10 4 1/cm with respect to said measuring radiation (9). way. 請求項1~12のいずれか1項に記載の方法において、前記物体(2、3、14)は、厚さ(d、d)が500μm以上3mm以下である方法。 A method according to any one of the preceding claims, wherein said objects (2, 3, 14) have a thickness (d 1 , d 2 ) between 500 μm and 3 mm. 請求項1~13のいずれか1項に記載の方法において、前記部分領域(T)で散乱した前記測定放射線(9)の散乱光強度(I)が前記強度閾値(Is)を上回る場合に粒子(P)を前記照射された部分領域(T)で検出する方法。 Method according to any one of the preceding claims, characterized in that the particle A method for detecting (P) in said illuminated partial area (T). 請求項1~14のいずれか1項に記載の方法において、少なくとも前記物体(2、3、14)を前記測定放射線(9)で照射するステップ及び前記散乱した測定放射線(9)を検出するステップを、マイクロリソグラフィ用のマスクブランク(2)又はウェハ(3)を測定する測定装置(1)で実行する方法。 A method according to any one of the preceding claims, in which the steps of illuminating at least the object (2, 3, 14) with the measuring radiation (9) and detecting the scattered measuring radiation (9) with a measuring device (1) for measuring mask blanks (2) or wafers (3) for microlithography. マイクロリソグラフィ用のウェハであって、可視波長域又はUV波長域の少なくとも1つの測定波長(λ)の測定放射線(9)に関する該ウェハ(3)の表面(11)の反射率(R)を低下させる反射防止コーティング(13)及び/又は表面構造(15)が前記表面(11)に設けられることを特徴とし、前記反射防止コーティング(13)及び/又は前記表面構造(15)は、強度閾値(Is)に基づく粒子検出限界を下げるために、前記表面(11)の粗さに起因するヘイズ散乱光強度の度数分布(18)のFWHMを、前記反射防止コーティング(13)及び/又は前記表面構造(15)を設けない場合に比べて減少させるように提供されるマイクロリソグラフィ用のウェハ。 A wafer for microlithography, the reflectance (R) of the surface (11) of the wafer (3) for measuring radiation (9) of at least one measuring wavelength (λ M ) in the visible or UV wavelength range An antireflection coating (13) and/or a surface structure (15) is provided on the surface (11), which reduces the intensity threshold. In order to reduce the particle detection limit based on (Is), the FWHM of the frequency distribution (18) of the haze scattered light intensity due to the roughness of the surface (11) is measured by the antireflection coating (13) and/or the surface Wafer for microlithography provided to reduce structure (15) compared to not provided . マイクロリソグラフィ用の、特にEUVリソグラフィ用のマスクブランク(2)であって、可視波長域又はUV波長域の少なくとも1つの測定波長(λ)の測定放射線(9)に関する該マスクブランク(2)の表面(11)の反射率(R)を低下させる反射防止コーティング(13)及び/又は表面構造(15)が前記表面(11)に設けられることを特徴とし、前記反射防止コーティング(13)及び/又は前記表面構造(15)は、強度閾値(Is)に基づく粒子検出限界を下げるために、前記表面(11)の粗さに起因するヘイズ散乱光強度の度数分布(18)のFWHMを、前記反射防止コーティング(13)及び/又は前記表面構造(15)を設けない場合に比べて減少させるように提供されるマイクロリソグラフィ用のマスクブランク。 Mask blank (2) for microlithography, in particular for EUV lithography, for measuring radiation (9) of at least one measuring wavelength (λ M ) in the visible or UV wavelength range characterized in that said surface (11) is provided with an antireflection coating (13) and/or a surface structure (15) that reduces the reflectivity (R) of the surface (11), said antireflection coating (13) and/or Alternatively, the surface structure (15) reduces the FWHM of the frequency distribution (18) of the haze scattered light intensity due to the roughness of the surface (11) to reduce the particle detection limit based on the intensity threshold (Is). A mask blank for microlithography, which is provided with an antireflection coating (13) and/or said surface structure (15) to be reduced compared to the case without it . 請求項16に記載のマイクロリソグラフィ用のウェハにおいて、前記ウェハ(3)は基板からなるマイクロリソグラフィ用のウェハ。 17. A microlithographic wafer according to claim 16, wherein said wafer (3) comprises a substrate. 請求項17に記載のマイクロリソグラフィ用のマスクブランクにおいて、前記マスクブランク(2)は基板からなるマイクロリソグラフィ用のマスクブランク。 18. The mask blank for microlithography according to claim 17, wherein said mask blank (2) comprises a substrate.
JP2019553253A 2017-03-28 2018-03-14 Method for detecting particles on surfaces of objects, wafers and mask blanks Active JP7300998B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017205212.0 2017-03-28
DE102017205212.0A DE102017205212A1 (en) 2017-03-28 2017-03-28 Method for detecting particles on the surface of an object, wafer and mask blank
PCT/EP2018/056352 WO2018177747A1 (en) 2017-03-28 2018-03-14 Method for detecting particles on the surface of an object, wafer, and mask blank

Publications (3)

Publication Number Publication Date
JP2020515844A JP2020515844A (en) 2020-05-28
JPWO2018177747A5 true JPWO2018177747A5 (en) 2022-11-17
JP7300998B2 JP7300998B2 (en) 2023-06-30

Family

ID=61691960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019553253A Active JP7300998B2 (en) 2017-03-28 2018-03-14 Method for detecting particles on surfaces of objects, wafers and mask blanks

Country Status (6)

Country Link
US (1) US11555783B2 (en)
EP (1) EP3602198B1 (en)
JP (1) JP7300998B2 (en)
KR (1) KR102563712B1 (en)
DE (1) DE102017205212A1 (en)
WO (1) WO2018177747A1 (en)

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072911A (en) * 1973-10-30 1975-06-16
JPH0682727B2 (en) * 1986-02-18 1994-10-19 ホ−ヤ株式会社 Inspection substrate and manufacturing method thereof
JPH06103272B2 (en) * 1988-01-21 1994-12-14 株式会社日立製作所 Method for inspecting foreign matter on mask of X-ray exposure mask
JP2731914B2 (en) * 1988-08-25 1998-03-25 ホーヤ株式会社 Inspection board and manufacturing method thereof
US5242711A (en) * 1991-08-16 1993-09-07 Rockwell International Corp. Nucleation control of diamond films by microlithographic patterning
JP3253177B2 (en) * 1993-06-15 2002-02-04 キヤノン株式会社 Surface condition inspection device
JP3624359B2 (en) * 1995-10-18 2005-03-02 富士通株式会社 LIGHT MODULATION ELEMENT, MANUFACTURING METHOD THEREOF, AND OPTICAL DEVICE
US6137570A (en) * 1998-06-30 2000-10-24 Kla-Tencor Corporation System and method for analyzing topological features on a surface
US7061601B2 (en) * 1999-07-02 2006-06-13 Kla-Tencor Technologies Corporation System and method for double sided optical inspection of thin film disks or wafers
US6630996B2 (en) * 2000-11-15 2003-10-07 Real Time Metrology, Inc. Optical method and apparatus for inspecting large area planar objects
US6608321B1 (en) * 2001-02-01 2003-08-19 Advanced Micro Devices, Inc. Differential wavelength inspection system
JP2003177100A (en) 2001-12-12 2003-06-27 Sumitomo Mitsubishi Silicon Corp Quality evaluation method of mirror-finished and chamfered wafer
US6781688B2 (en) * 2002-10-02 2004-08-24 Kla-Tencor Technologies Corporation Process for identifying defects in a substrate having non-uniform surface properties
US20060008749A1 (en) * 2004-07-08 2006-01-12 Frank Sobel Method for manufacturing of a mask blank for EUV photolithography and mask blank
WO2007039161A1 (en) * 2005-09-27 2007-04-12 Schott Ag Mask blanc and photomasks having antireflective properties
JP2006270111A (en) * 2006-04-21 2006-10-05 Hitachi Ltd Method for inspecting semiconductor device and its equipment
DE102008022792A1 (en) * 2008-05-08 2009-11-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrostatic holding element with anti-reflection coating, measuring method and use of the holding element
JP5564807B2 (en) 2009-03-12 2014-08-06 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method
JP2010267934A (en) 2009-05-18 2010-11-25 Panasonic Corp Solar cell, and method of manufacturing the same
KR101422256B1 (en) 2009-06-19 2014-07-22 케이엘에이-텐코어 코오포레이션 Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks
JP5297930B2 (en) 2009-07-29 2013-09-25 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method
CN102117850B (en) * 2010-11-12 2012-09-19 北京大学 Solar battery with micro-nano composite structure and production method thereof
WO2012075351A2 (en) * 2010-12-03 2012-06-07 Bae Systems Information And Electronic Systems Integration Inc. Asymmetric slotted waveguide and method for fabricating the same
JP5988690B2 (en) 2012-05-18 2016-09-07 浜松ホトニクス株式会社 Spectroscopic sensor
DE102014204171A1 (en) 2014-03-06 2015-09-24 Carl Zeiss Smt Gmbh Optical element and optical arrangement with it
JP6044849B2 (en) * 2014-03-24 2016-12-14 コニカミノルタ株式会社 Processing apparatus and particle fixing method
US9599573B2 (en) * 2014-12-02 2017-03-21 Kla-Tencor Corporation Inspection systems and techniques with enhanced detection
NL2017269A (en) * 2015-08-12 2017-02-16 Asml Netherlands Bv Inspection apparatus, inspection method and manufacturing method
JP6482993B2 (en) 2015-09-04 2019-03-13 シャープ株式会社 Lighting device
JP2017054105A (en) * 2015-09-11 2017-03-16 旭硝子株式会社 Mask Blank

Similar Documents

Publication Publication Date Title
JP3242079B2 (en) Lithography process for device fabrication using multilayer mask
KR101552898B1 (en) Soi wafer inspection method
KR20120039659A (en) Object inspection systems and methods
TWI490963B (en) Methods of inspecting and processing semiconductor wafers
JPS59186324A (en) Foreign substance inspecting apparatus
US11131629B2 (en) Apparatus and methods for measuring phase and amplitude of light through a layer
JPH075115A (en) Surface condition inspection apparatus
JP5322841B2 (en) Mask defect shape measurement method and mask quality determination method
JP5174697B2 (en) Defect inspection equipment
KR102649117B1 (en) Method of inspecting defects of a substrate and defect inspection apparatus
CN110658196B (en) Defect detection device and defect detection method
US7046352B1 (en) Surface inspection system and method using summed light analysis of an inspection surface
JPH0256626B2 (en)
JPWO2018177747A5 (en)
JP5241343B2 (en) Microstructure transfer device
US5453830A (en) Spatially isolated diffractor on a calibration substrate for a pellicle inspection system
US6919146B2 (en) Planar reticle design/fabrication method for rapid inspection and cleaning
KR102563712B1 (en) Methods for Detecting Particles on Surfaces of Objects, Wafers, and Mask Blanks
JP3166320B2 (en) Method and apparatus for inspecting foreign matter in resist coating film
JPS63103951A (en) Dust inspection device
JP2006038728A (en) Method for inspecting antireflection transparent film
JPH052262A (en) Foreign body inspection device
JPH0599639A (en) Inspection device for small unevenness of planar object
KR100268778B1 (en) Inspection method for process defect of semiconductor device
JP2001264262A (en) Surface foreign matter inspecting method and surface foreign matter inspecting device