JPWO2018155555A1 - Method for selective modification of substrate surface - Google Patents

Method for selective modification of substrate surface Download PDF

Info

Publication number
JPWO2018155555A1
JPWO2018155555A1 JP2019501412A JP2019501412A JPWO2018155555A1 JP WO2018155555 A1 JPWO2018155555 A1 JP WO2018155555A1 JP 2019501412 A JP2019501412 A JP 2019501412A JP 2019501412 A JP2019501412 A JP 2019501412A JP WO2018155555 A1 JPWO2018155555 A1 JP WO2018155555A1
Authority
JP
Japan
Prior art keywords
polymer
substrate
group
region
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019501412A
Other languages
Japanese (ja)
Other versions
JP6905200B2 (en
Inventor
仁視 大▲崎▼
仁視 大▲崎▼
裕之 小松
裕之 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JPWO2018155555A1 publication Critical patent/JPWO2018155555A1/en
Application granted granted Critical
Publication of JP6905200B2 publication Critical patent/JP6905200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Formation Of Insulating Films (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明は、表層を有し、その表層の第1領域にケイ素の酸化物又は窒化物を含む基材を準備する工程と、上記基材の表面の少なくとも一部に酸化処理及び親水化処理から選ばれる少なくとも1種の表面処理を施す工程と、上記表面処理工程後の上記基材の表面に非感光性組成物を塗工する工程とを備え、上記非感光性組成物が、窒素原子を含む第1重合体と、溶媒とを含有する基材表面の選択的修飾方法である。上記基材の表層は、上記第1領域以外の領域であって、金属を含む第2領域をさらに有するとよい。上記表面処理工程において、O2プラズマ処理を行うことが好ましい。The present invention has a surface layer, a step of preparing a substrate containing silicon oxide or nitride in a first region of the surface layer, and oxidizing and hydrophilizing at least a part of the surface of the substrate. A step of applying at least one selected surface treatment, and a step of applying a non-photosensitive composition to the surface of the base material after the surface treatment step, wherein the non-photosensitive composition contains a nitrogen atom. This is a method for selectively modifying the surface of a substrate containing a first polymer and a solvent. The surface layer of the base material may be a region other than the first region and further include a second region containing a metal. In the surface treatment step, it is preferable to perform O2 plasma treatment.

Description

本発明は、基材表面の選択的修飾方法に関する。   The present invention relates to a method for selectively modifying the surface of a substrate.

半導体デバイスのさらなる微細化に伴い、30nmを切る微細パターンを形成する技術が要求されている。しかし、従来のリソグラフィーによる方法では、光学的要因等により技術的に困難になってきている。   With the further miniaturization of semiconductor devices, a technique for forming a fine pattern of less than 30 nm is required. However, the conventional lithography method is technically difficult due to optical factors and the like.

そこで、いわゆるボトムアップ技術を用いて微細パターンを形成することが検討されている。このボトムアップ技術としては、重合体の自己組織化を利用する方法の他、微細な領域を表層に有する基材を選択的に修飾する方法が検討されるようになってきている。この選択的修飾方法には、簡便かつ高選択的に表面領域を修飾することができる材料が必要であり、種々のものが検討されている(特開2016−25355号公報、特開2003−76036号公報、ACS Nano,9,9,8710,2015、ACS Nano,9,9,8651,2015、Science,318,426,2007及びLangmuir,21,8234,2005参照)。   Therefore, formation of a fine pattern using a so-called bottom-up technique has been studied. As this bottom-up technique, a method of selectively modifying a base material having a fine region in a surface layer has been studied, in addition to a method utilizing self-assembly of a polymer. This selective modification method requires a material capable of modifying the surface region in a simple and highly selective manner, and various materials have been studied (JP-A-2016-25355, JP-A-2003-76036). No., ACS Nano, 9, 9, 8710, 2015, ACS Nano, 9, 9, 8651, 2015, Science, 318, 426, 2007 and Langmuir, 21, 8234, 2005).

特開2016−25355号公報JP 2016-25355 A 特開2003−76036号公報JP-A-2003-76036

ACS Nano,9,9,8710,2015ACS Nano, 9, 9, 8710, 2015 ACS Nano,9,9,8651,2015ACS Nano, 9, 9, 8651, 2015 Science,318,426,2007Science, 318, 426, 2007 Langmuir,21,8234,2005Langmuir, 21, 8234, 2005

しかし、上記従来の材料では、低分子材料ゆえ、既存プロセスでのスピンコート法では塗工できず、効率の悪いLangmuir−Blodgett法を用いる必要があり、耐熱性に劣るという不都合がある。そのため、粘度が大きく、耐熱性を有する高分子材料を用いることが望ましい。一方で、高分子材料は立体障害が大きいため、効率よく基材表面を修飾することはできておらず、また、ケイ素の酸化物、窒化物、酸窒化物又はこれらの組み合わせ(以下、「ケイ素の酸化物等」ともいう)を含む領域を有する基材に対し、十分な選択性を簡単に見い出すことができる手法は未だ知られていない。   However, in the above-mentioned conventional materials, since they are low-molecular materials, they cannot be applied by spin coating in an existing process, and it is necessary to use an inefficient Langmuir-Blodgett method, which is disadvantageous in that heat resistance is poor. Therefore, it is desirable to use a polymer material having high viscosity and heat resistance. On the other hand, the polymer material has a large steric hindrance, so that it has not been possible to efficiently modify the surface of the base material, and it is also difficult to modify silicon oxide, nitride, oxynitride or a combination thereof (hereinafter, “silicon There is not yet known a method capable of easily finding a sufficient selectivity for a substrate having a region containing an oxide of the same.

本発明は、上述のような事情に基づいてなされたものであり、その目的は、ケイ素の酸化物等を含む表面領域を簡便に、かつ高選択的に修飾することができる基材表面の選択的修飾方法を提供することにある。   The present invention has been made based on the above-described circumstances, and an object of the present invention is to select a substrate surface that can easily and highly selectively modify a surface region containing an oxide of silicon or the like. It is to provide a method of modification.

上記課題を解決するためになされた発明は、表層を有し、その表層の第1領域にケイ素の酸化物、窒化物、酸窒化物又はこれらの組み合わせを含む基材を準備する工程と、上記基材の表面の少なくとも一部に酸化処理及び親水化処理から選ばれる少なくとも1種の表面処理を施す工程と、上記表面処理工程後の上記基材の表面に非感光性組成物を塗工する工程とを備え、上記非感光性組成物が、窒素原子を含む第1重合体と、溶媒とを含有する基材表面の選択的修飾方法である。   The invention made to solve the above problem has a surface layer, a step of preparing a substrate containing a silicon oxide, nitride, oxynitride or a combination thereof in a first region of the surface layer, A step of subjecting at least a part of the surface of the substrate to at least one type of surface treatment selected from an oxidation treatment and a hydrophilic treatment, and applying a non-photosensitive composition to the surface of the substrate after the surface treatment step And a method for selectively modifying the surface of a substrate, wherein the non-photosensitive composition contains a first polymer containing a nitrogen atom and a solvent.

本発明の基材表面の選択的修飾方法によれば、ケイ素の酸化物等を含む表面領域を簡便に、かつ高選択的に修飾することができる。従って、当該基材表面の選択的修飾方法は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。   ADVANTAGE OF THE INVENTION According to the selective modification method of the base material surface of this invention, the surface area | region containing a silicon oxide etc. can be modified easily and highly selectively. Therefore, the method for selectively modifying the surface of a base material can be suitably used for a processing process of a semiconductor device in which miniaturization is expected to further advance in the future.

以下、当該基材表面の選択的修飾方法(以下、単に、「選択的修飾方法」という)の実施の形態について詳説する。   Hereinafter, embodiments of the method for selectively modifying the substrate surface (hereinafter, simply referred to as “selective modification method”) will be described in detail.

<選択的修飾方法>
当該選択的修飾方法は、表層(以下、「表層(X)」ともいう)を有し、その表層(X)の第1領域(以下、「領域(I)」ともいう)にケイ素の酸化物、窒化物、酸窒化物又はこれらの組み合わせを含む基材(以下、「基材(P)」ともいう)を準備する工程(以下、「準備工程」ともいう)と、上記基材(P)の表面の少なくとも一部に酸化処理及び親水化処理から選ばれる少なくとも1種の表面処理を施す工程(以下、「表面処理工程」ともいう)と、上記表面処理工程後の上記基材(P)の表面に非感光性組成物(以下、「組成物(S)」ともいう)を塗工する工程(以下、「塗工工程」ともいう)とを備える。上記組成物(S)が、窒素原子を含む第1重合体(以下、「[A]重合体」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有する。
<Selective modification method>
The selective modification method has a surface layer (hereinafter, also referred to as “surface layer (X)”), and a first region (hereinafter, also referred to as “region (I)”) of the surface layer (X) has an oxide of silicon. For preparing a substrate (hereinafter, also referred to as “substrate (P)”) containing, nitride, oxynitride or a combination thereof (hereinafter, also referred to as “preparation step”); Applying at least one type of surface treatment selected from an oxidation treatment and a hydrophilic treatment (hereinafter, also referred to as “surface treatment step”) to at least a part of the surface of the substrate, and the base material (P) after the surface treatment step (Hereinafter, also referred to as “coating step”) for applying a non-photosensitive composition (hereinafter, also referred to as “composition (S)”) on the surface of the substrate. The composition (S) contains a first polymer containing a nitrogen atom (hereinafter, also referred to as “[A] polymer”) and a solvent (hereinafter, also referred to as “[B] solvent”).

当該選択的修飾方法は、上記各工程を備え、窒素原子を含む[A]重合体を含有する組成物(S)を用いることで、ケイ素の酸化物等を含む表面領域を簡便に、かつ高選択的に修飾することができる。当該選択的修飾方法が、上記構成を備えることで、上記効果を奏する理由について必ずしも明確ではないが、例えば表面処理を行っても、ケイ素の酸化物等はSi−OH等を有しており、[A]重合体が、窒素原子との水素結合により変わらず相互作用することが、酸化物等に変換されて[A]重合体との相互作用が抑制される金属とは性質が異なること等が考えられる。以下、各工程について説明する。   The selective modification method comprises the above-described steps, and uses the composition (S) containing the polymer [A] containing a nitrogen atom, so that the surface region containing the silicon oxide or the like can be simply and easily formed. Can be selectively modified. The selective modification method is not necessarily clear why the above-mentioned effect is achieved by providing the above-described configuration, but, for example, even if surface treatment is performed, silicon oxide or the like has Si-OH or the like, [A] The fact that the polymer interacts unchanged by hydrogen bonding with a nitrogen atom is different from the metal which is converted into an oxide or the like and the interaction with the [A] polymer is suppressed, etc. Can be considered. Hereinafter, each step will be described.

[準備工程]
本工程では、表層(X)を有し、その表層(X)の領域(I)にケイ素の酸化物、窒化物、酸窒化物又はこれらの組み合わせを含む基材(P)を準備する。
[Preparation process]
In this step, a substrate (P) having a surface layer (X) and containing an oxide, a nitride, an oxynitride of silicon, or a combination thereof in a region (I) of the surface layer (X) is prepared.

領域(I)中におけるケイ素の酸化物としては、例えばSiO等が、ケイ素の窒化物としては、例えばSiNx、Si等が、ケイ素の酸窒化物としては、例えばSiON等が挙げられる。領域(I)中のケイ素の酸化物等としては、ケイ素の酸化物が好ましく、SiOがより好ましい。Examples of the silicon oxide in the region (I) include SiO 2 and the like, examples of the silicon nitride include SiNx and Si 3 N 4 , and examples of the silicon oxynitride include SiON and the like. . As the silicon oxide or the like in the region (I), a silicon oxide is preferable, and SiO 2 is more preferable.

領域(I)を有する基材(P)としては、例えば酸化ケイ素、窒化ケイ素等を主成分とする層間絶縁膜等が挙げられる。「主成分」とは、最も含有率の大きい成分をいい、好ましくは、含有率が50質量%以上の成分である。   Examples of the base material (P) having the region (I) include, for example, an interlayer insulating film mainly containing silicon oxide, silicon nitride, or the like. The “main component” refers to a component having the largest content, preferably a component having a content of 50% by mass or more.

基材(P)の表層(X)に、領域(I)以外の領域であって、金属(以下、「金属(M)」ともいう)を含む第2領域(以下、「領域(II)」ともいう)を有するとよい。   In the surface layer (X) of the base material (P), a second region (hereinafter, referred to as “region (II)”) that is a region other than the region (I) and includes a metal (hereinafter, also referred to as “metal (M)”). ).

金属(M)としては、金属元素であれば特に限定されない。なお、ケイ素は、非金属であり、金属に該当しない。金属(M)としては、例えば銅、鉄、亜鉛、コバルト、アルミニウム、スズ、タングステン、ジルコニウム、チタン、タンタル、ゲルマニウム、モリブデン、ルテニウム、金、銀、白金、パラジウム、ニッケル等が挙げられる。これらの中で、銅、コバルト又はタングステンが好ましい。   The metal (M) is not particularly limited as long as it is a metal element. Note that silicon is a nonmetal and does not correspond to a metal. Examples of the metal (M) include copper, iron, zinc, cobalt, aluminum, tin, tungsten, zirconium, titanium, tantalum, germanium, molybdenum, ruthenium, gold, silver, platinum, palladium, and nickel. Of these, copper, cobalt or tungsten is preferred.

領域(II)中における金属(M)の含有形態としては、例えば金属単体、合金、導電性窒化物、金属酸化物、シリサイド等が挙げられる。   Examples of the form of the metal (M) contained in the region (II) include a simple metal, an alloy, a conductive nitride, a metal oxide, and a silicide.

金属単体としては、例えば銅、鉄、コバルト、タングステン、タンタル等の金属の単体等が挙げられる。
合金としては、例えばニッケル−銅合金、コバルト−ニッケル合金、金−銀合金等が挙げられる。
導電性窒化物としては、例えば窒化タンタル、窒化チタン、窒化鉄、窒化アルミニウム等が挙げられる。
金属酸化物としては、例えば酸化タンタル、酸化アルミニウム、酸化鉄、酸化銅等が挙げられる。
シリサイドとしては、例えば鉄シリサイド、モリブデンシリサイド等が挙げられる。
これらの中で、金属単体、合金、導電性窒化物又はシリサイドが好ましく、金属単体がより好ましく、銅単体、コバルト単体又はタングステン単体がさらに好ましい。
Examples of the simple metal include simple metals such as copper, iron, cobalt, tungsten, and tantalum.
Examples of the alloy include a nickel-copper alloy, a cobalt-nickel alloy, and a gold-silver alloy.
Examples of the conductive nitride include tantalum nitride, titanium nitride, iron nitride, and aluminum nitride.
Examples of the metal oxide include tantalum oxide, aluminum oxide, iron oxide, and copper oxide.
Examples of the silicide include iron silicide and molybdenum silicide.
Among them, a metal simple substance, an alloy, a conductive nitride or a silicide is preferable, a metal simple substance is more preferable, and a copper simple substance, a cobalt simple substance, or a tungsten simple substance is further preferable.

表層(X)における領域(I)及び領域(II)の存在形状としては特に限定されず、例えば平面視で面状、点状、ストライプ状等が挙げられる。領域(I)及び領域(II)の大きさは特に限定されず、適宜所望の大きさの領域とすることができる。   The existing shape of the region (I) and the region (II) in the surface layer (X) is not particularly limited, and examples thereof include a planar shape, a dot shape, and a stripe shape in plan view. The size of the region (I) and the region (II) is not particularly limited, and can be a region having a desired size as appropriate.

基材(P)の形状としては、特に限定されず、板状(基板)、球状等、適宜所望の形状とすることができる。   The shape of the substrate (P) is not particularly limited, and may be a desired shape such as a plate (substrate) or a sphere.

領域(I)及び領域(II)を有する基材(P)は、例えば金属を含む基板上に、ケイ素の酸化物等を主成分とする中間膜を形成し、この中間膜上にレジストパターンを形成した後、このレジストパターンをマスクとしたガスエッチング処理により上記中間膜のエッチングを行うこと等により形成することができる。このようにして形成された基材は、例えばパターンの側壁の表面に領域(I)を有し、スペース部分の底面に領域(II)を有するパターン(例えばトレンチパターン)が形成された基材(以下、「基材(Q)」ともいう)である。   For the base material (P) having the region (I) and the region (II), for example, an intermediate film mainly composed of silicon oxide or the like is formed on a metal-containing substrate, and a resist pattern is formed on the intermediate film. After formation, the intermediate film can be formed by etching the intermediate film by gas etching using the resist pattern as a mask. The substrate thus formed has, for example, a substrate (eg, a trench pattern) having a region (I) on the surface of the side wall of the pattern and a region (II) on the bottom surface of the space portion. Hereinafter, also referred to as “base material (Q)”).

[表面処理工程]
本工程では、上記基材(P)の表面の少なくとも一部に酸化処理及び親水化処理から選ばれる少なくとも1種の表面処理を施す。基材(P)の全表面に表面処理を施すことが好ましい。「酸化処理」とは、この処理を行うことにより、基材表面の物質が酸化される処理をいう。「親水化処理」とは、この処理を行うことにより、処理前よりも基材の表面の親水性を高めることをいう。基材の表面の親水性が高められたことは、例えば親水化処理前に比べて水の接触角が小さくなること等によって把握することができる。表面処理を行うことによって、酸化と親水化とが両方発現してもよいし、どちらか一方が発現してもよい。表面処理として、好ましくは、酸化処理である。
[Surface treatment process]
In this step, at least a part of the surface of the substrate (P) is subjected to at least one surface treatment selected from an oxidation treatment and a hydrophilic treatment. It is preferable to perform a surface treatment on the entire surface of the substrate (P). “Oxidation treatment” refers to a treatment in which a substance on the surface of a substrate is oxidized by performing this treatment. “Hydrophilic treatment” means that by performing this treatment, the surface of the base material is made more hydrophilic than before the treatment. The increase in the hydrophilicity of the surface of the substrate can be grasped, for example, by the fact that the contact angle of water becomes smaller than before the hydrophilization treatment. By performing the surface treatment, both oxidation and hydrophilization may be expressed, or either one may be expressed. The surface treatment is preferably an oxidation treatment.

表面処理の方法としては、例えばOプラズマ処理、Nプラズマ処理、Arプラズマ処理、フッ素ガスプラズマ処理、塩素ガスプラズマ処理等のガスプラズマ処理、紫外線/オゾン処理、コロナ処理等が挙げられる。これらの中で、基材表面をより選択的に修飾できる観点から、ガスプラズマ処理が好ましく、Oプラズマ処理がより好ましい。Examples of the surface treatment method include gas plasma treatment such as O 2 plasma treatment, N 2 plasma treatment, Ar plasma treatment, fluorine gas plasma treatment, chlorine gas plasma treatment, ultraviolet / ozone treatment, corona treatment, and the like. Among these, from the viewpoint of more selective modification of the substrate surface, the gas plasma treatment is preferable, O 2 plasma treatment is more preferable.

プラズマ処理における圧力の下限としては、1.33Paが好ましく、13.3Paがより好ましい。上記圧力の上限としては、66.5Paが好ましく、26.6Paがより好ましい。Oプラズマ処理におけるプラズマ出力の下限としては、5Wが好ましく、10Wがより好ましい。上記プラズマ出力の上限としては、500Wが好ましく、100Wがより好ましい。Oプラズマ処理における処理時間の下限としては、1秒が好ましく、2秒がより好ましい。上記処理時間の上限としては、30秒が好ましく、5秒がより好ましい。Oプラズマ処理の温度の下限としては、−30℃が好ましく、0℃がより好ましく、5℃がさらに好ましい。上記温度の上限としては、300℃が好ましく、100℃がより好ましく、40℃がさらに好ましい。The lower limit of the pressure in the O 2 plasma treatment is preferably 1.33 Pa, more preferably 13.3 Pa. The upper limit of the pressure is preferably 66.5 Pa, and more preferably 26.6 Pa. The lower limit of the plasma output in the O 2 plasma processing is preferably 5 W, more preferably 10 W. The upper limit of the plasma output is preferably 500 W, more preferably 100 W. The lower limit of the processing time in the O 2 plasma processing is preferably 1 second, and more preferably 2 seconds. The upper limit of the processing time is preferably 30 seconds, and more preferably 5 seconds. The lower limit of the temperature of the O 2 plasma treatment is preferably −30 ° C., more preferably 0 ° C., and still more preferably 5 ° C. As an upper limit of the above-mentioned temperature, 300 ° C is preferred, 100 ° C is more preferred, and 40 ° C is still more preferred.

[塗工工程]
本工程では、上記表面処理工程後の基材(P)の表面に、組成物(S)を塗工する。以下、組成物(S)について説明する。
[Coating process]
In this step, the composition (S) is applied to the surface of the substrate (P) after the surface treatment step. Hereinafter, the composition (S) will be described.

(組成物(S))
組成物(S)は、非感光性の組成物であって、[A]重合体と[B]溶媒とを含有する。「非感光性」とは、電磁波、荷電粒子線等の露光によって、組成物が含有する重合体の分子量増大反応、酸解離性基の解離反応等が実質的に起こらず、重合体の現像液等への溶解性が実質的に変化しないものをいう。非感光性組成物は、通常、[A]重合体が重合性基、架橋性基等を有していない及び/又は感光性酸発生剤等を含有していない。組成物(S)は、[A]重合体及び[B]溶媒以外に他の成分を含有していてもよい。以下、各成分について説明する。
(Composition (S))
The composition (S) is a non-photosensitive composition and contains [A] a polymer and [B] a solvent. "Non-photosensitive" means that, upon exposure to electromagnetic waves, charged particle beams, etc., a molecular weight increase reaction of a polymer contained in the composition, a dissociation reaction of an acid dissociable group, etc. do not substantially occur, and a polymer developer And the like, in which the solubility in such as does not substantially change. In the non-photosensitive composition, the polymer [A] usually does not have a polymerizable group, a crosslinkable group, and / or does not contain a photosensitive acid generator or the like. The composition (S) may contain other components other than the polymer [A] and the solvent [B]. Hereinafter, each component will be described.

([A]重合体)
[A]重合体は、窒素原子(以下、「窒素原子(A)」ともいう)を含む重合体である。[A]重合体は、窒素原子(A)を1個又は2個以上有していてもよい。
([A] polymer)
[A] The polymer is a polymer containing a nitrogen atom (hereinafter, also referred to as “nitrogen atom (A)”). [A] The polymer may have one or two or more nitrogen atoms (A).

窒素原子(A)は、非共有電子対を有することが好ましい。   The nitrogen atom (A) preferably has a lone pair.

窒素原子(A)にプロトンを付加して得られる共役酸のpKaの下限としては、3が好ましく、5がより好ましく、7がさらに好ましく、9が特に好ましい。上記pKaの上限としては、例えば14である。窒素原子(A)の共役酸のpKaを上記範囲とすることで、基材表面修飾の選択性をより向上させることができる。窒素原子(A)の共役酸とは、窒素原子(A)が有する非共有電子対に、プロトンが配位結合したものを意味する。   As a minimum of pKa of a conjugate acid obtained by adding a proton to nitrogen atom (A), 3 is preferred, 5 is more preferred, 7 is still more preferred, and 9 is especially preferred. The upper limit of the pKa is, for example, 14. By setting the pKa of the conjugate acid of the nitrogen atom (A) in the above range, the selectivity of the substrate surface modification can be further improved. The conjugate acid of the nitrogen atom (A) means a conjugate acid pair of a nitrogen atom (A) to which a proton is coordinated and bonded.

[A]重合体は、窒素原子(A)を主鎖中、側鎖中、及び主鎖の末端に結合する基(以下、「末端基(X)」ともいう)中のいずれに有していてもよく、これらのうちの2以上の場所に有していてもよい。「主鎖」とは、[A]重合体の原子鎖のうち最も長いものをいう。「側鎖」とは、[A]重合体の原子鎖のうち主鎖以外のものをいう。   [A] The polymer has a nitrogen atom (A) in any of a main chain, a side chain, and a group bonding to a terminal of the main chain (hereinafter, also referred to as “terminal group (X)”). Or in two or more of these locations. “Main chain” refers to the longest atom chain of the polymer [A]. The “side chain” refers to an atomic chain of the polymer [A] other than the main chain.

窒素原子(A)を主鎖中に有する[A]重合体(以下、「[A1]重合体」ともいう)としては、例えばポリイミン等、ポリアミド、ポリイミド等が挙げられる。   Examples of the [A] polymer having a nitrogen atom (A) in its main chain (hereinafter, also referred to as "[A1] polymer)" include, for example, polyimine, polyamide, polyimide and the like.

窒素原子(A)を側鎖中に有する[A]重合体(以下、「[A2]重合体」ともいう)としては、例えば窒素原子(A)を含む基(以下、「基(I)」ともいう)を含む構造単位(以下、「構造単位(I)」ともいう)を有する重合体等が挙げられる。[A2]重合体は、構造単位(I)を1種又は2種以上有していてもよい。   As the [A] polymer having a nitrogen atom (A) in a side chain (hereinafter, also referred to as “[A2] polymer”), for example, a group containing a nitrogen atom (A) (hereinafter, “group (I)”) (Hereinafter also referred to as “structural unit (I)”). [A2] The polymer may have one or more structural units (I).

基(I)としては、1価の基として、例えば1級アミノ基(−NH)、2級アミノ基、3級アミノ基、窒素原子含有芳香族複素環基等が挙げられる。Examples of the group (I) include monovalent groups such as a primary amino group (—NH 2 ), a secondary amino group, a tertiary amino group, and a nitrogen atom-containing aromatic heterocyclic group.

2級アミノ基としては、例えばメチルアミノ基、エチルアミノ基、シクロペンチルアミノ基、シクロヘキシルアミノ基、フェニルアミノ基、ベンジルアミノ基等のモノ炭化水素基置換アミノ基等が挙げられる。   Examples of the secondary amino group include a monohydrocarbon group-substituted amino group such as a methylamino group, an ethylamino group, a cyclopentylamino group, a cyclohexylamino group, a phenylamino group, and a benzylamino group.

3級アミノ基としては、例えばジメチルアミノ基、ジエチルアミノ基、ジシクロペンチルアミノ基、ジシクロヘキシルアミノ基、ジフェニルアミノ基、ジベンジルアミノ基、メチルエチルアミノ基、フェニルメチルアミノ基等のジ炭化水素基置換アミノ基;1−ピロリジニル基、1−ピペリジル基、4−モルホリノ基等の環状アミノ基等が挙げられる。   Examples of the tertiary amino group include dimethylamino group, diethylamino group, dicyclopentylamino group, dicyclohexylamino group, diphenylamino group, dibenzylamino group, methylethylamino group, and phenylmethylamino group-substituted amino. Groups; cyclic amino groups such as 1-pyrrolidinyl group, 1-piperidyl group and 4-morpholino group.

窒素原子含有芳香族複素環基としては、例えばピローリル基、インドーリル基、カルバゾーリル基、ピリジル基、キノリル基、フェナントリル基、イミダゾーリル基、ピラジニル基、ピリミジニル基、ピリダジニル基等が挙げられる。   Examples of the nitrogen-containing aromatic heterocyclic group include a pyrrolyl group, an indolyl group, a carbazolyl group, a pyridyl group, a quinolyl group, a phenanthryl group, an imidazolyl group, a pyrazinyl group, a pyrimidinyl group, and a pyridazinyl group.

構造単位(I)としては、例えば下記式(1)で表される構造単位等が挙げられる。   Examples of the structural unit (I) include a structural unit represented by the following formula (1).

Figure 2018155555
Figure 2018155555

上記式(1)中、Rは、水素原子又はメチル基である。Rは、−O−、−CO−、−COO−、−CONH−、2価の炭化水素基若しくはこれらのうちの2つ以上を組み合わせた基又は単結合である。Rは、1価の基(I)である。In the above formula (1), R 1 is a hydrogen atom or a methyl group. R 2 is —O—, —CO—, —COO—, —CONH—, a divalent hydrocarbon group, a group obtained by combining two or more thereof, or a single bond. R 3 is a monovalent group (I).

としては、メチル基が好ましい。R 1 is preferably a methyl group.

で表される2価の炭化水素基としては、例えば
メタンジイル基、エタンジイル基、プロパンジイル基等の2価の鎖状炭化水素基;
シクロペンタンジイル基、シクロヘキサンジイル基等の2価の脂環式炭化水素基;
ベンゼンジイル基、ナフタレンジイル基等の2価の芳香族炭化水素基等が挙げられる。
Examples of the divalent hydrocarbon group represented by R 2 include a divalent chain hydrocarbon group such as a methanediyl group, an ethanediyl group, and a propanediyl group;
Divalent alicyclic hydrocarbon groups such as cyclopentanediyl group and cyclohexanediyl group;
Examples thereof include divalent aromatic hydrocarbon groups such as a benzenediyl group and a naphthalenediyl group.

としては、例えばカルボニルオキシメタンジイル基、カルボニルオキシエタンジイル基等のカルボニルオキシアルカンジイル基等が挙げられる。これらの中で、カルボニルオキシエタンジイル基が好ましい。Examples of R 2 include a carbonyloxyalkanediyl group such as a carbonyloxymethanediyl group and a carbonyloxyethanediyl group. Of these, a carbonyloxyethanediyl group is preferred.

としては、3級アミノ基が好ましく、ジアルキルアミノ基がより好ましく、ジメチルアミノ基がさらに好ましい。R 3 is preferably a tertiary amino group, more preferably a dialkylamino group, and still more preferably a dimethylamino group.

構造単位(I)の含有割合の下限としては、[A2]重合体を構成する全構造単位に対して、0.1モル%が好ましく、0.5モル%がより好ましく、1モル%がさらに好ましく、2モル%が特に好ましい。上記含有割合の上限としては、90モル%が好ましく、30モル%がより好ましく、15モル%がさらに好ましく、8モル%が特に好ましい。構造単位(I)の含有割合を上記範囲とすることで、基材表面修飾の選択性をより向上させることができる。   The lower limit of the content of the structural unit (I) is preferably 0.1 mol%, more preferably 0.5 mol%, and still more preferably 1 mol%, based on all the structural units constituting the polymer [A2]. Preferably, 2 mol% is particularly preferred. The upper limit of the content ratio is preferably 90 mol%, more preferably 30 mol%, further preferably 15 mol%, and particularly preferably 8 mol%. By setting the content of the structural unit (I) in the above range, the selectivity of the substrate surface modification can be further improved.

[A2]重合体は、構造単位(I)以外の構造単位(以下、「構造単位(II)」ともいう)を有していてもよい。[A2]重合体は、構造単位(II)を1種又は2種以上有していてもよい。   [A2] The polymer may have a structural unit other than the structural unit (I) (hereinafter, also referred to as “structural unit (II)”). [A2] The polymer may have one or more structural units (II).

構造単位(II)としては、例えば置換又は非置換のスチレンに由来する構造単位、(メタ)アクリル酸又は(メタ)アクリル酸エステルに由来する構造単位、置換又は非置換のエチレンに由来する構造単位等が挙げられる。[A2]重合体は、上記他の構造単位をそれぞれ1種又は2種以上有していてもよい。   Examples of the structural unit (II) include a structural unit derived from substituted or unsubstituted styrene, a structural unit derived from (meth) acrylic acid or (meth) acrylate, and a structural unit derived from substituted or unsubstituted ethylene. And the like. [A2] The polymer may have one or more of the other structural units described above.

置換スチレンとしては、例えばα−メチルスチレン、o−、m−、p−メチルスチレン、p−t−ブチルスチレン、2,4,6−トリメチルスチレン、p−メトキシスチレン、p−t−ブトキシスチレン、o−、m−、p−ビニルスチレン、o−、m−、p−ヒドロキシスチレン、m−、p−クロロメチルスチレン、p−クロロスチレン、p−ブロモスチレン、p−ヨードスチレン、p−ニトロスチレン、p−シアノスチレン等が挙げられる。   Examples of the substituted styrene include α-methylstyrene, o-, m-, p-methylstyrene, pt-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, pt-butoxystyrene, o-, m-, p-vinylstyrene, o-, m-, p-hydroxystyrene, m-, p-chloromethylstyrene, p-chlorostyrene, p-bromostyrene, p-iodostyrene, p-nitrostyrene , P-cyanostyrene and the like.

(メタ)アクリル酸エステルとしては、例えば
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸2−エチルヘキシル等の(メタ)アクリル酸アルキルエステル;
(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−メチルシクロペンチル、(メタ)アクリル酸2−エチルアダマンチル、(メタ)アクリル酸2−(アダマンタン−1−イル)プロピル等の(メタ)アクリル酸シクロアルキルエステル;
(メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル等の(メタ)アクリル酸アリールエステル;
(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、(メタ)アクリル酸3−グリシジルプロピル、(メタ)アクリル酸3−トリメチルシリルプロピル等の(メタ)アクリル酸置換アルキルエステル等が挙げられる。
Examples of the (meth) acrylate include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. ;
Cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 2-ethyladamantyl (meth) acrylate, 2- (adamantan-1-yl) propyl (meth) acrylate, etc. A cycloalkyl (meth) acrylate;
Aryl (meth) acrylates such as phenyl (meth) acrylate and naphthyl (meth) acrylate;
(Meth) acrylic acid-substituted alkyl esters such as 2-hydroxyethyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 3-glycidylpropyl (meth) acrylate and 3-trimethylsilylpropyl (meth) acrylate Is mentioned.

置換エチレンとしては、例えば
プロペン、ブテン、ペンテン等のアルケン;
ビニルシクロペンタン、ビニルシクロヘキサン等のビニルシクロアルカン;
シクロペンテン、シクロヘキセン等のシクロアルケン;
4−ヒドロキシ−1−ブテン、ビニルグリシジルエーテル、ビニルトリメチルシリルエーテル等が挙げられる。
Examples of the substituted ethylene include alkenes such as propene, butene, and pentene;
Vinylcycloalkanes such as vinylcyclopentane and vinylcyclohexane;
Cycloalkenes such as cyclopentene and cyclohexene;
4-hydroxy-1-butene, vinyl glycidyl ether, vinyl trimethylsilyl ether and the like.

構造単位(II)としては、置換又は非置換のスチレンに由来する構造単位及び(メタ)アクリル酸エステルに由来する構造単位が好ましく、置換又は非置換のスチレンに由来する構造単位がより好ましく、非置換のスチレンに由来する構造単位がさらに好ましい。構造単位(II)を上記構造単位とすることで、基材表面修飾の選択性をより向上させることができる。   As the structural unit (II), a structural unit derived from a substituted or unsubstituted styrene and a structural unit derived from a (meth) acrylate ester are preferable, and a structural unit derived from a substituted or unsubstituted styrene is more preferable. Structural units derived from substituted styrene are more preferred. By making the structural unit (II) the above-mentioned structural unit, the selectivity of substrate surface modification can be further improved.

[A2]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A2]重合体を構成する全構造単位に対して、10モル%が好ましく、70モル%がより好ましく、80モル%がさらに好ましく、90モル%が特に好ましい。上記含有割合の上限としては、99.9モル%が好ましく、99.5モル%がより好ましく、99モル%がさらに好ましく、98モル%が特に好ましい。   When the polymer [A2] has the structural unit (II), the lower limit of the content ratio of the structural unit (II) is preferably 10 mol% based on all the structural units constituting the polymer [A2], Mole% is more preferable, 80 mol% is still more preferable, and 90 mol% is particularly preferable. The upper limit of the content is preferably 99.9 mol%, more preferably 99.5 mol%, still more preferably 99 mol%, and particularly preferably 98 mol%.

構造単位(I)及び構造単位(II)を有する[A2]重合体は、ランダム共重合体であってもよく、ブロック共重合体であってもよいが、基材表面修飾の選択性の向上の観点から、ブロック共重合体が好ましく、1種の構造単位(I)を主鎖の一端に有するブロック共重合体がより好ましく、1種の構造単位(I)と1種の構造単位(II)とを有するジブロック共重合体がさらに好ましい。   [A2] The polymer having the structural unit (I) and the structural unit (II) may be a random copolymer or a block copolymer. In view of the above, a block copolymer is preferable, and a block copolymer having one type of structural unit (I) at one end of the main chain is more preferable, and one type of structural unit (I) and one type of structural unit (II ) Are more preferred.

窒素原子(A)を末端基(X)中に有する重合体(以下、「[A3]重合体」ともいう)における末端基(X)としては、例えば上記[A2]重合体の基(I)として例示した基を含む基等が挙げられる。末端基(X)としては、水素原子を基(I)で置換したアルキル基が好ましく、1級〜3級のアミノ基で水素原子を置換したアルキル基がより好ましく、アミノプロピル基がさらに好ましい。   As the terminal group (X) in the polymer having a nitrogen atom (A) in the terminal group (X) (hereinafter, also referred to as “[A3] polymer”), for example, the group (I) of the above-mentioned [A2] polymer And the like. As the terminal group (X), an alkyl group in which a hydrogen atom is substituted by the group (I) is preferable, an alkyl group in which a hydrogen atom is substituted by a primary to tertiary amino group is more preferable, and an aminopropyl group is more preferable.

[A3]重合体は、末端基(X)を主鎖の一方又は両方の末端に有することができるが、基材表面修飾の選択性の向上の観点から、末端基(X)を主鎖の一方の末端に有することが好ましい。   [A3] The polymer can have a terminal group (X) at one or both terminals of the main chain, but from the viewpoint of improving the selectivity of surface modification of the base material, the terminal group (X) is added to the main chain. It is preferred to have it at one end.

[A]重合体は、例えば対応する単量体を用い、リビングアニオン重合等により、公知の方法で製造することができる。   [A] The polymer can be produced by a known method by, for example, living anionic polymerization using a corresponding monomer.

[A]重合体の重量平均分子量(Mw)の下限としては、500が好ましく、2,000がより好ましく、4,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、40,000がより好ましく、30,000がさらに好ましく、10,000が特に好ましい。   [A] The lower limit of the weight average molecular weight (Mw) of the polymer is preferably 500, more preferably 2,000, still more preferably 4,000, and particularly preferably 5,000. The upper limit of Mw is preferably 50,000, more preferably 40,000, further preferably 30,000, and particularly preferably 10,000.

[A]重合体の数平均分子量(Mn)の下限としては、500が好ましく、2,000がより好ましく、4,000がさらに好ましく、5,000が特に好ましい。上記Mnの上限としては、50,000が好ましく、40,000がより好ましく、30,000がさらに好ましく、10,000が特に好ましい。   [A] The lower limit of the number average molecular weight (Mn) of the polymer is preferably 500, more preferably 2,000, still more preferably 4,000, and particularly preferably 5,000. The upper limit of Mn is preferably 50,000, more preferably 40,000, even more preferably 30,000, and particularly preferably 10,000.

[A]重合体のMwのMnに対する比(Mw/Mn、分散度)の上限としては、5が好ましく、2がより好ましく、1.5がより好ましく、1.2が特に好ましい。上記比の下限としては、通常1であり、1.03が好ましく、1.1がさらに好ましい。   [A] The upper limit of the ratio of Mw to Mn of the polymer (Mw / Mn, degree of dispersion) is preferably 5, more preferably 2, more preferably 1.5, and particularly preferably 1.2. The lower limit of the above ratio is usually 1, preferably 1.03, and more preferably 1.1.

本明細書中における[A]重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、以下の条件により測定した値である。
溶離液:テトラヒドロフラン(和光純薬工業社)
流量:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
カラム温度:40℃
検出器:示差屈折計
標準物質:単分散ポリスチレン
The Mw and Mn of the polymer [A] in this specification can be measured by gel permeation chromatography (GPC) using a GPC column (two G2000HXL, one G3000HXL and one G4000HXL) manufactured by Tosoh Corporation. It is a value measured under the following conditions.
Eluent: tetrahydrofuran (Wako Pure Chemical Industries, Ltd.)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Column temperature: 40 ° C
Detector: Differential refractometer Standard substance: Monodisperse polystyrene

[A]重合体の含有量の下限としては、組成物(S)における全固形分に対して、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。上記含有量の上限としては、例えば100質量%である。「全固形分」とは、[B]溶媒以外の成分の総和をいう。   [A] The lower limit of the polymer content is preferably 80% by mass, more preferably 90% by mass, and still more preferably 95% by mass, based on the total solids in the composition (S). The upper limit of the content is, for example, 100% by mass. “Total solids” refers to the sum of components other than the solvent [B].

([B]溶媒)
[B]溶媒としては、少なくとも[A]重合体及び他の成分を溶解又は分散可能な溶媒であれば特に限定されない。
([B] solvent)
[B] The solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the polymer [A] and other components.

[B]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。   [B] The solvent includes, for example, alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents and the like.

アルコール系溶媒としては、例えば
4−メチル−2−ペンタノール、n−ヘキサノール等の炭素数1〜18の脂肪族モノアルコール系溶媒;
シクロヘキサノール等の炭素数3〜18の脂環式モノアルコール系溶媒;
1,2−プロピレングリコール等の炭素数2〜18の多価アルコール系溶媒;
プロピレングリコールモノメチルエーテル等の炭素数3〜19の多価アルコール部分エーテル系溶媒等が挙げられる。
Examples of the alcohol-based solvent include aliphatic monoalcohol-based solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol;
An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol;
A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol;
C3 to C19 polyhydric alcohol partial ether solvents such as propylene glycol monomethyl ether.

エーテル系溶媒としては、例えば
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶媒等が挙げられる。
Examples of the ether solvent include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether;
Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran;
Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether) are exemplified.

ケトン系溶媒としては、例えば
アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−iso−ブチルケトン(MIBK)、2−ヘプタノン(メチル−n−ペンチルケトン)、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−iso−ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;
シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
2,4−ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone (MIBK), 2-heptanone (methyl-n-pentyl ketone), and ethyl- chain ketone solvents such as n-butyl ketone, methyl-n-hexyl ketone, di-iso-butyl ketone and trimethylnonanone;
Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone;
Examples thereof include 2,4-pentanedione, acetonylacetone, and acetophenone.

アミド系溶媒としては、例えば
N,N’−ジメチルイミダゾリジノン、N−メチルピロリドン等の環状アミド系溶媒;
N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
Examples of the amide solvent include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone;
Chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide and the like.

エステル系溶媒としては、例えば
酢酸n−ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
プロピレングリコールモノメチルエーテルアセテート(PGMEA)等の多価アルコール部分エーテルカルボキシレート系溶媒;
γ−ブチロラクトン、δ−バレロラクトン等のラクトン系溶媒;
シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。
Examples of the ester solvent include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate;
Polyhydric alcohol carboxylate solvents such as propylene glycol acetate;
Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate (PGMEA);
lactone solvents such as γ-butyrolactone and δ-valerolactone;
Polyvalent carboxylic acid diester solvents such as diethyl oxalate;
Examples thereof include carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.

炭化水素系溶媒としては、例えば
n−ペンタン、n−ヘキサン等の炭素数5〜12の脂肪族炭化水素系溶媒;
トルエン、キシレン等の炭素数6〜16の芳香族炭化水素系溶媒等が挙げられる。
Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane;
Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.

これらの中で、エステル系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテートがさらに好ましい。組成物(S)は、[B]溶媒を1種又は2種以上含有していてもよい。   Of these, ester solvents are preferred, polyhydric alcohol partial ether carboxylate solvents are more preferred, and propylene glycol monomethyl ether acetate is even more preferred. The composition (S) may contain one or more [B] solvents.

(他の成分)
組成物(S)における他の成分としては、例えば界面活性剤等が挙げられる。組成物(S)は、界面活性剤を含有することで、基材表面への塗工性を向上させることができる。
(Other ingredients)
Other components in the composition (S) include, for example, a surfactant. By containing a surfactant, the composition (S) can improve coatability on the substrate surface.

(組成物の調製方法)
組成物(S)は、例えば[A]重合体、[B]溶媒及び必要に応じて他の成分を所定の割合で混合し、好ましくは孔径200nm程度のメンブランフィルター等で濾過することにより調製することができる。組成物(S)の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、0.7質量%がさらに好ましい。上記固形分濃度の上限としては、30質量%が好ましく、10質量%がより好ましく、3質量%がさらに好ましい。
(Method of preparing composition)
The composition (S) is prepared, for example, by mixing the polymer [A], the solvent [B] and other components as required at a predetermined ratio, and preferably filtering the mixture with a membrane filter having a pore size of about 200 nm. be able to. The lower limit of the solid content concentration of the composition (S) is preferably 0.1% by mass, more preferably 0.5% by mass, and still more preferably 0.7% by mass. The upper limit of the solid content concentration is preferably 30% by mass, more preferably 10% by mass, and still more preferably 3% by mass.

組成物(S)の塗工方法としては、例えばスピンコート法等が挙げられる。塗工により得られる塗工膜から、[B]溶媒を除去することにより、塗膜(以下、「塗膜(I)」ともいう)が形成される。   Examples of a method for applying the composition (S) include a spin coating method. A coating film (hereinafter, also referred to as “coating film (I)”) is formed by removing the solvent [B] from the coating film obtained by coating.

上記形成された塗膜(I)を加熱してもよい。塗膜(I)を加熱することにより、基板表面修飾の選択性をより向上できる場合がある。加熱の手段としては、例えばオーブン、ホットプレート等が挙げられる。加熱の温度の下限としては、50℃が好ましく、70℃がより好ましく、90℃がさらに好ましい。加熱の温度の上限としては、200℃が好ましく、150℃がより好ましく、90℃がさらに好ましい。加熱の時間の下限としては、10秒が好ましく、1分がより好ましく、2分がさらに好ましい。加熱の時間の上限としては、120分が好ましく、10分がより好ましく、6分がさらに好ましい。   The formed coating film (I) may be heated. By heating the coating film (I), the selectivity of the substrate surface modification may be further improved. Examples of the heating means include an oven and a hot plate. As a minimum of heating temperature, 50 ° C is preferred, 70 ° C is more preferred, and 90 ° C is still more preferred. As a maximum of heating temperature, 200 ° C is preferred, 150 ° C is more preferred, and 90 ° C is still more preferred. The lower limit of the heating time is preferably 10 seconds, more preferably 1 minute, and even more preferably 2 minutes. The upper limit of the heating time is preferably 120 minutes, more preferably 10 minutes, and still more preferably 6 minutes.

形成される塗膜(I)の平均厚みは、組成物(S)における[A]重合体の種類及び濃度、組成物の塗工量、並びに加熱工程における加熱温度、加熱時間等の条件を適宜選択することで、所望の値にすることができる。塗膜(I)の平均厚みの下限としては、0.1nmが好ましく、1nmがより好ましく、3nmがさらに好ましい。上記平均厚みの上限としては、例えば100nmである。   The average thickness of the coating film (I) to be formed depends on conditions such as the type and concentration of the polymer [A] in the composition (S), the coating amount of the composition, and the heating temperature and heating time in the heating step. By selecting, a desired value can be obtained. The lower limit of the average thickness of the coating film (I) is preferably 0.1 nm, more preferably 1 nm, and still more preferably 3 nm. The upper limit of the average thickness is, for example, 100 nm.

[除去工程]
当該選択的修飾方法において、上記塗工工程の後、塗膜(I)のうち領域(II)上に形成された部分を除去する工程(以下、「除去工程」ともいう)をさらに備えることが好ましい。除去工程をさらに備えることで、ケイ素の酸化物等と相互作用していない[A]重合体を含む部分が除去され、領域(I)の部分がより選択的に修飾された基材が得られる。
[Removal step]
The selective modification method may further include, after the coating step, a step of removing a portion of the coating film (I) formed on the region (II) (hereinafter, also referred to as a “removing step”). preferable. By further providing a removal step, a portion containing the polymer [A] that does not interact with the silicon oxide or the like is removed, and a substrate in which the region (I) is more selectively modified can be obtained. .

除去工程における除去は、通常、塗工工程後の基材(P)を、リンス液でリンスすることにより行う。リンス液としては、通常、有機溶媒が用いられ、例えばPEGMA等の多価アルコール部分エーテルカルボキシレート系溶媒、イソプロパノール等のモノアルコール系溶媒等が用いられる。   The removal in the removing step is usually performed by rinsing the substrate (P) after the coating step with a rinsing liquid. As the rinsing liquid, an organic solvent is usually used, for example, a polyhydric alcohol partial ether carboxylate solvent such as PEGMA, a monoalcohol solvent such as isopropanol, or the like is used.

得られた基材(P)は、例えば以下の工程を行うことにより、種々処理することができる。   The obtained substrate (P) can be subjected to various treatments, for example, by performing the following steps.

[堆積工程]
本工程では、上記除去工程後の基材(P)の表面に、CVD(化学的気相蒸着)法又はALD(原子層堆積)法によりパターンを堆積させる。これにより、[A]重合体で被覆されていない領域(II)に、選択的にパターンを形成することができる。
[Deposition process]
In this step, a pattern is deposited on the surface of the base material (P) after the removal step by a CVD (chemical vapor deposition) method or an ALD (atomic layer deposition) method. Thereby, a pattern can be selectively formed in the region (II) not covered with the polymer [A].

[エッチング工程]
本工程では、上記除去工程後の基材(P)の表面上の上記[A]重合体をエッチングにより除去する。
[Etching process]
In this step, the polymer [A] on the surface of the substrate (P) after the above-mentioned removal step is removed by etching.

エッチングの方法としては、例えばCF、Oガス等を用い、各層のエッチングレートの差等を利用するケミカルドライエッチング、有機溶媒、フッ酸等の液体のエッチング液を用いたケミカルウェットエッチング(湿式現像)等の反応性イオンエッチング(RIE)、スパッタエッチング、イオンビームエッチング等の物理的エッチング等の公知の方法が挙げられる。これらの中で、反応性イオンエッチングが好ましく、ケミカルドライエッチング又はケミカルウェットエッチングがより好ましい。As an etching method, for example, CF 4 , O 2 gas or the like is used, and chemical dry etching using a difference in the etching rate of each layer or the like, chemical wet etching using a liquid etching solution such as an organic solvent, hydrofluoric acid, etc. (wet method) Publicly known methods such as reactive ion etching (RIE) such as development) and physical etching such as sputter etching and ion beam etching. Among them, reactive ion etching is preferable, and chemical dry etching or chemical wet etching is more preferable.

ケミカルドライエッチングの前に、必要に応じて放射線を照射してもよい。放射線としては、エッチングにより除去する部分がポリメタクリル酸メチルブロックを含む重合体である場合には、UV照射等を用いることができる。また、酸素プラズマ処理を用いることもできる。上記UV照射又は酸素プラズマ処理により、ポリメタクリル酸メチルブロックが分解されるため、よりエッチングされ易くなる。   Before the chemical dry etching, radiation may be applied as necessary. When the portion to be removed by etching is a polymer containing a polymethyl methacrylate block, UV radiation or the like can be used as the radiation. Further, an oxygen plasma treatment can be used. The UV irradiation or the oxygen plasma treatment decomposes the polymethyl methacrylate block, so that the etching becomes easier.

ケミカルウェットエッチングに用いられる有機溶媒としては、例えば
n−ペンタン、n−ヘキサン、n−ヘプタン等のアルカン;
シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン;
酢酸エチル、酢酸n−ブチル、酢酸i−ブチル、プロピオン酸メチル等の飽和カルボン酸エステル;
アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn−ペンチルケトン等のケトン;
メタノール、エタノール、1−プロパノール、2−プロパノール、4−メチル−2−ペンタノール等のアルコール等が挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。
Examples of the organic solvent used for chemical wet etching include alkanes such as n-pentane, n-hexane, and n-heptane;
Cycloalkanes such as cyclohexane, cycloheptane and cyclooctane;
Saturated carboxylate such as ethyl acetate, n-butyl acetate, i-butyl acetate, methyl propionate;
Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and methyl n-pentyl ketone;
Examples include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and 4-methyl-2-pentanol. These solvents may be used alone or in combination of two or more.

[無電解めっき工程]
本工程では、上記除去工程後の基材(P)の表面に、無電解めっき法を用いて、めっき層を形成する。
[Electroless plating process]
In this step, a plating layer is formed on the surface of the substrate (P) after the above-mentioned removing step by using an electroless plating method.

特に、除去工程後の基材(P)として、金属を含む基板上に、ケイ素の酸化物等を主成分とする中間膜を形成し、この中間膜上にレジストパターンを形成した後、このレジストパターンをマスクとしたガスエッチング処理により上記中間膜のエッチングを行うこと等により形成した基材(Q)、又はこの基材(Q)を表面処理工程により処理した基材を用いることが好ましい。このような基材(Q)は、トレンチパターンの側壁の表面に領域(I)を有し、スペース部分の底面に領域(II)を有するので、当該選択的修飾方法において、このような基材(Q)を用いて、無電解めっき工程をさらに行うことにより、トレンチパターンの側壁からのめっき膜の成長を抑制し、底面から選択的に成長させることで、トレンチパターンを充填するめっき層におけるシーム及びボイドの発生を抑制することができる。「シーム」とは、トレンチパターンの各面から成長するめっき層の継ぎ目に発生する欠陥をいう。「ボイド」とは、トレンチパターンの底部を十分埋め込む前に、トレンチパターンの開口部が形成されためっき層で塞がれることで発生する空隙をいう。   In particular, as a base material (P) after the removal step, an intermediate film mainly composed of silicon oxide or the like is formed on a metal-containing substrate, and a resist pattern is formed on the intermediate film. It is preferable to use a substrate (Q) formed by etching the intermediate film by gas etching using a pattern as a mask, or a substrate obtained by treating the substrate (Q) in a surface treatment step. Such a base material (Q) has the region (I) on the surface of the side wall of the trench pattern and the region (II) on the bottom surface of the space portion. By further performing an electroless plating step using (Q), the growth of the plating film from the side wall of the trench pattern is suppressed, and the seam in the plating layer filling the trench pattern is selectively grown from the bottom surface. In addition, generation of voids can be suppressed. “Seam” refers to a defect that occurs at a joint of a plating layer grown from each surface of a trench pattern. “Void” refers to a void generated when the opening of the trench pattern is closed by the plating layer formed before the bottom of the trench pattern is sufficiently buried.

基材(Q)の領域(II)の金属としては、銅が好ましい。   Copper is preferable as the metal in the region (II) of the base material (Q).

無電解めっきは、通常、領域(II)の金属と置換可能な金属イオンを含有する水溶液を、領域(II)の表面に塗工することで行われる。   The electroless plating is generally performed by applying an aqueous solution containing a metal ion that can be substituted for the metal in the region (II) to the surface of the region (II).

上記金属イオン含有水溶液の塗工方法としては、例えばスピンコート法等が挙げられる。   Examples of the method for applying the metal ion-containing aqueous solution include a spin coating method.

上記金属イオン含有水溶液の塗工の前に、基材(Q)の領域(II)の表面に、無電解めっき層形成の原料となる金属を含有する触媒層を形成することが好ましい。触媒層を形成することで、トレンチパターンの底面からのめっき層の形成をより促進することができる。触媒層を構成する金属としては、例えばルテニウム、パラジウム、金、白金等が挙げられる。これらの中で、ルテニウムが好ましい。   Prior to the application of the metal ion-containing aqueous solution, it is preferable to form a catalyst layer containing a metal as a raw material for forming an electroless plating layer on the surface of the region (II) of the substrate (Q). By forming the catalyst layer, the formation of the plating layer from the bottom surface of the trench pattern can be further promoted. Examples of the metal constituting the catalyst layer include ruthenium, palladium, gold, platinum and the like. Of these, ruthenium is preferred.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を下記に示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. The measuring method of each property value is shown below.

[Mw及びMn]
重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、以下の条件により測定した。
溶離液:テトラヒドロフラン(和光純薬工業社)
流量:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
カラム温度:40℃
検出器:示差屈折計
標準物質:単分散ポリスチレン
[Mw and Mn]
The Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using GPC columns (2 G2000HXL, 1 G3000HXL and 1 G4000HXL) manufactured by Tosoh Corporation under the following conditions. did.
Eluent: tetrahydrofuran (Wako Pure Chemical Industries, Ltd.)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Column temperature: 40 ° C
Detector: Differential refractometer Standard substance: Monodisperse polystyrene

13C−NMR分析]
13C−NMR分析は、核磁気共鳴装置(日本電子社の「JNM−EX400」)を使用し、測定溶媒としてDMSO−dを用いて行った。重合体における各構造単位の含有割合は、13C−NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。
[ 13 C-NMR analysis]
The 13 C-NMR analysis was performed using a nuclear magnetic resonance apparatus (“JNM-EX400” of JEOL Ltd.) using DMSO-d 6 as a measurement solvent. The content ratio of each structural unit in the polymer was calculated from the area ratio of the peak corresponding to each structural unit in the spectrum obtained by 13 C-NMR.

<[A]重合体の合成>
[合成例1]
500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったTHF120gを注入し、−78℃まで冷却した。このTHFに1,1−ジフェニルエチレン1.02mL、塩化リチウムの1Mテトラヒドロフラン溶液9.59mL、sec−ブチルリチウム(sec−BuLi)の1Nシクロヘキサン溶液を2.47mL注入し、さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったメタクリル酸メチル12.7mLを30分かけて滴下注入した。この滴下注入のとき、反応溶液の内温が−60℃以上にならないように注意し、滴下終了後に90分間撹拌した。次に、N,N−ジメチルアミノエチルメタクリレート1.1mLを加え、さらに30分間撹拌後、メタノール1mLを注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してMIBKで置換した。その後、トリエチルアミン2質量%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、Li塩を除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸を除去した後、溶液を濃縮してメタノール500g中に滴下することで重合体を析出させ、ブフナーロートにて固体を回収した。この重合体を60℃で減圧乾燥させることで、白色の下記式(A−1)で表されるブロック共重合体12.6gを得た。この重合体(A−1)は、Mwが5,200、Mnが5,000、Mw/Mnが1.04であった。ブロック組成比は、13C−NMR測定の結果、メタクリル酸メチルが95mol%、N,N−ジメチルアミノエチルメタクリレートが5mol%であった。
<[A] Synthesis of polymer>
[Synthesis Example 1]
After the 500 mL flask reaction vessel was dried under reduced pressure, 120 g of distilled and dehydrated THF was injected under a nitrogen atmosphere and cooled to -78 ° C. 1.02 mL of 1,1-diphenylethylene, 9.59 mL of a 1 M solution of lithium chloride in tetrahydrofuran, and 2.47 mL of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) were injected into the THF, and the polymerization inhibitor was removed. 12.7 mL of methyl methacrylate, which had been subjected to adsorption filtration with silica gel and distillation and dehydration treatment, was dropped over 30 minutes. At the time of this dropping, care was taken that the internal temperature of the reaction solution did not rise to -60 ° C or higher, and the mixture was stirred for 90 minutes after the completion of dropping. Next, 1.1 mL of N, N-dimethylaminoethyl methacrylate was added, and after further stirring for 30 minutes, 1 mL of methanol was injected to terminate the polymerization. The reaction solution was heated to room temperature, and the obtained reaction solution was concentrated and replaced with MIBK. Thereafter, 1,000 g of a 2% by mass aqueous solution of triethylamine was poured and stirred, and allowed to stand. After that, the lower aqueous layer was removed. This operation was repeated three times to remove the Li salt. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. After repeating this operation three times to remove oxalic acid, the solution was concentrated and dropped into 500 g of methanol to precipitate a polymer, and a solid was recovered with a Buchner funnel. The polymer was dried under reduced pressure at 60 ° C. to obtain 12.6 g of a white block copolymer represented by the following formula (A-1). This polymer (A-1) had Mw of 5,200, Mn of 5,000, and Mw / Mn of 1.04. As a result of 13 C-NMR measurement, the block composition ratio was 95 mol% for methyl methacrylate and 5 mol% for N, N-dimethylaminoethyl methacrylate.

Figure 2018155555
Figure 2018155555

[合成例2](重合体(A−2)の合成)
500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったTHF120gを注入し、−78℃まで冷却した。このTHFに塩化リチウムの1Mテトラヒドロフラン溶液5.12mL、sec−ブチルリチウム(sec−BuLi)の1Nシクロヘキサン溶液を1.32mL注入し、さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン13.3mLを30分かけて滴下注入した。この滴下注入のとき、反応溶液の内温が−60℃以上にならないように注意した。次に、1,1−ジフェニルエチレン0.54mLを加えた。次いでN,N−ジメチルアミノエチルメタクリレート0.60mLを加え、さらに120分間撹拌し、メタノール1mLを注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してMIBKで置換した。その後、トリエチルアミン2質量%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、Li塩を除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。溶液を濃縮してメタノール500g中に滴下することで重合体を析出させ、ブフナーロートにて固体を回収した。この重合体を60℃で減圧乾燥させることで白色の下記式(A−2)で表されるブロック共重合体12.0gを得た。この重合体(A−2)は、Mwが10,800、Mnが9,800、Mw/Mnが1.10であった。ブロック組成比は、13C−NMR測定の結果、スチレンが97mol%、N,N−ジメチルアミノエチルメタクリレートが3mol%であった。
[Synthesis Example 2] (Synthesis of polymer (A-2))
After the 500 mL flask reaction vessel was dried under reduced pressure, 120 g of distilled and dehydrated THF was injected under a nitrogen atmosphere and cooled to -78 ° C. 5.12 mL of a 1 M solution of lithium chloride in tetrahydrofuran and 1.32 mL of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) were injected into the THF, and the mixture was subjected to adsorption filtration with silica gel to remove a polymerization inhibitor and distillation and dehydration. 13.3 mL of the treated styrene was added dropwise over 30 minutes. At the time of this dropping injection, care was taken so that the internal temperature of the reaction solution did not become -60 ° C or more. Next, 0.54 mL of 1,1-diphenylethylene was added. Next, 0.60 mL of N, N-dimethylaminoethyl methacrylate was added, and the mixture was further stirred for 120 minutes, and 1 mL of methanol was injected to terminate the polymerization. The reaction solution was heated to room temperature, and the obtained reaction solution was concentrated and replaced with MIBK. Thereafter, 1,000 g of a 2% by mass aqueous solution of triethylamine was poured and stirred, and allowed to stand. After that, the lower aqueous layer was removed. This operation was repeated three times to remove the Li salt. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. The solution was concentrated and dropped into 500 g of methanol to precipitate a polymer, and a solid was recovered with a Buchner funnel. The polymer was dried under reduced pressure at 60 ° C. to obtain 12.0 g of a white block copolymer represented by the following formula (A-2). This polymer (A-2) had Mw of 10,800, Mn of 9,800, and Mw / Mn of 1.10. As a result of 13 C-NMR measurement, the block composition ratio was 97 mol% for styrene and 3 mol% for N, N-dimethylaminoethyl methacrylate.

Figure 2018155555
Figure 2018155555

[合成例3](重合体(A−3)の合成)
500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったTHF120gを注入し、−78℃まで冷却した。このTHFに塩化リチウムの1Mテトラヒドロフラン溶液1.54mL、sec−ブチルリチウム(sec−BuLi)の1Nシクロヘキサン溶液を0.38mL注入し、さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン13.3mLを30分かけて滴下注入した。この滴下注入のとき、反応溶液の内温が−60℃以上にならないように注意した。次に、1,1−ジフェニルエチレン0.16mLを加えた。次にN,N−ジメチルアミノエチルメタクリレート0.60mLを加え、さらに120分間撹拌し、メタノール1mLを注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してMIBKで置換した。その後、トリエチルアミン2質量%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、Li塩を除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。溶液を濃縮してメタノール500g中に滴下することで重合体を析出させ、ブフナーロートにて固体を回収した。この重合体を60℃で減圧乾燥させることで白色の下記式(A−3)で表されるブロック共重合体12.0gを得た。この重合体(A−3)は、Mwが33,200、Mnが30,000、Mw/Mnが1.11であった。ブロック組成比は、13C−NMR測定の結果、スチレンが97mol%、N,N−ジメチルアミノエチルメタクリレートが3mol%であった。
[Synthesis Example 3] (Synthesis of polymer (A-3))
After the 500 mL flask reaction vessel was dried under reduced pressure, 120 g of distilled and dehydrated THF was injected under a nitrogen atmosphere and cooled to -78 ° C. 1.54 mL of a 1M solution of lithium chloride in tetrahydrofuran and 0.38 mL of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) were injected into the THF, and the mixture was subjected to adsorption filtration with silica gel to remove a polymerization inhibitor and distillation and dehydration. 13.3 mL of the treated styrene was added dropwise over 30 minutes. At the time of this dropping injection, care was taken so that the internal temperature of the reaction solution did not become -60 ° C or more. Next, 0.16 mL of 1,1-diphenylethylene was added. Next, 0.60 mL of N, N-dimethylaminoethyl methacrylate was added, the mixture was further stirred for 120 minutes, and 1 mL of methanol was injected to terminate the polymerization. The reaction solution was heated to room temperature, and the obtained reaction solution was concentrated and replaced with MIBK. Thereafter, 1,000 g of a 2% by mass aqueous solution of triethylamine was poured and stirred, and allowed to stand. After that, the lower aqueous layer was removed. This operation was repeated three times to remove the Li salt. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. The solution was concentrated and dropped into 500 g of methanol to precipitate a polymer, and a solid was recovered with a Buchner funnel. The polymer was dried at 60 ° C. under reduced pressure to obtain 12.0 g of a white block copolymer represented by the following formula (A-3). This polymer (A-3) had Mw of 33,200, Mn of 30,000, and Mw / Mn of 1.11. As a result of 13 C-NMR measurement, the block composition ratio was 97 mol% for styrene and 3 mol% for N, N-dimethylaminoethyl methacrylate.

Figure 2018155555
Figure 2018155555

[合成例4](重合体(A−4)の合成)
500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったTHF120gを注入し、−78℃まで冷却した。このTHFに塩化リチウムの1Mテトラヒドロフラン溶液4.61mL、sec−ブチルリチウム(sec−BuLi)の1Nシクロヘキサン溶液を2.08mL注入し、さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン13.3mLを30分かけて滴下注入した。この滴下注入のとき、反応溶液の内温が−60℃以上にならないように注意した。次に、1,1−ジフェニルエチレン0.98mLを加えた。次いで、N,N−ジメチルアミノエチルメタクリレート0.60mLを加え、さらに120分間撹拌し、メタノール1mLを注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してMIBKで置換した。その後、トリエチルアミン2質量%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、Li塩を除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。溶液を濃縮してメタノール500g中に滴下することで重合体を析出させ、ブフナーロートにて固体を回収した。この重合体を60℃で減圧乾燥させることで白色の下記式(A−4)で表されるブロック共重合体12.0gを得た。この重合体(A−4)は、Mwが6,800、Mnが6,000、Mw/Mnが1.13であった。ブロック組成比は、13C−NMR測定の結果、スチレンが97mol%、N,N−ジメチルアミノエチルメタクリレートが3mol%であった。
[Synthesis Example 4] (Synthesis of polymer (A-4))
After the 500 mL flask reaction vessel was dried under reduced pressure, 120 g of distilled and dehydrated THF was injected under a nitrogen atmosphere and cooled to -78 ° C. 4.61 mL of a 1M solution of lithium chloride in tetrahydrofuran and 2.08 mL of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) were injected into the THF, followed by adsorption filtration with silica gel to remove the polymerization inhibitor and distillation and dehydration. 13.3 mL of the treated styrene was added dropwise over 30 minutes. At the time of this dropping injection, care was taken so that the internal temperature of the reaction solution did not become -60 ° C or more. Next, 0.98 mL of 1,1-diphenylethylene was added. Next, 0.60 mL of N, N-dimethylaminoethyl methacrylate was added, and the mixture was further stirred for 120 minutes, and 1 mL of methanol was injected to terminate the polymerization. The reaction solution was heated to room temperature, and the obtained reaction solution was concentrated and replaced with MIBK. Thereafter, 1,000 g of a 2% by mass aqueous solution of triethylamine was poured and stirred, and allowed to stand. After that, the lower aqueous layer was removed. This operation was repeated three times to remove the Li salt. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. The solution was concentrated and dropped into 500 g of methanol to precipitate a polymer, and a solid was recovered with a Buchner funnel. The polymer was dried under reduced pressure at 60 ° C. to obtain 12.0 g of a white block copolymer represented by the following formula (A-4). This polymer (A-4) had Mw of 6,800, Mn of 6,000, and Mw / Mn of 1.13. As a result of 13 C-NMR measurement, the block composition ratio was 97 mol% for styrene and 3 mol% for N, N-dimethylaminoethyl methacrylate.

Figure 2018155555
Figure 2018155555

<非感光性組成物の調製>
非感光性組成物の調製に用いた[A]重合体及び[B]溶媒について以下に示す。
[[A]重合体]
A−1〜A−4:上記合成例1〜4で合成した重合体(A−1)〜(A−4)
[[B]溶媒]
B−1:プロピレングリコールモノメチルエーテルアセテート
<Preparation of non-photosensitive composition>
The polymer [A] and the solvent [B] used in the preparation of the non-photosensitive composition are shown below.
[[A] polymer]
A-1 to A-4: Polymers (A-1) to (A-4) synthesized in Synthesis Examples 1 to 4 above.
[[B] solvent]
B-1: Propylene glycol monomethyl ether acetate

[調製例1]
[A]重合体としての(A−1)100質量部と、[B]溶媒としての(B−1)9,900質量部とを混合し、得られた混合溶液を孔径200nmのメンブランフィルターで濾過して、非感光性組成物(S−1)を調製した。
[Preparation Example 1]
[A] 100 parts by mass of (A-1) as a polymer and 9,900 parts by mass of (B-1) as a solvent are mixed, and the obtained mixed solution is passed through a membrane filter having a pore diameter of 200 nm. The mixture was filtered to prepare a non-photosensitive composition (S-1).

[調製例2]
[A]重合体としての(A−2)100質量部と、[B]溶媒としての(B−1)9,900質量部とを混合し、得られた混合溶液を孔径200nmのメンブランフィルターで濾過して、非感光性組成物(S−2)を調製した。
[Preparation Example 2]
[A] 100 parts by mass of (A-2) as a polymer and 9,900 parts by mass of (B-1) as a solvent are mixed, and the obtained mixed solution is passed through a membrane filter having a pore size of 200 nm. The mixture was filtered to prepare a non-photosensitive composition (S-2).

[調製例3]
[A]重合体としての(A−3)100質量部と、[B]溶媒としての(B−1)9,900質量部とを混合し、得られた混合溶液を孔径200nmのメンブランフィルターで濾過して、非感光性組成物(S−3)を調製した。
[Preparation Example 3]
[A] 100 parts by mass of (A-3) as a polymer and 9,900 parts by mass of (B-1) as a solvent [B] are mixed, and the obtained mixed solution is passed through a membrane filter having a pore size of 200 nm. The mixture was filtered to prepare a non-photosensitive composition (S-3).

[調製例4]
[A]重合体としての(A−4)100質量部と、[B]溶媒としての(B−1)9,900質量部とを混合し、得られた混合溶液を孔径200nmのメンブランフィルターで濾過して、非感光性組成物(S−4)を調製した。
[Preparation Example 4]
[A] 100 parts by mass of (A-4) as a polymer and 9,900 parts by mass of (B-1) as a solvent are mixed, and the obtained mixed solution is passed through a membrane filter having a pore size of 200 nm. The mixture was filtered to prepare a non-photosensitive composition (S-4).

<基材表面の選択的修飾>
[実施例1〜4]
層間絶縁膜としてのSiO基板、金属膜としてのタングステン基板、コバルト基板、銅基板をそれぞれ用意し、プラズマ照射装置(東京エレクトロン社の「TACTRAS」)を用いてこれらの基板に対し酸素ガスのプラズマを照射して基板の表面処理を行った後、表面状態を接触角計を用いて評価した。
<Selective modification of substrate surface>
[Examples 1 to 4]
An SiO 2 substrate as an interlayer insulating film, a tungsten substrate, a cobalt substrate, and a copper substrate as metal films are prepared, and plasma of oxygen gas is applied to these substrates using a plasma irradiation apparatus (“TACTRAS” manufactured by Tokyo Electron Limited). After the surface treatment of the substrate was performed by irradiating the substrate, the surface condition was evaluated using a contact angle meter.

続いて、非感光性組成物(S−1)〜(S−4)の塗工膜をそれぞれ形成し、PGMEAでリンスしてから、基板の表面状態を接触角計を用いて評価した。評価結果を表1に合わせて示す。表1中の「Blank−1、Blank−2」は、非感光性組成物の塗工を行わなかった場合である。
また、層間絶縁膜表面の接触角と金属膜表面の接触角の差を表2に示す。この差が大きいほど、層間絶縁膜表面の担持選択性が良好である。
Subsequently, coating films of the non-photosensitive compositions (S-1) to (S-4) were respectively formed, rinsed with PGMEA, and the surface state of the substrate was evaluated using a contact angle meter. The evaluation results are shown in Table 1. “Blank-1, Blank-2” in Table 1 is the case where the non-photosensitive composition was not applied.
Table 2 shows the difference between the contact angle on the interlayer insulating film surface and the contact angle on the metal film surface. The larger this difference is, the better the selectivity of supporting the surface of the interlayer insulating film is.

[比較例1及び2]
層間絶縁膜としてのSiO基板、金属膜としてのタングステン基板、コバルト基板、銅基板をそれぞれ用意し、基板の表面処理を実施せずに、表面状態を接触角計を用いて評価した。
[Comparative Examples 1 and 2]
An SiO 2 substrate as an interlayer insulating film, a tungsten substrate, a cobalt substrate, and a copper substrate as metal films were prepared, and the surface state was evaluated using a contact angle meter without performing the surface treatment of the substrate.

続いて、実施例1〜4と同様に、非感光性組成物(S−1)〜(S−4)の塗工膜をそれぞれ形成し、PGMEAでリンスしてから基板の表面状態を接触角計を用いて評価した。評価結果を表1に合わせて示す。   Subsequently, similarly to Examples 1 to 4, coating films of the non-photosensitive compositions (S-1) to (S-4) were respectively formed, and rinsed with PGMEA. Evaluation was made using a total meter. The evaluation results are shown in Table 1.

Figure 2018155555
Figure 2018155555

Figure 2018155555
Figure 2018155555

実施例と比較例との結果を比べると、表面処理である酸素ガスプラズマ処理により基板表面が酸化され、表面改質されているといえる。また、酸素ガスプラズマ処理により、SiO基板表面への重合体の担持が促進され、逆に、タングステン、コバルト及び銅基板表面の重合体の担持が阻害され、結果としてSiO基板表面への担持選択性が向上しているといえる。Comparing the results of the example and the comparative example, it can be said that the substrate surface was oxidized and surface-modified by the oxygen gas plasma treatment as the surface treatment. In addition, the oxygen gas plasma treatment promotes the loading of the polymer on the surface of the SiO 2 substrate, and conversely, the loading of the polymer on the surface of the tungsten, cobalt and copper substrate is inhibited, and as a result, the loading on the surface of the SiO 2 substrate It can be said that the selectivity has been improved.

本発明の基材表面の選択的修飾方法によれば、ケイ素の酸化物等を含む表面領域を簡便に、かつ高選択的に修飾することができる。従って、当該基材表面の選択的修飾方法は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
ADVANTAGE OF THE INVENTION According to the selective modification method of the base material surface of this invention, the surface area | region containing a silicon oxide etc. can be modified easily and highly selectively. Therefore, the method for selectively modifying the surface of a base material can be suitably used for a processing process of a semiconductor device in which miniaturization is expected to further advance in the future.

Claims (5)

表層を有し、その表層の第1領域にケイ素の酸化物、窒化物、酸窒化物又はこれらの組み合わせを含む基材を準備する工程と、
上記基材の表面の少なくとも一部に酸化処理及び親水化処理から選ばれる少なくとも1種の表面処理を施す工程と、
上記表面処理工程後の上記基材の表面に非感光性組成物を塗工する工程と
を備え、
上記非感光性組成物が、窒素原子を含む第1重合体と、溶媒とを含有する基材表面の選択的修飾方法。
Having a surface layer, a step of preparing a substrate comprising a silicon oxide, a nitride, an oxynitride or a combination thereof in a first region of the surface layer;
A step of subjecting at least a part of the surface of the base material to at least one kind of surface treatment selected from an oxidation treatment and a hydrophilic treatment,
Coating a non-photosensitive composition on the surface of the substrate after the surface treatment step,
A method for selectively modifying the surface of a substrate, wherein the non-photosensitive composition contains a first polymer containing a nitrogen atom and a solvent.
上記基材の表層が、上記第1領域以外の領域であって、金属を含む第2領域をさらに有する請求項1に記載の基材表面の選択的修飾方法。   The method for selectively modifying the surface of a base material according to claim 1, wherein the surface layer of the base material is a region other than the first region and further has a second region containing a metal. 上記表面処理工程において、Oプラズマ処理を行う請求項1又は請求項2に記載の基材表面の選択的修飾方法。The method for selectively modifying the surface of a substrate according to claim 1 or 2 , wherein an O 2 plasma treatment is performed in the surface treatment step. 上記基材が、上記第1領域にケイ素の酸化物を含む請求項1、請求項2又は請求項3に記載の基材表面の選択的修飾方法。   The method for selectively modifying the surface of a substrate according to claim 1, wherein the substrate includes an oxide of silicon in the first region. 上記第1重合体が、側鎖に3級アミノ基を有する請求項1から請求項4のいずれか1項に記載の基材表面の選択的修飾方法。
The method for selectively modifying a substrate surface according to any one of claims 1 to 4, wherein the first polymer has a tertiary amino group in a side chain.
JP2019501412A 2017-02-27 2018-02-22 Method of selective modification of substrate surface Active JP6905200B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762464026P 2017-02-27 2017-02-27
US62/464,026 2017-02-27
PCT/JP2018/006463 WO2018155555A1 (en) 2017-02-27 2018-02-22 Method for selectively modifying substrate surface

Publications (2)

Publication Number Publication Date
JPWO2018155555A1 true JPWO2018155555A1 (en) 2019-12-19
JP6905200B2 JP6905200B2 (en) 2021-07-21

Family

ID=63253370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019501412A Active JP6905200B2 (en) 2017-02-27 2018-02-22 Method of selective modification of substrate surface

Country Status (4)

Country Link
US (1) US10923342B2 (en)
JP (1) JP6905200B2 (en)
KR (1) KR20190117523A (en)
WO (1) WO2018155555A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660700B2 (en) 2001-09-03 2011-03-30 独立行政法人産業技術総合研究所 Pattern formation method of organic molecular self-assembled film
US20070269883A1 (en) * 2006-05-16 2007-11-22 Kathryn Uhrich Micropatterning surfaces
JP5429375B2 (en) * 2011-04-15 2014-02-26 東洋紡株式会社 LAMINATE, MANUFACTURING METHOD THEREOF, AND METHOD FOR CREATING DEVICE STRUCTURE USING THIS LAMINATE
CN105336729A (en) 2014-07-18 2016-02-17 上海和辉光电有限公司 Capacitance testing structure and testing method for monitoring dielectric film thickness

Also Published As

Publication number Publication date
US10923342B2 (en) 2021-02-16
KR20190117523A (en) 2019-10-16
US20200051813A1 (en) 2020-02-13
WO2018155555A1 (en) 2018-08-30
JP6905200B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP5994788B2 (en) Self-assembling composition for pattern formation and pattern forming method
WO2014003023A1 (en) Composition for pattern formation and pattern forming method
JP7071661B2 (en) Cover film forming method
JP2014055291A (en) Composition and method for preparing pattern on substrate
JP7226336B2 (en) pattern formation method
TW201619278A (en) Silicon containing block copolymers for directed self-assembly application
WO2016088785A1 (en) Method for forming self-assembled film, method for forming pattern, and composition for forming self-assembled film
WO2018008481A1 (en) Composition for forming pattern, and pattern forming method
JP6905200B2 (en) Method of selective modification of substrate surface
JP6889381B2 (en) Selective Modification Method and Composition of Substrate Surface
JP7298428B2 (en) Patterning method and patterned substrate
US20200379348A1 (en) Pattern-forming method and radiation-sensitive composition
WO2020179918A1 (en) Substrate production method and block copolymer
JP7136182B2 (en) Method for modifying substrate surface, composition and polymer
US11270883B2 (en) Pattern-forming method and composition
JP7081377B2 (en) Method for modifying the composition and substrate surface
WO2020250783A1 (en) Composition, method for producing substrate, and polymer
JP2023074176A (en) Manufacturing method of substrate and coating liquid
JP2023004530A (en) Membrane manufacturing method
JP2022132189A (en) Method for manufacturing multilayer wiring board, kit for forming laminate film and composition
JP2022161919A (en) Composition
JPWO2020071339A1 (en) Substrate manufacturing method, composition and polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6905200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150