JP2023074176A - Manufacturing method of substrate and coating liquid - Google Patents

Manufacturing method of substrate and coating liquid Download PDF

Info

Publication number
JP2023074176A
JP2023074176A JP2021186989A JP2021186989A JP2023074176A JP 2023074176 A JP2023074176 A JP 2023074176A JP 2021186989 A JP2021186989 A JP 2021186989A JP 2021186989 A JP2021186989 A JP 2021186989A JP 2023074176 A JP2023074176 A JP 2023074176A
Authority
JP
Japan
Prior art keywords
substrate
coating liquid
coating
region
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021186989A
Other languages
Japanese (ja)
Inventor
裕之 小松
Hiroyuki Komatsu
優貴 尾崎
Yuki Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2021186989A priority Critical patent/JP2023074176A/en
Publication of JP2023074176A publication Critical patent/JP2023074176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

To provide a manufacturing method of a substrate, enabling selective formation of a film that can exert a high blocking performance against a metal oxide formation by an ALD method or a CVD method by a coating method onto the substrate including a region containing an end terminal structure expressed by Si-NH2 in a front layer, and to provide a coating liquid.SOLUTION: A manufacturing method of a substrate is provided, comprising: a step of coating a coating liquid to a base material having a first region including end terminal structure expressed by Si-NH2 in a front layer; and a step of heating a coating film formed by the coating step. The coating liquid contains a chemical compound having a functional group and an aromatic ring structure, and forming a carbon-nitrogen double bond by being reacted with the end terminal structure of the first region.SELECTED DRAWING: None

Description

本発明は、基板の製造方法及び塗工液に関する。 The present invention relates to a substrate manufacturing method and a coating liquid.

半導体デバイスのさらなる微細化に伴い、30nm以下の微細パターンを形成する技術が要求されている。しかし、従来のリソグラフィーによる方法では、光学的要因等により技術的に困難になってきている。 With further miniaturization of semiconductor devices, a technique for forming fine patterns of 30 nm or less is required. However, the conventional lithographic method is becoming technically difficult due to optical factors and the like.

そこで、いわゆるボトムアップ技術を用いて微細パターンを形成することが検討されている。このボトムアップ技術としては、例えば微細な領域を表層に有する基材を選択的に化学修飾し、ALD(Atomic Layer Deposition)法、CVD(Chemical Vapor Deposition)法等により基材の化学修飾されていない領域に金属オキサイドを形成した後、上記化学修飾を除去することにより基板にパターンを形成する方法等が検討されている(国際公開第2019/023001号)。 Therefore, formation of fine patterns using a so-called bottom-up technique has been studied. As this bottom-up technique, for example, a substrate having a fine region on the surface layer is selectively chemically modified, and the substrate is not chemically modified by an ALD (Atomic Layer Deposition) method, a CVD (Chemical Vapor Deposition) method, or the like. A method of forming a pattern on a substrate by removing the above chemical modification after forming a metal oxide in a region and the like have been studied (International Publication No. 2019/023001).

国際公開第2019/023001号WO2019/023001

国際公開第2019/023001号では、水素終端を備えた第1の表面と、水酸化物終端を備えた第2の表面とを有する基板を窒化剤に曝露して、アミン終端された第1の表面を形成するステップと、前記アミン終端された第1の表面をブロッキング分子に曝露して、前記第1の表面にブロッキング層を形成するステップと、を含む方法が開示されている。 In WO2019/023001, a substrate having a first surface with hydrogen termination and a second surface with hydroxide termination is exposed to a nitriding agent to form an amine-terminated first surface. A method is disclosed that includes forming a surface and exposing the amine-terminated first surface to a blocking molecule to form a blocking layer on the first surface.

上記方法では、基板をDMSO中のウンデカナール溶液に浸漬することでアミン終端された表面に選択的にブロッキング層を形成している。この際、基板表面のSi-NH基とウンデカナールのアルデヒド基とが反応(脱水縮合反応)して炭素-窒素二重結合を形成すると考えられる。しかし、この反応は平衡反応であり、溶液や空気中の水による加水分解の影響を非常に受けやすいため、塗布法により基板上にブロッキング層を安定に形成することが困難であると考えられる。 In the above method, a blocking layer is selectively formed on the amine-terminated surface by immersing the substrate in a solution of undecanal in DMSO. At this time, it is considered that the Si—NH 2 groups on the substrate surface and the aldehyde groups of undecanal react (dehydration condensation reaction) to form carbon-nitrogen double bonds. However, since this reaction is an equilibrium reaction and is very susceptible to hydrolysis by water in solution or air, it is considered difficult to stably form a blocking layer on a substrate by a coating method.

本発明は、Si-NHで表される末端構造を含む領域を表層に有する基板上に塗布法により選択的に、ALD法又はCVD法による金属オキサイド形成に対する高いブロッキング性能を発揮する膜を形成できる基板の製造方法及び塗工液を提供することを課題とする。 The present invention selectively forms a film exhibiting high blocking performance against metal oxide formation by ALD or CVD on a substrate having a surface layer containing a region containing a terminal structure represented by Si—NH 2 by a coating method. An object of the present invention is to provide a method for manufacturing a substrate and a coating liquid capable of achieving the above.

上記課題を解決するためになされた発明は、Si-NHで表される末端構造を含む第1領域を表層に有する基材に塗工液を塗工する工程と、上記塗工工程により形成された塗工膜を加熱する工程とを備え、上記塗工液が、上記第1領域の末端構造と反応して炭素-窒素二重結合を形成する官能基及び芳香環構造を有する化合物を含有する基板の製造方法である。 The invention made to solve the above problems is formed by applying a coating liquid to a substrate having a first region including a terminal structure represented by Si—NH 2 on the surface layer, and the coating step. and heating the applied coating film, wherein the coating liquid contains a compound having a functional group and an aromatic ring structure that reacts with the terminal structure of the first region to form a carbon-nitrogen double bond. It is a method of manufacturing a substrate that

上記課題を解決するためになされた別の発明は、Si-NHで表される末端構造を含む第1領域を表層に有する基材に塗工されるように用いられる塗工液であって、上記第1領域の末端構造と反応して炭素-窒素二重結合を形成する官能基及び芳香環構造を有する化合物を含有する塗工液である。 Another invention made to solve the above problems is a coating liquid used to be applied to a substrate having a first region containing a terminal structure represented by Si—NH 2 on the surface layer, , a coating liquid containing a compound having an aromatic ring structure and a functional group that reacts with the terminal structure of the first region to form a carbon-nitrogen double bond.

本発明の基板の製造方法及び塗工液によれば、Si-NHで表される末端構造を含む領域を表層に有する基板上に塗布法により選択的に、ALD法又はCVD法による金属オキサイド形成に対する高いブロッキング性能を発揮する膜を形成できる。 According to the method for manufacturing a substrate and the coating solution of the present invention, a metal oxide is selectively applied by an ALD method or a CVD method onto a substrate having a region containing a terminal structure represented by Si—NH 2 on the surface layer by a coating method. A film can be formed that exhibits high blocking performance against formation.

以下、本発明の基板の製造方法及び塗工液について詳説する。 The method for manufacturing a substrate and the coating liquid of the present invention will be described in detail below.

<基板の製造方法>
当該基板の製造方法は、Si-NHで表される末端構造を含む第1領域を表層に有する基材に塗工液を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成された塗工膜を加熱する工程(以下、「加熱工程」ともいう)とを備える。
<Substrate manufacturing method>
The method for producing the substrate includes a step of applying a coating liquid to a substrate having a first region including a terminal structure represented by Si—NH 2 on the surface layer (hereinafter also referred to as a “coating step”); and a step of heating the coating film formed by the coating step (hereinafter also referred to as a “heating step”).

当該基板の製造方法は、上記構成を備えることにより、Si-NHで表される末端構造を含む領域を表層に有する基板上に塗布法により選択的に、ALD法又はCVD法による金属オキサイド形成に対する高いブロッキング性能を発揮する膜を形成できる。当該基板の製造方法が上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察できる。 The method for manufacturing the substrate, having the above configuration, selectively forms a metal oxide by an ALD method or a CVD method on a substrate having a region including a terminal structure represented by Si—NH 2 on the surface layer by a coating method. It is possible to form a film exhibiting high blocking performance against The reason why the substrate manufacturing method produces the above effects is not necessarily clear, but it can be inferred, for example, as follows.

上記塗工工程で用いる塗工液は、後述する[A]化合物を含有しており、[A]化合物が有する特定の官能基と、Si-NHで表される末端構造とが炭素-窒素二重結合を形成することで、Si-NHで表される末端構造を有する領域に選択的に膜を形成することができると考えられる。また、[A]化合物が芳香環構造を有することで、炭素-窒素二重結合の加水分解を抑制することができると考えられる。さらに、上記加熱工程により加水分解の原因となる水を除去できるため、炭素-窒素二重結合の加水分解をより抑制することができると考えられる。このような要素が相まって、当該基板の製造方法によれば、Si-NHで表される末端構造を含む領域を表層に有する基板上に塗布法により選択的に、ALD法又はCVD法による金属オキサイド形成に対する高いブロッキング性能を発揮する膜を形成できると考えられる。 The coating solution used in the coating step contains the [A] compound described later, and the specific functional group of the [A] compound and the terminal structure represented by Si—NH 2 are carbon-nitrogen It is believed that the formation of double bonds enables the selective formation of a film on the region having the terminal structure represented by Si—NH 2 . In addition, it is believed that the hydrolysis of the carbon-nitrogen double bond can be suppressed by the [A] compound having an aromatic ring structure. Furthermore, it is thought that the hydrolysis of the carbon-nitrogen double bond can be further suppressed because the water that causes hydrolysis can be removed by the heating step. Combined with these factors, according to the method for manufacturing the substrate, the substrate having a region including a terminal structure represented by Si—NH 2 on the surface layer is selectively coated with a metal by an ALD method or a CVD method. It is believed that a film exhibiting high blocking performance against oxide formation can be formed.

当該基板の製造方法は、上記加熱工程後に、上記加熱工程により形成された膜のうち上記第1領域以外の領域に存在する材料を洗浄液により洗浄する工程(以下、「洗浄工程」ともいう)を備えていてもよい。 The method for manufacturing the substrate includes, after the heating step, a step (hereinafter also referred to as a “cleaning step”) of cleaning, with a cleaning liquid, materials existing in regions other than the first region of the film formed by the heating step. may be provided.

当該基板の製造方法は、上記加熱工程後又は上記洗浄工程後に、基材の表面にCVD法又はALD法によりパターンを堆積させる工程(以下、「堆積工程」ともいう)を備えていてもよい。 The method for manufacturing the substrate may include a step of depositing a pattern on the surface of the substrate by a CVD method or an ALD method (hereinafter also referred to as a “deposition step”) after the heating step or the cleaning step.

当該基板の製造方法は、上記加熱工程後に、上記加熱工程により形成された膜を剥離液により剥離する工程(以下、「剥離工程」ともいう)を備えていてもよい。当該基板の製造方法により形成される膜は、剥離液により容易に剥離することができる。 The method for manufacturing the substrate may include, after the heating step, a step of stripping the film formed by the heating step with a stripping solution (hereinafter also referred to as a “peeling step”). A film formed by the substrate manufacturing method can be easily peeled off with a peeling liquid.

以下、当該基板の製造方法が備える各工程について説明する。 Each step included in the method for manufacturing the substrate will be described below.

[塗工工程]
本工程では、Si-NHで表される末端構造を含む第1領域を表層に有する基材に塗工液を塗工する。本工程により、基材上に塗工膜が形成される。
[Coating process]
In this step, a coating liquid is applied to a base material having a first region including a terminal structure represented by Si—NH 2 on the surface layer. Through this step, a coating film is formed on the substrate.

塗工液の塗工方法としては特に限定されず、例えばスピンコート法、ロールコート法、バーコート法等が挙げられる。 A method for applying the coating liquid is not particularly limited, and examples thereof include a spin coating method, a roll coating method, a bar coating method and the like.

(基材)
基材は、Si-NHで表される末端構造(以下、「1級アミノ基末端構造」ともいう)を含む第1領域を表層に有する。基材の形状としては、特に限定されず、例えば板状(基板)、球状等、適宜所望の形状とすることができる。
(Base material)
The substrate has a first region including a terminal structure represented by Si—NH 2 (hereinafter also referred to as “primary amino group terminal structure”) on the surface layer. The shape of the substrate is not particularly limited, and may be a desired shape, such as a plate (substrate) or spherical shape.

基材は、第1領域以外の領域(以下、「第2領域」ともいう)を表層に有していてもよい。基材が第2領域を表層に有する場合、第1領域上に選択的にブロッキング膜を形成することができる。 The substrate may have a region other than the first region (hereinafter also referred to as “second region”) on the surface layer. When the substrate has the second region on the surface layer, a blocking film can be selectively formed on the first region.

基材が第2領域を表層に有する場合、第1領域及び第2領域の存在形状としては特に限定されず、例えば平面視で面状、点状、ストライプ状等が挙げられる。第1領域及び第2領域の大きさは特に限定されず、適宜所望の大きさの領域とすることができる。 When the base material has the second region on the surface layer, the shape of the first region and the second region is not particularly limited, and examples thereof include a planar shape, a dotted shape, a striped shape, and the like in plan view. The sizes of the first region and the second region are not particularly limited, and the regions can be of any desired size.

第2領域としては、例えば非金属原子を含む領域、金属原子を含む領域等が挙げられる。第2領域は、1種であってもよいし、2種以上であってもよい。 Examples of the second region include a region containing nonmetallic atoms, a region containing metal atoms, and the like. The number of second regions may be one, or two or more.

非金属原子の含有形態としては、例えば非金属単体、非金属酸化物、非金属窒化物、非金属酸化物窒化物等が挙げられる。 Examples of the form in which the non-metal atoms are contained include non-metal simple substances, non-metal oxides, non-metal nitrides, non-metal oxide nitrides, and the like.

非金属単体としては、例えばケイ素、炭素等の単体が挙げられる。非金属酸化物としては、例えば酸化ケイ素等が挙げられる。非金属酸化物窒化物としては、例えばSiON等が挙げられる。これらの中で、非金属酸化物が好ましく、酸化ケイ素がより好ましい。 Examples of non-metal simple substances include simple substances such as silicon and carbon. Examples of non-metal oxides include silicon oxide and the like. Examples of non-metal oxide nitrides include SiON and the like. Among these, non-metal oxides are preferred, and silicon oxide is more preferred.

金属原子としては、金属元素の原子であれば特に限定されない。なお、ケイ素は、非金属原子であり、金属原子に該当しない。金属原子としては、例えば銅、鉄、亜鉛、コバルト、アルミニウム、スズ、タングステン、ジルコニウム、チタン、タンタル、ゲルマニウム、モリブデン、ルテニウム、金、銀、白金、パラジウム、ニッケル等が挙げられる。これらの中で、銅、コバルト又はタングステンが好ましい。 The metal atom is not particularly limited as long as it is an atom of a metal element. Silicon is a non-metal atom and does not correspond to a metal atom. Examples of metal atoms include copper, iron, zinc, cobalt, aluminum, tin, tungsten, zirconium, titanium, tantalum, germanium, molybdenum, ruthenium, gold, silver, platinum, palladium, and nickel. Among these, copper, cobalt or tungsten are preferred.

金属原子の含有形態としては、例えば金属単体、合金、導電性窒化物、金属酸化物、シリサイド等が挙げられる。 Examples of the form in which metal atoms are contained include elemental metals, alloys, conductive nitrides, metal oxides, silicides, and the like.

金属単体としては、例えば銅、鉄、コバルト、タングステン、タンタル等の金属の単体等が挙げられる。合金としては、例えばニッケル-銅合金、コバルト-ニッケル合金、金-銀合金等が挙げられる。導電性窒化物としては、例えば窒化タンタル、窒化チタン、窒化鉄、窒化アルミニウム等が挙げられる。金属酸化物としては、例えば酸化タンタル、酸化アルミニウム、酸化鉄、酸化銅等が挙げられる。シリサイドとしては、例えば鉄シリサイド、モリブデンシリサイド等が挙げられる。これらの中で、金属単体が好ましく、銅単体、コバルト単体又はタングステン単体がより好ましい。 Examples of simple metals include simple metals such as copper, iron, cobalt, tungsten, and tantalum. Examples of alloys include nickel-copper alloys, cobalt-nickel alloys, and gold-silver alloys. Examples of conductive nitrides include tantalum nitride, titanium nitride, iron nitride, and aluminum nitride. Examples of metal oxides include tantalum oxide, aluminum oxide, iron oxide, and copper oxide. Examples of silicide include iron silicide and molybdenum silicide. Among these, simple metals are preferred, and simple copper, cobalt or tungsten is more preferred.

本工程では、基材表層の第1領域における1級アミノ基末端構造と後述する[A]化合物が有する官能基とが反応して炭素-窒素二重結合を形成する。 In this step, the primary amino group terminal structure in the first region of the substrate surface layer reacts with the functional group of the [A] compound described later to form a carbon-nitrogen double bond.

基材としては、例えば窒化ケイ素を含む基材に対して、表層のSi-Hで表される末端構造(以下、「水素末端構造」ともいう)を1級アミノ基末端構造に変換する前処理を行った基材等が挙げられる。前処理の種別としては特に限定されず、ウェット処理、ドライ処理などが挙げられる。ウェット処理としては、例えば濃酢酸、希フッ化水素酸等を用いる処理が挙げられる。ドライ処理としては、プラズマ処理等が挙げられる。 As a substrate, for example, a substrate containing silicon nitride is subjected to a pretreatment to convert the terminal structure represented by Si—H on the surface layer (hereinafter also referred to as “hydrogen terminal structure”) to a primary amino group terminal structure. and the like. The type of pretreatment is not particularly limited, and includes wet treatment, dry treatment, and the like. Examples of wet processing include processing using concentrated acetic acid, dilute hydrofluoric acid, or the like. Examples of dry processing include plasma processing.

また、当該基板の製造方法は、上記塗工工程の前に、窒化ケイ素を含む基材の表層における水素末端構造を1級アミノ基末端構造に変換する前処理を行う工程(以下、「前処理工程」ともいう)を備えていてもよい。 In addition, in the method for manufacturing the substrate, before the coating step, a step of performing a pretreatment for converting the hydrogen terminal structure in the surface layer of the substrate containing silicon nitride to a primary amino group terminal structure (hereinafter referred to as "pretreatment (also referred to as "process").

(塗工液)
本工程で用いる塗工液については下記<塗工液>の項において説明する。
(Coating liquid)
The coating liquid used in this step will be described in the section <Coating liquid> below.

[加熱工程]
本工程では、上記塗工工程により形成された塗工膜を加熱する。本工程により、1級アミノ基末端構造と[A]化合物が有する官能基との反応が促進される。また、本工程により、系内の水を除去することができるため、上記反応により形成された炭素-窒素二重結合の加水分解を抑制することができる。
[Heating process]
In this step, the coating film formed by the coating step is heated. This step promotes the reaction between the primary amino group terminal structure and the functional group of the [A] compound. In addition, since water in the system can be removed by this step, hydrolysis of the carbon-nitrogen double bond formed by the above reaction can be suppressed.

加熱手段としては特に限定されず公知の加熱手段を採用でき、例えばオーブン、ホットプレート等が挙げられる。加熱温度及び加熱時間としては、塗工液における溶媒の有無、[A]化合物の構造、[A]化合物の有する官能基の種類等、種々の要素を勘案して適宜決定できる。加熱温度の下限としては、80℃が好ましく、100℃がより好ましく、130℃がさらに好ましい。加熱温度の上限としては、400℃が好ましく、300℃がより好ましく、200℃がさらに好ましい。加熱時間の下限としては、10秒が好ましく、1分がより好ましく、2分がさらに好ましい。加熱時間の上限としては、60分が好ましく、10分がより好ましく、5分がさらに好ましい。 The heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used. The heating temperature and heating time can be appropriately determined in consideration of various factors such as the presence or absence of a solvent in the coating liquid, the structure of the [A] compound, the type of the functional group of the [A] compound, and the like. The lower limit of the heating temperature is preferably 80°C, more preferably 100°C, and even more preferably 130°C. The upper limit of the heating temperature is preferably 400°C, more preferably 300°C, and even more preferably 200°C. The lower limit of the heating time is preferably 10 seconds, more preferably 1 minute, and even more preferably 2 minutes. The upper limit of the heating time is preferably 60 minutes, more preferably 10 minutes, and even more preferably 5 minutes.

形成される膜の平均厚みは、塗工液における[A]化合物の種類及び濃度、並びに加熱工程における加熱温度、加熱時間等の条件を適宜選択することで所望の値にすることができる。膜の平均厚みの下限としては、0.1nmが好ましく、1nmがより好ましく、3nmがさらに好ましい。上記平均厚みの上限としては、例えば20nmである。膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した値である。 The average thickness of the formed film can be set to a desired value by appropriately selecting conditions such as the type and concentration of the [A] compound in the coating solution, and the heating temperature and heating time in the heating step. The lower limit of the average thickness of the film is preferably 0.1 nm, more preferably 1 nm, and even more preferably 3 nm. The upper limit of the average thickness is, for example, 20 nm. The average thickness of the film is a value measured using a spectroscopic ellipsometer ("M2000D" manufactured by JA WOOLLAM).

[洗浄工程]
本工程では、上記加熱工程により形成された膜のうち上記第1領域以外の領域に存在する材料を洗浄液により洗浄する。本工程は、上記加熱工程の後に行われる。本工程により、基板上に存在する第1領域における末端構造と炭素-窒素二重結合を形成していない材料が除去される。本工程は、基材が第2領域を有する場合に特に有利であり、第2領域上に存在する材料を除去し、第1領域上に選択的にブロッキング膜を形成することができる。
[Washing process]
In this step, the material of the film formed by the heating step, which is present in regions other than the first region, is washed with a cleaning liquid. This step is performed after the heating step. This step removes material that does not form a carbon-nitrogen double bond with the terminal structure in the first region present on the substrate. This step is particularly advantageous when the substrate has a second region, and can remove material present on the second region and selectively form a blocking film on the first region.

洗浄液としては、有機溶媒が用いられる。例えば下記<塗工液>の項において説明する[B]溶媒として例示する溶媒等が挙げられる。また、塗工液が[B]溶媒を含有する場合、洗浄液として塗工液が含有する[B]溶媒と同種の溶媒を用いることができる。 An organic solvent is used as the cleaning liquid. Examples thereof include solvents exemplified as [B] solvent described in the section <Coating liquid> below. Moreover, when the coating liquid contains the [B] solvent, the same solvent as the [B] solvent contained in the coating liquid can be used as the cleaning liquid.

[堆積工程]
本工程では、基材の表面にCVD法又はALD法によりパターンを堆積させる。本工程は、上記加熱工程又は上記洗浄工程の後に行われる。本工程は、基材が第2領域を有する場合に特に有利であり、第1領域上に形成された膜はCVD法又はALD法による金属オキサイド形成に対し高いブロッキング性能を有するため、第2領域上に選択的に金属オキサイドパターンを形成することができる。
[Deposition process]
In this step, a pattern is deposited on the surface of the substrate by CVD or ALD. This step is performed after the heating step or the washing step. This step is particularly advantageous when the substrate has a second region, and the film formed on the first region has high blocking performance against metal oxide formation by CVD or ALD. A metal oxide pattern can be selectively formed thereon.

[剥離工程]
本工程では、上記加熱工程により形成された膜を剥離液により剥離する。本工程は、上記加熱工程又は上記堆積工程の後に行われる。本工程は、基材が第2領域を有し、かつ上記堆積工程の後に行われる場合に特に有利であり、加熱工程により形成された膜を剥離することにより、基材の第2領域上に選択的に金属オキサイドパターンを形成することができる。
[Peeling process]
In this step, the film formed by the heating step is removed with a remover. This step is performed after the heating step or the deposition step. This step is particularly advantageous when the substrate has a second region and is performed after the deposition step described above, where the film formed by the heating step is peeled off onto the second region of the substrate. A metal oxide pattern can be selectively formed.

剥離液としては、酸を含有する液又は塩基を含有する液が好ましい。酸としては、例えば塩酸、硫酸、硝酸、フッ酸等の無機酸、酢酸、クエン酸、シュウ酸、マレイン酸、イソ酪酸、2-エチルヘキサン酸等のカルボン酸等が挙げられる。これらの中で、カルボン酸が好ましく、クエン酸がより好ましい。塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)等が挙げられる。これらの中で、TMAHが好ましい。 As the stripping liquid, a liquid containing an acid or a liquid containing a base is preferable. Examples of acids include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid, and carboxylic acids such as acetic acid, citric acid, oxalic acid, maleic acid, isobutyric acid and 2-ethylhexanoic acid. Among these, carboxylic acids are preferred, and citric acid is more preferred. Bases include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, tri ethanolamine, tetramethylammonium hydroxide (TMAH) and the like. Among these, TMAH is preferred.

また、剥離液としては、水酸化アンモニウム-過酸化水素水溶液(SC-1洗浄液)、塩酸-過酸化水素水溶液(SC-2洗浄液)等も挙げられる。 Examples of stripping solutions include ammonium hydroxide-hydrogen peroxide aqueous solution (SC-1 cleaning solution) and hydrochloric acid-hydrogen peroxide aqueous solution (SC-2 cleaning solution).

剥離液の溶媒は、水を主成分とすることが好ましい。溶媒中の水の含有割合の下限としては、50質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。上記含有割合は、100質量%であってもよい。 The solvent of the stripping solution preferably contains water as a main component. The lower limit of the content of water in the solvent is preferably 50% by mass, more preferably 90% by mass, and even more preferably 95% by mass. The content ratio may be 100% by mass.

<塗工液>
当該塗工液は、基材の第1領域におけるSi-NHで表される末端構造(1級アミノ基末端構造)と反応して炭素-窒素二重結合を形成する官能基及び芳香環構造を有する化合物(以下、「[A]化合物」ともいう)を含有する。当該塗工液は常温常圧で液状であり、必要に応じて、溶媒(以下、「[B]溶媒」ともいう)を含有することができる。当該塗工液は、本発明の効果を損なわない範囲において、[A]化合物及び[B]溶媒以外のその他の成分(以下、「他の成分」ともいう)を含有することができる。
<Coating liquid>
The coating liquid contains a functional group and an aromatic ring structure that react with the terminal structure (primary amino group terminal structure) represented by Si—NH 2 in the first region of the substrate to form a carbon-nitrogen double bond. (hereinafter also referred to as "[A] compound"). The coating liquid is liquid at normal temperature and normal pressure, and may contain a solvent (hereinafter also referred to as "[B] solvent") as necessary. The coating liquid may contain components other than the [A] compound and [B] solvent (hereinafter also referred to as “other components”) within a range that does not impair the effects of the present invention.

当該塗工液は、1級アミノ基末端構造を含む第1領域を表層に有する基材に塗工されるように用いられる。具体的には、当該塗工液は、上述の当該基板の製造方法における塗工工程において用いられる。 The coating liquid is used so as to be coated on a base material having a first region containing a primary amino group terminal structure on the surface layer. Specifically, the coating liquid is used in the coating step in the substrate manufacturing method described above.

以下、当該塗工液が含有する各成分について説明する。 Each component contained in the coating liquid will be described below.

[[A]化合物]
[A]化合物は、基材の第1領域における1級アミノ基末端構造と反応して炭素-窒素二重結合を形成する官能基(以下、「官能基(X)」ともいう)及び芳香環構造を有する。
[[A] compound]
[A] The compound has a functional group (hereinafter also referred to as "functional group (X)") that reacts with the primary amino group terminal structure in the first region of the substrate to form a carbon-nitrogen double bond and an aromatic ring. have a structure.

[A]化合物は、重合体(以下、「[A1]重合体」ともいう)であってもよいし、低分子化合物(以下、「[A2]化合物」ともいう)であってもよい。本明細書において、「重合体」とは繰り返し単位を有する化合物を意味し、「低分子化合物」とは重合体でない化合物であって、分子量分布を有さず、分子量が1,000以下の化合物を意味する。 The [A] compound may be a polymer (hereinafter also referred to as "[A1] polymer") or a low molecular weight compound (hereinafter also referred to as "[A2] compound"). As used herein, the term "polymer" means a compound having a repeating unit, and the term "low-molecular compound" means a compound that is not a polymer, has no molecular weight distribution, and has a molecular weight of 1,000 or less. means

官能基(X)は、1級アミノ基末端構造と反応して炭素-窒素二重結合を形成する官能基である。官能基(X)としては、アルデヒド基又はケトン性カルボニル基が好ましい。[A]化合物は、1又は複数の官能基(X)を有することができる。 The functional group (X) is a functional group that reacts with the primary amino group terminal structure to form a carbon-nitrogen double bond. As the functional group (X), an aldehyde group or a ketonic carbonyl group is preferred. The [A] compound may have one or more functional groups (X).

芳香環構造としては、例えば環員数6~20の芳香族炭化水素環構造、環員数5~20の芳香族複素環構造等が挙げられる。「環員数」とは、環構造を構成する原子数を意味し、多環の場合は多環を構成する総原子数を意味する。 Examples of the aromatic ring structure include aromatic hydrocarbon ring structures with 6 to 20 ring members, aromatic heterocyclic structures with 5 to 20 ring members, and the like. The "number of ring members" means the number of atoms constituting a ring structure, and in the case of a polycyclic ring, the total number of atoms constituting the polycyclic ring.

環員数6~20の芳香族炭化水素環構造としては、例えばベンゼン構造、ナフタレン構造、ビフェニル構造、アントラセン構造、フェナントレン構造、フルオレン構造、テトラセン構造、ピレン構造等が挙げられる。 Examples of aromatic hydrocarbon ring structures having 6 to 20 ring members include benzene structure, naphthalene structure, biphenyl structure, anthracene structure, phenanthrene structure, fluorene structure, tetracene structure and pyrene structure.

環員数5~20の芳香族複素環構造としては、フラン構造、ベンゾフラン構造、ピロール構造、インドール構造、チオフェン構造、ベンゾチオフェン構造、ジベンゾチオフェン構造、イミダゾール構造、ピラゾール構造、オキサゾール構造等が挙げられる。 Examples of aromatic heterocyclic structures having 5 to 20 ring members include furan structure, benzofuran structure, pyrrole structure, indole structure, thiophene structure, benzothiophene structure, dibenzothiophene structure, imidazole structure, pyrazole structure, oxazole structure and the like.

芳香環構造としては、環員数6~20の芳香族炭化水素環構造が好ましい。 As the aromatic ring structure, an aromatic hydrocarbon ring structure having 6 to 20 ring members is preferred.

[A]化合物は、分子量が200以上であることが好ましい。なお、「分子量」は、[A1]重合体である場合には後述する重量平均分子量Mwを意味し、[A2]化合物である場合には低分子化合物を構成する各原子の原子量の総和を意味する。 The [A] compound preferably has a molecular weight of 200 or more. In addition, "molecular weight" means the weight average molecular weight Mw described later in the case of the [A1] polymer, and the sum of the atomic weights of each atom constituting the low-molecular compound in the case of the [A2] compound. do.

([A1]化合物)
[A]化合物が[A1]重合体である場合、[A1]重合体は、芳香環構造を含む構造単位(以下、「構造単位(I)」ともいう)及び官能基(X)を有する。[A1]重合体は、構造単位(I)以外の他の構造単位を有していてもよい。
([A1] compound)
When the [A] compound is a [A1] polymer, the [A1] polymer has a structural unit containing an aromatic ring structure (hereinafter also referred to as "structural unit (I)") and a functional group (X). [A1] The polymer may have structural units other than the structural unit (I).

官能基(X)がアルデヒド基である場合、[A1]重合体は、官能基(X)を主鎖の末端又は側鎖の末端に有することが好ましく、官能基(X)を主鎖の末端に有することがより好ましい。「主鎖」とは[A1]重合体を構成する原子鎖のうち最も長い原子鎖を意味し、「側鎖」とは[A1]重合体を構成する原子鎖のうち主鎖以外の原子鎖を意味する。 When the functional group (X) is an aldehyde group, the [A1] polymer preferably has the functional group (X) at the terminal of the main chain or the terminal of the side chain, and the functional group (X) is at the terminal of the main chain. It is more preferable to have "Main chain" means the longest atomic chain among the atomic chains constituting the [A1] polymer, and "side chain" means the atomic chain other than the main chain among the atomic chains constituting the [A1] polymer. means

主鎖の末端の官能基(X)は、例えばポリスチレンなどのリビングアニオン重合体の重合末端を官能基(X)を与える末端処理剤で処理することにより導入することができる。官能基(X)を与える末端処理剤としては、例えばN,N-ジメチルホルムアミド等が挙げられる。 The functional group (X) at the terminal of the main chain can be introduced, for example, by treating the polymerization terminal of a living anionic polymer such as polystyrene with a terminal treating agent that provides the functional group (X). Examples of terminal treating agents that provide functional groups (X) include N,N-dimethylformamide.

側鎖の末端に官能基(X)を有する[A1]重合体は、例えば4-ビニルベンズアルデヒド等の末端に官能基(X)を有し、かつエチレン性炭素-炭素二重結合を有する単量体を用いることなどにより形成することができる。 The [A1] polymer having a functional group (X) at the end of the side chain is a monomer having a functional group (X) at the end and an ethylenic carbon-carbon double bond, such as 4-vinylbenzaldehyde. It can be formed, for example, by using a body.

官能基(X)がケトン性カルボニル基である場合、[A1]重合体は、官能基(X)を主鎖中に有することが好ましい。また、ケトン性カルボニル基の両端が上記芳香環構造と結合していることが好ましい。主鎖中のケトン性カルボニル基は、例えば2,2’-ジメトキシビフェニル等の芳香環構造を有する化合物と4,4’-ジカルボキシジフェニルエーテル等の芳香族ジカルボン酸とをトロフルオロメタンスルホン酸の存在下で反応させることでフリーデル・クラフツ反応により形成することができる。 When the functional group (X) is a ketonic carbonyl group, the [A1] polymer preferably has the functional group (X) in its main chain. Moreover, both ends of the ketonic carbonyl group are preferably bonded to the aromatic ring structure. A ketonic carbonyl group in the main chain is formed by combining a compound having an aromatic ring structure such as 2,2′-dimethoxybiphenyl and an aromatic dicarboxylic acid such as 4,4′-dicarboxydiphenyl ether with the presence of trofluoromethanesulfonic acid. It can be formed by the Friedel-Crafts reaction by reacting below.

[A]化合物が[A1]重合体である場合、[A1]重合体の重量平均分子量Mwの下限としては、200が好ましく、1,000がより好ましく、2,000がさらに好ましく、3,000がさらに好ましく、4,000が特に好ましい。上記Mwの上限としては、80,000が好ましく、60,000がより好ましく、20,000が好ましい場合もあり、10,000が好ましい場合もある。 When the [A] compound is the [A1] polymer, the lower limit of the weight average molecular weight Mw of the [A1] polymer is preferably 200, more preferably 1,000, even more preferably 2,000, and 3,000. is more preferred, and 4,000 is particularly preferred. The upper limit of Mw is preferably 80,000, more preferably 60,000, sometimes preferably 20,000, and sometimes preferably 10,000.

[A1]重合体のGPCによるポリスチレン換算数平均分子量Mnに対するMwの比(Mw/Mn、分散度)の上限としては、5が好ましく、2.5がより好ましく、1.5が好ましい場合もあり、1.3が好ましい場合もある。上記比の下限としては、通常1であり、1.02が好ましい。 [A1] The upper limit of the ratio of Mw to the polystyrene-equivalent number average molecular weight Mn of the polymer (Mw/Mn, dispersity) is preferably 5, more preferably 2.5, and sometimes preferably 1.5. , 1.3 may be preferred. The lower limit of the above ratio is usually 1, preferably 1.02.

[Mw及びMnの測定方法]
本明細書における重合体のMw及びMnは、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、以下の条件によるゲルパーミエーションクロマトグラフィーにより測定した値である。
溶離液 :テトラヒドロフラン(富士フイルム和光純薬(株))
流量 :1.0mL/分
試料濃度 :1.0質量%
試料注入量:100μL
カラム温度:40℃
検出器 :示差屈折計
標準物質 :単分散ポリスチレン
[Method for measuring Mw and Mn]
The Mw and Mn of the polymer herein are obtained by gel permeation chromatography using Tosoh Corporation GPC columns (two "G2000HXL", one "G3000HXL" and one "G4000HXL") under the following conditions: It is a value measured by graphics.
Eluent: Tetrahydrofuran (Fujifilm Wako Pure Chemical Industries, Ltd.)
Flow rate: 1.0 mL/min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Column temperature: 40°C
Detector: Differential refractometer Standard material: Monodisperse polystyrene

([A2]化合物)
[A]化合物が[A2]化合物である場合、[A2]化合物は、芳香環構造及び官能基(X)を有する。[A2]化合物は、官能基(X)が芳香環構造に結合していることが好ましい。この場合、塗布法により基板上にブロッキング膜をより安定に形成することができる。
([A2] compound)
When the [A] compound is the [A2] compound, the [A2] compound has an aromatic ring structure and a functional group (X). In the [A2] compound, the functional group (X) is preferably bound to the aromatic ring structure. In this case, the blocking film can be more stably formed on the substrate by a coating method.

[A2]化合物としては、例えばp-オクチルオキシベンズアルデヒド、3,5-ビス(ドデシルオキシ)ベンズアルデヒド等が挙げられる。 Examples of the [A2] compound include p-octyloxybenzaldehyde and 3,5-bis(dodecyloxy)benzaldehyde.

[A]化合物が[A2]化合物である場合、[A2]化合物の分子量の下限としては、200が好ましく、300がより好ましい。[A2]化合物の分子量が上記下限以上である場合、塗工液の塗工性をより向上させることができる。上記分子量の上限としては、1,000であり、700が好ましく、600がより好ましい。 When the [A] compound is the [A2] compound, the lower limit of the molecular weight of the [A2] compound is preferably 200, more preferably 300. [A2] When the molecular weight of the compound is at least the above lower limit, the coatability of the coating liquid can be further improved. The upper limit of the molecular weight is 1,000, preferably 700, more preferably 600.

[[B]溶媒]
[B]溶媒としては、[A]化合物及び他の成分を溶解又は分散可能な溶媒であれば特に限定されず、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。当該塗工液は、[B]溶媒を1種又は2種以上含有していてもよい。
[[B] solvent]
The [B] solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing the [A] compound and other components, such as alcohol solvents, ether solvents, ketone solvents, amide solvents, and ester solvents. , hydrocarbon solvents, and the like. The coating liquid may contain one or more [B] solvents.

アルコール系溶媒としては、例えば
4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
Examples of alcohol solvents include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol;
Alicyclic monoalcohol solvents having 3 to 18 carbon atoms such as cyclohexanol;
Polyhydric alcohol solvents having 2 to 18 carbon atoms such as 1,2-propylene glycol;
Polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether are included.

エーテル系溶媒としては、例えば
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶媒などが挙げられる。
Examples of ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether;
Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran;
aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether);

ケトン系溶媒としては、例えば
アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、2-ヘプタノン(メチル-n-ペンチルケトン)、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;
シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
Ketone solvents include, for example, acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl isobutyl ketone (MIBK), 2-heptanone (methyl-n-pentyl ketone), ethyl-n- Chain ketone solvents such as butyl ketone, methyl-n-hexyl ketone, di-iso-butyl ketone, and trimethyl nonanone;
Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone;
2,4-pentanedione, acetonylacetone, acetophenone and the like.

アミド系溶媒としては、例えば
N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
Examples of amide solvents include cyclic amide solvents such as N,N'-dimethylimidazolidinone and N-methylpyrrolidone;
Chain amide solvents such as N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropionamide, and the like.

エステル系溶媒としては、例えば
酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;
γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒などが挙げられる。
Examples of ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate;
Polyhydric alcohol carboxylate solvents such as propylene glycol acetate;
Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate;
Lactone solvents such as γ-butyrolactone and δ-valerolactone;
Polyvalent carboxylic acid diester solvents such as diethyl oxalate;
Examples thereof include carbonate-based solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate and propylene carbonate.

炭化水素系溶媒としては、例えば
n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒等が挙げられる。
Examples of hydrocarbon solvents include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane;
Examples include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.

これらの中で、エステル系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒、ラクトン系溶媒又はこれらの組み合わせがより好ましく、プロピレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン又はこれらの組み合わせがさらに好ましい。 Among these, ester solvents are preferred, polyhydric alcohol partial ether carboxylate solvents, lactone solvents, or combinations thereof are more preferred, and propylene glycol monomethyl ether acetate, γ-butyrolactone, or combinations thereof are even more preferred.

[他の成分]
他の成分としては、例えば酸発生剤、界面活性剤等が挙げられる。当該塗工液における他の成分の含有割合としては、用いる他の成分の種類等に応じて適宜決定することができる。
[Other ingredients]
Other components include, for example, acid generators and surfactants. The content of other components in the coating liquid can be appropriately determined depending on the type of other components used.

当該塗工液の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、0.7質量%がさらに好ましい。上記固形分濃度の上限としては、30質量%が好ましく、10質量%がより好ましく、3質量%がさらに好ましい。「固形分濃度」とは、当該塗工液における[B]溶媒以外の全成分の濃度(質量%)をいう。 The lower limit of the solid content concentration of the coating liquid is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 0.7% by mass. The upper limit of the solid content concentration is preferably 30% by mass, more preferably 10% by mass, and even more preferably 3% by mass. "Solid content concentration" refers to the concentration (% by mass) of all components other than the [B] solvent in the coating liquid.

[塗工液の調製方法]
当該塗工液は、例えば[A]化合物、[B]溶媒及び必要に応じて他の成分を所定の割合で混合し、好ましくは0.45μm以下の細孔を有する高密度ポリエチレンフィルター等で濾過することにより調製することができる。
[Method for preparing coating liquid]
The coating liquid is, for example, a mixture of [A] compound, [B] solvent and, if necessary, other components in a predetermined ratio, and is preferably filtered through a high-density polyethylene filter or the like having pores of 0.45 μm or less. It can be prepared by

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を以下に示す。 EXAMPLES The present invention will be specifically described below based on Examples, but the present invention is not limited to these Examples. The method for measuring each physical property value is shown below.

[重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)]
重合体のMw及びMnは、上記[Mw及びMnの測定方法]の項に記載の条件に従って測定した。重合体の分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
[Weight average molecular weight (Mw), number average molecular weight (Mn) and dispersity (Mw/Mn)]
The Mw and Mn of the polymer were measured according to the conditions described in the section [Method for measuring Mw and Mn] above. The dispersity (Mw/Mn) of the polymer was calculated from the measurement results of Mw and Mn.

13C-NMR分析]
13C-NMR分析は、核磁気共鳴装置(日本電子(株)の「JNM-EX400」)を使用し、測定溶媒としてCDClを用いて行った。重合体における各構造単位の含有割合は、13C-NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。
[ 13 C-NMR analysis]
13 C-NMR analysis was performed using a nuclear magnetic resonance apparatus (“JNM-EX400” manufactured by JEOL Ltd.) using CDCl 3 as a measurement solvent. The content ratio of each structural unit in the polymer was calculated from the area ratio of the peak corresponding to each structural unit in the spectrum obtained by 13 C-NMR.

<[A]化合物の合成>
[A]化合物のうち、[A1]重合体として重合体(A1-1)~(A1-3)を、[A2]化合物として以下の化合物(A2-1)をそれぞれ合成した。また、[A1]重合体の対照として重合体(a1-1)~(a1-3)を合成した。
<Synthesis of [A] compound>
Among the [A] compounds, polymers (A1-1) to (A1-3) were synthesized as the [A1] polymer, and the following compound (A2-1) was synthesized as the [A2] compound. In addition, polymers (a1-1) to (a1-3) were synthesized as controls for the [A1] polymer.

[合成例1]重合体(A1-1)(BZP-co-BP(OMe)2)の合成
温度計とスターラーバーを備えた三口フラスコに、4,4’-ジカルボキシジフェニルエーテル7.8g、2,2’-ジメトキシビフェニル7.7g及びトリフルオロメタンスルホン酸45mLを加え、窒素雰囲気下、40℃で24時間加熱攪拌した。反応終了後、水を45mLゆっくり滴下し、重合体を析出させ、ブフナー漏斗にて回収し、減圧乾燥させた。この重合体を少量のN,N-ジメチルアセトアミドへ溶解させ2-プロパノールへ沈殿精製させ、ブフナー漏斗にて回収し、減圧乾燥させることで下記式(A1-1)で表される重合体(以下、「重合体(A1-1)」又は「BZP-co-BP(OMe)2」ともいう)を12.8g得た。重合体(A1-1)は、Mwが50,000、Mnが24,800、Mw/Mnが2.02であった。
[Synthesis Example 1] Synthesis of polymer (A1-1) (BZP-co-BP(OMe)2) In a three-necked flask equipped with a thermometer and a stirrer bar, 7.8 g of 4,4'-dicarboxydiphenyl ether, 2 , 2′-dimethoxybiphenyl and 45 mL of trifluoromethanesulfonic acid were added, and the mixture was heated and stirred at 40° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, 45 mL of water was slowly added dropwise to precipitate a polymer, which was recovered using a Buchner funnel and dried under reduced pressure. This polymer is dissolved in a small amount of N,N-dimethylacetamide, precipitated and purified in 2-propanol, recovered with a Buchner funnel, and dried under reduced pressure to obtain a polymer represented by the following formula (A1-1) (hereinafter , also referred to as “polymer (A1-1)” or “BZP-co-BP(OMe)2”) was obtained in an amount of 12.8 g. Polymer (A1-1) had Mw of 50,000, Mn of 24,800, and Mw/Mn of 2.02.

Figure 2023074176000001
Figure 2023074176000001

[合成例2]重合体(A1-2)(PS-r-PStCHO)の合成
温度計、ジムロート冷却器及びスターラーバーを備えた三口フラスコにメチルエチルケトン10gを入れ80℃で保持し、スチレン7.28g、4-ビニルベンズアルデヒド3.96g、ジメチル-2,2’-アゾビス(2-メチルプロプオネート)0.69g及びメチルエチルケトン20gの混合液をフィーダーより3時間滴下した。滴下終了後、3時間、80℃にて熟成させた。得られた重合液を5倍量のメタノールで沈殿精製することで白色固体の下記式(A1-2)で表される重合体(以下、「重合体(A1-2)」又は「PS-r-PStCHO」ともいう)7.31gを得た。重合体(A-2)のMwが5,780、Mnが3,140、Mw/Mnが1.84だった。13C-NMR分析により、重合体(A1-2)におけるスチレンに由来する構造単位と4-ビニルベンズアルデヒドに由来する構造単位とのモル比は、58:42であった。
[Synthesis Example 2] Synthesis of polymer (A1-2) (PS-r-PStCHO) 10 g of methyl ethyl ketone was placed in a three-necked flask equipped with a thermometer, a Dimroth condenser and a stirrer bar and maintained at 80 ° C., and 7.28 g of styrene was added. , 4-vinylbenzaldehyde 3.96 g, dimethyl-2,2′-azobis(2-methylpropionate) 0.69 g and methyl ethyl ketone 20 g was dropped from a feeder for 3 hours. After completion of dropping, the mixture was aged at 80° C. for 3 hours. By purifying the obtained polymerization solution by precipitation with 5 times the amount of methanol, a white solid polymer represented by the following formula (A1-2) (hereinafter, “polymer (A1-2)” or “PS-r -PStCHO”) was obtained. The polymer (A-2) had an Mw of 5,780, an Mn of 3,140, and an Mw/Mn of 1.84. 13 C-NMR analysis revealed that the molar ratio of structural units derived from styrene and structural units derived from 4-vinylbenzaldehyde in the polymer (A1-2) was 58:42.

Figure 2023074176000002
Figure 2023074176000002

[合成例3]重合体(A1-3)(PS-w-CHO)の合成
500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン(THF)120gを注入し、-78℃まで冷却した。次に、このTHFにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液2.38mLを注入し、次いで、重合禁止剤除去のためシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン13.3mLを30分かけて滴下注入し、重合系が橙色であることを確認した。この滴下注入のとき、反応溶液の内温が-60℃以上にならないように注意した。滴下終了後に30分間熟成した。その後、N,N-ジメチルホルムアミドを0.18ml注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してメチルイソブチルケトン(MIBK)で置換した。得られた溶液に、シュウ酸2%水溶液1,000gを注入し攪拌して、静置後、下層の水層を取り除いた。この操作を3回繰り返し、金属塩を除去した。その後、超純水1,000gを注入し攪拌して、下層の水層を取り除いた。この操作を3回繰り返し、シュウ酸を除去した後、溶液を濃縮してメタノール500g中に滴下することで重合体を析出させ、ブフナー漏斗にて固体を回収した。この固体を60℃で減圧乾燥させることで白色の下記式(A-3)で表される重合体(以下、「重合体(A1-3)」又は「PS-w-CHO」ともいう)11.9gを得た。重合体(A1-3)は、Mwが5,000、Mnが4,800、Mw/Mnが1.04であった。
[Synthesis Example 3] Synthesis of polymer (A1-3) (PS-w-CHO) After drying a 500 mL flask reaction vessel under reduced pressure, 120 g of tetrahydrofuran (THF) subjected to distillation dehydration treatment was injected under a nitrogen atmosphere. , cooled to -78°C. Next, 2.38 mL of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) was poured into this THF, and then the styrene 13. was subjected to adsorption filtration with silica gel and distillation dehydration treatment to remove the polymerization inhibitor. 3 mL was added dropwise over 30 minutes, and the polymerization system was confirmed to be orange. Care was taken so that the internal temperature of the reaction solution did not exceed −60° C. during this dropwise injection. After completion of dropping, the mixture was aged for 30 minutes. Thereafter, 0.18 ml of N,N-dimethylformamide was injected to terminate the polymerization terminal. The temperature of this reaction solution was raised to room temperature, and the resulting reaction solution was concentrated and substituted with methyl isobutyl ketone (MIBK). 1,000 g of an aqueous 2% oxalic acid solution was added to the resulting solution, stirred, and allowed to stand, after which the lower aqueous layer was removed. This operation was repeated three times to remove the metal salt. After that, 1,000 g of ultrapure water was poured and stirred to remove the lower water layer. This operation was repeated three times to remove oxalic acid, then the solution was concentrated and dropped into 500 g of methanol to precipitate a polymer, and a solid was recovered using a Buchner funnel. By drying this solid under reduced pressure at 60 ° C., a white polymer represented by the following formula (A-3) (hereinafter also referred to as “polymer (A1-3)” or “PS-w-CHO”) 11 .9 g was obtained. Polymer (A1-3) had Mw of 5,000, Mn of 4,800, and Mw/Mn of 1.04.

Figure 2023074176000003
Figure 2023074176000003

[合成例4]化合物(A2-1)(3,5-ビス(ドデシルオキシ)ベンズアルデヒド)の合成
1Lナス型フラスコに3,5-ジヒドロキシベンズアルデヒド8.37g、1-ブロモドデカン44.5g、N,N-ジメチルホルムアミド300g及び炭酸カリウム20.7gを加え、窒素雰囲気下、80℃で16時間加熱攪拌した。冷却後、桐山ロート(登録商標)にて炭酸カリウムおよび塩を除去した後、トルエン/超純水にて水洗を4回行った。有機層を回収し、無水硫酸ナトリウムにて水を除去したのち、ひだ折ろ紙にてろ液を回収し、減圧濃縮した。次に、ヘキサン/塩化メチレン=10/1にてカラムクロマトグラフィーより精製を行い、白色固体の3,5-ビス(ドデシルオキシ)ベンズアルデヒド(以下、「化合物(A2-1)」ともいう)32gを得た。化合物(A2-1)の分子量は、474であった。
[Synthesis Example 4] Synthesis of compound (A2-1) (3,5-bis(dodecyloxy)benzaldehyde) In a 1 L eggplant-shaped flask, 8.37 g of 3,5-dihydroxybenzaldehyde, 44.5 g of 1-bromododecane, N, 300 g of N-dimethylformamide and 20.7 g of potassium carbonate were added, and the mixture was heated and stirred at 80° C. for 16 hours under a nitrogen atmosphere. After cooling, potassium carbonate and salts were removed with a Kiriyama funnel (registered trademark), and then washed with toluene/ultra-pure water four times. After collecting the organic layer and removing water with anhydrous sodium sulfate, the filtrate was collected with a folded filter paper and concentrated under reduced pressure. Next, purification is performed by column chromatography with hexane/methylene chloride=10/1 to obtain 32 g of white solid 3,5-bis(dodecyloxy)benzaldehyde (hereinafter also referred to as "compound (A2-1)"). Obtained. The molecular weight of compound (A2-1) was 474.

[合成例5]重合体(a1-1)(PS-w-(CN)2)の合成
合成例3で得られた重合体(A1-3)10.0gをトルエン40gへ溶解させ、マロノニトリル0.21g、酢酸アンモニウム0.25g及び酢酸0.038gを加え、窒素雰囲気下、115℃で4時間、加熱乾留した。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してMIBKで置換した。得られた溶液に、炭酸水素ナトリウム2%水溶液500gを注入し攪拌して、静置後、下層の水層を取り除いた。この操作を3回繰り返した。その後、超純水1,000gを注入し攪拌して下層の水層を取り除いた。この操作を3回繰り返した後、溶液を濃縮してメタノール500g中に滴下することで重合体を析出させ、ブフナー漏斗にて固体を回収した。この固体を60℃で減圧乾燥させることで白色の下記式(a1-1)で表される重合体(以下、「重合体(a1-1)」又は「PS-w-(CN)2」ともいう)9.8gを得た。重合体(a1-1)は、Mwが5,300、Mnが5,100、Mw/Mnが1.04であった。
[Synthesis Example 5] Synthesis of polymer (a1-1) (PS-w-(CN)2) 10.0 g of polymer (A1-3) obtained in Synthesis Example 3 was dissolved in 40 g of toluene, .21 g, 0.25 g of ammonium acetate and 0.038 g of acetic acid were added, and the mixture was heated to dry distillation at 115° C. for 4 hours under a nitrogen atmosphere. The temperature of this reaction solution was raised to room temperature, and the resulting reaction solution was concentrated and substituted with MIBK. 500 g of a 2% aqueous solution of sodium hydrogencarbonate was added to the obtained solution, and the mixture was stirred, allowed to stand, and then the lower aqueous layer was removed. This operation was repeated three times. After that, 1,000 g of ultrapure water was poured and stirred to remove the lower water layer. After repeating this operation three times, the solution was concentrated and added dropwise to 500 g of methanol to precipitate a polymer, and the solid was recovered using a Buchner funnel. By drying this solid under reduced pressure at 60 ° C., a white polymer represented by the following formula (a1-1) (hereinafter also referred to as “polymer (a1-1)” or “PS-w-(CN)2” 9.8 g were obtained. Polymer (a1-1) had Mw of 5,300, Mn of 5,100, and Mw/Mn of 1.04.

Figure 2023074176000004
Figure 2023074176000004

[合成例6]重合体(a1-2)(PS-w-PO3Et2)の合成
500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったTHF120gを注入し、-78℃まで冷却した。その後、このTHFにsec-BuLiの1Nシクロヘキサン溶液を2.30mL注入し、その後、重合禁止剤除去のためシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン13.3mLを、反応溶液の内温が-60℃以上にならないように注意しながら30分かけて滴下注入し、その後30分間攪拌した。この後、クロロリン酸ジエチルを0.33ml注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してMIBKで置換した。その後、シュウ酸2質量%水溶液200gを注入し攪拌して、静置後、下層の水層を取り除いた。この操作を3回繰り返し、リチウム塩を除去した。その後、超純水200gを注入し攪拌して、下層の水層を取り除いた。この操作を4回繰り返し、シュウ酸を除去した後、溶液を濃縮してメタノール400g中に滴下することで重合体を析出させ、ブフナー漏斗にて固体を回収した。この固体を60℃で減圧乾燥させることで白色の下記式(a1-2)で表される重合体(以下、「重合体(a1-2)」又は「PS-w-PO3Et2」ともいう)11.5gを得た。重合体(a1-2)は、Mwが5,100、Mnが4,900、Mw/Mnが1.04であった。
[Synthesis Example 6] Synthesis of polymer (a1-2) (PS-w-PO3Et2) After drying a 500 mL flask reaction vessel under reduced pressure, 120 g of THF that had undergone distillation and dehydration treatment was added under a nitrogen atmosphere, and the temperature was -78°C. cooled to After that, 2.30 mL of a 1N cyclohexane solution of sec-BuLi was injected into this THF, and then 13.3 mL of styrene that had been subjected to adsorption filtration with silica gel and distillation dehydration treatment to remove the polymerization inhibitor was added to the reaction solution. The mixture was added dropwise over 30 minutes while taking care that the temperature did not exceed -60°C, followed by stirring for 30 minutes. Thereafter, 0.33 ml of diethyl chlorophosphate was injected to terminate the polymerization terminal. The temperature of this reaction solution was raised to room temperature, and the resulting reaction solution was concentrated and substituted with MIBK. Then, 200 g of a 2% by mass aqueous solution of oxalic acid was poured into the mixture, and the mixture was stirred, allowed to stand still, and then the lower aqueous layer was removed. This operation was repeated three times to remove the lithium salt. After that, 200 g of ultrapure water was poured and stirred to remove the lower aqueous layer. This operation was repeated four times to remove oxalic acid, then the solution was concentrated and dropped into 400 g of methanol to precipitate a polymer, and a solid was recovered using a Buchner funnel. By drying this solid under reduced pressure at 60° C., a white polymer represented by the following formula (a1-2) (hereinafter also referred to as “polymer (a1-2)” or “PS-w-PO3Et2”) 11 .5 g was obtained. Polymer (a1-2) had Mw of 5,100, Mn of 4,900 and Mw/Mn of 1.04.

Figure 2023074176000005
Figure 2023074176000005

[合成例7]重合体(a1-3)(PS-w-PO3H2)の合成
合成例6で得られた重合体(a1-2)10.0gにトリエチルアミン0.81g、プロピレングリコールモノメチルエーテル4g及びプロピレングリコールモノメチルエーテルアセテート40gを加えて、窒素雰囲気下、80℃で6時間、加熱攪拌した。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してMIBKで置換した。その後、超純水200gを注入し攪拌して、下層の水層を取り除いた。この操作を3回繰り返し、トリエチルアミンを除去した後、溶液を濃縮してメタノール400g中に滴下することで重合体を析出させ、ブフナー漏斗にて固体を回収した。この固体を60℃で減圧乾燥させることで白色の下記式(a1-3)で表される重合体(以下、「重合体(a1-3)」又は「PS-w-PO3H2」ともいう)9.2gを得た。重合体(a1-3)は、Mwが5,100、Mnが4,800、Mw/Mnが1.06であった。
[Synthesis Example 7] Synthesis of Polymer (a1-3) (PS-w-PO3H2) To 10.0 g of polymer (a1-2) obtained in Synthesis Example 6, 0.81 g of triethylamine, 4 g of 40 g of propylene glycol monomethyl ether acetate was added, and the mixture was heated and stirred at 80° C. for 6 hours in a nitrogen atmosphere. The temperature of this reaction solution was raised to room temperature, and the resulting reaction solution was concentrated and substituted with MIBK. After that, 200 g of ultrapure water was poured and stirred to remove the lower aqueous layer. This operation was repeated three times to remove triethylamine, and then the solution was concentrated and added dropwise to 400 g of methanol to precipitate a polymer, and a solid was recovered using a Buchner funnel. By drying this solid under reduced pressure at 60° C., a white polymer represented by the following formula (a1-3) (hereinafter also referred to as “polymer (a1-3)” or “PS-w-PO3H2”) 9 .2 g was obtained. Polymer (a1-3) had Mw of 5,100, Mn of 4,800 and Mw/Mn of 1.06.

Figure 2023074176000006
Figure 2023074176000006

<塗工液の調製>
塗工液の調製に用いた[B]溶媒を以下に示す。
溶媒(B-1):プロピレングリコールモノメチルエーテルアセテート(PGMEA)
溶媒(B-2):γ-ブチロラクトン
<Preparation of coating solution>
The [B] solvent used for preparing the coating liquid is shown below.
Solvent (B-1): propylene glycol monomethyl ether acetate (PGMEA)
Solvent (B-2): γ-butyrolactone

[実施例1-1]塗工液(S-1)の調製
[A]化合物としての重合体(A-1)1.30gに、[B]溶媒としての溶媒(B-1)79g及び溶媒(B-2)19.8gを加え、攪拌したのち、0.45μmの細孔を有する高密度ポリエチレンフィルターにて濾過することにより、塗工液(S-1)を調製した。塗工液(S-1)の固形分濃度は1.2%であった。
[Example 1-1] Preparation of coating liquid (S-1) [A] 1.30 g of polymer (A-1) as compound, [B] 79 g of solvent (B-1) as solvent and solvent After adding 19.8 g of (B-2) and stirring, the mixture was filtered through a high-density polyethylene filter having pores of 0.45 μm to prepare a coating liquid (S-1). The solid content concentration of the coating liquid (S-1) was 1.2%.

[実施例1-2~1-4及び比較例1-1~1-3]塗工液(S-2)~(S-4)及び(CS-1)~(CS-3)の調製
下記表1に示す種類及び配合量の各成分を用いた以外は上記実施例1-1と同様にして、塗工液(S-2)~(S-4)及び(CS-1)~(CS-3)を調製した。塗工液(S-2)~(S-4)及び(CS-1)~(CS-3)の固形分濃度を下記表1に合わせて示す。
[Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-3] Preparation of coating solutions (S-2) to (S-4) and (CS-1) to (CS-3) below Coating solutions (S-2) to (S-4) and (CS-1) to (CS -3) was prepared. The solid content concentrations of the coating solutions (S-2) to (S-4) and (CS-1) to (CS-3) are also shown in Table 1 below.

Figure 2023074176000007
Figure 2023074176000007

<膜の形成>
[基板]
基板として、以下に示す基板を用いた。
th-SiO:8インチ熱酸化膜付き二酸化ケイ素基板
SiN :8インチ窒化ケイ素基板
Cu :8インチ銅基板
Co :8インチコバルト基板
W :8インチタングステン基板
なお、上記基板については、プラズマ処理装置(アルバック(株)の「Luminous NA-1300」)を用い、N/(3%)H混合ガスによるプラズマ処理([条件]25℃、チャンバー圧:30Pa、処理時間:5分、流量:300sccm、Microwave:300mW)を行ったものを使用した。このプラズマ処理により、SiN基板の表層に存在するSi-H末端構造がSi-NH末端構造に変換される。
<Formation of film>
[substrate]
As the substrate, the following substrate was used.
th-SiO 2 : 8-inch silicon dioxide substrate with thermal oxide film SiN: 8-inch silicon nitride substrate Cu: 8-inch copper substrate Co: 8-inch cobalt substrate W: 8-inch tungsten substrate Plasma treatment with N 2 / (3%) H 2 mixed gas ([Conditions] 25 ° C., chamber pressure: 30 Pa, treatment time: 5 minutes, flow rate: 300 sccm) , Microwave: 300 mW) was used. This plasma treatment converts the Si—H terminal structure existing on the surface layer of the SiN substrate into a Si—NH 2 terminal structure.

[実施例2-1]
下記表2に示す各種基板を3cm×3cmに裁断し、スピンコーター(ミカサ(株)の「MS-B300」)を用いて、上記調製した組成物(S-1)を1,500rpm、20秒間の条件にてスピンコートし、塗工膜を形成した(塗工工程)。次いで、この塗工膜が形成された基板を150℃で180秒間焼成し、膜を形成した(加熱工程)。その後、プロピレングリコールモノメチルエーテルアセテートを用いて基板を洗浄した(洗浄工程)。洗浄工程では、基板表面に膜が吸着していない場合には未吸着の膜が除去される。
[Example 2-1]
Various substrates shown in Table 2 below are cut into 3 cm × 3 cm, and the composition (S-1) prepared above is applied using a spin coater (“MS-B300” from Mikasa Co., Ltd.) at 1,500 rpm for 20 seconds. to form a coating film (coating step). Next, the substrate on which this coating film was formed was baked at 150° C. for 180 seconds to form a film (heating step). After that, the substrate was washed using propylene glycol monomethyl ether acetate (washing step). In the cleaning step, if the film is not adsorbed on the substrate surface, the non-adsorbed film is removed.

以上の塗工工程、加熱工程及び洗浄工程の一連の処理を経た基板について、表面の静的接触角を接触角計(協和界面科学(株)の「Drop master DM-501」)を用いて測定したところ、th-SiO基板が38°、SiN基板が85°、Cu基板が36°、Co基板が40°及びW基板が42°であった。上記処理前の各種基板の静的接触角の値は、th-SiO基板が36°、SiN基板が25°、Cu基板が36°、Co基板が42°及びW基板が45°であったため、上記処理前の静的接触角に比べて大きく増加しているSiN基板上に選択的に膜が形成されていることがわかる。 The static contact angle of the surface of the substrate that has undergone a series of treatments including the above coating step, heating step and washing step is measured using a contact angle meter (“Drop master DM-501” manufactured by Kyowa Interface Science Co., Ltd.). The angle was 38° for the th-SiO 2 substrate, 85° for the SiN substrate, 36° for the Cu substrate, 40° for the Co substrate, and 42° for the W substrate. The static contact angle values of the various substrates before the above treatment were 36° for the th- SiO2 substrate, 25° for the SiN substrate, 36° for the Cu substrate, 42° for the Co substrate and 45° for the W substrate. , it can be seen that the film is selectively formed on the SiN substrate whose static contact angle is greatly increased compared to the static contact angle before the above treatment.

[実施例2-2~2-4及び比較例2-1~2-3]
下記表2に示す塗工液を用いたこと以外は実施例2-1と同様の処理を行い、静的接触角を測定した。結果を下記表2に示す。
[Examples 2-2 to 2-4 and Comparative Examples 2-1 to 2-3]
The static contact angle was measured in the same manner as in Example 2-1 except that the coating solution shown in Table 2 below was used. The results are shown in Table 2 below.

下記表2中、各種基板名にかっこ書きで記載している数値は、処理前の各種基板の静的接触角(Blank SCA)を示す。 In Table 2 below, the numerical values written in parentheses after the names of various substrates indicate the static contact angles (Blank SCA) of the various substrates before treatment.

Figure 2023074176000008
Figure 2023074176000008

<膜のwet剥離性評価>
[実施例3-1]
実施例2-1で一連の処理を行った各種基板を、2質量%クエン酸水溶液を注いだシャーレに3分間浸漬し、さらに2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を注いだシャーレに3分間浸漬した。次いで、プロピレングリコールモノメチルエーテルアセテートを用いて洗浄した後、上記接触角計を用いて基板表面の静的接触角を測定したところ、th-SiO基板が38°、SiN基板が24°、Cu基板が32°、Co基板が38°及びW基板が42°であった。上記wet剥離処理前の各種基板の静的接触角の値(実施例2-1)は、th-SiO基板が38°、SiN基板が85°、Cu基板が34°、Co基板が40°及びW基板が42°であったため、SiN基板上に形成されていた膜をwet剥離できていることがわかる。
<Evaluation of wet peelability of film>
[Example 3-1]
Various substrates subjected to a series of treatments in Example 2-1 were immersed in a petri dish poured with a 2% by mass citric acid aqueous solution for 3 minutes, and further immersed in a petri dish poured with a 2.38% by mass aqueous tetramethylammonium hydroxide solution for 3 minutes. soaked for a minute. Then, after washing with propylene glycol monomethyl ether acetate, the static contact angle of the substrate surface was measured using the above contact angle meter. was 32°, the Co substrate was 38°, and the W substrate was 42°. The values of the static contact angles of various substrates before the wet peeling process (Example 2-1) were 38° for the th- SiO2 substrate, 85° for the SiN substrate, 34° for the Cu substrate, and 40° for the Co substrate. and the W substrate were at 42°, it can be seen that the film formed on the SiN substrate was peeled off by wet.

[実施例3-2~3-4及び比較例3-1~3-3]
実施例2-2~2-4及び比較例2-1~2-3で一連の処理を行った各種基板をそれぞれ用いたこと以外は実施例3-1と同様の処理を行い、静的接触角を測定した。結果を下記表3に示す。
[Examples 3-2 to 3-4 and Comparative Examples 3-1 to 3-3]
The same treatment as in Example 3-1 was performed except that various substrates that were subjected to a series of treatments in Examples 2-2 to 2-4 and Comparative Examples 2-1 to 2-3 were used. measured the angle. The results are shown in Table 3 below.

下記表3中、各種基板名にかっこ書きで記載している数値は、上記<膜の形成>の項における処理前の各種基板の静的接触角(Blank SCA)を示す。下記表3中、「剥離前」の値はいずれも上記表2における値である。 In Table 3 below, the numerical values written in parentheses for the names of various substrates indicate the static contact angles (Blank SCA) of the various substrates before treatment in the section <Formation of film> above. In Table 3 below, the values for "before peeling" are all the values in Table 2 above.

Figure 2023074176000009
Figure 2023074176000009

<金属オキサイドブロッキング評価>
[実施例4-1]
実施例2-1で一連の処理を行ったSiN基板の表面について、膜の形成の状態を評価するため、ALDによるオキサイド層形成の抑制度を測定する金属オキサイドブロッキング評価を行った。対照として、実施例2-1で一連の処理を行う前のSiN基板を用いた。
<Metal oxide blocking evaluation>
[Example 4-1]
For the surface of the SiN substrate subjected to a series of treatments in Example 2-1, metal oxide blocking evaluation was performed to measure the degree of inhibition of oxide layer formation by ALD in order to evaluate the state of film formation. As a control, a SiN substrate was used before being subjected to a series of treatments in Example 2-1.

[ALDによるオキサイド層形成]
ALDは、スタンフォード大学内のCambridge Nanotech FIJIを用い、下記表4に示す条件で行った。プレカーサーは、トリメチルアルミニウムを用い、助触媒に水を用いた。ALDサイクルは、47サイクルに固定した。
[Oxide layer formation by ALD]
ALD was performed using Cambridge Nanotech FIJI at Stanford University under the conditions shown in Table 4 below. Trimethylaluminum was used as the precursor, and water was used as the promoter. ALD cycles were fixed at 47 cycles.

Figure 2023074176000010
Figure 2023074176000010

[ESCA分析]
上記ALD後のSiN基板表面のAl成分について、ESCA分析より定量した。ESCA分析は、(株)アルバックの「Quantum2000」にて、100μmφの条件から膜成分及び基板成分を除いたAl成分をAl2p(72-78eV)にて定量した。その後、実施例2-1における一連の処理を行う前のSiN基板について測定したAl成分の定量値を基準とし、基準となる定量値からどの程度定量値が減少したかをブロッキング率(%)として算出した。その結果、塗工液S-1を用いた場合のSiN基板のブロッキング率は98.6%であった。ブロッキング率の値が大きいほど金属オキサイドブロッキング性能が高い膜であることを意味するため、SiN基板上に形成された膜はALD法による金属オキサイド形成に対する高いブロッキング性能を有することがわかる。
[ESCA analysis]
The Al component on the surface of the SiN substrate after ALD was quantified by ESCA analysis. In the ESCA analysis, the Al component was quantified by Al2p (72-78 eV), excluding the film component and the substrate component from the condition of 100 μmφ using “Quantum 2000” manufactured by ULVAC. After that, using the quantitative value of the Al component measured for the SiN substrate before performing a series of treatments in Example 2-1 as a reference, the blocking rate (%) was defined as how much the quantitative value decreased from the reference quantitative value. Calculated. As a result, the blocking rate of the SiN substrate using the coating liquid S-1 was 98.6%. A higher blocking ratio indicates a higher ability to block metal oxides, so it can be seen that the film formed on the SiN substrate has a higher ability to block metal oxide formation by the ALD method.

[実施例4-2~4-4及び比較例4-1~4-3]
実施例2-2~2-4及び比較例2-1~2-3で一連の処理を行ったSiN基板をそれぞれ用いたこと以外は実施例4-1と同様の処理を行い、ブロッキング率を算出した。結果を下記表5に示す。実施例がいずれも優れたブロッキング性能を有しているのに対し、比較例においてはブロッキング性能をほぼ有していない結果となった。
[Examples 4-2 to 4-4 and Comparative Examples 4-1 to 4-3]
The same treatment as in Example 4-1 was performed except that the SiN substrates subjected to a series of treatments in Examples 2-2 to 2-4 and Comparative Examples 2-1 to 2-3 were used, respectively, and the blocking rate was Calculated. The results are shown in Table 5 below. All of the examples had excellent blocking performance, whereas the comparative examples had almost no blocking performance.

Figure 2023074176000011
Figure 2023074176000011

Claims (9)

Si-NHで表される末端構造を含む第1領域を表層に有する基材に塗工液を塗工する工程と、
上記塗工工程により形成された塗工膜を加熱する工程と
を備え、
上記塗工液が、上記第1領域の末端構造と反応して炭素-窒素二重結合を形成する官能基及び芳香環構造を有する化合物を含有する基板の製造方法。
A step of applying a coating liquid to a substrate having a first region including a terminal structure represented by Si—NH 2 on the surface layer;
A step of heating the coating film formed by the coating step,
A method for producing a substrate, wherein the coating liquid contains a compound having a functional group that reacts with the terminal structure of the first region to form a carbon-nitrogen double bond and an aromatic ring structure.
上記化合物の分子量が200以上である請求項1に記載の基板の製造方法。 2. The method of manufacturing a substrate according to claim 1, wherein the compound has a molecular weight of 200 or more. 上記化合物が芳香環構造を含む構造単位を有する重合体である請求項1又は請求項2に記載の基板の製造方法。 3. The method for manufacturing a substrate according to claim 1, wherein the compound is a polymer having a structural unit containing an aromatic ring structure. 上記重合体が上記官能基を主鎖の末端又は側鎖の末端に有する請求項3に記載の基板の製造方法。 4. The method of manufacturing a substrate according to claim 3, wherein the polymer has the functional group at the terminal of the main chain or the terminal of the side chain. 上記官能基がアルデヒド基又はケトン性カルボニル基である請求項1から請求項4のいずれか1項に記載の基板の製造方法。 5. The method for producing a substrate according to any one of claims 1 to 4, wherein the functional group is an aldehyde group or a ketonic carbonyl group. 上記芳香環構造が芳香族炭化水素環構造である請求項1から請求項5のいずれか1項に記載の基板の製造方法。 6. The method for producing a substrate according to claim 1, wherein the aromatic ring structure is an aromatic hydrocarbon ring structure. 上記基材が酸化ケイ素を含む第2領域を表層にさらに有する請求項1から請求項6のいずれか1項に記載の基板の製造方法。 7. The method for producing a substrate according to any one of claims 1 to 6, wherein the substrate further has a second region containing silicon oxide on the surface layer. 上記塗工液が溶媒をさらに含有する請求項1から請求項7のいずれか1項に記載の基板の製造方法。 8. The method for manufacturing a substrate according to any one of claims 1 to 7, wherein the coating liquid further contains a solvent. Si-NHで表される末端構造を含む第1領域を表層に有する基材に塗工されるように用いられる塗工液であって、
上記第1領域の末端構造と反応して炭素-窒素二重結合を形成する官能基及び芳香環構造を有する化合物を含有する塗工液。

A coating liquid used to be applied to a substrate having a first region containing a terminal structure represented by Si—NH 2 on the surface layer,
A coating liquid containing a compound having an aromatic ring structure and a functional group that reacts with the terminal structure of the first region to form a carbon-nitrogen double bond.

JP2021186989A 2021-11-17 2021-11-17 Manufacturing method of substrate and coating liquid Pending JP2023074176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021186989A JP2023074176A (en) 2021-11-17 2021-11-17 Manufacturing method of substrate and coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021186989A JP2023074176A (en) 2021-11-17 2021-11-17 Manufacturing method of substrate and coating liquid

Publications (1)

Publication Number Publication Date
JP2023074176A true JP2023074176A (en) 2023-05-29

Family

ID=86537780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021186989A Pending JP2023074176A (en) 2021-11-17 2021-11-17 Manufacturing method of substrate and coating liquid

Country Status (1)

Country Link
JP (1) JP2023074176A (en)

Similar Documents

Publication Publication Date Title
CN106188504B (en) Polymer, organic layer composition, organic layer and the method for forming pattern
JP7071661B2 (en) Cover film forming method
CN106432711B (en) Polymer for preparing resist underlayer film, composition containing the same, and method for manufacturing semiconductor device using the composition
TW201245889A (en) Multilayer resist process pattern forming method and inorganic film forming composition for multilayer resist process
JP7127713B2 (en) Composition
JP7226336B2 (en) pattern formation method
CN109983053A (en) Polymer, organic film constituent and the method for forming pattern
JP2023074176A (en) Manufacturing method of substrate and coating liquid
KR102376126B1 (en) Method and composition for selective modification of substrate surface
WO2021095766A1 (en) Composition, production method for substrate, and polymer
KR102123255B1 (en) High Temperature Thermal annealing process
JP7468526B2 (en) Composition, method for producing substrate, and polymer
WO2020179918A1 (en) Substrate production method and block copolymer
JP7136182B2 (en) Method for modifying substrate surface, composition and polymer
JP6905200B2 (en) Method of selective modification of substrate surface
JP6439520B2 (en) Composition for manufacturing semiconductor device and method for manufacturing processed substrate
JP7081377B2 (en) Method for modifying the composition and substrate surface
JP7353445B2 (en) Hardmask composition, hardmask layer and pattern formation method
JP2022077356A (en) Composition, manufacturing method of base material, and method for selectively modifying surface of base material
JP2022132189A (en) Method for manufacturing multilayer wiring board, kit for forming laminate film and composition
JP2023004530A (en) Membrane manufacturing method
JP2024056657A (en) EUV-induced condensation of polysiloxane sol-gel thin films
TW202146474A (en) Resin composition for forming phase-separated structure, method for producing structure including phase-separated structure, and block copolymer
JP2021041364A (en) Pattern formation method and composition
JPWO2018181217A1 (en) Cover film forming method, substrate processing method and composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240430