JPWO2018151024A1 - Method of producing sintered ore - Google Patents

Method of producing sintered ore Download PDF

Info

Publication number
JPWO2018151024A1
JPWO2018151024A1 JP2018568489A JP2018568489A JPWO2018151024A1 JP WO2018151024 A1 JPWO2018151024 A1 JP WO2018151024A1 JP 2018568489 A JP2018568489 A JP 2018568489A JP 2018568489 A JP2018568489 A JP 2018568489A JP WO2018151024 A1 JPWO2018151024 A1 JP WO2018151024A1
Authority
JP
Japan
Prior art keywords
raw material
sintering
amount
cao
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018568489A
Other languages
Japanese (ja)
Other versions
JP6680369B2 (en
Inventor
俊輔 野中
俊輔 野中
祥和 早坂
祥和 早坂
直幸 竹内
直幸 竹内
義憲 秋山
義憲 秋山
友司 岩見
友司 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63169416&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2018151024(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2018151024A1 publication Critical patent/JPWO2018151024A1/en
Application granted granted Critical
Publication of JP6680369B2 publication Critical patent/JP6680369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/22Sintering; Agglomerating in other sintering apparatus
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

鉄鉱石および製鉄所内発生ダストの成分濃度が変動したとしても、これらを含む焼結原料を用いて、品質低下が抑制された成品焼結鉱を製造できる焼結鉱の製造方法を提供する。少なくとも鉄含有原料、CaO含有原料および凝結材を配合した焼結原料を造粒し、焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、鉄含有原料、焼結原料および造粒された焼結原料のうち少なくとも1つの成分濃度を連続測定する測定工程を有し、測定工程で測定された成分濃度を用いて、CaO含有原料の配合量、凝結材の配合量、水の添加量および焼結機のパレット台車の進行速度のうち少なくとも1つの調整を行う。The present invention provides a method for producing sintered ore which can produce a product sintered ore of which quality deterioration is suppressed using a sintering raw material containing iron ore and dust generated in an iron mill even if the concentration of the component fluctuates. A method of producing a sintered ore, comprising: sintering material obtained by blending at least an iron-containing material, a CaO-containing material, and a coagulant, and sintering the material with a sinter to produce a sintered ore. It has a measuring step of continuously measuring the concentration of at least one component of the sintering raw material and the granulated sintering raw material, and using the component concentration measured in the measuring step, the blending amount of the CaO-containing raw material, Adjustment of at least one of the compounding amount, the added amount of water, and the advancing speed of the pallet carriage of the sintering machine is performed.

Description

本発明は、焼結原料におけるCaO含有原料等の配合量を調整する焼結鉱の製造方法に関するものであり、具体的には、焼結原料の成分濃度を連続測定し、当該成分濃度を用いてCaO含有原料等の配合量を調整する焼結鉱の製造方法に関する。   The present invention relates to a method for producing sintered ore in which the compounding amount of a CaO-containing raw material or the like in a sintered raw material is adjusted. Specifically, the component concentration of the sintered raw material is continuously measured, and the component concentration is used The present invention relates to a method for producing sintered ore in which the amount of CaO-containing raw material etc. is adjusted.

高炉製鉄法では、現在、鉄源として、焼結鉱や塊鉄鉱石、ペレットなどを高炉原料として主に用いている。ここで、焼結鉱は、粒径が10mm以下の鉄鉱石の他に、製鉄所内で発生する各種ダストなどの雑鉄源と、と、石灰石、生石灰、スラグなどのCaO含有原料と、珪石や蛇紋岩、ドロマイトや精錬ニッケルスラグなどからなるSiO源やMgO源としての副原料と、粉コークスや無煙炭などからなる凝結材である固体燃料(炭材)とを、ドラムミキサーで水を添加しながら混合・造粒し、焼成した塊成鉱の一種である。In the blast furnace iron making process, at present, sintered ore, lump iron ore, pellets and the like are mainly used as an iron source as blast furnace raw materials. Here, sinter is not only iron ore having a particle size of 10 mm or less, but also other sources of iron such as various dusts generated in ironworks, CaO-containing raw materials such as limestone, quick lime and slag, silica stone and the like Add water using a drum mixer with SiO 2 source consisting of serpentinite, dolomite, refined nickel slag etc., auxiliary material as MgO source, and solid fuel (carbon material) which is coagulated material consisting of coke breeze, anthracite etc. It is a kind of agglomerated ore which is mixed, granulated and fired.

近年、焼結鉱の原料である焼結原料に含まれる鉄鉱石の鉄分濃度が低下し、代わりにSiOやAlといった脈石成分濃度が増加しており、同種の鉄鉱石内においても、輸入時の船ごとに成分濃度が異なる場合もあるほど、産出される鉄鉱石の成分濃度が不安定になっている。製鉄所内で発生する各種ダストに関しても、発生量のばらつきやダスト自体の成分の変動が大きく、焼結原料として成分管理が非常に難しい。In recent years, the iron concentration of iron ore contained in the sintering raw material, which is a raw material of sintered ore, is decreased, and instead, the concentration of gangue components such as SiO 2 and Al 2 O 3 is increased. Also, the component concentration of iron ore produced is more unstable as the concentration of the component may differ from ship to ship at the time of import. Also with regard to various types of dust generated in a steelmaking plant, the variation of the amount of generation and the fluctuation of the component of the dust itself are large, and the component management as a sintering material is very difficult.

焼結原料における成分濃度の変動は、成品である成品焼結鉱の成分濃度の変動につながる。例えば、SiOの増加は、一般的に焼結鉱の被還元性を低下させる要因となり、Alの増加は、一般的に焼結鉱の強度を低下させる要因となる。このため、焼結原料の成分が計画値から外れた場合は、品質の低下を避けるための操業調整、配合調整が必要となる。The fluctuation of the component concentration in the sintering material leads to the fluctuation of the component concentration of the product product sintered ore. For example, an increase in SiO 2 generally causes a reduction in the reducibility of sinter, and an increase in Al 2 O 3 generally causes a decrease in the strength of sinter. For this reason, when the component of the sintering raw material deviates from the planned value, it is necessary to carry out operation adjustment and formulation adjustment to avoid the deterioration of the quality.

一般的に高炉に装入される焼結鉱の成分濃度は、スラグの品位の管理等の理由から、常に管理されている。仮に、成品焼結鉱の成分濃度において塩基度が上昇したりアルミナが上昇した場合、高炉スラグの粘度が上昇するので、その粘度の上昇を抑制させるために溶銑温度を上昇させる必要がある。高炉スラグの粘度の上昇により、高炉炉下部におけるスラグ排出性が悪化し、ガスの流通を阻害するので通気性も悪化する。このため、溶銑温度の上昇と高炉炉下部の通気性確保のために、コークスの配合量を増加させる必要が生じる。このように、成品焼結鉱の成分濃度の変動によって、高炉原料の成分濃度が目標とする成分濃度から大きく乖離した場合、高炉操業が不安定になり、種々の対策が必要になる。   In general, the concentration of components of sintered ore charged into the blast furnace is constantly managed for reasons such as the control of the grade of slag. If the basicity rises or alumina rises in the component concentration of the product sintered ore, the viscosity of the blast furnace slag rises, so it is necessary to raise the hot metal temperature to suppress the rise of the viscosity. The increase in viscosity of the blast furnace slag deteriorates the slag dischargeability at the lower part of the blast furnace, and obstructs the flow of gas, so the air permeability also deteriorates. For this reason, it is necessary to increase the blending amount of coke in order to raise the temperature of the hot metal and ensure the air permeability of the lower part of the blast furnace. As described above, when the component concentration of the blast furnace raw material largely deviates from the target component concentration due to the fluctuation of the component concentration of the product sintered ore, the blast furnace operation becomes unstable, and various measures are required.

このような問題に対して、焼結原料の品位把握の取り組みが従来から行われている。例えば、特許文献1には、鉄鉱石に含まれる粘土鉱物に着目し、鉄鉱石に含まれる微粉鉱石中の粘土鉱物(カオリン:AlSi(OH))の含有量を適正な範囲に調整することで、焼結原料の造粒性を向上させる技術を開示している。In response to such problems, efforts have been made to grasp the quality of sintered raw materials. For example, Patent Document 1 focuses on the clay mineral contained in iron ore, and the content of clay mineral (kaolin: Al 2 Si 2 O 5 (OH) 4 ) in fine ore contained in iron ore is appropriate. The technique which improves the granulation property of a sintering raw material is disclosed by adjusting to a range.

特許文献2には、成品焼結鉱のFeO濃度を測定し、成品焼結鉱のFeO濃度を用いて焼結原料の凝結材や造粒水分、排風量を調整する技術が開示されている。特許文献3にも、成品焼結鉱の成品焼結鉱のFeO濃度を測定し、成品焼結鉱のFeO濃度を用いて、焼結機において吹き込む都市ガスの量を調整する技術が開示されている。   Patent Document 2 discloses a technique of measuring the FeO concentration of a product sintered ore and adjusting the coagulated material, granulated water, and the amount of exhaust air of the sintering raw material using the FeO concentration of the product sintered ore. Patent Document 3 also discloses a technique of measuring the FeO concentration of a product sintered ore of a product sintered ore and adjusting the amount of town gas blown in the sintering machine using the FeO concentration of the product sintered ore. There is.

特許文献4には、焼結機上にレーザー式成分計測機を設置し、当該成分計測機を用いて測定されたパレット内に装入された原料装入層表層の成分濃度を用いて成品焼結鉱の成分濃度を推測し、これを用いて焼結原料の配合量を調整する技術が開示されている。   In Patent Document 4, a laser type component measuring machine is installed on a sintering machine, and the product is burned using the component concentration of the surface of the raw material charge layer loaded in the pallet measured using the component measuring machine. The technique which estimates the component density | concentration of a lump ore and adjusts the compounding quantity of a sintering raw material using this is disclosed.

特開2003−049227号公報Unexamined-Japanese-Patent No. 2003-049227 特開昭57−149433号公報Japanese Patent Application Laid-Open No. 57-149433 特開2011−038735号公報JP, 2011-038735, A 特開昭60−262926号公報Japanese Patent Application Laid-Open No. 60-262926

特許文献1に開示された技術は、一定量の鉄鉱石試料を秤量し、オフラインでカオリンの成分濃度の測定を行っている。このように、オフラインでの焼結原料の成分を計測することで、焼結鉱の成分濃度を予測することは可能であるが、焼結鉱製造中における焼結原料の成分濃度の変動によって生じる熱量の過不足に対応することは困難である。   The technique disclosed in Patent Document 1 measures a certain amount of iron ore sample and measures the concentration of kaolin components off-line. As described above, it is possible to predict the concentration of the component of the sintered ore by measuring the component of the sintering material off-line, but it is caused by the fluctuation of the concentration of the component of the sintered material during the production of the sintered ore. It is difficult to cope with excess or deficiency of heat.

特許文献2および特許文献3に開示された技術は、成品焼結鉱のFeO濃度を連続測定する技術であるが、成品焼結鉱の成分分析結果を焼結原料の配合量の調整に反映させるにはタイムラグが大きく、迅速に焼結鉱製造中における焼結原料の成分濃度の変動に対応することは困難である。   The techniques disclosed in Patent Document 2 and Patent Document 3 are techniques for continuously measuring the FeO concentration of product sinter ore, but reflect the result of component analysis of product sinter ore in adjustment of the blending amount of sintering raw material The time lag is large, and it is difficult to quickly cope with the fluctuation of the component concentration of the sintering raw material during the production of sintered ore.

特許文献4に開示された技術は、原料装入層表層の成分濃度から成品焼結鉱の成分濃度を推測しているが、原料装入層の状態は、焼結原料の装入装置や焼結原料の水分によって変動するので原料装入層の表層の成分濃度も変動する。このため、装入層表層の成分濃度と成品焼結鉱の成分濃度との関係は一様ではなく、装入層表層の成分濃度から成品焼結鉱の成分濃度を実際に推測するのは困難である。   Although the technology disclosed in Patent Document 4 estimates the component concentration of the product sintered ore from the component concentration of the surface of the raw material charge layer, the state of the raw material charge layer is determined by the charging device of the sintering material and the sintering Since it fluctuates with the water content of the raw material, the component concentration of the surface layer of the raw material charge bed also fluctuates. For this reason, the relationship between the component concentration of the surface of the charge layer and the component concentration of the product sintered ore is not uniform, and it is difficult to actually estimate the component concentration of the product sintered ore from the component concentration of the surface of the charge layer It is.

本発明は、このような従来技術の問題点を鑑みてなされたものであり、その目的は、鉄鉱石および製鉄所内発生ダストの成分濃度が変動したとしても、これらを含む焼結原料を用いて、成分濃度の変動が小さい成品焼結鉱を製造できる焼結鉱の製造方法を提供することにある。   The present invention has been made in view of the problems of the prior art as described above, and the object of the present invention is to use sintered raw materials including iron ore and dust generated in steelworks even if the concentration of the components fluctuates. An object of the present invention is to provide a method for producing a sintered ore capable of producing a product sintered ore with a small fluctuation in component concentration.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)少なくとも鉄含有原料、CaO含有原料および凝結材を配合した焼結原料を造粒し、焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、前記鉄含有原料、前記焼結原料および造粒された焼結原料のうち少なくとも1つの成分濃度を連続測定する測定工程と、前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記凝結材の配合量、水の添加量および焼結機のパレット台車の進行速度のうち少なくとも1つの調整を行う調整工程と、を有する、焼結鉱の製造方法。
(2)前記焼結原料には、さらにMgO含有原料が配合され、前記調整工程では、前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記MgO含有原料の配合量、前記凝結材の配合量、前記水の添加量および焼結機のパレット台車の進行速度のうち少なくとも1つの調整を行う、(1)に記載の焼結鉱の製造方法。
(3)少なくとも鉄含有原料、CaO含有原料および凝結材を配合した焼結原料を造粒し、焼結機で気体燃料および酸素を供給しながら前記焼結原料を焼結して焼結鉱を製造する焼結鉱の製造方法であって、前記鉄含有原料、前記焼結原料および造粒された焼結原料のうち少なくとも1つの成分濃度を連続測定する測定工程を有し、前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記凝結材の配合量、水の添加量、焼結機のパレット台車の進行速度、気体燃料の供給量および酸素の供給量のうち少なくとも1つの調整を行う調整工程と、を有する、焼結鉱の製造方法。
(4)前記焼結原料には、さらにMgO含有原料が配合され、前記調整工程では、前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記MgO含有原料の配合量、前記凝結材の配合量、前記水の添加量、焼結機のパレット台車の進行速度、気体燃料の供給量および酸素の供給量のうち少なくとも1つの調整を行う、(3)に記載の焼結鉱の製造方法。
(5)前記測定工程では、トータルCaO、SiO、MgO、Al、FeO、Cおよび水分の1種以上の成分濃度を測定する、(1)から(4)の何れか1つに記載の焼結鉱の製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing a sintered ore, comprising: sintering raw material obtained by blending at least an iron-containing raw material, a CaO containing raw material, and a coagulating agent, and sintering the raw material with a sintering machine to produce sintered ore. The step of continuously measuring the concentration of at least one component of the iron-containing raw material, the sintering raw material and the granulated sintering raw material, and the blending of the CaO-containing raw material using the component concentration measured in the measuring step A method for producing sintered ore, comprising: adjusting at least one of the amount, the compounding amount of the coagulating material, the added amount of water, and the advancing speed of the pallet carriage of the sintering machine.
(2) An MgO-containing raw material is further blended into the sintering raw material, and in the adjustment step, using the component concentration measured in the measurement step, the blending amount of the CaO-containing raw material, the blending of the MgO-containing raw material The method according to (1), wherein at least one of the amount, the compounding amount of the coagulating material, the addition amount of the water, and the advancing speed of the pallet carriage of the sintering machine is adjusted.
(3) A sintered raw material containing at least an iron-containing raw material, a CaO-containing raw material and a coagulating agent is granulated, and the sintered raw material is sintered while supplying the gaseous fuel and oxygen by a sintering machine A method for producing a sintered ore to be produced, comprising a measuring step of continuously measuring the concentration of at least one component of the iron-containing raw material, the sintering raw material and the granulated sintering raw material, Using the measured component concentration, the blending amount of the CaO-containing raw material, the blending amount of the coagulating material, the added amount of water, the advancing speed of the pallet truck of the sintering machine, the supplied amount of gaseous fuel and the supplied amount of oxygen And at least one adjustment step of adjusting.
(4) An MgO-containing raw material is further blended into the sintering raw material, and in the adjustment step, using the component concentration measured in the measurement step, the blending amount of the CaO-containing raw material, the blending of the MgO-containing raw material The method according to (3), wherein at least one of the amount, the compounding amount of the coagulating material, the addition amount of the water, the advancing speed of the pallet carriage of the sintering machine, the supply amount of gaseous fuel and the supply amount of oxygen is adjusted. Method of producing sintered ore.
(5) In the measurement step, the concentration of one or more components of total CaO, SiO 2 , MgO, Al 2 O 3 , FeO, C and water is measured, in any one of (1) to (4) The manufacturing method of the sinter described above.

本発明の焼結鉱の製造方法を実施することにより、成分濃度の変動の大きい鉄鉱石および製鉄所内発生ダストを含む焼結原料を用いて成分濃度の変動が小さく、品質低下が抑制された成品焼結鉱を製造できる。   A product in which the fluctuation of the component concentration is small and the deterioration of the quality is suppressed by using the sintering raw material containing iron ore having a large fluctuation of the component concentration and the dust generated in the steelworks Sinter can be produced.

図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。FIG. 1: is a schematic diagram which shows an example of the sintered ore manufacturing apparatus 10 which can implement the manufacturing method of the sintered ore which concerns on this embodiment. 図2は、発明例1の焼結原料の塩基度と、成品焼結鉱72の落下強度の変動を示したグラフである。FIG. 2 is a graph showing the basicity of the sintering raw material of the invention example 1 and the fluctuation of the drop strength of the product sintered ore 72. 図3は、比較例1の焼結原料の塩基度と成品焼結鉱72の落下強度を示したグラフである。FIG. 3 is a graph showing the basicity of the sintering raw material of Comparative Example 1 and the drop strength of the product sintered ore 72. 図4は、発明例2の焼結機の生産率、焼結原料の炭素濃度およびパレット台車の進行速度の変動を示したグラフである。FIG. 4 is a graph showing fluctuations in the production rate of the sintering machine of invention example 2, the carbon concentration of the sintering raw material, and the traveling speed of the pallet carriage. 図5は、比較例2の焼結機の生産率、焼結原料の炭素濃度およびパレット台車の進行速度の変動を示したグラフである。FIG. 5 is a graph showing fluctuations in the production rate of the sintering machine of Comparative Example 2, the carbon concentration of the sintering raw material, and the traveling speed of the pallet carriage.

以下、発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。ヤード11に保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。   Hereinafter, the present invention will be described through embodiments of the invention. FIG. 1: is a schematic diagram which shows an example of the sintered ore manufacturing apparatus 10 which can implement the manufacturing method of the sintered ore which concerns on this embodiment. The iron-containing raw material 12 stored in the yard 11 is transported to the blending tank 22 by the transport conveyor 14. The iron-containing raw material 12 contains various grades of iron ore and dust generated in a steel mill.

原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16、配合槽25にはドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17がそれぞれ貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱(焼結鉱篩下粉)が貯留される。原料供給部20の配合槽22〜28から、各原料が所定量切り出され、これらが配合されて焼結原料となる。焼結原料は、搬送コンベア30によってドラムミキサー36に搬送される。MgO含有原料17は、任意配合原料であって、焼結原料に配合されてもよく、配合されなくてもよい。   The raw material supply unit 20 includes a plurality of mixing tanks 22, 24, 25, 26, 28. The iron-containing raw material 12 is stored in the mixing tank 22. A CaO-containing raw material 16 containing limestone, quicklime, etc. is stored in the mixing tank 24, and an MgO-containing raw material 17 containing dolomite, refined nickel slag, etc. is stored in the mixing tank 25, respectively. In the compounding tank 26, a coagulated material 18 containing powdered coke and anthracite which are crushed to a particle size of 1 mm or less using a rod mill is stored. In the mixing tank 28, returned ore (sintered ore sieving powder) having a particle size of 5 mm or less, which is under the screen of sintered ore, is stored. Predetermined amounts of the respective raw materials are cut out from the mixing tanks 22 to 28 of the raw material supply unit 20, and these are mixed to be sintered raw materials. The sintering material is conveyed by the conveyance conveyor 30 to the drum mixer 36. The MgO-containing raw material 17 is an optional compounding raw material, and may or may not be compounded with the sintering raw material.

配合槽28とドラムミキサー36の間の搬送コンベア30には、赤外線分析計32が設けられている。赤外線分析計32を用いて、測定工程が実施される。測定工程では、焼結原料に含まれるトータルCaO、SiO、MgO、Al、FeO、Cおよび水分の1種以上の成分濃度を測定する。ここで、水分とは、焼結原料に付着した付着水分と恒温状態では原料中に包蔵されており加熱によって追い出される固有水分を合わせたものである。
赤外線分析計32は、0.5〜50.0μmの範囲内の波長の赤外線を焼結原料に照射して、焼結原料からの反射光を受光する。焼結原料に含まれるトータルCaO、SiO、MgO、Al、FeO、水のそれぞれの分子振動は、照射された赤外線の固有の波長成分を吸収するので、これらの成分は反射赤外線に固有の波長成分を付与する。炭素(C)のような単原子分子の結晶構造も赤外線の照射によって振動し始め、反射赤外線に固有の波長成分を付与する。このため、照射赤外線と反射赤外線とを分析することで焼結原料におけるトータルCaO、SiO、MgO、Al、FeO、Cおよび水分の成分濃度を測定できる。トータルCaOとは、CaO、CaCO、Ca(OH)やFeCaO等のCaとOを有する全ての化合物中のCaをCaOに換算したものである。
An infrared analyzer 32 is provided on the transfer conveyor 30 between the mixing tank 28 and the drum mixer 36. The measurement process is performed using the infrared analyzer 32. In the measurement step, concentration of one or more components of total CaO, SiO 2 , MgO, Al 2 O 3 , FeO, C and water contained in the sintering raw material is measured. Here, the water content is a combination of the attached water content adhering to the sintering material and the specific water contained in the material under constant temperature conditions and expelled by heating.
The infrared analyzer 32 irradiates the sintering raw material with infrared light having a wavelength in the range of 0.5 to 50.0 μm, and receives the reflected light from the sintering raw material. Since the respective molecular vibrations of total CaO, SiO 2 , MgO, Al 2 O 3 , FeO, and water contained in the sintering material absorb the inherent wavelength components of the irradiated infrared radiation, these components become reflected infrared radiation. Assign unique wavelength components. The crystal structure of monoatomic molecules such as carbon (C) also begins to vibrate upon irradiation with infrared light, and imparts a unique wavelength component to the reflected infrared light. For this reason, the component concentration of total CaO, SiO 2 , MgO, Al 2 O 3 , FeO, C and moisture in the sintering raw material can be measured by analyzing the irradiation infrared radiation and the reflection infrared radiation. Total CaO is obtained by converting Ca in all compounds having Ca and O such as CaO, CaCO 3 , Ca (OH) 2 , Fe 2 CaO 4, etc. into CaO.

赤外線分析計32は、例えば、1分間に128回の頻度で20以上の波長の赤外線を照射して、焼結原料に反射された反射光を受光する。このように短時間に赤外線を照射できるので、赤外線分析計32は、搬送コンベア30上を搬送される焼結原料の成分濃度をオンラインで連続測定できる。赤外線分析計32は、焼結原料の成分濃度を測定する分析装置の一例であり、赤外線分析計32に代えて、レーザーを測定対象に照射するレーザー分析計、中性子を測定対象に照射する中性子分析計、または、マイクロ波を測定対象に照射するマイクロ波分析計を用いてもよい。   The infrared analyzer 32 emits infrared light of 20 or more wavelengths, for example, at a frequency of 128 times per minute to receive the reflected light reflected by the sintering material. Thus, since infrared rays can be irradiated in a short time, the infrared analyzer 32 can measure the component concentration of the sintering raw material conveyed on the conveyance conveyor 30 continuously on-line. The infrared analyzer 32 is an example of an analyzer for measuring the component concentration of the sintering raw material, and instead of the infrared analyzer 32, a laser analyzer which irradiates a laser to the measurement object, a neutron analysis which irradiates neutron to the measurement object It is also possible to use a meter or a microwave analyzer that irradiates the object to be measured with microwaves.

ドラムミキサー36に搬送された焼結原料は、ドラムミキサー36に投入され、適量の水34が添加されて、例えば、平均粒径3.0〜6.0mmの擬似粒子に造粒される。造粒された焼結原料は、搬送コンベア38によって焼結機40の焼結原料供給装置に搬送される。ドラムミキサー36は、焼結原料を造粒する造粒装置の一例であり、ドラムミキサー36は複数あってもよく、ドラムミキサー36に代えて、ペレタイザー造粒機を用いてもよい。ドラムミキサー36とぺレタイザー造粒機の両方を用いてもよく、ドラムミキサー36の上流に高速撹拌機を設置して、焼結原料を撹拌してもよい。本実施形態において、平均粒径は算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。   The sintering raw material conveyed to the drum mixer 36 is supplied to the drum mixer 36, and an appropriate amount of water 34 is added thereto to granulate into, for example, pseudo particles having an average particle diameter of 3.0 to 6.0 mm. The granulated sintering raw material is conveyed by the conveying conveyor 38 to the sintering raw material supply device of the sintering machine 40. The drum mixer 36 is an example of a granulating apparatus for granulating the sintering material, and there may be a plurality of drum mixers 36. Instead of the drum mixer 36, a pelletizer granulator may be used. Both the drum mixer 36 and the pelletizer granulator may be used, or a high speed stirrer may be installed upstream of the drum mixer 36 to agitate the sinter material. In the present embodiment, the average particle size is an arithmetic average particle size, and Σ (Vi × di) (where Vi is an abundance ratio of particles in the i-th particle size range, and di is the i-th particle size It is a particle size defined by the above.

測定工程で測定された焼結原料の成分濃度を用いて、予め定められた目標値になるように、CaO含有原料16の配合量、凝結材18の配合量およびドラムミキサー36で添加される水34の添加量のうち少なくとも1つを調整する調整工程が実施される。予め定められた目標値とは、例えば、焼結原料の塩基度(CaO/SiO)、焼結原料の炭素濃度、MgO濃度、水分濃度、Al濃度または焼結時の熱量であってよく、これらの目標値は、過去の焼結鉱の製造実績値等を用いて予め定められる。MgO含有原料17が配合される場合には、調整工程で、測定工程で測定された焼結原料の成分濃度を用いて、MgO含有原料17の配合量を調整してもよい。Using the component concentration of the sintering raw material measured in the measurement step, the blending amount of the CaO-containing raw material 16, the blending amount of the coagulating material 18, and the water added by the drum mixer 36 so as to reach the predetermined target value An adjustment step is performed to adjust at least one of the 34 addition amounts. The predetermined target value is, for example, basicity (CaO / SiO 2 ) of sintering raw material, carbon concentration of sintering raw material, MgO concentration, water concentration, Al 2 O 3 concentration or heat quantity at sintering These target values may be determined in advance using, for example, past production results of sintered ore. When the MgO-containing raw material 17 is blended, the blending amount of the MgO-containing raw material 17 may be adjusted by using the component concentration of the sintering raw material measured in the measurement step in the adjustment step.

本実施形態において、赤外線分析計32による成分濃度の測定頻度は、1分間に128回であり、当該128回の成分濃度の平均値を1分間に1回算出し、算出した成分濃度の平均値を用いて高炉原料の配合量を1分ごとに調整工程を実施した。   In the present embodiment, the measurement frequency of the component concentration by the infrared analyzer 32 is 128 times in 1 minute, and the average value of the 128 component concentrations is calculated once in 1 minute, and the calculated average value of the component concentrations The blending step of the blast furnace raw material was carried out every one minute using.

この調整工程により、仮に、鉄鉱石の脈石成分の成分濃度が変動したとしても、測定工程で測定された焼結原料の成分濃度を用いて、例えば、焼結原料の塩基度(CaO/SiO)が予め定められた目標値になるようにCaO含有原料16の配合量をフィードバック制御することで、焼結原料の塩基度(CaO/SiO)の変動は小さくなる。Even if the component concentration of the gangue component of iron ore fluctuates by this adjustment step, for example, the basicity of the sintering raw material (CaO / SiO) can be obtained using the component concentration of the sintering raw material measured in the measurement step. By feedback controlling the blending amount of the CaO-containing raw material 16 so that 2 ) becomes a predetermined target value, the fluctuation of the basicity (CaO / SiO 2 ) of the sintering raw material becomes small.

仮に、製鉄所内発生ダストの炭素濃度が変動したとしても、測定工程で測定された焼結原料の炭素濃度を用いて、焼結原料の炭素濃度が予め定められた目標値になるように凝結材18の配合量をフィードバック制御することで焼結原料における炭素濃度の変動は小さくなる。   Even if the carbon concentration of the dust generated in the steelworks fluctuates, using the carbon concentration of the sintering raw material measured in the measurement step, the coagulated material so that the carbon concentration of the sintering raw material becomes a predetermined target value The feedback control of the compounding amount of 18 reduces the fluctuation of the carbon concentration in the sintering material.

仮に、鉄鉱石および製鉄所内発生ダストの水分濃度が変動したとしても、測定工程で測定された焼結原料の水分濃度と、予め定められた目標とする水分濃度とからドラムミキサー36で添加する水34の添加量を定めるフィードフォワード制御を行うことが可能になる。そして、当該制御によって調整された水量の水34がドラムミキサー36で添加されることで、焼結原料の水分濃度を目標とする水分濃度に調整できる。   Even if the water concentration of iron ore and dust generated in the ironworks fluctuates, the water to be added by the drum mixer 36 from the water concentration of the sintering raw material measured in the measurement step and the predetermined target water concentration. It becomes possible to perform feedforward control which determines the addition amount of 34. And the water 34 of the water quantity adjusted by the said control is added by the drum mixer 36, and it can adjust the water concentration of a sintering raw material to the target water concentration.

焼結機40は、例えば、下方吸引式のドワイトロイド焼結機である。焼結機40は、焼結原料供給装置42と、無端移動式のパレット台車44と、点火炉46と、気体燃料供給装置47と、ウインドボックス48とを有する。焼結原料供給装置42から焼結原料がパレット台車44に装入され、焼結原料の装入層が形成される。装入層は点火炉46で点火される。ウインドボックス48を通じて空気を吸引することで、装入層は、上方に設けられた気体燃料供給装置47から供給される気体燃料および酸素を装入層に取り込み、装入層内で気体燃料と凝結材18とを燃焼させつつ装入層内の燃焼・溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて焼結ケーキが形成される。本実施形態において気体燃料は、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、都市ガス、天然ガス、メタンガス、エタンガス、プロパンガス、シェールガスおよびそれらの混合ガスのうちから選ばれるいずれかの可燃性ガスである。   The sintering machine 40 is, for example, a lower suction type dwite toroid sintering machine. The sintering machine 40 includes a sintering raw material supply device 42, an endless moving pallet carriage 44, an ignition furnace 46, a gaseous fuel supply device 47, and a window box 48. The sintering raw material is charged into the pallet carriage 44 from the sintering raw material supply device 42, and a charging bed of the sintering raw material is formed. The bed is ignited in an ignition furnace 46. By suctioning air through the wind box 48, the charge bed takes in the gas fuel and oxygen supplied from the gas fuel supply device 47 provided above to the charge bed, and condenses the gas fuel and the charge in the charge bed. The combustion / melting zone in the bed is moved downward of the bed while burning the material 18. The sintering bed is thereby sintered to form a sintered cake. In the present embodiment, the gaseous fuel is selected from blast furnace gas, coke oven gas, blast furnace / coke oven mixed gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas, and mixtures thereof. Is any flammable gas.

測定工程で測定された焼結原料の成分濃度を用いて、焼結機40におけるパレット台車44の進行速度、焼結機上での気体燃料の供給量および焼結機上での酸素の供給量のうち少なくとも1つの調整を行ってもよい。   Using the component concentration of the sintering raw material measured in the measurement step, the advancing speed of the pallet carriage 44 in the sintering machine 40, the supply amount of gaseous fuel on the sintering machine and the supply amount of oxygen on the sintering machine And at least one adjustment may be made.

焼結ケーキは、破砕機50によって破砕され焼結鉱にされる。破砕機50で破砕された焼結鉱は、冷却機60によって冷却される。冷却機60によって冷却された焼結鉱は、複数の篩を有する篩分け装置70によって篩分けされ、粒径5mm超の成品焼結鉱72と、粒径5mm以下の返鉱74とに篩分けされる。成品焼結鉱72は、搬送コンベア76によって高炉80に搬送され、高炉原料として高炉に装入される。一方、返鉱74は、搬送コンベア78によって原料供給部20の配合槽28に搬送される。成品焼結鉱72は、破砕機50によって破砕された焼結鉱が冷却され、篩分けされたものであるので、成品焼結鉱72と破砕機50によって破砕された焼結鉱とは同じ成分濃度の焼結鉱である。本実施形態において、成品焼結鉱72の粒径および返鉱74の粒径は、篩によって篩分けられる粒径を意味し、例えば、粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。成品焼結鉱72および返鉱74の粒径の各値は、あくまで一例であり、この値に限定するものではない。   The sinter cake is crushed by a crusher 50 and made into sintered ore. The sintered ore crushed in the crusher 50 is cooled by the cooler 60. The sintered ore cooled by the cooler 60 is sieved by a sieving apparatus 70 having a plurality of sieves and sifted into a product sintered ore 72 with a particle size of more than 5 mm and a return ore 74 with a particle size of 5 mm or less Be done. The product sintered ore 72 is transported by the transport conveyor 76 to the blast furnace 80 and charged into the blast furnace as a blast furnace raw material. On the other hand, the return ore 74 is transported by the transport conveyor 78 to the blending tank 28 of the raw material supply unit 20. The product sinter ore 72 is obtained by cooling and sieving the sinter ore crushed by the crusher 50, so the product sinter ore 72 and the sinter ore crushed by the crusher 50 have the same components. It is a sinter of concentration. In the present embodiment, the particle size of the product sintered ore 72 and the particle size of the return ore 74 mean the particle size to be sieved by a sieve, for example, a particle size of more than 5 mm means using a sieve with an aperture of 5 mm. The particle size to be sieved on a sieve, and the particle size of 5 mm or less is the particle size to be sieved under a sieve using a sieve with an aperture of 5 mm. Each value of the particle size of the product sintered ore 72 and return ore 74 is just an example, and is not limited to this value.

このように、本実施形態に係る焼結鉱の製造方法では、測定工程における赤外線分析計32で測定された成分濃度を用いて、予め定められた目標値になるようにCaO含有原料16の配合量、凝結材18の配合量およびドラムミキサー36で添加される水34の添加量のうち少なくとも1つを調整する調整工程が実施される。これにより、焼結原料の成分濃度の変動は小さくなり、当該焼結原料を用いて製造される成品焼結鉱72の成分濃度の変動も小さくなり、この結果、成品焼結鉱72の品質低下を抑制できる。   As described above, in the method for producing sintered ore according to the present embodiment, the concentration of the component measured by the infrared analyzer 32 in the measurement step is used to blend the CaO-containing raw material 16 so as to achieve a predetermined target value. An adjustment step of adjusting at least one of the amount, the blending amount of the coagulating material 18 and the addition amount of the water 34 added by the drum mixer 36 is performed. Thereby, the fluctuation of the component concentration of the sintering raw material becomes small, and the fluctuation of the component concentration of the product sintered ore 72 manufactured using the sintering raw material also becomes small, and as a result, the quality of the product sintered ore 72 decreases. Can be suppressed.

例えば、調整工程で、測定工程で測定されたCaOおよびSiOの濃度を用いて、焼結原料の塩基度(CaO/SiO)が予め定められた目標値になるようにCaO含有原料16の配合量を調整してもよい。これにより、脈石成分の成分濃度の変動が大きい鉄鉱石を用いたとしても焼結原料の塩基度(CaO/SiO)の変動は小さくなり、当該焼結原料を用いて製造された成品焼結鉱72の塩基度の変動も小さくなり、強度の安定した成品焼結鉱72の製造が可能となる。塩基度の変動が小さい成品焼結鉱72を高炉原料として用いることで高炉の安定操業にも寄与できる。For example, in the adjusting step, using the concentrations of CaO and SiO 2 measured in the measuring step, the basicity (CaO / SiO 2 ) of the sintering raw material reaches a predetermined target value. The amount may be adjusted. As a result, even if iron ore having a large fluctuation in the concentration of the constituents of the gangue component is used, the fluctuation in basicity (CaO / SiO 2 ) of the sintering raw material becomes smaller, and the product baked using the sintering raw material The variation in basicity of the consolidated ore 72 is also reduced, and the production of a stable product sintered ore 72 becomes possible. By using the product sintered ore 72 having a small variation in basicity as a blast furnace raw material, it can also contribute to the stable operation of the blast furnace.

焼結原料の炭素濃度の変動が大きいと、焼結時の熱量の変動が大きくなり、これにより、成品焼結鉱72のFeO濃度の変動も大きくなる。このようにFeO濃度の変動が大きくなる場合には、調整工程で焼結時の熱量が予め定められた目標値となるように凝結材18の配合量、焼結機上での気体燃料の供給量および焼結機上での酸素の供給量のうち少なくともの1つを調整してもよい。これにより、焼結時の熱量の変動が小さくなり、成品焼結鉱72のFeO濃度の変動も小さくなる。   When the variation of the carbon concentration of the sintering raw material is large, the variation of the heat quantity at the time of sintering becomes large, whereby the variation of the FeO concentration of the product sintered ore 72 also becomes large. As described above, when the fluctuation of the FeO concentration becomes large, the blending amount of the condensing material 18 and the supply of the gaseous fuel on the sintering machine so that the heat quantity at the time of sintering becomes a predetermined target value in the adjustment step. At least one of the amount and the supply of oxygen on the sintering machine may be adjusted. Thereby, the variation of the heat quantity at the time of sintering becomes small, and the variation of the FeO concentration of the product sintered ore 72 also becomes small.

本実施形態に係る焼結鉱の製造方法を用いて、ドラムミキサー36で添加される水34の添加量を調整してもよい。予め定められた水分濃度の目標値になるように水34の添加量が調整されることで焼結原料の水分濃度の変動が小さくなり、焼結時の熱量の変動もさらに小さくなる。これにより、成品焼結鉱72のFeO濃度の変動はさらに小さくなる。   You may adjust the addition amount of the water 34 added with the drum mixer 36 using the manufacturing method of the sintered ore which concerns on this embodiment. By adjusting the addition amount of the water 34 so as to achieve a predetermined target value of the water concentration, the fluctuation of the water concentration of the sintering raw material becomes smaller, and the fluctuation of the heat quantity at the time of sintering becomes even smaller. Thereby, the fluctuation of the FeO concentration of the product sintered ore 72 is further reduced.

成品焼結鉱72のFeO濃度が変動し、FeO濃度が高くなると高炉原料の被還元性が悪化する。高炉原料の被還元性が悪化すると、発熱反応である間接還元が減り、吸熱反応である直接還元が増え、高炉内が熱不足となる。この熱不足を解消させるために還元材をさらに高炉に装入することになり、高炉操業におけるコークス比が増加する。このため、成品焼結鉱72のFeO濃度を目標とする成分濃度に制御することで高炉操業のコークス比の増加を抑制できる。   The FeO concentration of the product sintered ore 72 fluctuates, and when the FeO concentration increases, the reducibility of the blast furnace raw material deteriorates. When the reducibility of the blast furnace raw material deteriorates, the indirect reduction which is an exothermic reaction decreases, the direct reduction which is an endothermic reaction increases, and the heat in the blast furnace becomes insufficient. In order to eliminate this heat shortage, the reducing material is further charged into the blast furnace, and the coke ratio in blast furnace operation is increased. Therefore, by controlling the FeO concentration of the product sintered ore 72 to the target component concentration, it is possible to suppress the increase of the coke ratio in the blast furnace operation.

焼結時の熱量が多くなって焼結ケーキの温度が高くなると冷却機60に過負荷がかかる。このため、測定工程で焼結原料の炭素濃度の上昇が確認された場合には、当該焼結原料が焼結機40で焼結される際に焼結機のパレット台車44の進行速度を下げてもよい。これにより、冷却機60の負荷を下げることができる。本実施形態の測定工程では、焼結原料の成分濃度をオンラインで連続測定するので突発的な炭素濃度の上昇も把握できる。この炭素濃度の上昇に応じて焼結機のパレット台車44の進行速度を下げることで焼結ケーキの温度上昇による設備の破損を防止できる。   When the amount of heat during sintering increases and the temperature of the sintered cake rises, the cooler 60 is overloaded. Therefore, when an increase in the carbon concentration of the sintering material is confirmed in the measurement step, the advancing speed of the pallet carriage 44 of the sintering machine is reduced when the sintering material is sintered by the sintering machine 40. May be Thereby, the load of the cooler 60 can be reduced. In the measurement process of the present embodiment, since the component concentration of the sintering material is continuously measured online, it is possible to grasp a sudden increase in carbon concentration. By reducing the advancing speed of the pallet carriage 44 of the sintering machine according to the increase of the carbon concentration, it is possible to prevent the damage of the equipment due to the temperature rise of the sintering cake.

焼結原料にMgO含有原料17が配合される場合には、測定工程における赤外線分析計32で測定されたMgO濃度を用いて、予め定められたMgO濃度の目標値になるようにMgO含有原料17の配合量が調整してもよい。これにより、成品焼結鉱72のMgOの成分濃度の変動も小さくなる。成品焼結鉱72におけるMgO成分は、融点を高めて軟化溶融性を改善できる効果がある。このため、成品焼結鉱72のMgO成分濃度の変動を小さくすることで軟化溶融性の改善効果が得られ、高炉の安定操業に寄与できる。   When the MgO-containing raw material 17 is blended in the sintering raw material, the MgO-containing raw material 17 is made to have a predetermined target value of MgO concentration using the MgO concentration measured by the infrared analyzer 32 in the measurement step. The compounding amount of may be adjusted. Thereby, the fluctuation of the component concentration of MgO of the product sintered ore 72 is also reduced. The MgO component in the product sintered ore 72 has the effect of increasing the melting point and improving the softening and melting properties. Therefore, by reducing the fluctuation of the MgO component concentration of the product sintered ore 72, the effect of improving the softening and melting properties can be obtained, which can contribute to the stable operation of the blast furnace.

本実施形態では、気体燃料供給装置47を有する焼結機40を用いて焼結鉱を製造する例を示したが、気体燃料供給装置47を有する焼結機40に限らず、気体燃料供給装置47を有さない焼結機を有する焼結鉱製造装置であっても適用できる。気体燃料供給装置47を有さない焼結機を用いる場合には、測定工程で測定された成分濃度を用いて、CaO含有原料16の配合量、凝結材18の配合量、水34の添加量および焼結機のパレット台車44の進行速度のうち少なくとも1つを調整する。つまり、本実施形態では、焼結機40における気体燃料および酸素の供給は必要に応じて行えばよく、調整工程における気体燃料の供給量及び/又は酸素の供給量の調整についても必要に応じて行えばよい。   In the present embodiment, an example of producing a sintered ore using the sintering machine 40 having the gaseous fuel supply device 47 has been shown, but the present invention is not limited to the sintering machine 40 having the gaseous fuel supply device 47, and a gaseous fuel supply device The invention is applicable even to a sintered ore producing apparatus having a sintering machine not having 47. When using the sintering machine which does not have the gaseous fuel supply apparatus 47, the compounding quantity of the CaO containing raw material 16, the compounding quantity of the coagulating material 18, the addition quantity of water 34 using the component density | concentration measured at the measurement process And at least one of the traveling speeds of the pallet carriage 44 of the sintering machine. That is, in the present embodiment, the supply of the gaseous fuel and oxygen in the sintering machine 40 may be performed as necessary, and the adjustment of the supply amount of the gaseous fuel and / or the supply amount of oxygen in the adjustment step may also be performed as necessary. You can do it.

本実施形態において、赤外線分析計32を配合槽28とドラムミキサー36の間の搬送コンベア30に設けて、焼結原料の成分濃度を測定する例を示したが、これに限られない。赤外線分析計32を搬送コンベア14に設けて、配合槽22に搬送される鉄含有原料12に含まれるトータルCaO、SiO、MgO、Al、FeO、Cおよび水分の1種以上の成分濃度を測定してもよく、赤外線分析計32を配合槽22と配合槽24との間の搬送コンベア30に設けて、配合槽22から搬出された鉄含有原料12に含まれるトータルCaO、SiO、MgO、Al、FeO、Cおよび水分の1種以上の成分濃度を測定してもよい。焼結原料の成分濃度が変動する要因は、ヤード11に保管されている鉄含有原料12に含まれる種々の銘柄の鉄鉱石および製鉄所内発生ダストの成分濃度の変動による影響が大きい。このため、搬送コンベア14に赤外線分析計32を設け、鉄含有原料12の成分濃度を測定し、当該測定値と、目標とする焼結原料の成分濃度とを用いて、CaO含有原料16の配合量、凝結材18の配合量および水34の添加量のうち少なくとも1つを定めるフィードフォワード制御が可能になり、これにより、焼結原料の各成分の濃度変動を小さくできる。搬送コンベア14に赤外線分析計32を設けて鉄含有原料12の成分濃度を測定し、当該測定値を用いて焼結機のパレット台車44の進行速度、焼結機上での気体燃料および/または酸素の供給量を調整することで、焼結時の熱量の変動による弊害も抑制できる。In the present embodiment, the infrared analyzer 32 is provided on the transport conveyor 30 between the mixing tank 28 and the drum mixer 36 to measure the component concentration of the sintering material, but the invention is not limited thereto. An infrared analyzer 32 is provided on the transport conveyor 14 and one or more components of total CaO, SiO 2 , MgO, Al 2 O 3 , FeO, C, and moisture contained in the iron-containing raw material 12 transported to the mixing tank 22 The concentration may be measured, and the infrared analyzer 32 is provided on the transport conveyor 30 between the blending tank 22 and the blending tank 24 so that the total CaO and SiO 2 contained in the iron-containing raw material 12 carried out of the blending tank 22 The concentration of one or more components of MgO, Al 2 O 3 , FeO, C and water may be measured. The factor that the component concentration of the sintering raw material fluctuates is largely influenced by the fluctuation of the component concentration of iron ore of various grades contained in the iron-containing raw material 12 stored in the yard 11 and the dust generated in the steel mill. Therefore, the infrared ray analyzer 32 is provided on the transport conveyor 14, the component concentration of the iron-containing raw material 12 is measured, and the CaO-containing raw material 16 is compounded using the measured value and the component concentration of the target sintered raw material. Feed-forward control is possible to determine at least one of the amount, the amount of the mixed material 18 and the amount of the water 34 added, which makes it possible to reduce the concentration fluctuation of each component of the sintering material. An infrared analyzer 32 is provided on the transport conveyor 14 to measure the component concentration of the iron-containing raw material 12, and using the measured values, the traveling speed of the pallet carriage 44 of the sintering machine, the gaseous fuel on the sintering machine and / or By adjusting the supply amount of oxygen, it is possible to suppress the adverse effect due to the fluctuation of the heat quantity at the time of sintering.

赤外線分析計32を搬送コンベア38に設けて、焼結機40に搬送される造粒された焼結原料に含まれるトータルCaO、SiO、MgO、Al、FeO、Cおよび水分の1種以上の成分濃度を測定してもよい。造粒された焼結原料は、ドラムミキサー36によって均一に混合されていて、各原料が偏析していないので、焼結原料の成分濃度を高精度に測定できる。そして、当該成分濃度を用いてCaO含有原料16の配合量、凝結材18の配合量および水34の添加量のうち少なくとも1つをフィードバック制御することで焼結原料の各成分の濃度変動を小さくできる。さらに、当該測定値を用いて焼結機のパレット台車44の進行速度、気体燃料および/または酸素の供給量を調整してもよく、これにより、焼結時の熱量の変動による弊害も抑制できる。The infrared analyzer 32 is provided on the transport conveyor 38, and one of the total CaO, SiO 2 , MgO, Al 2 O 3 , FeO, C and moisture contained in the granulated sintering raw material transported to the sintering machine 40 The concentration of components above the species may be measured. The granulated sintering raw material is uniformly mixed by the drum mixer 36, and each raw material is not segregated, so that the component concentration of the sintering raw material can be measured with high accuracy. And, by feedback control of at least one of the compounding amount of the CaO-containing raw material 16, the compounding amount of the coagulating material 18 and the addition amount of the water 34 using the concentration of the component, the concentration fluctuation of each component of the sintering material is reduced. it can. Furthermore, the advancing speed of the pallet carriage 44 of the sintering machine and the supply amount of the gaseous fuel and / or oxygen may be adjusted using the measured value, whereby the adverse effect due to the variation of the heat quantity at the time of sintering can be suppressed. .

本実施形態において、原料供給部20の配合槽22〜28から各原料を切り出し、搬送コンベア30で焼結原料とし、ドラムミキサー36で造粒された焼結原料にする例を示したが、これに限られない。例えば、鉄含有原料12、CaO含有原料16および返鉱74を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半に凝結材18を投入することで、表層に凝結材18を存在させた炭材外装粒子を、造粒された焼結原料として用いてもよい。この場合においては、赤外線分析計32を用いて鉄含有原料12および上記焼結原料のうち少なくとも1つの成分濃度を測定し、当該測定値を用いて、CaO含有原料16の配合量、凝結材18の配合量、水34の添加量、焼結機のパレット台車44の進行速度、気体燃料の供給量および酸素の供給量のうち少なくとも1つを調整する。   In this embodiment, each raw material is cut out from the compounding tank 22-28 of the raw material supply part 20, made into the sintering raw material by the conveyance conveyor 30, and the example made into the sintering raw material granulated by the drum mixer 36 was shown It is not limited to. For example, a sintered raw material containing iron-containing raw material 12, CaO-containing raw material 16 and return ore 74 is charged into drum mixer 36, water is added to the sintered raw material, and granulation is carried out. The carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer may be used as a granulated sintering raw material by adding. In this case, the infrared analyzer 32 is used to measure the concentration of at least one of the iron-containing raw material 12 and the sintering raw material, and using the measured values, the blending amount of the CaO-containing raw material 16, the coagulated material 18 The amount of water 34 added, the advancing speed of the pallet carriage 44 of the sintering machine, the supplied amount of gaseous fuel, and the supplied amount of oxygen are adjusted.

鉄含有原料12、CaO含有原料16、返鉱74および凝結材18の一部を配合した焼結原料をドラムミキサー36に投入し、当該焼結原料に水を添加して造粒し、造粒時後半に凝結材18の残部を投入することで、造粒した焼結原料の表層に凝結材18を存在させた炭材外装粒子を、造粒された焼結原料として用いてもよい。凝結原料に水を添加して造粒時後半に配合する凝結材としては、粉コークスや無煙炭が使用される。   A sintered material containing iron-containing material 12, CaO-containing material 16, return ore 74, and a part of coagulating material 18 is charged into drum mixer 36, water is added to the sintered material, and granulation is carried out. By charging the remaining portion of the coagulating material 18 in the second half of the hour, the carbon material exterior particles in which the coagulating material 18 is present in the surface layer of the granulated sintering material may be used as the granulated sintering material. Powdered coke and anthracite are used as a coagulating material to which water is added and which is mixed in the second half of granulation.

ドラムミキサー36を複数設けた場合であって、表層に凝結材18を存在させた炭材外装粒子を用いる場合においては、一部または全部の凝結材18を最後のドラムミキサー36の後半に投入し、焼結原料を上述した方法でドラムミキサー36に投入することで表層に凝結材18を存在させた炭材外装粒子を造粒してもよい。さらに、ドラムミキサー36を複数設けた場合に焼結原料に添加する水は、1台目のドラムミキサー36で全ての水を添加してもよく、1台目のドラムミキサー36で一部の水を添加し、残部を他のドラムミキサー36で添加してもよい。   In the case where a plurality of drum mixers 36 are provided, and in the case of using a carbon material exterior particle in which the coagulating material 18 is present in the surface layer, a part or all of the coagulating material 18 is introduced in the second half of the last drum mixer 36 The carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer may be granulated by charging the sintering material into the drum mixer 36 by the method described above. Furthermore, when a plurality of drum mixers 36 are provided, all the water may be added to the sintering raw material by the first drum mixer 36, and a part of the water may be added by the first drum mixer 36. May be added, and the remainder may be added by another drum mixer 36.

本実施形態において、原料供給部20の配合槽22〜28から各原料を切り出し、搬送コンベア30で焼結原料とし、ドラムミキサー36で造粒された焼結原料にする例を示したが、これに限られない。例えば、鉄含有原料12および返鉱74を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16またはCaO含有原料16と凝結材18を投入することで、表層にCaO含有原料16またはCaO含有原料16と凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。この場合においては、赤外線分析計32を用いて鉄含有原料12および上記焼結原料のうち少なくとも1つの成分濃度を測定し、当該測定値を用いて、CaO含有原料16の配合量、凝結材18の配合量、水34の添加量、焼結機のパレット台車44の進行速度、焼結機上での気体燃料の供給量および焼結機上での酸素の供給量のうち少なくとも1つを調整する。   In this embodiment, each raw material is cut out from the compounding tank 22-28 of the raw material supply part 20, made into the sintering raw material by the conveyance conveyor 30, and the example made into the sintering raw material granulated by the drum mixer 36 was shown It is not limited to. For example, a sintered raw material containing iron-containing raw material 12 and return ore 74 is charged into drum mixer 36, water is added to the sintered raw material and granulated, and CaO-containing raw material 16 or CaO containing raw material in the latter half of granulation Granulated particles in which the CaO-containing raw material 16 or the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer may be used as the granulated sintering raw material by charging 16 and the coagulating material 18. In this case, the infrared analyzer 32 is used to measure the concentration of at least one of the iron-containing raw material 12 and the sintering raw material, and using the measured values, the blending amount of the CaO-containing raw material 16, the coagulated material 18 Adjust at least one of the blending amount of water, the added amount of water 34, the advancing speed of the pallet carriage 44 of the sintering machine, the supply amount of gaseous fuel on the sintering machine and the supply amount of oxygen on the sintering machine Do.

鉄含有原料12、返鉱74と、CaO含有原料16の一部またはCaO含有原料16の一部と凝結材18の一部を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16の残部および凝結材18の残部を配合することで、造粒した焼結原料の表層にCaO含有原料16および凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。   Sintered raw materials containing iron-containing raw material 12, return ore 74, a part of CaO-containing raw material 16 or a part of CaO-containing raw material 16 and a part of coagulating material 18 are charged into drum mixer 36 to sinter raw material Water is added and granulated, and the remaining part of the CaO-containing raw material 16 and the remaining part of the coagulating material 18 are compounded in the latter half of granulation, so that the CaO-containing raw material 16 and the coagulating material 18 are formed on the surface of the granulated sintering raw material. Granulated particles present may be used as a granulated sintering material.

ドラムミキサー36を複数設けた場合であって、表層にCaO含有原料16またはCaO含有原料16と凝結材18を存在させた造粒粒子を造粒する場合においては、一部または全部のCaO含有原料16および凝結材18を最後のドラムミキサー36の後半に投入し、焼結原料を上述した方法でドラムミキサー36に投入することで表層にCaO含有原料16および凝結材18を存在させた造粒粒子を造粒してもよい。   In the case of providing a plurality of drum mixers 36 and granulating particles in which the CaO-containing raw material 16 or the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer, part or all of the CaO-containing raw material Granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer by charging the sintering material 16 and the coagulating material 18 in the latter half of the last drum mixer 36 and injecting the sintering material into the drum mixer 36 by the method described above May be granulated.

本実施形態において、原料供給部20の配合槽22〜28から各原料を切り出し、搬送コンベア30で焼結原料とする例を示したが、これに限られない。例えば、原料供給部20の配合槽22〜28から切り出される各原料の一部を直接搬送コンベア30でドラムミキサー36に搬送し、残部を搬送コンベア30とは異なる搬送コンベアで高速撹拌装置に搬送して撹拌処理する。その後、当該残部は、ドラムミキサーまたはペレタイザー等の造粒機で造粒され、必要であれば乾燥機で乾燥された後に、搬送コンベア30または搬送コンベア38に投入しても良い。当該残部は、撹拌処理された後にドラムミキサーまたはペレタイザー等の造粒機で造粒されることなく直接搬送コンベア30に投入されてもよい。さらに、当該高速撹拌装置で撹拌処理される前に破砕工程および/または篩工程を設けてもよい。ドラムミキサー36が複数存在する場合は、どのドラムミキサー間の搬送コンベアに投入してもよい。   In this embodiment, although the example which cuts out each raw material from the mixing tanks 22-28 of the raw material supply part 20 and makes it the sintering raw material by the conveyance conveyor 30 was shown, it is not restricted to this. For example, a portion of each raw material cut out from the mixing tanks 22 to 28 of the raw material supply unit 20 is directly transported to the drum mixer 36 by the transport conveyor 30, and the remaining portion is transported to the high speed stirring device by the transport conveyor different from the transport conveyor 30. Stir and treat. Thereafter, the remaining portion may be granulated by a granulator such as a drum mixer or a pelletizer, and if necessary, may be dried by a drier, and then introduced into the conveyer 30 or the conveyer 38. The said remainder may be thrown into the conveyance conveyor 30 directly, without being granulated with granulators, such as a drum mixer or a pelletizer, after stirring processing. Furthermore, a crushing step and / or a sieving step may be provided before being subjected to the stirring process with the high speed stirring device. When a plurality of drum mixers 36 are present, they may be loaded on the transport conveyor between any drum mixers.

本実施形態において、測定工程における赤外線分析計32を配合槽28とドラムミキサー36の間の搬送コンベア30に設けた例を示したが、これに限られない。例えば、赤外線分析計32をヤード11と最も入側の配合槽22との間の搬送コンベア14、配合槽22と配合槽24との間の搬送コンベア30またはドラムミキサー36と焼結機40との間の搬送コンベア38に設けてよい。但し、表層に凝結材18またはCaO含有原料16と凝結材18を存在させた造粒粒子を用いた場合には、表層成分が成分濃度の測定に影響を与える可能性があるので、搬送コンベア14、配合槽22と配合槽24との間の搬送コンベア30または配合槽28とドラムミキサー36の間の搬送コンベア30に赤外線分析計32を設けることがより好ましい。   In this embodiment, although the example which provided the infrared rays analyzer 32 in the measurement process in the conveyance conveyor 30 between the mixing tank 28 and the drum mixer 36 was shown, it is not restricted to this. For example, the transport analyzer 14 between the yard 11 and the most entry side blending tank 22 of the infrared analyzer 32, the transport conveyor 30 between the blending tank 22 and the blending tank 24, or the drum mixer 36 and the sintering machine 40 , And may be provided on the transport conveyor 38 between them. However, when using the granulated material in which the coagulating material 18 or the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer, the surface layer component may affect the measurement of the component concentration. It is more preferable to provide the infrared analyzer 32 on the transfer conveyor 30 between the mixing tank 22 and the mixing tank 24 or on the transfer conveyor 30 between the mixing tank 28 and the drum mixer 36.

測定工程における赤外線分析計32を1つに限らず複数設けてよく、搬送コンベア14、配合槽22と配合槽24との間の搬送コンベア30、配合槽28とドラムミキサー36の間の搬送コンベア30および搬送コンベア38に2つ以上の赤外線分析計を設けてもよい。複数の赤外線分析計を用いて、焼結原料、鉄含有原料12および造粒された焼結原料の2以上の成分濃度を測定し、当該測定値を用いて、CaO含有原料16の配合量、凝結材18の配合量、水34の添加量、焼結機のパレット台車44の進行速度、焼結機上での気体燃料の供給量および焼結機上での酸素の供給量のうち少なくとも1つを調整してよい。   A plurality of infrared analyzers 32 in the measurement step may be provided without being limited to one, and the transport conveyor 14, the transport conveyor 30 between the blending tank 22 and the blending tank 24, the transport conveyor 30 between the blending tank 28 and the drum mixer 36 And the transfer conveyor 38 may be provided with two or more infrared analyzers. The concentration of two or more components of the sintering raw material, the iron-containing raw material 12 and the granulated sintering raw material is measured using a plurality of infrared analyzers, and the amount of the CaO-containing raw material 16 blended using the measured values. At least one of the amount of the condensing material 18, the amount of water 34 added, the advancing speed of the pallet carriage 44 of the sintering machine, the amount of gaseous fuel supplied on the sintering machine and the amount of oxygen supplied on the sintering machine You may adjust one.

(実施例1)
発明例1、比較例1ともに図1に示した焼結鉱製造装置10を用いて成品焼結鉱を製造した。発明例1では、搬送コンベア30に設けた赤外線分析計32を用いて焼結原料の成分濃度を連続測定し、測定された成分濃度を用いて、焼結原料の塩基度(CaO/SiO)が目標とする塩基度(CaO/SiO)になるようにCaO含有原料16の配合量を調整しながら成品焼結鉱を36時間製造した。一方、比較例1では、連続測定ではなくオフラインで焼結原料の成分濃度を2時間ごとに測定し、測定された成分濃度を用いて、焼結原料の塩基度(CaO/SiO)が目標とする塩基度(CaO/SiO)になるようにCaO含有原料16の配合量を調整しながら成品焼結鉱を36時間製造した。
Example 1
A product sinter was produced using the sinter producing apparatus 10 shown in FIG. In the invention example 1, the component concentration of the sintering material is continuously measured using the infrared analyzer 32 provided on the transport conveyor 30, and the basicity (CaO / SiO 2 ) of the sintering material is measured using the measured component concentration. The product sintered ore was manufactured for 36 hours while adjusting the blending amount of the CaO-containing raw material 16 so that the basicity (CaO / SiO 2 ) targeted by the above becomes the target. On the other hand, in Comparative Example 1, the component concentration of the sintering material is measured every two hours, not continuously but off line, and the basicity (CaO / SiO 2 ) of the sintering material is targeted using the measured component concentration. A product sintered ore was manufactured for 36 hours while adjusting the blending amount of the CaO-containing raw material 16 so as to obtain the basicity (CaO / SiO 2 ).

図2は、発明例1の焼結原料の塩基度と、成品焼結鉱の落下強度の変動を示したグラフである。図3は、比較例1の焼結原料の塩基度と成品焼結鉱の落下強度を示したグラフである。図2(a)、図3(a)に示した塩基度とは、焼結原料におけるトータルCaO濃度をSiO濃度で除したものである。図2(b)、図3(b)に示した落下強度とは、JIS M 8711に規定されている落下強度試験方法を用いて測定した強度である。FIG. 2 is a graph showing the basicity of the sintering raw material of the invention example 1 and the fluctuation of the drop strength of the product sintered ore. FIG. 3 is a graph showing the basicity of the sintering raw material of Comparative Example 1 and the drop strength of the product sintered ore. The basicity shown in FIGS. 2 (a) and 3 (a) is obtained by dividing the total CaO concentration in the sintering material by the SiO 2 concentration. The drop strength shown in FIGS. 2 (b) and 3 (b) is the strength measured using the drop strength test method defined in JIS M 8711.

図2(a)(b)に示すように、発明例1では、焼結原料の塩基度の目標値からのずれが小さくなり、成品焼結鉱の落下強度の変動も小さくなった。発明例1では焼結原料の成分濃度を連続測定している。このため、仮に、成分濃度が突発的に変動したとしても当該成分濃度の変動を早期に検出して、当該成分濃度が目標値になるように、早期にCaO含有原料16の配合量を調整できる。これにより、発明例1では、焼結原料の塩基度の目標値からのずれ、および、塩基度の変動を小さくでき、成品焼結鉱の落下強度の変動も小さくできた。   As shown in FIGS. 2 (a) and 2 (b), in the invention example 1, the deviation from the target value of the basicity of the sintering raw material became smaller, and the fluctuation of the drop strength of the product sintered ore also became smaller. In the invention example 1, the component concentration of the sintering raw material is continuously measured. For this reason, even if the concentration of the component suddenly changes, the variation of the concentration of the component can be detected early, and the blending amount of the CaO-containing raw material 16 can be adjusted early so that the concentration of the component becomes the target value. . Thereby, in the invention example 1, the shift | offset | difference from the target value of the basic material of sintering raw material and the fluctuation | variation of basicity were able to be made small, and the fluctuation | variation of the drop strength of product sinter was also made small.

一方、図3(a)(b)に示すように、比較例1では、焼結原料の塩基度が目標値に対して大きく変動し、成品焼結鉱の落下強度も大きく変動し、落下強度の低い成品焼結鉱が製造された。成品焼結鉱の落下強度が低くなると、高炉への搬送・装入時の衝撃で容易に破砕し、成品焼結鉱の粒度が変動する。成品焼結鉱の粒度変動は、高炉内における原料装入分布の乱れの要因になるので好ましくない。   On the other hand, as shown in FIGS. 3 (a) and 3 (b), in Comparative Example 1, the basicity of the sintering raw material largely fluctuates with respect to the target value, and the drop strength of the product sintered ore also largely fluctuates. Low-grade product sinter was produced. When the fall strength of the product sintered ore becomes low, it is easily crushed by the impact at the time of transportation and charging to the blast furnace, and the particle size of the product sintered ore fluctuates. The particle size variation of the product sintered ore is not preferable because it becomes a factor of disturbance of the raw material charge distribution in the blast furnace.

これらの結果から、発明例1の製造方法を用いることで、成品焼結鉱の成分濃度の変動および落下強度の変動が小さい成品焼結鉱を製造できることが確認された。
(実施例2)
発明例2、比較例2ともに図1に示した焼結鉱製造装置10を用いて成品焼結鉱を製造した。発明例2では、搬送コンベア30に設けた赤外線分析計32を用いて焼結原料の炭素濃度を連続測定し、測定された炭素濃度を用いて、焼結原料の炭素濃度が目標とする濃度になるように凝結材18の配合量を調整しながら成品焼結鉱を36時間製造した。一方、比較例2では、連続測定ではなくオフラインで焼結原料の炭素濃度を4時間ごとに測定し、測定された炭素濃度を用いて、焼結原料の炭素濃度が目標とする濃度になるように凝結材18の配合量を調整しながら成品焼結鉱を36時間製造した。焼結原料の炭素濃度の目標値は、焼結原料の成分を用いて焼結時における焼結原料の液相率が好ましい範囲になる焼結温度を算出し、炭素の燃焼により焼結原料を当該焼結温度に昇温できる炭素量に基づいて定めた。発明例2、比較例2ともに、成品焼結鉱の製造途中で焼結原料を炭素濃度が高い焼結原料に変更し、その後、焼結原料を元に戻して成品焼結鉱の生産を継続した。
From these results, it was confirmed that by using the production method of the invention example 1, it is possible to produce a product sintered ore with less fluctuation of component concentration of the product sintered ore and fluctuation of the drop strength.
(Example 2)
A product sinter was produced using the sinter ore producing apparatus 10 shown in FIG. 1 in both the invention example 2 and the comparative example 2. In the invention example 2, the carbon concentration of the sintering raw material is continuously measured using the infrared analyzer 32 provided on the transport conveyor 30, and the carbon concentration of the sintering raw material is made the target concentration using the measured carbon concentration. The product sintered ore was manufactured for 36 hours while adjusting the blending amount of the condensing material 18 as follows. On the other hand, in Comparative Example 2, the carbon concentration of the sintering material is measured every four hours not continuously but offline so that the carbon concentration of the sintering material becomes the target concentration using the measured carbon concentration. The product sintered ore was manufactured for 36 hours while adjusting the content of the condensing material 18 in the above. The target value of the carbon concentration of the sintering material is calculated by using the components of the sintering material to calculate the sintering temperature at which the liquid phase ratio of the sintering material becomes a preferable range at the time of sintering, and burning the carbon It was determined based on the amount of carbon that can be raised to the sintering temperature. In both Inventive Example 2 and Comparative Example 2, the sintering raw material is changed to a sintering raw material having a high carbon concentration during the production of the product sintered ore, and thereafter, the sintered raw material is returned to continue production of the product sintered ore did.

図4は、発明例2の焼結機の生産率、焼結原料の炭素濃度およびパレット台車の進行速度の変動を示したグラフである。図5は、比較例2の焼結機の生産率、焼結原料の炭素濃度およびパレット台車の進行速度の変動を示したグラフである。図4(a)、図5(a)は、焼結機の生産率(t/(h×m))の変動を示す。焼結機の生産率(t/(h×m))とは、焼結機で生産される1時間当たりの焼結ケーキの質量(t)をパレット台車の面積(m)で除して算出される値である。図4(b)、図5(b)は、焼結原料の炭素濃度(質量%)の変動を示す。図4(c)、図5(c)は、パレット台車の進行速度(m/min)の変動を示す。図4、図5ともに破線枠で囲んだ部分は、炭素濃度が高い焼結原料に変更した「原料変更期間」を示す。FIG. 4 is a graph showing fluctuations in the production rate of the sintering machine of invention example 2, the carbon concentration of the sintering raw material, and the traveling speed of the pallet carriage. FIG. 5 is a graph showing fluctuations in the production rate of the sintering machine of Comparative Example 2, the carbon concentration of the sintering raw material, and the traveling speed of the pallet carriage. FIG. 4A and FIG. 5A show the fluctuation of the production rate (t / (h × m 2 )) of the sintering machine. The production rate (t / (h × m 2 )) of the sintering machine is the mass (t) of sintered cake produced per hour by the sintering machine divided by the area (m 2 ) of the pallet carriage It is a value calculated by FIG.4 (b) and FIG.5 (b) show the fluctuation | variation of the carbon concentration (mass%) of sintering raw material. FIG.4 (c) and FIG.5 (c) show the fluctuation | variation of the advancing speed (m / min) of a pallet trolley. The part enclosed by the broken line frame in both FIG. 4 and FIG. 5 shows the “raw material change period” changed to the sintering raw material having a high carbon concentration.

発明例2では、焼結原料の炭素濃度を連続測定し、炭素濃度が目標値になるように凝結材18の配合量を調整している。このように、焼結原料の成分濃度を連続測定しているので、原料変更期間の初期に炭素濃度の上昇を検出でき、当該濃度を用いて、焼結原料の炭素濃度が目標とする炭素濃度になるように、早期に凝結材18の配合量の調整が実施された。これにより、図4(b)に示すように、焼結原料の炭素濃度の上昇が抑制され、図4(c)に示すように、パレット台車の進行速度を低下させることなく焼結鉱を製造でき、この結果、図4(a)に示すように焼結機40の生産率の大きな低下は発生しなかった。   In the invention example 2, the carbon concentration of the sintering raw material is continuously measured, and the compounding amount of the coagulating material 18 is adjusted so that the carbon concentration becomes a target value. Thus, since the component concentration of the sintering raw material is continuously measured, an increase in carbon concentration can be detected at the beginning of the raw material change period, and the carbon concentration targeted by the carbon concentration of the sintering raw material is targeted using the concentration. As a result, adjustment of the blending amount of the coagulating material 18 was carried out early. Thereby, as shown in FIG.4 (b), the raise of the carbon concentration of sintering raw material is suppressed, and as shown in FIG.4 (c), a sintered ore is manufactured, without reducing the advancing speed of a pallet truck. As a result, as shown in FIG. 4 (a), a large decrease in the production rate of the sintering machine 40 did not occur.

一方、比較例2では、焼結原料の炭素濃度を連続測定していないので、焼結原料の炭素濃度上昇の検出が遅れる。このため、図5(b)に示すように、焼結原料の炭素濃度が大きく上昇している。炭素濃度の上昇により焼結ケーキの温度が高くなり過ぎると冷却機60に過負荷がかかるので、パレット台車の進行速度を低下させて冷却機60の負荷を低減させる必要がある。このため、図5(c)に示すように、パレット台車の進行速度を低下させており、この結果、図5(a)に示すように焼結機40の生産率は大きく低下した。   On the other hand, in Comparative Example 2, since the carbon concentration of the sintering material is not continuously measured, the detection of the increase in the carbon concentration of the sintering material is delayed. Therefore, as shown in FIG. 5 (b), the carbon concentration of the sintering raw material is greatly increased. If the temperature of the sinter cake becomes too high due to the increase of the carbon concentration, the cooler 60 is overloaded, so it is necessary to reduce the traveling speed of the pallet truck to reduce the load of the cooler 60. For this reason, as shown in FIG. 5 (c), the traveling speed of the pallet carriage is reduced, and as a result, as shown in FIG. 5 (a), the production rate of the sintering machine 40 is greatly reduced.

このように、発明例2の製造方法を用いることで、仮に、焼結原料の炭素濃度が変動したとしても炭素濃度の変動を早期に検出し、当該炭素濃度の変動に対応して早期に凝結材18の配合量を調整できる。これにより、焼結原料の炭素濃度の変動は小さくなって焼結鉱製造時の熱量の変動も小さくなり、この結果、成品焼結鉱の温度上昇が抑制されて焼結機40の生産率の低下が抑制されることが確認できた。   As described above, by using the manufacturing method of the invention example 2, even if the carbon concentration of the sintering raw material fluctuates, the fluctuation of the carbon concentration is detected at an early stage, and the condensation starts at an early stage corresponding to the fluctuation of the carbon concentration. The blending amount of the material 18 can be adjusted. Thereby, the variation of the carbon concentration of the sintering raw material becomes small and the variation of the heat quantity at the time of producing the sintered ore also becomes small. As a result, the temperature rise of the product sintered ore is suppressed and the production rate of the sintering machine 40 It has been confirmed that the decrease is suppressed.

10 焼結鉱製造装置
11 ヤード
12 鉄含有原料
14 搬送コンベア
16 CaO含有原料
17 MgO含有原料
18 凝結材
20 原料供給部
22 配合槽
24 配合槽
25 配合槽
26 配合槽
28 配合槽
30 搬送コンベア
32 赤外線分析計
34 水
36 ドラムミキサー
38 搬送コンベア
40 焼結機
42 焼結原料供給装置
44 パレット台車
46 点火炉
47 気体燃料供給装置
48 ウインドボックス
50 破砕機
60 冷却機
70 篩分け装置
72 成品焼結鉱
74 返鉱
76 搬送コンベア
78 搬送コンベア
80 高炉
DESCRIPTION OF SYMBOLS 10 sintered ore manufacturing apparatus 11 yards 12 iron containing raw material 14 conveyer 16 CaO containing raw material 17 MgO containing raw material 18 coagulating material 20 raw material supply part 22 compounding tank 24 compounding tank 25 compounding tank 26 compounding tank 28 compounding tank 30 conveying conveyor 32 infrared rays Analyzer 34 Water 36 Drum mixer 38 Conveying conveyor 40 Sintering machine 42 Sintered raw material supply device 44 Pallet truck 46 Ignition furnace 47 Gas fuel supply device 48 Window box 50 Crusher 60 Cooler 70 Sieving device 72 Sintered product ore 74 Returning 76 Transport conveyor 78 Transport conveyor 80 Blast furnace

Claims (5)

少なくとも鉄含有原料、CaO含有原料および凝結材を配合した焼結原料に水を添加して造粒し、焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、
前記鉄含有原料、前記焼結原料および造粒された焼結原料のうち少なくとも1つの成分濃度を連続測定する測定工程と、
前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記凝結材の配合量、前記水の添加量および前記焼結機のパレット台車の進行速度のうち少なくとも1つの調整を行う調整工程と、
を有する、焼結鉱の製造方法。
Water is added to a sintering raw material containing at least an iron-containing raw material, a CaO-containing raw material and a coagulating agent, water is added and granulated, and a method of producing a sintered ore is produced by sintering in a sintering machine to produce sintered ore. ,
Measuring the concentration of at least one of the iron-containing material, the sintering material and the granulated sintering material continuously;
Adjustment of at least one of the compounding amount of the CaO-containing raw material, the compounding amount of the coagulating material, the addition amount of the water, and the advancing speed of the pallet carriage of the sintering machine using the component concentration measured in the measuring step Adjustment process to
A method of producing sintered ore, comprising
前記焼結原料には、さらにMgO含有原料が配合され、
前記調整工程では、前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記MgO含有原料の配合量、前記凝結材の配合量、前記水の添加量および前記焼結機のパレット台車の進行速度のうち少なくとも1つの調整を行う、請求項1に記載の焼結鉱の製造方法。
An MgO-containing material is further blended in the sintering material.
In the adjustment step, using the component concentration measured in the measurement step, the blending amount of the CaO-containing raw material, the blending amount of the MgO-containing raw material, the blending amount of the coagulating material, the addition amount of the water, and the sintering The method for producing sinter ore according to claim 1, wherein at least one of the traveling speeds of the pallet carriages of the machine is adjusted.
少なくとも鉄含有原料、CaO含有原料および凝結材を配合した焼結原料に水を添加して造粒し、焼結機で気体燃料および酸素を供給しながら前記焼結原料を焼結して焼結鉱を製造する焼結鉱の製造方法であって、
前記鉄含有原料、前記焼結原料および造粒された焼結原料のうち少なくとも1つの成分濃度を連続測定する測定工程を有し、
前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記凝結材の配合量、前記水の添加量、前記焼結機のパレット台車の進行速度、前記気体燃料の供給量および前記酸素の供給量のうち少なくとも1つの調整を行う調整工程と、
を有する、焼結鉱の製造方法。
Water is added to a sintered material containing at least an iron-containing material, a CaO-containing material, and a coagulant to granulate, and the above-mentioned sintered material is sintered and sintered while supplying gaseous fuel and oxygen by a sintering machine A method of producing sintered ore for producing ore,
And measuring the concentration of at least one of the iron-containing material, the sintering material, and the granulated sintering material continuously.
Using the component concentration measured in the measurement step, the blending amount of the CaO-containing raw material, the blending amount of the coagulating material, the addition amount of the water, the advancing speed of the pallet carriage of the sintering machine, the supply of the gaseous fuel Adjusting at least one of the amount and the supply amount of oxygen;
A method of producing sintered ore, comprising
前記焼結原料には、さらにMgO含有原料が配合され、
前記調整工程では、前記測定工程で測定された成分濃度を用いて、前記CaO含有原料の配合量、前記MgO含有原料の配合量、前記凝結材の配合量、前記水の添加量、前記焼結機のパレット台車の進行速度、前記気体燃料の供給量および前記酸素の供給量のうち少なくとも1つの調整を行う、請求項3に記載の焼結鉱の製造方法。
An MgO-containing material is further blended in the sintering material.
In the adjustment step, using the component concentration measured in the measurement step, the blending amount of the CaO-containing raw material, the blending amount of the MgO-containing raw material, the blending amount of the coagulating material, the addition amount of the water, the sintering The method for producing sintered ore according to claim 3, wherein at least one of the traveling speed of the pallet carriage of the machine, the supply amount of the gaseous fuel and the supply amount of the oxygen is adjusted.
前記測定工程では、トータルCaO、SiO、MgO、Al、FeO、Cおよび水分の1種以上の成分濃度を測定する、請求項1から請求項4の何れか一項に記載の焼結鉱の製造方法。Wherein the measuring step, the total CaO, SiO 2, MgO, Al 2 O 3, FeO, measuring one or more component concentrations of C and water, baked according to any one of claims 1 to 4 How to make a lump ore.
JP2018568489A 2017-02-16 2018-02-09 Sintered ore manufacturing method Active JP6680369B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017026992 2017-02-16
JP2017026992 2017-02-16
PCT/JP2018/004516 WO2018151024A1 (en) 2017-02-16 2018-02-09 Method for manufacturing sintered ore

Publications (2)

Publication Number Publication Date
JPWO2018151024A1 true JPWO2018151024A1 (en) 2019-04-25
JP6680369B2 JP6680369B2 (en) 2020-04-15

Family

ID=63169416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018568489A Active JP6680369B2 (en) 2017-02-16 2018-02-09 Sintered ore manufacturing method

Country Status (7)

Country Link
EP (1) EP3550037A4 (en)
JP (1) JP6680369B2 (en)
KR (1) KR102290001B1 (en)
CN (1) CN110325654A (en)
PH (1) PH12019501877A1 (en)
TW (1) TWI658148B (en)
WO (1) WO2018151024A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263822A (en) * 2017-10-25 2020-06-09 杰富意钢铁株式会社 Method for producing sintered ore
CN111440943B (en) * 2020-04-29 2022-02-11 河北龙凤山铸业有限公司 Method for accurately controlling trace elements of sintered ore
KR102449020B1 (en) * 2020-09-28 2022-09-28 주식회사 포스코아이씨티 System and Method for Predicting Strength of Sintered Ore

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665943A (en) * 1979-11-02 1981-06-04 Sumitomo Metal Ind Ltd Controlling method for basicity of sintered ore
JPS57149433A (en) * 1981-03-07 1982-09-16 Nisshin Steel Co Ltd Method and device for preparing sintered ore having preset content of feo
JPH1017946A (en) * 1996-06-27 1998-01-20 Nkk Corp Method for controlling moisture in sintering raw material
JPH1072626A (en) * 1996-08-30 1998-03-17 Nkk Corp Method for controlling basicity of sintered ore
JP2007138246A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Preliminary treatment method and preliminary treatment device for sintering raw material
JP2011162814A (en) * 2010-02-05 2011-08-25 Jfe Steel Corp Method of adjusting adequate water amount in production of raw material for sinter granulation
JP2014031580A (en) * 2012-07-12 2014-02-20 Jfe Steel Corp Oxygen-gaseous fuel supply unit of sintering machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122831A (en) 1979-03-15 1980-09-20 Sumitomo Metal Ind Ltd Coke blend controlling method in sintered ore manufacture
JPS60262926A (en) 1984-06-08 1985-12-26 Kawasaki Steel Corp Method for controlling concentration of component in product sintered ore
JPH08120351A (en) * 1994-10-18 1996-05-14 Sumitomo Metal Ind Ltd Method for controlling water content of sintering raw material
JP2000248321A (en) * 1999-02-26 2000-09-12 Nkk Corp Method for controlling moisture in sintering raw material
JP5020446B2 (en) 2001-08-06 2012-09-05 新日本製鐵株式会社 Method for producing sintered ore
US7924414B2 (en) 2006-05-10 2011-04-12 Abb Schweiz Ag Non-hazardous bulk material analyzer system
JP4735682B2 (en) * 2008-08-21 2011-07-27 Jfeスチール株式会社 Method for producing sintered ore and sintering machine
JP5544784B2 (en) 2009-08-17 2014-07-09 Jfeスチール株式会社 Sintering machine
CN102059071A (en) * 2010-11-16 2011-05-18 吕斌 Automatic blending material control system for sintering production
CN102719658A (en) * 2011-03-29 2012-10-10 宝钢集团新疆八一钢铁有限公司 Method for controlling water content of sintered mixture by addition of quicklime
JP5803809B2 (en) * 2012-05-22 2015-11-04 新日鐵住金株式会社 Preconditioning method of sintering raw material
CN105821205B (en) * 2015-01-07 2017-11-28 宝山钢铁股份有限公司 The processing equipment and its processing method of a kind of sinter mixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665943A (en) * 1979-11-02 1981-06-04 Sumitomo Metal Ind Ltd Controlling method for basicity of sintered ore
JPS57149433A (en) * 1981-03-07 1982-09-16 Nisshin Steel Co Ltd Method and device for preparing sintered ore having preset content of feo
JPH1017946A (en) * 1996-06-27 1998-01-20 Nkk Corp Method for controlling moisture in sintering raw material
JPH1072626A (en) * 1996-08-30 1998-03-17 Nkk Corp Method for controlling basicity of sintered ore
JP2007138246A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Preliminary treatment method and preliminary treatment device for sintering raw material
JP2011162814A (en) * 2010-02-05 2011-08-25 Jfe Steel Corp Method of adjusting adequate water amount in production of raw material for sinter granulation
JP2014031580A (en) * 2012-07-12 2014-02-20 Jfe Steel Corp Oxygen-gaseous fuel supply unit of sintering machine

Also Published As

Publication number Publication date
EP3550037A1 (en) 2019-10-09
EP3550037A4 (en) 2020-01-08
KR20190109451A (en) 2019-09-25
CN110325654A (en) 2019-10-11
TW201833337A (en) 2018-09-16
JP6680369B2 (en) 2020-04-15
TWI658148B (en) 2019-05-01
WO2018151024A1 (en) 2018-08-23
KR102290001B1 (en) 2021-08-13
PH12019501877A1 (en) 2020-03-16

Similar Documents

Publication Publication Date Title
JP6680369B2 (en) Sintered ore manufacturing method
Matsumura et al. Improvement of sinter productivity by adding return fine on raw materials after granulation stage
JP6988712B2 (en) Sintered ore manufacturing method
JP6519036B2 (en) Blast furnace operation method
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP6874780B2 (en) Sintered ore manufacturing method
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP6665972B2 (en) Sinter production method
JP6763412B2 (en) Sintered ore manufacturing method
JP6043271B2 (en) Method for producing reduced iron
JP2024048561A (en) Sinter manufacturing method
KR102449020B1 (en) System and Method for Predicting Strength of Sintered Ore
JP2018066046A (en) Manufacturing method of sintered ore
JP2023145326A (en) Manufacturing method of sinter and manufacturing apparatus
JP2024077832A (en) Method for predicting sinter quality and method for producing sinter using the same
Bizhanov et al. Sinter Production
Purnell Application of the Fuller-Thompson equation in sinter blend design to increase sinter plant productivity
Shah et al. Production of perfect sinter-Need for blast furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6680369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250