JPWO2018096905A1 - Manufacturing method of pressure vessel - Google Patents

Manufacturing method of pressure vessel Download PDF

Info

Publication number
JPWO2018096905A1
JPWO2018096905A1 JP2017565335A JP2017565335A JPWO2018096905A1 JP WO2018096905 A1 JPWO2018096905 A1 JP WO2018096905A1 JP 2017565335 A JP2017565335 A JP 2017565335A JP 2017565335 A JP2017565335 A JP 2017565335A JP WO2018096905 A1 JPWO2018096905 A1 JP WO2018096905A1
Authority
JP
Japan
Prior art keywords
fiber bundle
liner
resin
winding
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017565335A
Other languages
Japanese (ja)
Inventor
大介 永松
大介 永松
潤平 ▲高▼橋
潤平 ▲高▼橋
惟史 渡辺
惟史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018096905A1 publication Critical patent/JPWO2018096905A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

円筒状の胴部と該胴部の両端に設けられた開口部に連設するドーム状の鏡部とを有するライナ(9)に、連続して送り出される繊維束に樹脂を連続して含浸させた樹脂含浸繊維束(3)を巻き付ける圧力容器の製造方法であって、ライナ(9)の長軸方向に対して胴部における樹脂含浸繊維束(3)の巻き付け角度θ(°)が10°≦θ≦30°のヘリカル巻の範囲において、巻き付けられた樹脂含浸繊維束の幅(BwHe:mm)とライナ胴部の外径(OD:mm)とが、0.02≦BwHe/OD≦0.09を満足するように制御する圧力容器の製造方法。ライナ(9)の鏡部にヘリカル巻きで樹脂含浸繊維束(3)を巻き付けたとしても、樹脂含浸繊維束(3)が滑らない状態で圧力容器を成形することができる。A liner (9) having a cylindrical barrel portion and a dome-shaped mirror portion continuously provided at openings provided at both ends of the barrel portion is continuously impregnated with resin in a fiber bundle continuously fed out. The pressure vessel manufacturing method for winding the resin-impregnated fiber bundle (3), wherein the winding angle θ (°) of the resin-impregnated fiber bundle (3) in the trunk portion with respect to the major axis direction of the liner (9) is 10 °. In the helical winding range of ≦ θ ≦ 30 °, the width (BwHe: mm) of the wound resin-impregnated fiber bundle and the outer diameter (OD: mm) of the liner body portion are 0.02 ≦ BwHe / OD ≦ 0. Manufacturing method of pressure vessel controlled to satisfy 0.09. Even if the resin-impregnated fiber bundle (3) is wound helically around the mirror part of the liner (9), the pressure vessel can be molded without the resin-impregnated fiber bundle (3) slipping.

Description

本発明は、繊維強化プラスチック(以下、FRP:Fiber Reinforced
Plasticと称することがある。)製の圧力容器の製造方法に関するものである。
The present invention relates to a fiber reinforced plastic (hereinafter referred to as FRP: Fiber Reinforced).
Sometimes called Plastic. This relates to a method for manufacturing a pressure vessel made of).

従来から、窒素、酸素、アルゴン、液化石油ガスおよび水素等の気体を長時間にわたり保持するために、圧力容器が用いられている。近年、CHGタンク(Compressed Hydrogen Gas Tank)と呼ばれている水素ガス自動車搭載用の圧力容器や、病院や消防士が使用する空気呼吸器などにおいては、軽量化を図るために、FRP製の容器等が開発されている。  Conventionally, pressure vessels have been used to hold gases such as nitrogen, oxygen, argon, liquefied petroleum gas and hydrogen over a long period of time. In recent years, pressure vessels for hydrogen gas vehicles, called CHG tanks (Compressed Hydrogen Gas Tanks), and air respirators used by hospitals and firefighters, are made of FRP. Etc. have been developed.

これらのFRP製圧力容器等は、一般的にフィラメントワインディング成形(FW成形)法で製作される。FW成形法とは、別々に用意した複数の繊維束と液状の樹脂を、製造過程で一体化した後、円筒状の胴部と該胴部の両端に設けられた開口部に連設するドーム状の鏡部とを有するライナへ、所望の張力と角度で繊維束を巻き付けていく成形法である。この成形法において、圧力容器に必要な強度を付与するために、ライナの長軸方向に対して、略垂直方向に繊維束を巻き付けるフープ巻きと、らせん状に巻き付けるヘリカル巻きを組み合わせる。外径がほぼ一定のライナ胴部に繊維束を巻き付けるフープ巻きの場合では問題にならないが、外径が連続的に変化するライナ鏡部にも繊維束を巻き付けるヘリカル巻きの場合では、ライナ鏡部の形状や繊維束の巻き角度によってはライナ上の繊維束が滑ってしまい、巻けない場合がある。  These FRP pressure vessels and the like are generally manufactured by a filament winding molding (FW molding) method. The FW molding method is a dome in which a plurality of separately prepared fiber bundles and a liquid resin are integrated in a manufacturing process, and then connected to a cylindrical body and openings provided at both ends of the body. This is a molding method in which a fiber bundle is wound around a liner having a mirror-like part at a desired tension and angle. In this molding method, in order to give the pressure vessel the necessary strength, hoop winding for winding the fiber bundle in a direction substantially perpendicular to the major axis direction of the liner and helical winding for winding in a spiral shape are combined. This is not a problem in the case of hoop winding, in which the fiber bundle is wound around a liner body having a substantially constant outer diameter. Depending on the shape and the winding angle of the fiber bundle, the fiber bundle on the liner may slip and not wind.

一般的に、FW成形法においては、繊維束が滑らないようにライナの測地線に沿って巻くことが基本になっている(非特許文献1参照。)。しかしながら、この提案のように使用する繊維束が多くなると巻き付ける繊維束幅が広くなり、繊維束がライナの測地線上を通っても繊維束が滑ることがある。また、設計の観点からは、測地線を通したくない場合もある。ここで別に、特許文献1には、「前記ライナを回転させながら前記ヘリカルヘッドを通過させることで前記の繊維束ガイドの供給口から供給される繊維束を前記ライナの外周面に巻き付けていくフィラメントワインディング装置において、前記の繊維束ガイドは、前記供給口の幅を変更可能に構成されるフィラメントワインディング装置」が提案されており、ここでは「ライナの部位に応じて繊維束の幅を変えて巻き付けることができる」という効果が開示されている。  In general, in the FW molding method, the fiber bundle is basically wound along the geodesic line of the liner so that the fiber bundle does not slip (see Non-Patent Document 1). However, as the number of fiber bundles used increases as in this proposal, the width of the wound fiber bundle becomes wider, and the fiber bundle may slip even if the fiber bundle passes on the geodesic line of the liner. Also, from a design point of view, it may not be necessary to pass a geodesic line. Separately, Patent Document 1 states that “a filament that winds a fiber bundle supplied from a supply port of the fiber bundle guide around the outer peripheral surface of the liner by passing the helical head while rotating the liner. In the winding apparatus, there has been proposed a filament winding apparatus in which the fiber bundle guide is configured so that the width of the supply port can be changed. Here, the fiber bundle guide is wound by changing the width of the fiber bundle according to the portion of the liner. The effect of “can be done” is disclosed.

しかしながら、この提案の構成では、ライナの部位により繊維束の幅を変えることができるが、ライナの鏡部における繊維束すべりを回避するための方法については何ら触れられていない。  However, in the proposed configuration, the width of the fiber bundle can be changed depending on the portion of the liner, but nothing is mentioned about a method for avoiding the fiber bundle slip at the mirror portion of the liner.

また別に、特許文献2には、「複数の樹脂含浸繊維束を並行させて搬送する搬送手段と、前記搬送手段から搬送された、並行する複数の樹脂含浸繊維束が形成する繊維幅を調整して送り出す送出繊維幅調整手段と、前記の送出繊維幅調整手段から送り出された繊維幅を検知するセンサと、を備え、前記のセンサが検知した樹脂含浸繊維束の繊維幅に応じて、前記送出繊維幅調整手段から送り出される送出繊維幅を調整することを特徴とするフィラメントワインディングシステム」が提案されており、ここでは「安定した繊維幅を有するプリプレグ繊維を連続して送り出す」という効果が開示されている。  In addition, Patent Document 2 states that “the width of a fiber formed by a plurality of parallel resin-impregnated fiber bundles transported from the transport unit and a plurality of parallel resin-impregnated fiber bundles transported from the transport unit is adjusted. And a delivery fiber width adjusting means for sending out, and a sensor for detecting the fiber width sent from the delivery fiber width adjusting means, and according to the fiber width of the resin-impregnated fiber bundle detected by the sensor, A filament winding system characterized by adjusting the width of a delivery fiber sent out from the fiber width adjusting means has been proposed. Here, the effect of “sending prepreg fibers having a stable fiber width continuously” is disclosed. ing.

しかしながら、この提案の構成では、特許文献1の提案と同様に、ライナの鏡部における繊維束すべりを回避するための方法についてはなんら触れられていない。  However, in the configuration of this proposal, as in the proposal of Patent Document 1, there is no mention of a method for avoiding fiber bundle slippage in the mirror part of the liner.

特開2013−63592号公報JP 2013-63592 A 特開2011−93276号公報JP 2011-93276 A

「フィラメントワインディング」工業技術ライブラリー26(日刊工業新聞社発行)昭和45年5月30日初版発行(第103〜105頁)“Filament Winding” Industrial Technology Library 26 (published by Nikkan Kogyo Shimbun) First edition published on May 30, 1970 (pages 103-105)

そこで本発明の目的は、上記の従来技術の課題に鑑み、ライナの鏡部にヘリカル巻きで繊維束を巻き付けたとしても、繊維束が滑らない圧力容器の製造方法を提供することにある。  Accordingly, an object of the present invention is to provide a method of manufacturing a pressure vessel in which a fiber bundle does not slip even if the fiber bundle is wound around a mirror portion of a liner by helical winding.

さらに、本発明の他の目的は、ヘリカル巻きとフープ巻きの繊維束幅を変えることにより、圧力容器の品質を向上させることができ、結果として高い強度を発現する圧力容器の製造方法を提供することにある。  Furthermore, another object of the present invention is to provide a method of manufacturing a pressure vessel that can improve the quality of the pressure vessel by changing the fiber bundle width between the helical winding and the hoop winding, and as a result, exhibits high strength. There is.

本発明は、上記の課題を解決せんとするものであって、本発明の圧力容器の製造方法は、円筒状の胴部と前記胴部の両端に設けられた開口部に連設するドーム状の鏡部とを有するライナに、連続して送り出される繊維束に樹脂を連続して含浸させた樹脂含浸繊維束を巻き付ける圧力容器の製造方法であって、前記ライナの長軸方向に対して前記胴部における前記樹脂含浸繊維束の巻き付け角度θ(°)が10°≦θ≦30°のヘリカル巻の範囲において、巻き付けられた前記樹脂含浸繊維束の幅(BwHe:mm)とライナの胴部の外径(OD:mm)とが、次式(1)を満足するように制御することを特徴とする圧力容器の製造方法。
0.02≦BwHe/OD≦0.09 ・・・・・(1)
The present invention is intended to solve the above-described problem, and the method of manufacturing a pressure vessel according to the present invention is a dome shape that is connected to a cylindrical body and openings provided at both ends of the body. A pressure vessel manufacturing method for winding a resin-impregnated fiber bundle in which a resin bundle is continuously impregnated into a fiber bundle that is continuously fed to a liner having a mirror part of In the helical winding range in which the winding angle θ (°) of the resin-impregnated fiber bundle in the trunk portion is 10 ° ≦ θ ≦ 30 °, the width (BwHe: mm) of the wound resin-impregnated fiber bundle and the trunk portion of the liner The outer diameter (OD: mm) of the pressure vessel is controlled so as to satisfy the following formula (1).
0.02 ≦ BwHe / OD ≦ 0.09 (1)

本発明の圧力容器の製造方法の好ましい態様によれば、上記ヘリカル巻の巻き付け角度範囲において、上記樹脂含浸繊維束の幅方向における中心位置が上記鏡部の測地線を通らないことである。  According to a preferred aspect of the pressure vessel manufacturing method of the present invention, the center position in the width direction of the resin-impregnated fiber bundle does not pass the geodesic line of the mirror portion in the helical winding wrap angle range.

また、本発明の圧力容器の製造方法の好ましい態様によれば、上記胴部を完全に覆う成形パターンの単位を1層とした時とき、ヘリカル巻の成形パターンを有するヘリカル巻層を2層以上繰り返すことである。  Moreover, according to the preferable aspect of the manufacturing method of the pressure vessel of this invention, when the unit of the molding pattern which completely covers the said trunk | drum is 1 layer, the helical winding layer which has a helical winding molding pattern is two or more layers. It is to repeat.

また、本発明の圧力容器の製造方法の好ましい態様によれば、上記ヘリカル巻時の繊維束巻き付け張力(T:N)と繊維束の束数(本)が、次式(2)を満足することである。20≦T/本≦60 ・・・・・(2)  Moreover, according to the preferable aspect of the manufacturing method of the pressure vessel of this invention, the fiber bundle winding tension | tensile_strength (T: N) at the time of the said helical winding, and the number (bundle) of fiber bundles satisfy | fill following Formula (2). That is. 20 ≦ T / book ≦ 60 (2)

また、本発明の圧力容器の製造方法の好ましい態様によれば、さらに、上記胴部における上記樹脂含浸繊維束の巻き付け角度θ(°)が85°≦θ<90°のフープ巻きを有するフープ巻層を有し、その繊維束幅(BwHo:mm)が、次式(3)を満足することである。
1<BwHo/BwHe<1.4 ・・・・・(3)
Moreover, according to the preferable aspect of the manufacturing method of the pressure vessel of this invention, the hoop winding which further has the hoop winding whose winding angle (theta) (degree) of the said resin impregnation fiber bundle in the said trunk | drum is 85 degrees <= θ <90 degrees. It has a layer and the fiber bundle width (BwHo: mm) satisfies the following formula (3).
1 <BwHo / BwHe <1.4 (3)

さらに、本発明の圧力容器の製造方法の好ましい態様によれば、上記樹脂含浸繊維束を上記ライナに巻き付ける直前に、幅規制機構により上記樹脂含浸繊維束の幅を制御することである。  Furthermore, according to a preferred aspect of the pressure vessel manufacturing method of the present invention, the width of the resin-impregnated fiber bundle is controlled by a width regulating mechanism immediately before the resin-impregnated fiber bundle is wound around the liner.

本発明によれば、ライナの鏡部にヘリカル巻きで樹脂含浸繊維束を巻き付けたとしても、樹脂含浸繊維束が滑らない状態で圧力容器を成形することができ、さらに、ヘリカル巻きとフープ巻きの繊維束幅を変えることにより、圧力容器の品質を向上させることができ、高い強度を発現する圧力容器が得られる。  According to the present invention, even when the resin-impregnated fiber bundle is wound helically around the mirror part of the liner, the pressure vessel can be formed in a state where the resin-impregnated fiber bundle does not slip, and further, helical winding and hoop winding are possible. By changing the fiber bundle width, the quality of the pressure vessel can be improved, and a pressure vessel exhibiting high strength can be obtained.

本発明の圧力容器の製造方法における成形フローの一例を説明する概略構成図である。It is a schematic block diagram explaining an example of the shaping | molding flow in the manufacturing method of the pressure vessel of this invention. 本発明に係る方法における巻き角度を示す概略斜視図である。It is a schematic perspective view which shows the winding angle in the method which concerns on this invention. 本発明に係る方法におけるライナに巻き付けられたヘリカル巻きの繊維束の幅(BwHe)を説明する概略斜視図である。It is a schematic perspective view explaining the width | variety (BwHe) of the helically wound fiber bundle wound around the liner in the method which concerns on this invention. ライナの測地線を通る繊維束を説明する概略斜視図である。It is a schematic perspective view explaining the fiber bundle which passes along the geodesic line of a liner. 本発明に係る方法におけるライナの測地線を通らない繊維束を説明する概略斜視図である。It is a schematic perspective view explaining the fiber bundle which does not pass through the geodesic line of the liner in the method which concerns on this invention. 本発明に係る方法におけるライナの胴部を完全に覆う成形パターンの単位(1層)を示す概略正面図である。It is a schematic front view which shows the unit (1 layer) of the molding pattern which completely covers the trunk | drum of a liner in the method which concerns on this invention. 本発明に係る方法における繊維束巻き付け張力を説明する概略構成図である。It is a schematic block diagram explaining the fiber bundle winding tension in the method according to the present invention. 本発明に係る方法におけるライナに巻き付けられたフープ巻きの繊維束の幅(BwHo)を説明する概略斜視図である。It is a schematic perspective view explaining the width | variety (BwHo) of the fiber bundle of the hoop winding wound around the liner in the method which concerns on this invention. 本発明に係る方法において繊維束の幅を制御するためにピンを設けたフィードアイを説明する概略正面図である。It is a schematic front view explaining the feed eye which provided the pin in order to control the width | variety of a fiber bundle in the method which concerns on this invention. 本発明に係る方法において繊維束の幅を制御するためにローラ溝を設けたフィードアイを説明する概略正面図である。It is a schematic front view explaining the feed eye which provided the roller groove | channel in order to control the width | variety of a fiber bundle in the method which concerns on this invention.

以下に、本発明の圧力容器の製造方法について、実施の形態とともに、図面を参照しながら詳細に説明する。  Below, the manufacturing method of the pressure vessel of this invention is demonstrated in detail, referring drawings with embodiment.

本発明は、円筒状の胴部と前記胴部の両端に設けられた開口部に連設するドーム状の鏡部とを有するライナに、連続して送り出される繊維束に樹脂を連続して含浸させた樹脂含浸繊維束を巻き付ける圧力容器の製造方法であって、前記ライナの長軸方向に対して前記胴部における前記樹脂含浸繊維束の巻き付け角度θ(°)が10°≦θ≦30°のヘリカル巻の範囲において、巻き付けられた前記樹脂含浸繊維束幅(BwHe:mm)とライナ胴部の外径(OD:mm)とが、式(1):0.02≦BwHe/OD≦0.09を満足するように制御する圧力容器の製造方法である。  The present invention continuously impregnates a fiber bundle that is continuously fed into a liner having a cylindrical body and a dome-shaped mirror that is connected to openings provided at both ends of the body. A method for manufacturing a pressure vessel for winding a bundle of resin-impregnated fibers, wherein the winding angle θ (°) of the resin-impregnated fiber bundle in the trunk portion is 10 ° ≦ θ ≦ 30 ° with respect to the major axis direction of the liner. In the range of helical winding, the wound resin-impregnated fiber bundle width (BwHe: mm) and the outer diameter (OD: mm) of the liner body part are expressed by the formula (1): 0.02 ≦ BwHe / OD ≦ 0. 0.09 is a method of manufacturing a pressure vessel that is controlled so as to satisfy .09.

本発明の圧力容器の製造方法における成形フローの一例を図1に示す。図1は、本発明の圧力容器の製造方法における成形フローの一例の全体構成を説明する概略構成図である。  An example of the molding flow in the pressure vessel manufacturing method of the present invention is shown in FIG. FIG. 1 is a schematic configuration diagram illustrating an overall configuration of an example of a molding flow in the method for manufacturing a pressure vessel of the present invention.

図1において、1は、圧力容器成形フローの全体構成を示しており、主として、ボビン2から繊維束3の送出工程を担うクリールローラ4(図示例では4a、4b)と、繊維束3に樹脂を含浸させる樹脂含浸工程を担う樹脂含浸ローラ6と樹脂含浸槽7とガイドローラ5(図示例では5a〜5d)を含む樹脂含浸部、樹脂を含浸させた繊維束3を巻き付ける巻付工程を担うフィードアイ8、ライナ9および成形装置とライナ9を接続する固定軸10が、この順で配置されていることを示している。  In FIG. 1, reference numeral 1 denotes an overall configuration of the pressure vessel forming flow. Mainly, a creel roller 4 (4a, 4b in the illustrated example) responsible for the process of feeding the fiber bundle 3 from the bobbin 2 and a resin to the fiber bundle 3 are shown. Resin impregnation roller including resin impregnation step for impregnating resin, resin impregnation tank 7, and resin impregnation portion including guide roller 5 (5a to 5d in the illustrated example), and a winding step for winding fiber bundle 3 impregnated with resin It shows that the feed shaft 8, the liner 9, and the fixed shaft 10 that connects the molding apparatus and the liner 9 are arranged in this order.

図1では、1本のボビン2のみを図示しているが、これに限定されるものではなく、複数のボビン2を配置することができる。  Although only one bobbin 2 is illustrated in FIG. 1, the present invention is not limited to this, and a plurality of bobbins 2 can be arranged.

前述の課題を解決するためになされた本発明では、図2、3に示すように、ライナ9の長軸方向11に対してライナ9の胴部における樹脂含浸繊維束の巻き付け角度θ(°)(図2では符号12で示してある。)が10°≦θ≦30°のヘリカル巻の範囲において、巻き付けられた樹脂含浸繊維束幅(BwHe:mm)とライナ胴部の外径(OD:mm)とが、次式(1)を満たすように制御する。
・ 02≦BwHe/OD≦0.09・・・・・(1)
In the present invention made to solve the above-described problem, as shown in FIGS. 2 and 3, the winding angle θ (°) of the resin-impregnated fiber bundle in the trunk portion of the liner 9 with respect to the major axis direction 11 of the liner 9. (Indicated by reference numeral 12 in FIG. 2), in the helical winding range of 10 ° ≦ θ ≦ 30 °, the wound resin-impregnated fiber bundle width (BwHe: mm) and the outer diameter (OD: mm) is controlled so as to satisfy the following expression (1).
・ 02 ≦ BwHe / OD ≦ 0.09 (1)

本発明の上記構成により、ライナ鏡部での繊維束3のすべりが抑制される。繊維束3のすべりとは、ライナ鏡部で繊維束幅が広がりすぎて繊維束の割れが発生し、一部もしくはすべての繊維束がライナ鏡部から外れる現象である。ここで本発明においては、ライナの長軸方向11に対して前記の胴部における樹脂含浸繊維束3の巻き付け角度θ(°)が10°≦θ≦30°の範囲であるヘリカル巻きを含むことが構成要件である。  With the above-described configuration of the present invention, sliding of the fiber bundle 3 at the liner mirror portion is suppressed. The slip of the fiber bundle 3 is a phenomenon in which the fiber bundle width is excessively widened at the liner mirror portion, the fiber bundle is cracked, and a part or all of the fiber bundles are detached from the liner mirror portion. Here, the present invention includes helical winding in which the winding angle θ (°) of the resin-impregnated fiber bundle 3 in the trunk portion is in the range of 10 ° ≦ θ ≦ 30 ° with respect to the major axis direction 11 of the liner. Is a configuration requirement.

次に、本発明の繊維束の巻き付け角度12について説明する。図2は、本発明に係る巻き角度を示す概略斜視図である。図2において、ライナ9のライナ長軸方向11に対して、繊維束3が巻き付け角度12で巻かれた形態の一部を示す。繊維束3の巻き付け角度12は、ライナ胴部の長軸方向11に対しての繊維束3の角度と規定する。巻き付け角度12は実測値でなく、FW巻きパターンから計算することができるライナ胴部の中心線13における計算値とする。圧力容器の成形において、この巻き角度12を含む繊維束3によって、ライナ全体を繊維束3で補強することが可能である。  Next, the winding angle 12 of the fiber bundle of the present invention will be described. FIG. 2 is a schematic perspective view showing a winding angle according to the present invention. 2 shows a part of a form in which the fiber bundle 3 is wound at a winding angle 12 with respect to the liner major axis direction 11 of the liner 9. The winding angle 12 of the fiber bundle 3 is defined as the angle of the fiber bundle 3 with respect to the major axis direction 11 of the liner body. The winding angle 12 is not a measured value, but a calculated value at the center line 13 of the liner body that can be calculated from the FW winding pattern. In forming the pressure vessel, the entire liner can be reinforced with the fiber bundle 3 by the fiber bundle 3 including the winding angle 12.

ヘリカル巻きの巻き角度12としては、好ましくはライナの長軸方向11に対して11〜29°であり、より好ましくは12〜28°であり、さらに好ましくは13〜27°である。10°未満の巻き角度になるとライナ9の形状の制約から繊維束を巻き付けることができない場合がある。また、巻き付け角度が30°より大きくなると、繊維束3がライナ9に巻き付く張力が大きくなるので、繊維束3のすべりが抑制される。  The helical winding angle 12 is preferably 11 to 29 °, more preferably 12 to 28 °, and further preferably 13 to 27 ° with respect to the major axis direction 11 of the liner. When the winding angle is less than 10 °, the fiber bundle may not be wound due to the restriction of the shape of the liner 9. Moreover, since the tension | tensile_strength which the fiber bundle 3 winds around the liner 9 will become large when a winding angle becomes larger than 30 degrees, the slip of the fiber bundle 3 is suppressed.

また、本発明において、ヘリカル巻の範囲において、巻き付けた樹脂含浸繊維束の幅(BwHe:mm)とライナ胴部の外径(OD:mm)とが、0.02≦BwHe/OD≦0.09であることが重要である。前述のとおり、繊維束3のすべりとは、ライナ鏡部で繊維束幅が広がりすぎて、繊維束の割れが発生し、一部もしくはすべての繊維束がライナ鏡部から外れる現象である。そのため、糸割れを回避するためには、ODに対するBwHeの比率が重要になる。すなわち、ODに対して適度にBwHeを収束させることにより、ライナ鏡部で繊維束の広がりを抑えてライナ鏡部での繊維束のすべりを抑制することができる。  In the present invention, in the helical winding range, the width (BwHe: mm) of the wound resin-impregnated fiber bundle and the outer diameter (OD: mm) of the liner body portion are 0.02 ≦ BwHe / OD ≦ 0. It is important that it is 09. As described above, the slip of the fiber bundle 3 is a phenomenon in which the fiber bundle width is excessively widened in the liner mirror portion, the fiber bundle is cracked, and a part or all of the fiber bundles are detached from the liner mirror portion. Therefore, in order to avoid yarn breakage, the ratio of BwHe to OD becomes important. That is, by appropriately concentrating BwHe with respect to OD, it is possible to suppress the spread of the fiber bundle at the liner mirror portion and to suppress the slip of the fiber bundle at the liner mirror portion.

次に、ヘリカル巻きの繊維束幅(BwHe)と外径(OD)について説明する。図3は、ライナ9に巻き付けられたヘリカル巻きの繊維束3の幅(BwHe)を説明する概略斜視図である。  Next, the fiber bundle width (BwHe) and outer diameter (OD) of helical winding will be described. FIG. 3 is a schematic perspective view for explaining the width (BwHe) of the helically wound fiber bundle 3 wound around the liner 9.

図3は、ライナ9に繊維束3がヘリカル巻きで巻かれた形態の一部を示している。繊維束幅(BwHe)は、ライナ胴部の中心線13における実測した繊維束幅とする。また、外径(OD)は、所望の巻き付け角度の繊維束3を巻き付ける直前のライナ胴部の中心線13における実測値とする。BwHe/ODを0.02〜0.09にすることにより、ライナ鏡部での繊維束幅の広がりが押さえられ、ライナ鏡部での繊維束3の割れが起きず繊維束3のすべりが抑制される。  FIG. 3 shows a part of a form in which the fiber bundle 3 is wound on the liner 9 by helical winding. The fiber bundle width (BwHe) is the fiber bundle width measured at the center line 13 of the liner body. The outer diameter (OD) is an actual measurement value at the center line 13 of the liner body immediately before winding the fiber bundle 3 having a desired winding angle. By setting BwHe / OD to 0.02 to 0.09, the spread of the fiber bundle width at the liner mirror part is suppressed, and the fiber bundle 3 does not crack at the liner mirror part, and the slip of the fiber bundle 3 is suppressed. Is done.

BwHe/ODを0.02未満にするためには、BwHeを小さくする必要がある。しかしながら、BwHeを小さくするためには、拡幅した繊維束3を収束させる工程が必要になり、その工程に繊維束3を通すと繊維束3の繊維配向が乱れて圧力容器の強度が低下する原因になる。また、BwHe/ODが0.09より大きくなると、BwHeが大きくなり鏡部分で糸が滑りやすくなる。BwHe/ODは、好ましくは0.022≦BwHe/OD≦0.088であり、より好ましくは0.024≦BwHe/OD≦0.086であり、さらに好ましくは0.026≦BwHe/OD≦0.084である。  In order to make BwHe / OD less than 0.02, it is necessary to reduce BwHe. However, in order to reduce BwHe, a process of converging the widened fiber bundle 3 is required, and if the fiber bundle 3 is passed through the process, the fiber orientation of the fiber bundle 3 is disturbed and the strength of the pressure vessel is reduced. become. Moreover, when BwHe / OD becomes larger than 0.09, BwHe becomes large and the yarn becomes slippery at the mirror portion. BwHe / OD is preferably 0.022 ≦ BwHe / OD ≦ 0.088, more preferably 0.024 ≦ BwHe / OD ≦ 0.086, and further preferably 0.026 ≦ BwHe / OD ≦ 0. .084.

さらに本発明によると、BwHe/ODを0.02以上0.09以下に制御することにより、測地線を通らなくても繊維束のすべりが発生しない。ここで測地線について説明する。測地線は曲面に存在する2点を最短距離で結ぶ軌跡のことである。最短距離で結ばれる軌跡であるため、測地線上の繊維束はたるみが無く、一定の張力がかかっているので繊維束のすべりが発生しにくい。  Furthermore, according to the present invention, by controlling BwHe / OD to be 0.02 or more and 0.09 or less, the fiber bundle does not slip even if it does not pass the geodesic line. Here, the geodesic line will be described. A geodesic line is a trajectory that connects two points on a curved surface with the shortest distance. Since the trajectory is connected at the shortest distance, the fiber bundle on the geodesic line has no slack, and a constant tension is applied, so that the fiber bundle does not easily slide.

図4は、ライナの測地線を通る繊維束を説明する概略斜視図であり、図5は、ライナの測地線を通らない繊維束を説明する概略斜視図である。  FIG. 4 is a schematic perspective view for explaining a fiber bundle passing through the geodesic line of the liner, and FIG. 5 is a schematic perspective view for explaining a fiber bundle not passing through the geodesic line of the liner.

図4において、繊維束3が測地線14の上に巻かれた形態の一部を、そして図5において、繊維束3が測地線14の上に巻かれていない形態の一部を示す。図5に示すとおり、繊維束3が測地線14上を通らないことにより、ライナ9に巻き付けられる繊維束3の量が減るので、圧力容器の軽量化を行うことができる。  FIG. 4 shows a part of the form in which the fiber bundle 3 is wound on the geodesic line 14, and FIG. 5 shows a part of the form in which the fiber bundle 3 is not wound on the geodesic line 14. As shown in FIG. 5, since the fiber bundle 3 does not pass on the geodesic line 14, the amount of the fiber bundle 3 wound around the liner 9 is reduced, so that the pressure vessel can be reduced in weight.

通常、繊維束3を測地線上から外すと繊維束3にかかる張力が低下する。このとき、繊維束幅が大きいと繊維束3の端と測地線14の距離が長くなり、繊維束3にかかる張力が低くなる。ここで繊維束3にかかる張力が必要以下になると鏡部で繊維束3がすべる。しかしながら、BwHe/ODを0.02以上0.09以下に制御することにより、繊維束3の幅が適度に規制されるので、繊維束3の端と測地線14の距離が近くなる。その結果、繊維束3に必要な張力がかかりライナ鏡部での繊維束3のすべりが起きにくくなる。  Usually, when the fiber bundle 3 is removed from the geodesic line, the tension applied to the fiber bundle 3 decreases. At this time, if the fiber bundle width is large, the distance between the end of the fiber bundle 3 and the geodesic line 14 becomes long, and the tension applied to the fiber bundle 3 becomes low. Here, when the tension applied to the fiber bundle 3 becomes less than necessary, the fiber bundle 3 slips at the mirror portion. However, by controlling BwHe / OD to be not less than 0.02 and not more than 0.09, the width of the fiber bundle 3 is moderately regulated, so that the distance between the end of the fiber bundle 3 and the geodesic line 14 becomes close. As a result, a necessary tension is applied to the fiber bundle 3, and the fiber bundle 3 does not easily slide at the liner mirror portion.

さらに本発明においては、ライナ胴部を完全に覆う成形パターンの単位を1層としたとき、ヘリカル巻の成形パターンを有するヘリカル巻層を2層以上繰り返すことが特徴である。  Furthermore, in the present invention, when the unit of the molding pattern that completely covers the liner body portion is one layer, the helical winding layer having the helical winding pattern is repeated two or more layers.

図6は、ライナの胴部を完全に覆う成形パターンの単位(1層)を示す概略正面図であり、ライナ胴部を完全に覆う1層の成形パターン15についての一例を示している。FW成形法において、繊維束3をライナ9に巻き付けていくと繊維束内の樹脂が表面に染み出してき、その染み出し樹脂によって後から巻き付ける繊維束幅が広がり、ライナ鏡部で繊維束3が割れて、繊維束3がすべることがある。特に、同一成形パターンを繰り返した場合、繊維束3がすべりやすくなる。そのため、同一成形パターンを避けるために複数の成形パターンを構築する必要があり、成形パターン構築のために多大な時間が必要になる。一方、本発明によると、BwHe/ODを、0.02以上0.09以下に制御することにより、ライナ鏡部での繊維束幅の広がりを抑制し、繊維束3のすべりを回避することができる。  FIG. 6 is a schematic front view showing a unit (one layer) of a molding pattern that completely covers the liner body, and shows an example of the one-layer molding pattern 15 that completely covers the liner body. In the FW molding method, when the fiber bundle 3 is wound around the liner 9, the resin in the fiber bundle oozes out to the surface, and the width of the fiber bundle to be wound later is widened by the bleed resin. The fiber bundle 3 may slip and break. In particular, when the same molding pattern is repeated, the fiber bundle 3 is likely to slip. Therefore, it is necessary to construct a plurality of molding patterns in order to avoid the same molding pattern, and a great deal of time is required for constructing the molding pattern. On the other hand, according to the present invention, by controlling the BwHe / OD to be 0.02 or more and 0.09 or less, it is possible to suppress the spread of the fiber bundle width at the liner mirror portion and to prevent the fiber bundle 3 from slipping. it can.

さらに本発明に係る圧力容器の製造方法の好ましい態様によれば、ヘリカル巻時の繊維束巻き付け張力(T:N)と繊維束の束数(本)が、次式(2)を満足することである。20≦T/本≦60 ・・・・・(2)  Furthermore, according to the preferable aspect of the manufacturing method of the pressure vessel which concerns on this invention, the fiber bundle winding tension | tensile_strength (T: N) at the time of helical winding and the number of bundles (fiber) of a fiber bundle satisfy following Formula (2). It is. 20 ≦ T / book ≦ 60 (2)

ここで、ヘリカル巻時の繊維束巻き付け張力(T)について説明する。図7は圧力容器の製造方法におけるヘリカル巻時の繊維束巻き付け張力(T)16を説明する概略構成図である。図7において、張力(T)16はフィードアイ8出の繊維束引き出し張力である。図7では、1本のボビン2のみを図示しているが、これに限定されるものではなく、複数のボビン2を配置することができる。  Here, the fiber bundle winding tension (T) during helical winding will be described. FIG. 7 is a schematic configuration diagram illustrating fiber bundle winding tension (T) 16 during helical winding in the pressure vessel manufacturing method. In FIG. 7, the tension (T) 16 is the fiber bundle pull-out tension from the feed eye 8. Although only one bobbin 2 is illustrated in FIG. 7, the present invention is not limited to this, and a plurality of bobbins 2 can be arranged.

本発明において、ヘリカル巻時の繊維束巻き付け張力(T:N)と繊維束の束数(本)との比であるT/本の範囲としては、好ましくは20〜60Nであり、より好ましくは25〜55Nであり、さらに好ましくは30〜50Nである。20N未満の場合、巻き付け張力が低くなるため鏡部で繊維束3がすべる。また、60Nより大きくなると、鏡部での繊維束3のすべりは発生しないものの繊維に損傷が発生し強度が低下するなど品質に問題が発生する場合がある。  In the present invention, the range of T / line, which is the ratio of the fiber bundle winding tension (T: N) at the time of helical winding and the number of fiber bundles (line), is preferably 20 to 60 N, more preferably It is 25-55N, More preferably, it is 30-50N. In the case of less than 20N, the winding tension becomes low, so the fiber bundle 3 slips at the mirror part. On the other hand, if it exceeds 60 N, the fiber bundle 3 does not slip at the mirror part, but the fiber may be damaged and the strength may be lowered.

さらに本発明においては、ライナ胴部における樹脂含浸繊維束の巻き付け角度θ(°)が85°≦θ<90°のフープ巻きを有するフープ巻層を有し、その繊維束幅(BwHo:mm)が、次式(3)を満たすことが好ましい。
1<BwHo/BwHe<1.4 ・・・・・・(3)
Furthermore, in the present invention, the resin body-impregnated fiber bundle in the liner body has a hoop winding layer having a hoop winding in which the winding angle θ (°) is 85 ° ≦ θ <90 °, and the fiber bundle width (BwHo: mm) However, it is preferable to satisfy | fill following Formula (3).
1 <BwHo / BwHe <1.4 (3)

ここで、フープ巻きの繊維束幅(BwHo)について説明する。図8は、ライナに巻き付けられたフープ巻きの繊維束の幅(BwHo)を説明する概略斜視図である。  Here, the fiber bundle width (BwHo) of the hoop winding will be described. FIG. 8 is a schematic perspective view for explaining the width (BwHo) of a hoop-wrapped fiber bundle wound around a liner.

図8は、ライナ9に繊維束3がフープ巻きで巻かれた形態の一部を示している。繊維束幅(BwHo)はライナ胴部の中心線13における実測した繊維束幅とする。本発明においては、ライナ鏡部で繊維束が滑らないようにするために、BwHeを収束させている。一方で、フープ巻きにおいては、繊維配向をよりそろえるために繊維束3を拡幅させた方が好ましい。そのため、BwHo/BwHeを1より大きくすることにより、フープ巻きの繊維束3の繊維配向がそろい圧力容器の強度が向上する。BwHo/BwHeが1以下の場合、フープ巻きの繊維束3の繊維配向が乱れ圧力容器の強度が低下する恐れがある。また、BwHo/BwHeが1.4以上になると、フープ巻き角度θが小さくなるので、圧力容器の強度が低下する恐れがある。BwHo/BwHeは、好ましくは1.02≦BwHo/BwHe≦1.38であり、より好ましくは1.04≦BwHe/OD≦1.36であり、さらに好ましくは1.06≦BwHe/OD≦1.36である。  FIG. 8 shows a part of the form in which the fiber bundle 3 is wound around the liner 9 by hoop winding. The fiber bundle width (BwHo) is the measured fiber bundle width at the center line 13 of the liner body. In the present invention, BwHe is converged so that the fiber bundle does not slip at the liner mirror. On the other hand, in hoop winding, it is preferable to widen the fiber bundle 3 in order to align the fiber orientation. Therefore, by making BwHo / BwHe larger than 1, the fiber orientation of the fiber bundle 3 of the hoop winding is uniform, and the strength of the pressure vessel is improved. When BwHo / BwHe is 1 or less, the fiber orientation of the hoop-wrapped fiber bundle 3 may be disturbed and the strength of the pressure vessel may be reduced. In addition, when BwHo / BwHe is 1.4 or more, the hoop winding angle θ becomes small, so that the strength of the pressure vessel may be lowered. BwHo / BwHe is preferably 1.02 ≦ BwHo / BwHe ≦ 1.38, more preferably 1.04 ≦ BwHe / OD ≦ 1.36, and further preferably 1.06 ≦ BwHe / OD ≦ 1. .36.

本発明においては、繊維束3をライナ9に巻き付ける直前に、幅規制機構において樹脂含浸繊維束の幅を制御することが好ましい。繊維束幅の制御をライナ9に巻き付ける直前に行うことにより、安定した幅の繊維束3をライナ9に巻き付けることが可能である。  In the present invention, it is preferable to control the width of the resin-impregnated fiber bundle in the width regulating mechanism immediately before winding the fiber bundle 3 around the liner 9. By performing the control of the fiber bundle width immediately before being wound around the liner 9, it is possible to wind the fiber bundle 3 having a stable width around the liner 9.

図9は、樹脂含浸繊維束の幅を制御するためにバーまたはピンを設けたフィードアイを説明する概略正面図であり、図10は、繊維束の幅を制御するために溝を有するローラを設けたフィードアイを説明する概略正面図である。  FIG. 9 is a schematic front view for explaining a feed eye provided with a bar or a pin for controlling the width of the resin-impregnated fiber bundle, and FIG. 10 shows a roller having a groove for controlling the width of the fiber bundle. It is a schematic front view explaining the provided feed eye.

図9においては、繊維束幅規制バー17がフィードアイ8に設置されている形態の一部を示す。繊維束幅規制バー17の間隔18を変えることにより所望の繊維束幅を得ることができる。また、図10においては、溝ローラ19がフィードアイ8に設置されている形態の一部を示す。図10において、溝ローラ19の溝幅20を変えることにより、所望の繊維束幅を得ることができる。また、繊維束幅規制バー17と溝ローラ19を組み合わせることもできる。  FIG. 9 shows a part of the form in which the fiber bundle width regulating bar 17 is installed in the feed eye 8. A desired fiber bundle width can be obtained by changing the interval 18 of the fiber bundle width regulating bar 17. FIG. 10 shows a part of the form in which the groove roller 19 is installed on the feed eye 8. In FIG. 10, a desired fiber bundle width can be obtained by changing the groove width 20 of the groove roller 19. Further, the fiber bundle width regulating bar 17 and the groove roller 19 can be combined.

次に、本発明で使用する繊維束と樹脂について説明する。
本発明において用いられる繊維束を構成する繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維および炭化ケイ素繊維等が挙げられる。これらの強化繊維を2種以上混合して用いることも可能である。より高強度の成形品を得るためには、繊維束に炭素繊維を用いることが好ましい。
Next, the fiber bundle and resin used in the present invention will be described.
Examples of the fiber constituting the fiber bundle used in the present invention include glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. It is also possible to use a mixture of two or more of these reinforcing fibers. In order to obtain a molded product with higher strength, it is preferable to use carbon fibers in the fiber bundle.

本発明においては、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、高強度を有する成形品を得られることからJIS R 7601(1986)に記載の方法によるストランド引張試験における引張強度が3〜8GPaの炭素繊維が好ましく用いられる。  In the present invention, any type of carbon fiber can be used depending on the application. However, since a molded article having high strength can be obtained, tension in a strand tensile test by the method described in JIS R 7601 (1986). Carbon fibers having a strength of 3 to 8 GPa are preferably used.

また本発明で用いられる樹脂としては、液状の樹脂が好ましく用いられる。具体的には、圧力容器に必要な耐熱性や耐環境性能を得るために、エポキシ樹脂と、硬化剤とを含むエポキシ樹脂組成物であることが好ましい。また、硬化時間を短縮させるために、硬化触媒を適宜加えることも可能である。  As the resin used in the present invention, a liquid resin is preferably used. Specifically, an epoxy resin composition containing an epoxy resin and a curing agent is preferable in order to obtain heat resistance and environmental resistance required for the pressure vessel. In order to shorten the curing time, a curing catalyst can be appropriately added.

本発明で製造される圧力容器は、水素ガス自動車や天然ガス自動車に限らず、船舶と航空機等、および、地上に固定されて使用される据え置き型や病院や消防士が使用する空気呼吸器等に好適に用いられる。また、この圧力容器で保管される物質としては、窒素、酸素、アルゴン、液化石油ガスおよび水素等の気体であってもよいし、これら物質を液化したものであってもよい。  The pressure vessel produced in the present invention is not limited to hydrogen gas vehicles and natural gas vehicles, but ships and aircraft, and stationary types used by being fixed on the ground, air respirators used by hospitals and firefighters, etc. Is preferably used. Further, the substance stored in the pressure vessel may be a gas such as nitrogen, oxygen, argon, liquefied petroleum gas and hydrogen, or may be a liquefied product of these substances.

次に、実施例に基づいて、本発明の圧力容器の製造方法について具体的に説明する。巻き付け角度、BwHe、ODおよびTの測定方法は、次のとおりである。  Next, based on an Example, the manufacturing method of the pressure vessel of this invention is demonstrated concretely. The measuring method of winding angle, BwHe, OD, and T is as follows.

<巻き付け角度>
巻き付け角度は、ライナ胴部の中心線における計算値とした。計算は、FWプログラムから算出した。
<Winding angle>
The winding angle was a calculated value at the center line of the liner body. The calculation was calculated from the FW program.

<BwHe、BwHo>
繊維束の巻き付け回数の最初、中間、および最後にライナ胴部の中心線における繊維束幅をノギス(“型番98764”シンワ測定(株)製)で測定した。繊維束幅は、3点の平均値とした。
<BwHe, BwHo>
The fiber bundle width at the center line of the liner body was measured with a caliper ("Model No. 98764" manufactured by Shinwa Measurement Co., Ltd.) at the beginning, middle, and last of the number of windings of the fiber bundle. The fiber bundle width was an average value of three points.

<OD>
繊維束を巻き付ける前に、胴部端から170mmの位置のライナODをパイテープ(“型番PM1SP”(株)ファーステック製)で測定した。測定値は、3回の平均値とした。
<OD>
Before winding the fiber bundle, the liner OD at a position of 170 mm from the end of the trunk portion was measured with pie tape ("Model No. PM1SP" manufactured by Firtec). The measured value was an average of three times.

<T>
ヘリカル巻き繊維束を巻き付ける前に、繊維束をばねばかり(“ST-10”(ヤマヨ測定機(株))の先端に結びつけ引っ張った時の張力(kg)を測定した。測定値は3回の平均値とし、張力(T)=平均値(kg)x9.8(N/kg)とした。
<T>
Before winding the helically wound fiber bundle, the tension (kg) was measured when the fiber bundle was tied to the tip of a spring ("ST-10" (Yamayo Measuring Machine Co., Ltd.)) and pulled. The average value was set as tension (T) = average value (kg) × 9.8 (N / kg).

(実施例1)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径160mm、胴部長さ340mm、鏡部長さ57mmのライナを外径が30mmで、長さが300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに前記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの軸方向に対して、±20°の巻き付け角度で幅12.2mm(BwHe/OD=0.076)に規定した繊維束を47往復回巻き付けてライナ全体に繊維束を巻き付けた。成形中に繊維束すべりの発生は無く問題なく成形が完了した。なお、測定した張力(T)は117Nで、T/本は39Nであった。巻き付け角度、BwHe、ODおよびTの算出は、上記の方法に従った。結果を表1に示す。
(Example 1)
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark)) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, the outer diameter of the body portion was 160 mm, A liner with a barrel length of 340 mm and a mirror length of 57 mm is installed via a fixed shaft with an outer diameter of 30 mm and a length of 300 mm, and carbon fiber “Trekka” manufactured by Toray Industries, Inc. as a reinforcing fiber is registered on the liner. Trademarks) T700SC-24K yarn bundles are aligned and fed while impregnating the resin containing the resin composition. The fiber bundle defined by a width of 12.2 mm (BwHe / OD = 0.076) at a winding angle of ± 20 ° with respect to the axial direction of the liner was wound 47 times, and the fiber bundle was wound around the entire liner. Molding was completed without any problem of fiber bundle slip during molding, and the measured tension (T) was 117 N and T / piece was 39 N. The calculation of winding angle, BwHe, OD and T was as follows: The above method was followed and the results are shown in Table 1.

(実施例2)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物、(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径160mm、胴部長さ340mm、鏡部長さ57mmのライナを外径が30mmで、長さが300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに前記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの軸方向に対して、±30°の巻き付け角度で幅11.8mm(BwHe/OD=0.074)に規定した繊維束を47往復回巻き付けてライナ全体に繊維束を巻き付けた。成形中に繊維束すべりの発生は無く問題なく成形が完了した。なお、測定した張力(T)は63Nで、T/本は21Nであった。巻き付け角度、BwHe、ODおよびTの算出は、上記の方法に従った。結果を表1に示す。
(Example 2)
(A) Mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether ("ARALDITE" (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine ("ARADUR" (registered trademark) ) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, the outer diameter of the body portion was 160 mm in a filament winding molding apparatus. A liner having a barrel length of 340 mm and a mirror length of 57 mm is installed through a fixed shaft having an outer diameter of 30 mm and a length of 300 mm, and carbon fiber “Torayca” manufactured by Toray Industries, Inc. is used as a reinforcing fiber. (Registered trademark) T700SC-24K three yarn bundles are aligned, and yarn is fed while impregnating the resin containing the resin composition. A fiber bundle defined as a width of 11.8 mm (BwHe / OD = 0.074) at a winding angle of ± 30 ° with respect to the axial direction of the liner was wound 47 times, and the fiber bundle was wound around the entire liner. Molding was completed without any problem of fiber bundle slip during molding, and the measured tension (T) was 63 N and T / piece was 21 N. The calculation of the winding angle, BwHe, OD and T was as follows: The above method was followed and the results are shown in Table 1.

(実施例3)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径400mm、胴部長さ500mm、鏡部長さ160mmのライナを外径が100mmで、長さが300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに前記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの軸方向に対して、±20°の巻き付け角度で幅25mm(BwHe/OD=0.063)に規定した繊維束を120往復回巻き付けてライナ全体に繊維束を巻き付けた。成形中に繊維束すべりの発生は無く問題なく成形が完了した。なお、測定した張力(T)は174Nで、T/本は58Nであった。巻き付け角度、BwHe、ODおよびTの算出は、上記の方法に従った。結果を表1に示す。
Example 3
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark)) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, a filament winding molding apparatus was subjected to a barrel outer diameter of 400 mm, A liner with a body length of 500 mm and a mirror part length of 160 mm is installed via a fixed shaft with an outer diameter of 100 mm and a length of 300 mm. (Trademark) Three T700SC-24K yarn bundles are aligned and supplied while impregnating the resin containing the resin composition. The fiber bundle defined by a width of 25 mm (BwHe / OD = 0.063) was wound around the liner in a reciprocal manner at a winding angle of ± 20 ° with respect to the axial direction of the liner, and the fiber bundle was wound around the entire liner. There was no occurrence of fiber bundle slipping, and the molding was completed without any problem, and the measured tension (T) was 174 N and T / piece was 58 N. The calculation of the winding angle, BwHe, OD and T was as described above. The results are shown in Table 1.

(比較例1)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径160mm、胴部長さ340mm、鏡部長さ57mmのライナを外径が30mmで、長さが300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに前記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの軸方向に対して、±20°の巻き付け角度で幅15.5mm(BwHe/OD=0.097)に規定した繊維束を巻き付けてライナ全体に繊維束を巻き付けた。47往復の繊維束を巻き付ける予定であったが、23往復目に繊維束すべりが発生しライナから繊維束が外れて成形を中止した。巻き付け角度、BwHeおよびODの算出は、上記の方法に従った。結果を表1に示す。
(Comparative Example 1)
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark)) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, the outer diameter of the body portion was 160 mm, A liner with a barrel length of 340 mm and a mirror length of 57 mm is installed via a fixed shaft with an outer diameter of 30 mm and a length of 300 mm, and carbon fiber “Trekka” manufactured by Toray Industries, Inc. as a reinforcing fiber is registered on the liner. Trademarks) T700SC-24K yarn bundles are aligned and fed while impregnating the resin containing the resin composition. A fiber bundle having a width of 15.5 mm (BwHe / OD = 0.097) was wound around the liner in an axial direction of ± 20 ° with respect to the axial direction of the liner, and the fiber bundle was wound around the entire liner. The fiber bundle was scheduled to be wound, but the fiber bundle slipped at the 23rd reciprocation, and the fiber bundle was detached from the liner and the molding was stopped, and the winding angle, BwHe and OD were calculated according to the above method. Is shown in Table 1.

(比較例2)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径160mm、胴部長さ340mm、鏡部長さ57mmのライナを外径が30mmで、長さが300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに前記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの軸方向に対して、±20°の巻き付け角度で幅20mm(BwHe/OD=0.125)に規定した繊維束を巻き付けてライナ全体に繊維束を巻き付けた。47往復の繊維束を巻き付ける予定であったが、17往復目に繊維束すべりが発生しライナから繊維束が外れて成形を中止した。巻き付け角度、BwHeおよびODの算出は、上記の方法に従った。結果を表1に示す。
(Comparative Example 2)
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark) 2954 (Huntsman) (Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, a filament winding molding apparatus was provided with a trunk outer diameter of 160 mm and a trunk length. A liner having a diameter of 340 mm and a mirror part length of 57 mm is installed via a fixed shaft having an outer diameter of 30 mm and a length of 300 mm, and carbon fiber “Torayca” (registered trademark) T700SC manufactured by Toray Industries, Inc. is used as the reinforcing fiber. Three yarn bundles of −24K were aligned and supplied while impregnating the resin containing the resin composition in the axial direction of the liner. Then, a fiber bundle defined as a width of 20 mm (BwHe / OD = 0.125) was wound at a winding angle of ± 20 °, and the fiber bundle was wound around the entire liner. The fiber bundle slip occurred at the 17th reciprocation, and the fiber bundle was detached from the liner, and the molding was stopped, and the winding angle, BwHe and OD were calculated according to the above-described method, and the results are shown in Table 1.

(比較例3)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径400mm、胴部長さ500mm、鏡部長さ160mmのライナを外径が100mmで、長さが300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに前記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの軸方向に対して、±20°の巻き付け角度で幅40mm(BwHe/OD=0.100)に規定した繊維束を巻き付けてライナ全体に繊維束を巻き付けた。120往復の繊維束を巻き付ける予定であったが、92往復目に繊維束すべりが発生しライナから繊維束が外れて成形を中止した。巻き付け角度、BwHeおよびODの算出は、上記の方法に従った。結果を表1に示す。
(Comparative Example 3)
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark)) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, a filament winding molding apparatus was subjected to a barrel outer diameter of 400 mm, A liner with a body length of 500 mm and a mirror part length of 160 mm is installed via a fixed shaft with an outer diameter of 100 mm and a length of 300 mm. (Trademark) Three T700SC-24K yarn bundles are aligned and supplied while impregnating the resin containing the resin composition. A fiber bundle having a width of 40 mm (BwHe / OD = 0.100) was wound at a winding angle of ± 20 ° with respect to the axial direction of the liner, and the fiber bundle was wound around the entire liner. The bundle was scheduled to be wound, but the fiber bundle slipped at the 92nd round trip and the fiber bundle was detached from the liner, and the molding was stopped, and the winding angle, BwHe and OD were calculated according to the above method. Table 1 shows.

(実施例4)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径160mm、胴部長さ340mm、鏡部長さ57mmのライナを外径30mm、長さ300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに上記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの胴部に軸方向に対して、±88.5°の巻き角度で幅13.5mmに規定した繊維束を厚み1mmになるように巻き付けた。その後、ライナの胴部と鏡部に軸方向に対して、±20°の巻き角度で幅11.8mmに規定した繊維束を厚み1.2mmになるように巻き付けた。最後に、ライナの胴部に軸方向に対して、±88.5°の巻き角度で幅13.5mmに規定した繊維束を厚み0.7mmになるように巻き付けた。
Example 4
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark)) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, the outer diameter of the body portion was 160 mm, A liner having a barrel length of 340 mm and a mirror length of 57 mm is installed via a fixed shaft having an outer diameter of 30 mm and a length of 300 mm, and carbon fiber “Torayca” (registered trademark) T700SC manufactured by Toray Industries, Inc. is used as a reinforcing fiber. Three -24K yarn bundles were aligned and fed while impregnating the resin containing the resin composition. A fiber bundle defined to have a width of 13.5 mm at a winding angle of ± 88.5 ° with respect to the axial direction was wound around the inner barrel so as to have a thickness of 1 mm. A fiber bundle defined to have a width of 11.8 mm at a winding angle of ± 20 ° with respect to the direction was wound to a thickness of 1.2 mm, and finally, ± 88. A fiber bundle having a width of 13.5 mm at a winding angle of 5 ° was wound to a thickness of 0.7 mm.

このときのBwHo/BwHeは、1.14であった。その後、100℃の温度で4時間の条件で樹脂を硬化させて圧力容器を得た。巻き付け角度、BwHeおよびODの算出は、上記の方法に従った。その後、KHKS0121(2005)に記載の方法で圧力容器の破裂試験を行った。破裂圧力は送液配管中に設置した圧力変換機(ミネベア(株)型式STD−200MP)で測定した。破裂圧力は69MPaであった。結果を表2に示す。  BwHo / BwHe at this time was 1.14. Thereafter, the resin was cured at 100 ° C. for 4 hours to obtain a pressure vessel. The winding angle, BwHe and OD were calculated according to the method described above. Then, the burst test of the pressure vessel was done by the method described in KHKS0121 (2005). The bursting pressure was measured with a pressure transducer (Minbea Corp. model STD-200MP) installed in the liquid feeding pipe. The bursting pressure was 69 MPa. The results are shown in Table 2.

(比較例4)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径160mm、胴部長さ340mm、鏡部長さ57mmのライナを外径30mm、長さ300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに上記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの胴部に軸方向に対して、±89.0°の巻き角度で幅8.8mmに規定した繊維束を厚み1mmになるように巻き付けた。その後、ライナの胴部と鏡部に軸方向に対して、±20°の巻き角度で幅12.2mmに規定した繊維束を厚み1.2mmになるように巻き付けた。最後に、ライナの胴部に軸方向に対して、±89.0°の巻き角度で幅8.8mmに規定した繊維束を厚み0.7mmになるように巻き付けた。
(Comparative Example 4)
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark)) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, the outer diameter of the body portion was 160 mm, A liner having a barrel length of 340 mm and a mirror length of 57 mm is installed via a fixed shaft having an outer diameter of 30 mm and a length of 300 mm, and carbon fiber “Torayca” (registered trademark) T700SC manufactured by Toray Industries, Inc. is used as a reinforcing fiber. Three -24K yarn bundles were aligned and fed while impregnating the resin containing the resin composition. A fiber bundle having a width of 8.8 mm was wound around the barrel of the liner to a thickness of 1 mm at a winding angle of ± 89.0 ° with respect to the axial direction. A fiber bundle having a width of 12.2 mm was wound at a winding angle of ± 20 ° with respect to the direction so as to have a thickness of 1.2 mm, and finally, ± 89. A fiber bundle having a width of 8.8 mm at a winding angle of 0 ° was wound to a thickness of 0.7 mm.

このときのBwHo/BwHeは、0.72であった。その後、100℃の温度で4時間の条件で樹脂を硬化させて圧力容器を得た。巻き付け角度、BwHeおよびODの算出は、上記の方法に従った。その後、KHKS0121(2005)に記載の方法で圧力容器の破裂試験を行った。破裂圧力は送液配管中に設置した圧力変換機(ミネベア(株)型式STD−200MP)で測定した。その結果、破裂圧力は63MPaであり、実施例4に比べて低い破裂圧力であった。結果を表2に示す。  BwHo / BwHe at this time was 0.72. Thereafter, the resin was cured at 100 ° C. for 4 hours to obtain a pressure vessel. The winding angle, BwHe and OD were calculated according to the method described above. Then, the burst test of the pressure vessel was done by the method described in KHKS0121 (2005). The bursting pressure was measured with a pressure transducer (Minbea Corp. model STD-200MP) installed in the liquid feeding pipe. As a result, the burst pressure was 63 MPa, which was a lower burst pressure than Example 4. The results are shown in Table 2.

(比較例5)
(a)ビスフェノールA型エポキシ樹脂とブタンジオールジグリシジルエーテルの混合物(“ARALDITE”(登録商標)LY1564 SP CI(ハンツマンジャパン(株)製)と、(b)シクロヘキシルアミン(“ARADUR”(登録商標)2954(ハンツマンジャパン(株)製)とを、20℃の温度で、100:35の質量比で混合して樹脂組成物を得た。続いて、フィラメントワインディング成形装置に、胴部外径160mm、胴部長さ340mm、鏡部長さ57mmのライナを外径30mm、長さ300mmの固定軸を介して設置し、当該ライナに、強化繊維として東レ(株)製炭素繊維“トレカ”(登録商標)T700SC−24Kの糸束3本を引き揃え、それに上記樹脂組成物の入った樹脂を含浸させながら給糸した。ライナの胴部に軸方向に対して、±87.7°の巻き角度で幅20.1mmに規定した繊維束を厚み1mmになるように巻き付けた。その後、ライナの胴部と鏡部に軸方向に対して、±20°の巻き角度で幅12.2mmに規定した繊維束を厚み1.2mmになるように巻き付けた。最後に、ライナの胴部に軸方向に対して、±87.7°の巻き角度で幅20.1mmに規定した繊維束を厚み0.7mmになるように巻き付けた。
(Comparative Example 5)
(A) A mixture of bisphenol A type epoxy resin and butanediol diglycidyl ether (“ARALDITE” (registered trademark) LY1564 SP CI (manufactured by Huntsman Japan)) and (b) cyclohexylamine (“ARADUR” (registered trademark)) 2954 (manufactured by Huntsman Japan Co., Ltd.) was mixed at a mass ratio of 100: 35 at a temperature of 20 ° C. Subsequently, the outer diameter of the body portion was 160 mm, A liner having a barrel length of 340 mm and a mirror length of 57 mm is installed via a fixed shaft having an outer diameter of 30 mm and a length of 300 mm, and carbon fiber “Torayca” (registered trademark) T700SC manufactured by Toray Industries, Inc. is used as a reinforcing fiber. Three -24K yarn bundles were aligned and fed while impregnating the resin containing the resin composition. A fiber bundle defined to have a width of 20.1 mm was wound around the barrel of the liner at a winding angle of ± 87.7 ° with respect to the axial direction so as to have a thickness of 1 mm. A fiber bundle having a width of 12.2 mm was wound at a winding angle of ± 20 ° with respect to the direction so as to have a thickness of 1.2 mm, and finally, ± 87. A fiber bundle having a width of 20.1 mm at a winding angle of 7 ° was wound to a thickness of 0.7 mm.

このときのBwHo/BwHeは、1.65であった。その後、100℃の温度で4時間の条件で樹脂を硬化させて圧力容器を得た。巻き付け角度、BwHeおよびODの算出は、上記の方法に従った。その後、KHKS0121(2005)に記載の方法で圧力容器の破裂試験を行った。破裂圧力は送液配管中に設置した圧力変換機(ミネベア(株)型式STD−200MP)で測定した。その結果、破裂圧力は65MPaであり、実施例4に比べて低い破裂圧力であった。結果を表2に示す。  BwHo / BwHe at this time was 1.65. Thereafter, the resin was cured at 100 ° C. for 4 hours to obtain a pressure vessel. The winding angle, BwHe and OD were calculated according to the method described above. Then, the burst test of the pressure vessel was done by the method described in KHKS0121 (2005). The bursting pressure was measured with a pressure transducer (Minbea Corp. model STD-200MP) installed in the liquid feeding pipe. As a result, the burst pressure was 65 MPa, which was a lower burst pressure than Example 4. The results are shown in Table 2.

Figure 2018096905
Figure 2018096905

Figure 2018096905
Figure 2018096905

1:圧力容器成形フローの全体構成
2:ボビン
3:繊維束
4、4a、4b:クリールローラ
5、5a〜5d:ガイドローラ
6:樹脂含浸ローラ
7:樹脂含浸槽
8:フィードアイ
9:ライナ
10:固定軸
11:ライナ長軸方向
12:繊維束の巻き付け角度
13:ライナ胴部の中心線
14:測地線
15:胴部を完全に覆う1層の成形パターン
16:繊維束巻き付け張力
17:繊維束幅規制バー
18:繊維束幅規制バーの間隔
19:溝ローラ
20:溝ローラの溝幅
1: Overall configuration of pressure vessel molding flow 2: Bobbin 3: Fiber bundle 4, 4a, 4b: Creel roller 5, 5a-5d: Guide roller 6: Resin impregnation roller 7: Resin impregnation tank 8: Feed eye 9: Liner 10 : Fixed axis 11: liner major axis direction 12: fiber bundle winding angle 13: liner trunk centerline 14: geodesic line 15: one layer molding pattern that completely covers the trunk 16: fiber bundle winding tension 17: fiber Bundle width regulating bar 18: Fiber bundle width regulating bar interval 19: Groove roller 20: Groove width of groove roller

Claims (6)

円筒状の胴部と前記胴部の両端に設けられた開口部に連設するドーム状の鏡部とを有するライナに、連続して送り出される繊維束に樹脂を連続して含浸させた樹脂含浸繊維束を巻き付ける圧力容器の製造方法であって、前記ライナの長軸方向に対して前記胴部における前記樹脂含浸繊維束の巻き付け角度θ(°)が10°≦θ≦30°のヘリカル巻の範囲において、巻き付けられた前記樹脂含浸繊維束の幅(BwHe:mm)とライナの胴部の外径(OD:mm)とが、次式(1)を満足するように制御することを特徴とする圧力容器の製造方法。
0.02≦BwHe/OD≦0.09 ・・・・・(1)
Resin impregnation by continuously impregnating resin into a fiber bundle that is continuously fed into a liner having a cylindrical body and a dome-shaped mirror that is connected to openings provided at both ends of the body. A method of manufacturing a pressure vessel for winding a fiber bundle, wherein the winding angle θ (°) of the resin-impregnated fiber bundle in the trunk portion is 10 ° ≦ θ ≦ 30 ° with respect to the longitudinal direction of the liner. In the range, the width (BwHe: mm) of the wound resin-impregnated fiber bundle and the outer diameter (OD: mm) of the body of the liner are controlled so as to satisfy the following formula (1): A method for manufacturing a pressure vessel.
0.02 ≦ BwHe / OD ≦ 0.09 (1)
前記ヘリカル巻の巻き付け角度範囲において、前記樹脂含浸繊維束の幅方向における中心位置が前記鏡部の測地線を通らないことを特徴とする請求項1記載の圧力容器の製造方法。  2. The method of manufacturing a pressure vessel according to claim 1, wherein a center position in a width direction of the resin-impregnated fiber bundle does not pass through a geodesic line of the mirror part in a winding angle range of the helical winding. 前記胴部を完全に覆う成形パターンの単位を1層としたとき、ヘリカル巻の成形パターンを有するヘリカル巻層を2層以上繰り返すことを特徴とする請求項1または2記載の圧力容器の製造方法。  3. The method of manufacturing a pressure vessel according to claim 1, wherein when the unit of the molding pattern that completely covers the body portion is one layer, two or more helical winding layers having a helical winding molding pattern are repeated. . 前記ヘリカル巻時の繊維束巻き付け張力(T:N)と繊維束の束数(本)が、次式(2)を満足するように制御することを特徴とする請求項1から3のいずれかに記載の圧力容器の製造方法。
20≦T/本≦60 ・・・・・(2)
The fiber bundle winding tension (T: N) at the time of the helical winding and the number of bundles (lines) of the fiber bundle are controlled so as to satisfy the following expression (2). A manufacturing method of a pressure vessel given in 2.
20 ≦ T / book ≦ 60 (2)
さらに、前記胴部における前記樹脂含浸繊維束の巻き付け角度θ(°)が85°≦θ<90°のフープ巻きを有するフープ巻層を有し、その繊維束の幅(BwHo:mm)が、次式(3)を満足することを特徴する請求項1から4のいずれかに記載の圧力容器の製造方法。
1<BwHo/BwHe<1.4 ・・・・・(3)
Furthermore, it has a hoop winding layer having a hoop winding in which the winding angle θ (°) of the resin-impregnated fiber bundle in the trunk portion is 85 ° ≦ θ <90 °, and the width (BwHo: mm) of the fiber bundle is The method for manufacturing a pressure vessel according to any one of claims 1 to 4, wherein the following expression (3) is satisfied.
1 <BwHo / BwHe <1.4 (3)
前記樹脂含浸繊維束を前記ライナに巻き付ける直前に、幅規制機構により前記樹脂含浸繊維束の幅を制御することを特徴とする請求項1から5のいずれかに記載の圧力容器の製造方法。  The method of manufacturing a pressure vessel according to any one of claims 1 to 5, wherein the width of the resin-impregnated fiber bundle is controlled by a width regulation mechanism immediately before the resin-impregnated fiber bundle is wound around the liner.
JP2017565335A 2016-11-24 2017-11-02 Manufacturing method of pressure vessel Pending JPWO2018096905A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016227631 2016-11-24
JP2016227631 2016-11-24
PCT/JP2017/039731 WO2018096905A1 (en) 2016-11-24 2017-11-02 Method for manufacturing pressure container

Publications (1)

Publication Number Publication Date
JPWO2018096905A1 true JPWO2018096905A1 (en) 2019-10-17

Family

ID=62195477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017565335A Pending JPWO2018096905A1 (en) 2016-11-24 2017-11-02 Manufacturing method of pressure vessel

Country Status (2)

Country Link
JP (1) JPWO2018096905A1 (en)
WO (1) WO2018096905A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176287B2 (en) * 2018-08-09 2022-11-22 トヨタ自動車株式会社 Pressure vessel and manufacturing method thereof
DE102018121012A1 (en) * 2018-08-28 2020-03-05 Alzchem Trostberg Gmbh Process for manufacturing a pressurized gas container
JP2020101195A (en) * 2018-12-20 2020-07-02 本田技研工業株式会社 Pressure vessel and its manufacturing method
EP4130519A4 (en) * 2020-03-26 2024-06-05 Toray Industries Tank
JP2022190226A (en) * 2021-06-14 2022-12-26 トヨタ自動車株式会社 Pressure vessel strain analysis device and method of manufacturing pressure vessel
CN114103077B (en) * 2021-11-19 2023-05-09 西华大学 Hydrogen storage cylinder and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499739A (en) * 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
JP2000337594A (en) * 1999-05-27 2000-12-05 Toyota Autom Loom Works Ltd Pressure vessel
JP2001263590A (en) * 2000-03-16 2001-09-26 Ihi Aerospace Co Ltd Method of manufacturing pressure vessel
JP2010090938A (en) * 2008-10-06 2010-04-22 Toyota Motor Corp Tank and method of manufacturing the same
JP5348570B2 (en) * 2009-04-10 2013-11-20 トヨタ自動車株式会社 Tank and manufacturing method thereof
JP6077489B2 (en) * 2014-04-25 2017-02-08 八千代工業株式会社 Pressure vessel and filament winding method
WO2016002777A1 (en) * 2014-06-30 2016-01-07 三菱レイヨン株式会社 Tow prepreg, and composite pressure vessel and method for manufacturing same
CA2956995C (en) * 2014-08-04 2021-07-06 Nissan Motor Co., Ltd. Reinforcing layer for a high-pressure tank
JP2016142349A (en) * 2015-02-03 2016-08-08 三菱レイヨン株式会社 Pressure container

Also Published As

Publication number Publication date
WO2018096905A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2018096905A1 (en) Method for manufacturing pressure container
US10272302B2 (en) Fiber-reinforced composite tubular shafts and manufacture thereof
US20150192251A1 (en) High pressure carbon composite pressure vessel
US5897447A (en) FRP racket and method for producing the same
US10507999B2 (en) Manufacturing method of tank and tank manufacturing apparatus
US11254070B2 (en) Method for producing high-pressure tank
US20160339650A1 (en) Manufacturing method of tank and tank manufacturing apparatus
EP3436737A2 (en) Pressure vessel and method for forming an outer layer of a pressure vessel
JP6337398B2 (en) Manufacturing method of composite container and composite container
JP2016166617A (en) High-pressure tank and manufacturing method of high-pressure tank
US10591111B2 (en) Method for producing high-pressure tank
JP2020142418A (en) Method for manufacturing pressure vessel and pressure vessel
JP7031821B2 (en) Fiber reinforced resin tubular body and its manufacturing method
JPH11130882A (en) Yarn prepreg and its preparation
WO2002036334A1 (en) Fiber-reinforced plastic molded body and method of manufacturing the molded body
JP2017177660A (en) Apparatus for manufacturing cylindrical body, and method for manufacturing cylindrical body
WO2019068813A1 (en) Pressure vessel and method for forming an outer layer of a pressure vessel
JP2005113963A (en) Pressure resistant container manufacturing method
EP4130519A1 (en) Tank
JP2005337272A (en) Frp-made pressure vessel
JP2005088536A (en) Production apparatus and method for fiber-reinforced composite material and pressure vessel
JP4877153B2 (en) Fiber-reinforced composite material molding method
US20240068618A1 (en) High-pressure tank and manufacturing method of high-pressure tank
JP2011245744A (en) High pressure tank manufacturing apparatus, high pressure tank manufacturing method, and device for widening fiber bundle
JP6939538B2 (en) How to make a tank