JP2016142349A - Pressure container - Google Patents

Pressure container Download PDF

Info

Publication number
JP2016142349A
JP2016142349A JP2015018975A JP2015018975A JP2016142349A JP 2016142349 A JP2016142349 A JP 2016142349A JP 2015018975 A JP2015018975 A JP 2015018975A JP 2015018975 A JP2015018975 A JP 2015018975A JP 2016142349 A JP2016142349 A JP 2016142349A
Authority
JP
Japan
Prior art keywords
liner
layer
fiber
resin
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015018975A
Other languages
Japanese (ja)
Inventor
一行 寺田
Kazuyuki Terada
一行 寺田
圭吾 吉田
Keigo Yoshida
圭吾 吉田
西本 忠弘
Tadahiro Nishimoto
忠弘 西本
草香 央
Hiroshi Kusaka
央 草香
聡 宮寺
Satoshi Miyadera
聡 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015018975A priority Critical patent/JP2016142349A/en
Publication of JP2016142349A publication Critical patent/JP2016142349A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pressure container excellent in gas seal properties of a base part, the pressure container composed of a thermoplastic liner and a fiber-reinforced resin reinforcement layer.SOLUTION: The problem can be solved by a pressure container comprising: a thermoplastic liner; a fiber-reinforced resin reinforcement layer covering the outer surface of the liner; and a cap, in which a gas seal part between a bulb of the pressure container and the pressure container is included on an inner surface of the liner. It is preferable to manufacture the liner by a blow molding method by setting the ratio of the length of a liner barrel part to the radius thereof to be 2 or more and 12 or less. According to the invention, a pressure container excellent in gas seal properties of a base part in the pressure container composed of a thermoplastic liner and a fiber-reinforced resin reinforcement layer can be obtained.SELECTED DRAWING: Figure 5

Description

本発明は、ガス、液化ガス等を収容するための圧力容器に係り、特に、樹脂により構成されたライナと、該ライナの外側面を覆う補強層と、金属により構成された口金を有する圧力容器に関する。   The present invention relates to a pressure vessel for containing gas, liquefied gas, and the like, and in particular, a pressure vessel having a liner made of resin, a reinforcing layer covering the outer surface of the liner, and a base made of metal. About.

各種のガス、液化ガス等は様々な用途に用いられるが、これらのガスを使用、輸送、貯蔵するための容器が必要となる。その中でも移動を伴う容器は効率的な移動を行うため大量のガスを充填できる高圧仕様の容器が求められる。また、移動にかかる燃費を削減するために容器が軽量であることが望まれる。具体的な用途としては自動車の燃料容器や他の場所で消費するための高圧ガスを輸送するための容器があげられる。
従来、圧力容器は金属製のものが主流であったが、最近は、樹脂製ライナと該ライナの外側面を覆う繊維強化プラスチックの補強層とを有する複合材圧力容器が種々提案されている。また、これらの複合材圧力容器には金属製口金が設けられている。これらの口金はガス等の内容物の出入口を構成する目的で貫通孔があるものと、容器の支持をする目的のみで貫通孔がないものとがある。
Various gases, liquefied gases, and the like are used for various purposes, but containers for using, transporting, and storing these gases are required. Among them, a container with movement is required to be a high-pressure container that can be filled with a large amount of gas for efficient movement. Moreover, in order to reduce the fuel consumption concerning a movement, it is desired that a container is lightweight. Specific applications include fuel containers for automobiles and containers for transporting high-pressure gas for consumption elsewhere.
Conventionally, pressure vessels made of metal have been the mainstream, but recently, various composite pressure vessels having a resin liner and a fiber reinforced plastic reinforcing layer covering the outer surface of the liner have been proposed. These composite pressure vessels are provided with metal caps. Some of these caps have a through-hole for the purpose of constituting an entrance for contents such as gas, and others have no through-hole only for the purpose of supporting the container.

特許文献1には、ライナがブロー成形により形成され、このライナの内側面に対し口金に含まれるフランジ部が重なる構成の圧力容器が開示されている。特許文献1は、接着樹脂層4が、ポリエチレン系熱可塑性樹脂で形成され、ライナ1と口金3との接着強度を高めることを開示している。
特許文献1は圧力容器5を製造する方法として図2にライナの製造方法を示し、ライナ成形後、ライナ1の外側面を、エポキシ樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂を含浸させた、カーボンファイバー糸もしくは束、ガラス繊維糸あるいは束等の繊維糸、束、またはマット等により被覆し、硬化させてFRP(CFRP、GFRP等)層2を形成することを記載している。
特許文献2には高圧容器むけに耐圧向上の目的でヘリカル層とフープ層に加えて高角度ヘリカル層の配置を提案している。高角度ヘリカル層の役割については破壊モード改善にあるとしている。
特許文献3にはフープ層とヘリカル層の積層態様を最適化し、巻回された繊維による強度発現の効率を向上させるようにしたタンクおよびその製造方法を提案している。
Patent Document 1 discloses a pressure vessel in which a liner is formed by blow molding and a flange portion included in a base overlaps an inner side surface of the liner. Patent Document 1 discloses that the adhesive resin layer 4 is formed of a polyethylene-based thermoplastic resin and increases the adhesive strength between the liner 1 and the base 3.
Patent Document 1 shows a method of manufacturing a liner in FIG. 2 as a method of manufacturing a pressure vessel 5, and after molding the liner, the outer surface of the liner 1 is impregnated with a thermosetting resin such as an epoxy resin or an unsaturated polyester resin. It is described that the FRP (CFRP, GFRP, etc.) layer 2 is formed by coating with carbon fiber yarn or bundle, fiber yarn such as glass fiber yarn or bundle, bundle or mat, and curing.
Patent Document 2 proposes an arrangement of a high-angle helical layer in addition to a helical layer and a hoop layer for the purpose of improving pressure resistance for a high-pressure vessel. The role of the high-angle helical layer is to improve the fracture mode.
Patent Document 3 proposes a tank and a method for manufacturing the same in which the lamination mode of the hoop layer and the helical layer is optimized to improve the efficiency of the strength expression by the wound fibers.

特開2008−164114号公報JP 2008-164114 A 特開2004−176898号公報JP 2004-176898 A 特許5348570号Japanese Patent No. 5348570

特許文献1に開示される圧力容器10は、ライナ製造時に口金3をインサートして形成される。圧力容器が大きくなると、文献中に示されるようなブロー成形時のインサート成形を生産性よく行うことがむずかしくなる。ブロー成形時に不具合が生じた場合に、口金部材を含んだ不良がでて、生産性が落ちる。またこの方式ではライナ樹脂と金属口金の接着部がガスシール部に存在するため高圧のガスや分子量の小さいガスにおいてはその部分でのガスのリークが問題になることがある。
一方、ライナを回転成形法で形成した場合、口金のインサート成形は容易にできるが、成形サイクルがブロー成形に比較して非常に長く生産性が低い。
また粉末樹脂から溶融して成形したライナでは強度が低く、ライナ厚みを大きくしなくてはならず、重量が重くなる。
圧力容器の内容積を大きくするためには長さ、径のいずれかまたは両方を大きくしなければならないが、圧力容器を所定の場所、例えば、自動車や輸送用コンテナに収納するには極端に長いものは問題がある。一方、径を大きくする場合はガスの内圧に耐えるための補強層の厚みを増やさなければならないが、補強層厚みが極端に大きくなると、補強層のマトリクス樹脂の硬化時の発熱によりライナの変形、マトリクス樹脂の異常反応がおこり問題となることがある。容器の製造時及び使用時を考慮して形状を決めなければならない。特に径を大きくした場合、ヘリカル層はライナの胴部から鏡部を経て口金部に集中するため補強繊維の交絡が激しく積層厚みが極端に増すことになる。そのため、口金円筒部高さを大きく取らなければならず、圧力容器の全長を一定とした場合、ライナの胴部の長さを減少させ、容量を下げることになる。また補強層全体の厚みが増した時以上にマトリクス樹脂の硬化時の発熱の影響があり、局部的な発熱問題を回避するため、全体の硬化速度を下げざるをえず、生産性の低いものとなってしまう。
特許文献2、特許文献3ではライナの胴部及び、胴部と鏡部の移行部近傍での強度発現に注目して高角度ヘリカル層の導入を行っているが、径の大きいものは口金近傍からライナの胴部に移行するまでの鏡部での強度発現率に問題がある。
The pressure vessel 10 disclosed in Patent Document 1 is formed by inserting a base 3 when manufacturing a liner. When the pressure vessel is large, it becomes difficult to perform insert molding with high productivity at the time of blow molding as shown in the literature. If a defect occurs during blow molding, defects including the base member appear and productivity decreases. Further, in this method, since the bonded portion between the liner resin and the metal base is present in the gas seal portion, in a high-pressure gas or a gas having a low molecular weight, gas leakage at that portion may be a problem.
On the other hand, when the liner is formed by rotational molding, insert molding of the die can be easily performed, but the molding cycle is very long compared to blow molding, and productivity is low.
Also, a liner molded by melting from a powder resin has low strength, the liner thickness must be increased, and the weight increases.
In order to increase the internal volume of the pressure vessel, either length or diameter or both must be increased, but it is extremely long to store the pressure vessel in a predetermined place, for example, an automobile or a shipping container. Things are problematic. On the other hand, when the diameter is increased, it is necessary to increase the thickness of the reinforcing layer to withstand the internal pressure of the gas, but when the reinforcing layer thickness becomes extremely large, the liner is deformed due to heat generated when the matrix resin of the reinforcing layer is cured, An abnormal reaction of the matrix resin may occur and cause a problem. The shape must be determined in consideration of the manufacturing and use of the container. In particular, when the diameter is increased, the helical layer concentrates from the liner body part to the base part through the mirror part, so that the entanglement of the reinforcing fibers is severe and the laminated thickness is extremely increased. For this reason, the height of the base cylindrical portion must be increased, and when the total length of the pressure vessel is constant, the length of the liner body portion is reduced and the capacity is reduced. In addition, there is an effect of heat generation when the matrix resin is cured more than when the thickness of the entire reinforcing layer is increased, and in order to avoid local heat generation problems, the entire curing speed has to be lowered and the productivity is low. End up.
In Patent Document 2 and Patent Document 3, a high-angle helical layer is introduced by paying attention to strength development in the liner body and in the vicinity of the transition between the body and the mirror, but those having a large diameter are in the vicinity of the base. There is a problem in the strength expression rate in the mirror part from the transition to the liner body part.

上記課題は、以下の構造の圧力容器により解決される。即ち、本発明は、
熱可塑性樹脂のライナと、該ライナの外側面を覆う繊維強化樹脂と、口金とを備える圧力容器であって、
圧力容器のバルブと圧力容器とのガスシール部を該ライナの内面に有する圧力容器である。
ライナ胴部の厚みは3mm以上、12mm以下が好ましい。ライナ胴部の半径は300mm以上、1000mm以下が好ましい。また、ライナ胴部の長さとライナ胴部の半径の比が2以上、12以下となる様設定することが好ましい。これらの形状を持つライナをブロー成形法で製作することが好ましい。
The above problem is solved by a pressure vessel having the following structure. That is, the present invention
A pressure vessel comprising a thermoplastic resin liner, a fiber reinforced resin covering the outer surface of the liner, and a base,
The pressure vessel has a gas seal portion between the pressure vessel valve and the pressure vessel on the inner surface of the liner.
The thickness of the liner body is preferably 3 mm or more and 12 mm or less. The radius of the liner body is preferably 300 mm or more and 1000 mm or less. Further, it is preferable that the ratio of the length of the liner body part to the radius of the liner body part is set to 2 or more and 12 or less. It is preferable to produce a liner having these shapes by a blow molding method.

従来技術による圧力容器の概念図である。It is a conceptual diagram of the pressure vessel by a prior art. 従来技術のライナを成形する工程の説明図である。It is explanatory drawing of the process of shape | molding the liner of a prior art. 本発明の圧力容器に用いるライナの形状を示す説明図である。It is explanatory drawing which shows the shape of the liner used for the pressure vessel of this invention. 本発明の圧力容器に用いる口金の形状を示す説明図である。It is explanatory drawing which shows the shape of the nozzle | cap | die used for the pressure vessel of this invention. 本発明の圧力容器におけるガスシール部の構造を示す説明図である。It is explanatory drawing which shows the structure of the gas seal part in the pressure vessel of this invention.

以下に、本発明の圧力用について図面を用いて詳細に説明する。但し、本発明は図面に記載の発明に限定されるものではない。 Hereinafter, the pressure of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the invention described in the drawings.

<補強層>
補強層内の補強繊維が以下のような構造をもつことが好ましい。
補強層の構造は、複数の繊維束を引き揃えたバンドをライナ上に巻回して積層して形成される。バンド幅は広い方がライナ面をより短い時間でカバーできるので好ましいが、広すぎるとバンド端部がライナ面で滑り巻回不良となるのでライナ胴部の外周半径の10分の1以下が好ましい。 繊維束1束あたりの繊維目付をA(g/m)、バンドを構成する繊維束数をB(本)、バンド幅をC(m)とした場合、以下の計算式にてあらわされる値をD(g/m)が150以上、600以上の範囲となるバンド幅Cにてライナ1に巻き付けられていることが好ましい。
計算式 D=A×B÷C
一方、フープ巻き時のバンド幅E(mm)、とヘリカル巻き時のバンド幅F(mm)の比率F/Eが0.85以上であることが好ましい。F/Eはアイの形状、巻回中の容器とアイの位置関係を適宜設定することにより調整できる。
ライナに巻き付ける最初の積層はフープ層であることが好ましい。
ヘリカル層の積層角度は少なくとも4つの設定を行うことが好ましい。4つのヘリカル層は以下の通りとする。容器の軸方向の応力を負担する様に口金円筒部に掛る角度に軸方向に巻いた軸方向ヘリカル層。該軸方向ヘリカル層の口金部周辺への集中を回避する低角度ヘリカル層。鏡からの浮き上がりを抑える中角度ヘリカル層。鏡部の円筒部近傍のヘリカル層の低強度部分を補強する高角度ヘリカル層。
同じ種類のヘリカル層を連続して積層しない。好ましくはヘリカル層に接する該ヘリカル層の上の層はフープ層とすることが好ましい。
<Reinforcing layer>
The reinforcing fibers in the reinforcing layer preferably have the following structure.
The structure of the reinforcing layer is formed by winding and laminating a band in which a plurality of fiber bundles are arranged on a liner. A wider band width is preferable because the liner surface can be covered in a shorter time, but if it is too wide, the end of the band will be poorly slid on the liner surface, and therefore it is preferably less than one tenth of the outer radius of the liner body. . When the fiber basis weight per bundle is A (g / m), the number of fiber bundles constituting the band is B (line), and the band width is C (m), the value expressed by the following calculation formula is It is preferably wound around the liner 1 with a band width C in which D (g / m 2 ) is in the range of 150 or more and 600 or more.
Formula D = A × B ÷ C
On the other hand, it is preferable that the ratio F / E of the band width E (mm) at the time of hoop winding and the band width F (mm) at the time of helical winding is 0.85 or more. F / E can be adjusted by appropriately setting the shape of the eye and the positional relationship between the container being rolled and the eye.
The initial laminate wound around the liner is preferably a hoop layer.
The stacking angle of the helical layer is preferably set to at least four. The four helical layers are as follows. An axial helical layer wound in the axial direction at an angle applied to the base cylindrical portion so as to bear the axial stress of the container. A low-angle helical layer that avoids concentration of the axial helical layer around the base portion. A medium-angle helical layer that suppresses lifting from the mirror. A high-angle helical layer that reinforces the low-strength portion of the helical layer near the cylindrical part of the mirror.
Do not stack the same type of helical layer continuously. Preferably, the layer above the helical layer in contact with the helical layer is a hoop layer.

<ライナ>
図3に示すように、本発明の圧力容器に用いるのライナ21は円筒形状の胴部22と、この胴部22の両端部をふさぐように配置された回転曲面形状好ましくはアイソテンソイド(isotensoid)の形状を有する鏡部23とを有し、鏡部23の円筒形状胴部の回転軸延長線周辺に口金24を接合するオスネジ部を有する。
ライナは、例えばポリエチレン樹脂、ポリプロピレン樹脂、ナイロン樹脂、PPS樹脂、LCP樹脂、DCPD樹脂等の単層構造やEVOH等のガスバリア性を有する層と構造を保持する先にあげた樹脂とを複層に組み合わせた構造でもよい。また多層にする場合はガスバリア層と他の層とを接着するための接着層をその中間に設けてもよいし、ライナのリサイクル材料の層を設けてもよい。その他の硬質樹脂等によって形成されてもよい。
ライナ胴部厚みは小さい方が軽量化にとって好ましいが、小さすぎると大型なライナでは成形時に懸下した時、ライナの形状を保持できない。また大きくなると軽量化がはかれないので、ライナ厚みは3mm以上、12mm以下が好ましい。
ライナの胴部径(外直径)は搭載形態の設計によるが径が小さいと長さが必要になるので、300mm以上が好ましい。また300mm以上であると、金属製ライナの生産性が低下するので、樹脂ライナーが経済的に有利となる。一方、径が大きいと補強層の厚みを大きくする必要があり、補強層の樹脂の硬化時間の問題があるので、ライナの胴部径(外直径)は1000mm以下が好ましい。
ライナの胴部の長さと胴部径(外直径)の比率は使用時に許容される空間によるが、小さくなると容器中の鏡部の比率が上がり圧力容器の単位長さあたりの容量が小さくなる。また必要となる補強層の量が増えることから好ましくない。一方大きくなる場合はライナの製造が困難になること、たわみが発生しやすくなりライナ厚みを上げ重量が増加することからライナの胴部の長さとライナの胴部径(外直径)の比は2以上、12以下の範囲が好ましい。
ライナの成形法としては生産性、成形後の樹脂の物性からブロー成形法が好ましい。回転成形法は成形時間が長く、樹脂物性も低い。その他射出成形法では大きさに限度があり、大きなものを製造する場合は多部材を接合する必要があり、工数が増え経済的に不利である。
ライナの外表面には、口金や補強層と接着するために必要に応じて接着樹脂や反応剤を塗布することや、ガスバーナー等の炎による酸化処理等により、適宜処理を実施してもよい。
<Liner>
As shown in FIG. 3, the liner 21 used in the pressure vessel of the present invention has a cylindrical body 22 and a rotational curved surface, preferably an isotensoid arranged so as to close both ends of the body 22. ) And a male screw portion that joins the base 24 around the rotation axis extension line of the cylindrical body portion of the mirror portion 23.
The liner is composed of, for example, a single layer structure such as polyethylene resin, polypropylene resin, nylon resin, PPS resin, LCP resin, DCPD resin or the like and a layer having gas barrier properties such as EVOH and the above-mentioned resin that holds the structure. A combined structure may be used. In the case of a multilayer structure, an adhesive layer for adhering the gas barrier layer and other layers may be provided in the middle, or a layer of liner recycling material may be provided. You may form with other hard resin etc.
A thinner liner body thickness is preferable for weight reduction, but if it is too small, a large liner cannot retain the shape of the liner when suspended during molding. Moreover, since the weight reduction is not achieved when it becomes large, the liner thickness is preferably 3 mm or more and 12 mm or less.
The body diameter (outer diameter) of the liner depends on the design of the mounting form, but if the diameter is small, a length is required, so 300 mm or more is preferable. On the other hand, if it is 300 mm or more, the productivity of the metal liner is lowered, so that the resin liner is economically advantageous. On the other hand, if the diameter is large, it is necessary to increase the thickness of the reinforcing layer, and there is a problem of the curing time of the resin of the reinforcing layer. Therefore, the diameter (outer diameter) of the liner is preferably 1000 mm or less.
The ratio between the length of the body of the liner and the diameter of the body (outer diameter) depends on the space allowed during use, but as the ratio decreases, the ratio of the mirror in the container increases and the capacity per unit length of the pressure vessel decreases. Moreover, it is not preferable because the amount of the reinforcing layer required increases. On the other hand, if the size is increased, the liner becomes difficult to manufacture, and deflection is likely to occur, increasing the thickness of the liner and increasing the weight. Therefore, the ratio of the length of the liner body to the diameter of the liner body (outer diameter) is 2. The range of 12 or less is preferable.
As a method for molding the liner, a blow molding method is preferable in view of productivity and physical properties of the resin after molding. The rotational molding method has a long molding time and low resin properties. Other injection molding methods have a limit in size, and when manufacturing a large product, it is necessary to join multiple members, which increases the number of steps and is economically disadvantageous.
The outer surface of the liner may be appropriately treated by applying an adhesive resin or a reactive agent as necessary to adhere to the die or the reinforcing layer, or by an oxidation treatment with a flame such as a gas burner. .

<口金>
口金はアルミ合金、鉄、真鍮等の金属から形成される。金属部材は他素材との接触による電蝕を防ぐ目的で酸化被膜層を設けること、腐食防止塗料を塗布することが好ましい。
開孔部をもつ口金は圧力容器の使用方法により1個ないしは2個設置する。開孔部を有する口金を1個のみ設置する場合は、容器の支持用として開孔のない口金を対極側に用いることが好ましい。
口金はバルブ組付け、取外し時に負荷されるトルクに耐えるよう、図4に示すように、口金円筒部の上部に補強層と嵌合して係止できる多角形構造をもつ構造とすることが好ましい。角数が少ないと係止する力は高まるがエッジが立ち、その部分に巻かれる補強繊維が鋭角に曲げられ傷む恐れがあり、一方角数が多いと繊維へのダメージは低減するが引掛りが少なく負荷されたトルクにより補強層が外れる可能性があるので角数は4以上12以下がよい。好ましくは6以上12以下がよい。また円筒部から多角形部のつなぎ部、多角形の角部には擦過防止用のRをつけることが好ましい。
口金の円筒内部にはライナとの締結のためのメスネジを施す。そのネジ形状は特に限定されないが、このメスネジの谷は容器中央側の斜面が容器軸方向に対し90±10°、容器端部側の斜面が容器軸方向に対し45±10°の角度をもつバットレスネジが外れ防止の目的で好ましい。
口金とライナの締結時に口金とライナの接触面に接着剤を塗布し接着することが好ましい。各部材と接着剤にそれぞれ適したプライマーを先に塗布してもよい。
<Base>
The base is formed of a metal such as an aluminum alloy, iron, or brass. The metal member is preferably provided with an oxide film layer and coated with a corrosion-preventing paint for the purpose of preventing electrolytic corrosion due to contact with other materials.
One or two caps having an opening are installed depending on the method of using the pressure vessel. When only one base having an opening is provided, it is preferable to use a base without an opening for supporting the container on the counter electrode side.
As shown in FIG. 4, it is preferable that the base has a polygonal structure that can be fitted and locked with a reinforcing layer on the upper part of the base cylindrical portion so as to withstand the torque applied when the valve is assembled and removed. . If the number of corners is small, the locking force will increase, but the edges will stand up, and the reinforcing fiber wound around that part may be bent and damaged at an acute angle, while if the number of corners is large, damage to the fiber will be reduced but it will be caught. Since there is a possibility that the reinforcing layer is detached due to a small applied torque, the number of corners is preferably 4 or more and 12 or less. Preferably 6 or more and 12 or less are good. Further, it is preferable to attach an R for preventing scratching from the cylindrical portion to the connecting portion of the polygonal portion and the corner portion of the polygonal portion.
A female screw for fastening with the liner is applied to the inside of the cylinder of the base. The screw shape is not particularly limited, but the valley of the female screw has an angle of 90 ± 10 ° with respect to the container axis direction and an angle of 45 ± 10 ° with respect to the container axis direction on the container end side. A buttress screw is preferred for the purpose of preventing detachment.
It is preferable to apply and bond an adhesive to the contact surface between the base and the liner when the base and the liner are fastened. Primers suitable for each member and adhesive may be applied first.

<補強繊維>
補強繊維としては、引張強度が高いものが好ましい。さらに引張弾性率が高いと高圧ガス充填時のライナや口金の変形量を抑えることができ、繰返し充填放出による疲労に対して有効であるので好ましい。炭素繊維、ガラス繊維、アラミド繊維、ポリエチレン繊維等の繊維が好ましい。高強度かつ高弾性の炭素繊維が好ましい。引張強度としては4000MPa以上が好ましく、5000MPa以上がさらに好ましい。引張弾性率としては230GPa以上が好ましく、250GPa以上がさらに好ましい。補強繊維の目付としては大きいものは一度に巻回できる繊維量が大きくなり生産性の観点から好ましいが繊維束同士の重なりで繊維の蛇行等を起こさずに巻くことが難しく、圧力容器の性能面からは大きいことに問題があり0.2g/mから4g/mが好ましい。0.8g/mから2g/mがさらに好ましい。
<Reinforcing fiber>
As the reinforcing fiber, those having high tensile strength are preferable. Further, a high tensile elastic modulus is preferable because the amount of deformation of the liner and the base during high-pressure gas filling can be suppressed and effective against fatigue due to repeated filling and discharging. Fibers such as carbon fiber, glass fiber, aramid fiber, and polyethylene fiber are preferred. High strength and high elasticity carbon fibers are preferred. The tensile strength is preferably 4000 MPa or more, and more preferably 5000 MPa or more. The tensile modulus is preferably 230 GPa or more, and more preferably 250 GPa or more. A large reinforcing fiber basis weight is preferable from the viewpoint of productivity because the amount of fiber that can be wound at one time is large, but it is difficult to wind without causing meandering of the fibers due to the overlap of fiber bundles, and the performance aspect of the pressure vessel Has a problem of being large, and 0.2 g / m to 4 g / m is preferable. More preferably, it is 0.8 g / m to 2 g / m.

<マトリクス樹脂>
補強層である繊維強化樹脂のマトリクス樹脂材料としては、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂や、ポリプロピレン樹脂、ナイロン樹脂、PPS樹脂、LCP樹脂、DCPD樹脂等の熱可塑性樹脂が用いられる。好ましくは補強繊維への含浸性がよい低粘度の熱硬化性樹脂がよい。
<Matrix resin>
The matrix resin material of the fiber reinforced resin that is the reinforcing layer includes thermosetting resins such as epoxy resin, vinyl ester resin, unsaturated polyester resin, and heat such as polypropylene resin, nylon resin, PPS resin, LCP resin, and DCPD resin. A plastic resin is used. Preferably, a low-viscosity thermosetting resin having good impregnation into the reinforcing fiber is preferable.

<補強層の形成方法>
補強層の形成方法としてはライナに補強繊維を巻きつけて積層するフィラメントワインディング工程において樹脂を含浸する方法や前もって補強繊維に樹脂を含浸した中間材を準備しこの中間材をライナに巻回する方法、補強繊維のみを積層後に樹脂を含浸する方法等がもちいられる。
<Method for forming reinforcing layer>
As a method of forming the reinforcing layer, a method of impregnating a resin in a filament winding process in which reinforcing fibers are wound around a liner and laminating, or a method of preparing an intermediate material in which a reinforcing fiber is impregnated with resin in advance and winding this intermediate material around the liner For example, a method of impregnating a resin after laminating only reinforcing fibers can be used.

補強繊維をフィラメントワインディング(以下FW)装置によってライナ21に巻きつけて積層する方法について説明する。
補強繊維として、炭素繊維を用いる場合には、フィラメント数が3000〜60000程度の繊維束を1束または複数束を引き揃えて、マトリクス樹脂組成物を含浸した後、バンド状にしてライナ21に巻き付ける。繊維束のバンド厚みが幅方向に厚みが均一で繊維束間に隙間がないものが好ましい。この巻き付けられる際に引き揃えられたバンド幅が狭いと補強層の各層を隙間なく巻くのに時間がかかる。バンド幅が広過ぎるとバンド内の各繊維束に掛る張力により巻き滑りが生じ所望の位置に補強繊維を巻くことができなくなり、圧力容器の破裂強度などの物性が低下する要因となる。バンド幅はライナの胴部径の1/10以下が好ましい。
A method of laminating the reinforcing fibers around the liner 21 using a filament winding (hereinafter referred to as FW) apparatus will be described.
When carbon fiber is used as the reinforcing fiber, one or more fiber bundles having a filament number of about 3000 to 60000 are drawn together and impregnated with the matrix resin composition, and then wound around the liner 21 in a band shape. . The band thickness of the fiber bundle is preferably uniform in the width direction and there is no gap between the fiber bundles. If the band width aligned at the time of winding is narrow, it takes time to wind the layers of the reinforcing layer without gaps. If the band width is too wide, winding slip occurs due to the tension applied to each fiber bundle in the band, and the reinforcing fiber cannot be wound at a desired position, which causes a decrease in physical properties such as the burst strength of the pressure vessel. The band width is preferably 1/10 or less of the diameter of the body portion of the liner.

補強繊維として密度が1.75〜1.85g/cm程度である炭素繊維を用いる場合、1束あたりの繊維目付A(g/m)×繊維束数B(本)÷引き揃えた複数束の繊維幅C(m)で算出されるD(g/m)が、150<D<600の範囲となる繊維幅Cにてライナ1に巻き付けることにより、得られる圧力容器の破裂強度などの物性は最適となる。
補強繊維を巻き付ける際には、各繊維束に1〜100N/繊維目付、好ましくは10〜50N/繊維目付の張力をかけることにより、ボイド低減、蛇行が防止され(繊維直進性)、またライナの変形等を防ぎ好適な補強層が得られる。
フープ巻きバンド幅をE(mm)、ヘリカル巻きバンド幅をF(mm)として、これらバンド幅の比率F/E=Gとする場合、0.85<G<0.98となるバンド幅を用いることにより、好適な圧力容器が得られる。
When carbon fibers having a density of about 1.75 to 1.85 g / cm 3 are used as the reinforcing fibers, the fiber weight per bundle A (g / m) × the number of fiber bundles B (lines) ÷ a plurality of bundles aligned D (g / m 2 ) calculated by the fiber width C (m) of the fiber is wound around the liner 1 with a fiber width C in the range of 150 <D <600. The physical properties are optimal.
When the reinforcing fiber is wound, by applying a tension of 1 to 100 N / fiber basis weight, preferably 10 to 50 N / fiber basis weight to each fiber bundle, void reduction and meandering are prevented (fiber straightness). A suitable reinforcing layer can be obtained by preventing deformation and the like.
When the hoop winding band width is E (mm) and the helical winding band width is F (mm), and the ratio of these band widths is F / E = G, a band width satisfying 0.85 <G <0.98 is used. Thus, a suitable pressure vessel is obtained.

フープ巻きとヘリカル巻きを適宜繰り返すことによって、ライナ21の表面上に補強層32が配置される。なお、補強繊維巻き付けの順番は限定されるものではない。   The reinforcing layer 32 is disposed on the surface of the liner 21 by appropriately repeating the hoop winding and the helical winding. In addition, the order of winding the reinforcing fiber is not limited.

FW法により補強繊維を巻き付ける際、ライナ内部を加圧することによって、巻き付け張力によるライナ変形を抑制し、すでに巻き付けられた層の補強繊維が緩み、圧力容器の破裂強度が低下することを防ぐことができる。巻き付け層を増やすに従って、順次ライナ内部の圧力を高くしても良い。   When winding the reinforcing fiber by the FW method, pressurizing the inside of the liner suppresses the liner deformation due to the winding tension, preventing the reinforcing fiber of the already wound layer from loosening and reducing the burst strength of the pressure vessel. it can. The pressure inside the liner may be increased sequentially as the winding layer is increased.

まず、ライナ1の胴部2にFW法のフープ巻きによって繊維強化樹脂層5(以下FRP層)を設ける。ライナに接する最下層のフープ層は繊維の交絡がなくライナと補強層が密着しボイド等の形成が防げる。フープ層の具体的な巻き角度は、ライナの口金中心を通る圧力容器の長さ方向の軸に対する繊維の巻き角度であり、85〜90°である。   First, a fiber reinforced resin layer 5 (hereinafter referred to as an FRP layer) is provided on the body portion 2 of the liner 1 by FO method hoop winding. The lowermost hoop layer in contact with the liner has no fiber entanglement, and the liner and the reinforcing layer are in close contact to prevent the formation of voids and the like. The specific winding angle of the hoop layer is a fiber winding angle with respect to the longitudinal axis of the pressure vessel passing through the center of the liner base, and is 85 to 90 °.

最下層のフープ層の開始位置はライナ胴部と鏡部の境界とすることが好ましい。一般にフープ層は容器軸方向に角度を持ってまかれるが、開始端部では90°にて概ね一周巻いた後、1周巻くことでバンド幅分のピッチとなる巻き角度をつけて胴部反対側まで巻き、その位置で90°にて概ね一周巻く。それ以降のフープ層の開始位置はフープ層端部が巻き崩れないようにその下層のフープ層の開始位置より胴部側にずらすことが好ましい。フープ層はライナに近い位置にあるのが補強層の強度を圧力容器の耐圧に利用する効率を上げるのに好ましいが、連続して積層されたフープ層の積層数が増すことでその上に巻くヘリカル層が乗り越える連続して積層されたフープ層の端部の段差が大きくなり繊維が蛇行することで強度が低下することがあるので、幾つかのフープ層群に分割し、フープ層群とフープ層群の間にヘリカル層を有することが好ましい。   The starting position of the lowermost hoop layer is preferably the boundary between the liner body and the mirror. In general, the hoop layer is angled in the container axial direction, but at the start end, it is wound around 90 ° at about 90 °, and then wound once so that the winding angle becomes a pitch corresponding to the band width. Wrap to the side and wind around 90 ° at that position. It is preferable to shift the starting position of the hoop layer thereafter from the starting position of the lower hoop layer to the body side so that the end of the hoop layer does not collapse. It is preferable that the hoop layer is located near the liner to increase the efficiency of using the strength of the reinforcing layer for the pressure resistance of the pressure vessel. However, the hoop layer is wound on the laminated layer by increasing the number of laminated hoop layers. As the step of the end of the hoop layer stacked continuously over the helical layer gets larger and the strength of the fiber may meander, the strength may decrease, so it is divided into several hoop layer groups. It is preferable to have a helical layer between the layer groups.

一方、ヘリカル層は胴部の軸方向に巻かれるため巻回時の張力が繊維束をライナ胴部に垂直に抑え付ける方向にあまり有効に働かないため余分な樹脂やボイドを追い出す作用が少ないので、逐次フープ層で巻き締めることで下層のヘリカル層の余分な樹脂を追い出したるみを防ぐ効果があり好ましい。ヘリカル層特に低角度ヘリカル層の上にはフープ層を配置することが好ましい。   On the other hand, since the helical layer is wound in the axial direction of the barrel, the tension during winding does not work very effectively in the direction to hold the fiber bundle perpendicular to the liner barrel, so there is little action to expel excess resin and voids. The successive hoop layers are preferably tightened and effective in preventing sag of excess resin from the lower helical layer. It is preferable to arrange a hoop layer on the helical layer, particularly on the low-angle helical layer.

軸方向ヘリカル層は基本的に圧力容器の対称軸方向の応力を受ける目的で設置する。そのため口金を擁したうえで極力軸方向に近づけるように配向する。積層角度は口金円筒部の径とライナ径により規定される。軸方向ヘリカル層の積層角度は5°未満である。低角度ヘリカル層は口金周辺部の繊維集中を防ぎ補強層硬化時の異常反応を低減する目的で設置する。低角度ヘリカル層の積層角度は軸方向ヘリカル層の積層角度に対し5度から15度大きくするのが好ましく、10°〜20°であることが好ましい。中角度ヘリカルは鏡肩部の強度をあげる目的で設置するため低角度ヘリカル層と高角度ヘリカル層の間の角度で巻くのが好ましい。高角度ヘリカルは鏡端部での円周方向応力負担及び胴部から鏡部のフープ積層段差解消の目的で設置するので65°から85°が好ましい。また低角度ヘリカル層、中角度ヘリカル層、高角度ヘリカル層は各層異なる角度にすることが好ましい。   The axial helical layer is basically installed for the purpose of receiving stress in the direction of the symmetric axis of the pressure vessel. Therefore, after holding the base, it is oriented so as to be as close to the axial direction as possible. The stacking angle is defined by the diameter of the base cylinder and the liner diameter. The stacking angle of the axial helical layer is less than 5 °. The low-angle helical layer is installed for the purpose of preventing fiber concentration around the base and reducing abnormal reactions during hardening of the reinforcing layer. The lamination angle of the low-angle helical layer is preferably 5 to 15 degrees larger than the lamination angle of the axial helical layer, and preferably 10 ° to 20 °. Since the medium angle helical is installed for the purpose of increasing the strength of the mirror shoulder, it is preferably wound at an angle between the low angle helical layer and the high angle helical layer. Since the high-angle helical is installed for the purpose of eliminating the circumferential stress load at the mirror end and the hoop stacking step difference from the body to the mirror, 65 ° to 85 ° is preferable. In addition, it is preferable that the low-angle helical layer, the medium-angle helical layer, and the high-angle helical layer have different angles.

補強層の最上層にガラス繊維を用いてラベル等が透視できる層を巻いてもよい。   You may roll the layer which can see through a label etc. on the uppermost layer of a reinforcement layer using glass fiber.

<補強繊維とマトリクス樹脂の複合化>
補強繊維とマトリクス樹脂との複合化は以下のように行われる。例えばFW工程にてマトリクス樹脂組成物を含浸する場合は、マトリクス樹脂組成物が用意された樹脂槽のピックアップローラ表面を所定の形態に保持された繊維束が一定張力で通過することによって均一にマトリクス樹脂組成物が付着される。その後ライナにマトリクス樹脂組成物が付着した繊維束が供給され、補強繊維とマトリクス樹脂組成物が一体となってライナに巻き付けられる。ピックアップローラ表面に一定量のマトリクス樹脂組成物をつけるため、樹脂槽の温度管理をすることが好ましい。
<Combination of reinforcing fiber and matrix resin>
The composite of the reinforcing fiber and the matrix resin is performed as follows. For example, when the matrix resin composition is impregnated in the FW process, the fiber bundle held in a predetermined form passes through the surface of the pickup roller of the resin tank in which the matrix resin composition is prepared to pass through the matrix uniformly. A resin composition is deposited. Thereafter, a fiber bundle having the matrix resin composition attached to the liner is supplied, and the reinforcing fibers and the matrix resin composition are integrally wound around the liner. In order to apply a certain amount of the matrix resin composition to the surface of the pickup roller, it is preferable to control the temperature of the resin tank.

補強繊維に付着させるマトリクス樹脂組成物の量は硬化後の補強層の補強繊維とマトリクス樹脂の体積比率で決定されるVf(%)(=補強繊維の体積)/(補強繊維の体積+マトリクス樹脂の体積)×100)が、50以上、70以下、好ましくは55以上、65以下となるように設定することが好ましい。   The amount of the matrix resin composition attached to the reinforcing fiber is determined by the volume ratio of the reinforcing fiber and the matrix resin of the reinforcing layer after curing, Vf (%) (= volume of the reinforcing fiber) / (volume of the reinforcing fiber + matrix resin) It is preferable to set so that (volume) × 100) is 50 or more and 70 or less, preferably 55 or more and 65 or less.

<補強層の硬化>
所望の補強繊維とマトリクス樹脂組成物をライナ21に巻き付けて未硬化補強層を形成した圧力容器の前駆体を、加熱炉に入れてマトリクス樹脂組成物に適した所定温度で所定時間加熱し、補強層を硬化させる。このとき、ライナ内部を加圧して保持することが好ましい。未硬化補強層の樹脂が流動して偏在または滴下するのを防ぐために圧力容器の前駆体を回転させながら硬化させることが好ましい。硬化プロファイル(時間−温度プログラム)としてはマトリクス樹脂組成物の硬化温度以下の温度で一旦保持することで未硬化物の温度を均一化し、それとともにマトリクス樹脂組成物が低粘度化することにより内部にあるボイドを追い出すことが好ましい。その後、樹脂製のライナの熱変形が起こらず、マトリクス樹脂組成物が硬化する温度・保持時間にて硬化を行うことで補強層が硬化された圧力容器を得る。
<Curing the reinforcing layer>
A precursor of a pressure vessel in which a desired reinforcing fiber and a matrix resin composition are wound around the liner 21 to form an uncured reinforcing layer is placed in a heating furnace and heated at a predetermined temperature suitable for the matrix resin composition for a predetermined time. Harden the layer. At this time, it is preferable to pressurize and hold the inside of the liner. In order to prevent the resin of the uncured reinforcing layer from flowing and being unevenly distributed or dripping, it is preferable to cure while rotating the precursor of the pressure vessel. As the curing profile (time-temperature program), the temperature of the uncured product is made uniform by temporarily holding it at a temperature lower than the curing temperature of the matrix resin composition. It is preferable to expel certain voids. Thereafter, the pressure liner in which the reinforcing layer is cured is obtained by curing at a temperature and holding time at which the matrix resin composition is cured without thermal deformation of the resin liner.

<緩衝材>
圧力容器には耐衝撃性を付与するためその外周に各種緩衝材を設置してもよい。緩衝材の素材としては、ゴム、エラストマー、発泡体等の素材自体が衝撃吸収性能を有するもの、形状に変形ないしは破壊する部位を有するものが利用できる。

<Buffer material>
Various shock-absorbing materials may be installed on the outer periphery of the pressure vessel in order to impart impact resistance. As the material of the cushioning material, a material such as rubber, an elastomer, or a foam itself having an impact absorbing performance, or a material having a part that deforms or breaks into a shape can be used.

<実施例1>
以下の条件において、本発明の圧力容器の製造方法により圧力容器を製造し、その破裂強度を測定した。
ライナの材料としては、密度0.945のHDPE(Lyondellbasell社製の4261AGBD)を用いた。ブロー成形により胴部の厚さ7mm胴部の外直径720mm、L/Dの比2.7となるライナを得た。
口金の材料としてアルミニウム合金A7075を用いた。
口金とライナの接着にはアクリル系接着剤(3M社製のDP8005)を用いた。
補強繊維の繊維束としては、Mitsubishi Rayon Carbon Fiber and Composites社製炭素繊維37−800−WD 30K(引張強度5520MPa、引張弾性率255GPa、目付1.675g/m)を用いた。炭素繊維とともに補強層となるマトリクス樹脂には、ビスフェノールA型エポキシ樹脂、酸無水物硬化剤、硬化促進剤のエポキシ樹脂組成物(Huntsman社製エポキシ樹脂LY1564/硬化剤917/硬化促進材960−1)を100/98/3の質量比で混合して用いた。
8本の繊維束を引き揃えて樹脂槽に浸し、ライナ上で繊維束からなるバンドの幅が、フープ巻き47mm、ヘリカル巻き45mmとなるようにして、表1に示す順序でフープ巻き、ヘリカル巻きの所定量をライナに巻き付けた。巻き付け時の繊維束張力は繊維速1本当たり17N、ライナ内部の圧力は巻付け開始時に0.1MPa、フープ巻き、ヘリカル巻きの各一層が終了以降は0.3MPaとした。
表1の積層巻き付け順22のフープ巻きの上に、さらにガラス繊維にマトリクス樹脂を含浸させて高角度ヘリカル層を巻き付けて保護層とした。
<Example 1>
Under the following conditions, a pressure vessel was produced by the method for producing a pressure vessel of the present invention, and its burst strength was measured.
As a material of the liner, HDPE (4261AGBD manufactured by Lyondellbasell) having a density of 0.945 was used. A liner having a barrel thickness of 7 mm and an outer diameter of 720 mm and an L / D ratio of 2.7 was obtained by blow molding.
Aluminum alloy A7075 was used as the base material.
An acrylic adhesive (DP8005 manufactured by 3M) was used for bonding the base and the liner.
Carbon fiber 37-800-WD 30K (tensile strength 5520 MPa, tensile elastic modulus 255 GPa, basis weight 1.675 g / m) manufactured by Mitsubishi Rayon Carbon Fiber and Composites was used as the fiber bundle of the reinforcing fibers. The matrix resin used as the reinforcing layer together with the carbon fiber includes an epoxy resin composition of bisphenol A type epoxy resin, acid anhydride curing agent, and curing accelerator (epoxy resin LY1564 / curing agent 917 / curing accelerator 960-1 manufactured by Huntsman). ) Were mixed at a mass ratio of 100/98/3.
Eight fiber bundles are aligned and immersed in a resin tank, and the width of the band made of the fiber bundles on the liner is 47 mm in hoop winding and 45 mm in helical winding, and the hoop winding and helical winding are performed in the order shown in Table 1. A predetermined amount of was wrapped around the liner. The fiber bundle tension during winding was 17 N per fiber speed, the pressure inside the liner was 0.1 MPa at the start of winding, and 0.3 MPa after the completion of each layer of hoop winding and helical winding.
A glass fiber was further impregnated with a matrix resin on the laminated winding order 22 of Table 1 and a high-angle helical layer was wound around to form a protective layer.


巻き付け後、ライナ内部の圧力を0.3MPaで保持した状態で、65℃において45分加熱後に、95℃の硬化炉で6時間加熱してマトリクス樹脂を硬化させ、ライナ上に補強層が形成された圧力容器が得られた。使用した炭素繊維量および補強層の重量から計算した補強層のVfは60%であった。   After winding, with the pressure inside the liner held at 0.3 MPa, after heating at 65 ° C. for 45 minutes, the matrix resin is cured by heating in a curing furnace at 95 ° C. for 6 hours, and a reinforcing layer is formed on the liner. A pressure vessel was obtained. The Vf of the reinforcing layer calculated from the amount of carbon fiber used and the weight of the reinforcing layer was 60%.

上記圧力容器の破裂試験を実施したところ、50.0MPaにて胴部から破裂し、良好な最少破壊圧力と破壊形態を示した。   When the burst test of the pressure vessel was carried out, it burst from the barrel at 50.0 MPa, and showed a satisfactory minimum fracture pressure and fracture mode.

1 合成樹脂製ライナー材から形成される中空容器(内側壁)、ライナ
2 外側の耐圧性の補強材(外側壁)、FRP層
3、3’ 口金部材
4、4’ 接着樹脂
5 外側口金部材
6 Oリング
7 ライナ材の肩部
8 口金の円盤部
10 圧力容器
11 押出しダイス
12a パリソンa
12b パリソンb
13a 金型a
13b 金型b
14 支持部
15 支持台
21 ライナ
22 胴部
23 鏡部
24 口金
31 ライナ
32 FRP層
33 バルブ取り付けネジ
34 ガスシール部(ライナ内側)
DESCRIPTION OF SYMBOLS 1 Hollow container (inner wall) formed from a synthetic resin liner material, liner 2 Outer pressure-resistant reinforcing material (outer wall), FRP layer 3, 3 ′ cap member 4, 4 ′ adhesive resin 5 outer cap member 6 O-ring 7 Shoulder of liner material 8 Disc part of base 10 Pressure vessel 11 Extrusion die 12a Parison a
12b Parison b
13a Mold a
13b Mold b
DESCRIPTION OF SYMBOLS 14 Support part 15 Support stand 21 Liner 22 Body part 23 Mirror part 24 Base 31 Liner 32 FRP layer 33 Valve attachment screw 34 Gas seal part (liner inner side)

Claims (1)

熱可塑性樹脂のライナと、該ライナの外側面を覆う繊維強化樹脂と、口金とを備える圧力容器であって、
圧力容器のバルブと圧力容器とのガスシール部を該ライナの内面に有する圧力容器。
A pressure vessel comprising a thermoplastic resin liner, a fiber reinforced resin covering the outer surface of the liner, and a base,
A pressure vessel having a gas seal portion between the valve and the pressure vessel on the inner surface of the liner.
JP2015018975A 2015-02-03 2015-02-03 Pressure container Pending JP2016142349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018975A JP2016142349A (en) 2015-02-03 2015-02-03 Pressure container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018975A JP2016142349A (en) 2015-02-03 2015-02-03 Pressure container

Publications (1)

Publication Number Publication Date
JP2016142349A true JP2016142349A (en) 2016-08-08

Family

ID=56570102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018975A Pending JP2016142349A (en) 2015-02-03 2015-02-03 Pressure container

Country Status (1)

Country Link
JP (1) JP2016142349A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062954A (en) * 2016-10-11 2018-04-19 三菱ケミカル株式会社 container
CN108061244A (en) * 2017-12-20 2018-05-22 中材科技(成都)有限公司 Plastic inner container outer diameter is not more than the bottleneck bottle stern construction of 20cm high-pressure gas cylinders
WO2018096905A1 (en) * 2016-11-24 2018-05-31 東レ株式会社 Method for manufacturing pressure container
CN108278484A (en) * 2017-12-20 2018-07-13 中材科技(成都)有限公司 Plastic inner container outer diameter is more than the bottleneck bottle stern construction of 200mm high-pressure gas cylinders
DE102018105664A1 (en) 2017-04-07 2018-10-11 Toyota Jidosha Kabushiki Kaisha TANK MANUFACTURING AND TANK
JP2018189178A (en) * 2017-05-09 2018-11-29 三菱ケミカル株式会社 Pressure vessel
JP2019027578A (en) * 2017-08-04 2019-02-21 トヨタ自動車株式会社 tank
JP2020122543A (en) * 2019-01-31 2020-08-13 トヨタ自動車株式会社 High-pressure tank and its manufacturing method
JP2021014856A (en) * 2019-07-10 2021-02-12 株式会社Soken High pressure tank
US11441734B2 (en) 2020-03-17 2022-09-13 Toyota Jidosha Kabushiki Kaisha Method of producing high-pressure tank, and high-pressure tank

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062954A (en) * 2016-10-11 2018-04-19 三菱ケミカル株式会社 container
WO2018096905A1 (en) * 2016-11-24 2018-05-31 東レ株式会社 Method for manufacturing pressure container
US11104219B2 (en) 2017-04-07 2021-08-31 Toyota Jidosha Kabushiki Kaisha Tank manufacturing method and tank
DE102018105664B4 (en) 2017-04-07 2022-03-03 Toyota Jidosha Kabushiki Kaisha TANK MANUFACTURING PROCESS AND TANK
DE102018105664A1 (en) 2017-04-07 2018-10-11 Toyota Jidosha Kabushiki Kaisha TANK MANUFACTURING AND TANK
US10632836B2 (en) 2017-04-07 2020-04-28 Toyota Jidosha Kabushiki Kaisha Tank manufacturing method and tank
JP2018189178A (en) * 2017-05-09 2018-11-29 三菱ケミカル株式会社 Pressure vessel
JP2019027578A (en) * 2017-08-04 2019-02-21 トヨタ自動車株式会社 tank
CN108278484A (en) * 2017-12-20 2018-07-13 中材科技(成都)有限公司 Plastic inner container outer diameter is more than the bottleneck bottle stern construction of 200mm high-pressure gas cylinders
CN108061244A (en) * 2017-12-20 2018-05-22 中材科技(成都)有限公司 Plastic inner container outer diameter is not more than the bottleneck bottle stern construction of 20cm high-pressure gas cylinders
JP2020122543A (en) * 2019-01-31 2020-08-13 トヨタ自動車株式会社 High-pressure tank and its manufacturing method
JP7092058B2 (en) 2019-01-31 2022-06-28 トヨタ自動車株式会社 High pressure tank and its manufacturing method
JP2021014856A (en) * 2019-07-10 2021-02-12 株式会社Soken High pressure tank
JP7401213B2 (en) 2019-07-10 2023-12-19 株式会社Soken high pressure tank
US11441734B2 (en) 2020-03-17 2022-09-13 Toyota Jidosha Kabushiki Kaisha Method of producing high-pressure tank, and high-pressure tank

Similar Documents

Publication Publication Date Title
JP2016142349A (en) Pressure container
JP5238577B2 (en) Composite container and method for manufacturing composite container
JP4284705B2 (en) Method for manufacturing molded body, molded body, and tank
US10487981B2 (en) High-pressure composite vessel and the method of manufacturing high-pressure composite vessel
EP2418413B1 (en) Method for manufacturing a tank, and a tank thus produced
EP2433045B1 (en) High pressure storage device and method
JP4588307B2 (en) Pressure vessel manufacturing method
US20150292677A1 (en) Method of manufacturing a compressed gas cylinder
EP4220002A1 (en) Pressure vessel
JP2018146001A (en) High-pressure tank
JP2008126615A (en) Method for manufacturing fiber-reinforced plastic member
JP2008286297A (en) High-pressure tank manufacturing method
JP2016183709A (en) High-pressure gas storage vessel and method of manufacturing the same
CN111251631A (en) High pressure hydrogen storage cylinder and method of manufacturing the same
JP2012052588A (en) Method for manufacturing pressure vessel, and pressure vessel
JP4578068B2 (en) Laminated body for shell and pressure vessel using the same
EP3795340A1 (en) High pressure container and method of its manufacture
JP2010249147A (en) Frp tank and method for manufacturing the same
JP6696789B2 (en) Tank manufacturing method
JP2005113971A (en) Liner for pressure resistant container
JP2020142418A (en) Method for manufacturing pressure vessel and pressure vessel
JP2005113963A (en) Pressure resistant container manufacturing method
JP6922393B2 (en) Pressure vessel
CN115095789A (en) Lining-free deep-cooling high-pressure hydrogen storage cylinder and preparation device thereof
JP2010223243A (en) Device and method of manufacturing fiber reinforced plastics tank