JP5238577B2 - Composite container and method for manufacturing composite container - Google Patents

Composite container and method for manufacturing composite container Download PDF

Info

Publication number
JP5238577B2
JP5238577B2 JP2009085430A JP2009085430A JP5238577B2 JP 5238577 B2 JP5238577 B2 JP 5238577B2 JP 2009085430 A JP2009085430 A JP 2009085430A JP 2009085430 A JP2009085430 A JP 2009085430A JP 5238577 B2 JP5238577 B2 JP 5238577B2
Authority
JP
Japan
Prior art keywords
fiber
winding
composite container
reinforcing
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009085430A
Other languages
Japanese (ja)
Other versions
JP2010236614A (en
Inventor
順二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2009085430A priority Critical patent/JP5238577B2/en
Publication of JP2010236614A publication Critical patent/JP2010236614A/en
Application granted granted Critical
Publication of JP5238577B2 publication Critical patent/JP5238577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高圧の気体あるいは液体を収納する複合容器及び複合容器の製造方法に関する。   The present invention relates to a composite container for storing a high-pressure gas or liquid and a method for manufacturing the composite container.

高圧ガスを収容する容器は、円筒形状の胴部と、この胴部の両端部に設けられた半球形状のドーム部と、これらドーム部の中央部分に設けられた口金と、を有する構成が一般的であり、その材質には、スチールやアルミニウム合金等の金属が採用されていた。金属製の高圧容器は、強度が高く、信頼性が高い利点を有するが、重量が重くなるという問題があり、自動車用として用いる場合に燃費や走行性能が犠牲になっていた。そこで、近年では、容器の軽量化を目的として、金属製や合成樹脂製の薄肉容器(ライナ)を樹脂が含浸された繊維強化層で被い、その後樹脂を硬化させる複合構造の複合容器が提案されている。   A container for storing high-pressure gas generally has a configuration including a cylindrical body, a hemispherical dome provided at both ends of the body, and a base provided at the center of the dome. The material used was a metal such as steel or aluminum alloy. A metal high-pressure vessel has the advantages of high strength and high reliability, but has a problem that the weight increases, and when used for automobiles, fuel consumption and running performance are sacrificed. Therefore, in recent years, for the purpose of reducing the weight of the container, a composite container with a composite structure in which a thin container (liner) made of metal or synthetic resin is covered with a fiber reinforced layer impregnated with resin and then the resin is cured is proposed. Has been.

繊維強化層を形成する方法としては、ライナの外周に繊維をタンク外周に巻装するFW法(フィラメントワインディング法)が知られている。このFW法としては、ヘリカル巻き、フープ巻き等の巻き方がある。   As a method for forming a fiber reinforced layer, an FW method (filament winding method) in which fibers are wound around the outer periphery of a liner around the outer periphery of a tank is known. As this FW method, there are winding methods such as helical winding and hoop winding.

ヘリカル巻きは、回転するライナに、それと平行に往復移動するデリバリーアイから供給される繊維を巻装する巻き方である。これにより、繊維は、ライナに対して螺旋状に巻装される。   Helical winding is a winding method in which a fiber supplied from a delivery eye that reciprocally moves in parallel with a rotating liner is wound. Thereby, the fiber is wound spirally around the liner.

フープ巻きは、ヘリカル巻きと同様に回転するライナに、それと平行に往復移動するデリバリーアイから供給される繊維を巻装する巻き方であるが、ライナの軸方向へのデリバリーアイの移動速度を極めて小さくしている。これにより、繊維はライナの周方向に巻装される。   Hoop winding is a winding method in which fibers supplied from a delivery eye that reciprocally moves in parallel to a rotating liner are wound around a liner that rotates in the same manner as helical winding, but the movement speed of the delivery eye in the axial direction of the liner is extremely high. It is small. Thereby, the fiber is wound in the circumferential direction of the liner.

複合容器を、上述の複合材料を用いて製造する場合、胴部の強度を受け持つフープ巻と、主にドーム部の強度を受け持つヘリカル巻を併用することが一般的である。   When a composite container is manufactured using the above-described composite material, it is common to use a hoop winding that is responsible for the strength of the body portion and a helical winding that is primarily responsible for the strength of the dome portion.

ここで、図1に従来の複合容器の製造方法を説明するための工程図を示す。   Here, FIG. 1 shows a process diagram for explaining a conventional method of manufacturing a composite container.

図1(a)に示すように、ライナ101は、円筒形状の胴部102と、この胴部102の両端部に設けられた半球形状のドーム部103と、これらドーム部103の中央部分に設けられた口金104と、を有する。   As shown in FIG. 1A, the liner 101 is provided in a cylindrical body portion 102, hemispherical dome portions 103 provided at both ends of the body portion 102, and a central portion of these dome portions 103. And a base 104 provided.

このライナ101の胴部102に、図1(b)に示すように、フープ巻きによって繊維105が巻装される。   As shown in FIG. 1B, the fiber 105 is wound around the trunk portion 102 of the liner 101 by hoop winding.

その後、フープ巻きで胴部102に巻装された繊維105上、及びドーム部103上に、ヘリカル巻によって繊維106が巻装される。   Thereafter, the fiber 106 is wound by helical winding on the fiber 105 wound around the body portion 102 by hoop winding and on the dome portion 103.

しかしながら、上述した方法では、フープ巻きの端部107で段差108が生じるうえ、図1(c)に示すように、段差108と胴部102との間に三角形状の空隙109が形成されてしまうため、十分な強度を発現させることができない場合がある。また、複合容器の、耐圧性をさらに高めるためには繊維を何層にも巻きつけて繊維層を厚くする必要があり、その厚みは数十mmになる場合がある。繊維層の厚みが増すと、フープ巻で巻装した繊維のうち、胴部の端部の繊維が滑りにより、ずり落ちてしまう場合がある。   However, in the method described above, a step 108 is generated at the end portion 107 of the hoop winding, and a triangular gap 109 is formed between the step 108 and the body portion 102 as shown in FIG. Therefore, there are cases where sufficient strength cannot be expressed. Further, in order to further increase the pressure resistance of the composite container, it is necessary to wind the fiber in several layers to increase the thickness of the fiber layer, and the thickness may be several tens of millimeters. When the thickness of the fiber layer increases, among the fibers wound by the hoop winding, the fibers at the end of the trunk may slip off due to slipping.

このような問題を解消するため、ヘリカル巻きとフープ巻きとを交互に繰り返す場合がある。   In order to solve such a problem, helical winding and hoop winding may be repeated alternately.

また、ヘリカル巻きを行う際には、特許文献1に開示されているようにフープ巻きを省略したり、あるいは特許文献2に開示されているように張力が変化しないように巻きつける等して容器の強度確保が図られている。   Further, when performing helical winding, the hoop winding is omitted as disclosed in Patent Document 1, or the container is wound so that the tension does not change as disclosed in Patent Document 2. Ensuring the strength of

特開2000−337594号公報JP 2000-337594 A 特開平11−101397号公報JP 11-101397 A

しかしながら、フープ巻き端部での繊維の滑りを防止するとともに複合容器の高耐圧化を図るため、フープ巻を行う工程とヘリカル巻とを行う工程とを交互に繰り返したり、あるいは巻装速度を落とすと、製造に要する時間が長くなってしまう。   However, in order to prevent the fiber from slipping at the end of the hoop winding and to increase the pressure resistance of the composite container, the step of performing the hoop winding and the step of performing the helical winding are alternately repeated or the winding speed is reduced. As a result, the time required for manufacturing becomes longer.

そこで、本発明は、ライナに巻装した繊維の端部における繊維の滑りの防止、複合容器の高耐圧化及び製造時間の短縮化が可能な複合容器及び複合容器の製造方法を提供することを目的とする。   Therefore, the present invention provides a composite container and a composite container manufacturing method capable of preventing fiber slippage at the end of the fiber wound around the liner, increasing the pressure resistance of the composite container, and shortening the manufacturing time. Objective.

上記目的を達成するため、本発明の複合容器は、円筒形状の胴部及び胴部の両端部を塞ぐように配置された曲面形状のドーム部を備えたライナを有し、ライナに繊維を巻装して形成された複合容器において、端面が胴部の両端部の外周縁に位置し、かつドーム部を覆うようにして設けられた、端面における外径が胴部の外径よりも大きい補強部を有し、胴部の外周面上であってかつ各補強部の端面に挟まれた領域に、繊維が第1の巻き方によって補強部の外径と同一の巻厚になるまで巻装されており、領域に巻装された繊維上及び補強部の外周面上に、繊維がさらに第1の巻き方とは異なる第2の巻き方によって巻装されていることを特徴とするものである。   In order to achieve the above object, the composite container of the present invention includes a liner having a cylindrical body and a curved dome disposed so as to close both ends of the body, and fibers are wound around the liner. In the composite container formed by mounting, the end surface is provided at the outer peripheral edge of both end portions of the body portion and is provided so as to cover the dome portion, and the outer diameter at the end surface is larger than the outer diameter of the body portion. The fiber is wound on the outer peripheral surface of the body part and sandwiched between the end faces of the reinforcing parts until the fiber has the same thickness as the outer diameter of the reinforcing part by the first winding method. The fiber is further wound on the fiber wound in the region and on the outer peripheral surface of the reinforcing portion by a second winding method different from the first winding method. is there.

また、本発明の複合容器の製造方法は、円筒形状の胴部及び胴部の両端部を塞ぐように配置された曲面形状のドーム部を備えたライナを有し、ライナに繊維を巻装して形成される複合容器の製造方法において、端面における外径が胴部の外径よりも大きい補強部を、端面が胴部の両端部の外周縁に位置し、かつドーム部を覆うようにして設ける工程と、胴部の外周面上であってかつ各補強部の端面に挟まれた領域に、繊維が第1の巻き方によって補強部の外径と同一の巻厚になるまで巻装する工程と、領域に巻装された繊維上及び補強部の外周面上に、繊維がさらに第1の巻き方とは異なる第2の巻き方によって巻装する工程と、を含むものである。   Further, the method for manufacturing a composite container of the present invention includes a liner having a cylindrical body and a curved dome disposed so as to close both ends of the body, and the fiber is wound around the liner. In the manufacturing method of the composite container formed in such a manner, the reinforcing part whose outer diameter at the end surface is larger than the outer diameter of the body part is positioned so that the end surface is located at the outer peripheral edge of both end parts of the body part and covers the dome part. The fiber is wound on the outer peripheral surface of the trunk portion and the region sandwiched between the end faces of the reinforcing portions until the fiber has the same winding thickness as the outer diameter of the reinforcing portion by the first winding method. And a step of winding the fiber on the fiber wound around the region and on the outer peripheral surface of the reinforcing portion by a second winding method different from the first winding method.

上記のとおり、本発明は、胴部の外周面上であってかつ各補強部の端面に挟まれた領域に繊維を巻装するため、巻装した繊維の端部は各補強部の端面で支持されることとなる。このため、巻装した繊維の端部の繊維が滑ってずれ落ちることがない。また、本発明は、胴部の外周面上であってかつ各補強部の端面に挟まれた領域に第1の巻き方で巻装される繊維は、補強部の外径と同一の巻厚になるまで巻く。このため、第1の巻き方で巻装された繊維と補強部との間には段差が生じない。このため、第1の巻き方で巻装された繊維との間に空隙を生じさせることなく第2の巻き方で繊維を巻きつけることができることとなり、よって、高耐圧の複合容器とすることができる。   As described above, the present invention wraps the fiber in the region on the outer peripheral surface of the body portion and sandwiched between the end surfaces of each reinforcing portion, so that the end portion of the wound fiber is the end surface of each reinforcing portion. Will be supported. For this reason, the fiber at the end of the wound fiber does not slip and fall off. Further, according to the present invention, the fiber wound in the first winding method on the outer peripheral surface of the body portion and sandwiched between the end surfaces of each reinforcing portion has the same winding thickness as the outer diameter of the reinforcing portion. Wind until For this reason, a level | step difference does not arise between the fiber wound by the 1st winding method, and a reinforcement part. For this reason, the fibers can be wound by the second winding method without generating a gap between the fibers wound by the first winding method, and thus a high pressure-resistant composite container can be obtained. it can.

また、本発明の場合、第1の巻き方のよって巻いた繊維の端部における繊維の滑りが生じないため、繊維の滑りを防止すべく第1の巻き方と第2の巻き方とを交互に行う必要もないし、また、滑りを生じさせないように繊維をゆっくり巻く必要もないので、高速で繊維を巻装することができる。   In the case of the present invention, since the fiber does not slip at the end of the fiber wound by the first winding method, the first winding method and the second winding method are alternately arranged to prevent the fiber from slipping. In addition, since it is not necessary to wind the fiber slowly so as not to cause slippage, the fiber can be wound at a high speed.

本発明によれば、ライナに巻装した繊維の端部における繊維の滑りが防止され、これによって複合容器の高耐圧化及び製造時間の短縮化が可能となる。   According to the present invention, fiber slippage at the end portion of the fiber wound around the liner is prevented, which makes it possible to increase the pressure resistance of the composite container and shorten the manufacturing time.

従来の複合容器の製造方法を説明するための製造工程図である。It is a manufacturing process figure for demonstrating the manufacturing method of the conventional composite container. 本発明の一実施形態に係る複合容器の製造方法を説明するための製造工程図である。It is a manufacturing process figure for demonstrating the manufacturing method of the composite container which concerns on one Embodiment of this invention. 補強材の他の構成例を示す、補強材の断面図及び平面図である。It is sectional drawing and the top view of a reinforcing material which show the other structural example of a reinforcing material.

次に、図面を参照しながら本発明の実施形態について説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図2に、本発明の一実施形態に係る複合容器の製造方法を説明するための製造工程図を示す。   In FIG. 2, the manufacturing process figure for demonstrating the manufacturing method of the composite container which concerns on one Embodiment of this invention is shown.

図2(a)に示すように、本実施形態のライナ1は、円筒形状の胴部2と、この胴部2の両端部を塞ぐように配置された曲面形状のドーム部3と、これらドーム部3の中央部分に設けられた口金4を有する。なお、必要に応じ、ライナ1内には活性炭や気体吸蔵合金を加えることができる。   As shown in FIG. 2 (a), the liner 1 of the present embodiment includes a cylindrical body portion 2, a curved dome portion 3 disposed so as to close both ends of the body portion 2, and these dome portions. A base 4 is provided at the center of the portion 3. In addition, activated carbon and a gas storage alloy can be added in the liner 1 as needed.

このライナ1は、不図示の支持台に、ライナ1の軸周りに回転自在に保持されている。   The liner 1 is held on a support base (not shown) so as to be rotatable around the axis of the liner 1.

次に、図2(b)に示すように、このライナ1の両端部のドーム部3上に、ドーム部3を被装するようにして補強部5が装着される。補強部5は、曲面で形成された外周面5aと、ドーム部3の外周面に対応する凹面に形成された内周面5cと、外周面5aの周縁と内周面5cの周縁との間に形成された円環平面状の端面5cと、口金4を貫通させる貫通口5dとを有する。ライナ1の両端部に補強部5が装着されることで、補強部5の端面5cは胴部2の両端部の外周縁に位置する。そして、補強部5はドーム部3を覆うようにして設けられることとなる。端面5cにおける外径D5は胴部2の外径D2よりも大きいため、ライナ1の一端側の端面5cとライナ1の他端側の端面5cとが対向して配置されることとなる。後述するように、繊維6は、胴部2の外周面上であって対向した端面5c間である領域2a内にフープ巻きにより巻装される。 Next, as shown in FIG. 2B, the reinforcing portion 5 is mounted on the dome portion 3 at both ends of the liner 1 so as to cover the dome portion 3. The reinforcing portion 5 includes an outer peripheral surface 5a formed of a curved surface, an inner peripheral surface 5c formed as a concave surface corresponding to the outer peripheral surface of the dome portion 3, and a peripheral edge of the outer peripheral surface 5a and a peripheral edge of the inner peripheral surface 5c. And the through hole 5d through which the cap 4 passes. By attaching the reinforcing portions 5 to both end portions of the liner 1, the end surfaces 5 c of the reinforcing portion 5 are positioned on the outer peripheral edges of both end portions of the body portion 2. And the reinforcement part 5 will be provided so that the dome part 3 may be covered. Since the outer diameter D 5 at the end surface 5 c is larger than the outer diameter D 2 of the body portion 2, the end surface 5 c on one end side of the liner 1 and the end surface 5 c on the other end side of the liner 1 are arranged to face each other. . As will be described later, the fiber 6 is wound by hoop winding in a region 2a on the outer peripheral surface of the body portion 2 and between the opposed end surfaces 5c.

なお、補強部5の外周面5aは、繊維が巻装できればいかなる形状でも良いといえるが、口金4が存在する点や取り扱いの要請から、内周面5bと同様のドーム形状として補強部5の厚みも均一となるようにするのが好ましい。補強部5の厚みt、すなわち、端面5cの高さは、以下のようにして決定される。まず、胴部2で必要な強度を計算し、この計算値に基づき、胴部2におけるフープ巻の厚みが決定される。そして、補強部5の厚みtは、このフープ巻の厚みと実質的に同一の厚みとする。補強部5の厚みtは、ライナ1の大きさや使用する圧力にもよるが、10L程度の内容積で80MPa対応の複合容器の場合、一般的には5mm〜70mm、好ましくは、15mm〜60mm、さらに好ましくは20mm〜50mm程度となる。   The outer peripheral surface 5a of the reinforcing portion 5 may be of any shape as long as the fiber can be wound. However, from the point that the base 4 is present and a request for handling, the outer peripheral surface 5a has a dome shape similar to the inner peripheral surface 5b. It is preferable to make the thickness uniform. The thickness t of the reinforcing portion 5, that is, the height of the end surface 5c is determined as follows. First, the required strength is calculated in the body part 2, and the thickness of the hoop winding in the body part 2 is determined based on this calculated value. The thickness t of the reinforcing portion 5 is substantially the same as the thickness of the hoop winding. The thickness t of the reinforcing portion 5 depends on the size of the liner 1 and the pressure to be used, but in the case of a composite container corresponding to 80 MPa with an internal volume of about 10 L, generally 5 mm to 70 mm, preferably 15 mm to 60 mm, More preferably, it is about 20 mm to 50 mm.

また、図3(a)〜図3(f)に示すように、補強部5の外周面5aには、補強部5の外周面5aでの繊維の滑りを防止するための繊維保持部5eを設けるものであってもよい。この繊維保持部5eは、例えば、ライナ1の胴部2と同心円状の凹部(図3(a))や凸部(図3(b))、スパイラル状の凹部(図3(c))や凸部(図3(d))、円形の凹部(図3(e))や凸部(図3(f))であってもよい。なお、図3(a)〜図3(f)における凹部あるいは凸部については、その間隔、数等が簡略化されている。従って、各凹部あるいは凸部等の間隔などはより密なものとしてもよいし、凹部、凸部等の数もより多いものであってもよい。   Further, as shown in FIGS. 3A to 3F, the outer peripheral surface 5 a of the reinforcing portion 5 is provided with a fiber holding portion 5 e for preventing the fiber from slipping on the outer peripheral surface 5 a of the reinforcing portion 5. It may be provided. The fiber holding portion 5e includes, for example, a concave portion (FIG. 3 (a)) or a convex portion (FIG. 3 (b)) concentric with the body portion 2 of the liner 1, a spiral concave portion (FIG. 3 (c)), It may be a convex part (FIG. 3D), a circular concave part (FIG. 3E) or a convex part (FIG. 3F). In addition, about the recessed part or convex part in Fig.3 (a)-FIG.3 (f), the space | interval, the number, etc. are simplified. Accordingly, the intervals between the concave portions or the convex portions may be closer, and the number of concave portions, convex portions, etc. may be larger.

これらの繊維保持部5eを補強部5に施すことはライナ1のドーム部3に繊維保持部を構成するよりも簡便という利点がある。   Applying these fiber holding portions 5 e to the reinforcing portion 5 has an advantage that it is simpler than configuring the fiber holding portion in the dome portion 3 of the liner 1.

補強部5の材質は、樹脂製、金属製、セラミック製等いかなる材質でも良いが一般的には、補強部5上に巻装する繊維がエポキシ樹脂を含む材料であることが好ましいため、材料の相性を踏まえれば繊維強化をしたエポキシ樹脂とするのが好ましい。   The material of the reinforcing portion 5 may be any material such as resin, metal, or ceramic, but generally, the fiber wound on the reinforcing portion 5 is preferably a material containing an epoxy resin. Considering compatibility, it is preferable to use a fiber reinforced epoxy resin.

補強部5の製造方法は、RIM(反応射出成形)、射出成型等、いかなる方法でも良い。例えば、ライナ1と同じ形状の型枠にライナ1に巻装させるトウプリプレグを巻装し、トウプリプレグと同じ材質の樹脂で形状を整えて補強部5を作成しても良い。この際は、フィラメントワインディングを行う際に加熱されるのと同様に、加熱しながらトウプリプレグを巻きつけても良い。この製法における加熱温度は50℃以上が好ましく、また、型枠上でエポキシを固化するのが好ましい。型枠からはずして固化させると形状が変化する可能性があるためである。   The manufacturing method of the reinforcement part 5 may be any method such as RIM (reaction injection molding) or injection molding. For example, the reinforcing portion 5 may be formed by winding a tow prepreg wound around the liner 1 on a mold having the same shape as that of the liner 1 and adjusting the shape with the same material resin as the tow prepreg. In this case, the tow prepreg may be wound while being heated in the same manner as when heating when performing filament winding. The heating temperature in this production method is preferably 50 ° C. or higher, and the epoxy is preferably solidified on the mold. This is because the shape may change if it is removed from the mold and solidified.

また、補強部5は、レジントランスファーモールディング法を用いても良い。この製法の場合、まず、ライナ1に巻装するトウプリプレグと同質の素材をシート状に成型する。次いで、そのシートを2層以上かつ繊維が交差するように組み入れ、該2層のシートを強化材としてドームと同じ形状を有する金型型枠にセットする。そして、型締めをして加熱し固化することで成型する。この際、必要に応じ樹脂を注入することができる。なお、本製法における成型温度はトウプリプレグの種類に依存するが、概ね100℃以上である。   Further, the reinforcing portion 5 may use a resin transfer molding method. In the case of this manufacturing method, first, a material having the same quality as the tow prepreg wound around the liner 1 is formed into a sheet shape. Subsequently, the sheet is incorporated so that two or more layers and fibers intersect, and the two-layer sheet is set as a reinforcing material in a mold form having the same shape as the dome. And it molds by clamping and heating and solidifying. At this time, a resin can be injected as necessary. In addition, although the molding temperature in this manufacturing method is dependent on the kind of tow prepreg, it is 100 degreeC or more in general.

こうして成型した補強部5は、ライナ1のドーム部3に被装する。この際ライナ1の口金4は補強部5の貫通口5dに挿通される。   The reinforcing portion 5 thus molded is mounted on the dome portion 3 of the liner 1. At this time, the base 4 of the liner 1 is inserted through the through-hole 5 d of the reinforcing portion 5.

次に、繊維をフィラメントワインディングによってライナ1に巻装する。なお、ライナ1は必要に応じて、樹脂や反応剤を塗布する等の表面処理を施しておいてもよい。   Next, the fiber is wound around the liner 1 by filament winding. The liner 1 may be subjected to a surface treatment such as application of a resin or a reactive agent as necessary.

まず、図2(c)に示すように、胴部2の外周面上であって、かつ各補強部5の端面5cに挟まれた領域2aに、FW法のフープ巻きによって繊維6を巻装する。繊維6は、巻装部分の直径が補強部5の外径と実質上、同一直径となり、段差が実質上存在しなくなるまで巻装される。この際、巻装する繊維には、1N〜1500Nの張力がかけられている。   First, as shown in FIG. 2 (c), the fibers 6 are wound on the outer peripheral surface of the body portion 2 and in the region 2a sandwiched between the end surfaces 5c of the reinforcing portions 5 by FO method hoop winding. To do. The fiber 6 is wound until the diameter of the wound portion is substantially the same as the outer diameter of the reinforcing portion 5 and there is substantially no step. At this time, a tension of 1N to 1500N is applied to the fiber to be wound.

胴部2に巻装される繊維6の両端部6aは、両端に配置された補強部5の端面5cにより胴部2の軸方向への移動が規制される。すなわち、繊維6は補強部5によって胴部2の軸方向への滑りが抑制されているため、繊維6を厚く巻装しても端部6aからずれ落ちることはない。このため、胴部2とドーム部3の境界付近での強度を安定して保つことができる。   The movement of the body 2 in the axial direction is restricted at both ends 6a of the fiber 6 wound around the body 2 by the end surfaces 5c of the reinforcing portions 5 disposed at both ends. That is, since the fiber 6 is prevented from slipping in the axial direction of the body portion 2 by the reinforcing portion 5, even if the fiber 6 is wound thickly, it does not fall off from the end portion 6a. For this reason, the strength in the vicinity of the boundary between the body portion 2 and the dome portion 3 can be stably maintained.

また、補強部5を用いない従来のフープ巻きは、両端部の繊維がずれ落ちてしまわないように繊維をゆっくり巻装しなければならなかったが、本実施形態の製造方法は、補強部5で両端部6aを支持しながら繊維6を巻装するので両端部6aの繊維6がずれ落ちることがない。このため、本実施形態の製造方法は、フープ巻きの巻き速度を、補強部5を用いない従来のフープ巻きの巻き速度に比べ、高速化することができる。   Further, in the conventional hoop winding that does not use the reinforcing portion 5, the fibers have to be wound slowly so that the fibers at both ends do not fall off. However, the manufacturing method of the present embodiment uses the reinforcing portion 5. Since the fibers 6 are wound while supporting the both end portions 6a, the fibers 6 at the both end portions 6a do not slip off. For this reason, the manufacturing method of this embodiment can speed up the winding speed of hoop winding compared with the winding speed of the conventional hoop winding which does not use the reinforcement part 5. FIG.

以上のようにして、補強部5の間の胴部2にフープ巻きによって繊維6が巻装された後、図2(d)に示すように、フープ巻きによって巻装された胴部2の繊維6上、及び補強部5上に繊維7をヘリカル巻きにより巻装する。ヘリカル巻きにより巻装する繊維7の厚みは、複合容器としての強度を確保できる厚みとする。なお、繊維7は、繊維6と同一の材質からなるが、異なる材質のものであってもよい。   After the fibers 6 are wound by the hoop winding around the body portion 2 between the reinforcing portions 5 as described above, the fibers of the body portion 2 wound by the hoop winding as shown in FIG. 6 and the reinforcing part 5 are wound with the fiber 7 by helical winding. The thickness of the fiber 7 wound by helical winding is set to a thickness that can ensure the strength as a composite container. The fiber 7 is made of the same material as the fiber 6 but may be made of a different material.

本実施形態の場合、胴部2にフープ巻きによって繊維6が巻装された部分の直径は、補強部5の直径と実質上、同一直径であるため、段差が生じていない。従来、段差が生じた状態でヘリカル巻きを実施すると、段差の隅部に空隙が生じてしまい、十分な強度を確保することが困難であった。しかしながら、本実施形態の場合、段差が生じていないため、胴部2の繊維6上、及び補強部5上に繊維7を巻装しても空隙は生じず、よって、複合容器の強度を確保することができる。   In the case of the present embodiment, the diameter of the portion where the fiber 6 is wound around the trunk portion 2 by hoop winding is substantially the same as the diameter of the reinforcing portion 5, and therefore no step is generated. Conventionally, when helical winding is performed in a state where a step is generated, a gap is generated at the corner of the step, and it has been difficult to ensure sufficient strength. However, in the case of the present embodiment, since no step is generated, even if the fiber 7 is wound on the fiber 6 of the trunk portion 2 and the reinforcing portion 5, no gap is generated, and thus the strength of the composite container is ensured. can do.

ヘリカル巻きが終了した後は、繊維6,7の樹脂を硬化する。なお、繊維6の樹脂については、ヘリカル巻きで繊維7を巻装する前に硬化させておいてもよい。繊維6、7の樹脂を硬化させた後、必要に応じてさらに表面処理やコーティングを行うものであってもよい。   After the helical winding is finished, the resin of the fibers 6 and 7 is cured. The resin of the fiber 6 may be cured before the fiber 7 is wound by helical winding. After the resin of the fibers 6 and 7 is cured, surface treatment or coating may be further performed as necessary.

なお、上述した製造方法では、フープ巻きを一回実施した後、ヘリカル巻きを一回実施するだけで複合容器を製造することができるため、従来のフープ巻きとヘリカル巻きとを交互に行う製造方法に比べて、製造工程を簡略化できるとともに製造時間を短縮化することができる。   In addition, in the manufacturing method mentioned above, after implementing hoop winding once, since a composite container can be manufactured only by implementing helical winding once, the manufacturing method which performs conventional hoop winding and helical winding alternately Compared to the above, the manufacturing process can be simplified and the manufacturing time can be shortened.

もっとも本発明は、フープ巻き及びヘリカル巻きをそれぞれ一回のみ実施する製法に限定されるものではない。例えば、フープ巻きを実施する前にヘリカル巻きを実施しておき、その後、上述したようにフープ巻き、ヘリカル巻きを順次実施するものであってもよい。あるいは、上述したようにフープ巻き、ヘリカル巻きを順次実施した後、外部からの衝撃防止のためにフープ巻をさらに実施するものであってもよい。   However, the present invention is not limited to the manufacturing method in which the hoop winding and the helical winding are performed only once. For example, helical winding may be performed before hoop winding is performed, and then hoop winding and helical winding may be sequentially performed as described above. Alternatively, as described above, after the hoop winding and the helical winding are sequentially performed, the hoop winding may be further performed to prevent external impact.

以上のようにして、本実施形態の複合容器が完成する。その後、複合容器内には口金4から気体等が導入される。   As described above, the composite container of this embodiment is completed. Thereafter, gas or the like is introduced from the base 4 into the composite container.

なお、FW法には、繊維に樹脂を付着させながら行う方法と、予め樹脂が繊維に塗布されているトウプリプレグを使用する方法があるが、特に好ましいのは後者である。トウプリプレグを使用する場合、トウプリプレグの熱硬化性樹脂の種類としては、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、エポキシ樹脂等が挙げられるが、これらに限定されるものではない。   The FW method includes a method in which a resin is attached to a fiber and a method in which a tow prepreg in which a resin is previously applied to a fiber is used. The latter is particularly preferable. When tow prepreg is used, the type of thermosetting resin for tow prepreg is phenol resin, urea resin, unsaturated polyester resin, vinyl ester resin, polyimide resin, bismaleimide resin, polyimide resin, polyurethane resin, diallyl phthalate resin. , Epoxy resins and the like, but are not limited thereto.

また、熱硬化性樹脂の分子構造としては、例えば、エポキシ樹脂の場合、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が挙げられる。   As the molecular structure of the thermosetting resin, for example, in the case of epoxy resin, bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, etc. Can be mentioned.

また、熱硬化性樹脂に加える硬化剤としては、例えば、エチレンジアミン等の脂肪族アミン、ジエチレントリアミン等の脂肪族ポリアミン、メタフェニレンジアミンまたはジアミノジフェニルスルフォン等の芳香族アミン、ピペリジンまたはジアザピシクロウンデセン等の第一、第三アミン、メチルテトラヒドロ無水フタル酸等の酸無水物硬化剤等が挙げられる。   Examples of the curing agent added to the thermosetting resin include aliphatic amines such as ethylenediamine, aliphatic polyamines such as diethylenetriamine, aromatic amines such as metaphenylenediamine or diaminodiphenylsulfone, piperidine, or diazapicycloundecene. And acid anhydride curing agents such as primary and tertiary amines and methyltetrahydrophthalic anhydride.

また、トウプリプレグに用いられる繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、スチール繊維、ザイロン繊維、ビニロン繊維等が挙げられる。特に高強度、高弾性率かつ軽量の点から炭素繊維が好ましい。   Examples of the fiber used for the tow prepreg include carbon fiber, glass fiber, aramid fiber, boron fiber, polyethylene fiber, steel fiber, xylon fiber, and vinylon fiber. In particular, carbon fiber is preferable from the viewpoint of high strength, high elastic modulus and light weight.

また、トウプリプレグに用いられる繊維の繊維数(フィラメント)は、特に制限されるものではないが1000フィラメント〜50000フィラメント、好ましくは3000フィラメント〜30000フィラメントの範囲である。繊維の繊維数が、1000フィラメントより低いと繊維中に含まれる熱硬化性樹脂の含有量が少なくなる場合があり、50000フィラメントを超えると繊維が太くなり、巻きつけるのが困難になる。   The number of fibers (filaments) used in the tow prepreg is not particularly limited, but is in the range of 1000 filaments to 50000 filaments, preferably 3000 filaments to 30000 filaments. If the number of fibers is less than 1000 filaments, the content of the thermosetting resin contained in the fibers may be reduced, and if it exceeds 50000 filaments, the fibers become thick and difficult to wind.

本実施例では、以下の条件において、本発明の複合容器の製造方法により複合容器を製造し、その破裂強度を測定した。   In this example, a composite container was manufactured by the composite container manufacturing method of the present invention under the following conditions, and the burst strength was measured.

補強部5の材料としては、新日本石油株式会社製トウプリプレグT800S−24−RC29−SY3を用いた。このトウプリプレグを、内周面がライナ1のドーム部3と同形状の型枠に巻装し、外周面側から圧縮し、厚み15mmの補強部5を作成した。ライナ1は、内容積が10Lで直径20cmのアルミニウム製のものを用いた。   As a material for the reinforcing portion 5, Tow Prepreg T800S-24-RC29-SY3 manufactured by Nippon Oil Corporation was used. This tow prepreg was wound around a mold having an inner peripheral surface that is the same shape as the dome portion 3 of the liner 1 and compressed from the outer peripheral surface side to form a reinforcing portion 5 having a thickness of 15 mm. The liner 1 was made of aluminum having an internal volume of 10 L and a diameter of 20 cm.

補強部5をライナ1のドーム部3に取り付け、補強部5と同じトウプリプレグでFWを実施した。胴部2のフープ巻は、その巻厚が15mmになった時点で停止し、その後、ヘリカル巻を実施した。ヘリカル巻きはその巻厚が8mmになった時点で停止した。   The reinforcing part 5 was attached to the dome part 3 of the liner 1, and FW was performed with the same toe prepreg as the reinforcing part 5. The hoop winding of the body portion 2 was stopped when the winding thickness reached 15 mm, and then helical winding was performed. The helical winding was stopped when the winding thickness reached 8 mm.

上述のFWが終了した容器を150℃で1hr保持し、トウプリプレグおよびプリプレグの樹脂を硬化させ、複合容器を完成させた。   The container in which the above-described FW was completed was held at 150 ° C. for 1 hour to cure the tow prepreg and the prepreg resin, thereby completing a composite container.

上述のようにして製造された本実施例の容器の破裂圧力は150MPaであった。   The burst pressure of the container of this example manufactured as described above was 150 MPa.

本実施例では、以下の条件において、補強材を製造した。   In this example, a reinforcing material was manufactured under the following conditions.

補強部5の材料としては強化繊維織物を用いた。この強化繊維織物は、直径7μmの直線状の炭素繊維を12000本束ねた、外径2mmの強化繊維束を90°程度ずれるように交差積層させた、厚さ2.5mmの多軸の繊維構造を有するものである。   Reinforcing fiber fabric was used as the material of the reinforcing portion 5. This reinforcing fiber woven fabric is a multiaxial fiber structure having a thickness of 2.5 mm, in which 12,000 linear carbon fibers having a diameter of 7 μm are bundled and a reinforcing fiber bundle having an outer diameter of 2 mm is cross-laminated so as to be shifted by about 90 °. It is what has.

この強化繊維織物を、直径23cmの半球状曲面を有する型枠に15層積層して添わせて配置した。その後、後述する組成のエポキシ組成物を流し込み含浸させた。さらにその後、ライナ1のドーム部3と同じ形状の型枠(直径約20cm)を重ね、さらに同じエポキシ組成物を注入した。そして、室温で2hr、50kg/mm2のプレス圧で硬化させ、さらに150℃で熱処理硬化を行なうことで、補強部5を製造した。 This reinforcing fiber woven fabric was arranged by laminating 15 layers on a mold having a hemispherical curved surface with a diameter of 23 cm. Then, the epoxy composition of the composition mentioned later was poured and impregnated. After that, a mold (having a diameter of about 20 cm) having the same shape as the dome portion 3 of the liner 1 was overlapped, and the same epoxy composition was injected. Then, 2 hr at room temperature, cured in a press pressure of 50 kg / mm 2, by further performing heat treatment cured at 0.99 ° C., to produce a reinforced portion 5.

この補強部5を用いて実施例1と同様に複合容器を作成し、破裂強度を測定したところ、破壊圧力は140MPaであった。
(エポキシ組成物)
補強部5の製造に用いたエポキシ組成物は、以下の組成のエポキシ樹脂である。
主材 :EPICLON 840(大日本インキ化学工業製)
硬化剤:EPICLON B−570(大日本インキ化学工業製)
促進剤:2E4MZ(四国化学工業製)
A composite container was prepared using the reinforcing portion 5 in the same manner as in Example 1, and the burst strength was measured. As a result, the fracture pressure was 140 MPa.
(Epoxy composition)
The epoxy composition used for manufacturing the reinforcing portion 5 is an epoxy resin having the following composition.
Main material: EPICLON 840 (Dainippon Ink Chemical Co., Ltd.)
Curing agent: EPICLON B-570 (manufactured by Dainippon Ink and Chemicals)
Accelerator: 2E4MZ (manufactured by Shikoku Chemical Industry)

本実施例では、実施例1と同じ条件で補強部5を製造し、さらにこの補強部5に外周面側であって貫通口5dの軸周りに、同心円状の複数の凹部を繊維保持部5eとして形成した。   In this embodiment, the reinforcing portion 5 is manufactured under the same conditions as in the first embodiment, and a plurality of concentric concavities are formed on the reinforcing portion 5 on the outer peripheral surface side and around the axis of the through hole 5d. Formed as.

この同心円状の凹部からなる繊維保持部5eを有する補強部5を用いて実施例1と同じ条件で複合容器を製造し、破裂強度を測定したところ、破壊圧力は150MPaであった。   When a composite container was manufactured under the same conditions as in Example 1 using the reinforcing part 5 having the fiber holding part 5e formed of the concentric recesses, and the burst strength was measured, the breaking pressure was 150 MPa.

本実施例では、実施例2と同じ条件で補強部5を製造し、さらにこの補強部5の外周面であって貫通口5dの軸周りに、1cmおきに幅2mmの同心円状に凸部を繊維保持部5eとして形成した。   In the present embodiment, the reinforcing portion 5 is manufactured under the same conditions as in the second embodiment, and the convex portions are formed in concentric circles having a width of 2 mm every 1 cm on the outer peripheral surface of the reinforcing portion 5 and around the axis of the through-hole 5d. It formed as the fiber holding part 5e.

この同心円状の凸部からなる繊維保持部5eを有する補強部5を用いて実施例2と同じ条件で複合容器を製造し、破裂強度を測定したところ、破壊圧力は140MPaであった。   A composite container was manufactured under the same conditions as in Example 2 using the reinforcing part 5 having the fiber holding part 5e formed of the concentric convex parts, and the burst strength was measured. The breaking pressure was 140 MPa.

本実施例では、実施例2と同じ条件で補強部5を製造し、さらにこの補強部5の外周面であって貫通口5dの軸周りに、幅2mmのスパイラル状の凸部を繊維保持部5eとして形成した。   In the present embodiment, the reinforcing portion 5 is manufactured under the same conditions as in the second embodiment, and a spiral convex portion having a width of 2 mm is formed around the axis of the through hole 5d on the outer peripheral surface of the reinforcing portion 5. Formed as 5e.

このスパイラル状の凸部からなる繊維保持部5eを有する補強部5を用いて実施例2と同じ条件で複合容器を製造し、破裂強度を測定したところ、破壊圧力は140MPaであった。   A composite container was manufactured under the same conditions as in Example 2 using the reinforcing portion 5 having the fiber holding portion 5e formed of the spiral convex portion, and the burst strength was measured. As a result, the breaking pressure was 140 MPa.

比較例1Comparative Example 1

本比較例では、以下の条件において複合容器を製造し、その破裂強度を測定した。   In this comparative example, a composite container was manufactured under the following conditions, and its burst strength was measured.

ライナに巻装するトウプリプレグは、新日本石油株式会社製トウプリプレグT800S−24−RC29−SY3を使用した。このトウプリプレグを内容積が10Lのアルミニウム製のライナにフープ巻3mm、ヘリカル巻2mmとなるようFWを4回繰り返した。FWが終了した容器を150℃で1hr保持し、トウプリプレグの樹脂を硬化させ、複合容器を完成させた。   The tow prepreg wound around the liner was Tow Prepreg T800S-24-RC29-SY3 manufactured by Nippon Oil Corporation. The FW was repeated four times so that the tow prepreg had an inner volume of 10 L on an aluminum liner having a hoop winding of 3 mm and a helical winding of 2 mm. The container in which FW was completed was held at 150 ° C. for 1 hour to cure the tow prepreg resin, thereby completing a composite container.

上述のようにして製造された本比較例の容器の破裂圧力は120MPaであった。   The burst pressure of the container of this comparative example produced as described above was 120 MPa.

1 ライナ
2 胴部
2a 領域
3 ドーム部
4 口金
5 補強部
5a 外周面
5b 内周面
5c 端面
5d 貫通口
5e 繊維保持部
6、7 繊維
6a 両端部
DESCRIPTION OF SYMBOLS 1 Liner 2 trunk | drum 2a area | region 3 dome part 4 mouthpiece 5 reinforcement part 5a outer peripheral surface 5b inner peripheral surface 5c end surface 5d through-hole 5e fiber holding part 6, 7 fiber 6a both ends

Claims (7)

円筒形状の胴部及び前記胴部の両端部を塞ぐように配置された曲面形状のドーム部を備えたライナを有し、前記ライナに繊維を巻装して形成された複合容器において、
端面が前記胴部の前記両端部の外周縁に位置し、かつ前記ドーム部を覆うようにして設けられた、前記端面における外径が前記胴部の外径よりも大きい補強部を有し、
前記胴部の外周面上であってかつ前記各補強部の前記端面に挟まれた領域に、前記繊維が第1の巻き方によって前記補強部の前記外径と同一の巻厚になるまで巻装されており、
前記領域に巻装された前記繊維上及び前記補強部の外周面上に、前記繊維がさらに第1の巻き方とは異なる第2の巻き方によって巻装されていることを特徴とする複合容器。
In a composite container formed by winding a fiber around the liner having a cylindrical body and a curved dome disposed so as to close both ends of the body,
An end surface is provided at an outer peripheral edge of the both end portions of the body portion and is provided so as to cover the dome portion, and has a reinforcing portion whose outer diameter at the end surface is larger than the outer diameter of the body portion,
Winding the fiber on the outer peripheral surface of the body portion and sandwiched between the end surfaces of the reinforcing portions until the fiber has the same winding thickness as the outer diameter of the reinforcing portion by the first winding method. And
The composite container, wherein the fiber is further wound by a second winding method different from the first winding method on the fiber wound around the region and on the outer peripheral surface of the reinforcing portion. .
前記第1の巻き方はフープ巻きであり、前記第2の巻き方はヘリカル巻きである、請求項1に記載の複合容器。   The composite container according to claim 1, wherein the first winding method is hoop winding, and the second winding method is helical winding. 前記補強部は、前記繊維と同一の材料からなる、請求項1または2に記載の複合容器。   The composite container according to claim 1, wherein the reinforcing portion is made of the same material as the fiber. 前記補強部の外周面に、前記補強部の外周面上に巻装された前記繊維が滑るのを阻止する繊維保持部を有する、請求項1ないし3のいずれか1項に記載の複合容器。   The composite container according to any one of claims 1 to 3, further comprising a fiber holding portion that prevents the fibers wound on the outer peripheral surface of the reinforcing portion from slipping on the outer peripheral surface of the reinforcing portion. 前記繊維保持部は前記補強部の外周面に形成された凸部または凹部である、請求項4に記載の複合容器。   The composite container according to claim 4, wherein the fiber holding portion is a convex portion or a concave portion formed on the outer peripheral surface of the reinforcing portion. 円筒形状の胴部及び前記胴部の両端部を塞ぐように配置された曲面形状のドーム部を備えたライナを有し、前記ライナに繊維を巻装して形成される複合容器の製造方法において、
端面における外径が前記胴部の外径よりも大きい補強部を、前記端面が前記胴部の前記両端部の外周縁に位置し、かつ前記ドーム部を覆うようにして設ける工程と、
前記胴部の外周面上であってかつ前記各補強部の前記端面に挟まれた領域に、前記繊維が第1の巻き方によって前記補強部の前記外径と同一の巻厚になるまで巻装する工程と、
前記領域に巻装された前記繊維上及び前記補強部の外周面上に、前記繊維がさらに第1の巻き方とは異なる第2の巻き方によって巻装する工程と、を含む複合容器の製造方法。
In a manufacturing method of a composite container, which includes a liner having a cylindrical body and a curved dome disposed so as to close both ends of the body, and a fiber is wound around the liner. ,
A step of providing a reinforcing portion having an outer diameter at the end surface larger than the outer diameter of the body portion so that the end surface is positioned at the outer peripheral edge of the both end portions of the body portion and covering the dome portion;
Winding the fiber on the outer peripheral surface of the body portion and sandwiched between the end surfaces of the reinforcing portions until the fiber has the same winding thickness as the outer diameter of the reinforcing portion by the first winding method. A process of wearing,
A step of winding the fiber on the fiber wound around the region and on the outer peripheral surface of the reinforcing portion by a second winding method different from the first winding method. Method.
前記第1の巻き方はフープ巻きであり、前記第2の巻き方はヘリカル巻きである、請求項6に記載の複合容器の製造方法。   The method of manufacturing a composite container according to claim 6, wherein the first winding method is hoop winding, and the second winding method is helical winding.
JP2009085430A 2009-03-31 2009-03-31 Composite container and method for manufacturing composite container Active JP5238577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085430A JP5238577B2 (en) 2009-03-31 2009-03-31 Composite container and method for manufacturing composite container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085430A JP5238577B2 (en) 2009-03-31 2009-03-31 Composite container and method for manufacturing composite container

Publications (2)

Publication Number Publication Date
JP2010236614A JP2010236614A (en) 2010-10-21
JP5238577B2 true JP5238577B2 (en) 2013-07-17

Family

ID=43091123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085430A Active JP5238577B2 (en) 2009-03-31 2009-03-31 Composite container and method for manufacturing composite container

Country Status (1)

Country Link
JP (1) JP5238577B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741006B2 (en) * 2011-01-21 2015-07-01 トヨタ自動車株式会社 High pressure tank manufacturing method and high pressure tank
JP6081860B2 (en) * 2013-05-09 2017-02-15 Jxエネルギー株式会社 Composite container, composite container manufacturing method, and composite container manufacturing system
JP6468174B2 (en) * 2015-12-09 2019-02-13 トヨタ自動車株式会社 High pressure tank
KR101755927B1 (en) * 2015-12-10 2017-07-07 현대자동차주식회사 Non-cylinder type composite pressure vessel of vehicle
JP2017110669A (en) * 2015-12-14 2017-06-22 トヨタ自動車株式会社 Tank manufacturing method and tank
KR101772581B1 (en) * 2015-12-15 2017-08-31 주식회사 경동원 Cross stacked insulation panel installation structure of independent type liquefied gas storage tank
JP6571582B2 (en) 2016-04-08 2019-09-04 トヨタ自動車株式会社 Tank manufacturing method
KR101925679B1 (en) * 2016-07-16 2018-12-06 주식회사 디오스 wire wound pressure vessel
JP6726408B2 (en) * 2017-03-16 2020-07-22 トヨタ自動車株式会社 High pressure tank manufacturing method and high pressure tank
JP6729472B2 (en) * 2017-04-20 2020-07-22 株式会社豊田自動織機 Fiber structure, pressure vessel, and method for manufacturing fiber structure
DE102017208492B4 (en) * 2017-05-19 2020-07-30 Nproxx B.V. Pole cap reinforced pressure vessel
JP6881147B2 (en) * 2017-08-10 2021-06-02 トヨタ自動車株式会社 High-pressure container and fuselage reinforcement layer wrapping method
DE102018110049B4 (en) * 2018-04-26 2020-07-02 Nproxx B.V. Process for the production of a fiber-reinforced pressure vessel with polar cap reinforcement
DE102018222316B4 (en) * 2018-12-19 2021-08-19 Audi Ag Method for producing a pressure tank for storing fuel in a motor vehicle and a pressure tank produced therewith
JP7259734B2 (en) 2019-12-25 2023-04-18 トヨタ自動車株式会社 High-pressure tank manufacturing method
DE102020103679A1 (en) * 2020-02-12 2021-01-21 Audi Aktiengesellschaft Gas cylinder for a motor vehicle
CN113915516B (en) * 2021-08-25 2022-10-25 江苏国富氢能技术装备股份有限公司 Carbon fiber fully-wound gas cylinder and carbon fiber winding method thereof
CN114033962B (en) * 2021-11-24 2023-04-07 陕西碳能新材料有限责任公司 Hydrogen storage cylinder for explosion-proof hydrogen fuel cell automobile and manufacturing method thereof
CN114183684B (en) * 2021-11-26 2023-06-09 江苏国富氢能技术装备股份有限公司 Additive reinforcement and carbon fiber winding method for carbon fiber fully-wound gas cylinder
DE102022110846A1 (en) 2022-05-03 2023-11-09 Thomas Bäumer Method for producing a pole cap reinforcement and a pressure vessel and pressure vessel with pole cap reinforcement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144172A (en) * 2002-10-23 2004-05-20 Toyota Industries Corp Pressure vessel
JP2004263827A (en) * 2003-03-04 2004-09-24 Mitsubishi Rayon Co Ltd Pressure container, and method for manufacturing the same
JP2005106142A (en) * 2003-09-30 2005-04-21 Mitsubishi Heavy Ind Ltd Pressure vessel
JP2006307947A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Manufacturing method for high pressure gas storage vessel and high pressure gas storage vessel

Also Published As

Publication number Publication date
JP2010236614A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5238577B2 (en) Composite container and method for manufacturing composite container
JP4588307B2 (en) Pressure vessel manufacturing method
CN103620291B (en) High-pressure gas tank and manufacturing method of the high-pressure gas tank
US10487981B2 (en) High-pressure composite vessel and the method of manufacturing high-pressure composite vessel
KR102455454B1 (en) High-pressure tank and method for manufacturing high-pressure tank
JP6652087B2 (en) Gas tank and its manufacturing method
JP2016142349A (en) Pressure container
JP2012149739A (en) Method for manufacturing high-pressure tank, and high-pressure tank
JP2008126615A (en) Method for manufacturing fiber-reinforced plastic member
US11298868B2 (en) Manufacturing method of reinforced layer
JP2017512286A (en) Pressure vessel
JP2018146001A (en) High-pressure tank
JP2008286297A (en) High-pressure tank manufacturing method
CN111251631A (en) High pressure hydrogen storage cylinder and method of manufacturing the same
JP6337398B2 (en) Manufacturing method of composite container and composite container
JP2004263827A (en) Pressure container, and method for manufacturing the same
JP2010249147A (en) Frp tank and method for manufacturing the same
JP2005113971A (en) Liner for pressure resistant container
JP2017140809A (en) Method for manufacturing tank
JP2020142418A (en) Method for manufacturing pressure vessel and pressure vessel
JP6726408B2 (en) High pressure tank manufacturing method and high pressure tank
JP4431351B2 (en) Pressure vessel manufacturing method
CN115992928A (en) High-pressure tank and method for manufacturing high-pressure tank
JP2005113963A (en) Pressure resistant container manufacturing method
JP2014219066A (en) Composite container, composite container manufacturing method, and composite container manufacturing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5238577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250