JPWO2018061787A1 - Crown steel plate, method for producing the same, and crown - Google Patents

Crown steel plate, method for producing the same, and crown Download PDF

Info

Publication number
JPWO2018061787A1
JPWO2018061787A1 JP2018542371A JP2018542371A JPWO2018061787A1 JP WO2018061787 A1 JPWO2018061787 A1 JP WO2018061787A1 JP 2018542371 A JP2018542371 A JP 2018542371A JP 2018542371 A JP2018542371 A JP 2018542371A JP WO2018061787 A1 JPWO2018061787 A1 JP WO2018061787A1
Authority
JP
Japan
Prior art keywords
crown
less
steel plate
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018542371A
Other languages
Japanese (ja)
Other versions
JP6601571B2 (en
Inventor
房亮 假屋
房亮 假屋
智也 平口
智也 平口
克己 小島
克己 小島
雅資 梅本
雅資 梅本
雅巳 辻本
雅巳 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2018061787A1 publication Critical patent/JPWO2018061787A1/en
Application granted granted Critical
Publication of JP6601571B2 publication Critical patent/JP6601571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D41/00Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
    • B65D41/02Caps or cap-like covers without lines of weakness, tearing strips, tags, or like opening or removal devices
    • B65D41/10Caps or cap-like covers adapted to be secured in position by permanent deformation of the wall-engaging parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

薄肉化しても十分な耐圧強度と成形性を備える王冠用鋼板、その製造方法および王冠を提供すること。所定の成分組成を有し、N total−(N as AlN)が0.0090%以上0.0170%以下であり、圧延方向断面において炭化物の最大粒径が2.0μm以下であり、圧延方向の降伏強度が420MPa以上600MPa以下である王冠用鋼板。所定の成分組成を有する鋼素材を、仕上圧延後に所定温度で巻取る熱間圧延工程と、一次冷間圧延工程と、加熱過程での500〜600℃の温度域Aを10℃/s以上30℃/s以下の平均加熱速度で加熱し、620〜740℃の温度域の焼鈍温度Bで焼鈍し、前記焼鈍温度Bから20℃/s以上の平均冷却速度で400℃以上580℃以下の温度域の冷却停止温度Cまで冷却し、前記平均冷却速度での冷却を停止してから前記400℃以上580℃以下の温度域に滞留させる滞留時間を30秒以上90秒以下とする連続焼鈍工程と、1.0〜12%の圧下率で冷間圧延する二次冷間圧延工程と、を有する王冠用鋼板の製造方法。To provide a crown steel plate having sufficient pressure strength and formability even when it is thinned, a manufacturing method thereof, and a crown. N total- (N as AlN) is 0.0090% or more and 0.0170% or less in the rolling direction cross section, and the maximum grain size of the carbide is 2.0 μm or less in the rolling direction. A steel plate for a crown having a yield strength of 420 MPa or more and 600 MPa or less. A hot rolling process in which a steel material having a predetermined component composition is wound at a predetermined temperature after finish rolling, a primary cold rolling process, and a temperature range A of 500 to 600 ° C. in the heating process is 10 ° C./s or more and 30 or more. Heated at an average heating rate of ℃ / s or less, annealed at an annealing temperature B in a temperature range of 620 to 740 ° C, and a temperature of 400 ° C or more and 580 ° C or less from the annealing temperature B at an average cooling rate of 20 ° C / s or more. A continuous annealing step of cooling to a cooling stop temperature C of the region and stopping the cooling at the average cooling rate, and then retaining the residence time in the temperature range of 400 ° C. to 580 ° C. for 30 seconds to 90 seconds. And a secondary cold rolling step of cold rolling at a rolling reduction of 1.0 to 12%.

Description

本発明はビール瓶などに用いられる、形状均一性、内圧に対する耐圧強度に優れる王冠用鋼板およびその製造方法並びに前記王冠用鋼板を用いて作成された王冠に関するものである。   The present invention relates to a crown steel plate having excellent shape uniformity and pressure resistance against internal pressure, a manufacturing method thereof, and a crown made using the crown steel plate, which are used for beer bottles and the like.

清涼飲料水や酒類などの飲料用の容器には、王冠と呼ばれる金属製の栓が広く用いられている。一般的に、王冠は薄鋼板を素材としてプレス成形によって製造され、瓶の口を塞ぐ円盤状の部分と、その周囲に設けられた襞状の部分からなり、襞状の部分を瓶の口にかしめることによって瓶を密封する。   A metal stopper called a crown is widely used in containers for beverages such as soft drinks and alcoholic beverages. In general, a crown is manufactured by press-molding a thin steel plate, and consists of a disk-shaped part that closes the mouth of the bottle and a bowl-shaped part around it. Seal the jar by caulking.

ビールや炭酸飲料などを充填する瓶では、その内容物により内圧が生じる。温度の変化などで内圧が高まった場合に、王冠が変形して瓶の密封が破られ内容物が漏洩することがないように、王冠には、高い耐圧強度が必要である。また、素材の強度が十分であっても、成形性に乏しい場合は襞の形状が不均一になり、瓶の口にかしめても十分な密封性が得られない場合が生じるため、成形性に優れていることも必要である。   In a bottle filled with beer or carbonated drink, an internal pressure is generated by the contents. The crown needs to have high pressure strength so that when the internal pressure increases due to temperature changes or the like, the crown will not deform and the bottle will not be sealed and the contents will not leak. In addition, even if the strength of the material is sufficient, if the moldability is poor, the shape of the jar will be non-uniform, and even if it is caulked to the mouth of the bottle, sufficient sealing performance may not be obtained, so moldability is improved. It must also be excellent.

王冠の素材用の薄鋼板には、主にSR(Single Reduced)鋼板が用いられている。これは、冷間圧延により鋼板を薄くした後に、焼鈍を施し、調質圧延を行うものである。従来の王冠用鋼板の板厚は、一般的に0.22mm以上であり、食品や飲料の缶などに用いる軟鋼を素材としたSR材を適用することで十分な耐圧強度と成形性を確保することが可能であった。   SR (Single Reduced) steel plates are mainly used as thin steel plates for the crown material. In this method, after thinning a steel sheet by cold rolling, annealing is performed and temper rolling is performed. The sheet thickness of conventional steel plates for crowns is generally 0.22 mm or more, and sufficient compressive strength and formability are ensured by applying SR material made of mild steel used for food and beverage cans and the like. It was possible.

近年、缶用鋼板と同様に、王冠用鋼板についてもコストダウンを目的とした薄肉化の要求が高まっている。王冠用鋼板の板厚が0.20mm以下になると、従来のSR材で製造した王冠では耐圧強度が不足する。耐圧強度の確保のためには、焼鈍のあとに二次冷間圧延を施して、薄肉化に伴う強度の低下を補う加工硬化を利用できるDR(Double Reduced)鋼板の適用が考えられるが、二次冷間圧延時の圧下率を大きくすると鋼板が硬質となるため成形性が低下する。王冠成形では、成形初期で中央部がある程度絞られ、その後、外縁部が襞の形状に成形される。成形性が低い鋼板の場合、襞の形状が不均一となる形状不良が生じることがある。襞の形状が不均一な王冠は、瓶に打栓されても耐圧強度が得られず内容物の漏洩が生じ、蓋としての役割を果たさないといった問題がある。また、襞の形状が均一であっても、鋼板強度が低い場合には、耐圧強度不足により王冠が外れる可能性がある。さらに王冠用鋼板の薄肉化にともない耐圧強度を評価する方法が厳しくなっている。従来の耐圧強度評価は、王冠を瓶にかしめて王冠上部よりエアーを注入し、一定速度で瓶の内圧を上昇させて王冠がはずれる圧力を測定する方法であったが、近年では、内圧を上昇させた後、所定の圧力で一定時間保持し、さらに内圧を上昇させる方法となっている。   In recent years, as with steel plates for cans, there is an increasing demand for thinning the crown steel plate for the purpose of reducing costs. When the thickness of the steel plate for the crown is 0.20 mm or less, the crown manufactured with the conventional SR material has insufficient pressure resistance. In order to ensure the compressive strength, it is conceivable to apply a DR (Double Reduced) steel sheet that can be subjected to secondary cold rolling after annealing to make use of work hardening that compensates for the decrease in strength accompanying thinning. If the rolling reduction during the next cold rolling is increased, the steel sheet becomes hard and the formability is lowered. In crown molding, the central part is squeezed to some extent at the initial stage of molding, and then the outer edge part is molded into a bowl shape. In the case of a steel sheet with low formability, there may be a shape defect in which the shape of the ridge is not uniform. A crown with a non-uniform shape of the heel has a problem that even if it is plugged into a bottle, pressure resistance cannot be obtained, the contents leak, and it does not serve as a lid. Even if the shape of the ridge is uniform, if the steel plate strength is low, the crown may be removed due to insufficient pressure resistance. Furthermore, the method of evaluating the pressure strength is becoming stricter as the crown steel sheet is made thinner. The conventional pressure-resistant strength evaluation was a method of measuring the pressure at which the crown comes off by increasing the internal pressure of the bottle at a constant speed by caulking the crown into the bottle and injecting air from the top of the crown. Then, the pressure is maintained at a predetermined pressure for a certain time, and the internal pressure is further increased.

これまで、薄肉化時の強度と成形性の両者に優れる鋼板を得るために、以下のような技術が提案されている。   In the past, the following techniques have been proposed in order to obtain a steel sheet that is excellent in both strength and formability during thinning.

特許文献1には、質量%で、N:0.0040〜0.0300%、Al:0.005〜0.080%を含有し、JIS5号試験片による引張試験における0.2%耐力:430MPa以下、全伸び:15〜40%、内部摩擦によるQ−1:0.0010以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板が開示されている。Patent Document 1 contains, in mass%, N: 0.0040 to 0.0300%, Al: 0.005 to 0.080%, 0.2% proof stress in a tensile test using a JIS No. 5 test piece: 430 MPa. Hereinafter, an ultrathin soft steel plate for containers excellent in can strength and can moldability of 0.4 mm or less, characterized by total elongation of 15 to 40% and Q −1 due to internal friction of 0.0010 or more. It is disclosed.

特許文献2には、質量%で、C:0.001〜0.080%、Si:0.003〜0.100%、Mn:0.10〜0.80%、P:0.001〜0.100%、S:0.001〜0.020%、Al:0.005〜0.100%、N:0.0050〜0.0150%、B:0.0002〜0.0050%を含有し、圧延方向断面において結晶粒の展伸度が5.0以上である結晶粒を面積率にして0.01〜1.00%含むことを特徴とする高強度高加工性缶用鋼板が開示されている。   In Patent Document 2, in mass%, C: 0.001 to 0.080%, Si: 0.003 to 0.100%, Mn: 0.10 to 0.80%, P: 0.001 to 0 100%, S: 0.001 to 0.020%, Al: 0.005 to 0.100%, N: 0.0050 to 0.0150%, B: 0.0002 to 0.0050% Further disclosed is a steel plate for a high-strength and high-workability can characterized by containing 0.01 to 1.00% in terms of area ratio of crystal grains having a degree of elongation of crystal grains of 5.0 or more in the cross section in the rolling direction. ing.

特許文献3には、質量%で、C:0.001〜0.040%、Si:0.003〜0.100%、Mn:0.10〜0.80%、P:0.001〜0.100%、S:0.001〜0.020%、Al:0.005〜0.100%、N:0.015%超え0.020%以下、B:0.0002〜0.0050%を含有し、AlNとして存在するNの含有量が0.0060%以下であり、圧延方向断面において、平均結晶粒径が5.00μm以上、結晶粒の展伸度が2.50以下とし、引張強度550MPa以上でかつ破断伸びが7%以上の高強度高加工性缶用鋼板が開示されている。   In Patent Document 3, in mass%, C: 0.001 to 0.040%, Si: 0.003 to 0.100%, Mn: 0.10 to 0.80%, P: 0.001 to 0 100%, S: 0.001 to 0.020%, Al: 0.005 to 0.100%, N: more than 0.015% and 0.020% or less, B: 0.0002 to 0.0050% The content of N contained as AlN is 0.0060% or less, and in the cross section in the rolling direction, the average crystal grain size is 5.00 μm or more, the elongation of crystal grains is 2.50 or less, and the tensile strength A steel sheet for a high-strength, high-workability can that has a breaking elongation of 7% or more and 550 MPa or more is disclosed.

特開2001−49383号公報JP 2001-49383 A 特開2013−28842号公報JP 2013-28842 A 特開2012−72439号公報JP 2012-72439 A

しかしながら、上記従来技術を王冠用鋼板の薄肉化に適用した場合、何れも王冠としての性能が確保できない問題点を抱えている。特許文献1に記載の鋼板は、軟質であり、Nを多く含有するため、必要な強度を得るために二次冷間圧下率を大きくすると異方性も大きくなり、成形性が損なわれる。加えて、特許文献1では、2ピース缶に製缶加工後のフランジ成形性および缶強度は評価しているが、王冠成形および王冠を瓶に打栓した後の王冠耐圧強度に関しては何ら触れられていない。また、特許文献2に記載の鋼板も同様に、Nにより鋼板強度を高めているものの、王冠に求められる耐圧強度と成形性を両立することは難しい。特許文献3に記載の鋼板では、固溶N量、平均結晶粒径および結晶粒の展伸度の制御により鋼板強度の高強度化と加工性の両立を図っているものの、王冠成形とは加工方法が異なる曲げ加工主体の缶胴成形を施しているため、絞り加工が主体である王冠の成形には適さない。   However, when the above-mentioned conventional techniques are applied to the thinning of the steel plate for crowns, any of them has a problem that the performance as a crown cannot be secured. Since the steel sheet described in Patent Document 1 is soft and contains a large amount of N, increasing the secondary cold rolling reduction to obtain the required strength increases the anisotropy and impairs formability. In addition, Patent Document 1 evaluates flange formability and can strength after making cans into a two-piece can, but nothing is said about crown molding and crown pressure strength after the crown is plugged into a bottle. Not. Similarly, the steel sheet described in Patent Document 2 is also strengthened by N, but it is difficult to achieve both the pressure strength required for the crown and formability. In the steel sheet described in Patent Document 3, although the solid solution N amount, the average crystal grain diameter, and the elongation of the crystal grains are controlled to achieve both high strength and workability of the steel sheet, crown molding is a process. Since the can body is mainly molded by different bending methods, it is not suitable for forming crowns, which are mainly drawn.

本発明は、上記課題に鑑みてなされたものであって、その目的は、薄肉化しても十分な耐圧強度と成形性を備える王冠用鋼板、その製造方法および王冠を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the steel plate for crowns provided with sufficient pressure strength and a formability even if it thins, its manufacturing method, and a crown.

[1]質量%で、C:0.02%以上0.08%以下、Si:0.02%以下、Mn:0.10%以上0.60%以下、P:0.020%以下、S:0.020%以下、Al:0.01%以上0.06%以下、N:0.0100%以上0.0180%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、N total−(N as AlN)が0.0090%以上0.0170%以下であり、圧延方向断面において炭化物の最大粒径が2.0μm以下であり、圧延方向の降伏強度が420MPa以上600MPa以下であることを特徴とする王冠用鋼板。ただし、前記N totalは、Nの総量であり、前記N as AlNは、AlNとして存在するN量である。
[2]前記[1]に記載の成分組成を有する鋼素材の熱間圧延での仕上圧延後に670℃以下の温度で巻取る熱間圧延工程と、前記熱間圧延工程後に、冷間圧延する一次冷間圧延工程と、前記冷間圧延工程後に、加熱過程での500〜600℃の温度域Aを10℃/s以上30℃/s以下の平均加熱速度で加熱し、620〜740℃の温度域の焼鈍温度Bで焼鈍し、前記焼鈍温度Bから20℃/s以上の平均冷却速度で400℃以上580℃以下の温度域の冷却停止温度Cまで冷却し、前記平均冷却速度での冷却を停止してから前記400℃以上580℃以下の温度域に滞留させる滞留時間を30秒以上90秒以下とする連続焼鈍工程と、前記連続焼鈍工程後に、1.0〜12%の圧下率で冷間圧延する二次冷間圧延工程と、を有することを特徴とする王冠用鋼板の製造方法。
[3]前記[1]に記載の王冠用鋼板を用いて作成されたことを特徴とする王冠。
[4]王冠側面部の断面硬度が180Hv以上220Hv以下であることを特徴とする前記[3]に記載の王冠。
[1] By mass%, C: 0.02% to 0.08%, Si: 0.02% or less, Mn: 0.10% to 0.60%, P: 0.020% or less, S : 0.020% or less, Al: 0.01% or more and 0.06% or less, N: 0.0100% or more and 0.0180% or less, with the remainder having a component composition consisting of Fe and inevitable impurities N total- (N as AlN) is 0.0090% or more and 0.0170% or less, the maximum grain size of carbide is 2.0 μm or less in the cross section in the rolling direction, and the yield strength in the rolling direction is 420 MPa or more and 600 MPa or less. A steel plate for a crown characterized by being. However, the N total is a total amount of N, and the N as AlN is an N amount existing as AlN.
[2] A hot rolling process in which the steel material having the component composition described in [1] is wound at a temperature of 670 ° C. or less after finish rolling in hot rolling, and cold rolling is performed after the hot rolling process. After the primary cold rolling step and the cold rolling step, the temperature range A of 500 to 600 ° C. in the heating process is heated at an average heating rate of 10 ° C./s to 30 ° C./s, and the temperature is 620 to 740 ° C. Annealing is performed at an annealing temperature B in the temperature range, and the cooling is performed from the annealing temperature B to a cooling stop temperature C in a temperature range of 400 ° C. to 580 ° C. at an average cooling rate of 20 ° C./s or more, and cooling at the average cooling rate A continuous annealing step in which the residence time for retaining in the temperature range from 400 ° C. to 580 ° C. is 30 seconds to 90 seconds and after the continuous annealing step, a rolling reduction of 1.0 to 12% Having a secondary cold rolling process for cold rolling Method of manufacturing a crown for steel sheet and butterflies.
[3] A crown produced by using the crown steel plate according to [1].
[4] The crown according to [3], wherein the cross-sectional hardness of the side surface portion of the crown is 180 Hv or more and 220 Hv or less.

本発明によれば、薄肉化しても十分な耐圧強度および成形性を備える王冠用鋼板、その製造方法および王冠を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it thins, the steel plate for crowns provided with sufficient pressure strength and a moldability, its manufacturing method, and a crown can be provided.

王冠側面部の断面硬度の測定方法を説明する図である。It is a figure explaining the measuring method of the cross-sectional hardness of a crown side part. 王冠の襞の形状を示す図である。It is a figure which shows the shape of the collar of a crown.

本発明に係る王冠用鋼板は、質量%で、C:0.02%以上0.08%以下、Si:0.02%以下、Mn:0.10%以上0.60%以下、P:0.020%以下、S:0.020%以下、Al:0.01%以上0.06%以下、N:0.0100%以上0.0180%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、N total−(N as AlN)が0.0090%以上0.0170%以下であり、圧延方向断面において炭化物の最大粒径が2.0μm以下であり、圧延方向の降伏強度が420MPa以上600MPa以下である。以下、本発明の王冠用鋼板について説明する。   The crown steel plate according to the present invention is, in mass%, C: 0.02% to 0.08%, Si: 0.02% or less, Mn: 0.10% to 0.60%, P: 0 0.020% or less, S: 0.020% or less, Al: 0.01% or more and 0.06% or less, N: 0.0100% or more and 0.0180% or less, and the balance from Fe and inevitable impurities N total- (N as AlN) is 0.0090% or more and 0.0170% or less, and the maximum grain size of carbide is 2.0 μm or less in the cross section in the rolling direction, yielding in the rolling direction. The strength is 420 MPa or more and 600 MPa or less. Hereinafter, the steel plate for crowns of the present invention will be described.

始めに、本発明に係る王冠用鋼板の成分組成について説明する。含有量の単位「%」は全て「質量%」である。   First, the component composition of the steel plate for crowns according to the present invention will be described. The unit of content “%” is all “mass%”.

〔Cの含有量:0.02%以上0.08%以下〕
Cの含有量が0.02%未満となると鋼板強度が低下し、王冠成形後の王冠側面部の断面硬度が低下し、耐圧強度が低下する。一方、Cの含有量が0.08%を超えると鋼板の強度が著しく高くなるため、成形した王冠の襞の形状が不均一になり、形状不良となる。また圧延方向断面における炭化物の最大粒径が大きくなるため、成形した王冠の襞の形状が不均一になり、形状不良となり、耐圧強度の低下を引き起こす。よって、Cの含有量は0.02%以上0.08%以下とする。Cの含有量は、好ましくは0.03%以上である。また、Cの含有量は、好ましくは、0.06%以下である。
[C content: 0.02% to 0.08%]
When the C content is less than 0.02%, the steel sheet strength decreases, the cross-sectional hardness of the crown side surface after crown forming decreases, and the pressure resistance decreases. On the other hand, if the content of C exceeds 0.08%, the strength of the steel sheet becomes remarkably high, so that the shape of the crown of the formed crown becomes non-uniform and the shape becomes defective. In addition, since the maximum grain size of the carbide in the cross section in the rolling direction is increased, the shape of the crown of the molded crown becomes non-uniform, resulting in a defective shape and a decrease in pressure strength. Therefore, the C content is 0.02% or more and 0.08% or less. The C content is preferably 0.03% or more. Further, the content of C is preferably 0.06% or less.

〔Siの含有量:0.02%以下〕
Siを多く含むとCと同様の理由により、王冠の成形性が損なわれる。また鋼板の表面処理性の劣化および耐食性の低下を招くため、Siの含有量は0.02%以下とする。また、Siの含有量の下限は特に限定されないが、過剰にSiを低下させることは製鋼コストの増大を招くため、Siの含有量は0.004%以上とすることが好ましい。
[Si content: 0.02% or less]
If a large amount of Si is contained, the moldability of the crown is impaired for the same reason as C. In addition, the Si content is set to 0.02% or less in order to cause deterioration of the surface treatment property and corrosion resistance of the steel plate. Further, the lower limit of the Si content is not particularly limited, but excessively lowering Si causes an increase in steelmaking costs, so the Si content is preferably 0.004% or more.

〔Mnの含有量:0.10%以上0.60%以下〕
Mnの含有量が0.10%未満となると、Sの含有量を低下させた場合でも熱間脆性を回避することが困難になり、連続鋳造時に表面割れなどの問題が生じる。よって、Mnの含有量は0.10%以上とする。一方、Mnもまた多く含むとCやSiと同様の理由により、王冠の成形性が損なわれる。よって、Mnの含有量は0.60%以下とする。より優れた耐圧強度が求められる場合にはMn含有量は0.20%以上が好ましい。
[Mn content: 0.10% or more and 0.60% or less]
When the Mn content is less than 0.10%, it becomes difficult to avoid hot brittleness even when the S content is reduced, and problems such as surface cracks occur during continuous casting. Therefore, the Mn content is 0.10% or more. On the other hand, if Mn is also contained in a large amount, the moldability of the crown is impaired for the same reason as C and Si. Therefore, the Mn content is set to 0.60% or less. When more excellent pressure strength is required, the Mn content is preferably 0.20% or more.

〔Pの含有量:0.020%以下〕
Pの含有量が0.020%を超えると、鋼板が硬質となり王冠の成形性が低下することに加えて、耐食性の低下が引き起こされる。よって、Pの含有量の上限値は0.020%とする。
[P content: 0.020% or less]
If the P content exceeds 0.020%, the steel sheet becomes hard and the formability of the crown decreases, and in addition, the corrosion resistance decreases. Therefore, the upper limit of the P content is 0.020%.

〔Sの含有量:0.020%以下〕
Sは、鋼板中で介在物を形成し、鋼板の熱間延性の低下、耐食性の劣化をもたらす有害な元素である。したがって、Sの含有量の上限値は0.020%とする。
[S content: 0.020% or less]
S is a harmful element that forms inclusions in the steel sheet and causes a decrease in hot ductility and corrosion resistance of the steel sheet. Therefore, the upper limit of the S content is 0.020%.

〔Alの含有量:0.01%以上0.06%以下〕
Alは、製鋼時の脱酸剤として必要な元素である。Al含有量が0.01%未満となると、脱酸が不十分となり介在物が増加し、王冠の成形性が劣化する。一方、Alは鋼中のNとAlNを形成し、鋼中の固溶Nを減少させる。Al含有量が0.06%超となると、後述するN total−(N as AlN)の量が十分に得られなくなり、鋼板強度が低下する。よって、Alの含有量は0.01%以上0.06%以下とする。好ましくはAlの含有量は0.01%以上0.04%以下とする。
[Al content: 0.01% or more and 0.06% or less]
Al is an element necessary as a deoxidizer during steelmaking. When the Al content is less than 0.01%, deoxidation is insufficient, inclusions increase, and the moldability of the crown deteriorates. On the other hand, Al forms N and AlN in the steel and reduces the solute N in the steel. When the Al content exceeds 0.06%, the amount of N total- (N as AlN) described later cannot be sufficiently obtained, and the steel sheet strength is lowered. Therefore, the Al content is 0.01% or more and 0.06% or less. Preferably, the Al content is 0.01% or more and 0.04% or less.

〔Nの含有量:0.0100%以上0.0180%以下〕
Nの含有量が0.0100%未満となると後述するN total−(N as AlN)の量が十分に得られず、鋼板強度が低くなり、耐圧強度が低下する。一方、Nの含有量が0.0180%を超えると鋼板強度が過剰に上昇し、王冠成形性の劣化を招き、耐圧強度が低下する。よって、Nの含有量は0.0100%以上0.0180%以下とする。より優れた耐圧強度を要求される場合には、N含有量は0.0135%以上が好ましい。
[N content: 0.0100% or more and 0.0180% or less]
If the N content is less than 0.0100%, the amount of N total- (N as AlN) described later cannot be sufficiently obtained, the steel plate strength is lowered, and the pressure strength is lowered. On the other hand, if the N content exceeds 0.0180%, the steel sheet strength increases excessively, leading to deterioration of the crown formability, and the pressure resistance decreases. Therefore, the N content is set to 0.0100% or more and 0.0180% or less. In the case where a higher pressure resistance is required, the N content is preferably 0.0135% or more.

〔N total−(N as AlN):0.0090%以上0.0170%以下〕
本発明において強度を確保するためには所望の固溶N量が必要である。本発明の鋼組成では鋼中Nは主にAlNとして存在すると考えられるため、Nの総量(N total)からAlNとして存在するN量(N as AlN)を差し引いた(N total−(N as AlN))を固溶N量とみなした。N total−(N as AlN)の含有量が0.0090%未満となると、鋼板の強度が低下し、耐圧強度が低くなる。一方、N total−(N as AlN)の含有量が0.0170%超となると鋼板強度が過度に上昇し、王冠成形性が低下し、耐圧強度が低くなる。したがって、N total−(N as AlN)の含有量は0.0090%以上0.0170%以下とする。好ましくは、0.0110%以上0.0170%以下とする。なお、AlNとして存在するN量は、例えば、10%のBr−メタノール溶液を用いてAlNの溶解抽出を行い、吸光光度法によりAlNとして存在するNの定量分析を実施することで確認することができる。
[N total- (N as AlN): 0.0090% or more and 0.0170% or less]
In order to ensure strength in the present invention, a desired amount of dissolved N is required. In the steel composition of the present invention, it is considered that N in steel is mainly present as AlN. Therefore, the N amount (N as AlN) present as AlN is subtracted from the total amount of N (N total) (N total- (N as AlN). )) Was regarded as the amount of dissolved N. When the content of N total- (N as AlN) is less than 0.0090%, the strength of the steel sheet is lowered and the pressure resistance is lowered. On the other hand, when the content of N total- (N as AlN) exceeds 0.0170%, the steel sheet strength increases excessively, the crown formability decreases, and the pressure resistance decreases. Therefore, the content of N total- (N as AlN) is set to 0.0090% or more and 0.0170% or less. Preferably, the content is 0.0110% or more and 0.0170% or less. The amount of N present as AlN can be confirmed by, for example, dissolving and extracting AlN using a 10% Br-methanol solution and performing quantitative analysis of N present as AlN by absorptiometry. it can.

残部はFeおよび不可避的不純物とする。   The balance is Fe and inevitable impurities.

次に、本発明に係る王冠用鋼板の組織について説明する。
本発明に係る王冠用鋼板は、炭化物を含む組織を有しており、圧延方向断面における炭化物の最大粒径が2.0μm以下とする。本発明での鋼組成では鋼中の炭化物は主にセメンタイトとして存在する。圧延方向断面における炭化物の最大粒径が2.0μmを超えると、成形した王冠の襞の形状が不均一になり、形状不良となり、耐圧強度の低下を引き起こす。この理由は定かではないが、以下のように推察される。王冠の襞部は、鋼板の圧延方向、圧延方向に直角な方向および板厚方向の各々の方向において引張および圧縮あるいは引張と圧縮の重畳されたひずみを受ける部位であるため、粗大な炭化物が存在すると成形中にひずみが局所的に集中して形状不良を生じると考えられる。なお、炭化物(セメンタイト)の最大粒径が0.3μm未満となると鋼板が過剰に高強度となり、王冠の成形性が損なわれるおそれがあるため、セメンタイトの最大粒径は0.3μm以上が好ましい。セメンタイトの金属組織は、鋼板圧延方向に平行な板厚断面を研磨後、腐食液(3体積%ナイタール)で腐食し、2000倍の倍率で10視野にわたり走査型電子顕微鏡(SEM)で板厚1/4位置(上記断面における、表面から板厚方向に1/4の位置)を観察し、SEMで撮影した組織写真を用いてセメンタイトを目視判定により特定し、各セメンタイト粒径について、画像解析にて各セメンタイトの面積を求めて、円相当径に換算し、おのおののセメンタイト粒径とした。10視野で最もサイズの大きなセメンタイト粒径を炭化物の最大粒径とした。
Next, the structure of the crown steel plate according to the present invention will be described.
The crown steel plate according to the present invention has a structure containing carbides, and the maximum particle size of carbides in the cross section in the rolling direction is 2.0 μm or less. In the steel composition of the present invention, carbides in the steel exist mainly as cementite. If the maximum grain size of the carbide in the cross section in the rolling direction exceeds 2.0 μm, the shape of the crown of the molded crown becomes non-uniform, resulting in a defective shape and a decrease in pressure strength. The reason for this is not clear, but is presumed as follows. Since the crown of the crown is a part that undergoes tension and compression, or tension and compression superimposed in the rolling direction of the steel sheet, the direction perpendicular to the rolling direction and the thickness direction, there is coarse carbide Then, it is thought that distortion concentrates locally during molding, resulting in a shape defect. Note that when the maximum particle size of carbide (cementite) is less than 0.3 μm, the steel sheet becomes excessively strong and the formability of the crown may be impaired. Therefore, the maximum particle size of cementite is preferably 0.3 μm or more. The cementite metallographic structure was corroded with a corrosive solution (3% by volume nital) after polishing a plate thickness cross-section parallel to the rolling direction of the steel plate, and with a scanning electron microscope (SEM) plate thickness of 1 at a magnification of 2000 × 10. / 4 position (in the above cross section, 1/4 position from the surface in the plate thickness direction), cementite was identified by visual judgment using a structural photograph taken with SEM, and each cementite particle size was analyzed for image analysis. Thus, the area of each cementite was obtained and converted to an equivalent circle diameter to obtain each cementite particle diameter. The largest cementite particle size in 10 fields of view was defined as the maximum particle size of the carbide.

次に、本発明に係る王冠用鋼板の機械的性質について説明する。
本発明の王冠用鋼板には、瓶の内圧に対して王冠が外れる事が無いような耐圧強度が求められる。従来用いられてきた王冠用鋼板の板厚は0.22mm以上であったが、板厚を0.20mm以下とする薄肉化にあたっては従来よりも高い強度が必要となる。鋼板の圧延方向の降伏強度が420MPa未満であると、上記のような薄肉化した王冠に十分な耐圧強度を付与することが困難である。一方、降伏強度が600MPaを超えると王冠の襞部の周方向の圧縮応力が高まり、王冠の成形初期において降伏強度が臨界座屈強度を上回るため、襞部に大きなしわが発生し、成形不良となる。したがって、圧延方向の降伏強度は420MPa以上600MPa以下とする。良好な王冠形状と耐圧強度を両立させるためには、降伏強度は、450MPa以上600MPa以下が好ましい。なお、降伏強度は「JIS Z 2241」に示される金属材料引張試験方法により測定できる。所望の降伏強度は、成分組成を調整し、熱間圧延の巻取り温度、冷間圧延後の平均加熱速度、焼鈍温度、焼鈍後の平均冷却速度を調整し、冷却停止温度、冷却停止後の保持時間を調整することで得ることができる。420MPa以上600MPa以下の降伏強度は、上記の成分組成とし、熱間圧延工程での巻取り温度を670℃以下とし、冷間圧延工程後の連続焼鈍工程において、加熱過程での500〜600℃の温度域Aの平均加熱速度を10℃/s以上30℃/s以下とし、620〜740℃の温度域の焼鈍温度Bで焼鈍し、前記焼鈍温度Bから20℃/s以上の平均冷却速度で400℃以上580℃以下の温度域の冷却停止温度Cまで冷却し、前記平均冷却速度での冷却を停止してから前記400℃以上580℃以下の温度域に滞留させる滞留時間を30秒以上90秒以下とし、1.0〜12%の圧下率で二次冷間圧延することで得ることができる。なお、鋼板の圧延方向に垂直な方向(板幅方向)の降伏強度は、450MPa以上600MPa以下が好ましい。
Next, the mechanical properties of the crown steel plate according to the present invention will be described.
The crown steel plate of the present invention is required to have a pressure strength that prevents the crown from coming off against the internal pressure of the bottle. The steel plate for crowns that has been used conventionally has a thickness of 0.22 mm or more, but a higher strength than before is required in order to reduce the thickness to 0.20 mm or less. When the yield strength in the rolling direction of the steel sheet is less than 420 MPa, it is difficult to give sufficient pressure resistance to the thinned crown as described above. On the other hand, if the yield strength exceeds 600 MPa, the compressive stress in the circumferential direction of the crown of the crown increases, and the yield strength exceeds the critical buckling strength at the early stage of the crown molding. Become. Therefore, the yield strength in the rolling direction is set to 420 MPa or more and 600 MPa or less. In order to achieve both a good crown shape and pressure strength, the yield strength is preferably 450 MPa or more and 600 MPa or less. The yield strength can be measured by a metal material tensile test method shown in “JIS Z 2241”. The desired yield strength is adjusted by adjusting the component composition, adjusting the coiling temperature of hot rolling, the average heating rate after cold rolling, the annealing temperature, the average cooling rate after annealing, and the cooling stop temperature, after cooling stop. It can be obtained by adjusting the holding time. The yield strength of 420 MPa or more and 600 MPa or less is the above component composition, the coiling temperature in the hot rolling process is 670 ° C. or less, and the continuous annealing process after the cold rolling process is 500 to 600 ° C. in the heating process. The average heating rate in the temperature range A is 10 ° C./s or more and 30 ° C./s or less, annealing is performed at the annealing temperature B in the temperature range of 620 to 740 ° C., and the average cooling rate is 20 ° C./s or more from the annealing temperature B. Cooling to a cooling stop temperature C in a temperature range of 400 ° C. or more and 580 ° C. or less, stopping the cooling at the average cooling rate, and then retaining the residence time in the temperature range of 400 ° C. or more and 580 ° C. or less for 30 seconds or more 90 It can be obtained by performing the second cold rolling at a rolling reduction of 1.0 to 12%. Note that the yield strength in the direction perpendicular to the rolling direction of the steel sheet (sheet width direction) is preferably 450 MPa or more and 600 MPa or less.

王冠用鋼板は円形のブランクに打ち抜かれた後、プレス成形により王冠に成形される。成形後は、打栓機により王冠が瓶口にかしめられることで打栓後の密封性が保たれる。王冠成形後の側面部の強度が低いと、瓶の内圧が高まった状態で保持された場合に王冠が瓶口から外れる場合があり、瓶の内容物の漏洩につながる。王冠成形後の側面部強度は、断面のビッカース硬度値と密接な関係があり、王冠側面部の断面硬度が180Hv未満であると王冠側面部の強度が低くなり、密封性の低下、すなわち耐圧試験での耐圧強度が低下する。一方、王冠側面部の断面硬度が220Hv超であると王冠側面部の強度が過度に高くなるため、側面部に割れが発生する。良好な王冠形状と耐圧強度を両立させるためには、王冠側面部の断面硬度を180Hv以上220Hv以下とする。王冠側面部の断面硬度は190Hv以上220Hv以下が好ましい。   The crown steel plate is punched into a circular blank and then formed into a crown by press molding. After molding, the crown is caulked to the bottle mouth by a stopper, so that the sealing performance after the stopper is maintained. If the strength of the side surface after the crown molding is low, the crown may come off from the bottle mouth when held in a state where the internal pressure of the bottle is increased, leading to leakage of the contents of the bottle. The strength of the side surface after crown molding is closely related to the Vickers hardness value of the cross section. If the cross sectional hardness of the crown side surface is less than 180 Hv, the strength of the side surface of the crown is reduced and the sealing performance is reduced. The pressure strength at is reduced. On the other hand, when the cross-sectional hardness of the crown side surface portion is more than 220 Hv, the strength of the crown side surface portion becomes excessively high, so that the side surface portion is cracked. In order to achieve both a good crown shape and pressure resistance, the cross-sectional hardness of the crown side surface is set to 180 Hv or more and 220 Hv or less. The cross-sectional hardness of the crown side portion is preferably 190 Hv or higher and 220 Hv or lower.

なお、王冠側面部の断面硬度は「JIS Z 2244」に示される方法により評価することができる。本発明において、王冠側面部の断面硬度評価位置は、王冠の襞と襞の間の王冠側面部断面であり、測定方法は、ビッカース硬度である。本発明では、図1に示すように、評価位置は、王冠高さHの1/2の位置(H/2)を中心として、中心に1点、王冠上面1方向に2点および王冠下方方向に2点の合計5点とした。ビッカース圧痕荷重は100gfとし、各点の間隔は3d(d:圧痕の対角線長さ)とした。ビッカース硬度値の5点の平均値を王冠側面部の断面硬度とした。所望の断面硬度は、成分組成を調整し、熱間圧延の巻取り温度、冷間圧延後の平均加熱速度、焼鈍温度、焼鈍後の平均冷却速度を調整し、二次冷間圧延率を調整することで得られた王冠用鋼板から王冠を成形することで得ることができる。180Hv以上220Hv以下の王冠側面部の断面硬度は、上記の成分組成とし、熱間圧延工程での巻取り温度を670℃以下とし、一次冷間圧延工程後の連続焼鈍工程において、加熱過程での500〜600℃の温度域Aの平均加熱速度を10℃/s以上30℃/s以下とし、620〜740℃の温度域の焼鈍温度Bで焼鈍し、前記焼鈍温度Bから20℃/s以上の平均冷却速度で400℃以上580℃以下の温度域の冷却停止温度Cまで冷却し、前記平均冷却速度での冷却を停止してから前記400℃以上580℃以下の温度域に滞留させる滞留時間を30秒以上90秒以下とし、1.0〜12%の圧下率で二次冷間圧延することで得られた王冠用鋼板から王冠を成形することで得ることができる。   The cross-sectional hardness of the crown side surface can be evaluated by the method shown in “JIS Z 2244”. In the present invention, the cross-sectional hardness evaluation position of the crown side surface portion is the crown side surface cross section between the crown and the heel of the crown, and the measuring method is Vickers hardness. In the present invention, as shown in FIG. 1, the evaluation position is centered on a position (H / 2) that is 1/2 of the crown height H, one point at the center, two points in the direction of the crown upper surface, and the direction below the crown. The total score was 2 points. The Vickers indentation load was 100 gf, and the interval between the points was 3d (d: diagonal length of the indentation). The average value of the five Vickers hardness values was taken as the cross-sectional hardness of the crown side surface. The desired cross-sectional hardness is adjusted by adjusting the composition of components, adjusting the coiling temperature of hot rolling, the average heating rate after cold rolling, the annealing temperature, the average cooling rate after annealing, and adjusting the secondary cold rolling rate. It can be obtained by forming a crown from the crown steel plate obtained by doing so. The cross-sectional hardness of the crown side surface portion of 180 Hv or more and 220 Hv or less is the above component composition, the coiling temperature in the hot rolling process is 670 ° C. or less, and in the continuous annealing process after the primary cold rolling process, An average heating rate in a temperature range A of 500 to 600 ° C. is set to 10 ° C./s or more and 30 ° C./s or less, and annealing is performed at an annealing temperature B in a temperature range of 620 to 740 ° C., and 20 ° C./s or more from the annealing temperature B. The cooling time is cooled to the cooling stop temperature C in the temperature range of 400 ° C. or more and 580 ° C. or less at an average cooling rate of, and the residence time is retained in the temperature range of 400 ° C. or more and 580 ° C. or less after stopping cooling at the average cooling rate Can be obtained by forming a crown from a steel plate for a crown obtained by secondary cold rolling at a rolling reduction of 1.0 to 12%.

次に、本発明に係る王冠用鋼板の製造方法の一例について説明する。本発明の王冠用鋼板は、上記成分組成からなる鋼素材(鋼スラブ)を、熱間圧延での仕上圧延後に670℃以下の温度で巻取る熱間圧延工程と、前記熱間圧延工程後に、必要に応じて酸洗する酸洗工程と、前記酸洗工程後に、冷間圧延する一次冷間圧延工程と、前記一次冷間圧延工程後に、加熱過程での500〜600℃の温度域Aを10℃/s以上30℃/s以下の平均加熱速度で加熱し、620〜740℃の温度域の焼鈍温度Bで焼鈍し、前記焼鈍温度Bから20℃/s以上の平均冷却速度で400℃以上580℃以下の温度域の冷却停止温度Cまで冷却し、前記平均冷却速度での冷却を停止してから前記400℃以上580℃以下の温度域に滞留させる滞留時間を30秒以上90秒以下とする連続焼鈍工程と、前記連続焼鈍工程後に、1.0〜12%の圧下率で冷間圧延する二次冷間圧延工程を実施することで製造される。なお、以下の説明において、温度は鋼板等の表面温度とする。また、平均加熱速度および平均冷却速度は表面温度をもとに計算して得られた値とする。加熱過程での500〜600℃の温度域Aでの平均加熱速度は((600℃−500℃)/500℃から600℃の加熱時間)で表される。焼鈍温度Bから冷却停止温度Cまでの平均冷却速度は((焼鈍温度B−冷却停止温度C)/焼鈍温度Bから冷却停止温度Cまでの冷却時間)で表される。   Next, an example of a method for manufacturing a crown steel plate according to the present invention will be described. The steel plate for crowns of the present invention is a steel material (steel slab) having the above component composition, after a hot rolling step of finishing rolling in hot rolling at a temperature of 670 ° C. or lower, and after the hot rolling step, A pickling step for pickling as necessary, a primary cold rolling step for cold rolling after the pickling step, and a temperature range A of 500 to 600 ° C. in the heating process after the primary cold rolling step. Heat at an average heating rate of 10 ° C./s or more and 30 ° C./s or less, anneal at an annealing temperature B in a temperature range of 620 to 740 ° C., and 400 ° C. at an average cooling rate of 20 ° C./s or more from the annealing temperature B. Cooling to the cooling stop temperature C in the temperature range of 580 ° C. or lower and stopping the cooling at the average cooling rate, the residence time for staying in the temperature range of 400 ° C. or higher and 580 ° C. or lower is 30 seconds or longer and 90 seconds or shorter. After the continuous annealing step and the continuous annealing step, At a reduction ratio of .0~12% is prepared by carrying out the secondary cold rolling step of cold rolling. In the following description, the temperature is the surface temperature of a steel plate or the like. The average heating rate and average cooling rate are values obtained by calculation based on the surface temperature. The average heating rate in the temperature range A of 500 to 600 ° C. in the heating process is represented by ((600 ° C.-500 ° C.) / Heating time from 500 ° C. to 600 ° C.). The average cooling rate from the annealing temperature B to the cooling stop temperature C is represented by ((annealing temperature B−cooling stop temperature C) / cooling time from the annealing temperature B to the cooling stop temperature C).

本発明に係る王冠用鋼板を製造する際は、転炉などを用いた公知の方法により、溶鋼を上記の化学成分に調整し、例えば、連続鋳造法によりスラブとする。続いて、スラブを熱間で粗圧延することが好ましい。粗圧延の方法は限定しないが、N total−(N as AlN)を0.0090%以上確保するためには、スラブの加熱温度は1200℃以上であることが好ましい。また、N total−(N as AlN)をさらに高めるためには、スラブ加熱温度は1230℃以上であることがより好ましい。   When the crown steel plate according to the present invention is manufactured, the molten steel is adjusted to the above chemical components by a known method using a converter or the like, for example, to form a slab by a continuous casting method. Subsequently, it is preferable that the slab is roughly rolled hot. The method of rough rolling is not limited, but in order to secure N total- (N as AlN) of 0.0090% or more, the heating temperature of the slab is preferably 1200 ° C. or more. In order to further increase N total- (N as AlN), the slab heating temperature is more preferably 1230 ° C. or higher.

熱間圧延工程の仕上圧延温度は、圧延荷重の安定性の観点から850℃以上であることが好ましい。一方、必要以上に仕上圧延温度を高くすることは薄鋼板の製造を困難にする場合がある。具体的には、仕上圧延温度は850〜960℃の温度範囲内とすることが好ましい。   The finish rolling temperature in the hot rolling step is preferably 850 ° C. or higher from the viewpoint of rolling load stability. On the other hand, raising the finish rolling temperature more than necessary may make it difficult to produce a thin steel sheet. Specifically, the finish rolling temperature is preferably in the temperature range of 850 to 960 ° C.

熱間圧延工程の巻取り温度を670℃超とすると、巻取り後に鋼中に析出するAlN量が多くなり、N total−(N as AlN)の量が0.0090%未満となることで鋼板の圧延方向の降伏強度が420MPa未満となり、王冠成形後の王冠側面部の断面硬度が180Hv未満となる場合があり好ましくない。また、熱間圧延工程の巻取り温度を670℃超とすると、圧延方向断面における炭化物の最大粒径が2.0μm超となり、王冠成形時に王冠の襞の形状が不均一になり、形状不良を引き起こす場合があり好ましくない。したがって、熱間圧延工程の巻取り温度は670℃以下とする。N total−(N as AlN)の量を十分に確保するためには、熱間圧延工程の巻取り温度は640℃以下が好ましい。一方、巻取り温度が過度に低下すると、鋼板の圧延方向の降伏強度が600MPaを超えて、王冠成形後の王冠側面部の断面硬度が220Hvを超える場合があるため、巻取り温度は500℃以上が好ましい。   When the coiling temperature in the hot rolling process exceeds 670 ° C., the amount of AlN precipitated in the steel after winding increases, and the amount of N total- (N as AlN) is less than 0.0090%. The yield strength in the rolling direction is less than 420 MPa, and the cross-sectional hardness of the crown side surface after crown molding may be less than 180 Hv. Also, if the coiling temperature in the hot rolling process exceeds 670 ° C., the maximum particle size of carbide in the cross section in the rolling direction exceeds 2.0 μm, and the shape of the crown collar becomes uneven during crown molding, resulting in poor shape. It may cause, which is not preferable. Therefore, the coiling temperature in the hot rolling process is 670 ° C. or less. In order to ensure a sufficient amount of N total- (N as AlN), the coiling temperature in the hot rolling step is preferably 640 ° C. or lower. On the other hand, when the winding temperature is excessively lowered, the yield strength in the rolling direction of the steel sheet exceeds 600 MPa, and the cross-sectional hardness of the crown side surface after crown forming may exceed 220 Hv. Is preferred.

引き続き必要に応じて酸洗を行う。酸洗は、表層スケールが除去できればよく、特に条件を限定する必要はない。また、酸洗の代わりに、機械的除去等の方法を用いてもよい。   Continue pickling if necessary. The pickling is not particularly limited as long as the surface scale can be removed. Further, instead of pickling, a method such as mechanical removal may be used.

一次冷間圧延工程の圧下率は、特に限定しないが、二次冷間圧延後の鋼板の板厚を0.20mm以下にするためには85〜94%が好ましい。   The rolling reduction in the primary cold rolling step is not particularly limited, but is preferably 85 to 94% in order to make the thickness of the steel sheet after the secondary cold rolling 0.20 mm or less.

連続焼鈍工程において、500〜600℃の温度域Aを10℃/s以上30℃/s以下の平均加熱速度で加熱する。前記温度域Aを10℃/s未満の平均加熱速度で加熱すると、加熱中にAlNの析出が起こり、N total−(N as AlN)の量が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満となり、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が低下するため好ましくない。したがって、前記温度域Aにおける平均加熱速度は10℃/s以上とする。好ましくは12℃/s以上とする。また、前記温度域Aを30℃/sを超える平均加熱速度で加熱すると、鋼板が過剰に硬化し、王冠成形で形状が不均一になり、耐圧強度が低下する。そのため、前記温度域Aにおける平均加熱速度は30℃/s以下とする。また、前記温度域Aにおける平均加熱速度が30℃/sを超えると、焼鈍温度が制御しにくくなり、過加熱となるおそれがある、エネルギーコストが上昇するなどの問題が発生する場合がある。   In the continuous annealing step, the temperature range A of 500 to 600 ° C. is heated at an average heating rate of 10 ° C./s to 30 ° C./s. When the temperature range A is heated at an average heating rate of less than 10 ° C./s, precipitation of AlN occurs during the heating, and the amount of N total- (N as AlN) is less than 0.0090%, which is in the rolling direction of the steel sheet. The yield strength is less than 420 MPa, and the cross-sectional hardness of the crown side surface after crown molding is less than 180 Hv, which is not preferable because the pressure strength decreases. Therefore, the average heating rate in the temperature range A is 10 ° C./s or more. Preferably it shall be 12 degrees C / s or more. Moreover, when the temperature range A is heated at an average heating rate exceeding 30 ° C./s, the steel sheet is excessively hardened, the shape becomes non-uniform by crown molding, and the pressure strength decreases. Therefore, the average heating rate in the temperature range A is 30 ° C./s or less. On the other hand, when the average heating rate in the temperature range A exceeds 30 ° C./s, the annealing temperature becomes difficult to control, and there is a possibility that overheating may occur and the energy cost increases.

焼鈍温度Bは、620〜740℃の温度域とする。焼鈍温度Bが620℃未満となると、不完全な再結晶組織に起因して鋼板が硬質となるため、鋼板の圧延方向の降伏強度が600MPa超となり、王冠成形後の王冠側面部の断面硬度が220Hv超となり、王冠成形性が劣り、耐圧強度が低下する。一方、焼鈍温度Bが740℃超となると、焼鈍中に溶解した炭化物に起因するCが粒界へ偏析、凝集し、冷却後の圧延方向断面における炭化物の最大粒径が2.0μm超となり、王冠の成形において襞の形状が不均一になり、耐圧強度が低下する。また連続焼鈍においてヒートバックルなどの通板トラブルが発生しやすくなり、好ましくない。したがって、焼鈍温度Bは、620〜740℃の温度域とする。王冠の成形性と耐圧強度を良好なバランスで両立させるためには焼鈍温度Bは、640℃以上が好ましい。また、焼鈍温度Bは、720℃以下が好ましい。   The annealing temperature B is set to a temperature range of 620 to 740 ° C. When the annealing temperature B is less than 620 ° C., the steel sheet becomes hard due to an incomplete recrystallized structure, so the yield strength in the rolling direction of the steel sheet exceeds 600 MPa, and the cross-sectional hardness of the crown side surface after crown forming Over 220 Hv, the crown moldability is inferior, and the pressure strength is reduced. On the other hand, when the annealing temperature B exceeds 740 ° C., C due to the carbide dissolved during annealing segregates and aggregates at the grain boundary, and the maximum particle size of the carbide in the rolling direction cross section after cooling becomes more than 2.0 μm, In the formation of the crown, the shape of the heel becomes non-uniform and the pressure strength decreases. Further, in continuous annealing, troubles such as a heat buckle are likely to occur, which is not preferable. Therefore, the annealing temperature B is set to a temperature range of 620 to 740 ° C. The annealing temperature B is preferably 640 ° C. or higher in order to achieve a good balance between the moldability of the crown and the pressure strength. The annealing temperature B is preferably 720 ° C. or lower.

焼鈍工程での冷却においては、焼鈍温度Bから20℃/s以上の平均冷却速度で400℃以上580℃以下の温度域の冷却停止温度Cまで冷却する。平均冷却速度が20℃/s未満の場合、冷却中にAlNが過度に析出し、N total−(N as AlN)の量が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満となり、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が低下する場合がある。したがって、平均冷却速度は20℃/s以上とする。好ましくは40℃/s以上とする。平均冷却速度の上限はとくに限定するものではないが、平均冷却速度が150℃/sを超えると、N total−(N as AlN)による鋼板強度の上昇が飽和するだけでなく、フェライト粒内への過度な炭化物の析出に起因して、延性が低下し、王冠成形で割れが発生する場合があるため、平均冷却速度は150℃/s以下が好ましい。より好ましくは平均冷却速度は120℃/s以下とする。   In the cooling in the annealing step, cooling is performed from the annealing temperature B to a cooling stop temperature C in a temperature range of 400 ° C. or more and 580 ° C. or less at an average cooling rate of 20 ° C./s or more. When the average cooling rate is less than 20 ° C./s, AlN is excessively precipitated during cooling, the amount of N total- (N as AlN) is less than 0.0090%, and the yield strength in the rolling direction of the steel sheet is less than 420 MPa. Thus, the cross-sectional hardness of the side surface portion of the crown after crown molding becomes less than 180 Hv, and the pressure resistance may be reduced. Therefore, an average cooling rate shall be 20 degrees C / s or more. Preferably, it is 40 ° C./s or more. The upper limit of the average cooling rate is not particularly limited, but when the average cooling rate exceeds 150 ° C./s, not only the increase in steel sheet strength due to N total- (N as AlN) is saturated, but also into the ferrite grains. The average cooling rate is preferably 150 ° C./s or less because ductility may be reduced due to excessive carbide precipitation and cracking may occur in crown molding. More preferably, the average cooling rate is 120 ° C./s or less.

冷却停止温度Cは、400℃以上580℃以下の温度域とする。冷却停止温度が580℃より高いと、AlNが過度に析出し、N total−(N as AlN)の量が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満となり、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が低下する場合がある。好ましくは、冷却停止温度は550℃以下とする。冷却停止温度の下限は400℃とする。冷却停止温度が過剰に低くなると、鋼板が過剰に硬化し、王冠成形で形状が不均一になり、耐圧強度が低下する場合がある。好ましくは、冷却停止温度は450℃以上とする。   The cooling stop temperature C is a temperature range of 400 ° C. or higher and 580 ° C. or lower. When the cooling stop temperature is higher than 580 ° C., AlN is excessively precipitated, the amount of N total- (N as AlN) is less than 0.0090%, and the yield strength in the rolling direction of the steel sheet is less than 420 MPa. In some cases, the cross-sectional hardness of the side surface portion of the crown becomes less than 180 Hv, and the compressive strength decreases. Preferably, the cooling stop temperature is 550 ° C. or lower. The lower limit of the cooling stop temperature is 400 ° C. If the cooling stop temperature is excessively low, the steel sheet is excessively hardened, the shape becomes non-uniform by crown molding, and the pressure resistance may be reduced. Preferably, the cooling stop temperature is 450 ° C. or higher.

前記平均冷却速度での冷却を停止した後の工程においては、400℃以上580℃以下の温度域にある滞留時間を30秒以上90秒以下とする。400℃以上580℃以下の温度域における滞留時間が90秒を超えると、鋼中の炭化物へCが拡散することで炭化物が成長し、圧延方向断面における炭化物の最大粒径が2.0μm超となり、王冠成形時において襞の形状が不均一になり、耐圧強度が低下する。良好な形状を確保するためには、400℃以上580℃以下の温度域における滞留時間は75秒以下とすることが好ましい。また、400℃以上580℃以下の温度域における滞留時間の下限は30秒以上とする。滞留時間が30秒未満となると、鋼板が過剰に硬化し、王冠成形で形状が不均一になり、耐圧強度が低下する。   In the step after the cooling at the average cooling rate is stopped, the residence time in the temperature range of 400 ° C. or more and 580 ° C. or less is set to 30 seconds or more and 90 seconds or less. When the residence time in the temperature range of 400 ° C. or higher and 580 ° C. or lower exceeds 90 seconds, the carbide grows as C diffuses into the carbide in the steel, and the maximum particle size of the carbide in the cross section in the rolling direction exceeds 2.0 μm. When forming a crown, the shape of the heel becomes non-uniform, and the pressure resistance decreases. In order to ensure a good shape, the residence time in the temperature range from 400 ° C. to 580 ° C. is preferably 75 seconds or less. Moreover, the minimum of the residence time in the temperature range of 400 degreeC or more and 580 degrees C or less shall be 30 second or more. When the residence time is less than 30 seconds, the steel sheet is excessively hardened, the shape becomes non-uniform by crown molding, and the pressure strength decreases.

連続焼鈍工程に続く、二次冷間圧延の圧下率は1.0〜12%とする。二次冷間圧延の圧下率が1.0%未満の場合、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が低下する。この理由は定かではないが、以下のように推察される。固溶Nが存在する鋼板では、二次冷間圧延により導入された転位が塗装焼付けでの熱処理過程で固溶により固着される。その後の引張では固着された転位が変形時の障害となり強度が上昇する。一方、王冠の成形においては絞り加工が主体となるため引張とは異なるすべり系の力が働くため、固着された転位は王冠成形で有効に働かず、王冠側面部の断面硬度が上昇し難い。すなわち、王冠成形で王冠側面部の断面硬度を高くするためには二次冷間圧延で多量の転位を導入する必要があり、圧下率で1.0%以上を必要とする。二次冷間圧延の圧下率が12%を越えると、過剰に転位が導入されるため王冠側面部の断面硬度が220Hvを超えて、成形にともない割れが発生し、耐圧強度が低下する。したがって、二次冷間圧延の圧下率は1.0〜12%とする。王冠の成形性と耐圧強度を両立させるためには、二次冷間圧延の圧下率は3.0%以上が好ましい。また、二次冷間圧延の圧下率は10%以下が好ましい。   The rolling reduction of the secondary cold rolling following the continuous annealing process is 1.0 to 12%. When the rolling reduction of secondary cold rolling is less than 1.0%, the cross-sectional hardness of the crown side surface after crown forming is less than 180 Hv, and the pressure strength is reduced. The reason for this is not clear, but is presumed as follows. In a steel sheet in which solid solution N exists, dislocations introduced by secondary cold rolling are fixed by solid solution during the heat treatment process in paint baking. In the subsequent tension, the fixed dislocation becomes an obstacle at the time of deformation, and the strength increases. On the other hand, in the molding of a crown, since a drawing process is mainly used, a slip system force different from that of tension works, so that the fixed dislocation does not work effectively in the crown molding, and the cross-sectional hardness of the side surface portion of the crown does not easily increase. That is, in order to increase the cross-sectional hardness of the side surface portion of the crown in crown molding, it is necessary to introduce a large amount of dislocations by secondary cold rolling, and a rolling reduction of 1.0% or more is required. When the rolling reduction ratio of the secondary cold rolling exceeds 12%, dislocations are introduced excessively, so that the cross-sectional hardness of the crown side surface exceeds 220 Hv, cracks occur during forming, and the pressure strength decreases. Therefore, the reduction ratio of secondary cold rolling is set to 1.0 to 12%. In order to achieve both the formability of the crown and the pressure strength, the reduction ratio of the secondary cold rolling is preferably 3.0% or more. Further, the rolling reduction of secondary cold rolling is preferably 10% or less.

上記のようにして得た冷延鋼板は、その後、必要に応じて、鋼板表面に、例えば電気めっきにより、錫めっき、クロムめっき、ニッケルめっき等のめっき処理を施してめっき層を形成し、王冠用鋼板とする。なお、めっき等の表面処理の膜厚は、板厚に対して十分に小さいので、王冠用鋼板の機械特性への影響は無視できるレベルである。   The cold-rolled steel sheet obtained as described above is then subjected to plating treatment such as tin plating, chromium plating, nickel plating, etc. on the surface of the steel sheet, for example, by electroplating, if necessary, to form a plating layer, and crown Steel plate. In addition, since the film thickness of surface treatments, such as plating, is sufficiently small with respect to plate | board thickness, the influence on the mechanical characteristic of the steel plate for crowns is a level which can be disregarded.

以上、説明したように、本発明の王冠用鋼板は、薄肉化しても十分な耐圧強度および成形性を有することができる。   As described above, the crown steel plate of the present invention can have sufficient pressure strength and formability even if it is thinned.

また、本発明の王冠は、上述した王冠用鋼板を用いて成形されるものである。王冠は、主に瓶の口を塞ぐ円盤状の部分と、その周囲に設けられた襞状の部分とから構成される。本発明の王冠は、円形のブランクに打ち抜いた後、プレス成形により成形することができる。本発明の王冠は、十分な降伏強度を有し、かつ、成形性に優れた王冠用鋼板から製造されるので、薄肉化しても王冠としての耐圧強度に優れており、使用に伴う廃棄物の排出量を減らす効果も有する。   The crown of the present invention is formed using the above-described crown steel plate. The crown is mainly composed of a disk-shaped part that closes the mouth of the bottle and a bowl-shaped part provided around the disk-shaped part. The crown of the present invention can be formed by press molding after being punched into a circular blank. Since the crown of the present invention is manufactured from a crown steel plate having sufficient yield strength and excellent formability, it is excellent in pressure resistance as a crown even if it is thinned. It also has the effect of reducing emissions.

本実施例において、まず、表1に示す成分組成を含有し、残部はFeおよび不可避的不純物からなる鋼を転炉で溶製し、連続鋳造することにより鋼スラブを得た。ここで得られた鋼スラブに対して、1220℃に再加熱した後、圧延開始温度1150℃で熱間圧延を行い、表2に示す仕上圧延温度とし、巻取り温度で巻取った。熱間圧延後には酸洗を施した。次いで、表2に示す圧下率で一次冷間圧延を行い、表2に示す条件で連続焼鈍し、引き続き、表2に示す圧下率で二次冷間圧延を施した。得られた鋼板に通常のCrめっきを連続的に施して、ティンフリースチールを得た。   In this example, first, a steel slab was obtained by containing the component composition shown in Table 1, with the balance being made of Fe and unavoidable impurities in a converter and continuously cast. The steel slab obtained here was reheated to 1220 ° C. and then hot-rolled at a rolling start temperature of 1150 ° C. to obtain the finish rolling temperature shown in Table 2, and wound at the winding temperature. After hot rolling, pickling was performed. Next, primary cold rolling was performed at the rolling reduction shown in Table 2, and continuous annealing was performed under the conditions shown in Table 2, followed by secondary cold rolling at the rolling reduction shown in Table 2. The obtained steel plate was continuously subjected to normal Cr plating to obtain tin-free steel.

Figure 2018061787
Figure 2018061787

以上により得られた鋼板に対して、210℃、15分の塗装焼付け相当の熱処理を行った後、引張試験、王冠側面部の断面硬度の測定を行った。引張試験は、JIS5号サイズの引張試験片を用いて、「JIS Z 2241」に従って行い、圧延方向の降伏強度を測定した。王冠側面部の断面硬度は、鋼板を用いて王冠に成形し、「JIS Z 2244」に準拠した方法でビッカース硬度を測定した。王冠は、直径37mmの円形ブランクを使用し、プレス加工により「JIS S 9017」(廃止規格)に記載の3種王冠の寸法(外径32.1mm、高さ6.5mm、襞の数21)に成形して作成した。評価位置は王冠高さの1/2位置を中心として、中心に1点、王冠上面方向に2点および王冠下方方向に2点の合計5点とした。ビッカース圧痕荷重は100gfとし、各点の間隔は3d(d:圧痕の対角線長さ)とした。ビッカース硬度値の5点の平均値を王冠側面部の断面硬度とした。   The steel plate obtained as described above was subjected to a heat treatment equivalent to coating baking at 210 ° C. for 15 minutes, and then subjected to a tensile test and a measurement of the cross-sectional hardness of the crown side portion. The tensile test was performed according to “JIS Z 2241” using a JIS No. 5 size tensile test piece, and the yield strength in the rolling direction was measured. The cross-sectional hardness of the crown side surface portion was formed into a crown using a steel plate, and the Vickers hardness was measured by a method according to “JIS Z 2244”. The crown uses a circular blank with a diameter of 37 mm, and the dimensions of the three crowns described in “JIS S 9017” (obsolete standard) by press working (outer diameter 32.1 mm, height 6.5 mm, number of ridges 21) It was formed by molding. The evaluation position was a total of 5 points, with one point at the center, 2 points in the crown upper surface direction, and 2 points in the crown lower direction, centering on the 1/2 position of the crown height. The Vickers indentation load was 100 gf, and the interval between the points was 3d (d: diagonal length of the indentation). The average value of the five Vickers hardness values was taken as the cross-sectional hardness of the crown side surface.

圧延方向断面における炭化物の粒径は、鋼板圧延方向に平行な板厚断面を研磨後、腐食液(3体積%ナイタール)で腐食し、2000倍の倍率で10視野にわたり走査型電子顕微鏡(SEM)で板厚1/4位置(上記断面における、表面から板厚方向に1/4の位置)を観察し、SEMで撮影した組織写真を用いてセメンタイトを目視判定により特定し、各セメンタイト粒径について、画像解析にて各セメンタイトの面積を求めて、円相当径に換算し、おのおののセメンタイト粒径とした。10視野で最もサイズの大きなセメンタイト粒径を圧延方向断面における炭化物の最大粒径とした。   The grain size of carbides in the cross section in the rolling direction is determined by polishing a plate thickness cross section parallel to the rolling direction of the steel sheet, then corroding with a corrosive liquid (3% by volume nital), and scanning electron microscope (SEM) over 10 fields of view at 2000 times magnification. The sheet thickness is ¼ position (in the cross section, ¼ position from the surface in the sheet thickness direction), and cementite is identified by visual judgment using a structure photograph taken with SEM. Then, the area of each cementite was obtained by image analysis, and converted to an equivalent circle diameter to obtain each cementite particle diameter. The largest cementite particle size in 10 fields of view was defined as the maximum particle size of carbide in the cross section in the rolling direction.

得られた鋼板を用いて王冠に成形し、王冠成形性を評価した。直径37mmの円形ブランクを使用し、プレス加工により「JIS S 9017」(廃止規格)に記載の3種王冠の寸法(外径32.1mm、高さ6.5mm、襞の数21)に成形した。王冠の成形性の評価は、図2に示すように、王冠の各襞2の長さLを測定し、L値の標準偏差が0.1以下の王冠を○、L値の標準偏差が0.1超の王冠を×と評価した。そして、前記評価を5個の王冠で実施し、5個全てでL値の標準偏差が0.1以下を○(合格)とし、それ以外を×(不合格)とした。   The obtained steel plate was formed into a crown, and the crown formability was evaluated. Using a circular blank with a diameter of 37 mm, it was molded into the dimensions of the three crowns described in “JIS S 9017” (obsolete standard) (outer diameter: 32.1 mm, height: 6.5 mm, number of ridges: 21) . As shown in FIG. 2, the crown formability is evaluated by measuring the length L of each ridge 2 of the crown, ◯ for a crown whose standard deviation of L value is 0.1 or less, and 0 for standard deviation of L value. ..> 1 crown was rated as x. And the said evaluation was implemented with five crowns, and the standard deviation of L value was 0.1 or less by all (5), and it was set as x (pass) other than that.

耐圧試験は、成形した王冠を用いて実施した。王冠の上面の内側に塩化ビニル製ライナーを貼付し、市販ビール瓶に打栓して王冠上部に細径の穴を開け、エアーを瓶内に送り込む器具を装着し、5psi/秒の速度で瓶内にエアーを注入することで瓶内の内圧を上昇させた。瓶内の昇圧条件としては、瓶内の圧力を100psiまで昇圧し(昇圧操作)、100psiで1分間保持し(保持操作)、再び5psi/秒で昇圧した(再昇圧操作)。前記昇圧操作中、保持操作中および再昇圧操作中の各々において、王冠と瓶口の隙間からエアー漏れが発生した時、または王冠が瓶口から外れた(抜栓)時の瓶内の内圧値をその王冠の耐圧値とし、従来の王冠と同等以上の耐圧値を示した場合を○、従来の王冠の耐圧値に至らなかった場合を×と評価した。×となった以降は、それ以上の評価は困難であるため、表中では−とした。なお、従来の王冠としては、厚さ0.22mmのSR(Single Reduced)鋼板を用いた。前記昇圧操作中、保持操作中および再昇圧中のすべてにおいて○が得られた場合を耐圧強度が優れるとして総合評価○(合格)とし、それ以外を耐圧強度が劣るとして×(不合格)とした。得られた結果を表2に示す。   The pressure resistance test was carried out using a molded crown. Place a vinyl chloride liner on the inside of the top of the crown, plug it into a commercial beer bottle, drill a small hole in the top of the crown, and install a device that sends air into the bottle. Inside the bottle at a speed of 5 psi / second The internal pressure in the bottle was increased by injecting air into the bottle. As the pressure increase condition in the bottle, the pressure in the bottle was increased to 100 psi (pressure increase operation), held at 100 psi for 1 minute (hold operation), and increased again at 5 psi / second (repressurization operation). In each of the pressurizing operation, holding operation, and repressurizing operation, the internal pressure value in the bottle when the air leaks from the gap between the crown and the bottle mouth or when the crown is removed from the bottle mouth (unplugging). The pressure resistance value of the crown was evaluated as ○ when the pressure resistance value was equal to or higher than that of the conventional crown, and × when the pressure resistance value of the conventional crown was not reached. Since it was difficult to evaluate further after x, it was indicated as-in the table. In addition, as a conventional crown, a SR (Single Reduced) steel plate having a thickness of 0.22 mm was used. In the above boosting operation, during the holding operation and during the repressurization, a case where ◯ was obtained was evaluated as an overall evaluation ○ (passed) as excellent withstand pressure strength, and other than that as × (failed) as inferior withstand pressure strength. . The obtained results are shown in Table 2.

Figure 2018061787
Figure 2018061787

表2より、本発明例である鋼板No.1〜15の鋼板は、本発明で規定する範囲内の成分であり、圧延方向の降伏強度が420MPa以上600MPa以下であり、圧延方向断面において炭化物の最大粒径が2.0μm以下であった。また、鋼板No.1〜15から成形された王冠は、王冠成形後の王冠側面部の断面硬度が180Hv以上220Hv以下であった。鋼板No.1〜15の王冠用鋼板は、王冠成形性および耐圧強度のいずれも良好であった。   From Table 2, steel plate No. which is an example of the present invention. The steel plates 1 to 15 are components within the range specified in the present invention, the yield strength in the rolling direction is 420 MPa or more and 600 MPa or less, and the maximum grain size of carbides in the rolling direction cross section is 2.0 μm or less. Steel plate No. The crown molded from 1 to 15 had a cross-sectional hardness of the crown side surface after the crown molding of 180 Hv or more and 220 Hv or less. Steel plate No. The steel plates for crowns 1 to 15 were good in both crown formability and pressure strength.

一方、比較例である鋼板No.16の鋼板は、Cの含有量が0.02%未満であるため、鋼板の圧延方向の降伏強度が420MPa未満、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、王冠成形性は良好であるが、耐圧強度が不足することが分かった。   On the other hand, steel plate No. which is a comparative example. Since the steel plate No. 16 has a C content of less than 0.02%, the yield strength in the rolling direction of the steel plate is less than 420 MPa, the cross-sectional hardness of the crown side surface after crown forming is less than 180 Hv, and the crown formability is good However, it was found that the pressure strength is insufficient.

鋼板No.17の鋼板は、Cの含有量が0.08%を超えるため、圧延方向の降伏強度が600MPa超となり、圧延方向断面における炭化物の最大粒径が2.0μmを超え、王冠成形後の王冠側面部の断面硬度が220Hvを超えるため、王冠成形性に劣り、耐圧強度も不足することが分かった。   Steel plate No. Steel plate No. 17 has a C content exceeding 0.08%, so the yield strength in the rolling direction exceeds 600 MPa, the maximum grain size of carbide in the cross section in the rolling direction exceeds 2.0 μm, and the crown side surface after crown molding Since the cross-sectional hardness of the part exceeds 220 Hv, it was found that the crown moldability was inferior and the pressure resistance was insufficient.

鋼板No.18の鋼板は、Mnの含有量が0.60%を超えるため、圧延方向の降伏強度が600MPa超となり、王冠成形後の王冠側面部の断面硬度が220Hvを超えるため、成形した王冠の襞の形状が不均一になり、形状不良となり、耐圧強度の低下を引き起こすことが分かった。   Steel plate No. Since the steel plate No. 18 has a Mn content exceeding 0.60%, the yield strength in the rolling direction exceeds 600 MPa, and the cross-sectional hardness of the crown side surface after crown forming exceeds 220 Hv. It was found that the shape became non-uniform, the shape became defective, and the pressure strength was reduced.

鋼板No.19の鋼板は、Al含有量が0.06%を超えるため、N total−(N as AlN)が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満となり、王冠成形後の王冠側面部の断面硬度が180Hv未満となるため、耐圧強度が不足することが分かった。   Steel plate No. Since 19 steel plate has an Al content exceeding 0.06%, N total- (N as AlN) is less than 0.0090%, the yield strength in the rolling direction of the steel plate is less than 420 MPa, and the crown after crown forming Since the cross-sectional hardness of the side portion is less than 180 Hv, it was found that the pressure strength is insufficient.

鋼板No.20の鋼板は、N含有量が0.0100%未満であるため、N total−(N as AlN)が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満となり、王冠成形後の王冠側面部の断面硬度が180Hv未満となるため、耐圧強度が不足することが分かった。   Steel plate No. The 20 steel plate has an N content of less than 0.0100%, so N total- (N as AlN) is less than 0.0090%, and the yield strength in the rolling direction of the steel plate is less than 420 MPa. Since the cross-sectional hardness of the crown side surface portion was less than 180 Hv, it was found that the pressure strength was insufficient.

鋼板No.21の鋼板は、N含有量が0.0180%を超えるため、N total−(N as AlN)が0.0170%超となり、鋼板の圧延方向の降伏強度が600MPa超となり、王冠成形後の王冠側面部の断面硬度が220Hvを超えるため、成形した王冠が形状不良となり、耐圧強度が不足することが分かった。   Steel plate No. Steel plate No. 21 has an N content exceeding 0.0180%, so N total- (N as AlN) exceeds 0.0170%, the yield strength in the rolling direction of the steel plate exceeds 600 MPa, and the crown after crown forming Since the cross-sectional hardness of the side surface portion exceeds 220 Hv, it was found that the molded crown had a defective shape and the pressure resistance was insufficient.

鋼板No.22の鋼板は、Si含有量が0.02%を超え、鋼板No.23の鋼板は、P含有量が0.020%を超えるため、圧延方向の降伏強度が600MPa超となり、王冠成形後の王冠側面部の断面硬度が220Hvを超えるため、形状不良となり、耐圧強度が不足することが分かった。   Steel plate No. The steel plate No. 22 has a Si content of more than 0.02%. Steel plate No. 23 has a P content exceeding 0.020%, so the yield strength in the rolling direction exceeds 600 MPa, and the cross-sectional hardness of the crown side surface after crown forming exceeds 220 Hv. I found out that it was insufficient.

次に、表1に示す鋼No.B、G、K、Sの成分組成を含有し、残部はFeおよび不可避的不純物からなる鋼を転炉で溶製し、連続鋳造することにより鋼スラブを得た。ここで得られた鋼スラブに対して、表3に示す製造条件を施した。得られた鋼板に通常のCrめっきを連続的に施して、ティンフリースチールを得た。以上により得られた鋼板No.24〜56に対して、210℃、15分の塗装焼付け相当の熱処理を行った後、前述の方法で圧延方向の降伏強度、圧延方向断面における炭化物の最大粒径、王冠成形後の王冠側面部の断面硬度を求めた。また、前述の方法で王冠成形性および耐圧強度を評価した。   Next, steel No. 1 shown in Table 1 was used. Steel slabs were obtained by containing B, G, K, and S component compositions, with the balance being made of Fe and unavoidable impurities in a converter and continuous casting. The manufacturing conditions shown in Table 3 were applied to the steel slab obtained here. The obtained steel plate was continuously subjected to normal Cr plating to obtain tin-free steel. Steel plate No. obtained by the above. 24 to 56, after performing heat treatment equivalent to baking at 210 ° C. for 15 minutes, the yield strength in the rolling direction, the maximum grain size of carbides in the cross section in the rolling direction, and the crown side surface after crown molding by the above-described methods The cross-sectional hardness was determined. In addition, crown formability and pressure strength were evaluated by the methods described above.

Figure 2018061787
Figure 2018061787

表3より、本発明例である鋼板No.27〜28、30、32〜33、35、37〜39、41〜42、45〜48、50〜52の鋼板は、圧延方向断面において炭化物の最大粒径が2.0μm以下であり、圧延方向の降伏強度が420MPa以上600MPa以下であり、王冠成形後の王冠側面部の断面硬度が180Hv以上220Hv以下であるため、王冠成形性および耐圧強度のいずれも良好であった。   From Table 3, steel plate No. which is an example of the present invention. 27 to 28, 30, 32 to 33, 35, 37 to 39, 41 to 42, 45 to 48, 50 to 52 have a maximum carbide grain size of 2.0 μm or less in the rolling direction cross section, and the rolling direction. Yield strength of 420 MPa or more and 600 MPa or less, and the cross-sectional hardness of the crown side surface after crown molding is 180 Hv or more and 220 Hv or less, both crown formability and pressure strength were good.

一方、比較例である鋼板No.24の鋼板は、巻取り温度が670℃超であるため、N total−(N as AlN)の量が0.0090%未満となり鋼板の圧延方向の降伏強度が420MPa未満、王冠成形後の王冠側面部の断面硬度が180Hv未満、圧延方向断面における炭化物の最大粒径が2.0μm超となり、王冠成形時に王冠の襞の形状が不均一になり、形状不良を引き起し、王冠成形性が劣るとともに耐圧強度も劣ることが分かった。   On the other hand, steel plate No. which is a comparative example. The steel plate No. 24 has a coiling temperature of over 670 ° C., so the amount of N total- (N as AlN) is less than 0.0090%, and the yield strength in the rolling direction of the steel plate is less than 420 MPa. The cross section hardness of the part is less than 180 Hv, the maximum grain size of carbide in the cross section in the rolling direction is over 2.0 μm, the shape of the crown of the crown becomes non-uniform at the time of crown molding, the shape is poor, and the crown moldability is inferior It was also found that the pressure strength was inferior.

鋼板No.25の鋼板は、500〜600℃の温度域Aにおいて平均加熱速度が10℃/s未満であるため、N total−(N as AlN)の量が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が劣ることが分かった。   Steel plate No. In the steel plate of 25, the average heating rate is less than 10 ° C./s in the temperature range A of 500 to 600 ° C., so the amount of N total- (N as AlN) is less than 0.0090%, It was found that the yield strength was less than 420 MPa, the cross-sectional hardness of the crown side surface after crown molding was less than 180 Hv, and the pressure strength was inferior.

鋼板No.26の鋼板は、焼鈍温度が620℃未満であるため、不完全な再結晶組織に起因して鋼板が硬質となり、鋼板の圧延方向の降伏強度が600MPa超、王冠成形後の王冠側面部の断面硬度が220Hv超となり、王冠成形性が劣り、耐圧強度が劣ることが分かった。   Steel plate No. The steel plate No. 26 has an annealing temperature of less than 620 ° C., so the steel plate becomes hard due to an incomplete recrystallization structure, the yield strength in the rolling direction of the steel plate exceeds 600 MPa, and the cross-section of the crown side portion after crown forming It was found that the hardness was over 220 Hv, the crown moldability was inferior, and the pressure strength was inferior.

鋼板No.29の鋼板は、焼鈍温度が740℃を超えるため、圧延方向断面における炭化物の最大粒径が2.0μm超となり、王冠の成形において襞の形状が不均一になり、耐圧強度が劣ることが分かった。   Steel plate No. No. 29 steel plate has an annealing temperature exceeding 740 ° C., so the maximum grain size of carbides in the cross section in the rolling direction is over 2.0 μm, and the shape of the heel is non-uniform in the formation of the crown. It was.

鋼板No.31の鋼板は、500〜600℃の温度域Aにおいて平均加熱速度が30℃/s超であるため、鋼板が硬質となり、鋼板の圧延方向の降伏強度が600MPa超、王冠成形後の王冠側面部の断面硬度が220Hv超となり、王冠成形性が劣り、耐圧強度が劣ることが分かった。   Steel plate No. The steel plate No. 31 has an average heating rate of more than 30 ° C./s in the temperature range A of 500 to 600 ° C., so that the steel plate becomes hard, the yield strength in the rolling direction of the steel plate exceeds 600 MPa, and the crown side surface after crown forming It was found that the cross-sectional hardness was over 220 Hv, the crown moldability was inferior, and the pressure resistance was inferior.

鋼板No.34の鋼板は、冷却停止温度Cは400℃以上580℃以下の温度域であるものの、平均冷却速度が20℃/s未満であるため、N total−(N as AlN)の量が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が劣ることが分かった。   Steel plate No. In the steel plate No. 34, although the cooling stop temperature C is in the temperature range of 400 ° C. or higher and 580 ° C. or lower, the average cooling rate is less than 20 ° C./s, so the amount of N total- (N as AlN) is 0.0090. It was found that the yield strength in the rolling direction of the steel sheet was less than 420 MPa, the cross-sectional hardness of the crown side surface after crown forming was less than 180 Hv, and the pressure strength was inferior.

鋼板No.36の鋼板は、冷却停止温度が580℃を超えるため、N total−(N as AlN)の量が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が劣ることが分かった。   Steel plate No. Since the steel plate No. 36 has a cooling stop temperature exceeding 580 ° C., the amount of N total- (N as AlN) is less than 0.0090%, the yield strength in the rolling direction of the steel plate is less than 420 MPa, and the crown side surface after crown forming It was found that the sectional hardness of the part was less than 180 Hv, and the pressure resistance was inferior.

鋼板No.40の鋼板は、冷却停止温度が400℃未満であるため、鋼板が硬質となり、鋼板の圧延方向の降伏強度が600MPa超、王冠成形後の王冠側面部の断面硬度が220Hv超となり、王冠成形性が劣り、耐圧強度が劣ることが分かった。なお、表3中、鋼板No.36、40の鋼板における400℃以上580℃以下の温度域での滞留時間は、それぞれの冷却停止温度Cでの滞留時間を示す。   Steel plate No. Since the steel plate No. 40 has a cooling stop temperature of less than 400 ° C., the steel plate becomes hard, the yield strength in the rolling direction of the steel plate exceeds 600 MPa, the cross-sectional hardness of the crown side surface after crown forming exceeds 220 Hv, and crown formability It was found that the pressure strength was inferior. In Table 3, steel plate No. The residence times in the temperature range of 400 ° C. or more and 580 ° C. or less in the steel plates 36 and 40 indicate residence times at the respective cooling stop temperatures C.

鋼板No.43、53の鋼板は、二次冷間圧延の圧下率が12%を超えるため、鋼板の圧延方向の降伏強度が600MPa超となり、王冠側面部の断面硬度が220Hvを超えるため、王冠成形性が劣り、耐圧強度が劣ることが分かった。   Steel plate No. Since the rolling reduction of the secondary cold rolling exceeds 12%, the yield strength in the rolling direction of the steel sheet exceeds 600 MPa, and the cross-sectional hardness of the crown side surface exceeds 220 Hv. It was found that the pressure strength was inferior.

鋼板No.44の鋼板は、二次冷間圧延の圧下率が1.0%未満であるため、鋼板の圧延方向の降伏強度が420MPa未満となり、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が低下することが分かった。   Steel plate No. The steel plate No. 44 has a rolling reduction of secondary cold rolling of less than 1.0%, so the yield strength in the rolling direction of the steel plate is less than 420 MPa, and the cross-sectional hardness of the crown side surface after crown forming is less than 180 Hv, It was found that the pressure strength decreased.

鋼板No.49の鋼板は、冷却停止温度Cは400℃以上580℃以下の温度域であるものの、400℃以上580℃以下の温度域での滞留時間が90秒を超えるため、圧延方向断面における炭化物の最大粒径が2.0μm超となり、王冠成形時において襞の形状が不均一になり、耐圧強度が劣ることが分かった。   Steel plate No. In the steel plate No. 49, although the cooling stop temperature C is in the temperature range of 400 ° C. or higher and 580 ° C. or lower, the residence time in the temperature range of 400 ° C. or higher and 580 ° C. or lower exceeds 90 seconds. It was found that the particle diameter exceeded 2.0 μm, the shape of the ridge was non-uniform during crown molding, and the pressure strength was inferior.

鋼板No.54の鋼板は、冷却停止温度Cは400℃以上580℃以下の温度域であるものの、400℃以上580℃以下の温度域での滞留時間が30秒未満であるため、鋼板が硬質となり、鋼板の圧延方向の降伏強度が600MPa超、王冠成形後の王冠側面部の断面硬度が220Hv超となり、王冠成形性が劣り、耐圧強度が劣ることが分かった。   Steel plate No. In the steel plate No. 54, although the cooling stop temperature C is in the temperature range of 400 ° C. or higher and 580 ° C. or lower, the residence time in the temperature range of 400 ° C. or higher and 580 ° C. or lower is less than 30 seconds. It was found that the yield strength in the rolling direction was over 600 MPa, the cross-sectional hardness of the crown side surface after crown molding was over 220 Hv, the crown formability was poor, and the pressure resistance was poor.

鋼板No.55、56の鋼板は、Al含有量が0.06%を超えるため、N total−(N as AlN)が0.0090%未満となり、鋼板の圧延方向の降伏強度が420MPa未満、王冠成形後の王冠側面部の断面硬度が180Hv未満となり、耐圧強度が劣ることが分かった。   Steel plate No. In the steel plates 55 and 56, the Al content exceeds 0.06%, so N total- (N as AlN) is less than 0.0090%, the yield strength in the rolling direction of the steel plate is less than 420 MPa, It was found that the cross-sectional hardness of the crown side surface portion was less than 180 Hv, and the pressure strength was inferior.

1 王冠上面
2 襞
1 Crown top 2

Claims (4)

質量%で、
C:0.02%以上0.08%以下、
Si:0.02%以下、
Mn:0.10%以上0.60%以下、
P:0.020%以下、
S:0.020%以下、
Al:0.01%以上0.06%以下、
N:0.0100%以上0.0180%以下
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、
N total−(N as AlN)が0.0090%以上0.0170%以下であり、
圧延方向断面において炭化物の最大粒径が2.0μm以下であり、
圧延方向の降伏強度が420MPa以上600MPa以下であることを特徴とする王冠用鋼板。
ただし、前記N totalは、Nの総量であり、前記N as AlNは、AlNとして存在するN量である。
% By mass
C: 0.02% to 0.08%,
Si: 0.02% or less,
Mn: 0.10% or more and 0.60% or less,
P: 0.020% or less,
S: 0.020% or less,
Al: 0.01% or more and 0.06% or less,
N: 0.0100% or more and 0.0180% or less are contained, and the balance has a component composition consisting of Fe and inevitable impurities,
N total- (N as AlN) is 0.0090% or more and 0.0170% or less,
In the rolling direction cross section, the maximum particle size of the carbide is 2.0 μm or less,
A steel plate for a crown, wherein the yield strength in the rolling direction is 420 MPa or more and 600 MPa or less.
However, the N total is a total amount of N, and the N as AlN is an N amount existing as AlN.
請求項1に記載の成分組成を有する鋼素材の熱間圧延での仕上圧延後に670℃以下の温度で巻取る熱間圧延工程と、
前記熱間圧延工程後に、冷間圧延する一次冷間圧延工程と、
前記一次冷間圧延工程後に、加熱過程での500〜600℃の温度域Aを10℃/s以上30℃/s以下の平均加熱速度で加熱し、620〜740℃の温度域の焼鈍温度Bで焼鈍し、前記焼鈍温度Bから20℃/s以上の平均冷却速度で400℃以上580℃以下の温度域の冷却停止温度Cまで冷却し、前記平均冷却速度での冷却を停止してから前記400℃以上580℃以下の温度域に滞留させる滞留時間を30秒以上90秒以下とする連続焼鈍工程と、
前記連続焼鈍工程後に、1.0〜12%の圧下率で冷間圧延する二次冷間圧延工程と、を有することを特徴とする王冠用鋼板の製造方法。
A hot rolling step of winding at a temperature of 670 ° C. or less after finish rolling in hot rolling of a steel material having the component composition according to claim 1;
After the hot rolling step, a primary cold rolling step for cold rolling,
After the primary cold rolling step, a temperature range A of 500 to 600 ° C. in the heating process is heated at an average heating rate of 10 ° C./s to 30 ° C./s, and an annealing temperature B in a temperature range of 620 to 740 ° C. And cooling to the cooling stop temperature C in the temperature range of 400 ° C. or more and 580 ° C. or less from the annealing temperature B at an average cooling rate of 20 ° C./s or more, and after stopping the cooling at the average cooling rate, A continuous annealing step in which a residence time for residence in a temperature range of 400 ° C. or more and 580 ° C. or less is 30 seconds or more and 90 seconds or less;
And a secondary cold rolling step of cold rolling at a rolling reduction of 1.0 to 12% after the continuous annealing step.
請求項1に記載の王冠用鋼板を用いて作成されたことを特徴とする王冠。 A crown produced using the crown steel plate according to claim 1. 王冠側面部の断面硬度が180Hv以上220Hv以下であることを特徴とする請求項3に記載の王冠。 The crown according to claim 3, wherein the crown has a cross-sectional hardness of 180 Hv or more and 220 Hv or less.
JP2018542371A 2016-09-29 2017-09-14 Crown steel plate, method for producing the same, and crown Active JP6601571B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016192247 2016-09-29
JP2016192247 2016-09-29
PCT/JP2017/033179 WO2018061787A1 (en) 2016-09-29 2017-09-14 Steel sheet for crown caps, production method therefor, and crown cap

Publications (2)

Publication Number Publication Date
JPWO2018061787A1 true JPWO2018061787A1 (en) 2018-12-20
JP6601571B2 JP6601571B2 (en) 2019-11-06

Family

ID=61760539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018542371A Active JP6601571B2 (en) 2016-09-29 2017-09-14 Crown steel plate, method for producing the same, and crown

Country Status (9)

Country Link
EP (1) EP3476964B1 (en)
JP (1) JP6601571B2 (en)
CO (1) CO2019001705A2 (en)
MX (1) MX2019002404A (en)
MY (1) MY197920A (en)
PH (1) PH12019550011A1 (en)
PL (1) PL3476964T3 (en)
WO (1) WO2018061787A1 (en)
ZA (1) ZA201900744B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080737B2 (en) * 2018-06-12 2022-06-06 株式会社神戸製鋼所 Ultrasonic flaw detection method
MY196469A (en) * 2018-12-20 2023-04-12 Jfe Steel Corp Steel Sheet for Cans and Method of Producing Same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139013A (en) * 1974-04-27 1975-11-06
JPS6134159A (en) * 1984-07-25 1986-02-18 Nippon Steel Corp Steel sheet for weld can superior in flanging property and its manufacture
JP3726371B2 (en) * 1996-08-30 2005-12-14 Jfeスチール株式会社 Steel plate for cans with high age-hardening properties and excellent material stability and method for producing the same
JP3840004B2 (en) 1999-08-17 2006-11-01 新日本製鐵株式会社 Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same
KR100611541B1 (en) * 2000-05-31 2006-08-10 제이에프이 스틸 가부시키가이샤 Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
JP5526483B2 (en) * 2008-03-19 2014-06-18 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof
CN101983251A (en) * 2008-04-03 2011-03-02 杰富意钢铁株式会社 High-strength steel plate for a can and method for manufacturing said high-strength steel plate
JP5672907B2 (en) 2010-09-29 2015-02-18 Jfeスチール株式会社 Steel sheet for high strength and high workability can and method for producing
WO2012077628A1 (en) * 2010-12-06 2012-06-14 新日本製鐵株式会社 Steel sheet for bottom covers of aerosol cans and method for producing same
CN102766800A (en) * 2011-05-05 2012-11-07 上海梅山钢铁股份有限公司 Steel for hard tinplate bottle caps and production method thereof
JP5810714B2 (en) 2011-07-29 2015-11-11 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same
JP5958630B2 (en) * 2014-10-10 2016-08-02 Jfeスチール株式会社 Crown steel plate and manufacturing method thereof
AU2015351836B2 (en) * 2014-11-28 2018-07-19 Jfe Steel Corporation Steel sheet for crown cap, manufacturing method therefor, and crown cap

Also Published As

Publication number Publication date
EP3476964A1 (en) 2019-05-01
WO2018061787A1 (en) 2018-04-05
ZA201900744B (en) 2020-08-26
CO2019001705A2 (en) 2019-03-08
MX2019002404A (en) 2019-06-20
PL3476964T3 (en) 2021-07-19
MY197920A (en) 2023-07-25
PH12019550011A1 (en) 2019-12-02
JP6601571B2 (en) 2019-11-06
EP3476964B1 (en) 2021-01-27
EP3476964A4 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP4957843B2 (en) Steel plate for can and manufacturing method thereof
JP6601571B2 (en) Crown steel plate, method for producing the same, and crown
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5988012B1 (en) Crown steel plate, method for producing the same, and crown
JP5540580B2 (en) Steel sheet for high strength and high workability can and method for producing
JP6468406B1 (en) Steel plate and manufacturing method thereof, crown and DRD can
JP6052474B1 (en) Crown steel sheet, crown steel sheet manufacturing method and crown
JP6468405B1 (en) Steel plate and manufacturing method thereof, crown and DRD can
TWI675112B (en) Steel plate and its manufacturing method, as well as crown and DRD can
JP6465265B1 (en) Crown steel plate, crown, and method for producing crown steel plate
JP6531874B1 (en) Crown steel plate, crown, and method of manufacturing crown steel plate
JP6176225B2 (en) Crown steel plate, method for producing the same, and crown
JP2015193885A (en) Steel sheet for can lid and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R150 Certificate of patent or registration of utility model

Ref document number: 6601571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250