JP3840004B2 - Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same - Google Patents

Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same Download PDF

Info

Publication number
JP3840004B2
JP3840004B2 JP23061899A JP23061899A JP3840004B2 JP 3840004 B2 JP3840004 B2 JP 3840004B2 JP 23061899 A JP23061899 A JP 23061899A JP 23061899 A JP23061899 A JP 23061899A JP 3840004 B2 JP3840004 B2 JP 3840004B2
Authority
JP
Japan
Prior art keywords
less
moldability
strength
annealing
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23061899A
Other languages
Japanese (ja)
Other versions
JP2001049383A (en
Inventor
英邦 村上
正芳 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23061899A priority Critical patent/JP3840004B2/en
Publication of JP2001049383A publication Critical patent/JP2001049383A/en
Application granted granted Critical
Publication of JP3840004B2 publication Critical patent/JP3840004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は飲料缶などの金属容器に利用される、板厚0.4mm以下の缶強度、缶成形性に優れる極薄軟質鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
飲料缶・食品缶などに代表される容器用鋼板については、缶コスト低減のため、素材の薄手化が求められていいる。この時、薄手化に伴う缶強度の低下を補うため鋼板自体を高強度化することと、焼鈍工程において生産効率を阻害するヒートバックルと呼ばれる鋼板の腰折れ回避のため、焼鈍時には目的とする板厚より厚い鋼板を通板し、その後再冷延(2CR)を施して目的とする板厚を得る技術が特公平7−109010号公報などで開示されている。
【0003】
しかし、鋼板の薄手化が進行する中で、2CR率の上昇は必然となり、材料の硬質化にともなう延性劣化が新たな問題となりつつある。代表的には缶胴と缶底または缶蓋を巻き締める際に、缶胴端部の径を拡げる加工(フランジ成形)における割れが問題となる。
【0004】
2CRに頼らずに高強度化を図る手段としては、固溶Nによる固溶強化や焼付硬化性(BH)などを利用した技術が特開平5−345926号公報、特開平6−ll6682号公報などで開示されている。これらの技術では缶強度や2ピース缶製造で必要とされる深絞り性および低異方性は確保できるが、時効性が大きいことによる加工時のストレッチャーストレインによる表面品位劣化の懸念や、BHを付与するための高温熱処理が不可欠となるばかりでなく、フランジ成形性を確保する点でも問題となることがある。
【0005】
また、従来の技術では素材の強度や延性などの特性のみに注目し、缶加工による材質変化に注目していないため、缶成形条件によっては缶成形途中で延性不足になり破断したり、成形後の缶強度が不足するなどの問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、素材の強度、延性が同一であるとしても、鋼板の加工硬化特性を好ましく制御することで、缶成形後における缶強度や缶の一部の成形性が良好になるような鋼板を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、特に2CR率が10%以下で製造される板厚0.4mm以下の鋼板の成分、熱延条件および焼鈍条件と材質、特に缶成形後の材質との関係を検討するうち、成分、特にNおよびAl量を特定範囲に限定した鋼板では素材特性および缶成形条件がほぼ同一でも缶成形後の缶強度やフランジ成形性などの特性が大きく異なる場合があることを知見した。
缶成形性との兼ね合いで素材は軟質であり、成形後は硬質高延性となる条件についてさらなる検討を加えるうち、極低炭素鋼でNを通常より高濃度で含有し、特定の0.2%耐力、全伸び、加工硬化を示す鋼板では、素材が軟質であるにもかかわらず缶強度が高く、また、缶加工を受けたフランジ部の成形性や缶胴部のエキスパンド加工性が良好となることを知見した。
【0008】
本発明はかかる知見に基づくものであって、その要旨とするところは以下の通りである。
(1)質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、JIS5号試験片による引張試験における0.2%耐力:430MPa以下、全伸び:15%以上40%未満の鋼板であって、内部摩擦によるQ-1が0.0010以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
(2)質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、JIS5号試験片による引張試験における0.2%耐力:430MPa以下、全伸び:15%以上40%未満の鋼板であって、5%の冷延加工に続く200℃1時間の人工時効後のJIS5号試験片による引張試験における降伏点伸びが2%以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
(3)質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、10%の冷間圧延前後のJ1S5号試験片による引張試験における0.2%耐力の差が140MPa以上の鋼板であって、内部摩擦によるQ-1が0.0010以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
(4)質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、10%の冷間圧延前後のJlS5号試験片による引張試験における0.2%耐力の差が140MPa以上の鋼板であって、5%の冷延加工に続く200℃1時間の人工時効後のJIS5号試験片による引張試験における降伏点伸びが2%以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
質量%で、Ti:0.005%以下、Nb:0.005%以下の1種または2種をさらに含有する前記(1)〜()のいずれか1項に記載の板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
)熱間圧延、冷間圧延、焼鈍を含む工程で前記(1)〜()のいずれか1項に記載の鋼板を得るにあたり、前記焼鈍に続く焼鈍温度からの冷却を、焼鈍均熱温度から650℃までを100〜200℃/秒、その後650℃〜450℃までを50〜100℃/秒、さらに450℃〜200℃までを0.1〜50℃/秒の冷却速度で行うことを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板の製造方法。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
まず、成分について説明する。成分はすべて質量%である。
Nは本発明の重要規定要件である。0.0040%未満では本発明の効果は得られない。望ましくは0.0060%以上である。また上限は鋳造欠陥の可能性や窒化鉄形成による加工性劣化から0.030%とする。
【0010】
Alは脱酸を目的として添加され0.005%以上含有される。N含有量が高い本発明鋼ではAlの含有量が高くなると、鋼中に微細に析出するAlNの析出量が増大し再結晶を抑制するため焼鈍時に高温通板が必要となり、通板性を著しく劣化させるため、0.080%を上限とする。好ましい範囲は0.010〜0.040%である。
【0011】
Cは、本発明では特に限定する必要はないが、0.005%以下とすることで焼鈍条件や熱延条件の影響をより小さくすることができる。望ましくは0.003%以下とすることが好ましい。
Mnも本発明では特に限定する必要はないが、過度な添加は材料を硬質化させ延性を劣化させるため、1.0%以下、好ましくは0.50%以下とする。
【0012】
Ti,Nbも特に限定する必要はなく、r値の特別な向上などの必要がない場合はあえて添加する必要はない。添加により再結晶温度が上昇し高温焼鈍が必要となり焼鈍通板性が劣化するので、それぞれ0.005%以下の1種または2種、好ましくは0.003%以下とすることが望ましい。
【0013】
通常の鋼板に不可避的に含有されるSi,P,S等は一般に容器用に用いられる鋼板に含有される程度に含有される。その範囲はSi:0.001〜0.10%、P:0.002〜0.040%、S:0.002〜0.040%である。その他、製鋼工程でのスクラップ使用などで混入する各種の不純物元素も、通常の鋼板に含有される程度に含有することは本発明の効果を損なうものではない。
【0014】
本発明鋼では鋼板の0.2%耐力は430MPa以下、鋼板の全伸びは15%以上に限定する。これは、素材がこの程度以上に高強度化された鋼板であれば本発明によらなくとも缶成形後の缶強度は必然的に高くなるためである。また、全伸びを40%未満と限定した理由は、本発明鋼で全伸びをこれ以上高くすることは含有するN量との兼ね合いで本発明の効果を得ることが困難になるためである。
【0015】
また、本発明のごとく加工硬化挙動を制御するに固溶C,Nが大きな役割を果たしていると考えられる。この固溶C,Nの量の測定法としては内部摩擦によるものがよく知られており、本発明においてもこの内部摩擦による測定値を用いる。内部摩擦では鋼板に強制的に与えられた歪みの減衰挙動が鋼板温度の関係で測定され、その減衰曲線から固溶C量および固溶N量が換算される。しかし現実の測定では両元素による減衰曲線が重なって測定されるため、正確な換算は困難である。そのため本発明においては、内部摩擦で直接的に得られる値のQ-1により範囲を限定する。
【0016】
-1は帯状試料の片側を固定し自由端を振動させる曲げ振動型の内部摩擦測定装置により測定した。測定時の振動周波数は試験片板厚、形状や測定装置への取り付けなどにより多少変動するが、通常60〜120Hzである。そして測定温度を0℃から200℃まで毎分2℃で変化させながら求めた振動の減衰曲線から測定に伴うバックグラウンドを差し引いたピークの最大値を、本発明におけるQ-1と定義した。
この値は同じ成分の鋼でも製造条件により大きく変化し、通常の鋼板であれば0〜0.01程度の値が得られる。本発明ではこの値を0.001以上と限定する。
【0017】
鋼板の加工硬化挙動の限定は本発明の重要な要件の一つである。加工硬化挙動は一般には引張試験の応力−歪曲線における加工硬化指数、いわゆるn値で表される場合が多いが、本発明鋼が対象としているような加工工程において変形方向が変化する缶成形を経た後の材料強度の指標としては正確さが十分とはいえない。本発明では加工方向の変化も考慮した加工硬化挙動の指標として、鋼板に10%の冷間圧延を施す前後のJlS5号引張試験における0.2%耐力の上昇量を140MPa以上と限定する。
【0018】
冷延における加工硬化量は通常、ロール径、パス回数、潤滑、温度などの圧延条件によりわずかに変動するが、本発明では通常の実験室で行うことができる条件、すなわちロール径100〜400mm、パス回数は1〜5パス、潤滑はパーム油、温度は室温とした場合の値で評価される。加工硬化挙動がこの範囲に無い場合は、缶成形後の缶強度が不足し、フランジ成形性が顕著に劣化する。
【0019】
鋼板の時効性の限定も本発明の重要な要件の一つである。特定の0.2%耐力、全伸び、加工硬化挙動を持った鋼板について、5%の冷延加工に続く200℃×1時間の人工時効後の降伏点伸びを2%以上とすることにより本発明の効果が得られる。
【0020】
板厚は本発明鋼の用途を考え、0.4mm以下と限定する。本発明鋼が特に必要とされるのは延性の劣化がより顕著となる0.2mm以下、さらに効果が発揮されるのは0.17mm以下の極薄鋼板においてである。
【0021】
鋼板の0.2%耐力、全伸びは、成分、2CR条件により変化し、従来鋼と同様に材質調整されるが、木発明の特徴である加工硬化挙動および時効特性を制御するには、特に2CR率を20%以下とすることが発明の効果を得るのに有効である。特に2CR率を10%以下とすればより顕著な効果を得ることができる。
【0022】
また、本発明鋼では焼鈍条件による材質の変動が非常に小さいため、焼鈍温度の限定が不要で、焼鈍後の組織が再結晶していればよい。通常、材質制御には焼鈍温度、特に最高到達温度と高温での保定時間の管理が重要となる。特に焼鈍温度を変化させるには、変化中および変化させた後の炉温が安定するまで通板が停滞または無駄な板を通板する必要がある。このためユーザーの要求に応じ様々な板厚および材質の鋼板を製造するに当たり、焼鈍炉の温度の変動を極力小さくし通板速度を一定として製造できるような通板スケジュールを組む必要が生じるが、このための労力は甚大なものがあり、また生産性を阻害させない完全なスケジュールを組むことは不可能である。本発明鋼では材質に及ぼす焼鈍条件の影響が非常に小さいため、実質的にスケジュールフリー化が達成できるというメリットも享受できる。
【0023】
従来技術ではNを一般的に知られているような固溶強化または焼付硬化を目的として含有させるものもあるが、本発明でのN含有量では本発明が対象とするJIS5号引張試験における0.2%耐力が430MPa以下の鋼板は必ずしも製造できないばかりでなく、成分に応じた2CRなど製造条件による0.2%耐力、加工硬化挙動の制御なくしては延性の劣化が著しい。また、特に2CR率が低い場合には時効性が顕著に劣化し、加工時の表面性状の劣化などの不具合が発生する。
【0024】
本発明でのNの添加は缶加工による高強度化促進および延性劣化抑止の目的で行われるもので、成分ならびに0.2%耐力、伸び、Q-1、加工硬化特性などを本発明範囲内に限定することで効果を得ることができる。これらの原因は明らかではないが、Nの存在が、缶加工時の転位を鋼中に分散させ、均一な交絡により加工硬化を促進すると共に、破断の起点となるボイドを形成させるような集中的な交絡を回避させ、その後のフランジ成形時にバウシンガー効果的な挙動により転位の再配列を起こさせ、破断までの歪みを増大させるためと考えられる。
【0025】
木発明の効果は焼鈍前の熱履歴、製造履歴によらない。熱延を行う場合のスラブはインゴット法、連続鋳造法など製造法は限定されず、また、熱延に至るまでの熱履歴にもよらないため、スラブ再加熱法、鋳造したスラブを再加熱することなく直接熱延するCC−DR法、さらには粗圧延などを省略した薄スラブ鋳造によっても本発明の効果を得ることができる。
【0026】
本発明鋼は、例えばN:0.0040〜0.0300%、Al:0.005〜0.080%を含有する鋼の焼鈍した後の冷却条件を制御することで得ることができる。例えば、焼鈍均熱温度から650℃までの冷却速度を100〜200℃/秒(ただし、650℃で焼鈍する場合は、この冷却速度は実施されない。)、その後650℃から450℃までの冷却速度を50〜100℃/秒、450℃〜200℃までを0.1〜50℃/秒とし、さらに焼鈍後の2CR率を20%以下とすることによって製造することが可能である。
【0027】
また、本発明鋼を溶接により缶胴部を製造する3ピース缶用素材として用いる場合には、溶接部が硬化し、熱影響部が軟化するためフランジ成形時に熱影響部に歪が集中し、フランジ成形性が鋼板延性のみならず溶接部および熱影響部の特性に影響される場合がある。溶接部および熱影響部の硬度制御のためB,Nbなどが添加される場合があるが、これらの微量元素を添加しても本発明の効果が失われるものではない。
【0028】
通常、本発明鋼板は表面処理鋼板用の原板として使用されるが、表面処理により本発明の効果はなんら損なわれるものではない。缶用表面処理としては通常、錫、クロム(ティンフリー)などが施される。また、近年使用されるようになっている有機皮膜を貼ったラミネート鋼板用の原板としても、本発明の効果を損なうことなく使用できる。
【0029】
【実施例】
本発明の効果を、それぞれの板を同じ成形条件で2ピース缶に製缶加工する際のフランジ成形性および製缶加工後の缶強度で評価した。製缶条件は実際の工程とほぼ同様の条件で、絞り−しごき−塗装相当熱処理(200℃10分、一部は熱処理なし)−ネック成形−フランジ成形評価−缶強度(耐圧強度)評価の手順である。
表1に示す各成分の鋼について、熱間圧延、冷間圧延、焼鈍し、焼鈍後650℃までを150℃/秒、650〜450℃までを80℃/秒、450〜200℃を30℃/秒で冷却した。次いで2CRを施して板厚0.18mmの鋼板を製造し、引張試験により材質を測定した。
【0030】
これらの鋼についての製造条件および材質を表2に示す。成分および素材材質を本発明の範囲内に制御することで、良好なフランジ成形性および缶強度が得られていることが確認できる。また本発明鋼では、焼鈍工程によらず良好なフランジ成形性および缶強度が達成されており、焼鈍条件による材質の変動も非常に小さいことがわかる。
【0031】
【表1】

Figure 0003840004
【0032】
【表2】
Figure 0003840004
【0033】
【発明の効果】
以上述べたごとく本発明によれば、素材としては軟質なため缶成形性に優れ、缶成形時の加工により硬質となるため缶強度に優れるとともに、加工による延性劣化が小さいためフランジ成形性が良好な極薄容器用鋼板を焼鈍スケジュールフリーで得ることが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultra-thin soft steel plate that is used in metal containers such as beverage cans and has a can thickness of 0.4 mm or less and excellent can moldability, and a method for producing the same.
[0002]
[Prior art]
For steel plates for containers represented by beverage cans and food cans, there is a demand for thinner materials to reduce can costs. At this time, to make up the strength of the steel plate itself to compensate for the reduction in can strength accompanying thinning, and to avoid buckling of the steel plate called a heat buckle that hinders production efficiency in the annealing process, the target plate thickness during annealing Japanese Patent Publication No. 7-109010 discloses a technique in which a thicker steel plate is passed through and then subjected to re-cold rolling (2CR) to obtain a target plate thickness.
[0003]
However, as the steel sheets become thinner, an increase in the 2CR ratio is inevitable, and ductility deterioration accompanying the hardening of the material is becoming a new problem. Typically, when winding the can body and the bottom or can lid, there is a problem of cracking in the process of expanding the diameter of the end of the can body (flange molding).
[0004]
As means for increasing the strength without relying on 2CR, techniques utilizing solid solution strengthening or bake hardenability (BH) by solid solution N are disclosed in JP-A-5-345926 and JP-A-6-ll6682. Is disclosed. Although these technologies can ensure the strength of the can and the deep drawability and low anisotropy required for the production of two-piece cans, there are concerns about surface quality deterioration due to stretcher strain during processing due to high aging, and BH High temperature heat treatment for imparting not only becomes indispensable, but there is also a problem in securing flange formability.
[0005]
In addition, the conventional technology focuses only on properties such as strength and ductility of the material and does not focus on material changes due to can processing, so depending on the can molding conditions, ductility becomes insufficient during can molding and breaks, or after molding There were problems such as lack of can strength.
[0006]
[Problems to be solved by the invention]
The object of the present invention is that even if the strength and ductility of the raw material are the same, the strength of the can and the part of the formability of the can can be improved by preferably controlling the work hardening characteristics of the steel sheet. It is to provide a steel plate.
[0007]
[Means for Solving the Problems]
The present inventors have examined the relationship between the components, hot rolling conditions and annealing conditions and materials of steel sheets having a thickness of 0.4 mm or less, especially manufactured with a 2CR ratio of 10% or less, particularly the materials after can molding. It has been found that steel sheets in which the amounts of components, particularly N and Al, are limited to specific ranges, may have greatly different characteristics such as can strength and can formability after can forming even if the material characteristics and can forming conditions are substantially the same.
In consideration of can moldability, the material is soft, and after further investigation on the conditions for hard and high ductility after molding, ultra-low carbon steel contains N at a higher concentration than usual, with a specific 0.2% Steel sheets exhibiting proof stress, total elongation, and work hardening have high can strength despite the softness of the material, and good formability of the flange part subjected to can processing and expand workability of the can body part. I found out.
[0008]
The present invention is based on such knowledge, and the gist thereof is as follows.
(1) In mass %,
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
A steel sheet having a balance of Fe and inevitable impurities, 0.2% proof stress in a tensile test using a JIS No. 5 test piece: 430 MPa or less, and total elongation: 15% or more and less than 40%, and Q due to internal friction. An ultrathin soft steel plate for containers having a can thickness of 0.4 mm or less and excellent can moldability, wherein 1 is 0.0010 or more.
(2) In mass %,
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
And a balance of Fe and inevitable impurities, 0.2% proof stress in a tensile test using a JIS No. 5 test piece: 430 MPa or less, total elongation: 15% or more and less than 40%, 5% cold rolling Container with excellent can strength and can moldability of 0.4 mm or less, characterized by a yield point elongation of 2% or more in a tensile test using a JIS No. 5 test piece after artificial aging at 200 ° C. for 1 hour following processing Ultra-thin soft steel sheet.
(3) In mass %,
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
It contains, and the balance Fe and unavoidable impurities, the difference between the 0.2% proof stress in a tensile test according J1S5 No. specimen between before and after rolling 10% cold is a steel sheet or 140 MPa, Q by internal friction - An ultrathin soft steel plate for containers having a can thickness of 0.4 mm or less and excellent can moldability, wherein 1 is 0.0010 or more.
(4) In mass %,
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
And a balance of 0.2% proof stress in a tensile test with a JlS5 test piece before and after 10% cold rolling, and a cold rolling of 5% Container with excellent can strength and can moldability of 0.4 mm or less, characterized by a yield point elongation of 2% or more in a tensile test using a JIS No. 5 test piece after artificial aging at 200 ° C. for 1 hour following processing Ultra-thin soft steel sheet.
( 5 ) The plate thickness according to any one of (1) to ( 4 ), further comprising one or two of Ti: 0.005% or less and Nb: 0.005% or less in mass %. Ultra-thin soft steel sheet for containers with excellent can strength and can moldability of 0.4mm or less.
( 6 ) In obtaining the steel sheet according to any one of (1) to ( 5 ) in a process including hot rolling, cold rolling, and annealing, cooling from the annealing temperature following the annealing is performed by annealing. From the heat temperature to 650 ° C., 100 to 200 ° C./second, then from 650 ° C. to 450 ° C. at 50 to 100 ° C./second, and further from 450 ° C. to 200 ° C. at a cooling rate of 0.1 to 50 ° C./second. A method for producing an ultrathin soft steel plate for containers having a can thickness of 0.4 mm or less and excellent can moldability.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
First, components will be described. All components are in weight percent.
N is an important requirement of the present invention. If it is less than 0.0040%, the effect of the present invention cannot be obtained. Desirably, it is 0.0060% or more. The upper limit is set to 0.030% from the possibility of casting defects and workability deterioration due to iron nitride formation.
[0010]
Al is added for the purpose of deoxidation and contained in an amount of 0.005% or more. In the steel of the present invention with a high N content, when the Al content is high, the precipitation amount of AlN finely precipitated in the steel is increased, and recrystallization is suppressed, so that high temperature sheeting is required during annealing, and the sheeting property is improved. In order to deteriorate significantly, the upper limit is made 0.080%. A preferred range is from 0.010 to 0.040%.
[0011]
Although it is not necessary to specifically limit C in the present invention, the effect of annealing conditions and hot rolling conditions can be further reduced by setting the content to 0.005% or less. Desirably, it is preferably 0.003% or less.
Mn is not particularly limited in the present invention, but excessive addition hardens the material and deteriorates ductility, so it is 1.0% or less, preferably 0.50% or less.
[0012]
Ti and Nb are not particularly limited, and it is not necessary to add Ti or Nb when there is no need for special improvement of the r value. Addition raises the recrystallization temperature and requires high-temperature annealing, which deteriorates the annealing passability. Therefore, one or two of 0.005% or less, preferably 0.003% or less is desirable.
[0013]
Si, P, S, etc. inevitably contained in ordinary steel sheets are contained to the extent that they are generally contained in steel sheets used for containers. The ranges are Si: 0.001-0.10%, P: 0.002-0.040%, S: 0.002-0.040%. In addition, it is not detrimental to the effects of the present invention that various impurity elements mixed in by using scrap in the steel making process are contained to the extent that they are contained in ordinary steel sheets.
[0014]
In the steel of the present invention, the 0.2% proof stress of the steel plate is limited to 430 MPa or less, and the total elongation of the steel plate is limited to 15% or more. This is because, if the material is a steel plate with a strength higher than this level, the can strength after can molding is inevitably increased without using the present invention. The reason why the total elongation is limited to less than 40% is that it is difficult to obtain the effect of the present invention in view of the N content to be contained when the total elongation is further increased in the steel of the present invention.
[0015]
Further, it is considered that solid solutions C and N play a large role in controlling work hardening behavior as in the present invention. As a method for measuring the amount of the solute C and N, a method based on internal friction is well known, and the measured value based on this internal friction is also used in the present invention. In the internal friction, the damping behavior of the strain forcibly applied to the steel plate is measured in relation to the steel plate temperature, and the solid solution C amount and the solid solution N amount are converted from the attenuation curve. However, in actual measurement, the attenuation curves of both elements are overlapped, so that accurate conversion is difficult. Therefore, in the present invention, the range is limited by Q −1 which is a value obtained directly by internal friction.
[0016]
Q -1 was measured by a bending vibration type internal friction measuring device that fixed one side of the belt-like sample and vibrated the free end. The vibration frequency at the time of measurement varies somewhat depending on the thickness and shape of the test piece and the attachment to the measuring device, but is usually 60 to 120 Hz. The maximum value of the peak obtained by subtracting the background associated with the measurement from the vibration attenuation curve obtained while changing the measurement temperature from 0 ° C. to 200 ° C. at 2 ° C. per minute was defined as Q −1 in the present invention.
This value varies greatly depending on the production conditions even for steels of the same component, and a value of about 0 to 0.01 is obtained for a normal steel plate. In the present invention, this value is limited to 0.001 or more.
[0017]
The limitation of the work hardening behavior of the steel sheet is one of the important requirements of the present invention. In general, work hardening behavior is often expressed by a work hardening index in a stress-strain curve of a tensile test, a so-called n value. It cannot be said that accuracy is sufficient as an index of material strength after passing. In the present invention, as an index of work hardening behavior that also considers changes in the working direction, the amount of increase in 0.2% proof stress in the JlS5 tensile test before and after 10% cold rolling is limited to 140 MPa or more.
[0018]
The work hardening amount in cold rolling usually varies slightly depending on rolling conditions such as roll diameter, number of passes, lubrication, temperature, etc., but in the present invention, conditions that can be performed in a normal laboratory, that is, roll diameter of 100 to 400 mm, The number of passes is 1 to 5 passes, the lubrication is palm oil, and the temperature is room temperature. When the work hardening behavior is not within this range, the strength of the can after the can molding is insufficient, and the flange formability is significantly deteriorated.
[0019]
The limitation of the aging property of the steel sheet is one of the important requirements of the present invention. For steel sheets with specific 0.2% proof stress, total elongation and work hardening behavior, this is achieved by setting the yield point elongation after artificial aging at 200 ° C for 1 hour following cold rolling of 5% to 2% or more. The effects of the invention can be obtained.
[0020]
The plate thickness is limited to 0.4 mm or less in consideration of the application of the steel of the present invention. The steel of the present invention is particularly required for ultra-thin steel sheets having a thickness of 0.2 mm or less where the deterioration of ductility becomes more prominent, and for achieving the effect more than 0.17 mm.
[0021]
The 0.2% proof stress and total elongation of the steel sheet vary depending on the component and 2CR conditions, and the material is adjusted in the same manner as in conventional steel. To control the work hardening behavior and aging characteristics that are the characteristics of the wood invention, Setting the 2CR rate to 20% or less is effective for obtaining the effects of the invention. In particular, if the 2CR rate is 10% or less, a more remarkable effect can be obtained.
[0022]
Moreover, in the steel according to the present invention, the variation of the material due to the annealing conditions is very small. Therefore, it is not necessary to limit the annealing temperature, and it is sufficient that the structure after annealing is recrystallized. Usually, it is important to control the annealing temperature, particularly the maximum temperature and the holding time at high temperature for material control. In particular, in order to change the annealing temperature, it is necessary to let the passing plate stagnate or pass a useless plate until the furnace temperature during and after the change becomes stable. For this reason, when manufacturing steel sheets with various plate thicknesses and materials according to the user's request, it is necessary to create a plate passing schedule that can be manufactured with the temperature variation of the annealing furnace as small as possible and the plate passing speed constant. The effort for this is enormous, and it is impossible to create a complete schedule that does not impede productivity. In the steel according to the present invention, since the influence of the annealing conditions on the material is very small, it is possible to enjoy the merit that the schedule free can be achieved substantially.
[0023]
Some conventional techniques contain N for the purpose of solid solution strengthening or bake hardening as is generally known, but the N content in the present invention is 0 in the JIS No. 5 tensile test targeted by the present invention. A steel sheet having a 2% proof stress of 430 MPa or less cannot always be produced, and the ductility is significantly deteriorated without control of 0.2% proof stress and work hardening behavior depending on production conditions such as 2CR depending on the components. In particular, when the 2CR rate is low, the aging property is remarkably deteriorated, and defects such as deterioration of the surface properties during processing occur.
[0024]
The addition of N in the present invention is performed for the purpose of promoting high strength by can processing and suppressing ductility deterioration, and the components, 0.2% proof stress, elongation, Q −1 , work hardening characteristics, etc. are within the scope of the present invention. An effect can be acquired by limiting to. The cause of these is not clear, but the presence of N concentrates such that dislocations during can processing are dispersed in the steel, work hardening is promoted by uniform entanglement, and voids that form the starting point of fracture are formed. This is thought to be due to avoiding confounding and causing rearrangement of dislocations due to the Bausinger effective behavior during the subsequent flange forming, thereby increasing the strain until breakage.
[0025]
The effect of the wood invention does not depend on the thermal history and manufacturing history before annealing. The manufacturing method such as ingot method and continuous casting method is not limited for slab when performing hot rolling, and because it does not depend on the heat history until hot rolling, slab reheating method, cast slab is reheated The effects of the present invention can also be obtained by the CC-DR method in which hot rolling is directly performed, and also by thin slab casting in which rough rolling or the like is omitted.
[0026]
The steel of the present invention can be obtained, for example, by controlling the cooling conditions after annealing of steel containing N: 0.0040 to 0.0300% and Al: 0.005 to 0.080%. For example, the cooling rate from the annealing soaking temperature to 650 ° C. is 100 to 200 ° C./second (however, when annealing is performed at 650 ° C., this cooling rate is not performed) , and then the cooling rate from 650 ° C. to 450 ° C. Is 50 to 100 ° C./second, 450 to 200 ° C. is 0.1 to 50 ° C./second, and the 2CR rate after annealing is 20% or less.
[0027]
In addition, when using the steel of the present invention as a three-piece can material for producing a can body part by welding, the welded part is hardened and the heat-affected zone is softened, so that strain is concentrated on the heat-affected zone during flange molding, The flange formability may be affected not only by the ductility of the steel sheet but also by the characteristics of the welded part and the heat affected zone. B, Nb, etc. may be added to control the hardness of the welded part and heat-affected zone, but the effects of the present invention are not lost even if these trace elements are added.
[0028]
Usually, the steel sheet of the present invention is used as an original sheet for a surface-treated steel sheet, but the effect of the present invention is not impaired by the surface treatment. As the surface treatment for cans, tin, chromium (tin-free), etc. are usually applied. Moreover, it can be used, without impairing the effect of this invention, also as the negative | original plate for laminated steel plates which stuck the organic membrane which has come to be used in recent years.
[0029]
【Example】
The effect of the present invention was evaluated by flange formability and can strength after can manufacturing of each plate under the same molding conditions. The can-making conditions are almost the same as the actual process, drawing-ironing-coating equivalent heat treatment (200 ° C for 10 minutes, some without heat treatment)-neck forming-flange forming evaluation-can strength (pressure strength) evaluation procedure It is.
About steel of each component shown in Table 1, it is hot-rolled, cold-rolled, annealed, and after annealing, up to 650 ° C is 150 ° C / second, up to 650-450 ° C is 80 ° C / second, and 450-200 ° C is 30 ° C. Cooled at / sec. Next, 2CR was applied to produce a steel plate having a thickness of 0.18 mm, and the material was measured by a tensile test.
[0030]
The production conditions and materials for these steels are shown in Table 2. It can be confirmed that good flange formability and can strength are obtained by controlling the components and the raw material within the scope of the present invention. Moreover, in the steel of the present invention, it is understood that good flange formability and can strength are achieved regardless of the annealing process, and the variation of the material due to the annealing conditions is very small.
[0031]
[Table 1]
Figure 0003840004
[0032]
[Table 2]
Figure 0003840004
[0033]
【The invention's effect】
As described above, according to the present invention, since the material is soft, it is excellent in can moldability, and becomes hard by processing during can molding, so it has excellent can strength, and since ductility deterioration due to processing is small, flange formability is good. It is possible to obtain a very thin steel plate for containers without annealing schedule.

Claims (6)

質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、JIS5号試験片による引張試験における0.2%耐力:430MPa以下、全伸び:15%以上40%未満の鋼板であって、内部摩擦によるQ-1が0.0010以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
% By mass
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
A steel sheet having a balance of Fe and inevitable impurities, 0.2% proof stress in a tensile test using a JIS No. 5 test piece: 430 MPa or less, and total elongation: 15% or more and less than 40%, and Q due to internal friction. An ultrathin soft steel plate for containers having a can thickness of 0.4 mm or less and excellent can moldability, wherein 1 is 0.0010 or more.
質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、JIS5号試験片による引張試験における0.2%耐力:430MPa以下、全伸び:15%以上40%未満の鋼板であって、5%の冷延加工に続く200℃1時間の人工時効後のJIS5号試験片による引張試験における降伏点伸びが2%以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
% By mass
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
And a balance of Fe and inevitable impurities, 0.2% proof stress in a tensile test using a JIS No. 5 test piece: 430 MPa or less, total elongation: 15% or more and less than 40%, 5% cold rolling Container with excellent can strength and can moldability of 0.4 mm or less, characterized by a yield point elongation of 2% or more in a tensile test using a JIS No. 5 test piece after artificial aging at 200 ° C. for 1 hour following processing Ultra-thin soft steel sheet.
質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、10%の冷間圧延前後のJ1S5号試験片による引張試験における0.2%耐力の差が140MPa以上の鋼板であって、内部摩擦によるQ-1が0.0010以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
% By mass
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
It contains, and the balance Fe and unavoidable impurities, the difference between the 0.2% proof stress in a tensile test according J1S5 No. specimen between before and after rolling 10% cold is a steel sheet or 140 MPa, Q by internal friction - An ultrathin soft steel plate for containers having a can thickness of 0.4 mm or less and excellent can moldability, wherein 1 is 0.0010 or more.
質量%で、
C :0.005%以下、 Mn:1.0%以下、
Si:0.001〜0.10%、 P :0.002〜0.040%、
S :0.002〜0.040%、 N :0.0040〜0.0300%、
Al:0.005〜0.080%
を含有し、残部Fe及び不可避的不純物からなり、10%の冷間圧延前後のJlS5号試験片による引張試験における0.2%耐力の差が140MPa以上の鋼板であって、5%の冷延加工に続く200℃1時間の人工時効後のJIS5号試験片による引張試験における降伏点伸びが2%以上であることを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。
% By mass
C: 0.005% or less, Mn: 1.0% or less,
Si: 0.001-0.10%, P: 0.002-0.040%,
S: 0.002-0.040%, N: 0.0040-0.0300%,
Al: 0.005-0.080%
And a balance of 0.2% proof stress in a tensile test with a JlS5 test piece before and after 10% cold rolling, and a cold rolling of 5% Container with excellent can strength and can moldability of 0.4 mm or less, characterized by a yield point elongation of 2% or more in a tensile test using a JIS No. 5 test piece after artificial aging at 200 ° C. for 1 hour following processing Ultra-thin soft steel sheet.
質量%で、Ti:0.005%以下、Nb:0.005%以下の1種または2種をさらに含有する請求項1乃至のいずれか1項に記載の板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板。The can having a plate thickness of 0.4 mm or less according to any one of claims 1 to 4 , further comprising one or two of mass %, Ti: 0.005% or less, Nb: 0.005% or less. Ultra-thin soft steel plate for containers with excellent strength and can moldability. 熱間圧延、冷間圧延、焼鈍を含む工程で請求項1乃至のいずれか1項に記載の鋼板を得るにあたり、前記焼鈍に続く焼鈍温度からの冷却を、焼鈍均熱温度から650℃までを100〜200℃/秒、その後650℃〜450℃までを50〜100℃/秒、さらに450℃〜200℃までを0.1〜50℃/秒の冷却速度で行うことを特徴とする板厚0.4mm以下の缶強度、缶成形性に優れる容器用極薄軟質鋼板の製造方法。In obtaining the steel sheet according to any one of claims 1 to 5 in a process including hot rolling, cold rolling, and annealing, cooling from the annealing temperature following the annealing is performed from the annealing soaking temperature to 650 ° C. 100 to 200 ° C./second, then 650 ° C. to 450 ° C. at 50 to 100 ° C./second, and further 450 to 200 ° C. at a cooling rate of 0.1 to 50 ° C./second. A method for producing an ultrathin soft steel sheet for containers having a can strength of 0.4 mm or less and excellent can moldability.
JP23061899A 1999-08-17 1999-08-17 Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same Expired - Fee Related JP3840004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23061899A JP3840004B2 (en) 1999-08-17 1999-08-17 Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23061899A JP3840004B2 (en) 1999-08-17 1999-08-17 Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001049383A JP2001049383A (en) 2001-02-20
JP3840004B2 true JP3840004B2 (en) 2006-11-01

Family

ID=16910602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23061899A Expired - Fee Related JP3840004B2 (en) 1999-08-17 1999-08-17 Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3840004B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689052B2 (en) 2009-05-18 2017-06-27 Nippon Steel & Sumitomo Metal Corporation Very thin steel sheet and production method thereof
CN104245985B (en) * 2012-04-06 2017-08-11 杰富意钢铁株式会社 High-strength high-processability steel plate and its manufacture method
JP5958630B2 (en) 2014-10-10 2016-08-02 Jfeスチール株式会社 Crown steel plate and manufacturing method thereof
WO2016084353A1 (en) 2014-11-28 2016-06-02 Jfeスチール株式会社 Steel sheet for crown cap, manufacturing method therefor, and crown cap
MY174356A (en) 2015-02-26 2020-04-09 Jfe Steel Corp Steel sheet for crown cap, method for manufacturing steel sheet for crown cap, and crown cap
JP6108044B2 (en) * 2015-03-31 2017-04-05 Jfeスチール株式会社 Steel plate for can lid and manufacturing method thereof
MX2019002404A (en) 2016-09-29 2019-06-20 Jfe Steel Corp Steel sheet for crown caps, production method therefor, and crown cap.

Also Published As

Publication number Publication date
JP2001049383A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP4254663B2 (en) High strength thin steel sheet and method for producing the same
JPH0757892B2 (en) Method for manufacturing cold-rolled steel sheet for deep drawing with excellent secondary workability and surface treatment
JPH024657B2 (en)
JP3840004B2 (en) Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same
JPH0820843A (en) Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production
JP2009007607A (en) Steel sheet for extrathin vessel
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP4249860B2 (en) Manufacturing method of steel plate for containers
JP2007270167A (en) Method for producing galvanized steel sheet excellent in baking hardenability
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP2003041342A (en) Cold rolled steel sheet superior in stamping property
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP4091717B2 (en) Manufacturing method of high strength and high ductility steel sheet for containers
JPH1060542A (en) Production of steel sheet for can
RU2255989C1 (en) Method of production of cold-rolled steel for deep-drawing
JP2636591B2 (en) Austenitic stainless steel with excellent press formability, plastic anisotropy, and anti-cracking resistance
JPH0321611B2 (en)
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JPH0477049B2 (en)
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP3324074B2 (en) High strength and high ductility steel plate for container and method of manufacturing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R151 Written notification of patent or utility model registration

Ref document number: 3840004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees