JPWO2018025844A1 - Glass material for press molding and method of manufacturing optical element using the same - Google Patents

Glass material for press molding and method of manufacturing optical element using the same Download PDF

Info

Publication number
JPWO2018025844A1
JPWO2018025844A1 JP2018531910A JP2018531910A JPWO2018025844A1 JP WO2018025844 A1 JPWO2018025844 A1 JP WO2018025844A1 JP 2018531910 A JP2018531910 A JP 2018531910A JP 2018531910 A JP2018531910 A JP 2018531910A JP WO2018025844 A1 JPWO2018025844 A1 JP WO2018025844A1
Authority
JP
Japan
Prior art keywords
glass material
radius
curvature
press molding
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018531910A
Other languages
Japanese (ja)
Other versions
JP6976950B2 (en
Inventor
謙吾 中村
謙吾 中村
義包 新熊
義包 新熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of JPWO2018025844A1 publication Critical patent/JPWO2018025844A1/en
Application granted granted Critical
Publication of JP6976950B2 publication Critical patent/JP6976950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

ガラス素材1は、少なくとも成形後に一対の光学機能面となる部位の表面が自由表面で形成されるとともに、回転軸Aを中心とする回転体形状を有し、回転軸A方向の下面6が外方に向かって凸状に形成され、下面6は、中心部8が、ガラス素材1と同じ体積の球の半径より小さい第1の曲率半径R1を有し、中心部8の周囲に中心部8に隣接して配置された周辺部10は、第1の曲率半径R1よりも大きい第2の曲率半径R2を有する。The glass material 1 has at least the surface of a portion that will become a pair of optical functional surfaces after molding is formed as a free surface, has a shape of a rotating body centered on the rotation axis A, and the lower surface 6 in the rotation axis A direction is outside The lower surface 6 has a first radius of curvature R1 smaller than the radius of a sphere of the same volume as the glass material 1, and the lower surface 6 has a central portion 8 around the central portion 8. The peripheral portion 10 disposed adjacent to the second portion has a second radius of curvature R2 that is larger than the first radius of curvature R1.

Description

本発明は、プレス成形用ガラス素材及びこれを用いた光学素子の製造方法に関し、より具体的には、少なくとも光学機能面となる部位の表面が自由表面で形成されたプレス成形用ガラス素材及びこれを用いた光学素子の製造方法に関する。   The present invention relates to a glass material for press molding and a method of manufacturing an optical element using the same, and more specifically, a glass material for press molding in which at least a portion to be an optically functional surface is formed of a free surface The present invention relates to a method of manufacturing an optical element using

従来、光学素子をプレス成形で製造する際に使用するプレス成形用ガラス素材としては、例えば特許文献1に記載されるようなものがある。この特許文献1に記載のプレス成形用ガラス素材は、熔融ガラスを球面状の受け型に受け、受け面からガスを噴出して熔融ガラスを浮上させた状態で保持してガラス素材を成形する、いわゆる浮上成形で形成される。このため、この方法で製造されたプレス成形用ガラス素材は、受け型の曲率半径とほぼ同じ曲率半径の曲面で形成される下面を有するとともに、全面が滑らかな自由表面で形成される。   DESCRIPTION OF RELATED ART Conventionally, as a glass material for press molding used when manufacturing an optical element by press molding, there exists a thing as described in patent document 1, for example. The glass material for press molding described in Patent Document 1 receives molten glass in a spherical receiving mold, ejects gas from the receiving surface, holds the molten glass in a floating state, and forms the glass material. It is formed by so-called floating molding. For this reason, the glass material for press molding manufactured by this method has a lower surface formed by a curved surface having a radius of curvature substantially the same as the radius of curvature of the receiving mold and is formed with a smooth free surface as a whole.

特開平11−171565号公報Unexamined-Japanese-Patent No. 11-171565 gazette

ところで近年では、レンズの適用分野が広がってきており、これに伴ってレンズの形状や大きさの多様化が進んでいる。例えば画像識別センシングの分野では、強い歪曲によって中心は望遠、周辺は広角という特殊な射影方式のカメラへの要求が高まっており、そのようなカメラの最も物点側に配置される第1レンズとして用いられる非球面レンズでは、厚肉でレンズ全体の体積が大きい一方で、近軸の曲率半径が小さい等、複雑な形状が求められている。   By the way, in recent years, the application field of the lens has been expanded, and along with this, diversification of the shape and size of the lens is advanced. For example, in the field of image identification sensing, strong distortion is increasing the need for a special projection type camera with a telephoto at the center and a wide angle at the periphery, and as the first lens arranged at the most object side of such a camera In the aspherical lens to be used, a complicated shape is required such that the thickness is large and the volume of the entire lens is large while the radius of curvature of the paraxial axis is small.

しかしながら、従来の形状のプレス成形用ガラス素材では、ガラス素材の体積を大きくすると下面(受け型に対向する面)の曲率半径も大きくなるが、このような従来の形状のプレス成形用ガラス素材を、近軸の曲率半径が小さい非球面レンズにプレス成形すると、プレス成形用ガラス素材とプレス用金型との間にガスが溜まってしまうガストラップが発生し、良好な形状品質の成形品を得ることができない。
本発明の目的は、体積が大きく形状が複雑な非球面レンズをプレス成形することができるプレス成形用ガラス素材及びこれを用いた光学素子の製造方法を提供することにある。
However, in the glass material for press molding of the conventional shape, the curvature radius of the lower surface (the surface facing the receiving mold) also increases as the volume of the glass material increases. However, the glass material for press molding of such a conventional shape is used. When pressed into an aspheric lens with a small paraxial radius of curvature, a gas trap occurs in which gas is accumulated between the glass material for press molding and the die for press, and a molded article of good shape quality is obtained I can not do it.
An object of the present invention is to provide a glass material for press-forming capable of press-forming an aspheric lens having a large volume and a complicated shape, and a method of manufacturing an optical element using the same.

上記の目的を達成するために、本発明のプレス成形用ガラス素材は、少なくとも成形後に一対の光学機能面となる部位の表面が自由表面で形成されるとともに、回転軸を中心とする回転体形状を有し、回転軸方向における一方の光学機能面となる部位の表面である第1の表面が外方に向かって凸状に形成され、第1の表面は、中心部が、プレス成形用ガラス素材と同じ体積の球の半径より小さい第1の曲率半径を有し、中心部の周囲に中心部に隣接して配置された周辺部は、第1の曲率半径よりも大きい第2の曲率半径を有する、ことを特徴としている。   In order to achieve the above object, in the glass material for press molding of the present invention, the surface of a portion to be at least a pair of optical functional surfaces after molding is formed as a free surface, and the shape of a rotating body centered on the rotation axis And the first surface, which is the surface of the portion to be one of the optically functional surfaces in the direction of the rotation axis, is convexly formed outward, and the first surface has a central portion formed of glass for press-forming A second radius of curvature having a first radius of curvature smaller than the radius of a sphere of the same volume as the material, and a peripheral portion disposed adjacent to the central portion around the central portion has a second radius of curvature greater than the first radius of curvature It is characterized by having.

このように構成された本発明においては、プレス成形用ガラス素材の少なくとも成形後に一対の光学機能面となる部位の表面が自由表面であるので滑らかな表面のガラス素材が得られる。また、プレス成形用ガラス素材の第1の表面の中心部が同じ体積の球の半径よりも小さい第1の曲率半径を有し、周辺部が第1の曲率半径よりも大きい第2の曲率半径を有するので、比較的大きな体積のプレス成形用ガラス素材であっても、中心部の曲率半径が比較的小さくなるとともに滑らかに連続した全体形状が得られる。したがって、プレス成形用ガラス素材を、例えば近軸の曲率半径が比較的小さい形状のレンズにプレス成形する場合であっても、中心部にガストラップが発生することなくプレス成形が行われるとともに、プレス成形する際の成形型の隅々までプレス成形用ガラス素材が行き渡って形状精度の高い光学素子が得られる。よって、厚肉で複雑な形状の非球面レンズを成形する場合であっても良好な品質の成形品が得られる。   In the present invention configured as described above, a smooth surface glass material can be obtained because the surfaces of the portions to be the pair of optical functional surfaces after forming at least the glass material for press molding are free surfaces. In addition, the central portion of the first surface of the glass material for press molding has a first radius of curvature smaller than the radius of a sphere of the same volume, and the second radius of curvature has a peripheral portion larger than the first radius of curvature. Therefore, even if the glass material for press molding has a relatively large volume, the radius of curvature of the central portion becomes relatively small and a smooth continuous overall shape can be obtained. Therefore, even in the case of press-molding a glass material for press-forming, for example, into a lens having a relatively small radius of curvature of paraxial axis, the press-forming is performed without generating a gas trap at the central portion The glass material for press molding spreads to every corner of the molding die at the time of molding, and an optical element with high shape accuracy can be obtained. Therefore, a molded product of good quality can be obtained even in the case of molding a thick and complex shaped aspheric lens.

本発明の一実施形態に係るプレス成形用ガラス素材の回転軸を含む断面形状を示す図である。It is a figure which shows the cross-sectional shape containing the rotating shaft of the glass raw material for press molding which concerns on one Embodiment of this invention. 本発明の一実施形態に係るプレス成形用ガラス素材の体積と中心部の曲率半径との関係を示す図である。It is a figure which shows the relationship of the volume of the glass material for press molding which concerns on one Embodiment of this invention, and the curvature radius of center part. 本発明の一実施形態に係るプレス成形用ガラス素材をプレス成形した光学素子の断面形状の一例を示す図である。It is a figure which shows an example of the cross-sectional shape of the optical element which press-formed the glass raw material for press molding which concerns on one Embodiment of this invention. 本発明の比較例1のプレス成形用ガラス素材の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the glass material for press molding of the comparative example 1 of this invention.

以下、本発明の好ましい実施形態を添付図面を参照して説明する。
なお、本明細書において、プレス成形用ガラス素材とは、主に精密プレス成形に用いられるガラス素材であって、いわゆるプリフォームを指す。
また、本明細書において、自由表面とは、熔融ガラスが金型等の他の部材に接触することなく固化した際の表面を指すものとし、他の部材の一部が転写された面や研磨・研削等の機械加工が施された面は含まない。
Hereinafter, preferred embodiments of the present invention will be described with reference to the attached drawings.
In the present specification, a glass material for press molding is a glass material mainly used for precision press molding, and refers to a so-called preform.
Further, in the present specification, the free surface refers to the surface when the molten glass solidifies without coming into contact with other members such as a mold, and the surface to which a part of the other members is transferred, and polishing・ Does not include surfaces that have been machined such as grinding.

図1は、本発明の一実施形態に係るプレス成形用ガラス素材1(以下、単に「ガラス素材1」という)の回転軸を含む断面形状を示す図である。ガラス素材1は、少なくとも光学機能面となる部位の表面が自由表面で形成されるとともに、回転軸Aを中心とする回転体形状を有し、回転軸A方向の一方の面(下面6)が外方に向かって凸状に形成され、一方の面(下面6)は、中心部8が、ガラス素材1と同じ体積の球の半径より小さい第1の曲率半径R1を有し、中心部8の周囲に隣接して配置された周辺部10は、第1の曲率半径R1よりも大きい第2の曲率半径R2を有する。また、回転軸A方向の他方の面(上面4)の曲率半径R7は、下面6の曲率半径R1よりも大きくなっている。   FIG. 1 is a view showing a cross-sectional shape including a rotation axis of a press-molding glass material 1 (hereinafter, simply referred to as “glass material 1”) according to an embodiment of the present invention. The glass material 1 has at least the surface of a portion to be an optical function surface formed as a free surface, has a shape of a rotating body centered on the rotation axis A, and one surface (lower surface 6) in the rotation axis A direction It is formed in a convex shape outward, and one surface (lower surface 6) has a first curvature radius R1 smaller than the radius of a sphere having the same volume as that of the glass material 1, and the center 8 The peripheral portion 10 disposed adjacent to the periphery of has a second radius of curvature R2 that is greater than the first radius of curvature R1. The curvature radius R7 of the other surface (upper surface 4) in the rotation axis A direction is larger than the curvature radius R1 of the lower surface 6.

なお、光学機能面とは、光学レンズ等の光学素子における有効径内の領域を意味するものである。ガラス素材1における光学機能面となる部位は、光学素子の形状や機能によって様々に異なるが、少なくとも光軸(回転軸A)の中心およびその周辺領域は光学機能面となりうる。   In addition, an optical function surface means the area | region in the effective diameter in optical elements, such as an optical lens. The site to be the optically functional surface in the glass material 1 varies depending on the shape and function of the optical element, but at least the center of the optical axis (rotation axis A) and the peripheral region thereof can be the optically functional surface.

以下、本実施形態にかかるガラス素材1について、さらに詳細に説明する。図1に示すように、ガラス素材1は、少なくともプレス成形後に一対の光学機能面となる部位の表面が自由表面で形成されるとともに、回転軸Aを中心とする回転体形状を有し、回転軸Aに沿って図1の下から徐々に回転軸Aを中心とする直径が大きくなり、最大直径位置2において最大直径D1を有し、その後再び徐々に直径が小さくなる。このような形状により、最大直径位置2よりも上側の上面4は、外方、つまり上側に向かって湾曲する凸状に形成されている。また、最大直径位置2よりも下側の下面6は、外方、つまり下側に向かって湾曲する凸状に形成されている。なお、図1において、S1は上面4側の光学機能面となる部位であり、S2は下面6側の光学機能面となる部位である。また、4aおよび6aは、それぞれ光学機能面となる部位の表面を示しており、6aは第1の表面であり、4aは第2の表面である。この光学機能面となる部位の表面4a、6a以外の表面は、ガラス素材1をプレス成形した後に芯取加工により除去されたり、除去されない場合であっても光学的に機能しない面となるため、必ずしも自由表面でなくてもよい。なお、本実施形態では、ガラス素材1の全面が自由表面で形成されている。   Hereinafter, the glass material 1 according to the present embodiment will be described in more detail. As shown in FIG. 1, the glass material 1 has a shape of a rotating body centering on the rotation axis A while at least the surface of a portion to be a pair of optical functional surfaces after press forming is formed as a free surface. 1 along the axis A. The diameter about the rotation axis A gradually increases from the bottom of FIG. 1 and has the largest diameter D1 at the largest diameter position 2, and then the diameter gradually decreases again. With such a shape, the upper surface 4 above the maximum diameter position 2 is formed in a convex shape that curves outward, that is, upward. In addition, the lower surface 6 below the maximum diameter position 2 is formed in a convex shape that curves outward, that is, downward. In addition, in FIG. 1, S1 is a site | part used as the optical function surface by the side of the upper surface 4, and S2 is a site | part used as the optical function surface by the side of the lower surface 6. Moreover, 4a and 6a show the surface of the part used as an optical function side, respectively, 6a is a 1st surface, 4a is a 2nd surface. The surfaces other than the surfaces 4a and 6a of the portion to be the optical function surface are surfaces which do not function optically even if they are removed by coring after pressing the glass material 1 or are not removed. It does not necessarily have to be a free surface. In the present embodiment, the entire surface of the glass material 1 is formed as a free surface.

下面6は、回転軸A近傍の中心部8と、中心部8の周囲に隣接して配置された周辺部10とを有する。
図2は、本発明の一実施形態に係るガラス素材1の体積Vと中心部8の曲率半径R1との関係を示す図である。この図2では、横軸を曲率半径rとし、縦軸を体積Vとし、体積に対する、その体積を有する球体の曲率半径(半径)の関係を曲線Cで示している。本実施形態のガラス素材1の中心部8の曲率半径R1は、この曲線Cよりも左側の、斜線を施した領域内に位置するように設定される。つまり、本実施形態のガラス素材1の中心部8の曲率半径R1は、ガラス素材1と同じ体積Vのガラス素材を球状に形成したときの半径よりも小さく設定されている。なお、図2中の■は実施例におけるガラス素材の体積と曲率半径との関係を示したものであり、○は比較例1におけるガラス素材の体積と曲率半径との関係を示したものであり、●は、比較例2におけるガラス素材の体積と曲率半径との関係を示したものである。これらについては後述する。
また、ガラス素材1においては、周辺部10の曲率半径R2は、中心部8の曲率半径R1よりも大きく設定されている。
The lower surface 6 has a central portion 8 near the rotation axis A and a peripheral portion 10 disposed adjacent to the periphery of the central portion 8.
FIG. 2 is a view showing the relationship between the volume V of the glass material 1 and the radius of curvature R1 of the central portion 8 according to an embodiment of the present invention. In FIG. 2, the horizontal axis represents the radius of curvature r, the vertical axis represents the volume V, and the curve C represents the relationship between the volume and the radius of curvature (radius) of the sphere having the volume. The radius of curvature R1 of the central portion 8 of the glass material 1 of the present embodiment is set to be located in the hatched region on the left side of the curve C. That is, the curvature radius R1 of the central portion 8 of the glass material 1 of the present embodiment is set smaller than the radius when the glass material having the same volume V as the glass material 1 is formed spherically. In FIG. 2, the symbol ■ indicates the relationship between the volume of the glass material and the radius of curvature in the example, and the symbol ○ indicates the relationship between the volume of the glass material and the radius of curvature in the comparative example 1 , And ● show the relationship between the volume of the glass material and the radius of curvature in Comparative Example 2. These will be described later.
Further, in the glass material 1, the curvature radius R 2 of the peripheral portion 10 is set larger than the curvature radius R 1 of the central portion 8.

このように、ガラス素材1は、このガラス素材1をプレス成形して光学素子を成形したときに光学素子の光学機能面を形成することになるガラス素材1の表面(第1の表面6aおよび第2の表面4a)が、少なくとも自由表面で形成される。自由表面とは、上述のように熔融ガラスが金型等の他の部材に接触することなく固化した際の表面を指すものであり、算術平均粗さRaが10-3μm以下(1nm以下)の極めて平滑な面である。この算術平均粗さRaは、ガラス素材1をプレス成形した後の表面平滑性を得る観点から、0.7nm以下であることが好ましく、0.5nm以下であることが一層好ましい。Thus, when the glass material 1 is formed by pressing the glass material 1 to form an optical element, the surface (first surface 6 a and the first surface 6 a of the glass material 1 will form the optically functional surface of the optical element). Two surfaces 4a) are formed at least on the free surface. A free surface refers to the surface when molten glass solidifies without contacting other members, such as a mold, as mentioned above, and arithmetic mean roughness Ra is 10 −3 μm or less (1 nm or less) It is a very smooth surface of The arithmetic average roughness Ra is preferably 0.7 nm or less, and more preferably 0.5 nm or less from the viewpoint of obtaining surface smoothness after press-molding the glass material 1.

さらに、ガラス素材1は、回転軸Aを中心とする回転体形状を有し、回転軸A方向の一方の面、すなわち下面6が外方に向かって凸状に形成され、下面6は、中心部8が、同じ体積の球の半径より小さい第1の曲率半径R1を有し、中心部8の周囲に中心部8に隣接して配置された周辺部10は、第1の曲率半径R1よりも大きい第2の曲率半径R2を有する。
なお、第1の曲率半径R1は、例えば2〜10mmであり、好ましくは3〜8mmであり、より好ましくは4〜7mmである。また、第2の曲率半径R2は、例えば5〜30mmであるが、この範囲に限定されるものではない。
Furthermore, the glass material 1 has a shape of a rotating body centering on the rotation axis A, and one surface in the direction of the rotation axis A, that is, the lower surface 6 is convexly formed outward, and the lower surface 6 is The portion 8 has a first radius of curvature R1 smaller than the radius of a sphere of the same volume, and the peripheral portion 10 disposed adjacent to the central portion 8 around the central portion 8 has a first radius of curvature R1 Also has a large second radius of curvature R2.
In addition, 1st curvature radius R1 is 2-10 mm, for example, Preferably it is 3-8 mm, More preferably, it is 4-7 mm. Moreover, although 2nd curvature radius R2 is 5-30 mm, for example, it is not limited to this range.

また、ガラス素材1において、最大直径位置2から上面4の最上端、すなわち上面4と回転軸Aとが交わる点までの距離L1に対する、最大直径位置2から下面6の最下端、すなわち下面6と回転軸Aとが交わる点までの距離L2の比(L2/L1)は、1.2〜1.7に設定することが好ましい。この距離L1に対する距離L2の比が上記範囲外になると、ガラス素材1をプレス成形用の成形型に載置するときのガラス素材1の安定性が悪くなり、ガラス素材1の回転軸Aが成形型の中心軸に位置合わせすることが難しくなる。ガラス素材1の回転軸Aが成形型の中心軸からずれると、プレス成形して得られた光学素子は、偏肉が生じたものとなってしまう。
なお、図1に示すガラス素材1の回転軸A方向の厚みTは、距離L1と距離L2の総和である。
Further, in the glass material 1 with respect to the distance L1 from the maximum diameter position 2 to the uppermost end of the upper surface 4, ie, the point where the upper surface 4 and the rotational axis A intersect, The ratio (L2 / L1) of the distance L2 to the point of intersection with the rotation axis A is preferably set to 1.2 to 1.7. When the ratio of the distance L2 to the distance L1 is out of the above range, the stability of the glass material 1 when mounting the glass material 1 on a press forming mold is deteriorated, and the rotation axis A of the glass material 1 is formed It becomes difficult to align with the central axis of the mold. When the rotation axis A of the glass material 1 is deviated from the central axis of the forming die, the optical element obtained by press-molding will be one with uneven thickness.
The thickness T in the direction of the rotation axis A of the glass material 1 shown in FIG. 1 is the sum of the distance L1 and the distance L2.

本発明者らは、距離L1に対する距離L2の比(L2/L1)とガラス素材の安定性との関係性について検証した結果、表1に示すような知見を得た。   As a result of examining the relationship between the ratio (L2 / L1) of the distance L2 to the distance L1 and the stability of the glass material, the present inventors obtained findings as shown in Table 1.

Figure 2018025844
なお、表1の安定性評価において、ガラス素材1を下面6を下にした状態で平面に載置したときに、安定性が良好で自立したものを「良好」とし、安定性に欠けガラス素材が横転するなど自立できなかったものを「不安定」とした。
Figure 2018025844
In addition, in the stability evaluation of Table 1, when the glass material 1 is placed on a flat surface with the lower surface 6 down, the one having good stability and standing by itself is regarded as “good” and the glass material is chipped for stability. Those who could not stand on their own as "overturned" were considered "unstable".

表1から明らかなように、距離L1に対する距離L2の比(L2/L1)が1.7以下であれば、ガラス素材の安定性は良好であるのに対して、上記比(L2/L1)が1.7を超えると不安定になることがわかる。   As apparent from Table 1, when the ratio (L2 / L1) of the distance L2 to the distance L1 is 1.7 or less, the stability of the glass material is good, but the above ratio (L2 / L1) It turns out that it becomes unstable when A exceeds 1.7.

なお、上記比(L2/L1)の下限については、プレス成形時におけるガストラップの発生を抑制する観点から、1.2以上であることか望ましい。   The lower limit of the ratio (L2 / L1) is preferably 1.2 or more from the viewpoint of suppressing the occurrence of gas trap during press molding.

次に、上記のようなガラス素材1の製造方法について説明する。
ガラス素材1は、熔融ガラスを金型に受け、金型の受け面からガスを噴出して熔融ガラスを浮上させた状態で保持してガラス素材を成形する、いわゆる浮上成形によって成形されている。したがって、ガラス素材1は、全面が自由表面で形成されている。
Next, the manufacturing method of the above glass raw materials 1 is demonstrated.
The glass material 1 is formed by so-called float forming, in which molten glass is received in a mold and gas is jetted from a receiving surface of the mold to hold the molten glass in a floating state to form the glass material. Therefore, the whole surface of the glass material 1 is formed as a free surface.

金型は、例えば多孔質材料で形成されている。金型の形状は、金型に供給された熔融ガラスが、浮上ガスによって金型の表面から浮上して支持されたとき、周辺部において金型と熔融ガラスとの距離が最も小さくなり、中心部において金型と熔融ガラスとの距離が最も大きくなるように形成される。また、金型の形状は、金型内で熔融ガラスの表面が受ける浮上ガスの圧力が、周辺部において最も高く、中心部において最も低い圧力分布となるように形成される。   The mold is formed of, for example, a porous material. The shape of the mold is such that when the molten glass supplied to the mold is supported by floating gas rising from the surface of the mold, the distance between the mold and the molten glass becomes the smallest at the peripheral portion, and the central portion In the above, the distance between the mold and the molten glass is formed to be the largest. Further, the shape of the mold is formed such that the pressure of floating gas received by the surface of the molten glass in the mold is the highest in the peripheral portion and the lowest pressure distribution in the central portion.

金型は、ターンテーブルの円周上に等間隔に複数個配置され、ターンテーブルは所定角度ずつ回転可能に構成されている。金型の下方には浮上ガス供給源が接続されている。また、金型は、ガラス素材1の形状が歪んだり、割れを生じたり、金型の表面にガラス素材1が接触した場合にガラス素材1が貼り付いたりしないように、ヒーターで加熱され、適正な温度に調整される。   A plurality of molds are arranged at equal intervals on the circumference of the turn table, and the turn table is configured to be rotatable by a predetermined angle. A levitation gas supply source is connected below the mold. In addition, the mold is heated by a heater so that the shape of the glass material 1 may be distorted or cracked, or the glass material 1 may not stick when the glass material 1 contacts the surface of the mold. The temperature is adjusted to

このように構成された金型の下方から浮上ガスを供給すると、浮上ガスが金型から噴出する。金型内に熔融ガラスを所定量供給すると、熔融ガラスは、浮上ガスの圧力で全体が金型から浮き上がり、浮上ガスの圧力、熔融ガラスの表面張力、及び自重のバランスによって、金型の内面に対向してガラス素材1の下面6が形成され、全体として図1のような所定の形状に成形される。
なお、使用されるガラスの材料としては、特に限定されないが、例えばホウ酸及び希土類酸化物を主成分とするホウ酸ランタン系ガラス、リン酸塩を主成分とするリン酸塩ガラス、フッ素及びリン酸塩を主成分とするフツリン酸塩ガラス、ホウケイ酸塩を主成分とするホウケイ酸塩系ガラス等を使用することができる。
When the levitation gas is supplied from the lower side of the thus configured mold, the levitation gas is ejected from the mold. When a predetermined amount of molten glass is supplied into the mold, the whole of the molten glass is lifted from the mold by the pressure of the floating gas, and the pressure of the floating gas, the surface tension of the molten glass, and the self weight balance the inner surface of the mold. The lower surface 6 of the glass material 1 is formed to face each other, and is formed into a predetermined shape as shown in FIG. 1 as a whole.
The material of the glass to be used is not particularly limited. For example, a lanthanum borate glass mainly composed of boric acid and a rare earth oxide, a phosphate glass mainly composed of phosphate, fluorine and phosphorus The fluorophosphate glass which has an acid salt as a main component, the borosilicate glass which has borosilicate as a main component, etc. can be used.

熔融ガラスは、金型内で成形されながらターンテーブル上で移動し、外力が加わっても変形しない温度域まで冷却され、ガラス素材1を形成する。その後、ガラス素材1を金型から取り出し、徐冷する。成形したガラス素材1を必要に応じて洗浄してもよいし、また必要に応じて全面にカーボン膜を形成してもよい。このようなカーボン膜は、ガラス素材1を光学素子にプレス成形する際に、ガラスの滑りをよくするとともに成形された光学素子の離型性を高める。   The molten glass moves on the turntable while being molded in a mold, and is cooled to a temperature range that does not deform even when an external force is applied, thereby forming the glass material 1. Thereafter, the glass material 1 is taken out of the mold and annealed. The formed glass material 1 may be washed if necessary, or a carbon film may be formed on the entire surface as needed. Such a carbon film improves the slippage of the glass and enhances the releasability of the formed optical element when the glass material 1 is press-formed on the optical element.

次に、ガラス素材1を用いて光学素子を製造する方法について説明する。図1のような形状に成形されたガラス素材1を、プレス成形用の金型内に収容し金型を加熱し、ガラス素材1を軟化させてプレスし、所定の形状の光学素子を得る。ここで、ガラス素材1の中心部8の曲率半径R1は、中心部8に対向する位置におけるプレス成形用の金型の曲率半径よりも小さく形成されている。よって、軟化したガラス素材1は、下面6において中心部8からプレス成形用の金型に接触し、徐々に外側に向かって金型の形状が転写され所望の形状に成形される。   Next, a method of manufacturing an optical element using the glass material 1 will be described. The glass material 1 molded into the shape as shown in FIG. 1 is housed in a die for press molding, the mold is heated, and the glass material 1 is softened and pressed to obtain an optical element of a predetermined shape. Here, the radius of curvature R1 of the central portion 8 of the glass material 1 is smaller than the radius of curvature of the die for press molding at the position facing the central portion 8. Therefore, the softened glass material 1 comes in contact with the mold for press molding from the central portion 8 at the lower surface 6, and the shape of the mold is gradually transferred outward to be formed into a desired shape.

図3は、本発明の一実施形態に係るプレス成形用ガラス素材をプレス成形して得られる光学素子の断面形状の一例を示す図である。ガラス素材1をプレス成形した成形体の外周部は、破線で示すような余肉部26を有するが、この余肉部26を芯取加工により除去した部分が光学素子16である。この図3に示す光学素子16は、中心部18となる近軸の曲率半径R3が比較的小さく(例えば曲率半径10mm以下)、中心部18の周囲には軸20に沿って内方(図3において上方)に凹んだ湾曲部22が形成されている。また、中心部18とは反対側の面(図3において上側の面)は、近軸の曲率半径R4を有し、内方(図3において下方)に凹んだ凹面23となっている。このように、光学素子16は、全体として複雑な形状を有し、従来より比較的肉厚に形成される。
なお、ガラス素材1をプレス成形した成形体に冷間加工を施して所定形状の光学素子を得る場合、冷間加工を施す部位や範囲は、光学素子の光学機能面の範囲に応じて異なる。したがって、図3に示した余肉部26の範囲や形状も様々に異なる。
FIG. 3 is a view showing an example of the cross-sectional shape of an optical element obtained by press-molding a glass material for press-forming according to an embodiment of the present invention. An outer peripheral portion of a molded body obtained by press-molding the glass material 1 has a surplus thickness portion 26 as shown by a broken line, and a portion from which the surplus thickness portion 26 is removed by centering is an optical element 16. The optical element 16 shown in FIG. 3 has a relatively small radius of curvature R3 (for example, a radius of curvature of 10 mm or less) to be the central portion 18 (for example, a radius of curvature of 10 mm or less). (In the upper direction) is formed with a curved portion 22 which is recessed upward. The surface opposite to the central portion 18 (the upper surface in FIG. 3) has a paraxial radius of curvature R4 and is a concave surface 23 recessed inward (downward in FIG. 3). Thus, the optical element 16 has a generally complicated shape and is formed relatively thick compared to the prior art.
When cold working is performed on a compact obtained by press-molding the glass material 1 to obtain an optical element having a predetermined shape, the site and range to which cold working is performed differ depending on the range of the optically functional surface of the optical element. Therefore, the range and the shape of the extra thickness portion 26 shown in FIG. 3 are variously different.

本実施形態のガラス素材1によれば、次のような効果が得られる。
ガラス素材1の全面が自由表面で形成されるので、滑らかな表面のガラス素材1が得られ、このガラス素材1をプレス成形して光学素子を得たとき、良好な外観及び形状品質の光学素子を得ることができる。
According to the glass material 1 of the present embodiment, the following effects can be obtained.
Since the entire surface of the glass material 1 is formed as a free surface, a glass material 1 having a smooth surface is obtained, and when this glass material 1 is press-formed to obtain an optical element, an optical element with good appearance and shape quality You can get

従来のガラス素材は、球形状を有するか、球の半径よりも大きな曲率半径の楕円形状を有しており、ガラス素材全体の体積を大きくするとそれに伴って曲率半径も当然大きくなる。このため、体積を大きくした従来のガラス素材で、例えば複雑な形状の非球面レンズをプレス成形しようとした場合、非球面レンズの近軸の曲率半径が小さいと、ガラス素材の曲率半径がプレス成形用の金型の曲率半径よりも大きくなってガラス素材と金型との間にガスが溜まってしまい、良好な形状の光学素子を得ることができない。
これに対して、本実施形態では、ガラス素材1の下面6の中心部8の曲率半径R1が、ガラス素材1の体積Vと同じ体積を有する球の半径よりも小さく設定されているので、比較的体積の大きいガラス素材1であっても、中心部8の曲率半径R1を小さく形成することができる。したがって、近軸の曲率半径が小さい肉厚で複雑な形状の光学素子を成形する場合であっても、ガストラップを生じることなく良好な形状の成形品を得ることができる。
The conventional glass material has a spherical shape or an elliptical shape with a radius of curvature larger than the radius of the sphere, and as the volume of the entire glass material increases, the radius of curvature naturally increases accordingly. For this reason, when trying to press-mold, for example, an aspheric lens having a complicated shape with a conventional glass material having a large volume, if the radius of curvature of the paraxial lens of the aspheric lens is small, the curvature radius of the glass material is press-formed The radius of curvature of the mold for this purpose makes the gas accumulated between the glass material and the mold, making it impossible to obtain an optical element with a good shape.
On the other hand, in the present embodiment, the radius of curvature R1 of the central portion 8 of the lower surface 6 of the glass material 1 is set smaller than the radius of a sphere having the same volume as the volume V of the glass material 1. Even with the glass material 1 having a large target volume, the curvature radius R1 of the central portion 8 can be formed small. Therefore, even in the case of molding an optical element having a thick wall and a complicated shape with a small radius of curvature of the paraxial axis, a molded article of a good shape can be obtained without generating a gas trap.

ガラス素材1の周辺部10の曲率半径R2が、中心部8の曲率半径R1よりも大きく形成されているので、小さな曲率半径R1を有する中心部8からより大きな曲率半径R2を有する周辺部10へ移行領域が滑らかとなり、全体として連続した滑らかな形状が得られる。   Since the radius of curvature R2 of the peripheral portion 10 of the glass material 1 is larger than the radius of curvature R1 of the central portion 8, from the central portion 8 having a small radius of curvature R1 to the peripheral portion 10 having a larger radius of curvature R2. The transition area is smooth, resulting in a generally continuous and smooth shape.

ガラス素材1の最大直径位置2から上面4までの距離L1に対する、下面6までの距離L2の比が適切に設定されているので、比較的大きな体積を確保しながら、中央部の第1の曲率半径R1を比較的小さくすることが可能になり、ガラス素材1を、複雑な形状の非球面レンズにプレス成形する場合であっても、形状不良を発生させることなく良好な品質の光学素子を得ることができる。
また、距離L1に対する距離L2の比が適切に設定されているので、ガラス素材1をプレス成形用の金型に載置した際、金型内にガラス素材1を安定して載置することができる。したがって、ガラス素材1の回転軸Aを金型の中心軸に容易且つ確実に位置合わせすることができ、偏肉等の不具合のない、良好な品質の光学素子を成形することができる。
Since the ratio of the distance L2 to the lower surface 6 to the distance L1 from the maximum diameter position 2 to the upper surface 4 of the glass material 1 is appropriately set, the first curvature of the central portion is secured while securing a relatively large volume. The radius R1 can be made relatively small, and even when the glass material 1 is press-formed into an aspheric lens having a complicated shape, an optical element of good quality can be obtained without causing a shape defect. be able to.
Further, since the ratio of the distance L2 to the distance L1 is appropriately set, when the glass material 1 is placed on a die for press molding, the glass material 1 can be stably placed in the die. it can. Therefore, the rotational axis A of the glass material 1 can be easily and reliably aligned with the central axis of the mold, and an optical element of good quality without defects such as uneven thickness can be formed.

[実施例]
本発明の実施例について説明する。
上記浮上成形を用いて、体積Vが547mm3のガラス素材1を作製した。ガラス素材1の中心部8の曲率半径R1は、4.2mmとした。このガラス素材1は、図2において、■で示す体積と曲率半径との関係を有し、これは図2の曲線Cよりも左側の、斜線領域内にある。また、このガラス素材1は全面が自由表面である。
熔融ガラスの供給・切断方法、熔融ガラスの金型面上での浮上条件等は、公知の方法を用いた。
得られたガラス素材1を加熱して軟化させて精密プレス成形し、図3に示すような断面形状の光学素子16にプレス成形した。得られた光学素子16の凸面の中心部18の曲率半径R3は4.7mmであり、凹面23の曲率半径R4は、2.2mmであった。なお、プレス成形用金型は、光学素子16の形状に対応する形状に形成されていた。
ガラス素材1を加熱してプレス成形用金型で精密プレス成形した結果、所望の曲率半径R3,R4を維持しつつ、所望の肉厚及び径を有する光学素子16が再現性よく得られた。
[Example]
An embodiment of the present invention will be described.
The glass material 1 having a volume V of 547 mm 3 was produced by using the above-mentioned floating molding. The radius of curvature R1 of the central portion 8 of the glass material 1 was 4.2 mm. This glass material 1 has a relationship between the volume and the radius of curvature shown by ▪ in FIG. 2, which is in the hatched area on the left side of the curve C in FIG. Moreover, this whole glass material 1 is a free surface.
The supply and cutting method of molten glass, the floating condition on the mold surface of molten glass, etc. used a publicly known method.
The obtained glass material 1 was heated, softened, precision press-formed, and press-formed into an optical element 16 having a cross-sectional shape as shown in FIG. The radius of curvature R3 of the central portion 18 of the convex surface of the obtained optical element 16 was 4.7 mm, and the radius of curvature R4 of the concave surface 23 was 2.2 mm. The press mold was formed in a shape corresponding to the shape of the optical element 16.
As a result of heating the glass material 1 and performing precision press molding with a press molding die, an optical element 16 having a desired thickness and diameter was obtained with good reproducibility while maintaining desired curvature radii R3 and R4.

[比較例1]
次に、本発明の比較例1について説明する。
図4は、本発明の比較例1のガラス素材24の断面形状を示す図である。比較例1では、浮上成形を用いて、体積Vが250mm3のガラス素材24を作製した。ガラス素材24の中心部の曲率半径R5は、4.5mmとした。このガラス素材24は、図2において、○で示す体積と曲率半径との関係を有し、これは図2の曲線Cよりも右側の、斜線領域の外にある。
ガラス素材24を加熱してプレス成形用金型で精密プレス成形した結果、特に所望の肉厚及び径が得られず、実施例に比べて、光学素子の形状精度が著しく悪化していた。
Comparative Example 1
Next, Comparative Example 1 of the present invention will be described.
FIG. 4 is a view showing the cross-sectional shape of the glass material 24 of Comparative Example 1 of the present invention. In Comparative Example 1, the glass material 24 having a volume V of 250 mm 3 was produced using float forming. The radius of curvature R5 of the central portion of the glass material 24 was 4.5 mm. This glass material 24 has a relationship between the volume and the radius of curvature indicated by ○ in FIG. 2, which is outside the hatched area on the right side of the curve C in FIG.
As a result of heating the glass material 24 and performing precision press molding with a press mold, particularly desired thickness and diameter can not be obtained, and the shape accuracy of the optical element is significantly deteriorated as compared with the example.

[比較例2]
次に、本発明の比較例2について説明する。
比較例2では、体積550mm3の球状のガラス素材24を冷間加工で作製した。得られた球状のガラス素材の半径は、5.1mmであった。このガラス素材は、図2において、●で示す体積と曲率半径との関係を有し、これは図2の曲線C上にある。得られたガラス素材を、実施例と同じ精密プレス成形用金型で精密プレス成形したところ、光学素子16の中心部18にガストラップが発生した。これは、光学素子16の中心部18の曲率半径R3は4.7mmであるのに対して、ガラス素材の半径が5.1mmであるため、ガラス素材とプレス成形用金型との間にガスが溜まったためと考えられる。
Comparative Example 2
Next, Comparative Example 2 of the present invention will be described.
In Comparative Example 2, a spherical glass material 24 having a volume of 550 mm 3 was produced by cold working. The radius of the obtained spherical glass material was 5.1 mm. This glass material has a relationship between the volume and the radius of curvature indicated by ● in FIG. 2, which is on the curve C of FIG. When the obtained glass material was precision press-molded using the same precision press-molding mold as that of the example, a gas trap was generated in the central portion 18 of the optical element 16. This is because the radius of curvature of the glass material is 5.1 mm while the radius of curvature R3 of the central portion 18 of the optical element 16 is 4.7 mm, so that the gas between the glass material and the press molding die It is thought that it was because of

以上のように、本発明によるガラス素材1では、実施例のように良好な形状の光学素子が得られた。一方、比較例1及び2に記載した従来のガラス素子では、ガストラップが発生し、良好な形状の光学素子が得られなかった。   As mentioned above, in the glass raw material 1 by this invention, the optical element of a favorable shape was obtained like an Example. On the other hand, in the conventional glass elements described in Comparative Examples 1 and 2, a gas trap was generated, and an optical element with a good shape could not be obtained.

1 プレス成形用ガラス素材
4 上面
4a 光学機能面となる部位の表面(第2の表面)
6 下面
6a 光学機能面となる部位の表面(第1の表面)
8 中心部
10 周辺部
R1,R2 曲率半径
D1 最大直径
T 厚み
L1,L2 距離
S1,S2 光学機能面となる部位
1 glass material for press molding 4 upper surface 4a surface of the part to be an optical function surface (second surface)
6 lower surface 6a surface (first surface) of a portion to be an optical function surface
8 central part 10 peripheral part R1, R2 radius of curvature D1 maximum diameter T thickness L1, L2 distance S1, S2 part to be an optical function surface

Claims (5)

プレス成形用ガラス素材において、
少なくとも成形後に一対の光学機能面となる部位の表面が自由表面で形成されるとともに、回転軸を中心とする回転体形状を有し、
前記回転軸方向における一方の前記光学機能面となる部位の表面である第1の表面が外方に向かって凸状に形成され、前記第1の表面は、中心部が、前記プレス成形用ガラス素材と同じ体積の球の半径より小さい第1の曲率半径を有し、
前記中心部の周囲に前記中心部に隣接して配置された周辺部は、前記第1の曲率半径よりも大きい第2の曲率半径を有する、
プレス成形用ガラス素材。
In press forming glass materials,
At least a surface of a portion to be a pair of optical functional surfaces after molding is formed as a free surface, and has a shape of a rotating body centered on a rotation axis,
A first surface, which is a surface of a portion to be one of the optical functional surfaces in the rotation axis direction, is outwardly formed in a convex shape, and a central portion of the first surface is the glass for press molding Has a first radius of curvature smaller than the radius of a sphere of the same volume as the material,
A peripheral portion disposed around the central portion and adjacent to the central portion has a second radius of curvature greater than the first radius of curvature.
Glass material for press molding.
前記回転軸を中心とする前記プレス成形用ガラス素材の直径が最大となる位置から、前記第1の表面側の端部までの前記回転軸に沿った距離に対する、前記直径が最大となる位置から他方の前記光学機能面となる部位の表面である第2の表面側の端部までの前記回転軸に沿った距離の比は、1.2〜1.7である、
請求項1に記載のプレス成形用ガラス素材。
From the position where the diameter is maximum with respect to the distance along the rotation axis from the position where the diameter of the glass material for press molding around the rotation axis is maximum to the end on the first surface side The ratio of the distance along the rotation axis to the end on the second surface side, which is the surface of the other optical function surface, is 1.2 to 1.7.
The glass material for press molding according to claim 1.
前記自由表面の算術平均粗さRaは1nm以下である、請求項1または2に記載のプレス成形用ガラス素材。   The glass material for press molding according to claim 1, wherein an arithmetic mean roughness Ra of the free surface is 1 nm or less. 前記第一の曲率半径は、2〜10mmである、請求項1〜3の何れか1項に記載のプレス成形用ガラス素材。   The glass material for press molding according to any one of claims 1 to 3, wherein the first radius of curvature is 2 to 10 mm. 請求項1〜4の何れか1項に記載のプレス成形用ガラス素材を加熱してプレス成形するプレス成形工程を備えている、光学素子の製造方法。   The manufacturing method of an optical element provided with the press molding process which heats and press-molds the glass raw material for press molding in any one of Claims 1-4.
JP2018531910A 2016-08-01 2017-08-01 Glass material for press molding and manufacturing method of optical element using it Active JP6976950B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016151541 2016-08-01
JP2016151541 2016-08-01
PCT/JP2017/027844 WO2018025844A1 (en) 2016-08-01 2017-08-01 Press-forming glass material and optical element production method using same

Publications (2)

Publication Number Publication Date
JPWO2018025844A1 true JPWO2018025844A1 (en) 2019-07-18
JP6976950B2 JP6976950B2 (en) 2021-12-08

Family

ID=61073041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018531910A Active JP6976950B2 (en) 2016-08-01 2017-08-01 Glass material for press molding and manufacturing method of optical element using it

Country Status (3)

Country Link
JP (1) JP6976950B2 (en)
CN (1) CN109415236B (en)
WO (1) WO2018025844A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460339B2 (en) * 2004-03-30 2010-05-12 Hoya株式会社 Mold press molding apparatus and optical element manufacturing method
CN101076501A (en) * 2004-12-13 2007-11-21 株式会社小原 Preform for optical element and optical element
JP4318681B2 (en) * 2005-09-30 2009-08-26 Hoya株式会社 Preform for precision press molding, manufacturing method thereof, and manufacturing method of optical element
JP2007197241A (en) * 2006-01-25 2007-08-09 Konica Minolta Opto Inc Method for molding optical glass element
JP5657226B2 (en) * 2009-09-24 2015-01-21 株式会社オハラ Method for producing glass molded body

Also Published As

Publication number Publication date
CN109415236B (en) 2022-08-09
CN109415236A (en) 2019-03-01
WO2018025844A1 (en) 2018-02-08
JP6976950B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
TWI710531B (en) Glass material for press molding, manufacturing method of glass material for press molding, and manufacturing method of optical element
KR101267117B1 (en) Process for production of molded articles glass material and method for determing the surface shapes of glass material and mold
TWI389853B (en) Preform for optical element
JP5095564B2 (en) Mold, method for manufacturing glass molded body using the mold, and method for manufacturing optical element
TW201111144A (en) High sag optical lens and method for fast molding the same
WO2014097830A1 (en) Molded glass article production method, and mold
TW201130752A (en) Glass preform and method of manufacture thereof
JP4318681B2 (en) Preform for precision press molding, manufacturing method thereof, and manufacturing method of optical element
JP2009256127A (en) Method for producing preform for precision press molding and method for producing optical element
JP2010018461A (en) Mold, method for producing preform for precision press forming, and method for producing optical element
JP7066533B2 (en) Glass lens molding mold
JPWO2018025844A1 (en) Glass material for press molding and method of manufacturing optical element using the same
JP5828915B2 (en) Method for producing glass preform for mold press molding and method for producing optical element
JP2022093460A (en) Glass lens molding die
JP4473692B2 (en) Manufacturing method of molded products
JP2007055870A (en) Optical element molding die
KR20090031834A (en) Preform for precision press forming, forming die, glass compact manufacturing method using the die, and optical element manufacturing method
JP5414222B2 (en) Preform for precision press molding and method for manufacturing optical element
JPH11236224A (en) Method for forming optical element
JP5430092B2 (en) Optical element molding method
JP2000000828A (en) Production of glass mold for glasses
JPH05301723A (en) Method for forming optical element
JP2661450B2 (en) Aspheric lens mold
JP2005097099A (en) Method of manufacturing optical device
JP2007091514A (en) Mold assembly and method of manufacturing glass to be molded using the same

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211110

R150 Certificate of patent or registration of utility model

Ref document number: 6976950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150