JPWO2018025813A1 - Oil concentration measuring device and oil concentration measuring method - Google Patents

Oil concentration measuring device and oil concentration measuring method Download PDF

Info

Publication number
JPWO2018025813A1
JPWO2018025813A1 JP2018531888A JP2018531888A JPWO2018025813A1 JP WO2018025813 A1 JPWO2018025813 A1 JP WO2018025813A1 JP 2018531888 A JP2018531888 A JP 2018531888A JP 2018531888 A JP2018531888 A JP 2018531888A JP WO2018025813 A1 JPWO2018025813 A1 JP WO2018025813A1
Authority
JP
Japan
Prior art keywords
oil
liquid
measured
cleaning
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018531888A
Other languages
Japanese (ja)
Other versions
JP7153923B2 (en
Inventor
和久 小笠原
和久 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Act Five Co Ltd
Original Assignee
Act Five Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Act Five Co Ltd filed Critical Act Five Co Ltd
Publication of JPWO2018025813A1 publication Critical patent/JPWO2018025813A1/en
Application granted granted Critical
Publication of JP7153923B2 publication Critical patent/JP7153923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

高価な分光素子や検出素子等を使用する必要がない、洗浄液中の油分濃度計測装置を提供する。油分濃度計測装置10は、280〜300nmの間の所定の1波長である測定波長を有する照射光を計測対象液(洗浄液)に照射する光照射部104と、前記照射光が前記計測対象液を透過した透過光の強度を測定する透過光検出部105と、透過光検出部105で測定された透過光の強度に基づき、前記計測対象液の前記測定波長における吸光度を算出し、該吸光度の値と、前記測定波長における油分の濃度と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める油分濃度決定部1061とを備える。工業用洗浄液の主流である炭化水素系洗浄液が有する炭素原子の多重結合を有しない分子の吸光がほとんど生じず、且つ50ppm程度の低濃度の油分を検出することが可能な280〜300nmの間の1波長を用いることで、高価な分光素子や検出素子等を不要とした。Provided is an oil concentration measuring device for cleaning liquid, which does not require the use of an expensive spectral element, a detection element or the like. The oil concentration measuring apparatus 10 irradiates the liquid to be measured (cleaning liquid) with the irradiation light having the measurement wavelength which is a predetermined one wavelength between 280 and 300 nm, and the irradiation light is the liquid to be measured. Based on the transmitted light detection unit 105 that measures the intensity of the transmitted light and the transmitted light intensity measured by the transmitted light detection unit 105, the absorbance at the measurement wavelength of the liquid to be measured is calculated, and the value of the absorbance is calculated. And an oil concentration determination unit 1061 for determining the concentration of the oil in the liquid to be measured based on a calibration curve showing the relationship between the concentration of the oil at the measurement wavelength and the absorbance. There is almost no absorption of molecules that do not have multiple bonds of carbon atoms possessed by hydrocarbon-based cleaning solutions, which are the mainstream of industrial cleaning solutions, and it is possible to detect low concentrations of oil of around 50 ppm between 280-300 nm The use of one wavelength eliminates the need for expensive spectral elements, detection elements, and the like.

Description

本発明は、洗浄液中の油分の濃度を計測する装置及び方法に関する。この油分濃度計測装置及び油分濃度計測方法は、ワークに付着した切削油、プレス・打抜き油、機械油、グリース、フラックス等の油分を除去する工業用洗浄機において、使用中の洗浄液等に含有される油分の濃度を計測するために好適に用いられるものである。   The present invention relates to an apparatus and method for measuring the concentration of oil in a cleaning solution. This oil concentration measuring device and oil concentration measuring method are contained in the cleaning solution during use in an industrial cleaning machine that removes oil such as cutting oil, press / punching oil, machine oil, grease, and flux adhering to the work. It is preferably used to measure the concentration of oil.

工業用洗浄機において使用される洗浄液は、炭化水素系洗浄液が主流となっている。炭化水素系洗浄液は、オゾン層破壊物質や塩素を含有しないため、環境や人体に与える影響が少ないという特長を有する。また、上記油分の成分よりも炭化水素の方が沸点が低いことを利用して、炭化水素系洗浄液は、使用後の油分を含有する炭化水素系洗浄液を蒸留槽内に貯留したうえで炭化水素の沸点よりも高く油分の沸点よりも低い温度に加熱することにより、蒸留再生することができるという特長も有する。炭化水素系洗浄液はさらに、この蒸留再生処理時に発生する清浄な蒸気をワークの洗浄及び乾燥(以下、「蒸気洗浄・乾燥」とする)に利用することができる、という特長も有する。蒸気洗浄・乾燥では、蒸気洗浄・乾燥用洗浄槽にワークを収容し、該槽に該蒸気を導入することによりワークの表面を該蒸気で洗浄した後、該槽内を急速に減圧することで洗浄剤の沸点を急激に低下させることにより、ワーク表面に付着していた洗浄剤を突沸・気化させ、該ワークを乾燥させる。実際の工業用洗浄機では、炭化水素系洗浄液が貯留された液体洗浄槽にワークを収容して液体洗浄を行った後、仕上げに蒸気洗浄・乾燥が行われる。   As a cleaning solution used in industrial cleaning machines, a hydrocarbon-based cleaning solution is the mainstream. Hydrocarbon-based cleaning solutions do not contain ozone-depleting substances and chlorine, and therefore have the advantage of having little impact on the environment and human body. In addition, taking advantage of the fact that the boiling point of hydrocarbon is lower than that of the above-mentioned oil component, the hydrocarbon-based cleaning solution stores the hydrocarbon-based cleaning solution containing the used oil component in the distillation tank before the hydrocarbon is stored. It is also possible to carry out distillation regeneration by heating to a temperature higher than the boiling point of the oil and lower than the boiling point of the oil. The hydrocarbon-based cleaning liquid further has a feature that clean vapor generated at the time of the distilling and regeneration treatment can be used for cleaning and drying of a work (hereinafter referred to as “vapor cleaning and drying”). In steam cleaning and drying, the work is stored in a cleaning tank for steam cleaning and drying, the surface of the work is cleaned with the vapor by introducing the steam into the tank, and then the pressure in the tank is reduced rapidly. By sharply lowering the boiling point of the cleaning agent, the cleaning agent adhering to the surface of the work is bumped and vaporized to dry the work. In an actual industrial cleaning machine, after a work is stored in a liquid cleaning tank in which a hydrocarbon cleaning liquid is stored to perform liquid cleaning, steam cleaning and drying are performed for finishing.

工業用洗浄機を連続運転すると、蒸留により除去された油分が徐々に蒸留槽内に蓄積してゆき、蒸留再生後の炭化水素系洗浄液(再生後洗浄液)の蒸気に油分が混入してしまう。そうすると、蒸気洗浄・乾燥の際に蒸気中の油分がワークの表面に付着してしまい、洗浄の能力が低下してしまう。このような洗浄能力の低下を防止するためには、再生後洗浄液の油分濃度を所定濃度以下に抑える必要がある。当該所定濃度は油分の成分により相違するが、成分に依らずに洗浄能力の低下を防止するには50〜100ppm以下とすることが望ましい。従来は、ワークの洗浄回数が経験則で定めた所定数に達したときに油分を含む蒸留槽内の残液を除去しているが、再生後洗浄液中の油分の濃度を測定すれば、より適切なタイミングで該残液の除去を行うことができることが期待される。   When the industrial washer is operated continuously, the oil removed by distillation gradually accumulates in the distillation tank, and the oil is mixed in the vapor of the hydrocarbon-based cleaning solution (cleaning solution after regeneration) after distillation regeneration. As a result, the oil in the vapor adheres to the surface of the work during vapor cleaning and drying, and the cleaning ability is reduced. In order to prevent such a decrease in the cleaning ability, it is necessary to suppress the oil concentration of the cleaning solution after regeneration to a predetermined concentration or less. The predetermined concentration differs depending on the component of the oil component, but is preferably 50 to 100 ppm or less in order to prevent the decrease in the cleaning ability regardless of the component. Conventionally, the residual liquid in the distillation tank containing oil is removed when the number of times of cleaning of the work reaches the predetermined number determined by the rule of thumb, but if the concentration of oil in the cleaning solution after regeneration is measured, It is expected that the residual liquid can be removed at an appropriate timing.

洗浄液の油分濃度を計測するために、例えば特許文献1に記載の方法を用いることが考えられる。特許文献1には、洗浄液に含有される油分の成分毎に定められた所定の一測定波長の紫外線を用いて吸光度を測定し、予め作成しておいた油分毎の油分濃度と吸光度の検量線に基づいて、その洗浄液に溶解している油分の濃度を求めることが記載されている。油分毎の測定波長は、例えば市販プレス油では259nm、市販切削油では234nm、市販フラックスでは250nmとされている。   For example, it is conceivable to use the method described in Patent Document 1 to measure the oil concentration of the cleaning liquid. In Patent Document 1, the absorbance is measured using ultraviolet light of a predetermined measurement wavelength determined for each component of oil contained in the cleaning liquid, and the calibration curve of the oil concentration and absorbance for each oil prepared in advance is prepared Based on the above, it is described to determine the concentration of the oil dissolved in the cleaning solution. The measurement wavelength for each oil is, for example, 259 nm for commercial press oil, 234 nm for commercial cutting oil, and 250 nm for commercial flux.

特開平09-061349号公報JP 09-061349 A

特許文献1に記載の油分濃度計測装置及び方法では、油分毎に測定波長が異なるため、それらの測定波長に対応して、複数の波長の光を検出しなければならない。そのためには例えば、それら複数の波長を含む光を試料(炭化水素系洗浄液)に照射する光源と、試料を通過した光を波長毎に分光する分光素子と、分光素子で分光された光を波長毎に検出する検出器を用いる。このような構成では、高価な光学素子である分光素子を用いる必要があるうえに、検出器にも波長毎に設けられた複数の検出素子を有する高価なものを用いる必要がある。また、波長毎にデータをほぼ同時に取得するため、短時間に大量のデータを処理及び保存するための高価な制御機器を要する。   In the oil concentration measurement apparatus and method described in Patent Document 1, since the measurement wavelength is different for each oil, it is necessary to detect light of a plurality of wavelengths corresponding to the measurement wavelengths. For that purpose, for example, a light source for irradiating the sample (hydrocarbon-based cleaning liquid) with light containing a plurality of wavelengths, a spectral element for dispersing the light passing through the sample for each wavelength, and a wavelength of the light dispersed by the spectral element A detector is used to detect each time. In such a configuration, it is necessary to use a dispersive element which is an expensive optical element, and it is also necessary to use an expensive one having a plurality of detection elements provided for each wavelength as a detector. Also, in order to obtain data almost simultaneously for each wavelength, expensive control equipment is required to process and store a large amount of data in a short time.

本発明が解決しようとする課題は、高価な分光素子、検出素子、及び制御機器を使用する必要がない、洗浄液中の油分濃度計測装置及び方法を提供することである。   The problem to be solved by the present invention is to provide an apparatus and method for measuring the concentration of oil in a cleaning liquid, which does not require the use of expensive spectroscopic elements, detection elements and control devices.

上記課題を解決するために成された本発明に係る洗浄液中の油分濃度計測装置は、
a) 280〜300nmの間の所定の1波長である測定波長を有する照射光を計測対象液に照射する光照射部と、
b) 前記照射光が前記計測対象液を透過した透過光の強度を測定する透過光検出部と、
c) 前記透過光検出部で測定された透過光の強度に基づき、前記計測対象液の前記測定波長における吸光度を算出し、該吸光度の値と、前記測定波長における油分の濃度と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める油分濃度決定部と
を備えることを特徴とする。
An oil concentration measuring device for cleaning fluid according to the present invention, which was made to solve the above-mentioned problems,
a) A light irradiator for irradiating a liquid to be measured with an irradiation light having a measurement wavelength which is a predetermined one wavelength between 280 and 300 nm,
b) a transmitted light detection unit that measures the intensity of the transmitted light of the irradiated light transmitted through the liquid to be measured;
c) Based on the intensity of the transmitted light measured by the transmitted light detection unit, calculate the absorbance at the measurement wavelength of the liquid to be measured, and calculate the relationship between the value of the absorbance and the concentration of oil and the absorbance at the measurement wavelength And an oil concentration determination unit for determining the concentration of the oil in the liquid to be measured based on the calibration curve shown.

前述のように工業用洗浄機用の洗浄液として現在主流となっている炭化水素系洗浄液や、それ以外のグリコールエーテル系洗浄液等の多くの洗浄液は、炭素原子の多重(2重、3重)結合を有しない分子から成る。このような炭素原子の多重結合を有しない分子は、280nm未満の波長で吸光が生じる一方、280nm以上の波長ではほとんど吸光が生じない。それに対して、洗浄対象のワークに付着し、洗浄によって洗浄液に混入する切削油、プレス・打抜き油、機械油、グリース、フラックス等の油分のほとんどは炭素原子の多重結合を有する分子を含有する。このような炭素原子の多重結合を有する分子は、その種類によって吸光度がピークとなる波長は広い範囲に分布するが、油分の種類に依らず、280〜300nmの波長範囲内において吸光度が0になることはなく一定の値を有する。さらに、波長が300nmを超えると、50ppm程度の低濃度の油分を検出することが困難になる。   As described above, many cleaning solutions such as hydrocarbon-based cleaning solutions and other glycol ether-based cleaning solutions, which are currently mainstream as cleaning solutions for industrial cleaning machines, have multiple (double, triple) bonds of carbon atoms. Consist of molecules that do not have A molecule that does not have such a multiple bond of carbon atoms absorbs light at wavelengths less than 280 nm, but hardly absorbs light at wavelengths greater than 280 nm. On the other hand, most of oil components such as cutting oil, press / punch oil, machine oil, grease, and flux which adhere to the workpiece to be cleaned and mix in the cleaning solution, contain molecules having multiple bonds of carbon atoms. Depending on the type, the wavelength at which the absorbance reaches a peak is distributed over a wide range depending on the type of molecule having multiple bonds of such carbon atoms, but the absorbance is 0 within the wavelength range of 280 to 300 nm regardless of the type of oil. It has no constant value. Furthermore, if the wavelength exceeds 300 nm, it will be difficult to detect oil having a low concentration of about 50 ppm.

そこで本発明では、280〜300nmの間の所定の1波長である測定波長で透過光の強度を測定し、該強度に基づき該測定波長における吸光度を算出することにより、計測対象液(洗浄液、計測対象洗浄液)による吸光の影響を抑えつつ、該測定波長における測定対象の油分と吸光度の関係を示す検量線に基づいて当該油分の濃度を求めることができる。   Therefore, in the present invention, the intensity of the transmitted light is measured at a measurement wavelength which is a predetermined one wavelength between 280 and 300 nm, and the absorbance at the measurement wavelength is calculated based on the intensity, thereby measuring the liquid to be measured The concentration of the oil component can be determined based on a calibration curve showing the relationship between the oil component to be measured at the measurement wavelength and the absorbance while suppressing the influence of light absorption by the target cleaning solution).

本発明に係る油分濃度計測装置によれば、測定波長として所定の1波長のみを用いるため、分光素子や波長毎の検出素子を用いる必要がない。また、複数の波長を用いる場合よりも同時に処理すべきデータ量が少ないため、高価な制御機器を使用する必要がない。例えば、本発明に係る油分濃度計測装置の専用の制御機器を設けることなく、工業用洗浄機が有する制御機器(プログラマブルロジックコントローラ)を用いて該油分濃度計測装置の制御を行うことができる。これらの理由により、本発明に係る油分濃度計測装置ではコストを抑えることができる。   According to the oil concentration measurement apparatus of the present invention, since only a predetermined one wavelength is used as the measurement wavelength, it is not necessary to use a spectral element or a detection element for each wavelength. Further, since the amount of data to be processed simultaneously is smaller than in the case of using a plurality of wavelengths, it is not necessary to use an expensive control device. For example, without providing a dedicated control device for the oil concentration measuring device according to the present invention, control of the oil concentration measuring device can be performed using a control device (programmable logic controller) of an industrial washer. For these reasons, the oil concentration measuring apparatus according to the present invention can reduce the cost.

本発明に係る油分濃度計測装置は、50〜2000ppmという低濃度の油分の計測に好適に用いることができる。また、このような低濃度の油分の計測に適していることから、本発明に係る油分濃度計測装置は、50ppmという低濃度の油分を検出する能力が必要となる前述の蒸気洗浄・乾燥に用いられる再生後洗浄液中の油分濃度の計測に好適に用いることができる。なお、本発明に係る油分濃度計測装置による油分の計測の対象は、前記再生後洗浄液には限らず、例えばワークの洗浄中の洗浄槽において油分濃度の変化を計測することによって洗浄終了のタイミングを求める(油分濃度の時間変化が所定値以下になった時を終了のタイミングとする)ことに用いることもできる。   The oil concentration measuring device according to the present invention can be suitably used to measure oil having a low concentration of 50 to 2000 ppm. Also, because it is suitable for measuring such low concentration oil components, the oil concentration measuring device according to the present invention is used for the above-mentioned steam cleaning and drying which needs the ability to detect oil components with low concentration of 50 ppm. It can be suitably used to measure the oil concentration in the post-regeneration washing solution. The target of measurement of the oil content by the oil concentration measuring device according to the present invention is not limited to the cleaning liquid after the regeneration, for example, by measuring the change in oil concentration in the cleaning tank during the cleaning of the work It can also be used for determining (when the time change of the oil concentration becomes equal to or less than a predetermined value is the end timing).

本発明に係る油分濃度計測装置はさらに、
320〜340nmの間の所定の1波長である第2測定波長を有する第2照射光を前記計測対象液に照射する第2光照射部と、
前記第2照射光が前記計測対象液を透過した第2透過光の強度を測定する第2透過光検出部と、
前記第2透過光検出部で測定された第2透過光の強度に基づき、前記計測対象液の前記第2測定波長における吸光度を算出し、該吸光度の値と、前記第2測定波長における油分の濃度と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める第2油分濃度決定部と
を備えていてもよい。
The oil concentration measuring device according to the present invention further comprises
A second light irradiator for irradiating the liquid to be measured with a second irradiation light having a second measurement wavelength which is a predetermined one wavelength between 320 and 340 nm;
A second transmitted light detection unit that measures the intensity of the second transmitted light through which the second irradiation light has transmitted the liquid to be measured;
Based on the intensity of the second transmitted light measured by the second transmitted light detection unit, the absorbance of the liquid to be measured at the second measurement wavelength is calculated, and the value of the absorbance and the oil content at the second measurement wavelength are calculated. A second oil concentration determination unit may be provided to determine the concentration of the oil in the liquid to be measured based on a calibration curve indicating the relationship between the concentration and the absorbance.

このように、280〜300nmの間の所定の1波長である測定波長を有する照射光を用いた計測に加えて、320〜340nmの間の所定の1波長である第2測定波長を有する第2照射光を用いて計測対象液(洗浄液、計測対象洗浄液)中の油分の濃度を求めることにより、吸光度がピークとなる波長が比較的長い油分における吸光度の測定精度を高くすることができる。この場合にも、油分の種類毎に異なる波長の光を用いる必要はなく、前記測定波長と前記第2測定波長の2種類の波長の光を用いるだけでよい。また、分光素子を用いる必要はなく、透過光の検出素子(透過光検出部及び第2透過光検出部)を多数設ける必要もない。さらには、前記照射光と前記第2照射光を互いに異なる時間に計測対象液に照射すれば、透過光を検出する検出器は、波長を認識する必要がないため、両波長に共通の1個の検出器を用いれば済む。このような検出器には、フォトダイオードを好適に用いることができる。   Thus, in addition to the measurement using the irradiation light having the measurement wavelength which is a predetermined one wavelength between 280 and 300 nm, the second measurement wavelength having a predetermined one wavelength between 320 and 340 nm By determining the concentration of the oil in the liquid to be measured (washing liquid, washing liquid to be measured) using the irradiation light, it is possible to increase the measurement accuracy of the absorbance in the oil having a relatively long wavelength at which the absorbance peaks. Also in this case, it is not necessary to use light of a different wavelength for each type of oil, and it is sufficient to use light of two types of wavelengths, the measurement wavelength and the second measurement wavelength. Further, it is not necessary to use a spectral element, and it is not necessary to provide a large number of transmission light detection elements (a transmission light detection unit and a second transmission light detection unit). Furthermore, if the liquid to be measured is irradiated with the irradiation light and the second irradiation light at different times from each other, the detector for detecting the transmission light does not need to recognize the wavelength, so one common to both wavelengths It suffices to use a detector of A photodiode can be suitably used for such a detector.

本発明に係る洗浄液中の油分濃度計測方法は、
280〜300nmの間の所定の1波長である測定波長を有する照射光を計測対象液に照射し、
前記照射光が前記計測対象液を透過した透過光の強度を測定し、
前記透過光の強度に基づき、前記計測対象液の前記測定波長における吸光度を算出し、該吸光度の値と、前記測定波長における油分と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める
ことを特徴とする。
The method for measuring the oil concentration in the cleaning liquid according to the present invention is
Irradiating a liquid to be measured with an irradiation light having a measurement wavelength which is a predetermined one wavelength between 280 and 300 nm;
Measuring the intensity of light transmitted through the liquid to be measured by the irradiation light;
Based on the intensity of the transmitted light, the absorbance at the measurement wavelength of the liquid to be measured is calculated, and the value of the absorbance and the calibration curve showing the relationship between the oil content at the measurement wavelength and the absorbance are contained in the liquid to be measured It is characterized in that the concentration of oil is determined.

本発明により、高価な分光素子、検出素子、及び制御機器を使用する必要がなく安価な、洗浄液中の油分濃度計測装置及び方法を得ることができる。   According to the present invention, it is possible to obtain an inexpensive apparatus for measuring the concentration of oil in a cleaning liquid and a method without using expensive spectroscopic elements, detection elements and control devices.

本発明に係る油分濃度計測装置の一実施形態を構成要素として有する工業用洗浄機を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows the industrial washer which has one Embodiment of the oil concentration measurement apparatus which concerns on this invention as a component. 炭素原子の多重結合を有しない分子から成る4種の洗浄液における透過光量のスペクトルの測定値を示す図。The figure which shows the measured value of the spectrum of the amount of transmitted light in four types of washing | cleaning liquids which consist of a molecule | numerator which does not have a multiple bond of a carbon atom. 本実施形態の油分濃度計測装置における制御部の機能を示す機能ブロック図。The functional block diagram which shows the function of the control part in the oil concentration measuring device of this embodiment. 異なる4種類の油分をそれぞれ1種類ずつ含有する洗浄液の透過光量を測定した結果を示すグラフ。The graph which shows the result of having measured the transmitted light amount of the washing | cleaning liquid which contains four different types of oil components 1 each, respectively. 図4に示した透過光量から吸光度を求めた結果を示すグラフ。The graph which shows the result of having calculated | required the light absorbency from the transmitted light amount shown in FIG. 図5に示した吸光度に基づいて作成した油分毎の検量線を示すグラフ。The graph which shows the calibration curve for every oil created based on the light absorbency shown in FIG. 本実施形態の油分濃度計測装置及び方法により洗浄液中の油分の濃度を測定した結果を示すグラフ。The graph which shows the result of having measured the concentration of the oil in the cleaning fluid with the oil concentration measuring device and method of this embodiment.

図1〜図7を用いて、本発明に係る油分濃度計測装置及び方法の実施形態を説明する。   An embodiment of the oil concentration measurement device and method according to the present invention will be described using FIGS. 1 to 7.

図1は、本実施形態の油分濃度計測装置10を構成要素として有する工業用洗浄機1の概略の構成を示している。工業用洗浄機1は、ワークに付着した油分を除去するための装置であり、油分濃度計測装置10の他に、第1洗浄槽11、第2洗浄槽12、蒸気洗浄・乾燥槽13、一時貯留槽14、蒸留槽15、熱交換器16、エゼクタ17、再生後洗浄液貯留槽18、試料セル洗浄液槽19を有する。図1中に示した太い実線は液体の流路を、太い破線は気体の流路を、細い直線の破線は電気信号の経路を、それぞれ示している。   FIG. 1 shows a schematic configuration of an industrial washer 1 having the oil concentration measuring device 10 of the present embodiment as a component. The industrial cleaning machine 1 is an apparatus for removing oil adhering to the work, and in addition to the oil concentration measuring apparatus 10, the first cleaning tank 11, the second cleaning tank 12, the steam cleaning / drying tank 13, and the temporary cleaning The storage tank 14, the distillation tank 15, the heat exchanger 16, the ejector 17, the post-regeneration washing liquid storage tank 18, and the sample cell washing liquid tank 19 are provided. Thick solid lines shown in FIG. 1 indicate liquid flow paths, thick broken lines indicate gas flow paths, and thin straight broken lines indicate paths of electrical signals.

(1) 工業用洗浄機1の全体構成及び動作
本実施形態の油分濃度計測装置10について説明する前に、まず、工業用洗浄機1の全体構成及びワークの洗浄の動作を説明する。第1洗浄槽11及び第2洗浄槽12には、槽内に貯留される洗浄液に超音波振動を付与する超音波振動子が設けられている。また、超音波によるキャビテーションを生じ易くするために、第1洗浄槽11及び第2洗浄槽12内は真空ポンプにより減圧され、洗浄液の脱気が行われる。これら第1洗浄槽11及び第2洗浄槽12に洗浄液を貯留したうえで、ワークを洗浄液に浸漬し、超音波振動を付与することにより、ワークが洗浄される。ここで、後述の理由により、第1洗浄槽11内の洗浄液よりも第2洗浄槽12内の洗浄液の方が油分の含有量が少なくなることから、まず第1洗浄槽11でワークを洗浄し、次にそのワークを第2洗浄槽12で洗浄することにより、洗浄液中の油分がワークに再付着することを最小限に抑えることができる。
(1) Overall Configuration and Operation of Industrial Cleaning Machine 1 Before describing the oil concentration measuring device 10 of the present embodiment, first, the overall configuration of the industrial cleaning machine 1 and the operation of cleaning a work will be described. The first cleaning tank 11 and the second cleaning tank 12 are provided with ultrasonic transducers for applying ultrasonic vibration to the cleaning liquid stored in the tank. Further, in order to facilitate the generation of cavitation due to ultrasonic waves, the inside of the first cleaning tank 11 and the second cleaning tank 12 is depressurized by a vacuum pump to degas the cleaning liquid. After the cleaning fluid is stored in the first cleaning tank 11 and the second cleaning tank 12, the workpiece is immersed in the cleaning fluid and ultrasonic vibration is applied to clean the workpiece. Here, since the content of the oil in the second cleaning tank 12 is smaller than the cleaning liquid in the first cleaning tank 11 for the reason described later, the work is first cleaned in the first cleaning tank 11. Then, by washing the work in the second washing tank 12, it is possible to minimize the reattachment of the oil in the washing liquid to the work.

蒸気洗浄・乾燥槽13は、第2洗浄槽12で洗浄されたワークに対して蒸気洗浄及び乾燥を行うための槽である。蒸気洗浄・乾燥に使用される蒸気は、後述のように蒸留槽15から供給される。蒸気洗浄・乾燥槽13内の蒸気、及びワークの表面に残留していたものが除去された洗浄液は、第2洗浄槽12に返送される。また、第1洗浄槽11及び第2洗浄槽12の減圧や洗浄液の蒸発により生じた気体は、一時貯留槽14に回収される。   The steam cleaning and drying tank 13 is a tank for performing steam cleaning and drying on the work cleaned in the second cleaning tank 12. Steam used for steam cleaning and drying is supplied from the distillation tank 15 as described later. The vapor in the vapor cleaning / drying tank 13 and the cleaning liquid from which the substance remaining on the surface of the work has been removed are returned to the second cleaning tank 12. Further, the gas generated by the pressure reduction of the first cleaning tank 11 and the second cleaning tank 12 and the evaporation of the cleaning liquid is collected in the temporary storage tank 14.

蒸留槽15にはフロート弁151が設けられており、蒸留槽15内の液体が蒸留により所定量以下になると、洗浄液が一時貯留槽14から蒸留槽15内に導入される。蒸留槽15内にはヒータ(図示せず)により加熱されると共に、エゼクタ17により減圧される。これにより、洗浄液は油分を液体として残して蒸発する。発生した蒸気の一部は前述のように蒸気洗浄・乾燥槽13に供給され、残りは熱交換器16で凝縮されたうえで、再生後洗浄液貯留槽18に貯留される。   The distillation tank 15 is provided with a float valve 151, and when the liquid in the distillation tank 15 is reduced to a predetermined amount or less by distillation, the cleaning liquid is introduced from the temporary storage tank 14 into the distillation tank 15. The distillation tank 15 is heated by a heater (not shown) and depressurized by an ejector 17. Thereby, the cleaning solution evaporates leaving the oil as a liquid. A part of the generated steam is supplied to the steam cleaning / drying tank 13 as described above, and the remainder is condensed by the heat exchanger 16 and stored in the post-regeneration cleaning solution storage tank 18.

第2洗浄槽12には、蒸留槽15によって油分が除去された再生後洗浄液が再生後洗浄液貯留槽18から流入する。第1洗浄槽11と第2洗浄槽12は第2オーバーフロー管122で接続されている。第2オーバーフロー管122は、第1洗浄槽11との接続位置よりも第2洗浄槽12との接続位置の方が高くなっており、再生後洗浄液の流入によって第2洗浄槽12内の洗浄液の液面が後者の接続位置よりも高くなると、第2洗浄槽12内の洗浄液の一部が自然に第1洗浄槽11に移動する。従って、第1洗浄槽11内の洗浄液よりも第2洗浄槽12内の洗浄液の方が油分の含有量が少なくなる。また、第1洗浄槽11と一時貯留槽14は第1オーバーフロー管112で接続されており、第2洗浄槽12からの洗浄液の流入によって第1洗浄槽11内の洗浄液の液面が第1オーバーフロー管112の接続位置よりも高くなると、第1洗浄槽11中の洗浄液の一部が自然に第1オーバーフロー管112を通って一時貯留槽14に移動する。   The regenerated cleaning fluid from which the oil component has been removed by the distillation tank 15 flows from the regenerated cleaning fluid storage tank 18 into the second cleaning tank 12. The first cleaning tank 11 and the second cleaning tank 12 are connected by a second overflow pipe 122. The second overflow pipe 122 has a higher connection position with the second cleaning tank 12 than the connection position with the first cleaning tank 11, and the inflow of the cleaning liquid after regeneration causes the flow of the cleaning liquid in the second cleaning tank 12. When the liquid level becomes higher than the latter connection position, a part of the cleaning liquid in the second cleaning tank 12 naturally moves to the first cleaning tank 11. Therefore, the content of oil is smaller in the cleaning liquid in the second cleaning tank 12 than in the cleaning liquid in the first cleaning tank 11. In addition, the first cleaning tank 11 and the temporary storage tank 14 are connected by the first overflow pipe 112, and the inflow of the cleaning liquid from the second cleaning tank 12 causes the liquid level of the cleaning liquid in the first cleaning tank 11 to overflow. When it becomes higher than the connection position of the pipe 112, a part of the cleaning liquid in the first cleaning tank 11 naturally moves to the temporary storage tank 14 through the first overflow pipe 112.

第1洗浄槽11は、洗浄液を槽内から取り出し、フィルタを通して槽内に戻す第1循環濾過系111を有する。第2洗浄槽12にも同様の第2循環濾過系121が設けられている。これら循環濾過系は、粒径10μm程度以上のパーティクルを除去するものであって、油分を除去することができない。   The first cleaning tank 11 has a first circulating filtration system 111 which takes the cleaning liquid out of the tank and returns it through the filter into the tank. A similar second circulation filtration system 121 is provided in the second washing tank 12 as well. These circulation filtration systems remove particles having a particle diameter of about 10 μm or more, and can not remove oil.

(2) 本実施形態の油分濃度計測装置10の構成
次に、工業用洗浄機1中の油分濃度計測装置10の構成について詳細に説明する。油分濃度計測装置10は、後述のように第1洗浄槽11、第2洗浄槽12及び再生後洗浄液貯留槽18と接続される流路101と、流路101中に設けられた送液ポンプ102と、流路101中の送液ポンプ102よりも下流側に設けられた試料セル103と、リファレンス測定用のリファレンスセル1031と、光照射部104と、透過光検出部105と、装置全体の制御や後述のデータ処理を行う制御部106を有する。
(2) Configuration of oil concentration measuring device 10 of the present embodiment Next, the configuration of the oil concentration measuring device 10 in the industrial washer 1 will be described in detail. The oil concentration measuring apparatus 10 includes a flow path 101 connected to the first cleaning tank 11, the second cleaning tank 12, and the post-regeneration cleaning liquid storage tank 18 as described later, and a liquid transfer pump 102 provided in the flow path 101. The sample cell 103 provided downstream of the liquid feed pump 102 in the flow path 101, the reference cell 1031 for reference measurement, the light irradiation unit 104, the transmitted light detection unit 105, and control of the entire apparatus And a control unit 106 that performs data processing described later.

流路101の流入部1011は、第1中継管113を介して第1洗浄槽11に、第2中継管123を介して第2洗浄槽12に、第3中継管183を介して再生後洗浄液貯留槽18に、それぞれ接続されている。また、第1中継管113には第1中継開閉弁11Vが、第2中継管123には第2中継開閉弁12Vが、第3中継管183には第3中継開閉弁18Vが、それぞれ設けられている。   The inflow portion 1011 of the flow path 101 is supplied to the first cleaning tank 11 through the first relay pipe 113, to the second cleaning tank 12 through the second relay pipe 123, and to the post-regeneration cleaning liquid through the third relay pipe 183. Each storage tank 18 is connected. In addition, the first relay on-off valve 11V is provided in the first relay pipe 113, the second relay on-off valve 12V is provided in the second relay pipe 123, and the third relay on-off valve 18V is provided in the third relay pipe 183. ing.

流路101の流出部は一時貯留槽14に接続されている。従って、油分濃度計測装置10において測定に用いられた洗浄液は、一時貯留槽14を経て蒸留槽15により蒸留され、最終的には油分が除去された状態で第2洗浄槽12に返送される。なお、測定に用いられた洗浄液を流出部から、その洗浄液が収容されていた槽に直接返送するようにしてもよい。   The outflow portion of the flow path 101 is connected to the temporary storage tank 14. Therefore, the cleaning liquid used for measurement in the oil concentration measuring device 10 passes through the temporary storage tank 14 and is distilled by the distillation tank 15 and is finally returned to the second cleaning tank 12 in a state where the oil is removed. The cleaning liquid used for the measurement may be directly returned from the outflow portion to the tank in which the cleaning liquid is stored.

試料セル103及びリファレンスセル1031はいずれも、紫外線の吸収が少ない石英製のセルである。流路101には、通常の測定時には試料セル103が接続され、リファレンスデータを測定する時にはリファレンスセル1031が接続される。リファレンスセル1031には、油分を含まない洗浄液が封入されており、制御部106による制御により、所定の時間間隔で油分濃度の測定を中断したうえでリファレンスデータを測定するようになっている。   Each of the sample cell 103 and the reference cell 1031 is a cell made of quartz with little absorption of ultraviolet light. The sample cell 103 is connected to the flow path 101 at the time of normal measurement, and the reference cell 1031 is connected to measure the reference data. The reference cell 1031 contains a cleaning solution containing no oil, and the control unit 106 controls the control unit 106 to measure the reference data after interrupting the measurement of the oil concentration at predetermined time intervals.

光照射部104は、本実施形態では280〜300nmの間の所定の1波長である測定波長を試料セル103内の洗浄液(計測対象液)に照射するものであり、当該測定波長を発光するLEDから成る。本実施形態では、測定波長は290nmとした。   The light irradiator 104 irradiates the cleaning liquid (measurement target liquid) in the sample cell 103 with a measurement wavelength which is a predetermined one wavelength between 280 and 300 nm in this embodiment, and the LED emits the measurement wavelength. It consists of In the present embodiment, the measurement wavelength is 290 nm.

ここで図2を用いて、測定波長を280〜300nmの間の1波長とする理由を説明する。図2は、炭素原子の多重結合を有しない分子から成る4種の洗浄液1〜4における透過光量のスペクトルの測定値を示している。4種のうち洗浄液1〜3はいずれも飽和型脂肪族炭化水素系の洗浄液であり、洗浄液4はグリコールエーテル系の洗浄液である。図2には合わせて、入射光のスペクトルを示す。4種の洗浄液はいずれも波長280nm未満において透過光量が入射光の光量よりも大幅に小さくなっており、洗浄液による紫外線の吸収が見られる。それに対して波長280nm以上では、透過光量と入射光の差が小さく、洗浄液による紫外線の吸収がほとんど無い。従って、280nmの測定波長で測定すれば、洗浄液による吸光の影響を抑えつつ油分の濃度の計測を行うことができる。一方、測定波長が300nmを超えると、後掲の図5に示すように、低濃度(図5に示した例では100ppm。さらには50ppm。)の油分による吸光度の値が小さくなりすぎるため求めることができない。従って、280〜300nmの間の1波長を測定波長とすることにより、洗浄液による吸光の影響を抑えつつ、50ppm程度の低濃度であっても油分の濃度の計測を行うことができる。   The reason why the measurement wavelength is one wavelength between 280 and 300 nm will be described with reference to FIG. FIG. 2 shows measured values of the spectrum of the amount of transmitted light in four types of cleaning solutions 1 to 4 consisting of molecules having no carbon atom multiple bond. Among the four types, cleaning solutions 1 to 3 are all saturated aliphatic hydrocarbon cleaning solutions, and cleaning solution 4 is a glycol ether cleaning solution. FIG. 2 also shows the spectrum of incident light. The amount of transmitted light of each of the four types of cleaning solutions is significantly smaller than the amount of incident light at a wavelength of less than 280 nm, and absorption of ultraviolet light by the cleaning solutions can be observed. On the other hand, when the wavelength is 280 nm or more, the difference between the transmitted light amount and the incident light is small, and the cleaning liquid hardly absorbs the ultraviolet light. Therefore, if the measurement is performed at a measurement wavelength of 280 nm, the concentration of the oil can be measured while suppressing the influence of the light absorption by the cleaning liquid. On the other hand, when the measurement wavelength exceeds 300 nm, as shown in FIG. 5 described later, the value of absorbance by oil at low concentration (100 ppm in the example shown in FIG. 5 and further 50 ppm) becomes too small. I can not Therefore, by setting one wavelength between 280 and 300 nm as the measurement wavelength, it is possible to measure the concentration of the oil even at a low concentration of about 50 ppm while suppressing the influence of the light absorption by the washing solution.

透過光検出部105は、試料セル103内の洗浄液を透過した前記測定波長を有する透過光の強度を検出するものであり、フォトダイオードと信号変換部から成る。フォトダイオードは前記測定波長の光を検出してその強度をアナログ信号として出力する。信号変換部は、フォトダイオードが出力したアナログ信号をデジタル信号に変換する。   The transmitted light detection unit 105 detects the intensity of the transmitted light having the measurement wavelength transmitted through the cleaning liquid in the sample cell 103, and includes a photodiode and a signal conversion unit. The photodiode detects the light of the measurement wavelength and outputs the intensity as an analog signal. The signal conversion unit converts an analog signal output from the photodiode into a digital signal.

制御部106は、図3の機能ブロック図に示す機能を有する。制御部106には、プログラマブルロジックコントローラやパーソナルコンピュータを用いることができ、工業用洗浄機が有する制御装置をそのまま適用してもよいし、油分濃度計測装置10の制御装置を備えるようにしてもよい。制御部106は、油分濃度決定部1061と、リファレンスデータ記録部1062と、検量線記録部1063と、条件入力部1064と、測定制御部1065を有する。油分濃度決定部1061は、吸光度算出部1061Aと、検量線選択部1061Bと、検量線適用部1061Cから構成される。油分濃度決定部1061の詳細は、本実施形態の油分濃度計測装置10の動作と共に後述する。リファレンスデータ記録部1062には、油分を含有しない洗浄剤について予め測定された、前記測定波長における透過光量のデータ(リファレンスデータ)が記録されている。検量線記録部1063には、ワークの加工に使用し得る油分毎に、油分の濃度が既知である試料を用いて予め測定したデータに基づいて作成された、前記測定波長における油分の濃度と吸光度の関係を示す検量線が記録されている。なお、メーカや型番が異なる複数の加工油同士で成分が近い場合には、それら複数の加工油で共通の検量線を用いてもよい。条件入力部1064は、測定者がタッチパネル等の入力デバイスを用いて後述の測定条件を入力するものである。測定制御部1065は、光照射部104における光源からの光の照射の開始及び終了や、上記各部の処理の開始及び終了等の制御を行う。   The control unit 106 has the function shown in the functional block diagram of FIG. A programmable logic controller or a personal computer can be used as the control unit 106, and the control device of the industrial washer may be applied as it is, or the control device of the oil concentration measuring device 10 may be provided. . The control unit 106 includes an oil concentration determination unit 1061, a reference data storage unit 1062, a calibration curve storage unit 1063, a condition input unit 1064, and a measurement control unit 1065. The oil concentration determination unit 1061 includes an absorbance calculation unit 1061A, a calibration curve selection unit 1061B, and a calibration curve application unit 1061C. The details of the oil concentration determination unit 1061 will be described later together with the operation of the oil concentration measurement device 10 of the present embodiment. In the reference data recording unit 1062, data (reference data) of the transmitted light amount at the measurement wavelength, which is measured in advance for the cleaning agent containing no oil component, is recorded. In the calibration curve recording unit 1063, the concentration and absorbance of the oil at the measurement wavelength are prepared based on the data measured in advance using a sample whose concentration of the oil is known for each oil that can be used for processing the work. A calibration curve showing the relationship of is recorded. When the components are similar among a plurality of processing oils having different manufacturers or model numbers, a common calibration curve may be used for the plurality of processing oils. The condition input unit 1064 is used by the measurer to input measurement conditions described later using an input device such as a touch panel. The measurement control unit 1065 controls the start and end of the irradiation of the light from the light source in the light irradiation unit 104, and the start and end of the process of each unit.

試料セル洗浄液槽19は、試料セル103を洗浄するための洗浄液(油分濃度計測の対象である洗浄液と同じもの)が貯留される槽である。   The sample cell washing solution tank 19 is a tank in which a washing solution for washing the sample cell 103 (the same washing solution as a target of measurement of the oil concentration) is stored.

(3) 本実施形態の油分濃度計測装置10の動作
本実施例の油分濃度計測装置10の動作を説明する。ここでは主に、蒸気洗浄・乾燥槽13で使用される蒸気中の油分濃度に近い、再生後洗浄液貯留槽18内に貯留されている再生後洗浄液を油分濃度の測定対象とする場合について述べる。
(3) Operation of oil concentration measuring device 10 of the present embodiment The operation of the oil concentration measuring device 10 of the present embodiment will be described. Here, the case where the concentration of oil is to be measured is the cleaning fluid after regeneration which is stored in the cleaning fluid storage tank 18 which is close to the concentration of oil in the steam used in the steam cleaning / drying tank 13.

まず、測定者が条件入力部1064において所定の測定条件を入力したうえで、測定開始の指示を入力することにより、測定が開始される。ここで入力される測定条件は、測定対象の洗浄液を用いて洗浄されるワークに付着していた加工油を特定するための情報(例えば加工油のメーカ及び型番)である。   First, measurement is started by the measurer inputting a predetermined measurement condition in the condition input unit 1064 and then inputting a measurement start instruction. The measurement conditions input here are information (for example, maker and model number of processing oil) for specifying the processing oil adhering to the workpiece to be cleaned using the cleaning liquid to be measured.

測定が開始されると、まず、測定対象の洗浄液が貯留されている洗浄槽あるいは貯留槽に対応する中継弁が開放される。ここでは、再生後洗浄液貯留槽18に接続されている第3中継管183に設けられた第3中継開閉弁18Vを開放する。これにより、測定対象の再生後洗浄液が流路101を通って試料セル103に導入される。なお、測定対象の洗浄液が第1洗浄槽11内の洗浄液であれば第1中継開閉弁11Vを開放し、第2洗浄槽12内の洗浄液であれば第2中継開閉弁12Vを開放する。   When the measurement is started, first, the relay valve corresponding to the cleaning tank or the storage tank in which the cleaning liquid to be measured is stored is opened. Here, the third relay on-off valve 18V provided in the third relay pipe 183 connected to the post-regeneration cleaning fluid storage tank 18 is opened. As a result, the post-regeneration cleaning fluid to be measured is introduced into the sample cell 103 through the channel 101. The first relay on-off valve 11V is opened if the cleaning liquid to be measured is the cleaning liquid in the first cleaning tank 11, and the second relay on-off valve 12V is opened if the cleaning liquid is in the second cleaning tank 12.

光照射部104は試料セル103内の洗浄液に対して前記測定波長(290nm)の光を照射する。透過光検出部105は、洗浄液を透過した透過光量の強度Iを測定し、デジタル信号に変換して出力する。   The light irradiation unit 104 irradiates the cleaning liquid in the sample cell 103 with light of the measurement wavelength (290 nm). The transmitted light detection unit 105 measures the intensity I of the transmitted light amount transmitted through the cleaning liquid, converts the intensity I into a digital signal, and outputs the digital signal.

次に、制御部106は、透過光検出部105から出力された透過光量の強度Iを示すデジタル信号を入力すると共に、リファレンスデータ記録部1062から、油分を含有しない洗浄液の前記測定波長における透過光量であるリファレンスデータI0を取得する。制御部106の吸光度算出部1061Aは、これら測定対象の洗浄液における透過光量の強度IとリファレンスデータI0に基づいて、測定対象の洗浄液の吸光度A=log10(I0/I)を求める。Next, the control unit 106 inputs a digital signal indicating the intensity I of the transmitted light output from the transmitted light detection unit 105, and also transmits from the reference data recording unit 1062 the transmitted light amount at the measurement wavelength of the cleaning liquid containing no oil. The reference data I 0 which is The absorbance calculating unit 1061A of the control unit 106 obtains the absorbance A = log 10 (I 0 / I) of the washing liquid to be measured based on the intensity I of the transmitted light amount in the washing liquid to be measured and the reference data I 0 .

続いて、制御部106の検量線選択部1061Bは、条件入力部1064で入力された加工油を特定するための情報に基づいて、特定された加工油に対応する検量線を検量線記録部1063から取得する。そして、検量線適用部1061Cは、吸光度算出部1061Aで得られた測定対象の洗浄液の吸光度Aを、検量線選択部1061Bで選択された検量線に適用し、加工油の濃度を求める。   Subsequently, the calibration curve selection unit 1061 B of the control unit 106 selects a calibration curve corresponding to the identified processing oil based on the information for identifying the processing oil input by the condition input unit 1064. Get from Then, the calibration curve application unit 1061C applies the absorbance A of the cleaning fluid to be measured obtained by the absorbance calculation unit 1061A to the calibration curve selected by the calibration curve selection unit 1061B to obtain the concentration of the processing oil.

以後、測定対象の再生後洗浄液を連続的に試料セル103に導入しつつ、光照射部104による光の照射及び透過光量の強度Iの測定を繰り返し行うことにより、加工油の濃度を繰り返し求める。そして、加工油の濃度が所定値を超えたときには、蒸留槽15内に残留する残留液の処理を行う。残留液の処理は、残留液を煮詰めることにより残留液中の洗浄液と加工油を分離し、これにより蒸留槽15内に残留した加工油を廃棄することにより行う。   Thereafter, the concentration of the processing oil is repeatedly determined by repeatedly performing irradiation of light by the light irradiation unit 104 and measurement of the intensity I of the transmitted light amount while continuously introducing the cleaning liquid after regeneration of the measurement object into the sample cell 103. Then, when the concentration of the processing oil exceeds a predetermined value, the residual liquid remaining in the distillation tank 15 is treated. The treatment of the residual liquid is carried out by separating the washing liquid and the processing oil in the residual liquid by boiling the residual liquid, and thereby discarding the processing oil remaining in the distillation tank 15.

なお、測定対象の洗浄液が第1洗浄槽11内又は第2洗浄槽12内の洗浄液とする場合には、ワークの洗浄中に上記と同様の方法により洗浄液中の加工油の濃度を繰り返し求め、その濃度の時間変化が所定値以下になった時にワークの洗浄を終了するという、洗浄終了のタイミングを求めるために測定結果を用いることができる。   When the cleaning liquid to be measured is the cleaning liquid in the first cleaning tank 11 or the second cleaning tank 12, the concentration of the processing oil in the cleaning liquid is repeatedly determined by the same method as described above during the cleaning of the work, The measurement result can be used to determine the timing of the end of cleaning that the cleaning of the work is ended when the time change of the concentration becomes lower than a predetermined value.

(4) 吸光度及び検量線の例
代表的な加工油として選択した4種類の油分(表1)をそれぞれ、同じ洗浄液に異なる濃度で混合した複数の試料を作製し、油分及び濃度毎の透過光量を測定して吸光度を求めた。ここでは、測定波長を290nmとすることの妥当性を検証するために、波長を290nmには限定せずに260〜400nmの範囲内で透過光量の測定を行った。ここで洗浄液には、炭素原子の多重結合を有しない飽和型脂肪族炭化水素系の洗浄液である「NS100」(JXエネルギー(株)製、図2の洗浄液1)を用いた。また、各油分の濃度はいずれも、100ppm、500ppm、2000ppm及び10000ppmとした。

Figure 2018025813
(4) Examples of absorbance and calibration curve A plurality of samples prepared by mixing four kinds of oils selected as typical processing oils (Table 1) in the same cleaning liquid at different concentrations are prepared, and the amount of transmitted light for each oil and concentration Was measured to determine the absorbance. Here, in order to verify the appropriateness of setting the measurement wavelength to 290 nm, the amount of transmitted light was measured in the range of 260 to 400 nm without limiting the wavelength to 290 nm. Here, as the cleaning solution, “NS100” (a cleaning solution 1 of FIG. 2 manufactured by JX Energy Co., Ltd.) which is a cleaning solution of a saturated aliphatic hydrocarbon type having no carbon atom multiple bond was used. In addition, the concentration of each oil was 100 ppm, 500 ppm, 2000 ppm and 10000 ppm, respectively.
Figure 2018025813

測定により得られた透過光量を、洗浄液が含有する油分毎に図4に示す。また、図4に示した透過光量に基づいて吸光度を求めた結果を図5に示す。いずれも、波長280〜300nmの範囲内において、吸光度が油分の濃度に依存して異なる値を有している。   The transmitted light amount obtained by the measurement is shown in FIG. 4 for each oil component contained in the cleaning liquid. Moreover, the result of having calculated | required the light absorbency based on the transmitted light quantity shown in FIG. 4 is shown in FIG. Both have different values depending on the concentration of the oil content in the wavelength range of 280 to 300 nm.

こうして得られた、波長290nmにおける油分及び濃度毎の吸光度に基づき、油分毎に、吸光度と濃度の関係を示す検量線を作成した。作成した検量線を図6に示す。なお、各油分において、濃度が10000ppmのデータは検量線において直線から外れるため使用していない。図6に示すように、濃度が2000ppm以下のときには検量線を直線で示すことができる。従って、少なくとも2000ppm以下の濃度において、本実施形態の油分濃度計測装置及び方法による油分濃度の計測が可能である。   Based on the thus obtained oil component at a wavelength of 290 nm and the absorbance for each concentration, a calibration curve showing the relationship between the absorbance and the concentration was created for each oil component. The prepared calibration curve is shown in FIG. In each oil, data with a concentration of 10000 ppm is not used because it deviates from the straight line in the calibration curve. As shown in FIG. 6, when the concentration is 2000 ppm or less, the calibration curve can be shown as a straight line. Therefore, measurement of the oil concentration is possible by the oil concentration measuring apparatus and method of the present embodiment at a concentration of at least 2000 ppm or less.

図1に示した工業用洗浄機において、ワークの洗浄の品質を維持するために重要なことは、蒸留槽15で蒸留再生される再生後洗浄液の油分の濃度を計測・管理することである。特に、再生後洗浄液は、蒸留槽15で発生した蒸気がそのまま蒸気洗浄・乾燥槽13においてワークに対する仕上げの洗浄である蒸気洗浄に用いられるため、油分濃度の計測・管理を工業用洗浄機の連続運転中に行うことが最も重要である。本発明によれば、このような工業用洗浄機の連続運転中ににおける油分濃度の計測・管理が可能である。   In the industrial cleaning machine shown in FIG. 1, what is important for maintaining the quality of cleaning of the work is to measure and manage the concentration of the oil component of the post-regeneration cleaning solution which is regenerated by distillation in the distillation tank 15. In particular, since the cleaning solution after regeneration is used for steam cleaning which is the finishing cleaning of the work in the steam cleaning / drying tank 13 as it is, the steam generated in the distillation tank 15 continuously measures and controls the oil concentration of the industrial cleaning machine It is most important to do while driving. According to the present invention, it is possible to measure and manage the oil concentration during continuous operation of such an industrial washer.

得られた検量線を用いて、再生後洗浄液中の油分の濃度を計測する実験を行った。この実験においても、洗浄液は上記NS100、又はNS200(JXエネルギー(株)製、図2の洗浄液2)を用い、添加する油分には上掲の表1に示したものを含む、5種類の切削油及び5種類のプレス・打ち抜き油を用いた。この実験では、洗浄液及び油分を秤量したうえで両者を混合することにより、濃度が既知(この濃度を「本来の濃度」と呼ぶ)である試料を作製し、本来の濃度と測定値の比較を行った。   An experiment was conducted to measure the concentration of the oil in the washing solution after regeneration using the obtained calibration curve. Also in this experiment, five types of cutting were conducted using the above-mentioned NS100 or NS200 (manufactured by JX Energy Co., Ltd., cleaning liquid 2 in FIG. 2), and the oils to be added include those shown in Table 1 above. An oil and 5 types of press / punch oil were used. In this experiment, a sample having a known concentration (this concentration is referred to as "the original concentration") is prepared by weighing the washing solution and the oil component and mixing the two, and a comparison between the original concentration and the measured value is made. went.

実験結果を図7のグラフに示す。このグラフでは、本来の濃度を横軸に、測定値を縦軸にとった。データ点は、測定値が本来の濃度の±10%以内に収まれば、グラフ中の2本の破線の間に収まる。また、図7では、全ての試料をデータを1つのグラフに掲載した。このグラフに示すように、今回得られた全ての測定値が概ね本来の濃度の±10%以内に収まっている。±10%程度の精度があれば、工業用洗浄機において用いるには十分である。   The experimental results are shown in the graph of FIG. In this graph, the original concentration is taken on the horizontal axis, and the measured value is taken on the vertical axis. Data points fall between the two dashed lines in the graph if the measurement falls within ± 10% of the original concentration. Moreover, in FIG. 7, the data were put on one graph for all the samples. As shown in this graph, all the measured values obtained this time are approximately within ± 10% of the original concentration. An accuracy on the order of ± 10% is sufficient for use in industrial cleaners.

(5) 変形例
本実施形態の油分濃度計測装置10において、光照射部104は、波長280〜300nmの間の測定波長(上記の例では290nm)の光を洗浄液に照射する他に、320〜340nmの間の所定の1波長である第2測定波長を洗浄液に照射するようにしてもよい。このような異なる2つの波長の光は、単色光を発する光源であって該単色光の波長が異なる2つの光源を用いて生成することが望ましい。この場合、透過光検出部105は、上記測定波長の光と第2測定波長の光の双方の強度を測定できるものであれば、これら2つの波長の光を共通に検出するものとして1つのみあればよい。あるいは、波長毎に異なる透過光検出部を用いてもよい。当該第2測定波長においても前記測定波長(290nm)の場合と同様に、図5の吸光度のデータに基づいて、油分毎に、吸光度と濃度の関係を示す検量線を作成することができる。
(5) Modifications In the oil concentration measuring device 10 according to the present embodiment, the light irradiator 104 irradiates the cleaning liquid with light having a measurement wavelength of 280 to 300 nm (290 nm in the above example) to the cleaning liquid. The cleaning liquid may be irradiated with a second measurement wavelength which is a predetermined one wavelength between 340 nm. It is desirable that such light of two different wavelengths be generated using two light sources that emit monochromatic light and have different wavelengths of the monochromatic light. In this case, as long as the transmitted light detection unit 105 can measure the intensities of both the light of the measurement wavelength and the light of the second measurement wavelength, only one of the two wavelengths is commonly detected. I hope there is. Alternatively, different transmitted light detection units may be used for each wavelength. Also at the second measurement wavelength, as in the case of the measurement wavelength (290 nm), it is possible to create a calibration curve showing the relationship between the absorbance and the concentration for each oil based on the data of absorbance in FIG.

例えば、図6(d)に示した検量線は、(a)〜(c)の検量線と比較して、吸光度を求めた点と検量線との差がやや大きいことから、2つの測定波長でそれぞれ油分の濃度を求めることにより、精度を高くすることができる。   For example, the calibration curve shown in FIG. 6 (d) is slightly larger than the calibration curves of (a) to (c) because the difference between the absorbance and the calibration curve is slightly larger. The accuracy can be increased by determining the concentration of the oil component respectively.

1…工業用洗浄機
10…油分濃度計測装置
101…流路
1011…流入部
102…送液ポンプ
103…試料セル
1031…リファレンスセル
104…光照射部
105…透過光検出部
106…制御部
1061…油分濃度決定部
1061A…吸光度算出部
1061B…検量線選択部
1061C…検量線適用部
1062…リファレンスデータ記録部
1063…検量線記録部
1064…条件入力部
1065…測定制御部
11…第1洗浄槽
111…第1循環濾過系
112…第1オーバーフロー管
113…第1中継管
11V…第1中継開閉弁
12…第2洗浄槽
121…第2循環濾過系
122…第2オーバーフロー管
123…第2中継管
12V…第2中継開閉弁
13…蒸気洗浄・乾燥槽
14…一時貯留槽
15…蒸留槽
151…フロート弁
16…熱交換器
17…エゼクタ
18…再生後洗浄液貯留槽
183…第3中継管
18V…第3中継開閉弁
19…試料セル洗浄液槽
DESCRIPTION OF SYMBOLS 1 ... Industrial cleaning machine 10 ... Oil concentration measurement apparatus 101 ... Flow path 1011 ... Inflow part 102 ... Liquid feeding pump 103 ... Sample cell 1031 ... Reference cell 104 ... Light irradiation part 105 ... Transmission light detection part 106 ... Control part 1061 ... Oil concentration determination unit 1061A ... Absorbance calculation unit 1061 B ... Calibration curve selection unit 1061 C ... Calibration curve application unit 1062 ... Reference data recording unit 1063 ... Calibration curve recording unit 1064 ... Condition input unit 1065 ... Measurement control unit 11 ... First cleaning tank 111 ... first circulation filtration system 112 ... first overflow pipe 113 ... first relay pipe 11 V ... first relay on-off valve 12 ... second washing tank 121 ... second circulation filtration system 122 ... second overflow pipe 123 ... second relay pipe 12V ... 2nd relay on-off valve 13 ... steam cleaning and drying tank 14 ... temporary storage tank 15 ... distillation tank 151 ... float valve 16 ... heat exchanger 17 Ejector 18 ... playback after the cleaning liquid storage tank 183 ... third relay pipe 18V ... third relay off valve 19 ... sample cell washing solution tank

Claims (5)

a) 280〜300nmの間の所定の1波長である測定波長を有する照射光を計測対象液に照射する光照射部と、
b) 前記照射光が前記計測対象液を透過した透過光の強度を測定する透過光検出部と、
c) 前記透過光検出部で測定された透過光の強度に基づき、前記計測対象液の前記測定波長における吸光度を算出し、該吸光度の値と、前記測定波長における油分の濃度と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める油分濃度決定部と
を備えることを特徴とする、洗浄液中の油分濃度計測装置。
a) A light irradiator for irradiating a liquid to be measured with an irradiation light having a measurement wavelength which is a predetermined one wavelength between 280 and 300 nm,
b) a transmitted light detection unit that measures the intensity of the transmitted light of the irradiated light transmitted through the liquid to be measured;
c) Based on the intensity of the transmitted light measured by the transmitted light detection unit, calculate the absorbance at the measurement wavelength of the liquid to be measured, and calculate the relationship between the value of the absorbance and the concentration of oil and the absorbance at the measurement wavelength And an oil concentration determination unit for determining the concentration of the oil in the liquid to be measured based on the calibration curve shown.
さらに、
320〜340nmの間の所定の1波長である第2測定波長を有する第2照射光を前記計測対象液に照射する第2光照射部と、
前記第2照射光が前記計測対象液を透過した第2透過光の強度を測定する第2透過光検出部と、
前記第2透過光検出部で測定された第2透過光の強度に基づき、前記計測対象液の前記第2測定波長における吸光度を算出し、該吸光度の値と、前記第2測定波長における油分の濃度と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める第2油分濃度決定部と
を備えることを特徴とする請求項1に記載の洗浄液中の油分濃度計測装置。
further,
A second light irradiator for irradiating the liquid to be measured with a second irradiation light having a second measurement wavelength which is a predetermined one wavelength between 320 and 340 nm;
A second transmitted light detection unit that measures the intensity of the second transmitted light through which the second irradiation light has transmitted the liquid to be measured;
Based on the intensity of the second transmitted light measured by the second transmitted light detection unit, the absorbance of the liquid to be measured at the second measurement wavelength is calculated, and the value of the absorbance and the oil content at the second measurement wavelength are calculated. And a second oil concentration determination unit for determining the concentration of the oil in the liquid to be measured based on a calibration curve indicating the relationship between the concentration and the absorbance. .
280〜300nmの間の所定の1波長である測定波長を有する照射光を計測対象液に照射し、
前記照射光が前記計測対象液を透過した透過光の強度を測定し、
前記透過光の強度に基づき、前記計測対象液の前記測定波長における吸光度を算出し、該吸光度の値と、前記測定波長における油分と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める
ことを特徴とする、洗浄液中の油分濃度計測方法。
Irradiating a liquid to be measured with an irradiation light having a measurement wavelength which is a predetermined one wavelength between 280 and 300 nm;
Measuring the intensity of light transmitted through the liquid to be measured by the irradiation light;
Based on the intensity of the transmitted light, the absorbance at the measurement wavelength of the liquid to be measured is calculated, and the value of the absorbance and the calibration curve showing the relationship between the oil content at the measurement wavelength and the absorbance are contained in the liquid to be measured A method of measuring the concentration of an oil component in a cleaning liquid, comprising determining the concentration of the oil component.
前記計測対象液が、炭素原子の多重結合を有しない分子から成るものであることを特徴とする請求項3に記載の洗浄液中の油分濃度計測方法。   The method according to claim 3, wherein the liquid to be measured comprises a molecule having no carbon atom multiple bond. さらに、
320〜340nmの間の所定の1波長である第2測定波長を有する第2照射光を前記計測対象液に照射し、
前記第2照射光が前記計測対象液を透過した第2透過光の強度を測定し、
前記第2透過光の強度に基づき、前記計測対象液の前記第2測定波長における吸光度を算出し、該吸光度の値と、前記第2測定波長における油分と吸光度の関係を示す検量線に基づいて前記計測対象液中の油分の濃度を求める
ことを特徴とする請求項3又は4に記載の洗浄液中の油分濃度計測方法。
further,
The measurement target liquid is irradiated with a second irradiation light having a second measurement wavelength which is a predetermined one wavelength between 320 and 340 nm;
Measuring the intensity of the second transmitted light through which the second irradiation light has passed through the liquid to be measured;
Based on the intensity of the second transmitted light, the absorbance at the second measurement wavelength of the liquid to be measured is calculated, and the value of the absorbance and a calibration curve showing the relationship between the oil content and the absorbance at the second measurement wavelength The method according to claim 3 or 4, wherein the concentration of oil in the liquid to be measured is determined.
JP2018531888A 2016-08-04 2017-07-31 Oil concentration measuring device and oil concentration measuring method Active JP7153923B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016153372 2016-08-04
JP2016153372 2016-08-04
PCT/JP2017/027732 WO2018025813A1 (en) 2016-08-04 2017-07-31 Oil concentration measuring device and oil concentration measuring method

Publications (2)

Publication Number Publication Date
JPWO2018025813A1 true JPWO2018025813A1 (en) 2019-05-30
JP7153923B2 JP7153923B2 (en) 2022-10-17

Family

ID=61073439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018531888A Active JP7153923B2 (en) 2016-08-04 2017-07-31 Oil concentration measuring device and oil concentration measuring method

Country Status (3)

Country Link
JP (1) JP7153923B2 (en)
CN (1) CN109564158A (en)
WO (1) WO2018025813A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037206B2 (en) * 2020-01-27 2022-03-16 アクトファイブ株式会社 Steam cleaning vacuum drying device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115837A (en) * 1989-05-30 1991-05-16 Exxon Res & Eng Co Method of spectrochemical analysis of hydrocarbon and refining operation of hydrocarbon using the same
JPH08114542A (en) * 1994-10-14 1996-05-07 Hitachi Cable Ltd Press oil analyzing method
JPH0961349A (en) * 1995-08-28 1997-03-07 Tosoh Corp Measuring method and measuring device for dirt quantity in detergent
JP2003128631A (en) * 2001-10-23 2003-05-08 Denso Corp Extraction solvent composition and analytical method of attached oily matter by use of the same
JP2011032561A (en) * 2009-08-05 2011-02-17 Act Five Kk Cleaning method and cleaning device
JP5981083B1 (en) * 2015-02-17 2016-08-31 アクトファイブ株式会社 Oil concentration measuring apparatus and oil concentration measuring method
JP6306546B2 (en) * 2015-08-17 2018-04-04 アクトファイブ株式会社 Vacuum distillation equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735630A (en) * 2012-06-20 2012-10-17 中国石油天然气集团公司 Method for rapidly determining extra-heavy oil and super-heavy oil sewage suspension
CN104897590A (en) * 2015-06-03 2015-09-09 常州大学 Method for quickly detecting content of petroleum hydrocarbon and thallus in oily sewage treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115837A (en) * 1989-05-30 1991-05-16 Exxon Res & Eng Co Method of spectrochemical analysis of hydrocarbon and refining operation of hydrocarbon using the same
JPH08114542A (en) * 1994-10-14 1996-05-07 Hitachi Cable Ltd Press oil analyzing method
JPH0961349A (en) * 1995-08-28 1997-03-07 Tosoh Corp Measuring method and measuring device for dirt quantity in detergent
JP2003128631A (en) * 2001-10-23 2003-05-08 Denso Corp Extraction solvent composition and analytical method of attached oily matter by use of the same
JP2011032561A (en) * 2009-08-05 2011-02-17 Act Five Kk Cleaning method and cleaning device
JP5981083B1 (en) * 2015-02-17 2016-08-31 アクトファイブ株式会社 Oil concentration measuring apparatus and oil concentration measuring method
JP6306546B2 (en) * 2015-08-17 2018-04-04 アクトファイブ株式会社 Vacuum distillation equipment

Also Published As

Publication number Publication date
JP7153923B2 (en) 2022-10-17
CN109564158A (en) 2019-04-02
WO2018025813A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP5981083B1 (en) Oil concentration measuring apparatus and oil concentration measuring method
US8900458B2 (en) Method of isolating target substance using membrane and apparatus therefor
JP5762273B2 (en) Mist-containing gas analyzer
JPWO2018025813A1 (en) Oil concentration measuring device and oil concentration measuring method
JP5303395B2 (en) Cleaning method and cleaning device
JP6565076B2 (en) Salinity measurement method
JP5813417B2 (en) Method and apparatus for managing pickling solution
US20200292444A1 (en) Testing method for residual organic compounds in a liquid sample
JPH0961349A (en) Measuring method and measuring device for dirt quantity in detergent
JP6622074B2 (en) Water quality analyzer, water quality analysis system
JP4459791B2 (en) Oil concentration measuring method and oil concentration measuring apparatus
CN104511451A (en) Method for controlling cleaness of supplies in the manufacturing process of reactor coolant pumps and detection method thereof
DK180097B1 (en) A method for measuring an entity of interest in a stream of rinsing water
JP6306546B2 (en) Vacuum distillation equipment
JP2008039685A (en) Fluorescence analyzing concentration measuring system and fluorescence analyzing concentration measuring method
JPH06288923A (en) Analyzer for silica content in water
WO2024024277A1 (en) Operation management method and operation management system for ultrapure water production apparatus
JP4645827B2 (en) Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device
JP2018146513A (en) Method and system for monitoring pollution of cleaning fluid and cleaning fluid refining device
JP2006194874A (en) Contamination analytical method for chemical solution, and contamination analytical system therefor
JP2003320333A (en) Method for cleaning petroleum refinery facilities
KR101851059B1 (en) System for monitoring particle in the filtered water
JP2021023844A (en) Method and device for concentrating processed water
JP2017058161A (en) Oil inspection method and tool
EP2326435A1 (en) Acid removal in cleaning processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220927

R150 Certificate of patent or registration of utility model

Ref document number: 7153923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150