JP4645827B2 - Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device - Google Patents

Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device Download PDF

Info

Publication number
JP4645827B2
JP4645827B2 JP2005168372A JP2005168372A JP4645827B2 JP 4645827 B2 JP4645827 B2 JP 4645827B2 JP 2005168372 A JP2005168372 A JP 2005168372A JP 2005168372 A JP2005168372 A JP 2005168372A JP 4645827 B2 JP4645827 B2 JP 4645827B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
water
dissolved water
dissolved
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005168372A
Other languages
Japanese (ja)
Other versions
JP2006343192A (en
Inventor
裕人 床嶋
重行 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005168372A priority Critical patent/JP4645827B2/en
Publication of JP2006343192A publication Critical patent/JP2006343192A/en
Application granted granted Critical
Publication of JP4645827B2 publication Critical patent/JP4645827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、炭酸ガス溶解水の評価方法及び炭酸ガス溶解水試料の採水装置に関する。さらに詳しくは、本発明は、電子材料などのウェット洗浄工程で使用される炭酸ガス溶解水中の塩素イオン濃度を、正確に定量することができる炭酸ガス溶解水の評価方法及び炭酸ガス溶解水試料の採水装置に関する。   The present invention relates to a method for evaluating carbon dioxide-dissolved water and a water collection device for a sample of carbon dioxide-dissolved water. More specifically, the present invention relates to a carbon dioxide-dissolved water evaluation method and a carbon dioxide-dissolved water sample capable of accurately quantifying the chlorine ion concentration in carbon dioxide-dissolved water used in wet cleaning processes such as electronic materials. It relates to a water sampling device.

電子産業分野における超微細加工化、高性能化に伴い超純水の水質に対する要求レベルは厳しく、各種イオン、金属、有機体炭素(TOC)などの不純物を極微量まで定量することが求められている。また、最近では、超純水の水質のみならず、超純水に特定のガスを溶解して調製したガス溶解水に対しても、超純水と同等レベルの水質が要求されている。ウェット洗浄工程のリンスに使用する超純水に、特定のガスを溶解させて、様々な機能を付与した水が洗浄に有効であることが分かってきた。リンスで使用される超純水は導電性が低いために帯電しやすく、被洗浄物に静電破壊を起こさせることがしばしばある。そのために、半導体製造工場などでは、静電破壊を起こさせないために、超純水に炭酸ガスを溶解させて電気伝導率を高め、帯電を抑える方法がよくとられている。   The demand level for the quality of ultrapure water is becoming stricter as ultra-fine processing and higher performance in the electronic industry field, and it is required to quantitate impurities such as various ions, metals, and organic carbon (TOC). Yes. Recently, not only the quality of ultrapure water but also gas dissolved water prepared by dissolving a specific gas in ultrapure water is required to have a water quality equivalent to that of ultrapure water. It has been found that water having various functions by dissolving a specific gas in ultrapure water used for rinsing in the wet cleaning process is effective for cleaning. Ultrapure water used in rinsing tends to be charged due to its low electrical conductivity, and often causes electrostatic breakdown to the object to be cleaned. Therefore, in a semiconductor manufacturing factory or the like, in order not to cause electrostatic breakdown, a method is often used in which carbon dioxide gas is dissolved in ultrapure water to increase electrical conductivity and suppress charging.

炭酸ガスを溶解するための原水となる超純水が高純度の水質であっても、超純水又は炭酸ガス溶解水が、炭酸ガス溶解装置、炭酸ガス溶解水移送配管などと接してそれらの接触部材から溶出する不純物や、溶解される供給炭酸ガスに含まれる極微量の不純物が炭酸ガス溶解水に混入するおそれが皆無とは言えず、炭酸ガス溶解水について改めて水質分析が求められる。例えば、塩素イオンもできる限り除去すべきイオンの一つであり、ng/Lレベル以下の塩素イオン濃度の測定が要求される。   Even if the ultrapure water that is the raw water for dissolving the carbon dioxide gas is of high purity, the ultrapure water or the carbon dioxide dissolved water is in contact with the carbon dioxide dissolving device, the carbon dioxide dissolved water transfer pipe, etc. It cannot be said that there is no possibility that impurities eluted from the contact member and a very small amount of impurities contained in the supplied carbon dioxide dissolved in the carbon dioxide-dissolved water, and water quality analysis is required for the carbon dioxide-dissolved water. For example, chlorine ions are one of the ions that should be removed as much as possible, and measurement of the chlorine ion concentration below the ng / L level is required.

近年、超純水の水質分析技術は進歩し、極微量の塩素イオンの分析も可能であるが、ガス溶解水の水質分析に関しては十分に検討されておらず、超純水の水質分析技術を単にガス溶解水の分析に転用しても、必ずしも正確に分析できるとは言えない。水中の塩素イオンの微量分析は、通常、イオンクロマトグラフィーにより用いて行われる。イオンクロマトグラフィーにおいては、試料水をイオン交換樹脂が充填された濃縮カラムに通水してイオンを吸着後、濃縮カラムに溶離液を通液し、濃縮カラムから流出した溶離液を分離カラムに順次通液し、分離カラムから流出する液の電気伝導度を常時測定してイオン種による分配係数の差を利用してクロマトグラムを作成し、イオン種に応じた保持時間帯に検出ピークが表わされる。検出ピークの面積に基づいて、そのイオンが定量される。しかし、このようなイオン定量方法を、炭酸ガス溶解水の塩素イオンの定量に用いても、炭酸ガスが塩素イオン定量の妨害物質となり、極微量の塩素イオン濃度を精度よく測定することは困難であった。   In recent years, ultrapure water quality analysis technology has progressed and it is possible to analyze trace amounts of chlorine ions. However, water quality analysis of gas-dissolved water has not been sufficiently studied, and ultrapure water quality analysis technology has not been developed. Even if diverted to analysis of gas-dissolved water, it cannot always be said that analysis can be performed accurately. Microanalysis of chlorine ions in water is usually performed by ion chromatography. In ion chromatography, sample water is passed through a concentration column packed with an ion exchange resin to adsorb ions, and then the eluent is passed through the concentration column. Pass through and constantly measure the electrical conductivity of the liquid flowing out from the separation column, create a chromatogram using the difference in distribution coefficient depending on the ion species, and the detection peak is displayed in the retention time zone according to the ion species . The ions are quantified based on the area of the detected peak. However, even if such an ion determination method is used for the determination of chlorine ions in carbon dioxide-dissolved water, it is difficult to accurately measure the extremely small concentration of chlorine ions because carbon dioxide is an interfering substance for the determination of chlorine ions. there were.

本発明は、電子材料などのウェット洗浄工程で使用される炭酸ガス溶解水中の極微量の塩素イオン濃度を、正確に定量することができる炭酸ガス溶解水の評価方法及び炭酸ガス溶解水試料の採水装置を提供することを目的としてなされたものである。   The present invention provides a method for evaluating carbon dioxide-dissolved water that can accurately quantify the trace amount of chlorine ion concentration in carbon dioxide-dissolved water used in a wet cleaning process for electronic materials and the like, and collecting a sample of carbon dioxide-dissolved water. It was made for the purpose of providing a water device.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、塩素イオンの定量に際して、塩素イオン濃度の測定値は、試料水中の重炭酸イオン及び/又は炭酸イオン(以下、「(重)炭酸イオン」と言う。)の濃度に応じて変化し、(重)炭酸イオンの濃度が高いと塩素イオン濃度の測定値も高くなり、炭酸ガス溶解水中の炭酸ガスを脱気により除去したのちにイオンクロマトグラフィーで塩素イオンを定量することにより、極微量の塩素イオンであっても精度よく定量し得ることを見いだし、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have determined that the measured value of the chlorine ion concentration is a bicarbonate ion and / or carbonate ion (hereinafter referred to as “( It changes according to the concentration of (heavy) carbonate ion.), And if the concentration of (heavy) carbonate ion is high, the measured value of chlorine ion concentration is also high, and the carbon dioxide gas in the carbon dioxide-dissolved water is removed by deaeration. Later, by quantifying chlorine ions by ion chromatography, it was found that even a very small amount of chlorine ions could be accurately quantified, and the present invention was completed based on this finding.

すなわち、本発明は、
(1)超純水に炭酸ガスを溶解して調製した炭酸ガス溶解水を脱気処理したのち、脱気処理した炭酸ガス溶解水の炭酸ガス脱気の程度を脱気処理した炭酸ガス溶解水の電気伝導率を測定することによって判定する方法において、該炭酸ガス溶解水の電気伝導率を0.1mS/m以下になるまで、炭酸ガス溶解水の脱気処理を行ったのち、塩素イオンの定量をイオンクロマトグラフィーにより行う方法によって、炭酸ガス溶解水中の極微量の塩素イオンの定量精度を高めることを特徴とする電子材料のウェット洗浄工程で使用される炭酸ガス溶解水の評価方法、及び、
(1)記載の評価方法に用いる炭酸ガス溶解水試料の装置であって、炭酸ガス溶解水を脱気処理する脱気装置、該脱気装置において脱気処理した炭酸ガス溶解水の電気伝導率を測定する電気伝導率計若しくは電気伝導度計並びに脱気処理した炭酸ガス溶解水を充填する採水容器を有することを特徴とする炭酸ガス溶解水試料の採水装置、
を提供するものである。
That is, the present invention
(1) Carbon dioxide-dissolved water in which carbon dioxide-dissolved water prepared by dissolving carbon dioxide in ultrapure water is degassed and then degassed to the extent of carbon dioxide degassing. In the method of determining by measuring the electrical conductivity of the carbon dioxide gas, after degassing the carbon dioxide dissolved water until the electrical conductivity of the carbon dioxide dissolved water becomes 0.1 mS / m or less , An evaluation method for carbon dioxide-dissolved water used in a wet cleaning process of an electronic material characterized by enhancing the quantitative accuracy of a very small amount of chlorine ions in carbon dioxide-dissolved water by a method of performing quantification by ion chromatography, and
( 2 ) Carbon dioxide dissolved water sample apparatus used in the evaluation method according to (1), wherein the carbon dioxide dissolved water is deaerated , and the carbon dioxide dissolved water deaerated in the deaerator An electric conductivity meter for measuring electric conductivity or an electric conductivity meter , and a water sampling device for collecting a carbon dioxide-dissolved water sample, which is filled with degassed carbon dioxide-dissolved water;
Is to provide.

本発明の炭酸ガス溶解水の評価方法により、炭酸ガス溶解水中の極微量の塩素イオンをイオンクロマトグラフィーによって正確に定量することができ、半導体製造工場などで使用される洗浄水の水質を高精度で管理することができる。本発明の炭酸ガス溶解水試料の採水装置を用いることにより、分析装置が炭酸ガス溶解水を使用するラインから離れた場所にあっても、試料水に品質変動を生ずることなく、炭酸ガス溶解水中の塩素イオン濃度を正確に測定することができる。   The method for evaluating carbon dioxide-dissolved water according to the present invention enables accurate determination of a very small amount of chlorine ions in carbon dioxide-dissolved water by ion chromatography. Can be managed with. By using the water sampling device for carbon dioxide-dissolved water sample of the present invention, even if the analyzer is located away from the line where carbon dioxide-dissolved water is used, the sample water is dissolved without causing quality fluctuation in the sample water. It is possible to accurately measure the chlorine ion concentration in water.

本発明の炭酸ガス溶解水の評価方法においては、超純水に炭酸ガスを溶解して調製した炭酸ガス溶解水を脱気処理したのち、炭酸ガス溶解水中の塩素イオンを定量する。本発明方法によれば、電子部品の洗浄工程などにおいて洗浄水として使用される炭酸ガス溶解水中の塩素イオン濃度の分析精度を高め、工程管理を容易にし、不良品の発生を防ぎ、製品の品質を高めることができる。炭酸ガス溶解水の原水として用いられる超純水中の塩素イオン濃度は極めて低いが、超純水へ炭酸ガスを溶解する炭酸ガス溶解水の製造工程や、その後の炭酸ガス溶解水の移送工程などにおいて、炭酸ガス溶解水中へ塩素イオンが混入する場合があり、塩素イオン濃度の高い炭酸ガス溶解水で電子部品などを洗浄すると、不良品が発生する。本発明方法を用いて炭酸ガス溶解水を評価することにより、炭酸ガス溶解水中の塩素イオン濃度が所定の管理水準以下であることを確認し、安定した水質の炭酸ガス溶解水を用いて、電子部品などを洗浄することができる。   In the evaluation method for carbon dioxide-dissolved water of the present invention, after degassing the carbon dioxide-dissolved water prepared by dissolving carbon dioxide in ultrapure water, the chlorine ions in the carbon dioxide-dissolved water are quantified. According to the method of the present invention, the analysis accuracy of chlorine ion concentration in carbon dioxide-dissolved water used as cleaning water in electronic component cleaning processes, etc. is improved, process management is facilitated, the occurrence of defective products is prevented, and product quality is improved. Can be increased. Although the chlorine ion concentration in ultrapure water used as raw water for carbon dioxide dissolved water is extremely low, the production process of carbon dioxide dissolved water for dissolving carbon dioxide gas in ultrapure water, the subsequent transfer process of carbon dioxide dissolved water, etc. In this case, chlorine ions may be mixed into the carbon dioxide-dissolved water, and defective products are produced when electronic parts are washed with carbon dioxide-dissolved water having a high chlorine ion concentration. By evaluating the carbon dioxide-dissolved water using the method of the present invention, it is confirmed that the chlorine ion concentration in the carbon dioxide-dissolved water is not more than a predetermined control level. Parts can be cleaned.

本発明方法において、炭酸ガス溶解水の脱気手段は、水中の炭酸ガスを除去し得るものであれば特に制限はなく、例えば、真空脱気、膜脱気、窒素脱気、加熱脱気、これらの組み合わせなどを挙げることができる。脱気の程度は、真空度、脱気水量、窒素ガスなどの不活性ガス供給量、気液接触面積などを調整することにより制御することができ、また、脱気装置を多段に設けて調整することもできる。   In the method of the present invention, the degassing means for carbon dioxide-dissolved water is not particularly limited as long as it can remove carbon dioxide in water. For example, vacuum degassing, membrane degassing, nitrogen degassing, heat degassing, A combination of these can be mentioned. The degree of degassing can be controlled by adjusting the degree of vacuum, the amount of degassed water, the amount of inert gas such as nitrogen gas, the gas-liquid contact area, etc. You can also

炭酸ガス溶解水を脱気処理することにより、分析される炭酸ガス溶解水中に溶解している(重)炭酸イオンの量を減少し、微量の塩素イオンを正確に定量することが可能となる。炭酸ガスが水に溶解すると炭酸H2CO3を生じ、さらに炭酸の解離により重炭酸イオンHCO3 -と炭酸イオンCO3 2-が生成する。(重)炭酸イオンは、塩素イオンの分析において、妨害物質として作用する場合が多い。例えば、イオンクロマトグラフィーにおいては、炭酸ガスが超純水に溶解して生成した(重)炭酸イオンのピークと、塩素イオンのピークとが重なり、あるいは、近接していることに起因して、塩素イオンのピークのベースレベルが押し上げられた状態となり、真の塩素イオン濃度より高い測定値となると推測される。あるいは、試料水中の炭酸濃度又は(重)炭酸イオン濃度に応じて、カラム、充填材、配管、ポンプなどの分析装置から塩素イオンが溶出して、塩素イオン濃度の測定値を高めていることも考えられる。 By degassing the carbon dioxide-dissolved water, the amount of (heavy) carbonate ions dissolved in the carbon dioxide-dissolved water to be analyzed can be reduced, and a trace amount of chlorine ions can be accurately quantified. When carbon dioxide gas dissolves in water, carbonic acid H 2 CO 3 is generated, and further, bicarbonate ions HCO 3 and carbonate ions CO 3 2− are generated by dissociation of carbonic acid. (Heavy) carbonate ions often act as interfering substances in the analysis of chloride ions. For example, in ion chromatography, the peak of (heavy) carbonate ions generated by dissolution of carbon dioxide in ultrapure water and the peak of chloride ions overlap or are close to each other. It is estimated that the base level of the ion peak is pushed up and the measured value is higher than the true chlorine ion concentration. Alternatively, depending on the carbonic acid concentration or (heavy) carbonate ion concentration in the sample water, chloride ions may be eluted from analytical devices such as columns, packing materials, piping, pumps, etc., and the measured value of the chlorine ion concentration may be increased. Conceivable.

炭酸ガス溶解水から脱気処理によって炭酸を除去することにより、水中において炭酸の濃度が低下し、さらに炭酸と平衡状態にある(重)炭酸イオンの濃度も低下する。塩素イオンの定量に対して妨害物質として作用する(重)炭酸イオンの濃度を低下させることにより、極微量の塩素イオン濃度の測定の精度を高めることができる。   By removing carbonic acid from the carbon dioxide-dissolved water by degassing, the concentration of carbonic acid in the water is lowered, and the concentration of (bi) carbonate ions in equilibrium with carbonic acid is also lowered. By reducing the concentration of (bi) carbonate ions that act as an interfering substance for the determination of chloride ions, it is possible to increase the accuracy of measurement of extremely small amounts of chloride ions.

本発明方法において、炭酸ガス溶解水の脱気の程度は、脱気処理された炭酸ガス溶解水の電気伝導率により判定することができる。炭酸ガス溶解水は、超純水に炭酸ガスを溶解して調製したものであり、基本的には、極めて微量の不純物を除いては、溶存するイオン性物質は、炭酸ガスが溶解して生成した(重)炭酸イオンのみである。したがって、電気伝導率は、水中の(重)炭酸イオンの濃度を反映したものとなり、そして脱気の程度を反映したものとなり得る。   In the method of the present invention, the degree of degassing of the carbon dioxide-dissolved water can be determined by the electrical conductivity of the degassed carbon dioxide-dissolved water. Carbon dioxide-dissolved water is prepared by dissolving carbon dioxide in ultrapure water. Basically, except for a very small amount of impurities, dissolved ionic substances are generated by dissolving carbon dioxide. Only (heavy) carbonate ions. Thus, the electrical conductivity reflects the concentration of (bi) carbonate ions in the water and can reflect the degree of degassing.

本発明方法において、塩素イオンの定量方法に特に制限はなく、例えば、硝酸銀滴定法、イオン電極法、イオンクロマトグラフィーなどを挙げることができる。これらの中で、極微量の塩素イオンの定量に適したイオンクロマトグラフィーを好適に用いることができる。本発明方法においては、脱気により塩素イオン定量の妨害物質となる(重)炭酸イオンを低濃度まで除去しているので、極微量の塩素イオンを精度よく定量することができる。   In the method of the present invention, the method for quantifying chlorine ions is not particularly limited, and examples thereof include a silver nitrate titration method, an ion electrode method, and ion chromatography. Among these, ion chromatography suitable for quantification of a very small amount of chlorine ions can be suitably used. In the method of the present invention, since (bi) carbonate ions, which are substances that interfere with the determination of chlorine ions, are removed to a low concentration by degassing, a very small amount of chlorine ions can be accurately determined.

本発明方法において、脱気処理後の炭酸ガス溶解水の電気伝導率は、0.1mS/m以下であることが好ましく、0.068mS/m以下であることがより好ましく、0.017mS/m以下であることがさらに好ましい。脱気処理後の炭酸ガス溶解水の電気伝導率が低いほど、水中の(重)炭酸イオン濃度が低く、塩素イオン濃度の測定値は真の塩素イオン濃度に近くなる。   In the method of the present invention, the electric conductivity of the carbon dioxide-dissolved water after the deaeration treatment is preferably 0.1 mS / m or less, more preferably 0.068 mS / m or less, and 0.017 mS / m. More preferably, it is as follows. The lower the electric conductivity of the carbon dioxide-dissolved water after the deaeration treatment, the lower the (heavy) carbonate ion concentration in the water, and the measured value of the chlorine ion concentration becomes closer to the true chlorine ion concentration.

本発明方法においては、イオンクロマトグラフィーにより測定された値をそのまま塩素イオン濃度とみなすことができ、あるいは、あらかじめ塩素イオンが存在しない炭酸ガス溶解水について、種々の脱気の程度すなわち種々の電気伝導率のブランク水について塩素イオン濃度の測定値を求め、実際の炭酸ガス溶解水について脱気処理したのち定量分析し、炭酸ガス溶解水の塩素イオン濃度の測定値から、脱気の程度が同じブランク水の測定値を減じて、真の塩素イオン濃度とみなすこともできる。   In the method of the present invention, the value measured by ion chromatography can be regarded as the chlorine ion concentration as it is, or various degrees of deaeration, that is, various electric conductions, with respect to carbon dioxide-dissolved water in which no chlorine ion is present in advance. The measured value of the chlorine ion concentration is determined for the blank water of the rate, and after degassing the actual carbon dioxide-dissolved water, quantitative analysis is performed. From the measured value of the chlorine ion concentration of the carbon dioxide-dissolved water, the degree of degassing is the same You can also consider the true chloride ion concentration by subtracting the water measurement.

本発明方法において、炭酸ガス溶解水の脱気の程度は、洗浄工程において要求される炭酸ガス溶解水の水質に応じて選択することができる。イオンクロマトグラフィーにより求められる塩素イオン濃度の測定値は、(重)炭酸イオンの影響により真の塩素イオン濃度より高くなる。したがって、例えば、洗浄水の水質として塩素イオン濃度5.0ng/L以下が要求されるとき、脱気処理後の炭酸ガス溶解水の塩素イオン濃度の測定値が5.0ng/L以下になるまで脱気すれば、真の塩素イオン濃度が5.0ng/L以下であることを確認することができる。   In the method of the present invention, the degree of degassing of the carbon dioxide-dissolved water can be selected according to the quality of the carbon dioxide-dissolved water required in the washing step. The measured value of the chloride ion concentration obtained by ion chromatography is higher than the true chloride ion concentration due to the influence of (bi) carbonate ions. Therefore, for example, when a chlorine ion concentration of 5.0 ng / L or less is required as the quality of the cleaning water, until the measured value of the chlorine ion concentration of the carbon dioxide-dissolved water after the deaeration treatment is 5.0 ng / L or less. By degassing, it can be confirmed that the true chlorine ion concentration is 5.0 ng / L or less.

電子部品などの製造工場において、炭酸ガス溶解水は、膜式溶解装置、散気式溶解装置、吸引式溶解装置などの溶解装置を用いて、超純水に炭酸ガスを溶解させることによって調製される。溶解装置から排出される炭酸ガス溶解水は、炭酸ガス溶解水供給配管を介して洗浄装置に供給され、洗浄水やリンス水として用いられる。   Carbon dioxide-dissolved water is prepared by dissolving carbon dioxide gas in ultrapure water using a dissolution apparatus such as a membrane-type dissolution apparatus, an aeration-type dissolution apparatus, or a suction-type dissolution apparatus in a manufacturing factory for electronic components. The Carbon dioxide-dissolved water discharged from the dissolution apparatus is supplied to the cleaning apparatus via a carbon dioxide-dissolved water supply pipe, and is used as cleaning water or rinse water.

本発明方法により評価する炭酸ガス溶解水は、溶解装置の出口部、炭酸ガス溶解水供給配管、洗浄機など任意の位置で採取することができる。炭酸ガス溶解水供給配管にサンプリング口が設けられている場合には、そのサンプリング口に採取管を取り付けて採取することが簡便である。試料水の採取は、常時でも、定期的でもよく、また、炭酸ガス溶解装置の新設時、定期点検時など炭酸ガス溶解水の水質評価が必要な任意の時期でもよい。採取した試料水は、脱気処理したのち、直ちに定量分析装置、例えば、イオンクロマトグラフに供給して定量することもできるが、通常は、イオンクロマトグラフは離れた場所に設置されている場合が多いために、脱気処理された炭酸ガス溶解水をいったん採水容器に受けることが好ましい。   Carbon dioxide-dissolved water to be evaluated by the method of the present invention can be collected at any position such as the outlet of the dissolution apparatus, the carbon dioxide-dissolved water supply pipe, and the washing machine. In the case where a sampling port is provided in the carbon dioxide dissolved water supply pipe, it is easy to perform sampling by attaching a sampling tube to the sampling port. The sample water may be collected at any time or periodically, or at any time when water quality evaluation of carbon dioxide dissolved water is required, such as when a carbon dioxide dissolving device is newly installed or during periodic inspection. The collected sample water can be degassed and immediately supplied to a quantitative analyzer such as an ion chromatograph for quantification. However, the ion chromatograph is usually installed at a remote location. For this reason, it is preferable to receive the degassed carbon dioxide-dissolved water once in the water collection container.

本発明の炭酸ガス溶解水試料の採水装置は、炭酸ガス溶解水を脱気処理する脱気装置、脱気処理した炭酸ガス溶解水の電気伝導率を測定する電気伝導率計又は電気伝導度計及び脱気処理した炭酸ガス溶解水を充填する採水容器を有する。   The water sampling device for carbon dioxide-dissolved water sample of the present invention is a deaerator for degassing carbon dioxide-dissolved water, an electrical conductivity meter or electrical conductivity for measuring the electrical conductivity of degassed carbon dioxide-dissolved water It has a water sampling container filled with a meter and degassed carbon dioxide-dissolved water.

図1は、本発明方法の実施の一態様及び炭酸ガス溶解水試料の採水装置の一態様の説明図である。本態様は、オフラインにおける評価方法である。炭酸ガス溶解水が、配管1を経由して脱気装置2に送られる。脱気装置は、例えば、ポリプロピレンなどの高分子膜を介して気相側を減圧にするか、あるいは、窒素ガスなどの不活性ガスを通気しながら減圧にして、液相から気相に炭酸ガスを移動させる機構や、炭酸ガス溶解水を噴霧などで液滴化し、気液接触面積を増やして、窒素ガスなどの不活性ガスと接触させることにより、炭酸ガスを気相に移動させる機構などとすることができる。脱気装置で脱気処理された水は、電気伝導率計3により電気伝導率が測定される。電気伝導率を測定したのち、環境中の塩素イオンを除去して空気を純化する機構を有する採水箱4に送られ、採水箱の中の採水容器5に注入される。   FIG. 1 is an explanatory diagram of one embodiment of the method of the present invention and one embodiment of a water sampling device for a carbon dioxide-dissolved water sample. This aspect is an off-line evaluation method. Carbon dioxide-dissolved water is sent to the deaeration device 2 via the pipe 1. For example, the degassing apparatus is configured to reduce the pressure on the gas phase side through a polymer film such as polypropylene, or reduce the pressure while passing an inert gas such as nitrogen gas, and convert carbon dioxide from the liquid phase to the gas phase. A mechanism to move carbon dioxide gas into the gas phase by making carbon dioxide dissolved water into droplets by spraying, increasing the gas-liquid contact area, and bringing it into contact with an inert gas such as nitrogen gas, etc. can do. The electrical conductivity of the water deaerated by the deaerator is measured by the electrical conductivity meter 3. After measuring the electrical conductivity, it is sent to a water sampling box 4 having a mechanism for purifying air by removing chlorine ions in the environment, and injected into a water sampling container 5 in the water sampling box.

採水され、密栓された採水容器5は、炭酸ガス溶解水の採取場所から、分析装置の設置場所まで運搬される。必要に応じて、水中の溶存ガスをさらに気相に移動させるために、減圧装置6に移動され、採水容器が減圧装置の中で開栓され、水中の溶存ガスが減圧下に脱気される。また、配管7を経由して、採水容器の中に不活性ガスを供給することにより、さらに脱気を促すことができる。脱気処理された炭酸ガス溶解水の電気伝導率は、電気伝導率計8で測定することができる。脱気装置2で十分に脱気が行われた場合には、減圧装置6及び配管7を経由した不活性ガスの供給による脱気処理は省略することができる。これらで脱気処理された炭酸ガス溶解水を、ポンプ9により分析装置10に送って定量分析を行う。本態様によれば、炭酸ガス溶解水製造装置のある場所で脱気処理し、脱気処理された炭酸ガス溶解水の電気伝導率を測定して、所望の電気伝導率の炭酸ガス溶解水試料を採取することができる。   The collected and sealed water sampling container 5 is transported from the location where the carbon dioxide dissolved water is collected to the location where the analyzer is installed. If necessary, in order to move the dissolved gas in the water further to the gas phase, it is moved to the decompression device 6, the water sampling container is opened in the decompression device, and the dissolved gas in the water is degassed under reduced pressure. The Further, deaeration can be further promoted by supplying an inert gas into the water sampling container via the pipe 7. The electrical conductivity of the degassed carbon dioxide-dissolved water can be measured with an electrical conductivity meter 8. When the deaeration is sufficiently performed by the deaeration device 2, the deaeration process by supplying the inert gas via the decompression device 6 and the pipe 7 can be omitted. The carbon dioxide-dissolved water that has been degassed with these is sent to the analyzer 10 by the pump 9 for quantitative analysis. According to this aspect, the carbon dioxide-dissolved water sample having a desired electrical conductivity is measured by deaeration treatment at a place where the carbon dioxide-dissolved water production apparatus is present, Can be collected.

図2は、本発明方法の実施の他の態様の説明図である。本態様は、オンラインにおける評価方法である。炭酸ガス溶解水が、配管11を経由して脱気装置12に送られる。脱気装置で脱気処理された水は、電気伝導率計13で電気伝導率が測定されたのち、減圧装置14内の採水容器15に送られる。脱気処理させれ水は、採水容器15に溢れさせながら供給される。必要に応じて、減圧装置14で採水容器15の周囲を減圧にし、配管16を経由して容器15に不活性ガスを供給し、さらに脱気処理を行うことができる。脱気処理された炭酸ガス溶解水の電気伝導率は、電気伝導率計17で測定することができる。脱気装置12で十分に脱気が行われた場合には、減圧装置14及び配管16を経由した不活性ガスの供給による脱気処理は省略することができる。これらで脱気処理された炭酸ガス溶解水を、ポンプ18により分析装置19に送って定量分析を行う。   FIG. 2 is an explanatory diagram of another embodiment of the method of the present invention. This aspect is an on-line evaluation method. Carbon dioxide-dissolved water is sent to the deaeration device 12 via the pipe 11. The water deaerated by the deaerator is measured for electrical conductivity by the electrical conductivity meter 13 and then sent to the water collection container 15 in the decompressor 14. The deaerated water is supplied while overflowing the water collection container 15. If necessary, the decompression device 14 can depressurize the periphery of the water sampling container 15, supply an inert gas to the container 15 via the pipe 16, and perform a deaeration process. The electrical conductivity of the degassed carbon dioxide-dissolved water can be measured with an electrical conductivity meter 17. When the deaeration is sufficiently performed by the deaeration device 12, the deaeration process by supplying the inert gas via the decompression device 14 and the pipe 16 can be omitted. The carbon dioxide-dissolved water degassed with these is sent to the analyzer 19 by the pump 18 for quantitative analysis.

図3は、本発明に用いる脱気処理された炭酸ガス溶解水試料の採水箱の一態様の説明図である。本態様の採水箱は、採水室20、送気装置21、気液接触装置22、水の循環路23、気体の循環路24を有する。採水室20は、前面に扉25を有し、この扉を開いて室内に採水容器26を出入することができる。採水室は多孔の床板27を有し、床板の上に採水容器を載置し、床板の下は貯水部28になっている。採水室の上壁は、炭酸ガス溶解水の流路に接続したチューブ29を挿通する開口を有し、開口に挿通したチューブの先端を採水容器の底の近傍まで挿入する。   FIG. 3 is an explanatory view of an embodiment of a water collection box of a degassed carbon dioxide-dissolved water sample used in the present invention. The water sampling box of this aspect includes a water sampling chamber 20, an air supply device 21, a gas-liquid contact device 22, a water circulation path 23, and a gas circulation path 24. The water sampling chamber 20 has a door 25 on the front surface, and the water sampling container 26 can be taken in and out by opening the door. The water sampling chamber has a porous floor plate 27, a water sampling container is placed on the floor plate, and a water storage section 28 is provided under the floor plate. The upper wall of the water sampling chamber has an opening through which the tube 29 connected to the flow path of the carbon dioxide dissolved water is inserted, and the tip of the tube inserted through the opening is inserted to the vicinity of the bottom of the water sampling container.

採水室の開放した背面には、水滴除去用のデミスター30、気液接触装置22、ガスフィルター31、送風ファン32が連接している。送風ファンを運転すると、気体はガスフィルター、気液接触装置、デミスターを吹き抜けて採水室へ入り、多孔の床板27から気体の循環路24を経由して送風室33に循環する。貯水部28には溢水管34を設け、水位を制御して、気体の循環路を確保する。   A demister 30 for removing water droplets, a gas-liquid contact device 22, a gas filter 31, and a blower fan 32 are connected to the open rear surface of the water sampling chamber. When the blower fan is operated, the gas blows through the gas filter, the gas-liquid contact device, and the demister, enters the water sampling chamber, and circulates from the porous floor plate 27 to the blower chamber 33 via the gas circulation path 24. The water storage section 28 is provided with an overflow pipe 34 to control the water level and secure a gas circulation path.

脱気処理された炭酸ガス溶解水試料を採取するには、採水室の内部に挿入したチューブの先端を採水容器の底部に位置させたのち扉を閉じ、採水容器内に試料水を供給する。試料水の供給は、試料水が採水容器の口部から溢れ出ても続け、これにより採水容器を試料水で洗浄する。溢れ出た試料水は、貯水部に溜まる。貯水部に溜まった水は、循環ポンプ35の運転により気液接触装置の上部の散水管36に供給され、気液接触装置の内部を下向流して気体と接触し、気体に含まれる不純物が除去され、採水室の気相からの不純物の混入を防止することができる。採水箱の内部は若干陽圧にし、採水箱への外気の侵入を防止することが好ましい。   To collect the degassed carbon dioxide-dissolved water sample, place the tip of the tube inserted in the water sampling chamber at the bottom of the water sampling container, close the door, and put the sample water into the water sampling container. Supply. The supply of the sample water is continued even if the sample water overflows from the mouth of the water sampling container, thereby washing the water sampling container with the sample water. The overflowing sample water is collected in the water storage section. The water accumulated in the water reservoir is supplied to the sprinkling pipe 36 at the upper part of the gas-liquid contact device by the operation of the circulation pump 35, and flows downward through the gas-liquid contact device to come into contact with the gas. It is removed, and contamination of impurities from the gas phase of the water sampling chamber can be prevented. It is preferable that the inside of the water sampling box be slightly positive pressure to prevent intrusion of outside air into the water sampling box.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
膜式溶解装置を備えた機能性洗浄水製造装置[栗田工業(株)、KHOW SYSTEM]を用いて炭酸ガス溶解水を調製し、炭酸ガス溶解水中の塩素イオンを定量した。
炭酸ガス溶解水の調製に用いた超純水の塩素イオン濃度は1ng/L未満であり、炭酸ガスの溶解濃度は30mg/Lとした。図4に示す脱気装置37、導電率計[(株)堀場製作所、D−54T]38及び炭酸ガス溶解水試料の採水装置39を備えた試験装置に炭酸ガス溶解水を5L/minで給水した。脱気装置は、耐圧容器の内部に気体透過膜材からなる細管で構成された炭酸ガス溶解水の通路を収容した装置であり、耐圧容器の内部の空間を減圧にして脱気処理した。採水装置は、図3に示す構造の装置である。
脱気装置の内部の圧力を一定にして60分間通水し、最後に導電率計により脱気処理された炭酸ガス溶解水の電気伝導率を測定し、採水装置から採水容器を取り出し、イオンクロマトグラフ[日本ダイオネクス(株)、DX−500]を用いて試料水のクロマトグロムを求め、あらかじめ作成した検量線より塩素イオン濃度の測定値を算出した。
試料水の電気伝導率0.0675mS/mのとき、塩素イオン濃度の測定値10.0ng/Lであり、試料水の電気伝導率0.0242mS/mのとき、塩素イオン濃度の測定値5.0ng/Lであり、試料水の電気伝導率0.0166mS/mのとき、塩素イオン濃度の測定値2.8ng/Lであり、試料水の電気伝導率0.0056mS/mのとき、塩素イオン濃度の測定値1.0ng/L未満であった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Carbon dioxide-dissolved water was prepared using a functional washing water production apparatus [Kurita Kogyo Co., Ltd., KHOW SYSTEM] equipped with a membrane dissolution apparatus, and chlorine ions in the carbon dioxide-dissolved water were quantified.
The chlorine ion concentration of ultrapure water used for the preparation of carbon dioxide-dissolved water was less than 1 ng / L, and the concentration of carbon dioxide dissolved was 30 mg / L. The test apparatus provided with the deaeration device 37, conductivity meter [Horiba, Ltd., D-54T] 38 and the water sampling device 39 for the carbon dioxide dissolved water sample shown in FIG. Water was supplied. The deaeration device is a device in which a passage of carbon dioxide dissolved water composed of a thin tube made of a gas permeable membrane material is accommodated in the pressure vessel, and the space inside the pressure vessel is depressurized for deaeration treatment. A water sampling apparatus is an apparatus of the structure shown in FIG.
Water was passed for 60 minutes with the internal pressure of the degassing device kept constant, and finally the electrical conductivity of the carbon dioxide dissolved water degassed by the conductivity meter was measured, and the water sampling container was taken out of the water sampling device. The chromatogram of the sample water was obtained using an ion chromatograph [Nippon Daionex Co., Ltd., DX-500], and the measured value of the chlorine ion concentration was calculated from a calibration curve prepared in advance.
When the electric conductivity of the sample water is 0.0675 mS / m, the measured value of the chlorine ion concentration is 10.0 ng / L. When the electric conductivity of the sample water is 0.0242 mS / m, the measured value of the chlorine ion concentration is 5. When the electrical conductivity of the sample water is 0.0166 mS / m, the measured value of the chlorine ion concentration is 2.8 ng / L, and when the electrical conductivity of the sample water is 0.0022 mS / m, the chlorine ion The measured concentration was less than 1.0 ng / L.

比較例1
脱気処理の程度を弱め、試料水の電気伝導率を十分に低下させなかった以外は、実施例1と同じ操作を行った。
試料水の電気伝導率0.144mS/mのとき、塩素イオン濃度の測定値18.2ng/Lであり、試料水の電気伝導率0.113mS/mのとき、塩素イオン濃度の測定値15.0ng/Lであった。
比較例1及び実施例1の結果を、第1表に示す。
Comparative Example 1
The same operation as in Example 1 was performed except that the degree of deaeration treatment was weakened and the electrical conductivity of the sample water was not sufficiently lowered.
When the electrical conductivity of the sample water is 0.144 mS / m, the measured value of the chlorine ion concentration is 18.2 ng / L. When the electrical conductivity of the sample water is 0.113 mS / m, the measured value of the chlorine ion concentration is 15. It was 0 ng / L.
The results of Comparative Example 1 and Example 1 are shown in Table 1.

Figure 0004645827
Figure 0004645827

第1表に見られるように、脱気の程度を高め、電気伝導率の低い試料水とするほど、塩素イオン濃度の測定値が小さくなる。試料水の電気伝導率が0.0675mS/m以下になると、定量範囲の下限値とされている塩素イオン濃度10ng/L以下の定量も可能となる。試料水の電気伝導率により表される炭酸ガスの脱気の程度は、工程において要求される塩素イオン濃度に応じて適宜選択することができる。   As can be seen from Table 1, the measured value of the chlorine ion concentration decreases as the degree of deaeration increases and the sample water has a lower electrical conductivity. When the electric conductivity of the sample water is 0.0675 mS / m or less, it is possible to perform quantification with a chlorine ion concentration of 10 ng / L or less, which is the lower limit of the quantification range. The degree of degassing of the carbon dioxide gas represented by the electrical conductivity of the sample water can be appropriately selected according to the chlorine ion concentration required in the process.

実施例2
実施例1で調製した炭酸ガス溶解水に、高純度食塩水(NaCl)を添加して塩素イオン濃度10ng/Lとした試験水を用いて、実施例1と同じ操作を行った。
試料水の電気伝導率0.010mS/mのとき、塩素イオン濃度の測定値11.8ng/Lであり、試料水の電気伝導率0.0056mS/mのとき、塩素イオン濃度の測定値10.3ng/Lであった。
実施例2の結果を、第2表に示す。
Example 2
The same operation as in Example 1 was performed using test water in which high purity saline (NaCl) was added to the carbon dioxide-dissolved water prepared in Example 1 to obtain a chlorine ion concentration of 10 ng / L.
When the electric conductivity of the sample water is 0.010 mS / m, the measured value of the chlorine ion concentration is 11.8 ng / L. When the electric conductivity of the sample water is 0.0022 mS / m, the measured value of the chlorine ion concentration is 10. It was 3 ng / L.
The results of Example 2 are shown in Table 2.

Figure 0004645827
Figure 0004645827

第2表に見られるように、塩素イオン濃度10ng/Lの炭酸ガス溶解水も、炭酸ガスを脱気により除去してイオンクロマトグラフィーにより分析すると、分析精度が向上し、試料水の電気伝導率を0.0056mS/mまで低下させると、塩素イオン濃度の測定値は、真の塩素イオン濃度にほぼ一致する。   As can be seen in Table 2, the carbon dioxide dissolved water with a chlorine ion concentration of 10 ng / L can also be analyzed by ion chromatography after removing the carbon dioxide by degassing to improve the analysis accuracy and the electrical conductivity of the sample water. Is reduced to 0.0024 mS / m, the measured value of the chlorine ion concentration almost coincides with the true chlorine ion concentration.

本発明の炭酸ガス溶解水の評価方法によれば、電子部品などの製造工程において、洗浄水として用いられる炭酸ガス溶解水中の塩素イオン濃度の分析精度を高め、従来は定量範囲の下限とされていた10ng/L以下の塩素イオンの定量を可能とし、工程管理を容易にし、不良品の発生を防ぎ、製品の品質を向上することができる。本発明の炭酸ガス溶解水試料の採水装置を用いることにより、脱気処理した炭酸ガス溶解水試料を採水して、水質の変動を招くことなく、洗浄工程から離れた場所に位置する分析装置まで運んで正確に分析することができる。   According to the method for evaluating carbon dioxide-dissolved water of the present invention, in the manufacturing process of electronic parts and the like, the analysis accuracy of the chlorine ion concentration in the carbon dioxide-dissolved water used as cleaning water is increased, and conventionally it is the lower limit of the quantitative range. In addition, chlorine ions of 10 ng / L or less can be quantified, process management can be facilitated, occurrence of defective products can be prevented, and product quality can be improved. By using the water sampling device for carbon dioxide-dissolved water sample of the present invention, the degassed carbon dioxide-dissolved water sample is sampled and analyzed at a location away from the washing step without causing water quality fluctuations. It can be carried to the device and analyzed accurately.

本発明方法の実施の一態様及び採水装置の一態様の説明図である。It is explanatory drawing of 1 aspect of implementation of the method of this invention, and 1 aspect of a water sampling apparatus. 本発明方法の実施の他の態様の説明図である。It is explanatory drawing of the other aspect of implementation of the method of this invention. 本発明に用いる採水箱の一態様の説明図である。It is explanatory drawing of the one aspect | mode of the water sampling box used for this invention. 実施例で用いた装置の説明図である。It is explanatory drawing of the apparatus used in the Example.

符号の説明Explanation of symbols

1 配管
2 脱気装置
3 電気伝導率計
4 採水箱
5 採水容器
6 減圧装置
7 配管
8 電気伝導率計
9 ポンプ
10 分析装置
11 配管
12 脱気装置
13 電気伝導率計
14 減圧装置
15 採水容器
16 配管
17 電気伝導率計
18 ポンプ
19 分析装置
20 採水室
21 送気装置
22 気液接触装置
23 水の循環路
24 気体の循環路
25 扉
26 採水容器
27 多孔の床板
28 貯水部
29 チューブ
30 デミスター
31 ガスフィルター
32 送風ファン
33 送風室
34 溢水管
35 循環ポンプ
36 散水管
37 脱気装置
38 導電率計
39 採水装置
DESCRIPTION OF SYMBOLS 1 Piping 2 Deaeration device 3 Electrical conductivity meter 4 Sampling box 5 Sampling container 6 Depressurization device 7 Piping 8 Electrical conductivity meter 9 Pump 10 Analyzer 11 Piping 12 Deaeration device 13 Electrical conductivity meter 14 Decompression device 15 Sampling water Container 16 Piping 17 Electrical conductivity meter 18 Pump 19 Analyzing device 20 Sampling chamber 21 Air feeding device 22 Gas-liquid contact device 23 Water circulation path 24 Gas circulation path 25 Door 26 Sampling container 27 Porous floor plate 28 Water reservoir 29 Tube 30 Demister 31 Gas filter 32 Blower fan 33 Blower chamber 34 Overflow pipe 35 Circulation pump 36 Sprinkling pipe 37 Deaerator 38 Conductivity meter 39 Water sampling apparatus

Claims (2)

超純水に炭酸ガスを溶解して調製した炭酸ガス溶解水を脱気処理したのち、脱気処理した炭酸ガス溶解水の炭酸ガス脱気の程度を脱気処理した炭酸ガス溶解水の電気伝導率を測定することによって判定する方法において、該炭酸ガス溶解水の電気伝導率を0.1mS/m以下になるまで、炭酸ガス溶解水の脱気処理を行ったのち、塩素イオンの定量をイオンクロマトグラフィーにより行う方法によって、炭酸ガス溶解水中の極微量の塩素イオンの定量精度を高めることを特徴とする電子材料のウェット洗浄工程で使用される炭酸ガス溶解水の評価方法。 Carbon dioxide-dissolved water prepared by dissolving carbon dioxide in ultrapure water, and then deaerated, and then carbon dioxide-dissolved water that has been degassed. In the method of determining by measuring the rate, after degassing the carbon dioxide-dissolved water until the electric conductivity of the carbon dioxide-dissolved water becomes 0.1 mS / m or less , the quantification of chlorine ions An evaluation method for carbon dioxide-dissolved water used in a wet cleaning process of an electronic material, wherein the quantitative accuracy of trace amounts of chlorine ions in carbon dioxide-dissolved water is increased by a method performed by chromatography. 請求項1記載の評価方法に用いる炭酸ガス溶解水試料の装置であって、炭酸ガス溶解水を脱気処理する脱気装置、該脱気装置において脱気処理した炭酸ガス溶解水の電気伝導率を測定する電気伝導率計若しくは電気伝導度計並びに脱気処理した炭酸ガス溶解水を充填する採水容器を有することを特徴とする炭酸ガス溶解水試料の採水装置。
A carbon dioxide-dissolved water sample apparatus used in the evaluation method according to claim 1, wherein the carbon dioxide-dissolved water is degassed, and the electric conductivity of the carbon dioxide-dissolved water degassed in the degasser. water sampling device of carbon dioxide gas dissolved water sample and having a water sampling container to be filled electrical conductivity meter or electrical conductivity meter and deaerated carbon dioxide gas dissolved water is measured.
JP2005168372A 2005-06-08 2005-06-08 Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device Expired - Fee Related JP4645827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168372A JP4645827B2 (en) 2005-06-08 2005-06-08 Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168372A JP4645827B2 (en) 2005-06-08 2005-06-08 Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device

Publications (2)

Publication Number Publication Date
JP2006343192A JP2006343192A (en) 2006-12-21
JP4645827B2 true JP4645827B2 (en) 2011-03-09

Family

ID=37640263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168372A Expired - Fee Related JP4645827B2 (en) 2005-06-08 2005-06-08 Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device

Country Status (1)

Country Link
JP (1) JP4645827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6561734B2 (en) * 2015-09-30 2019-08-21 栗田工業株式会社 Method for analyzing the silica concentration of carbonated water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512412A (en) * 1978-07-12 1980-01-29 Toshiba Corp Salt detector
JPS60185254U (en) * 1984-05-18 1985-12-09 日機装株式会社 Salt detection device
JPH0611406A (en) * 1992-06-25 1994-01-21 Nikkiso Co Ltd Sea water leak sensing device
WO2000057165A1 (en) * 1999-03-24 2000-09-28 Ebara Corporation Method and apparatus for detecting negative ion in water
JP2000356630A (en) * 1999-06-14 2000-12-26 Mitsubishi Electric Engineering Co Ltd Measuring method for fluoride ion
JP2004191313A (en) * 2002-12-13 2004-07-08 Japan Organo Co Ltd Liquid chromatography system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512412A (en) * 1978-07-12 1980-01-29 Toshiba Corp Salt detector
JPS60185254U (en) * 1984-05-18 1985-12-09 日機装株式会社 Salt detection device
JPH0611406A (en) * 1992-06-25 1994-01-21 Nikkiso Co Ltd Sea water leak sensing device
WO2000057165A1 (en) * 1999-03-24 2000-09-28 Ebara Corporation Method and apparatus for detecting negative ion in water
JP2000356630A (en) * 1999-06-14 2000-12-26 Mitsubishi Electric Engineering Co Ltd Measuring method for fluoride ion
JP2004191313A (en) * 2002-12-13 2004-07-08 Japan Organo Co Ltd Liquid chromatography system

Also Published As

Publication number Publication date
JP2006343192A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
WO2013099724A1 (en) Mist-containing gas analysis device
CN112789502A (en) Water quality management method, ion adsorption device, information processing device, and information processing system
JP2015034716A (en) Hydride generation analysis method and apparatus
KR20010078280A (en) Trace-level gas analysis apparatus and method
JP4645827B2 (en) Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device
JP4735959B2 (en) Concentrated ion chromatograph measuring method and concentrated ion chromatograph measuring apparatus
WO2009108440A1 (en) Voltammetric device having sample degassing system
KR19990008214A (en) Electrolysis, dropping mercury electrode electrolyzer
JP2018025454A (en) Hydrogen peroxide analyzer and hydrogen peroxide analysis method
US7387720B2 (en) Electrolytic method and apparatus for trace metal analysis
JP4144582B2 (en) Mixing apparatus and fluorine concentration measuring system and method using the same
JP2001153854A (en) Monitoring method and system for impurity concentration
JP2005274386A (en) Hydrogen peroxide analyzer, and hydrogen peroxide analytical method
US7081182B2 (en) Method and apparatus for automatically measuring the concentration of TOC in a fluid used in a semiconductor manufacturing process
JP5645601B2 (en) Water quality evaluation method
JP2003130846A (en) Minute amount metal continuous measuring device and method for semiconductor chemical
JP2014163847A (en) Surface deposit measurement instrument
JPH02243784A (en) Liquid controller
WO2023053876A1 (en) Method and device for analyzing ionic components in ultrapure water
JP2000187026A (en) Method for measuring impurity in air
JP2018146513A (en) Method and system for monitoring pollution of cleaning fluid and cleaning fluid refining device
JP2000329721A (en) Means for detecting harmful substance
JP2008197103A (en) Apparatus and method for detecting metal concentration
JP2006194874A (en) Contamination analytical method for chemical solution, and contamination analytical system therefor
JPH07269303A (en) Condenser sea water leakage continuously monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4645827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees