JPH08114542A - Press oil analyzing method - Google Patents

Press oil analyzing method

Info

Publication number
JPH08114542A
JPH08114542A JP24943594A JP24943594A JPH08114542A JP H08114542 A JPH08114542 A JP H08114542A JP 24943594 A JP24943594 A JP 24943594A JP 24943594 A JP24943594 A JP 24943594A JP H08114542 A JPH08114542 A JP H08114542A
Authority
JP
Japan
Prior art keywords
press oil
absorbance
solvent
wavelength
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24943594A
Other languages
Japanese (ja)
Inventor
Satoshi Chinda
聡 珍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24943594A priority Critical patent/JPH08114542A/en
Publication of JPH08114542A publication Critical patent/JPH08114542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To accurately determine the content of the press oil in the solvent in a short time by using the light beam at a wavelength within the specified range so as to measure the absorbance of the press oil washing hydro carbon group solvent, and using the analytical curve, which is previously formed on the basis of the maximum value of the absorbance. CONSTITUTION: Absorbance of the press oil washing hydro carbon group solvent is measured by using the light beam at a wavelength in a range at 300-270nm, and the content of the press oil in the washing solvent is analyzed by using the analytical curve, which is previously formed on the basis of the maximum value of the absorbance. The light beam at a wavelength in the range at 300-270nm exists in the ultraviolet rays area, and an absorbance meter is used for analysis thereof. Absorbance is measured, changing the incident wave length, in the range at 300-270nm, and when the peak position is detected, a little displacement of the wavelength absorbed by the sample can be corrected. Absorbance of the wavelength at 300-270nm of plural solvent, in which a known quantity of the press oil is added, is measured, and the analytical curve is formed by plotting the maximum absorbance and the addition quantity of the press oil, and this analytical curve is used for determining the press oil in the washing solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プレス成形などにより
製造した製品上のプレス油を洗浄除去するための炭化水
素系洗浄剤に関し、特に洗浄剤中に混入するプレス油の
量を測定する分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrocarbon type cleaning agent for washing and removing the pressing oil on a product manufactured by press molding or the like, and particularly to an analysis for measuring the amount of the pressing oil mixed in the cleaning agent. Regarding the method.

【0002】[0002]

【従来の技術】金属部品の製造工程では、製品にプレス
油が付着することは多くあり、特にプレス成形の工程で
は一般的にプレスに際しプレス油が使用されるため、金
型のみならず製品にもプレス油が付着する。
2. Description of the Related Art In the manufacturing process of metal parts, press oil often adheres to the product. Especially in the press molding process, press oil is generally used for pressing, so that not only the mold but also the product. Also press oil adheres.

【0003】製品にプレス油が付着した場合には、製品
を洗浄してプレス油を除去する。
When the press oil adheres to the product, the product is washed to remove the press oil.

【0004】プレス油を除去するのに使用する洗浄剤に
は、従来は、不燃性、油脂溶解性、乾燥性及び良好な隙
間洗浄性、蒸気洗浄可能性などの理由から、CFC11
3や塩素系有機溶剤のトリクロロエタンやトリクロロエ
チレンなどが多く使われてきた。しかし、CFC(Chlo
ro Fluoro Carbon)にはオゾン層破壊作用が指摘され、
その使用が大幅に制限され、CFC113については1
995年12月をもって全廃の方針が打ち出された。ま
た、塩素系有機溶剤の一部にもオゾン層破壊作用がある
上、発癌性の疑いも指摘されているため、これらについ
ても使用制限及び全廃の動きが高まっている。従って従
来のCFCや塩素系有機溶剤に代わる新たな洗浄剤の選
定が必要不可欠となった。
The cleaning agent used to remove the press oil has hitherto been known as CFC11 for reasons such as nonflammability, oil solubility, drying property and good crevice cleaning property, and steam cleaning capability.
3 and chlorine-based organic solvents such as trichloroethane and trichlorethylene have been widely used. However, CFC (Chlo
ro Fluoro Carbon) has been pointed out to have an ozone depleting effect,
Its use is severely restricted, 1 for CFC113
The policy of total abolition was announced in December 995. In addition, some chlorine-based organic solvents have an ozone depleting effect and are also suspected to be carcinogenic. Therefore, there is an increasing tendency to restrict their use and abolish them. Therefore, it has become essential to select a new cleaning agent that replaces the conventional CFC and chlorine-based organic solvent.

【0005】代替洗浄剤の種類は多く、製品形態や要求
される洗浄状態によって、最適洗浄剤は異なるが、集積
回路(IC)やトランジスタ用リードフレームの洗浄に
は炭化水素系溶剤を用いるケースが多くなっている。炭
化水素系溶剤は可燃性であるため浸漬洗浄を行うのが原
則である。そのために洗浄によって洗い落とされたプレ
ス油は、炭化水素系溶剤中に溶け込んでいく。従って溶
剤はプレス油で徐々に汚染されるため、持ち込み量が多
くなると洗浄が不完全になったり、プレス油の再付着が
起きる可能性がある。そこで、洗浄溶剤中へのプレス油
の持ち込み量を測定してプレス油の量を管理し、洗浄溶
剤の品質を管理する必要がある。また、炭化水素系溶剤
を再生するには、溶剤とプレス油の沸点の差を利用し
て、蒸留法などにより溶剤を再生する方法が一般的に行
われているが、再生溶剤中のプレス油量のレベルを把握
する意味からも、炭化水素系溶剤中に含まれるプレス油
の量を分析する分析方法を確立することは是非必要であ
る。
There are many kinds of alternative cleaning agents, and the optimum cleaning agent varies depending on the product form and the required cleaning condition. However, a hydrocarbon solvent is used for cleaning integrated circuits (ICs) and lead frames for transistors. Is increasing. Since hydrocarbon solvents are flammable, it is a rule to carry out immersion cleaning. Therefore, the press oil washed off by the washing dissolves in the hydrocarbon solvent. Therefore, since the solvent is gradually contaminated with the press oil, if the amount brought in is large, the cleaning may be incomplete or the press oil may be redeposited. Therefore, it is necessary to control the amount of press oil by measuring the amount of press oil brought into the cleaning solvent and to control the quality of the cleaning solvent. Further, in order to regenerate the hydrocarbon solvent, a method of regenerating the solvent by a distillation method or the like is generally used by utilizing the difference in boiling point between the solvent and the press oil. From the viewpoint of grasping the amount level, it is necessary to establish an analytical method for analyzing the amount of press oil contained in the hydrocarbon solvent.

【0006】炭化水素系溶剤中に含まれるプレス油の量
を分析する分析方法として、赤外分光分析法、ガスクロ
マトグラフィー法、液体マトグラフィー法などが考えら
れる。
As an analytical method for analyzing the amount of the press oil contained in the hydrocarbon solvent, an infrared spectroscopic analysis method, a gas chromatography method, a liquid chromatography method and the like can be considered.

【0007】そこで、予め一定量のプレス油を含有させ
た炭化水素系溶剤を準備し、前記の方法で分析する可能
性を検討した。その結果、赤外分光分析法ではプレス油
を含有させたことによる特異な吸収ピークは認められ
ず、分析不可能であることが判明した。また、ガスクロ
マトグラフィー法及び液体マトグラフィー法による分析
方法を試みた結果、検出器及び記録計の感度を高めるこ
とにより、分析は一応可能であったが、ノイズが大き
く、分解能が悪い上、一回の分析に要する時間が長いた
め、定量するまでにかなり長い時間を要することが確認
された。例えば、ガスクロマトグラフィー法による定量
では、3〜4時間必要である。
Therefore, the possibility of analyzing by the above method was examined by preparing a hydrocarbon solvent containing a certain amount of press oil in advance. As a result, it was found that the infrared spectroscopic method could not be analyzed because no specific absorption peak due to the inclusion of the press oil was observed. In addition, as a result of trying the analysis method by the gas chromatography method and the liquid matography method, it was possible to analyze by increasing the sensitivity of the detector and the recorder, but the noise was large and the resolution was poor. It was confirmed that it takes a considerably long time to quantify because the time required for each analysis is long. For example, quantification by gas chromatography requires 3-4 hours.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術の欠点を解消し、炭化水素系溶剤中に含まれる
プレス油の含有量を精度良く、簡便に短時間で定量する
方法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for accurately and simply quantifying the content of press oil contained in a hydrocarbon solvent in a short time. To provide.

【0009】[0009]

【課題を解決するための手段】前記課題は、本発明のプ
レス油分析方法を提供することによって達成される。す
なわち、(1)プレス油洗浄用炭化水素系溶剤を300
nm乃至270nmの範囲の波長の光線を用いて吸光度を測
定し、吸光度の最大値から、予め測定した検量線を用い
て、該洗浄用溶剤中のプレス油の含有量を分析すること
を特徴とするプレス油分析方法によって達成される。
The above object can be achieved by providing a method for analyzing press oil according to the present invention. That is, (1) a hydrocarbon-based solvent for cleaning press oil is added to 300
The absorbance is measured using a light ray having a wavelength in the range of nm to 270 nm, and the content of the press oil in the cleaning solvent is analyzed from the maximum value of the absorbance using a calibration curve previously measured. It is achieved by a press oil analysis method.

【0010】300nm乃至270nmの範囲の波長、例え
ば290nmの波長の光線は紫外線(UV)領域であるた
め分析にはUV-visible吸光光度計を使用する。
A UV-visible absorptiometer is used for analysis because light rays having a wavelength in the range of 300 nm to 270 nm, for example, a wavelength of 290 nm are in the ultraviolet (UV) region.

【0011】300〜270nmの範囲で、入射波長を変
化させながら吸光度を測定し、そのピーク位置を検出す
ると、試料による吸収波長の多少のずれを補正できる。
When the absorbance is measured in the range of 300 to 270 nm while changing the incident wavelength and the peak position is detected, a slight shift in the absorption wavelength due to the sample can be corrected.

【0012】予め、既知量のプレス油を添加した複数の
炭化水素系溶剤を準備し、それら溶剤の300nm乃至2
70nmの範囲の波長の光線の吸光度を測定し、それら溶
剤の最大吸光度とプレス油添加量とをプロットして検量
線を作成する。次に製品の洗浄に用いたプレス油洗浄用
炭化水素系溶剤について300nm乃至270nmの範囲の
波長の光線の吸光度の最大値を測定し、検量線を用いて
洗浄用溶剤中のプレス油の量を定量する。かかる定量法
を吸光光度分析法という。
A plurality of hydrocarbon solvents to which a known amount of press oil has been added are prepared in advance, and the solvent of 300 nm to 2 nm is used.
The absorbance of light having a wavelength in the range of 70 nm is measured, and the maximum absorbance of these solvents and the amount of press oil added are plotted to create a calibration curve. Next, the maximum value of the absorbance of light having a wavelength in the range of 300 nm to 270 nm was measured for the hydrocarbon solvent for press oil washing used for washing the product, and the amount of press oil in the washing solvent was measured using a calibration curve. Quantify. Such a quantitative method is called an absorptiometric method.

【0013】ここで、吸光光度計で測定されるのは、光
透過率(%)であるが、各波長での光透過率と100%
透過率の差により吸光率(%)を求め、吸光度とする。
Here, what is measured by the absorptiometer is the light transmittance (%), and the light transmittance at each wavelength and 100%
Absorbance (%) is calculated from the difference in transmittance and used as the absorbance.

【0014】前記吸光光度分析法による洗浄用炭化水素
系溶剤中のプレス油量分析の上限値は約1000マイク
ロリットル/リットル(μl/l)である。従って、上
限値を越える濃度の試料については、清浄な同一の洗浄
用炭化水素系溶剤を用いて、適宜希釈して測定すること
が望ましい。
The upper limit of analysis of the amount of press oil in the hydrocarbon solvent for cleaning by the absorptiometry is about 1000 microliter / liter (μl / l). Therefore, it is desirable to appropriately dilute a sample having a concentration exceeding the upper limit value by using the same clean hydrocarbon solvent for cleaning.

【0015】また、前記プレス油量分析の下限値は約1
0μl/lである。
The lower limit value of the press oil amount analysis is about 1
It is 0 μl / l.

【0016】[0016]

【実施例】本発明の実施例について説明する。ただし、
説明は本発明に対する理解を深めるものであり、本発明
を制限するものではない。
EXAMPLES Examples of the present invention will be described. However,
The description is an understanding of the invention and is not intended to limit the invention.

【0017】洗浄用炭化水素系溶剤として、アクア化学
(株)製のアクアソルベントGX、プレス油として、日
本工作油(株)製のG6050を準備した。次に、アク
アソルベントGXにG6050を10〜1000μl/
lの濃度範囲で添加した試料を作成した。
Aqua Solvent GX manufactured by Aqua Chemical Co., Ltd. was prepared as a hydrocarbon solvent for cleaning, and G6050 manufactured by Nippon Machine Oil Co., Ltd. was prepared as a press oil. Next, G6050 is added to Aqua Solvent GX in an amount of 10 to 1000 μl /
A sample added in the concentration range of 1 was prepared.

【0018】UV-visible吸光分光光度計として(株)日
立製作所製U−3210型自記分光光度計を用いた。
As a UV-visible absorption spectrophotometer, a U-3210 type self-recording spectrophotometer manufactured by Hitachi, Ltd. was used.

【0019】次に、該分光光度計のリファレンスセル
(10mm幅)にプレス油無添加の清浄な洗浄用炭化水素
系溶剤を入れ、試料セルにプレス油を既知量添加した前
記溶剤を入れた。つづいて、分光光度計を操作し、波長
600nmから200nmまでの範囲で、走査速度120nm
/minで波長を走査させた。
Next, a clean cleaning hydrocarbon solvent containing no press oil was placed in a reference cell (10 mm width) of the spectrophotometer, and the solvent containing a known amount of press oil was placed in a sample cell. Next, operate the spectrophotometer to scan at a wavelength of 600 nm to 200 nm and a scanning speed of 120 nm.
The wavelength was scanned at / min.

【0020】図1には、プレス油添加量500μl/l
の時に検出された最大吸光度(吸光のピーク)の一例を
示した。
In FIG. 1, the amount of press oil added is 500 μl / l.
An example of the maximum absorbance (absorption peak) detected at the time of is shown.

【0021】波長290nm近傍、正確には288nmのと
ころに、大きな吸光ピークが存在することが示された。
そこで、プレス油を既知量添加した数種の試料を作成
し、それら試料について検出された吸光ピークの高さ
(最大吸光度)を測定し、プレス油添加量とそれに対応
する290nm近傍の最大吸光度とをプロットして検量線
を作成した。図2にその一例を示す。
It was shown that there was a large absorption peak near the wavelength of 290 nm, more precisely at 288 nm.
Therefore, several kinds of samples were prepared by adding a known amount of press oil, and the heights of the absorption peaks (maximum absorbance) detected for these samples were measured, and the amount of press oil added and the corresponding maximum absorbance near 290 nm were measured. Was plotted to create a calibration curve. FIG. 2 shows an example thereof.

【0022】図2より明らかなように、プレス油量と吸
光ピークの高さ(最大吸光度)とはほぼ比例した関係に
あることがわかる。しかも、プレス油量の変化に対して
最大吸光度は大きな変化を示し、本発明のプレス油分析
方法の感度は良好であることがわかる。またさらに、同
じ試料で分析を3回繰り返したが、最大吸光度の相違は
1%以内であることが確かめられた。
As is clear from FIG. 2, the press oil amount and the height of the absorption peak (maximum absorbance) are in a substantially proportional relationship. Moreover, the maximum absorbance shows a large change with respect to the change in the amount of press oil, and it can be seen that the sensitivity of the press oil analysis method of the present invention is good. Furthermore, the analysis was repeated 3 times on the same sample, and it was confirmed that the difference in maximum absorbance was within 1%.

【0023】[0023]

【発明の効果】本発明のプレス油分析方法では、一つの
吸光ピークの高さを測定するに要する時間は僅かに2分
間以内である。従って検量線の作成から、未知試料の定
量分析が完了するまでに要する時間は20分間程度であ
る。この所要時間は、ガスクロマトグラフィー法や液体
マトグラフィー法による分析方法による分析に要する時
間に比べて大幅な時間短縮となる。
According to the press oil analysis method of the present invention, the time required to measure the height of one absorption peak is within 2 minutes. Therefore, the time required from the preparation of the calibration curve to the completion of the quantitative analysis of the unknown sample is about 20 minutes. This required time is significantly shorter than the time required for the analysis by the gas chromatography method or the liquid chromatography method.

【0024】また、本発明のプレス油分析方法は、検出
感度が高いことから、分析値の精度や繰り返し測定の再
現性にも著しく優れている。さらに検液の前処理が不要
であるため、簡便で、測定に熟練を要しない利点があ
る。
Further, since the method for analyzing press oil of the present invention has high detection sensitivity, it is remarkably excellent in accuracy of analysis value and reproducibility of repeated measurement. Further, since there is no need for pretreatment of the test liquid, there are advantages that it is simple and does not require skill in measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】プレス油添加量500μl/lの時の検出吸光
のピークの一例を示した図である。
FIG. 1 is a diagram showing an example of peaks of detected absorption when a press oil addition amount is 500 μl / l.

【図2】最大吸光度とプレス油添加量とをプロットした
検量線の一例を示すグラフである。
FIG. 2 is a graph showing an example of a calibration curve in which the maximum absorbance and the amount of press oil added are plotted.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プレス油洗浄用炭化水素系溶剤を300nm
乃至270nmの範囲の波長の光線を用いて吸光度を測定
し、吸光度の最大値から、予め測定した検量線を用い
て、該洗浄用溶剤中のプレス油の含有量を分析すること
を特徴とするプレス油分析方法。
1. A hydrocarbon-based solvent for cleaning press oil is 300 nm.
The absorbance is measured using a light ray having a wavelength in the range of ˜270 nm, and the content of the press oil in the cleaning solvent is analyzed from the maximum value of the absorbance using a calibration curve previously measured. Press oil analysis method.
JP24943594A 1994-10-14 1994-10-14 Press oil analyzing method Pending JPH08114542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24943594A JPH08114542A (en) 1994-10-14 1994-10-14 Press oil analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24943594A JPH08114542A (en) 1994-10-14 1994-10-14 Press oil analyzing method

Publications (1)

Publication Number Publication Date
JPH08114542A true JPH08114542A (en) 1996-05-07

Family

ID=17192932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24943594A Pending JPH08114542A (en) 1994-10-14 1994-10-14 Press oil analyzing method

Country Status (1)

Country Link
JP (1) JPH08114542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025813A1 (en) * 2016-08-04 2018-02-08 アクトファイブ株式会社 Oil concentration measuring device and oil concentration measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025813A1 (en) * 2016-08-04 2018-02-08 アクトファイブ株式会社 Oil concentration measuring device and oil concentration measuring method
CN109564158A (en) * 2016-08-04 2019-04-02 爱阔特株式会社 Concentration of oil measuring device and concentration of oil measurement method
JPWO2018025813A1 (en) * 2016-08-04 2019-05-30 アクトファイブ株式会社 Oil concentration measuring device and oil concentration measuring method

Similar Documents

Publication Publication Date Title
US7248370B2 (en) Method to reduce background noise in a spectrum
US20060197956A1 (en) Method to reduce background noise in a spectrum
US9157849B2 (en) Changed optical path measuring device for component concentration of water and measuring method thereof
Long et al. Optical determination of ionophore diffusion coefficients in plasticized poly (vinyl chloride) sensing films
Liu et al. A smartphone readout device for portable and sensitive estimation of Hg2+ via coumarin-modified paper
JP3754581B2 (en) Analysis method for multi-component organic solutions
Zamora et al. Trace determination of carbendazim, fuberidazole and thiabendazole in water by application of multivariate calibration to cross-sections of three-dimensional excitation–emission matrix fluorescence
Selli et al. Application of multi-way models to the time-resolved fluorescence of polycyclic aromatic hydrocarbons mixtures in water
Lamotte et al. Evaluation of the possibility of detecting benzenic pollutants by direct spectrophotometry on PDMS solid sorbent
JPH08114542A (en) Press oil analyzing method
CN112213303A (en) Method for rapidly detecting key quality index of beer
KR0127497B1 (en) Contaminating element analyzing method and apparatus of the same
CN105572260B (en) One kind measure dissolving pulp in α-, β-and gamma cellulose content method
Zaheer et al. Analytical methods for cleaning validation
JP4009737B2 (en) Chromatogram analyzer
Amraei et al. Wavelength region selection and spectrophotometric simultaneous determination of naphthol isomers based on net analyte signal
O'Connell Titration of nonionic surfactants with potassium tetrakis (4-chlorophenyl) borate
Wallace et al. Implementing total organic carbon analysis for cleaning validation
Dong et al. Simultaneous spectrophotometric determination of aluminum (III), Iron (III) and beryllium (III) in rainwater by a matrix method
CN112414962B (en) Method for measuring content of hydroxysafflor yellow A
US20110222055A1 (en) Determination of the salt concentration of an aqueous solution
Kaiser Methods for pharmaceutical cleaning validation
Budantsev Photometric determination of compounds in paper matrices using digital imaging technique and transmitted light images
JPH07263242A (en) Method and apparatus for diagnosing lifetime of oil immersed electric machine
Parsons Measurement of erythrocyte protoporphyrin concentration by double extraction and spectrofluorometry