JPWO2017217291A1 - リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡 - Google Patents

リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡 Download PDF

Info

Publication number
JPWO2017217291A1
JPWO2017217291A1 JP2018523684A JP2018523684A JPWO2017217291A1 JP WO2017217291 A1 JPWO2017217291 A1 JP WO2017217291A1 JP 2018523684 A JP2018523684 A JP 2018523684A JP 2018523684 A JP2018523684 A JP 2018523684A JP WO2017217291 A1 JPWO2017217291 A1 JP WO2017217291A1
Authority
JP
Japan
Prior art keywords
lens
optical system
image
relay
relay optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018523684A
Other languages
English (en)
Inventor
天内 隆裕
隆裕 天内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JPWO2017217291A1 publication Critical patent/JPWO2017217291A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/055Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances having rod-lens arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2446Optical details of the image relay
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

色収差が良好に補正されたリレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡を提供する。リレー光学系は、正屈折力の第1のレンズと、正屈折力の第2のレンズと、負屈折力の第3のレンズと、が接合された接合レンズを有し、接合レンズは、物体側光路と像側光路とで形成されるリレー光学系の光路上に配置され、第1のレンズは、第3のレンズに隣接したメニスカスレンズであり、分散と部分分散比が、第1のレンズと第3のレンズとで異なり、横軸をνdLA、及び縦軸をθgFLAとする直交座標系において、θgFLA=α×νdLA+βLA(但し、α=−0.00163)で表される直線を設定したときに、以下の条件式(1)及び条件式(2)で定まる領域に、第1のレンズの媒質のθgFLA及びνdLAが含まれ、以下の条件式(3)を満足する。0.67≦βLA(1)νdLA<50 (2)−1.4<mg<−0.6 (3)

Description

本発明は、リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡に関する。
近年、硬性鏡を用いた診断では、診断精度の向上が望まれている。この要求に応えるために、硬性鏡には、高解像度で物体(対象物)を観察できることや、高画質で物体の画像を取得できることが望まれている。
物体の観察や物体の画像の取得は、硬性鏡内に配置された硬性鏡用光学系を介して行われる。物体の画像の取得では、例えば、硬性鏡用光学系にカメラヘッドが接続される。カメラヘッドには、撮像素子として、例えば、CCD(Charge Coupled Devices)やC−MOS(Complementary Metal Oxide Semiconductor)が用いられる。
硬性鏡用光学系は、対物レンズと、接眼レンズと、複数のリレー光学系と、を有する。複数のリレー光学系は、対物レンズと接眼レンズの間に配置されている。
対物レンズによって、物体の像(以下、「1次像」という)が形成される。1次像は倒立像、すなわち、物体を上下方向に倒置した像になる。リレー光学系では、1次像のリレーが行われる。リレー光学系で形成される像も倒立像である。1次像が倒立像で、リレーされた像も倒立像である。よって、リレーが1回行われた後の像は、正立像になる。硬性鏡では、通常、正立像を観察又は撮像する。1次像が倒立像なので、リレー光学系の数は奇数となる。
特許文献1には、リレー光学系が開示されている。リレー光学系は、2つのロッドレンズと、アクロマートとを有する。アクロマートは、2つのロッドレンズの間に配置されている。特許文献1のリレー光学系では、アクロマートにEDガラスを使用することで、色収差の発生を抑制している。
特表2015-508511号公報
硬性鏡用光学系には、リレー光学系が複数配置されている。この場合、硬性鏡用光学系の大部分は、リレー光学系によって占められることになる。そのため、リレー光学系の結像性能は、硬性鏡用光学系の結像性能に対して非常に大きな影響を及ぼす。
このようなことから、リレー光学系では、諸収差が良好に補正されていることが重要になる。高解像度での物体の観察や、高画質での物体の画像の取得を実現するためには、色収差が良好に補正されていることが好ましい。
特許文献1のリレー光学系では、アクロマートにEDガラスを使用することで、色収差の発生を抑制している。しかしながら、色収差の発生が十分に抑制されているとは言い難い。そのため、特許文献1のリレー光学系を複数用いて像のリレーを行った場合、より高解像度で物体を観察することや、より高画質で物体の画像を取得することは難しい。
本発明は、このような課題に鑑みてなされたものであって、色収差が良好に補正されたリレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡を提供することを目的とするものである。
上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係るリレー光学系は、
正の屈折力を有する第1のレンズと、正の屈折力を有する第2のレンズと、負の屈折力を有する第3のレンズと、が接合された接合レンズを有し、
接合レンズは、物体側光路と像側光路とで形成されるリレー光学系の光路上に配置され、
第1のレンズは、第3のレンズに隣接したメニスカスレンズであり、
分散と部分分散比が、第1のレンズと第3のレンズとで異なり、
横軸をνdLA、及び縦軸をθgFLAとする直交座標系において、
θgFLA=α×νdLA+βLA(但し、α=−0.00163)で表される直線を設定したときに、
以下の条件式(1)及び条件式(2)で定まる領域に、第1のレンズの媒質のθgFLA及びνdLAが含まれ、
以下の条件式(3)を満足することを特徴とする。
0.67≦βLA (1)
νdLA<50 (2)
−1.4<mg<−0.6 (3)
ここで、
θgFLAは、第1のレンズの媒質の部分分散比(ngLA−nFLA)/(nFLA−nCLA)、
νdLAは、第1のレンズの媒質のアッベ数(ndLA−1)/(nFLA−nCLA)、
ndLA、nCLA、nFLA、ngLAは、各々、d線、C線、F線、g線における第1のレンズの媒質の屈折率、
mgは、リレー光学系の倍率、
物体側光路は、リレー光学系の中央よりも物体側に位置する光路、
像側光路は、リレー光学系の中央よりも像側に位置する光路、
である。
本発明の少なくとも幾つかの実施形態に係る像リレーユニットは、
複数のリレー光学系を有し、
複数のリレー光学系の少なくとも1つが、上述のリレー光学系であることを特徴とする。
本発明の少なくとも幾つかの実施形態に係る硬性鏡用光学系は、
対物光学系と、
対物光学系の像側に配置された像リレーユニットと、を有し、
像リレーユニットが、上述の像リレーユニットであることを特徴とする。
本発明の少なくとも幾つかの実施形態に係る硬性鏡は、
上述の硬性鏡用光学系と、
像リレーユニットにより形成された像を撮像する撮像素子と、を備えることを特徴とする。
本発明の少なくとも幾つかの実施形態に係る硬性鏡は、
上述の硬性鏡用光学系と、
観察対象物を照明するための照明装置と、を有することを特徴とする。
本発明によれば、色収差が良好に補正されたリレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡を提供することができる。
実施例1のリレー光学系のレンズ断面図である。 実施例1のリレー光学系の収差図である。 実施例2のリレー光学系のレンズ断面図である。 実施例2のリレー光学系の収差図である。 実施例3のリレー光学系のレンズ断面図である。 実施例3のリレー光学系の収差図である。 実施例4のリレー光学系のレンズ断面図である。 実施例4のリレー光学系の収差図である。 実施例5のリレー光学系のレンズ断面図である。 実施例5のリレー光学系の収差図である。 実施例6のリレー光学系のレンズ断面図である。 実施例6のリレー光学系の収差図である。 実施例7のリレー光学系のレンズ断面図である。 実施例7のリレー光学系の収差図である。 実施例8のリレー光学系のレンズ断面図である。 実施例8のリレー光学系の収差図である。 実施例9のリレー光学系のレンズ断面図である。 実施例9のリレー光学系の収差図である。 硬性鏡用光学系の実施例のレンズ断面図である。 硬性鏡用光学系の実施例の収差図である。 硬性鏡の概略構成図である。 撮像装置の概略構成図である。
以下、本実施形態に係るリレー光学系について、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態に係るリレー光学系により、この発明が限定されるものではない。像リレーユニット、硬性鏡用光学系及び硬性鏡についても同様である。
リレー光学系は、像をリレーするために用いられる。リレー光学系でリレーされる像は、例えば、対物光学系によって形成される。対物光学系は、物体とリレー光学系との間に配置される。対物光学系によって物体に1次像が形成される。リレー光学系は、この1次像をリレーして、像(以下「リレー像」という)を形成する。以下の説明における物体側は、1次像側を意味し、像側は、リレー像側を意味している。また、物体面は、1次像の位置における面を意味し、像面は、リレー像の位置における面を意味している。
本実施形態のリレー光学系は、正の屈折力を有する第1のレンズと、正の屈折力を有する第2のレンズと、負の屈折力を有する第3のレンズと、が接合された接合レンズを有し、接合レンズは、物体側光路と像側光路とで形成されるリレー光学系の光路上に配置され、第1のレンズは、第3のレンズに隣接したメニスカスレンズであり、分散と部分分散比が、第1のレンズと第3のレンズとで異なり、横軸をνdLA、及び縦軸をθgFLAとする直交座標系において、θgFLA=α×νdLA+βLA(但し、α=−0.00163)で表される直線を設定したときに、以下の条件式(1)及び条件式(2)で定まる領域に、第1のレンズの媒質のθgFLA及びνdLAが含まれ、以下の条件式(3)を満足することを特徴とする。
0.67≦βLA (1)
νdLA<50 (2)
−1.4<mg<−0.6 (3)
ここで、
θgFLAは、第1のレンズの媒質の部分分散比(ngLA−nFLA)/(nFLA−nCLA)、
νdLAは、第1のレンズの媒質のアッベ数(ndLA−1)/(nFLA−nCLA)、
ndLA、nCLA、nFLA、ngLAは、各々、d線、C線、F線、g線における第1のレンズの媒質の屈折率、
mgは、リレー光学系の倍率、
物体側光路は、リレー光学系の中央よりも物体側に位置する光路、
像側光路は、リレー光学系の中央よりも像側に位置する光路、
である。
リレー光学系では、1次像を劣化させることなくリレーする必要がある。すなわち、リレー像は、1次像に対してほとんど劣化が生じていない像にする必要がある。そのためには、可能な限り、リレー光学系で収差を発生させないことが重要になる。
リレー光学系で発生しやすい収差としては、色収差、球面収差及び像面湾曲がある。これらの収差のなかで、特に、色収差を良好に補正することが好ましい。
軸上色収差は、各色での焦点距離の違い(焦点のズレ)を表したものである。軸上色収差は軸上の収差であるが、軸外の結像性能にも影響を及ぼす。軸上色収差が大きく発生していると、軸上から最大像高までの各像高において、結像性能が劣化する。
上述のように、本実施形態のリレー光学系は、第1のレンズと、第2のレンズと、第3のレンズと、が接合された接合レンズを有する。接合レンズは、リレー光学系の光路上に配置されている。
リレー光学系の光路は、例えば、リレー光学系の中央を境にして、物体側光路と像側光路に分けることができる。接合レンズは、各々、物体側光路と像側光路の少なくとも一方に配置されるか、又は両方の光路にまたがって配置される。
第1のレンズは、第3のレンズと隣接するメニスカスレンズである。また、分散と部分分散比は、各々、第1のレンズと第3のレンズとで異なる。このように、第3のレンズの媒質は、第1のレンズの媒質と異なる分散と部分分散比を有する。よって、第1のレンズと第3のレンズとで、色収差を良好に補正することができる。
本実施形態のリレー光学系では、条件式(1)及び条件式(2)で定まる領域に、第1のレンズの媒質のθgFLA及びνdLAが含まれている。
このようにすることで、第1のレンズの媒質は、異常分散性を有する媒質になる。異常分散性は、通常のガラスレンズとは異なる分散性である。異常分散性を有する媒質を用いたレンズ(以下、「異常分散性を有するレンズ」という)では、短波長の光に対して大きな屈折力を発生することができる。そこで、第1のレンズにおいて、短波長の光に対する屈折力を適切にすることで、効果的に軸上色収差を補正することができる。
条件式(1)の下限値を下回らないようにすることで、軸上色収差における二次スペクトル、すなわち、F線とC線とで色消しをしたときに残存するg線の収差を適切に補正することができる。条件式(2)の上限値を上回らないようにすることで、軸上色収差における一次の色収差を適切に補正することができる。
また、異常分散性を有するレンズを用いることで、高次の色収差や倍率色収差を良好に補正できる。高次の色収差としては、例えば、球面収差における波長間隔差や、コマ収差における波長間隔差がある。ここで言う波長間隔差とは、2つの波長における収差量の差を指す。波長が複数の場合、波長間隔差は、任意の2つの波長における収差量の差になる。
光学系に入射する前の光線が同一の光線であっても、光学系を通過した後では、分散によって光線は波長ごとに分離する。そのため、複数の光線が像面に到達する。光線と像面との交点の座標は、各波長で異なる。ある波長の光線の座標を基準にすると、基準となる座標と他の波長の光線の交点の座標との間にズレが生じる。波長間隔差は、そのズレ量に相当する。
高次の色収差や倍率色収差は、光学系の対称性を良くすることで、より良好に補正できる。よって、異常分散性を有するレンズを用いる場合は、光学系の対称性を良くすることが好ましい。光学系の対称性を良くするには、例えば、光学系の中央に仮想面を設定したときに、レンズの配列、レンズの形状或いは屈折力等が、物体側と像側とで対称になっていれば良い。
また、効率的に像のリレーを行うためには、物体側の開口数と像側の開口数を近い値にすることが望ましい。
条件式(3)の上限値を上回らないようにすることで、結像倍率が大きくなりすぎないようにすることができる。その結果、軸上色収差の発生、コマ収差の発生及び倍率の色収差の発生を抑制することができる。光学系の対称性を良くすることができる場合は、特に、コマ収差の発生や倍率の色収差の発生を、より抑制することができる。
条件式(3)の下限値を下回らないようにすることで、物体側の開口数が小さくなりすぎないようにすることができる。その結果、コマ収差の発生や倍率の色収差の発生を抑制することができる。光学系の対称性を良くすることができる場合は、特に、コマ収差の発生や倍率の色収差の発生を、より抑制することができる。
条件式(1)に代えて、以下の条件式(1’)を満足することが好ましい。
0.71≦βLA<0.9 (1’)
条件式(2)に代えて、以下の条件式(2’)を満足することが好ましい。
3<νdLA<50 (2’)
条件式(3)に代えて、以下の条件式(3’)を満足することが好ましい。
−1.2<mg<−0.8 (3’)
条件式(1’)の上限値を上回らないようにすることで、軸上色収差における二次スペクトルの補正が過剰にならないようにすることができる。条件式(2’)の下限値を下回らないようにすることで、軸上色収差における一次の色収差の補正が過剰にならないようにすることができる。
本実施形態のリレー光学系では、第3のレンズの媒質として、異常分散性を有していない媒質を用いても良い。
上述のように、第1のレンズの媒質は、異常分散性を有する。一方、第3のレンズの媒質は、第1のレンズと異なる分散と部分分散比を有する。そこで、例えば、第3のレンズの媒質として、異常分散性を有していない媒質、すなわち、通常分散の媒質を用いる。
通常分散の媒質とは、例えば、横軸をνd、及び縦軸をθgFとする直交座標系において、θgF=α×νd+β(但し、α=−0.00163)で表される直線を設定したときに、以下の条件式(A)で定まる領域にレンズの媒質のθgFが含まれないような媒質である。
0.67≦β (A)
ここで、
νdは、レンズの媒質のアッベ数(nd−1)/(nF−nC)、
nd、nC、nFは、各々、d線、C線、F線におけるレンズの媒質の屈折率、
である。
この場合、第3のレンズを第1のレンズと隣接させると、異常分散性を有する媒質と通常分散の媒質とが組み合わさった1つのレンズ(以下、「複合レンズ」という)が形成される。複合レンズは2つの媒質を有する。2つの媒質を1つの媒質と見なすと、複合レンズの媒質は、仮想的には異常分散性を有している。よって、複合レンズと第2のレンズとで、色収差を良好に補正することができる。
また、色収差を良好に補正するためには、2つのレンズの媒質におけるアッベ数の差を大きくすると共に、部分分散比の差を小さくすれば良い。複合レンズにすると、好ましいアッベ数差や、好ましい部分分散比を実現するための自由度が増える。そのため、軸上色収差における一次の色収差の低減と、軸上色収差における二次スペクトルの低減を理想的に行うことができる。
このように、本実施形態のリレー光学系では、異常分散性を有する第1のレンズと、第1のレンズとは異なる分散と部分分散比を有する第3のレンズと、で複合レンズを構成すると共に、複合レンズと第2のレンズとを組み合わせることで、色収差を良好に補正している。
光学系の組み立てでは、レンズを保持枠に格納していく。一般的に、設計では光学系の色収差が良好に補正されていても、製造誤差によりレンズが偏心すると、光学系を最初に組み上げた状態では、色収差が良好に補正された状態にならないことがある。特に、高次の色収差や倍率色収差は、レンズの偏心によって大きくなる。
上述のように、第1のレンズの媒質は異常分散性を有するので、第2のレンズや第3のレンズと組み合わせることで、色収差を良好に補正することができる。このとき、第1のレンズ、第2のレンズ及び第3のレンズの各々が離れて配置されていると、これらのレンズ間で偏心が生じやすい。
これを防ぐため、製造プロセスの中で偏心調整等を行い、収差補正状態が適正に保たれるようにしている。第1のレンズと第2のレンズが離れて配置されていると、偏心調整等における調整作業が煩雑になる。第1のレンズと第3のレンズが離れて配置されている場合や、第2のレンズと第3のレンズが離れて配置されている場合も同様である。
これに対して、第1のレンズ、第2のレンズ及び第3のレンズを接合することで、これらのレンズ間で偏心が生じにくくなる。その結果、偏心調整等の必要性が軽減され、製造プロセスを簡略化しつつ、高次の色収差の補正や倍率色収差の補正を良好に行うことができる。
特に、第2のレンズの部分分散比や第3のレンズの部分分散比を、第1のレンズの部分分散比と異ならせることが好ましい。このようにすることで、高次の色収差の補正や倍率色収差の補正を、より良好に行うことができる。
ただし、これらのレンズ間で偏心が生じると、良好な補正効果を得ることが困難になる。第1のレンズ、第2のレンズ及び第3のレンズを接合することで、これらのレンズ間での偏心を小さくすることができる。その結果、高次の色収差の補正や倍率色収差の補正を、より良好に行うことができる。
接合では、接合材でレンズを固定する方法、接合材を使わずにレンズを直接接触させて固定する方法(オプティカルコンタクト)、或いは、樹脂を硬化させてレンズを固定する方法を用いれば良い。樹脂を硬化させて2つのレンズを固定する方法については後述する。
接合するレンズの組み合わせは、ガラスレンズのみ、ガラスレンズと樹脂レンズ、樹脂レンズのみ、のいずれでも良い。
接合するレンズの一方が、厚みが薄い樹脂レンズの場合がある。この場合、後述の樹脂を硬化させる方法を用いて、薄い樹脂レンズともう一方のレンズを固定することができる。この方法では、2つのレンズの間に接合剤を介在させなくても良い。2つのレンズの間に接合剤を介在させて、薄い樹脂レンズともう一方のレンズを固定するようにしても良い。
本実施形態のリレー光学系では、第2のレンズと第3のレンズとの間に、第1のレンズが位置していることが好ましい。また、本実施形態のリレー光学系では、第2のレンズと第1のレンズとの間に、第3のレンズが位置していることが好ましい。
リレー光学系では、各レンズ面において、光線の屈折角が大きく変化する。すなわち、リレー光学系内では、光の進行方向が大きく変化する。そのため、収差が発生しやすい。収差の発生を抑えるには、リレー光学系内で、光線の屈折が徐々に行われるようにすることが望ましい。
第3のレンズは負の屈折力を有する。この場合、第3のレンズでは発散作用が生じるので、光線の屈折角が大きく変化しやすい。そこで、第3のレンズがリレー光学系の中央に位置するように、接合レンズを構成する。このようにすることで、接合レンズを通過する光線が、徐々に屈折される。その結果、接合レンズでの収差の発生を抑制することができる。
具体的には、接合レンズを、物体側から順に、第2のレンズと、第1のレンズと、第3のレンズと、で構成するか、又は、第2のレンズと、第3のレンズと、第1のレンズと、で構成する。このようにすることで、接合レンズを通過する光線が徐々に屈折される。その結果、接合レンズでの収差の発生を抑制することができる。
このとき、第2のレンズを両凸形状のレンズとし、第1のレンズを物体側に凹面を向けたメニスカスレンズとし、第3のレンズを物体側に凹面を向けたメニスカスレンズにすることができる。
接合レンズを、物体側光路と像側光路に、それぞれ配置する場合、物体側光路の接合レンズが、上述の構成になるようにする。
本実施形態のリレー光学系では、第1のレンズは、樹脂レンズであることが好ましい。
このようにすることで、2つのレンズ間で生じる偏心を小さくすることができる。また、更に、レンズを薄くすることができる。
第1のレンズが樹脂レンズの場合、樹脂を硬化させて2つのレンズを固定する方法を用いることができる。この方法では、第1のレンズは、別のレンズの表面に密着硬化される。以下では、第1のレンズと第2のレンズを用いて説明する。
密着硬化では、紫外線硬化型樹脂のような液状の樹脂を用いれば良い。第1のレンズのレンズ材料としては、例えば、紫外線硬化型樹脂がある。この紫外線硬化型樹脂を、第2のレンズの屈折面に所望量吐出する。これにより、紫外線硬化型樹脂が第2のレンズの屈折面と接触した状態になる。紫外線硬化型樹脂の表面のうち、第2のレンズの屈折面と接触している面が、第1のレンズの一方の屈折面になる。
紫外線硬化型樹脂を挟んで第2のレンズと対向する位置に、金型を配置する。この金型を、紫外線硬化型樹脂に押し付ける。紫外線硬化型樹脂は、金型と第2のレンズとで挟まれた状態になる。この状態で、第2のレンズ側から紫外線を照射する。これにより、紫外線硬化型樹脂が硬化する。
金型は成形面を有する。成形面は、紫外線硬化型樹脂と接触する面である。成形面の形状は、第1のレンズの他方の屈折面の形状と同じである。紫外線硬化型樹脂の表面のうち、成形面と接触している面が、第1のレンズの他方の屈折面になる。
このように、密着硬化では、第2のレンズの屈折面によって第1のレンズの一方の屈折面が形成され、金型の成形面によって第1のレンズの他方の屈折面が形成される。
第1のレンズの材料は、紫外線硬化型樹脂に限られない。硬化の方法も、紫外線の照射に限られない。
このように密着硬化を行うことで、面形状誤差および偏心誤差を少なくすることができる。更に、レンズを薄くすることができる。
本実施形態のリレー光学系は、以下の条件式(4)を満足することが好ましい。
0<|(R1−R2)/(R1+R2)|<3 (4)
ここで、
R1は、第1のレンズの物体側の曲率半径、
R2は、第1のレンズの像側の曲率半径、
である。
上述のように、第1のレンズの媒質は異常分散性を有する。よって、短波長の光に対する屈折力を適切にすることで、軸上色収差を良好に補正することができる。そのためには、第1のレンズにおける曲率半径を最適にすることが重要である。
条件式(4)の上限値を上回らないようにすることで、第1のレンズの屈折力が大きくなりすぎないようにすることができる。その結果、短波長側における色収差が補正過剰にならないようにすることができる。
条件式(4)の下限値を下回らないようにすることで、第1のレンズの屈折力を適切に確保することができる。その結果、短波長側における色収差が補正不足にならないようにすることができる。
条件式(4)に代えて、以下の条件式(4’)を満足することが好ましい。
0<|(R1−R2)/(R1+R2)|<2 (4’)
条件式(4)に代えて、以下の条件式(4”)を満足することが、より好ましい。
0<|(R1−R2)/(R1+R2)|<0.6 (4”)
本実施形態のリレー光学系は、以下の条件式(5)、(6)を満足することが好ましい。
1.4<ndLB<1.6 (5)
50<νdLB<100 (6)
ここで、
ndLBは、d線における第2のレンズの媒質の屈折率、
νdLBは、第2のレンズの媒質のアッベ数(ndLB−1)/(nFLB−nCLB)、
ndLB、nCLB、nFLB、ngLBは、各々、d線、C線、F線、g線における第2のレンズの媒質の屈折率、
である。
このようにすることで、第2のレンズ自体で発生する色収差を抑えることができる。そのため、第1のレンズや第3のレンズとの組み合わせによって、より良好に色収差の補正を行うことができる。
条件式(5)に代えて、以下の条件式(5’)を満足することが好ましい。
1.4<ndLB<1.55 (5’)
条件式(6)に代えて、以下の条件式(6’)を満足することが好ましい。
60<νdLB<100 (6’)
本実施形態のリレー光学系では、物体側光路と像側光路の少なくとも一方に、接合レンズが配置されていることが好ましい。
このようにすることで、リレー光学系の光路上に、接合レンズが、少なくとも1つ配置される。上述のように、接合レンズを用いることで、色収差を良好に補正することができる。よって、色収差が少ないリレー光学系を実現できる。
本実施形態のリレー光学系では、物体側光路と像側光路の各々に、接合レンズが配置されていることが好ましい。
このようにすることで、リレー光学系の光路上に、接合レンズが、複数配置される。上述のように、接合レンズを用いることで、色収差を良好に補正することができる。よって、色収差が更に少ないリレー光学系を実現できる。
また、接合レンズの数が1つの場合、必要な屈折力を3つのレンズで負担することになる。これに対して、接合レンズの数が複数の場合、必要な屈折力を6つ以上のレンズに分散できる。
必要な屈折力を6つ以上のレンズに分散できると、各レンズにおける収差の発生を更に抑制できる。その結果、リレー光学系における色収差の発生量を更に低減させることができる。
また、所定の偏心量に対する収差の発生量を小さくできる。製造誤差によって偏心が生じても、偏心調整等における調整作業が容易にできる。よって、製造プロセスを簡略化しつつ、結像性能の劣化を抑制できる。
接合レンズは、物体側光路と像側光路の両方に配置されている。よって、接合レンズを、物体側光路と像側光路とで対称となるように配置することができる。このようにすることで、色収差に加えて、コマ収差及び歪曲収差が良好に補正されたリレー光学系を実現できる。
物体側光路に配置される接合レンズの数は1つに限られない。像側光路についても同様である。また、接合レンズ数は、物体側光路と像側光路とで同じでも、異なっていても良い。
例えば、硬性鏡用光学系では、リレー光学系が複数用いられる。硬性鏡の全長、すなわち、硬性鏡用光学系の全長は、使用対象や使用方法に適した長さに設定されている。硬性鏡用光学系の全長は、リレー光学系の数とリレー光学系の全長とで、ほぼ決まる。リレー光学系の数を調整して所望の全長を実現する場合、リレー光学系の全長が短い方が、全長を細かく調整できる。よって、リレー光学系の全長は短い方が好ましい。
このようなことから、本実施形態のリレー光学系では、リレー光学系の光路に配置する接合レンズの数は、1つ、又は、2つであることが好ましい。
このようにすることで、全長が短く、色収差が良好に補正されたリレー光学系を実現することができる。その結果、所望の全長を持つ硬性鏡用光学系を、容易に実現できる。
本実施形態のリレー光学系は、非球面を少なくとも1つ含むことが好ましい。
光学系の開口数を大きくすると、マージナル領域において光軸から離れた位置を通る光線ほど、色収差が補正過剰になってしまう。そこで、非球面を少なくとも1つ含むようにする。このようにすることで、マージナル領域の全域で屈折力を適切にすることができる。その結果、開口数が大きいリレー光学系であっても、マージナル領域での色収差の補正を良好に行うことができる。
上述のように、第1のレンズの媒質は異常分散性を有する。よって、第1のレンズを用いることで、軸上色収差を良好に補正することができる。ただし、第1のレンズでは、光学系の開口数の大きさに合わせて、短波長の光に対する屈折力を適切にすることが好ましい。
短波長の光に対する屈折力は、非球面を用いることで適切にすることができる。よって、第1のレンズに非球面を設けることが好ましい。このようにすることで、開口数が大きいリレー光学系であっても、マージナル領域での色収差の補正を、より良好に行うことができる。
非球面は、レンズの片側の面に設けても、両側の面に設けても良い。また、非球面を設けるレンズの数は、1つに限られない。
本実施形態のリレー光学系は、物体側光路に配置された物体側レンズと、像側光路に配置された像側レンズと、を有し、物体側レンズは正の屈折力を有し、物体側に凸面を向けて配置され、像側レンズは正の屈折力を有し、像側に凸面を向けて配置され、接合レンズは、物体側レンズと像側レンズとの間に配置されていることが好ましい。
上述のように、リレー光学系では、1次像を劣化させることなくリレーする必要がある。そのためには、リレー像の周辺における光量損失を抑制することが重要になる。また、リレー光学系での収差の発生を抑制することが重要になる。
本実施形態のリレー光学系は、物体側光路に配置された物体側レンズと、像側光路に配置された像側レンズと、を有する。そして、接合レンズは、物体側レンズと像側レンズとの間に配置されている。そのため、物体側レンズは最も物体側に位置し、像側レンズは最も像側に位置する。
ここで、物体側レンズは正の屈折力を有し、物体側に凸面を向けて配置されている。そのため、リレー光学系を、物体側にテレセントリックな光学系にすることができる。また、像側レンズは正の屈折力を有し、像側に凸面を向けて配置されている。そのため、リレー光学系を、像側にテレセントリックな光学系にすることができる。
このように、本実施形態のリレー光学系では、物体側と像側の両側で、テレセントリック性を良好に保つことができる。そのため、リレー像の周辺における光量損失を抑制することができる。その結果、1次像を劣化させることなくリレーすることができる。
また、このような構成を備えることで、物体側レンズと像側レンズとの間に配置された接合レンズを、主に色収差を補正するために使用することができる。その結果、色収差の補正より良好に行うことができる。
上述のように、本実施形態のリレー光学系では、物体側と像側の両側で、テレセントリックな光学系になっているので、物体側と像側の両側で、主光線が光軸と平行になる。この状態で、接合レンズを通過する光線が光軸に平行な状態から大きく逸脱することなく徐々に屈折されるようにレンズの面形状、厚さ等を定めることにより、接合レンズでの収差の発生を抑制することができ、リレー光学系での収差の発生を抑制することができる。その結果、1次像を劣化させることなくリレーすることができる。
本実施形態のリレー光学系では、物体側光路において最も像側に位置するレンズ面は、像側に凸の面であり、像側光路において最も物体側に位置するレンズ面は、物体側に凸の面であることが好ましい。
リレー光学系では、リレー光学系の中央近傍で光線高が高くなる。そのため、1次像位置から離れた位置に配置されたレンズや、リレー像位置から離れた位置に配置されたレンズでは、球面収差やコマ収差が発生しやすくなる。そこで、上述のようにすると、レンズの中央において、2つの凸面が向かい合う状態になる。その結果、球面収差の発生やコマ収差の発生を抑制することができる。
本実施形態のリレー光学系では、接合レンズは、リレー光学系の中央付近に対称に配置されることが好ましい。
このようにすることで、リレー光学系の中央において、2つの凸面が向かい合う状態になる。その結果、球面収差の発生やコマ収差の発生を抑制することができる。
物体側光路において最も像側に位置するレンズと、像側光路において最も物体側に位置するレンズは、第1のレンズであることが好ましい。或いは、第1のレンズに代えて、第3のレンズを位置させても良い。
本実施形態のリレー光学系は、接合レンズを有し、接合レンズは、第1のレンズを少なくとも含み、以下の条件式(7)を満足することが好ましい。
0.2<(OBH+IH)/Φce<1.8 (7)
ここで、
Φceは、接合レンズにおける光線有効径、
OBHは、最大物体高、
IHは、最大像高、
である。
リレー光学系には、1次像の像高が高いリレー光学系、リレー像の像高が高いリレー光学系、及び1次像の像高とリレー像の像高が共に高いリレー光学系がある。このような像高が高いリレー光学系では、リレー光学系を通過する光線高も高くなる。その結果、リレー光学系の中央に位置するレンズへの入射角が大きくなる傾向がある。
本実施形態のリレー光学系では、リレー光学系の中央付近に第1のレンズ、すなわち、異常分散性を有するレンズが配置されている。異常分散性を有するレンズへの入射角が大きくなると、像高が高くなるにつれて、光軸方向の色収差の補正を十分に行うことが困難になる。
そこで、条件式(7)を満足することで、光軸方向の色収差を良好に補正することができる。光線有効径は、接合レンズを通過する光線の光線高のうちで、最も高い光線高を2倍したものである。
条件式(7)の上限値を上回らないようにすることで、像高の高いリレー光学系にしても、光軸方向の色収差が補正不足にならないようにできる。条件式(7)の下限値を下回らないようにすることで、1次像の像高やリレー像の像高を高く保ちつつ、リレー光学系の径方向の大型化を抑制することができる。
条件式(7)に代えて、以下の条件式(7’)を満足することが好ましい。
0.4<(OBH+IH)/Φce<1.5 (7’)
条件式(7)に代えて、以下の条件式(7”)を満足することが好ましい。
0.6<(OBH+IH)/Φce<1.2 (7”)
本実施形態のリレー光学系は、以下の条件式(8)、(9)を満足することが好ましい。
0.05<NA<0.3 (8)
50mm<|FL| (9)
ここで、
NAは、リレー光学系の開口数、
FLは、リレー光学系の焦点距離、
である。
条件式(8)、(9)を満足することで、全長が短く、解像度の高いリレー像を形成できるリレー光学系を実現することができる。
本実施形態の像リレーユニットは、複数のリレー光学系を有し、複数のリレー光学系の少なくとも1つが、本実施形態のリレー光学系であることを特徴とする。
上述のように、本実施形態のリレー光学系は、色収差が良好に補正されている。そのため、像リレーユニットに、本実施形態のリレー光学系を少なくとも1つ用いることで、色収差の少ない像リレーユニットを実現することができる。本実施形態のリレー光学系を複数用いることで、色収差が更に少ない像リレーユニットを実現することができる。
解像度の高いリレー像を形成するためには、リレー光学系の開口数を大きくすることが望ましい。ただし、リレー光学系の開口数を大きくすると、色収差が発生しやすくなる。
また、像リレーユニットは、硬性鏡用光学系に用いることができる。上述のように、リレー光学系の数を調整して硬性鏡用光学系の全長を適正な長さにする場合、リレー光学系の全長が短い方が好ましい。リレー光学系の全長を短くすると、開口数が大きくなる。この場合も、色収差が発生しやすくなる。
本実施形態のリレー光学系では、色収差が良好に補正されている。そのため、開口数を大きくしても、色収差の増大を抑制することができる。よって、本実施形態のリレー光学系を像リレーユニットに用いることで、開口数が大きく、色収差が良好に補正された像リレーユニットを実現することができる。
本実施形態の硬性鏡用光学系は、対物光学系と、対物光学系の像側に配置された像リレーユニットと、を有し、像リレーユニットが、本実施形態の像リレーユニットであることを特徴とする。
本実施形態の像リレーユニットを用いることで、色収差が良好に補正された硬性鏡用光学系を実現できる。
本実施形態の硬性鏡用光学系は、像リレーユニットの像側に配置された接眼光学系を有することが好ましい。
このようにすることで、色収差が良好に補正された光学像を観察することができる。
本実施形態の硬性鏡は、硬性鏡用光学系と、像リレーユニットにより形成された像を撮像する撮像素子と、を備えることを特徴とする。
本実施形態の硬性鏡用光学系を用いると、本実施形態の像リレーユニットによって、光学像が形成される。この光学像では色収差が良好に補正されている。よって、この光学像を撮像素子で撮像することで、色収差の少ない画像を取得することができる。
本実施形態の硬性鏡は、観察対象物を照明するための照明装置を有することが好ましい。
このようにすることで、色収差の少ない光学像の観察や、色収差の少ない画像の取得を行うことができる。
以下に、リレー光学系、硬性鏡用光学系及び硬性鏡の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
リレー光学系の実施例について説明する。図1、図3、図5、図7、図9、図11、図13、図15及び図17は、各実施例のリレー光学系のレンズ断面図である。
図2、図4、図6、図8、図10、図12、図14、図16及び図18は、各実施例のリレー光学系の収差図である。各実施例の収差図において、(a)は球面収差(SA)、(b)は非点収差(AS)、(c)は歪曲収差(DT)、(d)は倍率色収差(CC)を示している。
各実施例では、リレー光学系中に開口絞りSが配置されている。ただし、開口絞りSを用いなくても光束径を決めることができるのであれば、リレー光学系中に開口絞りSが配置されていなくても良い。
実施例1のリレー光学系は、物体側から順に、凸平正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、平凸正レンズL8と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7と、からなる。
第1のレンズは、正メニスカスレンズL3と正メニスカスレンズL6である。第2のレンズは、両凸正レンズL2と両凸正レンズL7である。第3のレンズは、負メニスカスレンズL4と負メニスカスレンズL5である。
実施例1のリレー光学系では、開口絞りSに対して、凸平正レンズL1と平凸正レンズL8とが対称になっている。また、開口絞りSに対して、接合レンズCL1と接合レンズCL2とが対称になっている。実施例1のリレー光学系では、開口絞りSの位置に対称面が存在している。
非球面は、正メニスカスレンズL3の像側面と、正メニスカスレンズL6の物体側面と、の合計2面に設けられている。
実施例2のリレー光学系は、物体側から順に、凸平正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、平凸正レンズL8と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7と、からなる。
第1のレンズは、正メニスカスレンズL3と正メニスカスレンズL6である。第2のレンズは、両凸正レンズL2と両凸正レンズL7である。第3のレンズは、負メニスカスレンズL4と負メニスカスレンズL5である。
実施例2のリレー光学系では、開口絞りSに対して、凸平正レンズL1と平凸正レンズL8とが対称になっている。また、開口絞りSに対して、接合レンズCL1と接合レンズCL2とが対称になっている。実施例2のリレー光学系では、開口絞りSの位置に対称面が存在している。
非球面は、正メニスカスレンズL3の像側面と、正メニスカスレンズL6の物体側面と、の合計2面に設けられている。
実施例3のリレー光学系は、物体側から順に、両凸正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、両凸正レンズL8と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた負メニスカスレンズL3と、像側に凸面を向けた正メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた正メニスカスレンズL5と、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、からなる。
第1のレンズは、正メニスカスレンズL4と正メニスカスレンズL5である。第2のレンズは、両凸正レンズL2と両凸正レンズL7である。第3のレンズは、負メニスカスレンズL3と負メニスカスレンズL6である。
実施例3のリレー光学系では、開口絞りSに対して、両凸正レンズL1と両凸正レンズL8とが対称になっている。また、開口絞りSに対して、接合レンズCL1と接合レンズCL2とが対称になっている。実施例3のリレー光学系では、開口絞りSの位置に対称面が存在している。
非球面は、正メニスカスレンズL4の像側面と、正メニスカスレンズL5の物体側面と、の合計2面に設けられている。
実施例4のリレー光学系は、物体側から順に、凸平正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、平凸正レンズL8と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7と、からなる。
第1のレンズは、正メニスカスレンズL3と正メニスカスレンズL6である。第2のレンズは、両凸正レンズL2と両凸正レンズL7である。第3のレンズは、負メニスカスレンズL4と負メニスカスレンズL5である。
実施例4のリレー光学系では、開口絞りSに対して、凸平正レンズL1と平凸正レンズL8とが対称になっている。また、開口絞りSに対して、接合レンズCL1と接合レンズCL2とが対称になっている。実施例4のリレー光学系では、開口絞りSの位置に対称面が存在している。
非球面は、正メニスカスレンズL3の像側面と、正メニスカスレンズL6の物体側面と、の合計2面に設けられている。
実施例5のリレー光学系は、物体側から順に、凸平正レンズL1と、正の屈折力を有する接合レンズCL1と、平凸正レンズL5と、からなる。開口絞りSは、接合レンズCL1の内部に位置している。ただし、物理的に光束を制限する部材が配置されているわけではない。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
第1のレンズは、正メニスカスレンズL3である。第2のレンズは、両凸正レンズL2である。第3のレンズは、負メニスカスレンズL4である。
非球面は、正メニスカスレンズL3の像側面に設けられている。
実施例6のリレー光学系は、物体側から順に、両凸正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、両凸正レンズL8と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7と、からなる。
第1のレンズは、正メニスカスレンズL3と正メニスカスレンズL6である。第2のレンズは、両凸正レンズL2と両凸正レンズL7である。第3のレンズは、負メニスカスレンズL4と負メニスカスレンズL5である。
実施例6のリレー光学系では、開口絞りSに対して、両凸正レンズL1と両凸正レンズL8とが対称になっている。また、開口絞りSに対して、接合レンズCL1と接合レンズCL2とが対称になっている。実施例6のリレー光学系では、開口絞りSの位置に対称面が存在している。
実施例7のリレー光学系は、物体側から順に、凸平正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、平凸正レンズL7と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、からなる。
第1のレンズは、正メニスカスレンズL3である。第2のレンズは、両凸正レンズL2である。第3のレンズは、負メニスカスレンズL4である。
非球面は、正メニスカスレンズL3の像側面に設けられている。
実施例8のリレー光学系は、物体側から順に、凸平正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、平凸正レンズL8と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7と、からなる。
第1のレンズは、正メニスカスレンズL3と正メニスカスレンズL6である。第2のレンズは、両凸正レンズL2と両凸正レンズL7である。第3のレンズは、負メニスカスレンズL4と負メニスカスレンズL5である。
実施例8のリレー光学系では、開口絞りSに対して、凸平正レンズL1と平凸正レンズL8とが対称になっている。また、開口絞りSに対して、接合レンズCL1と接合レンズCL2とが対称になっている。実施例8のリレー光学系では、開口絞りSの位置に対称面が存在している。
非球面は、正メニスカスレンズL3の像側面と、正メニスカスレンズL6の物体側面と、の合計2面に設けられている。
実施例9のリレー光学系は、物体側から順に、凸平正レンズL1と、正の屈折力を有する接合レンズCL1と、正の屈折力を有する接合レンズCL2と、平凸正レンズL8と、からなる。開口絞りSは、接合レンズCL1と接合レンズCL2との間に配置されている。
接合レンズCL1は、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。
接合レンズCL2は、物体側に凸面を向けた負メニスカスレンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7と、からなる。
第1のレンズは、正メニスカスレンズL3と正メニスカスレンズL6である。第2のレンズは、両凸正レンズL2と両凸正レンズL7である。第3のレンズは、負メニスカスレンズL4と負メニスカスレンズL5である。
実施例9のリレー光学系では、開口絞りSに対して、凸平正レンズL1と平凸正レンズL8とが対称になっている。また、開口絞りSに対して、接合レンズCL1と接合レンズCL2とが対称になっている。実施例9のリレー光学系では、開口絞りSの位置に対称面が存在している。
非球面は、正メニスカスレンズL3の像側面と、正メニスカスレンズL6の物体側面と、の合計2面に設けられている。
硬性鏡用光学系の実施例について説明する。図19は硬性鏡用光学系の実施例のレンズ断面図である。図20は硬性鏡用光学系の実施例の収差図である。
収差図において、(a)は球面収差(SA)、(b)は非点収差(AS)、(c)は歪曲収差(DT)、(d)は倍率色収差(CC)を示している。収差は、接眼光学系から出射した光を、無収差レンズで結像したときの収差を示している。無収差レンズの光学的な仕様は、接眼光学系の光学的な仕様と同じである。
実施例の硬性鏡用光学系は、対物光学系OBJと、像リレーユニットと、接眼光学系OCと、を有する。像リレーユニットは、第1のリレー光学系RL1と、第2のリレー光学系RL2と、第3のリレー光学系RL3と、を有する。3つのリレー光学系には、実施例1のリレー光学系が用いられている。よって、リレー光学系の説明は省略する。
対物光学系OBJによって、1次像Ioが形成される。1次像Ioは、第1のリレー光学系RL1でリレーされる。これにより、第1のリレー像I1が形成される。第1のリレー像I1は、第2のリレー光学系RL2でリレーされる。これにより、第2のリレー像I2が形成される。第2のリレー像I2は、第3のリレー光学系RL3でリレーされる。これにより、第3のリレー像I3が形成される。第3のリレー像I3は、接眼光学系OCによって観察することができる。
以下に、上記各実施例の数値データを示す。面データにおいて、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面、LAは第1のレンズ、LBは第2のレンズ、LCは第3のレンズである。
また、各種データにおいて、NAは開口数である。リレー光学系の実施例では、fはリレー光学系の焦点距離、θgFLAは部分分散比、OBHは最大物体高、IHは最大像高、Φceは光線有効径である。硬性鏡用光学系の実施例では、fは硬性鏡用光学系の焦点距離、ω半画角、fOBは対物光学系の焦点距離、fRLはリレー光学系の焦点距離、fOCは接眼光学系の焦点距離である。
また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10、A12…としたとき、次の式で表される。
z=(y2/r)/[1+{1−(1+k)(y/r)21/2
+A4y4+A6y6+A8y8+A10y10+A12y12+…
また、非球面係数において、「e−n」(nは整数)は、「10−n」を示している。
数値実施例1
単位 mm

面データ
面番号 r d nd νd
物体面 ∞ 6.03
1 17.749 27.45 1.58913 61.14
2 ∞ 2.78
3 21.527 3.38 1.43875 94.93 (LB)
4 -8.888 0.80 1.63387 23.38 (LA)
5* -8.671 4.73 1.80625 40.91 (LC)
6 -16.392 3.69
7(絞り) ∞ 3.69
8 16.392 4.73 1.80625 40.91 (LC)
9* 8.671 0.80 1.63387 23.38 (LA)
10 8.888 3.38 1.43875 94.93 (LB)
11 -21.527 2.78
12 ∞ 27.45 1.58913 61.14
13 -17.749 6.03
像面 ∞

非球面データ
第5面
k=0.000
A4=-3.32464e-05,A6=5.77541e-07,A8=-1.73224e-09
第9面
k=0.000
A4=3.32464e-05,A6=-5.77541e-07,A8=1.73224e-09

各種データ
f 3132.12
NA 0.14
θgFLA 0.668
OBH 2.955
IH 2.955
Φce 7.5
数値実施例2
単位 mm

面番号 r d nd νd
物体面 ∞ 5.00
1 17.933 30.13 1.58913 61.14
2 ∞ 2.94
3 21.755 2.87 1.49700 81.54 (LB)
4 -9.683 0.50 1.63387 23.38 (LA)
5* -9.136 4.60 1.80625 40.91 (LC)
6 -19.780 2.81
7(絞り) ∞ 2.81
8 19.780 4.60 1.80625 40.91 (LC)
9* 9.136 0.50 1.63387 23.38 (LA)
10 9.683 2.87 1.49700 81.54 (LB)
11 -21.755 2.94
12 ∞ 30.13 1.58913 61.14
13 -17.933 5.00
像面 ∞

非球面データ
第5面
k=0.000
A4=-3.16714e-05,A6=3.81781e-07,A8=7.19077e-09
第9面
k=0.000
A4=3.16714e-05,A6=-3.81781e-07,A8=-7.19077e-09

各種データ
f 3204.50
NA 0.14
θgFLA 0.668
OBH 2.955
IH 2.955
Φce 7.5
数値実施例3
単位 mm

面番号 r d nd νd
物体面 ∞ 5.00
1 24.434 34.48 1.69895 30.13
2 -1100.269 3.29
3 28.333 4.67 1.49700 81.54 (LB)
4 -7.710 6.00 1.64850 53.02 (LC)
5 -24.085 0.80 1.63387 23.38 (LA)
6* -21.220 2.52
7(絞り) ∞ 2.52
8* 21.220 0.80 1.63387 23.38 (LA)
9 24.085 6.00 1.64850 53.02 (LC)
10 7.710 4.67 1.49700 81.54 (LB)
11 -28.333 3.29
12 1100.269 34.48 1.69895 30.13
13 -24.434 5.00
像面 ∞

非球面データ
第6面
k=0.000
A4=-6.32197e-06,A6=-1.03462e-07,A8=-1.28546e-09
第8面
k=0.000
A4=6.32197e-06,A6=1.03462e-07,A8=1.28546e-09

各種データ
f 4279.87
NA 0.12
θgFLA 0.668
OBH 2.955
IH 2.955
Φce 7.5
数値実施例4
単位 mm

面番号 r d nd νd
物体面 ∞ 5.00
1 17.449 33.69 1.58913 61.14
2 ∞ 2.38
3 19.258 2.23 1.51633 64.14 (LB)
4 -10.902 0.50 1.63387 23.38 (LA)
5* -8.243 3.03 1.90270 31.00 (LC)
6 -19.416 2.02
7(絞り) ∞ 2.02
8 19.416 3.03 1.90270 31.00 (LC)
9* 8.243 0.50 1.63387 23.38 (LA)
10 10.902 2.23 1.51633 64.14 (LB)
11 -19.258 2.38
12 ∞ 33.69 1.58913 61.14
13 -17.449 5.00
像面 ∞

非球面データ
第5面
k=0.000
A4=2.05320e-05,A6=1.31245e-06,A8=-2.73124e-08
第9面
k=0.000
A4=-2.05320e-05,A6=-1.31245e-06,A8=2.73124e-08

各種データ
f 2912.93
NA 0.09
θgFLA 0.668
OBH 2.955
IH 2.955
Φce 5.669854
数値実施例5
単位 mm

面番号 r d nd νd
物体面 ∞ 5.00
1 18.172 24.09 1.58913 61.14
2 ∞ 11.53
3 8.215 11.03 1.43875 94.93 (LB)
4(絞り) ∞ 0.00 1.43875 94.93
5 -5.097 0.50 1.63387 23.38 (LA)
6* -4.713 4.93 1.80625 40.91 (LC)
7 -11.130 11.53
8 ∞ 24.09 1.58913 61.14
9 -18.172 5.00
像面 ∞

非球面データ
第6面
k=0.000
A4=-1.85896e-04,A6=2.18965e-05,A8=1.25570e-06

各種データ
f -144.82
NA 0.08
θgFLA 0.668
OBH 2.955
IH 2.955
Φce 6.6423
数値実施例6
単位 mm

面番号 r d nd νd
物体面 ∞ 5.00
1 20.297 33.84 1.69895 30.13
2 -54.889 0.65
3 21.275 3.82 1.49700 81.54 (LB)
4 -11.733 0.80 1.63387 23.38 (LA)
5 -10.985 2.70 1.88300 40.76 (LC)
6 -25.624 2.05
7(絞り) ∞ 2.05
8 25.624 2.70 1.88300 40.76 (LC)
9 10.985 0.80 1.63387 23.38 (LA)
10 11.733 3.82 1.49700 81.54 (LB)
11 -21.275 0.65
12 54.889 33.84 1.69895 30.13
13 -20.297 5.00
像面 ∞

各種データ
f 3183.08
NA 0.10
θgFLA 0.668
OBH 2.955
IH 2.955
Φce 5.94823
数値実施例7
単位 mm

面番号 r d nd νd
物体面 ∞ 4.00
1 20.911 17.27 1.58913 61.14
2 ∞ 13.30
3 20.798 7.26 1.43875 94.93 (LB)
4 -9.808 0.80 1.63387 23.38 (LA)
5* -8.934 4.90 1.80625 40.91 (LC)
6 -18.011 1.73
7(絞り) ∞ 1.73
8 18.011 4.90 1.80625 40.91
9 9.808 7.26 1.43875 94.93
10 -20.798 13.30
11 ∞ 17.27 1.58913 61.14
12 -20.911 4.00
像面 ∞

非球面データ
第5面
k=0.000
A4=-5.29386e-05,A6=2.57264e-07,A8=4.07438e-08

各種データ
f -5183.95
NA 0.10
θgFLA 0.668
OBH 2.955
IH 2.955
Φce 6.75044
数値実施例8
単位 mm

面番号 r d nd νd
物体面 ∞ 5.33
1 18.247 27.82 1.58913 61.14
2 ∞ 3.23
3 21.047 3.30 1.43875 94.93 (LB)
4 -9.083 0.80 1.62060 25.97 (LA)
5* -8.632 4.46 1.80625 40.91 (LC)
6 -16.312 3.91
7(絞り) ∞ 3.91
8 16.312 4.46 1.80625 40.91 (LC)
9* 8.632 0.80 1.62060 25.97 (LA)
10 9.083 3.30 1.43875 94.93 (LB)
11 -21.047 3.23
12 ∞ 27.82 1.58913 61.14
13 -18.247 5.33
像面 ∞

非球面データ
第5面
k=0.000
A4=-3.54882e-05,A6=4.06157e-07,A8=2.27961e-09
第9面
k=0.000
A4=3.54882e-05,A6=-4.06157e-07,A8=-2.27961e-09

各種データ
f 3306.71
NA 0.14
θgFLA 0.628
OBH 2.955
IH 2.955
Φce 7.5
数値実施例9
単位 mm

面番号 r d nd νd
物体面 ∞ 6.40
1 18.250 25.30 1.58913 61.14
2 ∞ 3.33
3 25.494 3.08 1.43875 94.93 (LB)
4 -8.681 0.80 1.63598 23.46 (LA)
5* -8.828 4.43 1.80625 40.91 (LC)
6 -15.460 5.51
7(絞り) ∞ 5.51
8 15.460 4.43 1.80625 40.91 (LC)
9* 8.828 0.80 1.63598 23.46 (LA)
10 8.681 3.08 1.43875 94.93 (LB)
11 -25.494 3.33
12 ∞ 25.30 1.58913 61.14
13 -18.250 6.40
像面 ∞

非球面データ
第5面
k=0.000
A4=-3.54739e-05,A6=-2.01973e-07,A8=3.74445e-08
第9面
k=0.000
A4=3.54739e-05,A6=2.01973e-07,A8=-3.74445e-08

各種データ
f 3470.24
NA 0.11
θgFLA 0.8
OBH 2.955
IH 2.955
Φce 7.34
数値実施例10
単位 mm

面データ
面番号 r d nd νd
物体面 ∞ 50.00
1 ∞ 0.70 1.76900 64.15
2 ∞ 0.20
3* 4.245 0.93 1.80610 40.92
4* 1.011 1.46
5 ∞ 5.25 1.80610 40.95
6 ∞ 0.00 1.80610 40.92
7 ∞ 10.01 1.80610 40.92
8* -6.225 0.96
9 -20.942 1.34 1.83400 37.16
10 15.378 3.00 1.49700 81.54
11 -7.897 5.82
12 22.118 2.66 1.84666 23.78
13 6.545 9.64 1.49700 81.54
14 -14.451 6.68
15 ∞ 6.03
16 17.749 27.45 1.58913 61.14
17 ∞ 2.78
18 21.527 3.38 1.43875 94.93
19 -8.888 0.80 1.63387 23.38
20* -8.671 4.73 1.80625 40.91
21 -16.392 3.69
22 ∞ 3.69
23 16.392 4.73 1.80625 40.91
24* 8.671 0.80 1.63387 23.38
25 8.888 3.38 1.43875 94.93
26 -21.527 2.78
27 ∞ 27.45 1.58913 61.14
28 -17.749 6.03
29 ∞ 6.03
30 17.749 27.45 1.58913 61.14
31 ∞ 2.78
32 21.527 3.38 1.43875 94.93
33 -8.888 0.80 1.63387 23.38
34* -8.671 4.73 1.80625 40.91
35 -16.392 3.69
36 ∞ 3.69
37 16.392 4.73 1.80625 40.91
38* 8.671 0.80 1.63387 23.38
39 8.888 3.38 1.43875 94.93
40 -21.527 2.78
41 ∞ 27.45 1.58913 61.14
42 -17.749 6.03
43 ∞ 6.03
44 17.749 27.45 1.58913 61.14
45 ∞ 2.78
46 21.527 3.38 1.43875 94.93
47 -8.888 0.80 1.63387 23.38
48* -8.671 4.73 1.80625 40.91
49 -16.392 3.69
50 ∞ 3.69
51 16.392 4.73 1.80625 40.91
52* 8.671 0.80 1.63387 23.38
53 8.888 3.38 1.43875 94.93
54 -21.527 2.78
55 ∞ 27.45 1.58913 61.14
56 -17.749 6.03
57 ∞ 16.18
58 33.647 4.14 1.43875 94.93
59 -23.882 2.17
60 224.243 1.49 1.83400 37.16
61 13.762 8.87 1.58913 61.14
62 -19.905 5.36
63 ∞ 3.00 1.76819 71.70
64 ∞ 10.50
瞳面 ∞

非球面データ
第3面
k=0.114
A4=-8.32004e-03,A6=1.91171e-04
第4面
k=-0.770
A4=-6.47508e-03,A6=-7.26821e-03
第8面
k=-0.710
A4=2.04648e-04,A6=-5.61088e-07
第20面
k=0.000
A4=-3.32464e-05,A6=5.77541e-07,A8=-1.73224e-09
第24面
k=0.000
A4=3.32464e-05,A6=-5.77541e-07,A8=1.73224e-09
第34面
k=0.000
A4=-3.32464e-05,A6=5.77541e-07,A8=-1.73224e-09
第38面
k=0.000
A4=3.32464e-05,A6=-5.77541e-07,A8=1.73224e-09
第48面
k=0.000
A4=-3.32464e-05,A6=5.77541e-07,A8=-1.73224e-09
第52面
k=0.000
A4=3.32464e-05,A6=-5.77541e-07,A8=1.73224e-09

各種データ
f 3.13
NA 0.12
2ω 87.19
fOB 3.07
fRL 1044.04
fOC 23.30
各実施例における条件式(1)〜(7)の値を以下に掲げる。
実施例1 実施例2 実施例3 実施例4
(1)βLA 0.71 0.71 0.71 0.71
(2)νdLA 23.38 23.38 23.38 23.38
(3)mg 1.0 1.0 1.0 1.0
(4)|(R1-R2)/(R1+R2)| 0.01 0.03 0.06 0.14
(5)ndLB 1.43875 1.497 1.497 1.51633
(6)νdLB 94.93 81.54 81.54 64.14
(7)(OBH+IH)/Φce 0.79 0.79 0.79 1.04

実施例5 実施例6 実施例7 実施例8
(1)βLA 0.71 0.71 0.71 0.67
(2)νdLA 23.38 23.38 23.38 25.97
(3)mg 1.0 1.0 1.0 1.0
(4)|(R1-R2)/(R1+R2)| 0.04 0.03 0.05 0.03
(5)ndLB 1.43875 1.497 1.43875 1.43875
(6)νdLB 94.93 81.54 94.93 94.93
(7)(OBH+IH)/Φce 0.89 0.99 0.88 0.79

実施例9
(1)βLA 0.84
(2)νdLA 23.468
(3)mg 1.0
(4)|(R1-R2)/(R1+R2)| 0.01
(5)ndLB 1.43875
(6)νdLB 94.93
(7)(OBH+IH)/Φce 0.81
硬性鏡の実施例について説明する。図21は、硬性鏡の概略構成図である。硬性鏡1は、対物光学系2と、像リレーユニット3と、接眼光学系4と、を有する。更に、硬性鏡1は、ライトガイド5と、照明装置光源6と、を有する。
像リレーユニット3は、第1のリレー光学系3aと、第2のリレー光学系3bと、第3のリレー光学系3cと、を有する。3つのリレー光学系には、例えば、実施例1のリレー光学系が用いられている。
照明装置光源6からは、照明光が出射する。照明光は、ライトガイドを通過して、硬性鏡の先端から出射する。これにより、観察対象物Saに照明光が照射される。
対物光学系1によって、観察対象物Saの1次像Ioが形成される。1次像Ioは、第1のリレー光学系3aでリレーされる。これにより、第1のリレー像I1が形成される。第1のリレー像I1は、第2のリレー光学系3bでリレーされる。これにより、第2のリレー像I2が形成される。第2のリレー像I2は、第3のリレー光学系3cでリレーされる。これにより、第3のリレー像I3が形成される。第3のリレー像I3は、接眼光学系OCによって観察することができる。
第3のリレー像I3は、撮像素子で撮像することができる。図22は、撮像装置の概略構成図であって、(a)は接眼光学系を介して撮像を行う構成を示し、(b)は接眼光学系を介さずに撮像を行う構成を示している。
接眼光学系を介して撮像を行う構成では、撮像装置7は、結像レンズ8と、撮像素子9と、を有する。接眼光学系4と結像レンズ8とによって、撮像素子9の撮像面上に、第3のリレー像I3の像が形成される。この像を撮像素子9で撮像することで、観察対象物Saの画像を取得することができる。
接眼光学系を介さずに撮像を行う構成では、撮像装置7は、撮像素子9を有する。撮像素子9の撮像面上に、第3のリレー像I3が形成される。この像を撮像素子9で撮像することで、観察対象物Saの画像を取得することができる。
以上のように、本発明は、色収差が良好に補正されたリレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡に適している。
CL1、CL2 接合レンズ
L1、L2、L3、L4、L5、L6、L7、L8 レンズ
Io 1次像
I1 第1のリレー像
I2 第2のリレー像
I3 第3のリレー像
S 開口絞り
OBJ 対物光学系
OC 接眼光学系
RL1 第1のリレー光学系
RL2 第2のリレー光学系
RL3 第3のリレー光学系
1 硬性鏡
2 対物光学系
3 像リレーユニット
3a 第1のリレー光学系
3b 第2のリレー光学系
3c 第3のリレー光学系
4 接眼光学系
5 ライトガイド
6 照明装置光源
7 撮像装置
8 結像レンズ
9 撮像素子
Sa 観察対象物

Claims (18)

  1. 正の屈折力を有する第1のレンズと、正の屈折力を有する第2のレンズと、負の屈折力を有する第3のレンズと、が接合された接合レンズを有し、
    前記接合レンズは、物体側光路と像側光路とで形成されるリレー光学系の光路上に配置され、
    前記第1のレンズは、前記第3のレンズに隣接したメニスカスレンズであり、
    分散と部分分散比が、前記第1のレンズと前記第3のレンズとで異なり、
    横軸をνdLA、及び縦軸をθgFLAとする直交座標系において、
    θgFLA=α×νdLA+βLA(但し、α=−0.00163)で表される直線を設定したときに、
    以下の条件式(1)及び条件式(2)で定まる領域に、前記第1のレンズの媒質のθgFLA及びνdLAが含まれ、
    以下の条件式(3)を満足することを特徴とするリレー光学系。
    0.67≦βLA (1)
    νdLA<50 (2)
    −1.4<mg<−0.6 (3)
    ここで、
    θgFLAは、前記第1のレンズの媒質の部分分散比(ngLA−nFLA)/(nFLA−nCLA)、
    νdLAは、前記第1のレンズの媒質のアッベ数(ndLA−1)/(nFLA−nCLA)、
    ndLA、nCLA、nFLA、ngLAは、各々、d線、C線、F線、g線における前記第1のレンズの媒質の屈折率、
    mgは、前記リレー光学系の倍率、
    前記物体側光路は、前記リレー光学系の中央よりも物体側に位置する光路、
    前記像側光路は、前記リレー光学系の中央よりも像側に位置する光路、
    である。
  2. 前記第2のレンズと前記第3のレンズとの間に、前記第1のレンズが位置していることを特徴とする請求項1に記載のリレー光学系。
  3. 前記第2のレンズと前記第1のレンズとの間に、前記第3のレンズが位置していることを特徴とする請求項1に記載のリレー光学系。
  4. 前記第1のレンズは、樹脂レンズであることを特徴とする請求項1から3のいずれか一項に記載のリレー光学系。
  5. 以下の条件式(4)を満足することを特徴とする請求項1から4のいずれか一項に記載のリレー光学系。
    0<|(R1−R2)/(R1+R2)|<3 (4)
    ここで、
    R1は、前記第1のレンズの物体側の曲率半径、
    R2は、前記第1のレンズの像側の曲率半径、
    である。
  6. 以下の条件式(5)、(6)を満足することを特徴とする請求項1から5のいずれか一項に記載のリレー光学系。
    1.4<ndLB<1.6 (5)
    50<νdLB<100 (6)
    ここで、
    ndLBは、d線における前記第2のレンズの媒質の屈折率、
    νdLBは、前記第2のレンズの媒質のアッベ数(ndLB−1)/(nFLB−nCLB)、
    ndLB、nCLB、nFLB、ngLBは、各々、d線、C線、F線、g線における前記第2のレンズの媒質の屈折率、
    である。
  7. 前記物体側光路と前記像側光路の少なくとも一方に、前記接合レンズが配置されていることを特徴とする請求項1から6のいずれか一項に記載のリレー光学系。
  8. 前記物体側光路と前記像側光路の各々に、前記接合レンズが配置されていることを特徴とする請求項7に記載のリレー光学系。
  9. 非球面を少なくとも1つ含むことを特徴とする請求項1から8のいずれか一項に記載のリレー光学系。
  10. 前記物体側光路に配置された物体側レンズと、
    前記像側光路に配置された像側レンズと、を有し、
    前記物体側レンズは正の屈折力を有し、物体側に凸面を向けて配置され、
    前記像側レンズは正の屈折力を有し、像側に凸面を向けて配置され、
    前記接合レンズは、前記物体側レンズと前記像側レンズとの間に配置されていることを特徴とする請求項1から9のいずれか一項に記載のリレー光学系。
  11. 前記物体側光路において最も像側に位置するレンズ面は、像側に凸の面であり、
    前記像側光路において最も物体側に位置するレンズ面は、物体側に凸の面であることを特徴とする請求項1から10のいずれか一項に記載のリレー光学系。
  12. 以下の条件式(7)を満足することを特徴とする請求項1から11のいずれか一項に記載のリレー光学系。
    0.2<(OBH+IH)/Φce<1.8 (7)
    ここで、
    Φceは、前記接合レンズにおける光線有効径、
    OBHは、最大物体高、
    IHは、最大像高、
    である。
  13. 複数のリレー光学系を有し、
    前記複数のリレー光学系の少なくとも1つが、請求項1から12のいずれか一項に記載のリレー光学系であることを特徴とする像リレーユニット。
  14. 対物光学系と、
    対物光学系の像側に配置された像リレーユニットと、を有し、
    前記像リレーユニットが、請求項13に記載の像リレーユニットであることを特徴とする硬性鏡用光学系。
  15. 前記像リレーユニットの像側に配置された接眼光学系を有することを特徴とする請求項14に記載の硬性鏡用光学系。
  16. 請求項14に記載の硬性鏡用光学系と、
    前記像リレーユニットにより形成された像を撮像する撮像素子と、を備えることを特徴とする硬性鏡。
  17. 請求項15に記載の硬性鏡用光学系と、
    観察対象物を照明するための照明装置と、を有することを特徴とする硬性鏡。
  18. 観察対象物を照明するための照明装置を有することを特徴とする請求項16に記載の硬性鏡。
JP2018523684A 2016-06-17 2017-06-07 リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡 Pending JPWO2017217291A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/068168 2016-06-17
PCT/JP2016/068168 WO2017216970A1 (ja) 2016-06-17 2016-06-17 リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡
PCT/JP2017/021080 WO2017217291A1 (ja) 2016-06-17 2017-06-07 リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡

Publications (1)

Publication Number Publication Date
JPWO2017217291A1 true JPWO2017217291A1 (ja) 2019-04-04

Family

ID=60663406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018523684A Pending JPWO2017217291A1 (ja) 2016-06-17 2017-06-07 リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡

Country Status (3)

Country Link
US (1) US11079588B2 (ja)
JP (1) JPWO2017217291A1 (ja)
WO (2) WO2017216970A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176134A1 (ja) * 2018-03-13 2019-09-19 オリンパス株式会社 リレーシステム
TWI699574B (zh) 2018-10-24 2020-07-21 大立光電股份有限公司 成像透鏡系統、取像裝置及電子裝置
CN110007456A (zh) * 2019-03-25 2019-07-12 上海曙佳科技发展有限公司 一种高分辨率近红外双波段工业内窥高温光学镜头
DE102019115302A1 (de) * 2019-06-06 2020-12-10 Olympus Winter & Ibe Gmbh Umkehrsatz für Endoskop und Endoskop
EP4046562A4 (en) * 2019-10-15 2022-10-19 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. ENDOSCOPE AND ASSOCIATED LENS-STEM SYSTEM
CN110974206A (zh) * 2019-12-20 2020-04-10 华中科技大学苏州脑空间信息研究院 中继成像镜头、无穷远中继成像镜组和大视场成像系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762736B2 (ja) * 1984-09-25 1995-07-05 オリンパス光学工業株式会社 像伝達光学系
US4946267A (en) 1988-05-09 1990-08-07 Jan Hoogland Endoscope relay optics
US4993817A (en) * 1988-05-09 1991-02-19 Jan Hoogland Endoscope relay optics
US5142410A (en) * 1989-04-14 1992-08-25 Olympus Optical Co., Ltd. Image relaying optical system
US5093719A (en) * 1989-10-23 1992-03-03 Manx Optical Corporation Endoscopic gradient index optical systems
US5684629A (en) * 1993-10-05 1997-11-04 Monadnock Optics, Inc. Optical system for endoscope
US5554100A (en) * 1994-03-24 1996-09-10 United States Surgical Corporation Arthroscope with shim for angularly orienting illumination fibers
US5568312A (en) * 1994-10-27 1996-10-22 Symbiosis Corporation Relay lens system for endoscope
US6853485B2 (en) 1994-12-06 2005-02-08 Jan Hoogland Integrated optical system for endoscopes and the like
WO2001063334A1 (en) * 2000-02-23 2001-08-30 Jan Hoogland Integrated optical system for endoscopes and the like
DE19910050C2 (de) * 1999-03-08 2003-08-14 Storz Karl Gmbh & Co Kg Bildübertragungssystem für Endoskope und dgl. Sehrohre sowie Verfahren zur Herstellung eines Bildübertragungssystems
US6490085B1 (en) * 2001-02-21 2002-12-03 Richard Wolf Gmbh Symmetric anastigmatic endoscope relay system
JP2007522507A (ja) * 2004-02-13 2007-08-09 オリンパス ビンテル ウント イーベーエー ゲーエムベーハー 内視鏡リレーレンズ
EP2743748B1 (en) * 2011-08-08 2018-02-21 Olympus Corporation Rigid scope optical assembly and rigid endoscope
DE102012200146B4 (de) 2012-01-05 2021-09-30 Olympus Winter & Ibe Gmbh Umkehrsatz für ein Endoskop und Endoskop
EP2996543B1 (en) 2013-05-15 2021-11-03 Stryker European Operations Limited Highly corrected relay system
JP2015118136A (ja) * 2013-12-17 2015-06-25 コニカミノルタ株式会社 リレー光学系及び硬性鏡

Also Published As

Publication number Publication date
US11079588B2 (en) 2021-08-03
WO2017217291A1 (ja) 2017-12-21
US20190121116A1 (en) 2019-04-25
WO2017216970A1 (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2017217291A1 (ja) リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡
JP6205369B2 (ja) 対物レンズ及びそれを備えた観察装置
JP6397717B2 (ja) 顕微鏡結像レンズ、顕微鏡装置、及び、撮像光学系
US10107993B2 (en) Wide-angle optical system and image pickup apparatus using the same
JP6197147B1 (ja) 対物光学系
US8582217B2 (en) Optical system for endoscope
US9939627B2 (en) Objective optical system for endoscope
CN111886531B (zh) 内窥镜物镜光学系统
US9568726B2 (en) Objective optical system for endoscope
WO2016067838A1 (ja) 内視鏡用対物光学系
US10551617B2 (en) Image pickup apparatus which corrects chromatic aberration in a wide wavelength range, and capsule endoscope
JP5624909B2 (ja) 顕微鏡用対物レンズ及びそれを備えた顕微鏡装置
JP2017111260A (ja) 顕微鏡対物レンズ
JP2009251432A (ja) 内視鏡用対物光学系
WO2017216969A1 (ja) 明るいリレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡
JP6230518B2 (ja) 内視鏡対物光学系
US9804381B2 (en) Endoscope objective optical system
US20210096324A1 (en) Objective optical system, image pickup apparatus, endoscope and endoscope system
JP2019008251A (ja) 内視鏡対物光学系
WO2020194503A1 (ja) 撮像光学系
JP6279178B1 (ja) リレー光学系及びそれを備えた硬性鏡
JP7079895B2 (ja) 内視鏡対物光学系及び内視鏡
US20220026702A1 (en) Endoscope objective optical system and endoscope
JP2018018041A (ja) 大口径広角レンズ
WO2019239578A1 (ja) 対物光学系及びそれを用いた硬性鏡用光学系、硬性鏡