JPWO2017179624A1 - 外科手術システムの制御方法および外科手術システム - Google Patents

外科手術システムの制御方法および外科手術システム Download PDF

Info

Publication number
JPWO2017179624A1
JPWO2017179624A1 JP2018512050A JP2018512050A JPWO2017179624A1 JP WO2017179624 A1 JPWO2017179624 A1 JP WO2017179624A1 JP 2018512050 A JP2018512050 A JP 2018512050A JP 2018512050 A JP2018512050 A JP 2018512050A JP WO2017179624 A1 JPWO2017179624 A1 JP WO2017179624A1
Authority
JP
Japan
Prior art keywords
arm
lattice
point
manipulator arm
surgical instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018512050A
Other languages
English (en)
Other versions
JP6857649B2 (ja
Inventor
平塚 充一
充一 平塚
徹弥 中西
徹弥 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Publication of JPWO2017179624A1 publication Critical patent/JPWO2017179624A1/ja
Application granted granted Critical
Publication of JP6857649B2 publication Critical patent/JP6857649B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40418Presurgical planning, on screen indicate regions to be operated on
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0014Image feed-back for automatic industrial control, e.g. robot with camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

各マニピュレータアームに対応して設定された各格子モデルにおける各格子点の3次元位置に、各マニピュレータアームに保持された各外科用器具の先端部が位置した場合の各マニピュレータアームおよび外科用器具による姿勢をシミュレートし、各姿勢が干渉するような、各格子モデルにおける格子点の組み合わせを抽出し、干渉を生じる組み合わせのデータを記憶部に記憶し、制御部に伝達された動作指令が干渉を生じる組み合わせに該当するか否かを判定し、動作指令が干渉を生じる組み合わせに該当すると判定された場合に、制御部が干渉防止処理を実行する。

Description

本発明は、外科手術システムの制御方法および外科手術システムに関する。
複数のマニピュレータアームを備え、施術者の操作に基づいて当該複数のマニピュレータアームを動かして外科手術を行うマスタ−スレーブ型のシステムが知られている(例えば特許文献1,2等参照)。このようなシステムにおいて、1つの施術部位に対して複数のマニピュレータアームが協動して細かい施術を行うことが可能なように、複数のマニピュレータアームは、互いに非常に近接して配置される。
産業用ロボットでは、ロボットの動きが予め定められているので、複数のアームが存在する場合でも事前に互いのアームが干渉しないような動作順序を設定することで、動作時における干渉を防止することができる。しかし、上記のような外科手術システムにおける複数のマニピュレータアームは、施術者の動作指令に基づいてリアルタイムに動作する必要があるため、産業用ロボットにおいて行われるような事前のシミュレーションを行っても近接するマニピュレータアーム同士の干渉を防止することができない。
これに対して、特許文献1では、複数のマニピュレータアームが患者の体内の処置領域へアクセスするためにマニピュレータアームごとに設けられる開口位置をシミュレーションにより最適化することで干渉を防止することが提案されている。
また、特許文献2では、複数のマニピュレータアームがそれぞれ移動する際に各マニピュレータアームが占有する座標を計算し、当該座標に基づいてマニピュレータアーム同士が干渉するか否かを演算することが提案されている。
米国特許出願公開第2007/0293734号明細書 特開2000−300579号公報
しかし、上記のような態様では、以下のような問題がある。すなわち、特許文献1のような態様では、例えば肋骨の間を外科用器具を通して行う施術の際等、開口位置が自由に設定できない場合には、マニピュレータアーム同士の干渉が生じないように開口位置を最適化することができないおそれがある。また、干渉が生じないように最適化された開口位置が設定できたとしても、当該開口位置は、実際に施術を行う施術者にとって、施術を行い易い位置に位置するとは限らない。
また、特許文献2のような態様は、施術者からの移動指令を受けてから当該移動指令によって動かす外科用器具の現在位置および移動目標位置と、他の外科用器具の現在位置とから各外科用器具を保持するマニピュレータアーム同士が干渉するか否かを計算し、干渉する場合には警告等が行われる。このように、特許文献2のような態様では、外科用器具を保持するマニピュレータアームを移動させる前に、または、移動させながら干渉が生じるか否かを計算する必要がある。このため、干渉が生じると計算された場合に、実際にマニピュレータアームまたは外科用器具同士が接触しないように施術者に事前に警告するためには、マニピュレータアームの移動速度をある程度以下に制限する必要が生じる。したがって、このような態様では、施術者の入力する動作指令に追従できない、または、施術者の入力と外科用器具の実際の動きとに時差が生じるおそれがあり、施術の精度を高くすることができない。
本発明は、以上のような課題を解決すべくなされたものであり、施術に影響を与えることなく複数のマニピュレータアーム同士の干渉を防止することができる外科手術システムの制御方法および外科手術システムを提供することを目的とする。
本発明のある態様は、外科手術システムの制御方法であって、前記外科手術システムは、それぞれの先端部に長軸状の外科用器具を保持可能な器具保持部を有し、それぞれの先端部が基端部に対して3次元的に移動する複数のマニピュレータアームと、前記複数のマニピュレータアームを移動させるための動作指令を入力するための操作装置と、前記動作指令に基づいて前記複数のマニピュレータアームの移動を制御する制御部と、前記制御部にデータを読み出し可能な記憶部と、を備え、前記制御方法は、各マニピュレータアームの先端部と、当該マニピュレータアームに前記外科用器具が保持された際の前記外科用器具の先端部との間の予め定められた位置を拘束点として設定し、前記拘束点における3次元位置を固定した状態で前記マニピュレータアームを3次元的に移動させた場合の前記外科用器具の先端部の3次元的な移動範囲を所定の立体的形状の表面上に配された所定の格子モデルを作成することによって設定し、第1のマニピュレータアームに対応して設定された第1の格子モデルにおける各格子点の3次元位置に、前記第1のマニピュレータアームに保持された第1の外科用器具の先端部が位置した場合の前記第1のマニピュレータアームおよび前記第1の外科用器具による第1の姿勢をシミュレートし、前記第1のマニピュレータアームに隣接する第2のマニピュレータアームに対応して設定された第2の格子モデルにおける各格子点の3次元位置に、前記第2のマニピュレータアームに保持された第2の外科用器具の先端部が位置した場合の前記第2のマニピュレータアームおよび前記第2の外科用器具による第2の姿勢をシミュレートし、前記第1の姿勢と前記第2の姿勢とが干渉するような、前記第1の格子モデルにおける格子点と前記第2の格子モデルにおける格子点との組み合わせを抽出し、前記干渉を生じる組み合わせのデータを前記記憶部に記憶し、前記制御部に伝達された前記動作指令が前記干渉を生じる組み合わせに該当するか否かを判定し、前記動作指令が前記干渉を生じる組み合わせに該当すると判定された場合に、前記制御部が干渉防止処理を実行する。
上記制御方法によれば、外科用器具を患者の体内に挿入するための開口位置に相当する位置が拘束点として設定される。さらに、当該拘束点における3次元位置を固定した状態でマニピュレータアームを3次元的に移動させた場合の外科用器具の先端部の3次元的な移動範囲が所定の立体的形状の表面上に複数の格子点が配された所定の格子モデルを作成することによって設定される。このようなマニピュレータアームごとに設定される格子モデルを構成する各格子点に対応する外科用器具の先端部が位置した場合の各マニピュレータアームおよび外科用器具の姿勢をシミュレートし、近接する第1のマニピュレータアームおよび第1の外科用器具による第1の姿勢と第2のマニピュレータアームおよび第2の外科用器具による第2の姿勢とが干渉するか否かが判定され、干渉する格子点の組み合わせが施術前に外科手術システムの記憶部に記憶される。施術中において、施術者が入力した動作指令に基づく複数のマニピュレータアームの各姿勢の組み合わせが、干渉する格子点の組み合わせに該当すると判定されると、実際に干渉が生じないように干渉防止処理が実行される。このように、第1の姿勢と第2の姿勢とが干渉する組み合わせが、マニピュレータアームごとに設定された移動範囲を規定する複数の格子点について総当たりで判定することにより、事前に抽出される。これにより、施術中においてマニピュレータアームを動かしながら複雑な演算を行うことなく、干渉を回避する処理を行うことができる。したがって、施術に影響を与えることなく複数のマニピュレータアーム同士の干渉を防止することができる。
前記立体的形状は、球であり、前記第1および第2の格子モデルにおける各格子点の位置座標は、対応する前記拘束点と前記球の中心とを結ぶ直線に垂直な前記球の断面の中心点の位置座標と当該断面の半径と各格子モデル上の所定の基準位置からの角度とで定められてもよい。これにより、格子点の位置座標を簡単に定めることができ、干渉が生じる組み合わせの位置の把握を容易に行うことができる。
前記外科手術システムは、所定の報知部を備え、前記干渉防止処理は、前記報知部から警報を出力することを含んでもよい。これにより、干渉が生じる動作指令が入力されたことを施術者に迅速に知らせることができる。
前記干渉防止処理は、前記制御部が前記第1のマニピュレータアームおよび前記第2のマニピュレータアームの少なくとも一方を、前記干渉を生じる組み合わせの位置に移動させないようにしてもよい。これにより、干渉が生じる動作指令が入力された場合に、実際に干渉が生じないようにすることができる。
前記複数のマニピュレータアームは、当該マニピュレータアームの先端部の位置を変化させることなく姿勢を変えることができる冗長軸を含む7軸関節アームとして構成され、前記干渉を生じる組み合わせが抽出された場合に、各マニピュレータアームの先端部の位置を変化させずに、前記第1の姿勢および前記第2の姿勢の少なくとも何れか一方の姿勢を変化させて干渉が生じるか否かの再判定を行ってもよい。これにより、干渉が生じる組み合わせを事前になるべく少なくすることができる。
前記第1の格子モデルおよび前記第2の格子モデルは、それぞれ、中心位置が前記立体的形状の中心位置と同じ位置に配置され、前記立体的形状より小さい相似形状の表面上に配された格子点を含んでもよい。これにより、外科用器具の先端部が移動範囲の内部に位置した場合のマニピュレータアームおよび外科用器具の姿勢も考慮することができ、より精密な干渉判定を行うことができる。
本発明の他の態様に係る外科手術システムの制御方法は、前記外科手術システムは、それぞれが外科用器具を保持可能な器具保持部を有する複数のマニピュレータアームと、動作指令に基づいて前記複数のマニピュレータアームの移動を制御する制御部と、前記制御部に接続された記憶部と、を備え、前記制御方法は、第1のマニピュレータアームに保持された第1の外科用器具の位置として第1の基準点を設定し、前記第1の基準点の移動範囲内に複数の点が配された第1の点群モデルを設定し、前記第1の点群モデルにおける点の位置に前記第1の基準点が位置した場合の前記第1のマニピュレータアームおよび前記第1の外科用器具の第1の姿勢をシミュレートし、第2のマニピュレータアームに保持された第2の外科用器具の位置として第2の基準点を設定し、前記第2の基準点の移動範囲内に複数の点が配された第2の点群モデルを設定し、前記第2の点群モデルにおける点の位置に前記第2の基準点が位置した場合の前記第2のマニピュレータアームおよび前記第2の外科用器具の第2の姿勢をシミュレートし、前記第1の姿勢にある前記第1のマニピュレータアームおよび前記第1の外科用器具と前記第2の姿勢にある前記第2のマニピュレータアームおよび前記第2の外科用器具とが干渉するような、前記第1の点群モデルにおける点と前記第2の点群モデルにおける点との組み合わせのデータを前記記憶部に記憶し、前記制御部に伝達された前記動作指令に対応する前記第1の基準点の位置と前記第2の基準点の位置が、記憶された前記組み合わせのデータに該当するか否かを判定し、該当すると判定された場合に、前記制御部が干渉防止処理を実行する。
上記制御方法によれば、外科用器具の位置が基準点として設定される。さらに、当該基準点の移動範囲として複数の点が配された点群モデルを用いて複数のマニピュレータアームおよび外科用器具の位置がシミュレートされる。これにより、第1のマニピュレータアームおよび第1の外科用器具の第1の姿勢と第2のマニピュレータアームおよび第2の外科用器具の第2の姿勢とが干渉するか否かが判定され、干渉する点の組み合わせが施術前に外科手術システムの記憶部に記憶される。施術中において、施術者が入力した動作指令に基づく複数のマニピュレータアームの各姿勢の組み合わせが、干渉する点の組み合わせに該当すると判定されると、実際に干渉が生じないように干渉防止処理が実行される。このように、第1の姿勢と第2の姿勢とが干渉する組み合わせが、マニピュレータアームごとに設定された移動範囲を規定する点群モデルを用いて判定される。これにより、施術中においてマニピュレータアームを動かしながら複雑な演算を行うことなく、干渉を回避する処理を行うことができる。したがって、施術に影響を与えることなく複数のマニピュレータアーム同士の干渉を防止することができる。
本発明の他の態様に係る外科手術システムは、それぞれの先端部に長軸状の外科用器具を保持可能な器具保持部を有し、それぞれの先端部が基端部に対して3次元的に移動する複数のマニピュレータアームと、前記複数のマニピュレータアームを移動させるための動作指令を入力するための操作装置と、前記動作指令に基づいて前記複数のマニピュレータアームの移動を制御する制御部と、前記制御部にデータを読み出し可能な記憶部と、を備え、前記記憶部は、第1のマニピュレータアームに対応して設定され、前記第1のマニピュレータアームに保持された第1の外科用器具の先端部の3次元的な移動範囲を規定する所定の立体的形状の表面上に複数の格子点が配された第1の格子モデルにおける各格子点の3次元位置に、前記第1の外科用器具の先端部が位置した場合の前記第1のマニピュレータアームおよび前記第1の外科用器具による第1の姿勢と、前記第1のマニピュレータアームに隣接する第2のマニピュレータアームに対応して設定され、前記第2のマニピュレータアームに保持された第2の外科用器具の先端部の3次元的な移動範囲を規定する前記立体的形状の表面上に複数の格子点が配された第2の格子モデルにおける各格子点の3次元位置に、前記第2の外科用器具の先端部が位置した場合の前記第2のマニピュレータアームおよび前記第2の外科用器具による第2の姿勢とが干渉するような、前記第1の格子モデルにおける格子点と前記第2の格子モデルにおける格子点との組み合わせのデータを記憶し、前記制御部は、受信した前記動作指令が前記干渉を生じる組み合わせに該当するか否かを判定し、前記動作指令が前記干渉を生じる組み合わせに該当すると判定された場合に、干渉防止処理を実行する。
上記構成によれば、第1のマニピュレータアームに対応して設定された第1の格子モデルにおける各格子点の3次元位置に、前記第1のマニピュレータアームに保持された第1の外科用器具の先端部が位置した場合の前記第1のマニピュレータアームおよび前記第1の外科用器具による第1の姿勢と、前記第1のマニピュレータアームに隣接する第2のマニピュレータアームに対応して設定された第2の格子モデルにおける各格子点の3次元位置に、前記第2のマニピュレータアームに保持された第2の外科用器具の先端部が位置した場合の前記第2のマニピュレータアームおよび前記第2の外科用器具による第2の姿勢とが干渉するような、前記第1の格子モデルにおける格子点と前記第2の格子モデルにおける格子点との組み合わせが予め記憶部に記憶されている。施術中において、施術者が入力した動作指令に基づく複数のマニピュレータアームの各姿勢の組み合わせが、干渉する格子点の組み合わせに該当すると判定されると、実際に干渉が生じないように干渉防止処理が実行される。このように、第1の姿勢と第2の姿勢とが干渉する組み合わせが、マニピュレータアームごとに設定された移動範囲を規定する複数の格子点について総当たりで判定することにより、事前に抽出される。これにより、施術中においてマニピュレータアームを動かしながら複雑な演算を行うことなく、干渉を回避する処理を行うことができる。したがって、施術に影響を与えることなく複数のマニピュレータアーム同士の干渉を防止することができる。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明は、施術に影響を与えることなく複数のマニピュレータアーム同士の干渉を防止することができるという効果を奏する。
図1は本発明の一実施の形態に係る外科手術システムの全体的な構成を示す概略図である。 図2は図1の外科手術システムにおける患者側システムのマニピュレータアームの全体的な構成を示す概略図である。 図3は図1に示す外科手術システムのマニピュレータアームの制御系統の概略構成を示すブロック図である。 図4は本実施の形態における干渉判定処理用データの作成処理の流れを説明するフローチャートである。 図5は図4において作成される第1の格子モデルおよび第2の格子モデルの例を示す概念図である。 図6は本実施の形態における干渉判定処理の流れを説明するフローチャートである。 図7は本実施の形態の変形例に係る格子モデルの例を示す概念図である。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
図1は、本発明の一実施の形態に係る外科手術システム100の全体的な構成を示す概略図である。図1に示すように、外科手術システム100は、ロボット支援手術やロボット遠隔手術などのように、医師などの施術者Oが患者側システム1を用いて患者Pに内視鏡外科手術を施すシステムである。
外科手術システム100は、患者側システム1と、この患者側システム1を操る操作装置2とを備えている。操作装置2は患者側システム1から離れて配置され、患者側システム1は操作装置2によって遠隔操作される。施術者Oは患者側システム1に行わせる動作を操作装置2に入力し、操作装置2はその動作指令を患者側システム1に送信する。そして、患者側システム1は、操作装置2から送信された動作指令を受け取り、この動作指令に基づいて患者側システム1が具備する内視鏡アセンブリ41やインストゥルメント(外科用器具)42などを動作させる。
操作装置2は、外科手術システム100と施術者Oのインターフェースを構成し、患者側システム1を操作するための装置である。操作装置2は、手術室内において手術台111の傍らにまたは手術台111から離れて、あるいは、手術室外に設置されている。操作装置2は、施術者Oが動作指令を入力するための操作用マニピュレータアーム51および操作ペダル52などの操作入力部50と、内視鏡アセンブリ41で撮影された画像を表示するモニタ53とを含む。施術者Oは、モニタ53で患部を視認しながら、操作入力部50を操作して操作装置2に動作指令を入力する。操作装置2に入力された動作指令は、有線または無線により患者側システム1の後述するコントローラ6に伝達される。
患者側システム1は、外科手術システム100と患者Pとのインターフェースを構成する。患者側システム1は、手術室内において患者Pが横たわる手術台111の傍らに配置されている。手術室内は滅菌された滅菌野である。
患者側システム1は、ポジショナ7と、ポジショナ7の先端部に取り付けられたプラットホーム5と、プラットホーム5に着脱可能に取り付けられた複数の患者側マニピュレータアーム(以下、単に「アーム3」という)とを備えている。ポジショナ7は、水平多関節形ロボットとして構成されており、手術室の所定位置に載置されたベース70に対してプラットホーム5の位置を3次元的に移動させることができる。ポジショナ7およびプラットホーム5は、滅菌ドレープ9で覆われ、ポジショナ7およびプラットホーム5が手術室内の滅菌野から遮蔽される。
複数のアーム3のうち1本のアーム3Aの先端部には、内視鏡アセンブリ41が保持される。複数のアーム3のうち余のアーム3Bの先端部には、インストゥルメント42が着脱可能に保持される。以下、内視鏡アセンブリ41が取り付けられたアーム3を「カメラアーム3A」ということがあり、インストゥルメント42が取り付けられたアーム3を「インストゥルメントアーム3B」ということがある。本実施の形態における患者側システム1は、1本のカメラアーム3Aと3本のインストゥルメントアーム3Bとの、合わせて4本のアーム3を備えている。
患者側システム1は、コントローラ6により動作制御される。コントローラ6は、例えばマイクロコントローラ等のコンピュータにより構成される。
上記の患者側システム1において、プラットホーム5は、複数のアーム3の拠点となる「ハブ」としての機能を有している。本実施形態では、ポジショナ7およびプラットホーム5によって、複数のアーム3を移動可能に支持するマニピュレータアーム支持体Sが構成されている。ただし、マニピュレータアーム支持体Sは少なくともプラットホーム5を含んでいればよく、例えば、ポジショナ7に代えて直動レール、昇降装置、あるいは、天井または壁に取り付けられたブラケットに支持されたプラットホーム5によってマニピュレータアーム支持体Sが構成されてもよい。
上記の患者側システム1では、ポジショナ7から内視鏡アセンブリ41または各インストゥルメント42まで、要素が一連に繋がっている。本明細書では、上記一連の要素において、ポジショナ7(より詳細には、ポジショナ7の手術室の床との接触部)へ向かう側の端部を「基端部」といい、その反対側の端部を「先端部」ということとする。
インストゥルメント42は、その基端部に設けられた駆動ユニット45と、その先端部に設けられたエンドエフェクタ(処置具)44と、駆動ユニット45とエンドエフェクタ44の間を繋ぐ細長いシャフト43とを有している(いずれも、図2参照)。インストゥルメント42には長軸方向Dが規定されており、駆動ユニット45、シャフト43、およびエンドエフェクタ44は長軸方向Dに沿って配置される。インストゥルメント42のエンドエフェクタ44は、動作する関節を有する器具(例えば、鉗子、ハサミ、グラスパー、ニードルホルダ、マイクロジセクター、ステープルアプライヤー、タッカー、吸引洗浄ツール、スネアワイヤ、および、クリップアプライヤー等)、ならびに、関節を有しない器具(例えば、切断刃、焼灼プローブ、洗浄器、カテーテル、および、吸引オリフィス等)を含む群より選択される。本明細書および特許請求の範囲における「長軸状の外科用器具」には、内視鏡アセンブリ41および各インストゥルメント42の双方が含まれる。
上記構成の患者側システム1を用いた施術において、まず、操作装置2から動作指令を受けたコントローラ6が、プラットホーム5と手術台111または患者Pとが所定の位置関係となるように、ポジショナ7を動作させてプラットホーム5の位置決めを行う。次に、コントローラ6が、患者Pの体表に留置されたスリーブ(カニューレスリーブ)110と内視鏡アセンブリ41および各インストゥルメント42とが所定の初期位置関係となるように、各アーム3を動作させて内視鏡アセンブリ41および各インストゥルメント42の位置決めを行う。なお、ポジショナ7の位置決め動作と各アーム3の位置決め動作とは同時に行われてもよい。そして、コントローラ6は、原則としてポジショナ7を静止させた状態で、操作装置2からの動作指令に応じて、各アーム3を動作させて内視鏡アセンブリ41および各インストゥルメント42を適宜変位および姿勢変化させつつ、各インストゥルメント42を動作させて施術する。
ここで、アーム3の構成について詳細に説明する。図2は、図1の外科手術システムにおける患者側システムのマニピュレータアームの全体的な構成を示す概略図である。図2には、患者側システム1が備える複数のアーム3のうちの1本の概略構成が示されている。図2に示すように、アーム3は、アーム本体30と、アーム本体30の先端部に連結された並進アーム35とを備え、基端部に対し先端部を3次元空間内で移動させることができるように構成されている。なお、本実施の形態では、患者側システム1が具備する複数のアーム3はいずれも同様または類似の構成を有するが、複数のアーム3のうち少なくとも1本が他のアームと異なる構成を有してもよい。アーム3の先端部には、長軸状の外科用器具を保持可能なホルダ(器具保持部)36が設けられる。本実施の形態において、並進アーム35の先端部にホルダ36が設けられる。
アーム3がインストゥルメントアーム3Bの場合、ホルダ36には、インストゥルメント42が着脱可能に保持される。ホルダ36に保持されたインストゥルメント42のシャフト43は、長軸方向Dに沿って延在する。また、アーム3がカメラアーム3Aの場合、ホルダ36には、内視鏡アセンブリ41が着脱可能に保持される。ここで、カメラアーム3Aに設けるホルダ36は、インストゥルメントアーム3Bに設けるホルダ36とは異なる形状または構造を有していてもよい。あるいは、手術中に内視鏡アセンブリ41を交換することは稀であるので、カメラアーム3Aに内視鏡アセンブリ41が固定されていてもよい。
アーム3は、プラットホーム5に対し着脱可能に構成されている。アーム3は、洗浄処理及び滅菌処理のための耐水性、耐熱性、及び耐薬品性を備えている。アーム3の滅菌処理には様々な方法があるが、例えば、高圧蒸気滅菌法、EOG滅菌法、消毒薬による化学滅菌法などが選択的に用いられ得る。
アーム本体30は、プラットホーム5に着脱可能に取り付けられるベース80と、ベース80から先端部に向けて順次連結された第1リンク81〜第6リンク86とを含む。より詳細には、ベース80の先端部に、捩り関節J31を介して第1リンク81の基端部が連結されている。第1リンク81の先端部に、捩り関節J32を介して第2リンク82の基端部が連結されている。第2リンク82の先端部に、曲げ関節J33を介して第3リンク83の基端部が連結されている。第3リンク83の先端部に、捩り関節J34を介して第4リンク84の基端部が連結されている。第4リンク84の先端部に、曲げ関節J35を介して第5リンク85の基端部が連結されている。第5リンク85の先端部に、捩り関節J36を介して第6リンク86の基端部が連結されている。第6リンク86の先端部に、曲げ関節J37を介して並進アーム35の基端部が連結されている。これにより、アーム3は、冗長軸(本実施の形態においては捩り関節J32)を含む7軸関節アームとして構成される。したがって、アーム3は、当該アーム3の先端部の位置を変化させることなく姿勢を変えることができる。
アーム本体30の外殻は、主にステンレスなどの耐熱性及び耐薬品性を有する部材で形成されている。また、リンク同士の連結部には、耐水性を備えるためのシール(図示せず)が設けられている。このシールは、高圧蒸気滅菌法に対応する耐熱性や、消毒薬に対する耐薬品性を備えている。なお、リンク同士の連結部において、連結される一方のリンクの端部の内側に他方のリンクの端部が挿入されており、これらのリンクの端部同士の間を埋めるようにシールが配置されることによって、シールが外観から隠蔽されている。これにより、シールとリンクとの間から水、薬液、蒸気の浸入が抑制されている。
並進アーム35は、並進アーム35の先端部に取り付けられたホルダ36を長軸方向Dに並進移動させることにより、ホルダ36に取り付けられたインストゥルメント42をシャフト43の延在方向に並進移動させる機構である。
並進アーム35は、アーム本体30の第6リンク86の先端部に、曲げ関節J37を介して連結される基端側リンク61と、先端側リンク62と、基端側リンク61と先端側リンク62を連結する連結軸63と、連動機構(図示せず)とを有する。また、並進アーム35の先端部、すなわち先端側リンク62の先端部には、回動軸68が設けられている。並進アーム35の駆動源は、アーム本体30の先端部すなわち第6リンク86に設けられている。連結軸63は、曲げ関節J37と平行に配置され、先端側リンク62は、基端側リンク61に対して連結軸63回りに回動可能に構成される。連動機構は、公知のリンク機構を採用可能であり、例えばプーリおよびタイミングベルトを用いた構成でもよいし、ギアトレインを含む機構でもよい。
先端側リンク62の基端部(第6リンク86との連結部)には、曲げ関節J37と同軸に配置される第1並進アーム駆動軸および第2並進アーム駆動軸(ともに図示せず)が設けられている。第2並進アーム駆動軸は、連動機構に連結されており、第2並進アーム駆動軸が第1並進アーム駆動軸に対して差動することにより、基端側リンク61の曲げ関節J37回りの回動角度、先端側リンク62の連結軸63回りの回動角度、および、ホルダ36の回動軸68回りの回動角度が所定の比率(例えば1:2:1)を保持するように、並進アーム35が並進動作する。第1並進アーム駆動軸および第2並進アーム駆動軸が同期して回動することにより、並進アーム35全体がアーム本体30に対して曲げ関節J37回りに回動する。
図3は、図1に示す外科手術システムのマニピュレータアームの制御系統の概略構成を示すブロック図である。上記構成のアーム本体30には、各関節J31〜J36に対応して、駆動用のサーボモータM31〜M36、サーボモータM31〜M36の回転角を検出するエンコーダE31〜E36、および、サーボモータM31〜M36の出力を減速させてトルクを増大させる減速機(図示せず)が設けられる。なお、図3では、関節J31〜J36のうち、捩り関節J31と捩り関節J36との制御系統が代表的に示され、その他の関節J33〜J35の制御系統は省略されている。さらに、アーム本体30には、並進アーム35が並進動作または回動動作する関節J37に対応して、第1並進アーム駆動軸を駆動するためのサーボモータM37aおよび第2並進アーム駆動軸を駆動するためのサーボモータM37bと、サーボモータM37a,M37bの回転角を検出するエンコーダE37a,E37bと、サーボモータM37a,M37bの出力を減速させてトルクを増大させる減速機(図示せず)とが設けられる。
なお、エンコーダE31〜E36,E37a,E37bは、サーボモータM31〜M36,M37a,M37bの回転位置(回転角)を検出する回転位置検出手段の一例として設けられており、エンコーダE31〜E36,E37a,E37bに代えてレゾルバなどの回転位置検出手段が用いられてもよい。また、アーム3の駆動系統の上記の各要素およびこれらのための配線ならびに制御部は、耐高温材料で構成され、滅菌処理のための耐熱性が備えられている。
コントローラ6は、動作指令に基づいて複数のアーム3の移動を制御するアーム制御部601を含む。アーム制御部601にはサーボ制御部C31〜C36,C37a,C37bが電気的に接続され、図示されない増幅回路などを介してサーボモータM31〜M36,M37a,M37bが電気的に接続されている。
上記構成において、操作装置2に入力された動作指令に基づいて、アーム制御部601にアーム3の先端部の位置姿勢指令が入力される。アーム制御部601は、位置姿勢指令とエンコーダE31〜E36,E37a,E37bで検出された回転角とに基づいて、位置指令値を生成して出力する。この位置指令値を取得したサーボ制御部C31〜C36,C37a,C37bは、エンコーダE31〜E36,E37a,E37bで検出された回転角及び位置指令値に基づいて駆動指令値(トルク指令値)を生成して出力する。この駆動指令値を取得した増幅回路は、駆動指令値に対応した駆動電流をサーボモータM31〜M36,M37a,M37bへ供給する。このようにして、アーム3の先端部が、位置姿勢指令と対応する位置及び姿勢に到達するように、各サーボモータM31〜M36,M37a,M37bがサーボ制御される。
また、コントローラ6には、アーム制御部601にデータを読み出し可能な記憶部602が設けられ、操作装置2を介して入力された手術情報が予め記憶されている。この手術情報には、手術で使用される複数のアーム3の組み合わせが含まれている。
また、記憶部602には、アーム3の先端部に保持される外科用器具(内視鏡アセンブリ41または各インストゥルメント42)の長軸方向Dに沿った長さ等の情報が記憶されている。これにより、アーム制御部601は、アーム3の先端部の位置姿勢指令に基づいて、当該アーム3の先端部に保持された外科用器具の先端部の位置を把握可能となっている。
外科手術システム100を用いた施術中において、アーム制御部601は、操作装置2からの動作指令に基づいて、複数のアーム3同士が干渉を生じるか否かを判定する干渉判定処理を行い、干渉判定処理において、干渉が生じると判定された場合に、干渉防止処理を実行する。
記憶部602には、干渉判定処理を行うための干渉判定処理用データが記憶される。干渉判定処理用データは、第1のアーム(例えばカメラアーム3A、以下、第1のアーム3Aとも称する)に対応して設定され、第1のアーム3Aに保持された第1の外科用器具(例えば内視鏡アセンブリ41)の先端部の3次元的な移動範囲を規定する所定の立体的形状の表面上に複数の点(格子点)が配された第1の点群モデル(第1の格子モデル)における各点の3次元位置に、第1の外科用器具41の先端部が位置した場合の第1のアーム3Aおよび第1の外科用器具41による第1の姿勢と、第1のアーム3Aに隣接する第2のアーム(例えばインストゥルメントアーム3B、以下、第2のアーム3Bとも称する)に対応して設定され、第2のアーム3Bに保持された第2の外科用器具(例えばインストゥルメント42)の先端部の3次元的な移動範囲を規定する立体的形状の表面上に複数の点(格子点)が配された第2の点群モデル(第2の格子モデル)における各点の3次元位置に、第2の外科用器具42の先端部が位置した場合の第2のアーム3Bおよび第2の外科用器具42による第2の姿勢とが干渉するような、第1の格子モデルにおける点と第2の格子モデルにおける点との組み合わせのデータとして構成される。
以下、干渉判定処理用データの作成処理について説明する。図4は、本実施の形態における干渉判定処理用データの作成処理の流れを説明するフローチャートであり、図5は、図4において作成される第1の格子モデルおよび第2の格子モデルの例を示す概念図である。以下に示す干渉判定処理用データは、記憶部602に記憶されているデータ作成プログラムに基づいてコントローラ6において作成され、作成されたデータが記憶部602に記憶されてもよいし、外部のコンピュータにおいて作成され、当該外部のコンピュータで作成されたデータを記憶部602に記憶させてもよい。
干渉判定処理用データの作成処理において、まず、各アーム3の先端部Pri(iは複数のアーム3の識別番号)と、当該アーム3に外科用器具が保持された際の外科用器具の先端部Pmiとの間の予め定められた位置(すなわち、外科用器具上の所定位置)を拘束点Pfiとして設定する(ステップSA1)。この拘束点Pfiの3次元位置は、患者Pに留置されたスリーブ110を介して患者Pの体内に外科用器具を挿通した際の患者Pの開口位置を想定して設定される。
次に、外科用器具の位置(例えば外科用器具の先端部の位置)を基準点に設定する。その上で、拘束点Pfiにおける3次元位置を固定した状態でアーム3を3次元的に移動させた場合の外科用器具の基準点の3次元的な移動範囲を所定の立体的形状として設定する(ステップSA2)。立体的形状は、外科用器具を拘束点Pfiに位置する患者Pの開口位置から患者Pの体内に挿通した状態で外科用器具の先端部が位置するおおよその境界位置を規定する。
本実施の形態において、所定の立体的形状は、球(第1の仮想球Q1i)である。さらに、移動範囲として設定された立体的形状の表面上に複数の点Pliが配された所定の点群モデルLMiを作成する(ステップSA3)。例えば、第1の仮想球Q1iの表面に配された複数の点Pliは、当該球の中心と拘束点Pfiとを結ぶ直線CLiと当該球の表面とが交差する2つの点を極点Pni,Psiとし、第1の仮想球Q1iの表面上を通って極点Pni,Psi同士を結ぶ複数の経線と、第1の仮想球Q1iの中心と拘束点Pfiとを結ぶ直線CLiに垂直な断面およびこれに平行な断面の円周部分によって規定される複数の緯線との交点(格子点)として設定される。この場合、点群モデルLMiは、上記複数の格子点Pliが配された格子モデルLMiとして設定される。
複数の点群モデルLMiの各点Pliの3次元座標が記憶部602に記憶される。移動範囲として球状の格子モデルが設定される本実施の形態において、格子モデルLMiにおける各格子点Pliの位置座標は、例えば対応する拘束点Pfiと球の中心とを結ぶ直線CLiに垂直な球の断面の中心点Pciの位置座標と当該断面の半径riと格子モデルLMi上の所定の基準位置Biからの角度θiとで定められる。これにより、格子点Pliの位置座標を簡単に定めることができ、後述する干渉が生じる組み合わせの位置の把握を容易に行うことができる。
各アーム3に対応する格子点Pliおよび格子モデルLMiは、各アーム3が保持する外科用器具の内容、手術内容、施術部位、および/または、患者Pのサイズ等に応じて個別に設定され得る。このため、隣接する格子モデルLMi同士は、少なくとも一部が重なる場合もあるし、重ならない場合もあり得る。また、各格子モデルLMiの大きさ(第1の仮想球Q1iの半径)および対応する拘束点Pfiと格子モデルLMi(第1の仮想球Q1iの中心)との距離は、アーム3が保持する外科用器具の種類またはサイズ等によって異なり得る。
次に、各アーム3に対応して設定された各格子モデルLMiにおける各格子点Pliの3次元位置に、対応する外科用器具の基準点(先端部)が位置した場合のアーム3および外科用器具による姿勢をシミュレーションにより取得する(ステップSA4)。取得する姿勢には、アーム3の各関節J31〜J37の3次元位置、アーム3の先端部(ホルダ36)の3次元位置、ホルダ36に保持される外科用器具の先端部の3次元位置、アーム3の各部におけるアーム延出方向に垂直な断面の大きさ(例えば直径)等が含まれ得る。例えば、姿勢を取得のためのシミュレーションは、アーム3および外科用器具と同じ形状のコンピュータグラフィックス(CG)モデルを用いて行われる。これに代えて、数値計算のみのシミュレーションにより姿勢を取得することとしてもよい。
例えば、第1のアーム3Aに対応して設定された第1の格子モデルLM1における各格子点Pl1の3次元位置に、第1のアーム3Aに保持された内視鏡アセンブリ41の先端部が位置した場合の第1のアーム3Aおよび内視鏡アセンブリ41による第1の姿勢をシミュレートする。また、第1のアーム3Aに隣接する第2のアーム3Bに対応して設定された第2の格子モデルLM2における各格子点Pl2の3次元位置に、第2のアーム3Bに保持されたインストゥルメント42の先端部が位置した場合の第2のアーム3Bおよびインストゥルメント42による第2の姿勢をシミュレートする。
次に、隣接するアーム3A,3Bのそれぞれに設定された格子モデルLM1,LM2におけるすべての格子点の組み合わせ(Pl1,Pl2)について第1の姿勢と第2の姿勢とが干渉するか否かを判定する(ステップSA5)。なお、各格子点Pliに外科用器具の先端部が位置した場合のアーム3および外科用器具の姿勢が自己干渉するか否かの判定も併せて行う。例えば、上記CGモデルを設定位置に配置して複数のCGモデルが干渉するか否かの判定が行われる。このような判定は、複数のアーム3のうち干渉する可能性のある2つのアーム3がとり得るすべての姿勢について総当たりで行われる。すなわち、このような判定は、各アーム3がとり得るすべての格子点Pliの組み合わせについて行われる。
例えば、第1の格子モデルLM1の一の格子点Pl1における第1のアーム3Aおよび内視鏡アセンブリ41による第1の姿勢と、第2の格子モデルLM2のすべての格子点Pl2における第2のアーム3Bおよびインストゥルメント42による第2の姿勢との間で干渉するか否かの判定を行う。同様に、第1の格子モデルLM1の他の格子点Pl1における第1の姿勢と、第2の格子モデルLM2のすべての格子点Pl2における第2の姿勢との間で干渉するか否かの判定を行う。このような判定をすべての第1の格子モデルLM1のすべての格子点Pl1について行うことで、総当たりの判定が行われる。
このような判定の結果、第1の姿勢にある第1のアーム3Aおよび第1の外科用器具(内視鏡アセンブリ41)と、第2の姿勢にある第2のアーム3Bおよび第2の外科用器具(インストゥルメント42)とが干渉するような、第1の格子モデルLM1における格子点と第2の格子モデルLM2における格子点との組み合わせのデータを記憶部602に記憶する。本実施の形態では、第1の姿勢と第2の姿勢とが干渉するような、第1の格子モデルLM1における格子点Pl1と第2の格子モデルLM2における格子点Pl2との組み合わせを抽出し(ステップSA6)、当該干渉を生じる組み合わせ(Pl1,Pl2)のデータを干渉判定処理用データとして記憶部602に記憶する(ステップSA7)。
このようにして記憶部602に記憶された干渉判定処理用データは、例えば、干渉する格子点の組み合わせ(Pl1,Pl2)がリストとして記憶されるものでもよいし、第1の格子モデルLM1の格子点Pl1と第2の格子モデルLM2の格子点Pl2とのすべての組み合わせについて干渉するか否かのデータが当該格子点の組み合わせとともに対応付けられたデータマップとして記憶されるものでもよい。
なお、各格子点Pl1における第1の姿勢および各格子点Pl2における第2の姿勢をそれぞれシミュレーションにより取得した後、格子点Pl1と格子点Pl2とのすべての組み合わせについて第1の姿勢と第2の姿勢とが干渉するか否かを判定してもよいし、一の格子点Pl1における第1の姿勢および一の格子点Pl2における第2の姿勢を取得するたびに、当該第1の姿勢と第2の姿勢とが干渉するか否かを判定してもよい。
また、干渉を生じる組み合わせが抽出された場合に、各アーム3の先端部の位置を変化させずに、第1の姿勢および第2の姿勢の少なくとも何れか一方の姿勢を変化させて干渉が生じるか否かの再判定を行ってもよい。再判定したした結果、干渉が生じない場合には、姿勢変化後の第1の姿勢および第2の姿勢を対応する各格子点Pliにおける各姿勢として記憶部602に記憶し、干渉が生じる組み合わせとしては記憶しない。これにより、干渉が生じる組み合わせを事前になるべく少なくすることができる。
アーム制御部601は、上記のような干渉判定処理用データを用いて干渉判定処理を実行する。図6は、本実施の形態における干渉判定処理の流れを説明するフローチャートである。
アーム制御部601は、アーム制御部601に伝達された操作装置2からの動作指令が干渉を生じる組み合わせに該当するか否かを判定する(ステップSB1)。例えば上記例のように、インストゥルメント42(図6においては外科用器具Bと表記する)が保持された第2のアーム3Bを移動させる動作指令が含まれる場合、アーム制御部601は、第2のアーム3Bの先端部の移動目標位置から当該第2のアーム3Bが保持しているインストゥルメント42の先端部の移動目標位置を算出し(ステップSB11)、対応する格子モデルLM2の格子点Pl2のうち、当該インストゥルメント42の先端部の3次元位置が近接する格子点Pl2を特定する(ステップSB12)。例えば、インストゥルメント42の先端部の移動目標位置に最も距離が近い格子点Pl2が特定される。または、例えば、インストゥルメント42の先端部の現在位置から移動目標位置までの移動経路上にある格子点Pl2のうち、最も移動目標位置に近い格子点Pl2が特定される。
さらに、アーム制御部601は、移動する第2のアーム3Bに近接する第1のアーム3Aに保持された内視鏡アセンブリ41(図6においては外科用器具Aと表記する)の先端部の3次元位置を算出し(ステップSB13)、対応する格子モデルLM1の格子点Pl1のうち、当該内視鏡アセンブリ41の先端部の3次元位置が近接する格子点Pl1を特定する(ステップSB14)。そして、アーム制御部601は、記憶部602から特定された格子点Pl1および格子点Pl2の組み合わせが干渉を生じる組み合わせに含まれているか否かを判定する(ステップSB15)。
なお、第1のアーム3Aが移動しない場合には、アーム制御部601は、前回までの動作指令において当該第1のアーム3Aを移動させる動作指令を受けた際に、内視鏡アセンブリ41の先端部の3次元位置が近接する格子点Pl1を特定し、当該特定された格子点PL1を、第1の格子モデルLM1における現在位置として記憶部602に記憶しておいてもよい。この場合、ステップSB13およびSB14が先に実行されている。さらに、干渉の判定時において、アーム制御部601は、ステップSB1bの後、ステップSB13およびSB14の代わりに、第1の格子モデルLM1における現在位置を示す格子点PL1を記憶部602より読み出して、ステップSB15における判定を行う。
また、近接するアーム3同士が同時に移動する場合には、アーム制御部601は、各アーム3の移動目標位置から当該アーム3に保持される外科用器具の先端部の移動目標位置をそれぞれ算出し、対応する格子モデルLMiにおける格子点Pliを特定する。
アーム制御部601は、動作指令が干渉を生じる組み合わせに該当すると判定された場合(ステップSB15でYes)、所定の干渉防止処理を実行する(ステップSB2)。一方、動作指令が干渉を生じる組み合わせに該当しないと判定された場合(ステップSB15でNo)、アーム制御部601は、動作指令の内容を実行する(ステップSB3)。
なお、上記例においては、第2のアームとして例示したインストゥルメント42が保持されたインストゥルメントアーム3Bを動かす場合に、第1のアームとして例示した内視鏡アセンブリ41が保持されたカメラアーム3Aとの干渉を判定する例について説明したが、カメラアーム3Aを動かす場合の干渉判定、インストゥルメント42が保持されたアーム3同士の干渉判定等にも適用可能である。すなわち、上記干渉判定は、動かすアーム3に保持される外科用器具の種類、2つのアーム間における外科用器具の異同に拘わらず適用可能である。
上記態様によれば、外科用器具の位置が基準点として設定される。さらに、当該基準点の移動範囲として複数の格子点Pliが配された格子モデルLMiを用いて複数のマニピュレータアームおよび外科用器具の位置がシミュレートされる。特に、本実施の形態によれば、外科用器具を患者Pの体内に挿入するための開口位置に相当する位置が拘束点Pfiとして設定される。さらに、当該拘束点Pfiにおける3次元位置を固定した状態でアーム3を3次元的に移動させた場合の外科用器具の先端部の3次元的な移動範囲が所定の立体的形状の表面上に複数の格子点Pliが配された所定の格子モデルLMiとして設定される。このようなアーム3ごとに設定される格子モデルLMiを構成する各格子点Pliに、対応する外科用器具の先端部が位置した場合の各アーム3および外科用器具の姿勢をシミュレートし、近接する第1のアームおよび第1の外科用器具による第1の姿勢と第2のアームおよび第2の外科用器具による第2の姿勢とが干渉するか否かが判定され、干渉する格子点の組み合わせ(Pl1,Pl2)が施術前に外科手術システム100の記憶部602に記憶される。
施術中において、施術者Oが入力した動作指令に基づく複数のアーム3の各姿勢の組み合わせが、干渉する格子点の組み合わせ(Pl1,Pl2)に該当すると判定されると、実際に干渉が生じないように干渉防止処理が実行される。このように、第1の姿勢と第2の姿勢とが干渉する組み合わせが、アーム3ごとに設定された移動範囲を規定する複数の格子点Pliについて総当たりで判定することにより、事前に抽出される。これにより、施術中においてアーム3を動かしながら複雑な演算を行うことなく、干渉を回避する処理を行うことができる。したがって、施術速度または施術位置が制限されるといった施術への影響を抑えつつ複数のアーム3同士の干渉を防止することができる。
外科手術システム100は、所定の報知部603を備えている。報知部603は、アーム制御部601に接続され、アーム制御部601からの警報出力信号を受けた場合、所定の警報を出力する。このような構成において、アーム制御部601は、干渉防止処理として、報知部603から警報を出力するように構成されてもよい。報知部603は、例えば、スピーカ、サイレン、警告灯等の警報を視覚または聴覚を通じて施術者Oに知らせる器具であってもよいし、操作装置2等に設けられたモニタ53等のディスプレイ上に警報を表示するように構成されてもよい。また、報知部603は、施術者Oが動作指令を入力するための操作用マニピュレータアーム51を振動させる、または、施術者Oの入力方向と反対方向へ力(抵抗力)を付与する等により、施術者Oに警報するように構成されてもよい。このように、報知部603より警報を報知することにより、干渉が生じる動作指令が入力されたことを施術者Oに迅速に知らせることができる。
また、干渉防止処理は、アーム制御部601が第1のアーム3Aおよび第2のアーム3Bの少なくとも一方を、干渉を生じる組み合わせ(Pl1,Pl2)の位置に移動させないように制御することとしてもよい。これにより、干渉が生じる動作指令が入力された場合に、実際に干渉が生じないようにすることができる。
なお、干渉防止処理として、報知部603における警報を行った後、さらに施術者Oが同様の動作指令を入力した場合に、アーム制御部601がアーム3の移動を停止させるようにしてもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
例えば、外科用器具の先端部の移動範囲を画する立体的形状は球以外の形状を有していてもよい。例えば、直方体でもよいし、円柱または角柱でもよいし、正多面体(正四面体、立方体、正八面体、正十二面体、正二十面体)でもよい。
また、上記実施の形態においては、干渉判定処理において、第2のアーム3Bに保持された外科用器具の先端部の移動目標位置が近接する一の格子点Pl2を特定する態様(ステップSB12)を例示したが、外科用器具の移動目標位置が格子点Pl2に一致していない場合(または何れか1つの格子点Pl2に特定できない場合)、アーム制御部601は、当該移動目標位置の周囲に位置する複数の格子点Pl2を特定し、当該複数の格子点Pl2と第1のアーム3Aに保持された外科用器具の先端部が近接する一または複数の格子点Pl1とを組み合わせた場合に姿勢が干渉する組み合わせが含まれているか否かを判定し、当該判定の結果に応じて干渉防止処理を行うこととしてもよい。
この場合の干渉防止処理について、例えば、干渉防止処理を複数の段階に区分し、判定対象となった格子点の組み合わせ(Pl1,Pl2)のうち、干渉する組み合わせが含まれている数が多いほど重度の干渉防止処理を行ってもよい。例えば、軽度の干渉防止処理は、報知部603における警報を実行することであり、重度の干渉防止処理は、アーム3の移動を停止させることであってもよい。
なお、移動目標位置の周囲に位置する複数の格子点Pl2を特定する場合、対応する第2のアーム3Bの移動経路を考慮してもよい。例えば、移動目標位置の周囲に位置する複数の格子点Pl2のうち、外科用器具の先端部の現在位置とは反対側に位置する格子点Pl2は、判定の対象に含めないようにしてもよい。または、例えば、移動目標位置の周囲に位置する複数の格子点Pl2のうち、外科用器具の先端部の現在位置とは反対側に位置する格子点Pl2は、判定の対象とするものの、他の格子点Pl2より影響を小さくすることとしてもよい。例えば、現在位置とは反対側に位置する格子点Pl2のみが干渉する組み合わせに含まれる場合、アーム制御部601は、軽度の干渉防止処理を行い、他の格子点Pl2(すなわち、現在位置側に位置する格子点)が干渉する組み合わせに含まれる場合、アーム制御部601は、重度の干渉防止処理を行うこととしてもよい。
また、格子モデルLMiは、上記移動範囲を画する立体的形状(例えば第1の仮想球Q1)の内部にも格子点を有するように作成されてもよい。例えば、格子モデルLMiは、中心位置が上記移動範囲を画する立体的形状の中心位置と同じ位置に配置され、上記移動範囲を画する立体的形状より小さい相似形状の表面上に配された格子点Pki,Pkiを含んでもよい。図7は、本実施の形態の変形例に係る格子モデルの例を示す概念図である。
図7に示すように、本変形例における格子モデルLMiは、外科用器具の移動範囲を画する第1の仮想球Q1iと、中心位置が第1の仮想球Q1iと同じ中心位置に位置し、半径が第1の仮想球Q1iより小さい第2の仮想球Q2iと、中心位置が第1の仮想球Q1iと同じ中心位置に位置し、半径が第2の仮想球Q2iより小さい第3の仮想球Q3iとを有している。なお、仮想球の数は、2つでも4つ以上でもよい。図4の例と同様に、第1の仮想球Q1iの表面上に複数の格子点Pliが配置される。また、第2の仮想球Q2iの表面上に複数の格子点Pkiが配置される。また、第3の仮想球Q3iの表面上に複数の格子点Pjiが配置される。
このような格子モデルLMiを用いることにより、互いに近接する2つのアーム3に対応する格子モデルLM1,LM2においてそれぞれ各格子点Pli,Pki,Pjiに対応する外科用器具の先端部が位置した場合の第1の姿勢および第2の姿勢をシミュレートすることができる。したがって、第1の姿勢と第2の姿勢とが干渉する組み合わせが、アーム3ごとに設定された移動範囲の境界および内部を規定する複数の格子点Pli,Pki,Pjiについて総当たりで判定することができる。例えば、第1の格子モデルLM1の一の格子点Pl1における第1の姿勢と、第2の格子モデルLM2の位置の格子点Pk2における第2の姿勢とが干渉するか否か判定される。したがって、このような格子モデルLMiを用いることにより、外科用器具の先端部が移動範囲の内部に位置した場合のアーム3および外科用器具の姿勢も考慮することができ、より精密な干渉判定を行うことができる。このような格子モデルLMiは、移動範囲を画する立体的形状が球である場合だけでなく、上述したような他の立体的形状にも適用可能である。また、移動範囲を画する立体的形状の内部に格子点を設ける態様は、上記に限られず適宜設定可能である。
なお、外科用器具の位置として設定される基準点の移動範囲のモデルである点群モデルは、点群モデルを構成する複数の点が基準点の移動範囲に配される限り、特に限定されない。すなわち、点群モデルには、上記実施の形態のような、複数の線分の交点(格子点)が配された格子モデルだけでなく、所定の3次元領域内にランダムに配置された複数の点を有するモデル等も含まれる。
本発明に係る外科手術システムの制御方法および外科手術システムは、施術に影響を与えることなく複数のマニピュレータアーム同士の干渉を防止するために有用である。
2 操作装置
3 アーム(マニピュレータアーム)
36 ホルダ(器具保持部)
41 内視鏡アセンブリ(外科用器具)
42 インストゥルメント(外科用器具)
100 外科手術システム
601 アーム制御部(制御部)
602 記憶部
603 報知部
基端側リンク61の基端部(第6リンク86との連結部)には、曲げ関節J37と同軸に配置される第1並進アーム駆動軸および第2並進アーム駆動軸(ともに図示せず)が設けられている。第2並進アーム駆動軸は、連動機構に連結されており、第2並進アーム駆動軸が第1並進アーム駆動軸に対して差動することにより、基端側リンク61の曲げ関節J37回りの回動角度、先端側リンク62の連結軸63回りの回動角度、および、ホルダ36の回動軸68回りの回動角度が所定の比率(例えば1:2:1)を保持するように、並進アーム35が並進動作する。第1並進アーム駆動軸および第2並進アーム駆動軸が同期して回動することにより、並進アーム35全体がアーム本体30に対して曲げ関節J37回りに回動する。
なお、エンコーダE31〜E36,E37a,E37bは、サーボモータM31〜M36,M37a,M37bの回転位置(回転角)を検出する回転位置検出手段の一例として設けられており、エンコーダE31〜E36,E37a,E37bに代えてレゾルバなどの回転位置検出手段が用いられてもよい。また、アーム3の制御系統の上記の各要素およびこれらのための配線ならびに制御部は、耐高温材料で構成され、滅菌処理のための耐熱性が備えられている。
なお、第1のアーム3Aが移動しない場合には、アーム制御部601は、前回までの動作指令において当該第1のアーム3Aを移動させる動作指令を受けた際に、内視鏡アセンブリ41の先端部の3次元位置が近接する格子点Pl1を特定し、当該特定された格子点PL1を、第1の格子モデルLM1における現在位置として記憶部602に記憶しておいてもよい。この場合、ステップSB13およびSB14が先に実行されている。さらに、干渉の判定時において、アーム制御部601は、ステップSB12の後、ステップSB13およびSB14の代わりに、第1の格子モデルLM1における現在位置を示す格子点PL1を記憶部602より読み出して、ステップSB15における判定を行う。

Claims (8)

  1. 外科手術システムの制御方法であって、
    前記外科手術システムは、
    それぞれの先端部に長軸状の外科用器具を保持可能な器具保持部を有し、それぞれの先端部が基端部に対して3次元的に移動する複数のマニピュレータアームと、
    前記複数のマニピュレータアームを移動させるための動作指令を入力するための操作装置と、
    前記動作指令に基づいて前記複数のマニピュレータアームの移動を制御する制御部と、
    前記制御部にデータを読み出し可能な記憶部と、を備え、
    前記制御方法は、
    各マニピュレータアームの先端部と、当該マニピュレータアームに前記外科用器具が保持された際の前記外科用器具の先端部との間の予め定められた位置を拘束点として設定し、
    前記拘束点における3次元位置を固定した状態で前記マニピュレータアームを3次元的に移動させた場合の前記外科用器具の先端部の3次元的な移動範囲を所定の立体的形状の表面上に複数の格子点が配された所定の格子モデルを作成することによって設定し、
    第1のマニピュレータアームに対応して設定された第1の格子モデルにおける各格子点の3次元位置に、前記第1のマニピュレータアームに保持された第1の外科用器具の先端部が位置した場合の前記第1のマニピュレータアームおよび前記第1の外科用器具による第1の姿勢をシミュレートし、
    前記第1のマニピュレータアームに隣接する第2のマニピュレータアームに対応して設定された第2の格子モデルにおける各格子点の3次元位置に、前記第2のマニピュレータアームに保持された第2の外科用器具の先端部が位置した場合の前記第2のマニピュレータアームおよび前記第2の外科用器具による第2の姿勢をシミュレートし、
    前記第1の姿勢と前記第2の姿勢とが干渉するような、前記第1の格子モデルにおける格子点と前記第2の格子モデルにおける格子点との組み合わせを抽出し、
    前記干渉を生じる組み合わせのデータを前記記憶部に記憶し、
    前記制御部に伝達された前記動作指令が前記干渉を生じる組み合わせに該当するか否かを判定し、
    前記動作指令が前記干渉を生じる組み合わせに該当すると判定された場合に、前記制御部が干渉防止処理を実行する、外科手術システムの制御方法。
  2. 前記立体的形状は、球であり、
    前記第1および第2の格子モデルにおける各格子点の位置座標は、対応する前記拘束点と前記球の中心とを結ぶ直線に垂直な前記球の断面の中心点の位置座標と当該断面の半径と各格子モデル上の所定の基準位置からの角度で定められる、請求項1に記載の外科手術システムの制御方法。
  3. 前記外科手術システムは、所定の報知部を備え、
    前記干渉防止処理は、前記報知部から警報を出力することを含む、請求項1または2に記載の外科手術システムの制御方法。
  4. 前記干渉防止処理は、前記制御部が前記第1のマニピュレータアームおよび前記第2のマニピュレータアームの少なくとも一方を、前記干渉を生じる組み合わせの位置に移動させないようにする、請求項1から3の何れかに記載の外科手術システムの制御方法。
  5. 前記複数のマニピュレータアームは、当該マニピュレータアームの先端部の位置を変化させることなく姿勢を変えることができる冗長軸を含む7軸関節アームとして構成され、
    前記干渉を生じる組み合わせが抽出された場合に、各マニピュレータアームの先端部の位置を変化させずに、前記第1の姿勢および前記第2の姿勢の少なくとも何れか一方の姿勢を変化させて干渉が生じるか否かの再判定を行う、請求項1から4の何れかに記載の外科手術システムの制御方法。
  6. 前記第1の格子モデルおよび前記第2の格子モデルは、それぞれ、中心位置が前記立体的形状の中心位置と同じ位置に配置され、前記立体的形状より小さい相似形状の表面上に配された格子点を含む、請求項1から5の何れかに記載の外科手術システムの制御方法。
  7. 外科手術システムの制御方法であって、
    前記外科手術システムは、
    それぞれが外科用器具を保持可能な器具保持部を有する複数のマニピュレータアームと、
    動作指令に基づいて前記複数のマニピュレータアームの移動を制御する制御部と、
    前記制御部に接続された記憶部と、を備え、
    前記制御方法は、
    第1のマニピュレータアームに保持された第1の外科用器具の位置として第1の基準点を設定し、
    前記第1の基準点の移動範囲内に複数の点が配された第1の点群モデルを設定し、
    前記第1の点群モデルにおける点の位置に前記第1の基準点が位置した場合の前記第1のマニピュレータアームおよび前記第1の外科用器具の第1の姿勢をシミュレートし、
    第2のマニピュレータアームに保持された第2の外科用器具の位置として第2の基準点を設定し、
    前記第2の基準点の移動範囲内に複数の点が配された第2の点群モデルを設定し、
    前記第2の点群モデルにおける点の位置に前記第2の基準点が位置した場合の前記第2のマニピュレータアームおよび前記第2の外科用器具の第2の姿勢をシミュレートし、
    前記第1の姿勢にある前記第1のマニピュレータアームおよび前記第1の外科用器具と前記第2の姿勢にある前記第2のマニピュレータアームおよび前記第2の外科用器具とが干渉するような、前記第1の点群モデルにおける点と前記第2の点群モデルにおける点との組み合わせのデータを前記記憶部に記憶し、
    前記制御部に伝達された前記動作指令に対応する前記第1の基準点の位置と前記第2の基準点の位置が、記憶された前記組み合わせのデータに該当するか否かを判定し、
    該当すると判定された場合に、前記制御部が干渉防止処理を実行する、外科手術システムの制御方法。
  8. それぞれの先端部に長軸状の外科用器具を保持可能な器具保持部を有し、それぞれの先端部が基端部に対して3次元的に移動する複数のマニピュレータアームと、
    前記複数のマニピュレータアームを移動させるための動作指令を入力するための操作装置と、
    前記動作指令に基づいて前記複数のマニピュレータアームの移動を制御する制御部と、
    前記制御部にデータを読み出し可能な記憶部と、を備え、
    前記記憶部は、第1のマニピュレータアームに対応して設定され、前記第1のマニピュレータアームに保持された第1の外科用器具の先端部の3次元的な移動範囲を規定する所定の立体的形状の表面上に複数の格子点が配された第1の格子モデルにおける各格子点の3次元位置に、前記第1の外科用器具の先端部が位置した場合の前記第1のマニピュレータアームおよび前記第1の外科用器具による第1の姿勢と、前記第1のマニピュレータアームに隣接する第2のマニピュレータアームに対応して設定され、前記第2のマニピュレータアームに保持された第2の外科用器具の先端部の3次元的な移動範囲を規定する前記立体的形状の表面上に複数の格子点が配された第2の格子モデルにおける各格子点の3次元位置に、前記第2の外科用器具の先端部が位置した場合の前記第2のマニピュレータアームおよび前記第2の外科用器具による第2の姿勢とが干渉するような、前記第1の格子モデルにおける格子点と前記第2の格子モデルにおける格子点との組み合わせのデータを記憶し、
    前記制御部は、受信した前記動作指令が前記干渉を生じる組み合わせに該当するか否かを判定し、前記動作指令が前記干渉を生じる組み合わせに該当すると判定された場合に、干渉防止処理を実行する、外科手術システム。
JP2018512050A 2016-04-15 2017-04-12 外科手術システムの制御方法および外科手術システム Active JP6857649B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016081692 2016-04-15
JP2016081692 2016-04-15
PCT/JP2017/014999 WO2017179624A1 (ja) 2016-04-15 2017-04-12 外科手術システムの制御方法および外科手術システム

Publications (2)

Publication Number Publication Date
JPWO2017179624A1 true JPWO2017179624A1 (ja) 2019-02-28
JP6857649B2 JP6857649B2 (ja) 2021-04-14

Family

ID=60042173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018512050A Active JP6857649B2 (ja) 2016-04-15 2017-04-12 外科手術システムの制御方法および外科手術システム

Country Status (5)

Country Link
US (1) US10932856B2 (ja)
EP (1) EP3443927A4 (ja)
JP (1) JP6857649B2 (ja)
CN (1) CN109069214B (ja)
WO (1) WO2017179624A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820389B2 (ja) * 2018-10-05 2021-01-27 川崎重工業株式会社 外科手術システムの患者側装置および外科手術システム
JP7257283B2 (ja) * 2019-08-08 2023-04-13 川崎重工業株式会社 手術マニピュレータの入力装置
EP4070754A4 (en) * 2019-12-05 2024-01-17 Kawasaki Heavy Ind Ltd SURGICAL OPERATIONAL SYSTEM AND METHOD FOR CONTROLLING A SURGICAL OPERATIONAL MANIPULATOR ARM
EP4129226A4 (en) * 2020-04-24 2023-05-03 Riverfield Inc. SURGICAL SYSTEM
US11931113B2 (en) * 2020-08-03 2024-03-19 Mazor Robotics Ltd. Systems, devices, and methods for retractor interference avoidance
US20220133572A1 (en) * 2020-10-06 2022-05-05 P Tech, Llc Robotic Systems, Operating Room Systems, Insulated Conductor Including Biologically Active Material, Microplastic Filter, and Combinations Thereof
CN116392158B (zh) * 2023-06-09 2023-08-22 北京唯迈医疗设备有限公司 一种实物体模式dsa控制与反馈装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206312A (ja) * 2010-03-30 2011-10-20 Terumo Corp 医療用ロボットシステム
WO2014146113A1 (en) * 2013-03-15 2014-09-18 Intuitive Surgical Operations, Inc. Systems and methods for tracking a path using the null-space

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6799065B1 (en) * 1998-12-08 2004-09-28 Intuitive Surgical, Inc. Image shifting apparatus and method for a telerobotic system
JP2000300579A (ja) 1999-04-26 2000-10-31 Olympus Optical Co Ltd 多機能マニピュレータ
US9468501B2 (en) * 1999-09-17 2016-10-18 Intuitive Surgical Operations, Inc. Systems and methods for using the null space to emphasize manipulator joint motion anisotropically
US7607440B2 (en) * 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
US9789608B2 (en) * 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
WO2008104082A1 (en) * 2007-03-01 2008-09-04 Titan Medical Inc. Methods, systems and devices for threedimensional input, and control methods and systems based thereon
US8620473B2 (en) * 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
JP5295828B2 (ja) * 2009-03-11 2013-09-18 本田技研工業株式会社 対象物の把持システム及び同システムにおける干渉検出方法
US9492927B2 (en) * 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8819591B2 (en) * 2009-10-30 2014-08-26 Accuray Incorporated Treatment planning in a virtual environment
DE102010007458A1 (de) * 2010-02-10 2011-08-11 KUKA Laboratories GmbH, 86165 Verfahren für eine kollisionsfreie Bahnplanung eines Industrieroboters
WO2014028563A1 (en) * 2012-08-15 2014-02-20 Intuitive Surgical Operations, Inc. Phantom degrees of freedom in joint estimation and control
EP3932628A1 (en) * 2012-12-10 2022-01-05 Intuitive Surgical Operations, Inc. Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms
CN103324784B (zh) * 2013-05-30 2016-05-18 杭州电子科技大学 一种基于局部约束的网格模型碰撞处理方法
JP6530759B2 (ja) * 2014-02-05 2019-06-12 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 動的な仮想の衝突対象物についてのシステム及び方法
CN105455901B (zh) * 2015-11-20 2018-02-02 清华大学 针对手术机器人的避障规划方法和避障规划系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206312A (ja) * 2010-03-30 2011-10-20 Terumo Corp 医療用ロボットシステム
WO2014146113A1 (en) * 2013-03-15 2014-09-18 Intuitive Surgical Operations, Inc. Systems and methods for tracking a path using the null-space

Also Published As

Publication number Publication date
JP6857649B2 (ja) 2021-04-14
EP3443927A4 (en) 2019-10-30
CN109069214A (zh) 2018-12-21
WO2017179624A1 (ja) 2017-10-19
EP3443927A1 (en) 2019-02-20
CN109069214B (zh) 2021-03-12
US20190117310A1 (en) 2019-04-25
US10932856B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2017179624A1 (ja) 外科手術システムの制御方法および外科手術システム
Cheng et al. Accuracy of dental implant surgery with robotic position feedback and registration algorithm: An in-vitro study
JP6619748B2 (ja) 遠隔手術台位置合わせのための方法及び装置
JP2016504077A (ja) 画像キャプチャ装置及び操作可能な装置可動アームの制御された動作の間の衝突回避
JP2010525838A5 (ja)
Mayer et al. Haptic feedback in a telepresence system for endoscopic heart surgery
JP7402894B2 (ja) 外科手術システム及び外科手術マニピュレータアームの制御方法
JP6831642B2 (ja) 外科手術システム
JP2018538047A (ja) 独立ロール、ピッチ、及びヨースケーリングを備えたロボット外科用システム
WO2020179815A1 (ja) 外科手術システムの制御方法および外科手術システム
JP2006312079A (ja) 医療用マニピュレータ
US20200107895A1 (en) Surgical system and patient-side apparatus
Marinho et al. Conceptual design of a versatile robot for minimally invasive transnasal microsurgery
Bihlmaier et al. Endoscope robots and automated camera guidance
JP7017616B2 (ja) 外科手術システムの患者側装置および外科手術システム
JP6894954B2 (ja) 医療用マニピュレータおよびこれを備えた外科手術システム
US11690674B2 (en) Mobile virtual reality system for surgical robotic systems
JP2023553392A (ja) 仮想現実ガイダンスを生成するためのシステムと方法
KR20230113599A (ko) 의료 환경을 계획하기 위한 시스템들 및 방법들
JP2023551531A (ja) 医療処置の生成及び評価のためのシステム及び方法
JP2023511474A (ja) 患者モデルとカスタマイズ可能な手術室とを用いた外科手術作業フローをシミュレートするための仮想現実システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6857649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250