JPWO2017175614A1 - Resin composition and manufacturing method thereof, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board - Google Patents

Resin composition and manufacturing method thereof, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board Download PDF

Info

Publication number
JPWO2017175614A1
JPWO2017175614A1 JP2018510544A JP2018510544A JPWO2017175614A1 JP WO2017175614 A1 JPWO2017175614 A1 JP WO2017175614A1 JP 2018510544 A JP2018510544 A JP 2018510544A JP 2018510544 A JP2018510544 A JP 2018510544A JP WO2017175614 A1 JPWO2017175614 A1 JP WO2017175614A1
Authority
JP
Japan
Prior art keywords
resin composition
group
mass
resin
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018510544A
Other languages
Japanese (ja)
Other versions
JP7305349B2 (en
Inventor
孝史 久保
孝史 久保
展義 大西
展義 大西
与一 高野
与一 高野
環 伊藤
環 伊藤
英祐 志賀
英祐 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2017175614A1 publication Critical patent/JPWO2017175614A1/en
Priority to JP2021140205A priority Critical patent/JP2022000506A/en
Priority to JP2023085673A priority patent/JP2023116516A/en
Application granted granted Critical
Publication of JP7305349B2 publication Critical patent/JP7305349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/08Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/08Anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/27Compounds containing a nitrogen atom bound to two other nitrogen atoms, e.g. diazoamino-compounds
    • C08K5/28Azides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、アミノ変性シリコーン(A)と、マレイミド化合物(B)と、カルボン酸(C)及びカルボン酸無水物(D)からなる群より選択される一種又は二種以上と、を反応させて得られる反応生成物(P)を含む樹脂組成物、を提供する。  In the present invention, amino-modified silicone (A), maleimide compound (B), and one or more selected from the group consisting of carboxylic acid (C) and carboxylic anhydride (D) are reacted. A resin composition containing the obtained reaction product (P) is provided.

Description

本発明は、樹脂組成物及びその製造方法、プリプレグ、レジンシート、積層板、金属箔張積層板、並びにプリント配線板に関する。   The present invention relates to a resin composition and a production method thereof, a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board.

近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化、小型化が進むに従い、半導体パッケージ用の各部品の高集積化や高密度実装化が近年益々加速している。その中でも、半導体素子と半導体プラスチックパッケージ用プリント配線板との熱膨張率の差によって生じる半導体プラスチックパッケージの反りが問題となっており、様々な対策が講じられてきている。   In recent years, as semiconductor packages widely used in electronic devices, communication devices, personal computers, etc. have become more sophisticated and smaller in size, higher integration and higher density mounting of each component for semiconductor packages has been accelerated in recent years. ing. Among them, warpage of the semiconductor plastic package caused by the difference in coefficient of thermal expansion between the semiconductor element and the printed wiring board for the semiconductor plastic package is a problem, and various countermeasures have been taken.

その対策の一つとして、プリント配線板に用いられる絶縁層の低熱膨張化が挙げられる。これは、プリント配線板の熱膨張率を半導体素子の熱膨張率に近づけることで反りを抑制する手法であり、現在盛んに取り組まれている(例えば、特許文献1〜3参照)。   One countermeasure is to reduce the thermal expansion of the insulating layer used in the printed wiring board. This is a technique for suppressing warpage by bringing the thermal expansion coefficient of a printed wiring board close to the thermal expansion coefficient of a semiconductor element, and is currently being actively worked on (see, for example, Patent Documents 1 to 3).

半導体プラスチックパッケージの反りを抑制する手法としては、プリント配線板の低熱膨張化以外にも、積層板の剛性を高くすること(高剛性化)や積層板のガラス転移温度を高くすること(高Tg化)が検討されている(例えば、特許文献4及び5参照)。   In addition to lowering the thermal expansion of the printed wiring board, methods for suppressing the warpage of the semiconductor plastic package include increasing the rigidity of the laminated board (higher rigidity) and increasing the glass transition temperature of the laminated board (high Tg). (For example, see Patent Documents 4 and 5).

特開2013-216884号公報JP 2013-216884 A 特許第3173332号公報Japanese Patent No. 3173332 特開2009−035728号公報JP 2009-035728 A 特開2013−001807号公報JP 2013-001807 A 特開2011−178992号公報JP 2011-177892 A

しかしながら、特許文献1〜5に記載されるような熱硬化性樹脂組成物を用いたプリント配線板であっても、金属箔を積層した積層板のピール強度や例えば強アルカリ性の洗浄液に対する耐薬品性(耐デスミア性)等の他の特性との両立が難しいことから、結果として半導体プラスチックパッケージに反りが生じる問題が残存している。   However, even for a printed wiring board using a thermosetting resin composition as described in Patent Documents 1 to 5, the peel strength of a laminated board in which a metal foil is laminated or chemical resistance to a strong alkaline cleaning liquid, for example. Since it is difficult to achieve compatibility with other characteristics such as (desmear resistance), there remains a problem that warps the semiconductor plastic package as a result.

ここで、上記熱膨張率の差を低減し、上記反りが生じる問題を解決するために、樹脂組成物に、低弾性成分として、例えば、アミノ変性シリコーンと熱硬化性成分とが反応して生成するアミノ変性した重合体を含有させることができる。しかし、アミノ変性した重合体は、一般的に、重合体同士で又は他の樹脂成分と、更に重合反応する性質を有している。このため、樹脂組成物やプリプレグの保存中又は成形中に、アミノ変性した重合体が更に重合反応を起こすことに起因して、優れた保存安定性を得ることができないことがある。   Here, in order to reduce the difference in the coefficient of thermal expansion and solve the problem of warping, the resin composition is generated by reacting, for example, an amino-modified silicone and a thermosetting component as a low elastic component. An amino-modified polymer can be included. However, amino-modified polymers generally have the property of further polymerizing reaction between polymers or with other resin components. For this reason, it may be impossible to obtain excellent storage stability due to the fact that the amino-modified polymer further undergoes a polymerization reaction during storage or molding of the resin composition or prepreg.

そこで、本発明は、上述の課題を解決するためになされたものであり、アミノ変性した重合体を含有しつつ、優れた保存安定性を有する樹脂組成物を提供することを目的とする。   Then, this invention is made | formed in order to solve the above-mentioned subject, and it aims at providing the resin composition which has the outstanding storage stability, containing the amino-modified polymer.

すなわち、本発明は以下のとおりである。
[1]
アミノ変性シリコーン(A)と、
マレイミド化合物(B)と、
カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させて得られる反応生成物(P)、を含む、
樹脂組成物。
[2]
前記樹脂組成物のアミン価が、2.0mgKOH/g以下である、
[1]に記載の樹脂組成物。
[3]
前記反応生成物(P)は、前記カルボン酸無水物(D)を少なくとも反応させて得られ、
前記カルボン酸無水物(D)は、無水マレイン酸、無水フタル酸、無水コハク酸、及び無水酢酸からなる群より選択される一種又は二種以上である、
[1]又は[2]に記載の樹脂組成物。
[4]
前記反応生成物(P)は、前記カルボン酸(C)を少なくとも反応させて得られ、
前記カルボン酸(C)は、マレイン酸、フタル酸、コハク酸、及び酢酸からなる群より選択される一種又は二種以上である、[1]〜[3]のいずれかに記載の樹脂組成物。
[5]
熱硬化性成分(E)をさらに含む、
[1]〜[4]のいずれかに記載の樹脂組成物。
[6]
前記熱硬化性成分(E)は、マレイミド化合物(B)、エポキシ樹脂(F)、シアン酸エステル化合物(G)、及びアルケニル置換ナジイミド(H)からなる群より選択される一種又は二種以上を含む、
[5]に記載の樹脂組成物。
[7]
前記反応生成物(P)における前記アミノ変性シリコーン(A)は、下記一般式(1)で表される化合物を含む、
[1]〜[6]のいずれかに記載の樹脂組成物。

Figure 2017175614
(式(1)中、複数のRは、各々独立に水素原子、メチル基又はフェニル基を表し、複数のRは、各々独立に単結合、アルキレン基又はアリール基を表し、nは、1以上の整数を表す。)
[8]
前記反応生成物(P)における前記アミノ変性シリコーン(A)のアミノ基当量が、130以上6000以下である、
[1]〜[7]のいずれかに記載の樹脂組成物。
[9]
前記マレイミド化合物(B)は、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ポリテトラメチレンオキシド−ビス(4−マレイミドベンゾエート)、及び下記一般式(2)で表される化合物からなる群より選択される一種又は二種以上を含む、
[1]〜[8]のいずれかに記載の樹脂組成物。
Figure 2017175614
(式(2)中、複数のR5は、各々独立に水素原子又はメチル基を示し、n1は、1以上の整数を示す。)
[10]
充填材(J)をさらに含む、
[1]〜[9]のいずれかに記載の樹脂組成物。
[11]
前記充填材(J)は、シリカ、アルミナ、及び窒化アルミニウムからなる群より選択される一種又は二種以上を含む、
[10]に記載の樹脂組成物。
[12]
前記樹脂組成物は、前記反応生成物(P)及び熱硬化性成分(E)の合計量100質量部に対して、前記充填材(J)を50質量部以上300質量部以下含む、
[10]又は[11]に記載の樹脂組成物。
[13]
基材と、該基材に含浸又は塗布された[1]〜[12]のいずれかに記載の樹脂組成物と、を有する、
プリプレグ。
[14]
前記基材は、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選ばれる一種又は二種以上である、
[13]に記載のプリプレグ。
[15]
支持体と、該支持体の表面に配された[1]〜[12]のいずれかに記載の樹脂組成物と、を有する、
レジンシート。
[16]
前記支持体は、樹脂シート又は金属箔である、
[15]に記載のレジンシート。
[17]
[13]又は[14]に記載のプリプレグ、及び[15]又は[16]に記載のレジンシートからなる群より選択される一種又は二種以上を、複数備える、
積層板。
[18]
[13]又は[14]に記載のプリプレグ、及び[15]又は[16]に記載のレジンシートからなる群より選択される一種又は二種以上と、金属箔と、を備える、
金属箔張積層板。
[19]
[1]〜[12]のいずれかに記載の樹脂組成物を含む絶縁層と、該絶縁層の表面に形成された導体層と、を備える、
プリント配線板。
[20]
アミノ変性シリコーン(A)と、マレイミド化合物(B)と、を反応させて一次ポリマーを得る第一反応工程と、
前記一次ポリマーと、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させる第二反応工程と、を有する、
樹脂組成物の製造方法。That is, the present invention is as follows.
[1]
Amino-modified silicone (A);
A maleimide compound (B);
A reaction product (P) obtained by reacting at least one of carboxylic acid (C) and carboxylic acid anhydride (D),
Resin composition.
[2]
The amine value of the resin composition is 2.0 mgKOH / g or less,
The resin composition according to [1].
[3]
The reaction product (P) is obtained by reacting at least the carboxylic acid anhydride (D),
The carboxylic anhydride (D) is one or more selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, and acetic anhydride.
The resin composition according to [1] or [2].
[4]
The reaction product (P) is obtained by reacting at least the carboxylic acid (C),
The resin composition according to any one of [1] to [3], wherein the carboxylic acid (C) is one or more selected from the group consisting of maleic acid, phthalic acid, succinic acid, and acetic acid. .
[5]
Further comprising a thermosetting component (E),
The resin composition according to any one of [1] to [4].
[6]
The thermosetting component (E) is one or more selected from the group consisting of a maleimide compound (B), an epoxy resin (F), a cyanate ester compound (G), and an alkenyl-substituted nadiimide (H). Including,
[5] The resin composition according to [5].
[7]
The amino-modified silicone (A) in the reaction product (P) includes a compound represented by the following general formula (1).
The resin composition according to any one of [1] to [6].
Figure 2017175614
(In the formula (1), a plurality of R a s each independently represent a hydrogen atom, a methyl group or a phenyl group, a plurality of R b s each independently represent a single bond, an alkylene group or an aryl group, and n is Represents an integer of 1 or more.)
[8]
The amino group equivalent of the amino-modified silicone (A) in the reaction product (P) is from 130 to 6000,
The resin composition according to any one of [1] to [7].
[9]
The maleimide compound (B) includes bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) ) Including one or more selected from the group consisting of methane, polytetramethylene oxide-bis (4-maleimidobenzoate), and a compound represented by the following general formula (2),
The resin composition according to any one of [1] to [8].
Figure 2017175614
(In the formula (2), a plurality of R 5 each independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.)
[10]
Further comprising a filler (J),
The resin composition according to any one of [1] to [9].
[11]
The filler (J) includes one or more selected from the group consisting of silica, alumina, and aluminum nitride.
[10] The resin composition according to [10].
[12]
The resin composition includes 50 parts by mass or more and 300 parts by mass or less of the filler (J) with respect to 100 parts by mass of the total amount of the reaction product (P) and the thermosetting component (E).
The resin composition as described in [10] or [11].
[13]
A base material and the resin composition according to any one of [1] to [12] impregnated or coated on the base material,
Prepreg.
[14]
The substrate is one or more selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers.
The prepreg according to [13].
[15]
A support and a resin composition according to any one of [1] to [12] disposed on the surface of the support,
Resin sheet.
[16]
The support is a resin sheet or a metal foil,
The resin sheet according to [15].
[17]
[13] or a plurality of one or more selected from the group consisting of the prepreg according to [14] and the resin sheet according to [15] or [16],
Laminated board.
[18]
One or more selected from the group consisting of the prepreg according to [13] or [14] and the resin sheet according to [15] or [16], and a metal foil,
Metal foil-clad laminate.
[19]
[1] to [12] comprising an insulating layer containing the resin composition according to any one of the above, and a conductor layer formed on the surface of the insulating layer.
Printed wiring board.
[20]
A first reaction step in which an amino-modified silicone (A) and a maleimide compound (B) are reacted to obtain a primary polymer;
A second reaction step of reacting the primary polymer with at least one of carboxylic acid (C) or carboxylic acid anhydride (D).
A method for producing a resin composition.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその要旨の範囲内で、適宜に変形して実施できる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified within the scope of the gist.

〔樹脂組成物〕
本実施形態の樹脂組成物は、アミノ変性シリコーン(A)と、マレイミド化合物(B)と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させて得られる反応生成物(P)(プレポリマー)を含む。ここで、反応生成物(P)は、上述したアミノ変性した重合体の一種である。
(Resin composition)
The resin composition of this embodiment is a reaction product obtained by reacting amino-modified silicone (A), maleimide compound (B), and at least one of carboxylic acid (C) or carboxylic acid anhydride (D). Product (P) (prepolymer). Here, the reaction product (P) is a kind of the above-described amino-modified polymer.

本実施形態の樹脂組成物は、優れた保存安定性を有する。この要因は、次のように推察される(ただし、要因はこれに限定されない。)。従来のアミノ変性シリコーンと熱硬化性成分とを含む樹脂組成物は、該樹脂組成物に含まれるアミノ変性した重合体中に、原料のアミノ変性シリコーンの反応基であるアミノ基がプレポリマーの構造中に比較的多く残存し、そのアミノ基が熱硬化性成分とさらに反応することに起因して、その樹脂組成物(ワニスを含む)及び該樹脂組成物から得られる成形体(例えば、プリプレグ及びその成形体)において優れた保存安定性が得られない。例えば、樹脂組成物を常温で保存した場合において、残存したアミノ基と熱硬化性成分との反応がさらに進行することに起因して、その樹脂組成物は、粘度の増加、分子量の増加により、優れた保存安定性を得ることができない。また、ワニスの場合はゲル化を起こし、プリプレグの場合はプリプレグ粘度の上昇により、成形性が悪くなり、優れた保存安定性を得ることができない。一方、本実施形態の樹脂組成物は、アミノ変性シリコーン(A)とマレイミド化合物(B)との反応で残存したアミノ基が、カルボン酸(C)及び/又はカルボン酸無水物(D)と反応した反応生成物(P)を含むことにより、当該樹脂組成物及びその樹脂組成物から得られる成形体において優れた保存安定性が得られる。   The resin composition of the present embodiment has excellent storage stability. This factor is inferred as follows (however, the factor is not limited to this). A conventional resin composition containing an amino-modified silicone and a thermosetting component has a structure in which an amino group, which is a reactive group of a raw material amino-modified silicone, is a prepolymer structure in an amino-modified polymer contained in the resin composition. A relatively large amount thereof remains, and the amino group further reacts with the thermosetting component, so that the resin composition (including varnish) and a molded body obtained from the resin composition (for example, prepreg and In the molded body), excellent storage stability cannot be obtained. For example, when the resin composition is stored at room temperature, due to the further progress of the reaction between the remaining amino groups and the thermosetting component, the resin composition has increased viscosity and molecular weight. Excellent storage stability cannot be obtained. Further, in the case of varnish, gelation occurs, and in the case of prepreg, moldability deteriorates due to an increase in prepreg viscosity, and excellent storage stability cannot be obtained. On the other hand, in the resin composition of the present embodiment, the amino group remaining after the reaction between the amino-modified silicone (A) and the maleimide compound (B) reacts with the carboxylic acid (C) and / or the carboxylic acid anhydride (D). By including the reaction product (P), excellent storage stability is obtained in the resin composition and a molded product obtained from the resin composition.

樹脂組成物のアミン価は、1級アミン及び2級アミンの合計量としてのアミン価である。アミン価は、特に限定されないが、好ましくは2.0mgKOH/g以下であり、より好ましくは1.0mgKOH/g以下であり、さらに好ましくは0.5mgKOH/g以下である。アミン価が2.0mgKOH/g以下であることにより、樹脂組成物の粘度の増加、分子量の増加、ワニスのゲル化、プリプレグ粘度の上昇を抑制できる傾向にある。また、アミン価は、小さいほど樹脂組成物の粘度の増加、分子量の増加等が抑制できる傾向にある。アミン価の下限値は、好ましくは0mgKOH/gである。アミン価は、JIS K 7237:1995に準拠する方法により測定される。   The amine value of the resin composition is an amine value as the total amount of primary amine and secondary amine. The amine value is not particularly limited, but is preferably 2.0 mgKOH / g or less, more preferably 1.0 mgKOH / g or less, and further preferably 0.5 mgKOH / g or less. When the amine value is 2.0 mgKOH / g or less, an increase in viscosity of the resin composition, an increase in molecular weight, gelation of varnish, and an increase in prepreg viscosity tend to be suppressed. In addition, the smaller the amine value, the more the viscosity of the resin composition, the increase in molecular weight, etc. tend to be suppressed. The lower limit of the amine value is preferably 0 mgKOH / g. The amine value is measured by a method according to JIS K 7237: 1995.

〔反応生成物(P)〕
本実施形態の反応生成物(P)は、アミノ変性シリコーン(A)と、マレイミド化合物(B)と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させて得られる。
[Reaction product (P)]
The reaction product (P) of this embodiment is obtained by reacting an amino-modified silicone (A), a maleimide compound (B), and at least one of a carboxylic acid (C) or a carboxylic acid anhydride (D). It is done.

反応生成物(P)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。   A reaction product (P) may be used individually by 1 type, and 2 or more types may be mixed and used for it.

反応生成物(P)の重量平均分子量(Mw)は、特に限定されないが、好ましくは5000以上20000以下であり、より好ましくは10000以上15000以下である。重量平均分子量が5000以上であることにより、プリプレグの熱膨張率が低下する傾向にあり、重量平均分子量が20000以下であることにより、樹脂組成物の粘度の増加、分子量の増加、ワニスのゲル化、プリプレグ粘度の上昇を抑制できる傾向にある。重量平均分子量が5000以上20000以下である反応生成物(P)を得るためには、温度等の反応条件を制御すればよい。重量平均分子量は、ゲルパーミュエーションクロマトグラフィー(GPC)法で測定し、標準ポリスチレン検量線を用いて換算した値として求めることができる。具体的には、後述する実施例に記載の方法により測定される。   Although the weight average molecular weight (Mw) of reaction product (P) is not specifically limited, Preferably it is 5000 or more and 20000 or less, More preferably, it is 10,000 or more and 15000 or less. When the weight average molecular weight is 5000 or more, the coefficient of thermal expansion of the prepreg tends to decrease, and when the weight average molecular weight is 20000 or less, the viscosity of the resin composition increases, the molecular weight increases, and the varnish gelates. There is a tendency that an increase in the prepreg viscosity can be suppressed. In order to obtain a reaction product (P) having a weight average molecular weight of 5,000 or more and 20,000 or less, reaction conditions such as temperature may be controlled. The weight average molecular weight can be determined as a value measured by a gel permeation chromatography (GPC) method and converted using a standard polystyrene calibration curve. Specifically, it is measured by the method described in Examples described later.

本実施形態の樹脂組成物において、反応生成物(P)の含有量は、特に限定されないが、熱硬化性成分(E)と組み合せる場合に、当該樹脂組成物中の反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは10質量%以上80質量%以下であり、より好ましくは15質量%以上70質量%以下であり、20質量%以上60質量%以下である。反応生成物(P)の含有量が上記範囲内であることにより、充填材充填時においても成形性に優れ、低熱膨張率、熱時弾性率、耐デスミア性、耐薬品性に優れるプリント配線板となる傾向にある。   In the resin composition of the present embodiment, the content of the reaction product (P) is not particularly limited, but when combined with the thermosetting component (E), the reaction product (P) in the resin composition. And the total amount of the thermosetting component (E) (100% by mass; as a solid content not including the solvent / solvent component and filler (J)), preferably 10% by mass to 80% by mass, More preferably, they are 15 mass% or more and 70 mass% or less, and are 20 mass% or more and 60 mass% or less. Printed wiring board with excellent reaction properties (P), excellent moldability even when filled with filler, low thermal expansion coefficient, thermal elastic modulus, desmear resistance, and chemical resistance It tends to be.

<アミノ変性シリコーン(A)>
本実施形態に用いるアミノ変性シリコーン(A)は、分子中に1個以上のアミノ基を有するシリコーンであれば特に限定されるものではないが、下記一般式(1)で表される化合物を含むことが好ましい。

Figure 2017175614
式(1)中、複数のRは、各々独立に水素原子、メチル基又はフェニル基を表し、中でもメチル基が好ましい。複数のRは、各々独立に単結合、アルキレン基又はアリール基を表し、中でもアルキレン基が好ましい。アルキレン基の炭素数は、その主鎖において1〜4であることが好ましい。具体的なアルキレン基は、特に限定されないが、メチレン基、エチレン基、トリメチレン基、又はテトラメチレン基であることがより好ましく、トリメチレン基であることがさらに好ましい。式(1)中、nは1以上の整数を表す。<Amino-modified silicone (A)>
The amino-modified silicone (A) used in the present embodiment is not particularly limited as long as it is a silicone having one or more amino groups in the molecule, but includes a compound represented by the following general formula (1). It is preferable.
Figure 2017175614
In the formula (1), a plurality of R a each independently represents a hydrogen atom, a methyl group or a phenyl group, and among them, a methyl group is preferable. Several Rb represents a single bond, an alkylene group, or an aryl group each independently, and an alkylene group is preferable especially. The alkylene group preferably has 1 to 4 carbon atoms in the main chain. The specific alkylene group is not particularly limited, but is preferably a methylene group, an ethylene group, a trimethylene group, or a tetramethylene group, and more preferably a trimethylene group. In formula (1), n represents an integer of 1 or more.

アミノ変性シリコーン(A)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。   Amino modified silicone (A) may be used individually by 1 type, and may mix and use 2 or more types.

アミノ変性シリコーン(A)のアミノ基当量は、特に限定されないが、好ましくは130以上6000以下であり、より好ましくは500以上3000以下であり、さらに好ましくは600以上2500以下である。アミノ変性シリコーン(A)のアミノ基当量が上記範囲内であることにより、金属箔ピール強度及び耐デスミア性により優れるプリント配線板を得ることができる。アミノ基当量は、JIS K 7237:1995に準拠する方法により測定される。   The amino group equivalent of the amino-modified silicone (A) is not particularly limited, but is preferably 130 or more and 6000 or less, more preferably 500 or more and 3000 or less, and further preferably 600 or more and 2500 or less. When the amino group equivalent of the amino-modified silicone (A) is within the above range, a printed wiring board having excellent metal foil peel strength and desmear resistance can be obtained. The amino group equivalent is measured by a method according to JIS K 7237: 1995.

本実施形態の樹脂組成物において、アミノ変性シリコーン(A)の含有量は、特に限定されないが、樹脂組成物中の反応生成物(P)の総量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは5.0質量%以上70質量%以下であり、より好ましくは10質量%以上50質量%以下であり、さらに好ましくは15質量%以上45質量%以下である。また、アミノ変性シリコーン(A)の含有量は、反応生成物(P)と熱硬化性成分(E)とを組み合せる場合に、反応生成物(P)の作製に用いられるアミノ変性シリコーン(A)及び熱硬化性成分(E)として含まれるアミノ変性シリコーン(A)の合計量として、該樹脂組成物中の反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分は含まない固形分量として)に対して、好ましくは1.0質量%以上70質量%以下であり、より好ましくは3.0質量%以上40質量%以下であり、さらに好ましくは5.0質量%以上20質量%以下である。また、アミノ変性シリコーン(A)の含有量が上記範囲内であることにより、金属箔ピール強度及び耐デスミア性により優れるプリント配線板を得ることができる。なお、ここでいうアミノ変性シリコーン(A)の含有量には、反応生成物(P)の作製に用いられたアミノ変性シリコーン(A)に加えて、後述する熱硬化性成分(E)としてのアミノ変性シリコーン(A)も含まれる。   In the resin composition of the present embodiment, the content of the amino-modified silicone (A) is not particularly limited, but the total amount of the reaction product (P) in the resin composition (100% by mass; solvent / solvent component, filler) (J) is preferably 5.0% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less, and further preferably 15% by mass or more. It is 45 mass% or less. The content of the amino-modified silicone (A) is such that when the reaction product (P) and the thermosetting component (E) are combined, the amino-modified silicone (A) used to produce the reaction product (P). ) And the total amount of the amino-modified silicone (A) contained as the thermosetting component (E), the total amount of the reaction product (P) and the thermosetting component (E) in the resin composition (100% by mass). The solid content not including solvent / solvent component) is preferably 1.0% by mass or more and 70% by mass or less, more preferably 3.0% by mass or more and 40% by mass or less, and still more preferably. It is 5.0 mass% or more and 20 mass% or less. Moreover, when the content of the amino-modified silicone (A) is within the above range, a printed wiring board that is excellent in metal foil peel strength and desmear resistance can be obtained. In addition, in addition to the amino modified silicone (A) used for preparation of the reaction product (P), the content of the amino modified silicone (A) referred to here is as a thermosetting component (E) described later. Amino-modified silicone (A) is also included.

<マレイミド化合物(B)>
本実施形態に用いるマレイミド化合物(B)は、分子中に一個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、例えば、N−フェニルマレイミド、N−ヒドロキシフェニルマレイミド、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3,5−ジメチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ビス(3,5−ジエチル−4−マレイミドフェニル)メタン、ポリテトラメチレンオキシド−ビス(4−マレイミドベンゾエート)、下記一般式(2)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、及びマレイミド化合物とアミン化合物とのプレポリマーが挙げられる。これらは一種又は二種以上を適宜混合して使用することも可能である。
<Maleimide compound (B)>
The maleimide compound (B) used in the present embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule. Specific examples thereof include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3 , 5-Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, polytetramethylene oxide-bis (4-maleimidobenzoate), maleimide compounds represented by the following general formula (2), prepolymers of these maleimide compounds, and prepolymers of maleimide compounds and amine compounds. These can be used alone or in admixture of two or more.

その中でも、マレイミド化合物(B)は、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ポリテトラメチレンオキシド−ビス(4−マレイミドベンゾエート)、及び下記一般式(2)で表されるマレイミド化合物からなる群より選択される一種又は二種以上を含むことが好ましく、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパンを含むことがより好ましい。   Among them, maleimide compounds (B) include bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-). It preferably contains one or more selected from the group consisting of maleimide phenyl) methane, polytetramethylene oxide-bis (4-maleimidobenzoate), and a maleimide compound represented by the following general formula (2). , 2-bis {4- (4-maleimidophenoxy) -phenyl} propane is more preferable.

Figure 2017175614
式(2)中、複数のRは、各々独立に水素原子又はメチル基を示し、nは、1以上の整数を示す。
Figure 2017175614
In the formula (2), a plurality of R 5 are each independently a hydrogen atom or a methyl group, n one represents an integer of 1 or more.

式(2)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子を示すことが好ましい。In formula (2), several R < 5 > shows a hydrogen atom or a methyl group each independently, and it is preferable to show a hydrogen atom especially.

式(2)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好ましくは7である。In formula (2), n 1 represents an integer of 1 or more. The upper limit value of n 1 is preferably 10, more preferably 7.

マレイミド化合物(B)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。   A maleimide compound (B) may be used individually by 1 type, and 2 or more types may be mixed and used for it.

本実施形態の反応生成物(P)において、アミノ変性シリコーン(A)に対するマレイミド化合物(B)の含有比は、特に限定されないが、質量基準で、好ましくは1.0以上3.0以下であり、より好ましくは1.0以上2.5以下であり、さらに好ましくは1.0以上2.0以下である。含有比が上記範囲内であることにより、反応生成物(P)製造性により優れる傾向にある。   In the reaction product (P) of the present embodiment, the content ratio of the maleimide compound (B) to the amino-modified silicone (A) is not particularly limited, but is preferably 1.0 or more and 3.0 or less on a mass basis. More preferably, it is 1.0 or more and 2.5 or less, More preferably, it is 1.0 or more and 2.0 or less. When the content ratio is in the above range, the reaction product (P) productivity tends to be superior.

本実施形態の樹脂組成物において、マレイミド化合物(B)の含有量は、特に限定されないが、樹脂組成物中の反応生成物(P)の総量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは10質量%以上90質量%以下であり、より好ましくは30質量%以上80質量%以下であり、さらに好ましくは45質量%以上75質量%以下である。また、マレイミド化合物(B)の含有量は、反応生成物(P)と熱硬化性成分(E)とを組み合せる場合に、反応生成物(P)の作製に用いられるマレイミド化合物(B)及び熱硬化性成分(E)として含まれるマレイミド化合物(B)の合計量として、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは10質量%以上90質量%以下であり、より好ましくは20質量%以上80質量%以下であり、さらに好ましくは30質量%以上70質量%以下である。マレイミド化合物(B)の含有量が上記範囲内であることにより、成形性、熱時弾性率、耐デスミア性、及び耐薬品性により優れるプリント配線板を得ることができる傾向にある。なお、ここでいうマレイミド化合物(B)の含有量には、反応生成物(P)に用いられたマレイミド化合物(B)に加えて、後述する熱硬化性成分(E)としてのマレイミド化合物(B)も含まれる。   In the resin composition of the present embodiment, the content of the maleimide compound (B) is not particularly limited, but the total amount of the reaction product (P) in the resin composition (100% by mass; solvent / solvent component, filler ( J) is preferably 10% by mass or more and 90% by mass or less, more preferably 30% by mass or more and 80% by mass or less, and further preferably 45% by mass or more and 75% by mass with respect to the solid content not including J). It is as follows. Further, the content of the maleimide compound (B) is such that when the reaction product (P) and the thermosetting component (E) are combined, the maleimide compound (B) used for producing the reaction product (P) and As the total amount of maleimide compound (B) contained as thermosetting component (E), the total amount of reaction product (P) and thermosetting component (E) (100% by mass; solvent / solvent component, filler ( J) is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less, and further preferably 30% by mass or more and 70% by mass with respect to the solid content not including J). It is as follows. When the content of the maleimide compound (B) is within the above range, a printed wiring board excellent in moldability, thermal elastic modulus, desmear resistance, and chemical resistance tends to be obtained. In addition, in addition to the maleimide compound (B) used for the reaction product (P), the content of the maleimide compound (B) referred to here includes a maleimide compound (B) as a thermosetting component (E) described later. ) Is also included.

<カルボン酸(C)、カルボン酸無水物(D)>
本実施形態に用いるカルボン酸(C)は、特に限定されないが、マレイン酸、フタル酸、コハク酸、酢酸、及びプロピオン酸からなる群より選択される一種又は二種以上であることが好ましく、マレイン酸、フタル酸、コハク酸、及び酢酸からなる群より選択される一種又は二種以上であることがより好ましく、マレイン酸、フタル酸、及びコハク酸からなる群より選択される一種又は二種以上であることがさらに好ましい。また、本実施形態に用いるカルボン酸無水物(D)は、特に限定されないが、無水マレイン酸、無水フタル酸、無水コハク酸、無水酢酸、及び無水プロピオン酸からなる群より選択される一種又は二種以上であることが好ましく、無水マレイン酸、無水フタル酸、無水コハク酸、及び無水酢酸からなる群より選択される一種又は二種以上であることがより好ましく、無水マレイン酸、無水フタル酸、及び無水コハク酸からなる群より選択される一種又は二種以上であることがさらに好ましい。
<Carboxylic acid (C), carboxylic acid anhydride (D)>
The carboxylic acid (C) used in the present embodiment is not particularly limited, but is preferably one or more selected from the group consisting of maleic acid, phthalic acid, succinic acid, acetic acid, and propionic acid. More preferably, one or more selected from the group consisting of acid, phthalic acid, succinic acid, and acetic acid, and one or more selected from the group consisting of maleic acid, phthalic acid, and succinic acid More preferably. Further, the carboxylic acid anhydride (D) used in the present embodiment is not particularly limited, but one or two selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, acetic anhydride, and propionic anhydride. It is preferably at least one species, more preferably one or more selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, and acetic anhydride, maleic anhydride, phthalic anhydride, And more preferably one or more selected from the group consisting of succinic anhydride.

カルボン酸(C)及びカルボン酸無水物(D)は、それぞれ上述した中でも、一価のカルボン酸及び一価のカルボン酸無水物、又は、二価のカルボン酸及び二価のカルボン酸無水物であることが好ましく、二価のカルボン酸及び二価のカルボン酸無水物であることがさらに好ましい。カルボン酸(C)及びカルボン酸無水物(D)は、それぞれ、二価のカルボン酸及び二価のカルボン酸無水物であることにより、一価のカルボン酸及び一価のカルボン酸無水物である場合と比較して、樹脂組成物の保存安定性により優れ、また、プリント配線板としたときの絶縁信頼性の低下を抑制できる傾向にある。この要因は、特に限定されるものではないが、二価のカルボン酸又は二価のカルボン酸無水物を用いると、一価のカルボン酸及び一価のカルボン酸無水物を用いる場合と比較して、アミノ変性シリコーン(A)のアミノ基と二価のカルボン酸又は二価のカルボン酸無水物のカルボキシル基とが反応した場合に、反応したカルボキシル基と対をなしていたカルボキシル基が遊離カルボン酸として樹脂組成物中に残留しにくいことに起因すると推察される。   Carboxylic acid (C) and carboxylic acid anhydride (D) are monovalent carboxylic acid and monovalent carboxylic acid anhydride, or divalent carboxylic acid and divalent carboxylic acid anhydride, respectively. It is preferable that it is a divalent carboxylic acid and a divalent carboxylic anhydride. Carboxylic acid (C) and carboxylic acid anhydride (D) are a monovalent carboxylic acid and a monovalent carboxylic acid anhydride by being a divalent carboxylic acid and a divalent carboxylic acid anhydride, respectively. Compared to the case, the storage stability of the resin composition is excellent, and a decrease in insulation reliability when a printed wiring board is obtained tends to be suppressed. Although this factor is not particularly limited, when a divalent carboxylic acid or a divalent carboxylic acid anhydride is used, compared with the case where a monovalent carboxylic acid and a monovalent carboxylic acid anhydride are used. When the amino group of the amino-modified silicone (A) reacts with the carboxyl group of the divalent carboxylic acid or divalent carboxylic anhydride, the carboxyl group paired with the reacted carboxyl group is a free carboxylic acid. It is inferred that it is difficult to remain in the resin composition.

カルボン酸(C)及びカルボン酸無水物(D)は、それぞれ、一種を単独で用いてもよく、二種以上を混合して用いてもよい。また、カルボン酸(C)及びカルボン酸無水物(D)は、それぞれを単独で用いてもよく、併用してもよい。   Carboxylic acid (C) and carboxylic acid anhydride (D) may be used singly or as a mixture of two or more. In addition, the carboxylic acid (C) and the carboxylic acid anhydride (D) may be used alone or in combination.

また、本実施形態において、カルボン酸(C)のみを用いることと比較して、カルボンカルボン酸無水物(D)のみを用いることが好ましい。これにより、アミノ変性シリコーン(A)との反応性により優れることにより、保存安定性により優れる傾向にある。   Moreover, in this embodiment, it is preferable to use only carboxylic carboxylic acid anhydride (D) compared with using only carboxylic acid (C). Thereby, it exists in the tendency which is excellent by storage stability by being excellent by the reactivity with amino modified silicone (A).

本実施形態の反応生成物(P)において、アミノ変性シリコーン(A)に対するカルボン酸(C)及びカルボン酸無水物(D)の含有比は、特に限定されないが、質量基準で、好ましくは0.01以上0.4以下であり、より好ましくは0.01以上0.2以下であり、さらに好ましくは0.02以上0.1以下である。含有比が上記範囲内であることにより、反応生成物(P)の保存安定性により優れる傾向にある。   In the reaction product (P) of the present embodiment, the content ratio of the carboxylic acid (C) and the carboxylic anhydride (D) to the amino-modified silicone (A) is not particularly limited, but is preferably 0.00 on the mass basis. It is 01 or more and 0.4 or less, More preferably, it is 0.01 or more and 0.2 or less, More preferably, it is 0.02 or more and 0.1 or less. When the content ratio is within the above range, the storage stability of the reaction product (P) tends to be more excellent.

本実施形態の樹脂組成物において、カルボン酸(C)及びカルボン酸無水物(D)の含有量は、特に限定されないが、反応生成物(P)の総量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは0.5質量%以上20質量%以下であり、より好ましくは0.5質量%以上10質量%以下であり、さらに好ましくは1.0質量%以上5.0質量%以下である。また、カルボン酸(C)及びカルボン酸無水物(D)の含有量は、反応生成物(P)と熱硬化性成分(E)とを組み合せる場合に、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは0.05質量%以上10質量%以下であり、より好ましくは0.1質量%以上5.0質量%以下であり、さらに好ましくは0.2質量%以上2.0質量%以下である。カルボン酸(C)及びカルボン酸無水物(D)の含有量が上記範囲内であることにより、成形性、熱時弾性率、耐デスミア性、及び耐薬品性により優れるプリント配線板を得ることができる傾向にある。   In the resin composition of the present embodiment, the content of the carboxylic acid (C) and the carboxylic acid anhydride (D) is not particularly limited, but the total amount of the reaction product (P) (100% by mass; solvent / solvent component, Preferably, it is 0.5% by mass or more and 20% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, and still more preferably with respect to the solid content not including the filler (J). It is 1.0 mass% or more and 5.0 mass% or less. Further, the content of the carboxylic acid (C) and the carboxylic acid anhydride (D) is determined when the reaction product (P) and the thermosetting component (E) are combined. Preferably, it is 0.05 mass% or more and 10 mass% or less with respect to the total amount (100 mass%; as a solid content amount which does not contain a solvent and a solvent component and a filler (J)) of the sex component (E). Preferably they are 0.1 mass% or more and 5.0 mass% or less, More preferably, they are 0.2 mass% or more and 2.0 mass% or less. When the content of the carboxylic acid (C) and the carboxylic acid anhydride (D) is within the above range, it is possible to obtain a printed wiring board that is more excellent in moldability, thermal elastic modulus, desmear resistance, and chemical resistance. It tends to be possible.

〔熱硬化性成分(E)〕
本実施形態の樹脂組成物は、熱硬化性成分(E)をさらに含むことが好ましい。
[Thermosetting component (E)]
It is preferable that the resin composition of this embodiment further contains a thermosetting component (E).

本実施形態に用いる熱硬化性成分(E)は、熱により硬化する成分であれば特に限定されない。熱硬化性成分(E)としては、特に限定されないが、例えば、上述したアミノ変性シリコーン(A)、マレイミド化合物(B)に加えて、後述するエポキシ樹脂(F)、シアン酸エステル化合物(G)、及びアルケニル置換ナジイミド(H)が挙げられる。即ち、熱硬化性成分(E)として用いるアミノ変性シリコーン(A)、及びマレイミド化合物(B)は、上述したアミノ変性シリコーン(A)、及びマレイミド化合物(B)と同様のものを用いることができる。なかでも、熱硬化性成分(E)は、マレイミド化合物(B)、エポキシ樹脂(F)、シアン酸エステル化合物(G)、及びアルケニル置換ナジイミド(H)からなる群より選択される一種又は二種以上を含むことが好ましく、マレイミド化合物(B)を含むことがより好ましい。   The thermosetting component (E) used in the present embodiment is not particularly limited as long as it is a component that is cured by heat. Although it does not specifically limit as a thermosetting component (E), For example, in addition to the amino modified silicone (A) mentioned above and a maleimide compound (B), the epoxy resin (F) mentioned later and a cyanate ester compound (G) And alkenyl-substituted nadiimide (H). That is, the amino-modified silicone (A) and maleimide compound (B) used as the thermosetting component (E) can be the same as the amino-modified silicone (A) and maleimide compound (B) described above. . Among these, the thermosetting component (E) is one or two selected from the group consisting of a maleimide compound (B), an epoxy resin (F), a cyanate ester compound (G), and an alkenyl-substituted nadiimide (H). It is preferable to include the above, and it is more preferable to include a maleimide compound (B).

本実施形態の樹脂組成物において、熱硬化性成分(E)の含有量は、特に限定されないが、反応生成物(P)と熱硬化性成分(E)とを組み合わせる場合に、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは20質量%以上85質量%以下であり、より好ましくは30質量%以上85質量%以下であり、さらに好ましくは40質量%以上80質量%以下である。熱硬化性成分(E)の含有量が上記範囲内であることにより、充填材充填時においても成形性に優れ、熱時弾性率、耐デスミア性、耐薬品性に優れるプリント配線板となる傾向にある。   In the resin composition of the present embodiment, the content of the thermosetting component (E) is not particularly limited, but when the reaction product (P) and the thermosetting component (E) are combined, the reaction product ( It is preferably 20% by mass or more and 85% by mass or less with respect to the total amount of P) and the thermosetting component (E) (100% by mass; solid content not including solvent / solvent component and filler (J)). Yes, more preferably 30% by mass to 85% by mass, and still more preferably 40% by mass to 80% by mass. When the content of the thermosetting component (E) is within the above range, it tends to be a printed wiring board that is excellent in moldability even when filled with a filler, and has excellent thermal modulus, desmear resistance, and chemical resistance. It is in.

<エポキシ樹脂(F)>
本実施形態の樹脂組成物は、エポキシ樹脂(F)を含むことにより、接着性、吸湿耐熱性、可撓性等により優れる傾向にある。エポキシ樹脂(F)は、1分子中に2個以上のエポキシ基を有する化合物であれば、特に限定されない。その具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、及びこれらのハロゲン化物が挙げられる。
<Epoxy resin (F)>
By including the epoxy resin (F), the resin composition of the present embodiment tends to be more excellent in adhesiveness, moisture absorption heat resistance, flexibility, and the like. The epoxy resin (F) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. Specific examples thereof include, for example, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, Cresol novolak type epoxy resin, xylene novolak type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, naphthylene ether type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, Trifunctional phenolic epoxy resin, tetrafunctional phenolic epoxy resin, triglycidyl isocyanurate, glycidyl ester epoxy resin, alicyclic Poxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, phenol aralkyl novolak type epoxy resin, naphthol aralkyl novolak type epoxy resin, aralkyl novolak type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, di Cyclopentadiene-type epoxy resins, polyol-type epoxy resins, phosphorus-containing epoxy resins, glycidylamine, epoxidized compounds such as butadiene, compounds obtained by reaction of hydroxyl-containing silicone resins with epichlorohydrin, and halogens thereof A compound.

このなかでも、エポキシ樹脂(F)が、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂からなる群より選択される一種以上であることが好ましい。このようなエポキシ樹脂(F)を含むことにより、得られる硬化物の難燃性及び耐熱性がより向上する傾向にある。   Among these, the epoxy resin (F) is preferably at least one selected from the group consisting of a biphenyl aralkyl type epoxy resin, a naphthylene ether type epoxy resin, a polyfunctional phenol type epoxy resin, and a naphthalene type epoxy resin. By including such an epoxy resin (F), the flame retardancy and heat resistance of the resulting cured product tend to be further improved.

エポキシ樹脂(F)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。   An epoxy resin (F) may be used individually by 1 type, and may mix and use 2 or more types.

本実施形態の樹脂組成物において、エポキシ樹脂(F)の含有量は、特に限定されないが、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは1.0質量%以上20質量%以下であり、より好ましくは1.0質量%以上15質量%以下であり、さらに好ましくは2.0質量%以上10質量%以下である。エポキシ樹脂(F)の含有量が上記範囲内であることにより、接着性及び可撓性により優れる傾向にある。   In the resin composition of the present embodiment, the content of the epoxy resin (F) is not particularly limited, but the total amount of the reaction product (P) and the thermosetting component (E) (100% by mass; solvent / solvent component) The solid content does not include the filler (J), preferably 1.0% by mass or more and 20% by mass or less, more preferably 1.0% by mass or more and 15% by mass or less, and still more preferably. Is 2.0 mass% or more and 10 mass% or less. When the content of the epoxy resin (F) is within the above range, it tends to be more excellent in adhesiveness and flexibility.

<シアン酸エステル化合物(G)>
本実施形態に用いるシアン酸エステル化合物(G)としては、特に限定されないが、例えば、下記一般式(3)で表されるナフトールアラルキル型シアン酸エステル、下記一般式(4)で表されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,3−ジメチル−4−シアナトフェニル)メタン、ビス(4−シアナトフェニル)メタン、1,3−ジシアナトベンゼン、1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−ジシアナトナフタレン、1,4−ジシアナトナフタレン、1,6−ジシアナトナフタレン、1,8−ジシアナトナフタレン、2,6−ジシアナトナフタレン、2、7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4、4’−ジシアナトビフェニル、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、及び2、2−ビス(4−シアナトフェニル)プロパンが挙げられる。
<Cyanate ester compound (G)>
Although it does not specifically limit as cyanate ester compound (G) used for this embodiment, For example, the naphthol aralkyl type | mold cyanate ester represented by following General formula (3), the novolak represented by following General formula (4) Type cyanate ester, biphenylaralkyl type cyanate ester, bis (3,3-dimethyl-4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4- Dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6- Dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4'-dicyanatobiphe Nyl, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, and 2,2-bis (4-cyanatophenyl) propane.

この中でも下記一般式(3)で表されるナフトールアラルキル型シアン酸エステル化合物、下記一般式(4)で表されるノボラック型シアン酸エステル、及びビフェニルアラルキル型シアン酸エステルが難燃性に優れ、硬化性が高く、かつ硬化物の熱膨張係数が低いことから好ましく、下記一般式(3)で表されるナフトールアラルキル型シアン酸エステル化合物、及び下記一般式(4)で表されるノボラック型シアン酸エステルからなる群より選択される一種又は二種以上がより好ましい。   Among these, the naphthol aralkyl cyanate ester compound represented by the following general formula (3), the novolak cyanate ester and the biphenyl aralkyl cyanate ester represented by the following general formula (4) are excellent in flame retardancy, A naphthol aralkyl cyanate compound represented by the following general formula (3) and a novolac cyan represented by the following general formula (4) are preferable because of high curability and a low thermal expansion coefficient of the cured product. One or more selected from the group consisting of acid esters are more preferred.

Figure 2017175614
式(3)中、複数のRは、各々独立に水素原子又はメチル基を示し、nは、1以上の整数を示す。
Figure 2017175614
In the formula (3), a plurality of R 6 are each independently a hydrogen atom or a methyl group, n 2 represents an integer of 1 or more.

式(3)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子を示すことが好ましい。In formula (3), several R < 6 > shows a hydrogen atom or a methyl group each independently, and it is preferable to show a hydrogen atom especially.

式(3)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好ましくは6である。Wherein (3), n 2 represents an integer of 1 or more. The upper limit value of n 2 is preferably 10, more preferably 6.

Figure 2017175614
式(4)中、複数のRは、各々独立に水素原子又はメチル基を示し、複数のRは、各々独立に水素原子又は炭素数が1〜4のアルキル基若しくはアルケニル基を示し、nは、1以上の整数を示す。
Figure 2017175614
In the formula (4), each of the plurality of R 7 independently represents a hydrogen atom or a methyl group, and each of the plurality of R 8 independently represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 4 carbon atoms, n 3 represents an integer of 1 or more.

式(4)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子を示すことが好ましい。In formula (4), several R < 7 > shows a hydrogen atom or a methyl group each independently, and it is preferable to show a hydrogen atom especially.

式(4)中、複数のRは、各々独立に水素原子又は炭素数が1〜4のアルキル基若しくはアルケニル基を示す。In formula (4), several R < 8 > shows a hydrogen atom or a C1-C4 alkyl group or alkenyl group each independently.

式(4)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好ましくは7である。In formula (4), n 3 represents an integer of 1 or more. The upper limit value of n 3 is preferably 10, more preferably 7.

これらのシアン酸エステル化合物の製法は、特に限定されず、シアン酸エステル合成法として現存するいかなる方法で製造してもよい。具体的に例示すると、下記一般式(5)で表されるナフトールアラルキル型フェノール樹脂とハロゲン化シアンとを不活性有機溶媒中で、塩基性化合物存在下反応させることにより得ることができる。また、同様なナフトールアラルキル型フェノール樹脂と塩基性化合物による塩とを、水を含有する溶液中にて形成させ、その後、ハロゲン化シアンと2相系界面反応を行い、合成する方法を採ることもできる。   The method for producing these cyanate ester compounds is not particularly limited, and may be produced by any existing method as a cyanate ester synthesis method. Specifically, it can be obtained by reacting a naphthol aralkyl type phenol resin represented by the following general formula (5) with cyanogen halide in an inert organic solvent in the presence of a basic compound. Alternatively, a similar naphthol aralkyl type phenol resin and a salt of a basic compound may be formed in a solution containing water, and then a two-phase interface reaction with cyanogen halide may be performed for synthesis. it can.

Figure 2017175614
式(5)中、複数のRは、各々独立に水素原子又はメチル基を示し、nは、1以上の整数を示す。
Figure 2017175614
In the formula (5), a plurality of R 6 are each independently a hydrogen atom or a methyl group, n 4 represents an integer of 1 or more.

式(5)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子が好ましい。In formula (5), several R < 6 > shows a hydrogen atom or a methyl group each independently, and a hydrogen atom is preferable especially.

式(5)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好ましくは6である。Wherein (5), n 4 represents an integer of 1 or more. upper limit of n 4 is preferably 10, more preferably 6.

また、ナフトールアラルキル型シアン酸エステル化合物は、α−ナフトールあるいはβ−ナフトール等のナフトール類とp−キシリレングリコール、α,α’−ジメトキシ−p−キシレン、1,4−ジ(2−ヒドロキシ−2−プロピル)ベンゼン等との反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものから選択することができる。   Naphthol aralkyl cyanate compounds include naphthols such as α-naphthol and β-naphthol, p-xylylene glycol, α, α'-dimethoxy-p-xylene, 1,4-di (2-hydroxy- It can be selected from those obtained by condensing naphthol aralkyl resin obtained by reaction with 2-propyl) benzene or the like and cyanic acid.

シアン酸エステル化合物(G)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。   A cyanate ester compound (G) may be used individually by 1 type, and 2 or more types may be mixed and used for it.

本実施形態の樹脂組成物において、シアン酸エステル化合物(G)の含有量は、特に限定されないが、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは0.005質量%以上5.0質量%以下であり、より好ましくは0.005質量%以上3.0質量%以下であり、さらに好ましくは0.1質量%以上1.0質量%以下である。シアン酸エステル化合物(G)の含有量が上記範囲内であることにより、成形性、熱時弾性率、耐デスミア性、及び耐薬品性により優れるプリント配線板を得ることができる傾向にある。   In the resin composition of the present embodiment, the content of the cyanate ester compound (G) is not particularly limited, but the total amount of the reaction product (P) and the thermosetting component (E) (100% by mass; solvent · Preferably, it is 0.005% by mass or more and 5.0% by mass or less, and more preferably 0.005% by mass or more and 3.0% by mass with respect to the solid content not including the solvent component and filler (J). It is below, More preferably, they are 0.1 mass% or more and 1.0 mass% or less. When the content of the cyanate ester compound (G) is within the above range, a printed wiring board excellent in moldability, thermal elastic modulus, desmear resistance, and chemical resistance tends to be obtained.

<アルケニル置換ナジイミド(H)>
本実施形態に用いるアルケニル置換ナジイミド(F)は、分子中に1個以上のアルケニル置換ナジイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、例えば、下記一般式(6)で表される化合物が挙げられる。
<Alkenyl-substituted nadiimide (H)>
The alkenyl-substituted nadiimide (F) used in the present embodiment is not particularly limited as long as it is a compound having one or more alkenyl-substituted nadiimide groups in the molecule. Specific examples thereof include compounds represented by the following general formula (6).

Figure 2017175614
Figure 2017175614

式(6)中、複数のRは、各々独立に水素原子、又は炭素数1〜6のアルキル基を示し、Rは、炭素数1〜6のアルキレン基、フェニレン基、ビフェニレン基、ナフチレン基、又は下記一般式(7)若しくは(8)で表される基を示す。In formula (6), a plurality of R 1 s each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 2 represents an alkylene group having 1 to 6 carbon atoms, a phenylene group, a biphenylene group, or a naphthylene. Or a group represented by the following general formula (7) or (8).

Figure 2017175614
Figure 2017175614

式(7)中、Rは、メチレン基、イソプロピリデン基、CO、O、S、又はSOで表される置換基を示す。In Formula (7), R 3 represents a substituent represented by a methylene group, an isopropylidene group, CO, O, S, or SO 2 .

Figure 2017175614
Figure 2017175614

式(8)中、複数のRは、各々独立に炭素数1〜4のアルキレン基、又は炭素数5〜8のシクロアルキレン基を示す。In the formula (8), a plurality of R 4 represents each independently an alkylene group having 1 to 4 carbon atoms, or a cycloalkylene group having a carbon number of 5-8.

また、式(6)で表されるアルケニル置換ナジイミド(F)は、市販のものを用いることもできる。市販されているものとしては、特に限定されないが、例えば、下記式(9)で表される化合物(BANI−M(丸善石油化学(株)製))、下記式(10)で表される化合物(BANI−X(丸善石油化学(株)製))などが挙げられる。   Moreover, a commercially available thing can also be used for the alkenyl substituted nadiimide (F) represented by Formula (6). Although it does not specifically limit as what is marketed, For example, the compound (BANI-M (made by Maruzen Petrochemical Co., Ltd.)) represented by following formula (9), the compound represented by following formula (10) (BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.)).

アルケニル置換ナジイミド(H)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。   An alkenyl substituted nadiimide (H) may be used individually by 1 type, and 2 or more types may be mixed and used for it.

Figure 2017175614
Figure 2017175614

Figure 2017175614
Figure 2017175614

本実施形態の樹脂組成物において、アルケニル置換ナジイミド(H)の含有量は、特に限定されないが、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは5.0質量%以上90質量%以下であり、より好ましくは10質量%以上60質量%以下であり、さらに好ましくは20質量%以上40質量%以下である。アルケニル置換ナジイミド(H)の含有量が上記範囲内であることにより、成形性、熱時弾性率、耐デスミア性、及び耐薬品性により優れるプリント配線板を得ることができる傾向にある。   In the resin composition of the present embodiment, the content of the alkenyl-substituted nadiimide (H) is not particularly limited, but the total amount (100% by mass; solvent / solvent) of the reaction product (P) and the thermosetting component (E) Preferably, it is 5.0% by mass or more and 90% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and still more preferably. It is 20 mass% or more and 40 mass% or less. When the content of the alkenyl-substituted nadiimide (H) is within the above range, a printed wiring board excellent in moldability, thermal elastic modulus, desmear resistance, and chemical resistance tends to be obtained.

上述したエポキシ樹脂(F)、シアン酸エステル化合物(G)、及びアルケニル置換ナジイミド(H)は、反応生成物(P)の原料として用いてもよい。   The epoxy resin (F), cyanate ester compound (G), and alkenyl-substituted nadiimide (H) described above may be used as raw materials for the reaction product (P).

熱硬化性成分(E)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。   A thermosetting component (E) may be used individually by 1 type, and 2 or more types may be mixed and used for it.

また、本実施形態の樹脂組成物においては、所期の特性が損なわない範囲において、反応生成物(P)及び熱硬化性成分(E)に加え、他の樹脂を添加することも可能である。当該他の樹脂の種類については絶縁性を有するものであれば特に限定されないが、例えば、熱可塑性樹脂が挙げられる。熱可塑性樹脂を適宜併用することで、金属密着性や応力緩和性といった特性を付与することができる。   Moreover, in the resin composition of this embodiment, it is also possible to add other resin in addition to the reaction product (P) and the thermosetting component (E) as long as the desired characteristics are not impaired. . Although it will not specifically limit about the kind of the said other resin if it has insulation, For example, a thermoplastic resin is mentioned. By appropriately using a thermoplastic resin, properties such as metal adhesion and stress relaxation can be imparted.

〔充填材(J)〕
本実施形態の樹脂組成物は、充填材(J)をさらに含むことが好ましい。充填材(J)としては、絶縁性を有するものであれば特に限定されないが、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類;アルミナ、窒化アルミニウム、窒化ホウ素、ベーマイト、酸化モリブデン、酸化チタン、ホウ酸亜鉛、錫酸亜鉛、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラス等のガラス微粉末類)、中空ガラス、及び球状ガラスなどの無機系の充填材、シリコーンゴム、シリコーン複合パウダーなどの有機系の充填材が挙げられる。これらは一種又は二種以上を適宜混合して使用することが可能である。
[Filler (J)]
It is preferable that the resin composition of this embodiment further contains a filler (J). The filler (J) is not particularly limited as long as it has insulating properties. Examples thereof include silicas such as natural silica, fused silica, amorphous silica, and hollow silica; alumina, aluminum nitride, boron nitride, boehmite, and oxidation. Molybdenum, titanium oxide, zinc borate, zinc stannate, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, short glass fibers (glass fine powders such as E glass and D glass), hollow glass, And inorganic fillers such as spherical glass, and organic fillers such as silicone rubber and silicone composite powder. These can be used alone or in combination of two or more.

これらの中でも、充填材(J)は、低熱膨張の観点からのシリカ、高熱伝導性の観点からのアルミナ及び窒化アルミニウムからなる群より選択される一種又は二種以上を含むことが好ましい。   Among these, the filler (J) preferably contains one or more selected from the group consisting of silica from the viewpoint of low thermal expansion, alumina from the viewpoint of high thermal conductivity, and aluminum nitride.

本実施形態の樹脂組成物における充填材(J)の含有量は、特に限定されないが、反応生成物(P)と熱硬化性成分(E)とを組み合わせる場合における反応生成物(P)及び熱硬化性成分(E)の合計量(100質量部;溶媒・溶剤成分、充填材(J)は含まない固形分量として)又は反応生成物(P)のみを用いる場合における反応生成物(P)の総量(100質量部;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、充填材(J)を50質量部以上300質量部以下含むことが、低熱膨張や、高熱伝導といった特性の観点から好ましく、その中でも、100質量部以上300質量部以下であることがより好ましく、100質量部以上250質量部以下であることがさらに好ましい。   The content of the filler (J) in the resin composition of the present embodiment is not particularly limited, but the reaction product (P) and heat in the case where the reaction product (P) and the thermosetting component (E) are combined. The total amount of the curable component (E) (100 parts by mass; as a solid content not including the solvent / solvent component and filler (J)) or the reaction product (P) when only the reaction product (P) is used. Including the filler (J) in an amount of 50 to 300 parts by mass with respect to the total amount (100 parts by mass; solid content not including the solvent / solvent component and filler (J)) From the viewpoint of characteristics such as conduction, it is more preferably 100 parts by mass or more and 300 parts by mass or less, and further preferably 100 parts by mass or more and 250 parts by mass or less.

〔シランカップリング剤、湿潤分散剤〕
本実施形態の樹脂組成物には、充填材の微粒子の分散性、樹脂と微粒子やガラスクロスの接着強度を向上させるために、シランカップリング剤及び/又は湿潤分散剤を併用することも可能である。これらのシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、例えば、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノシラン系;γ−グリシドキシプロピルトリメトキシシラン等のエポキシシラン系;γ−アクリロキシプロピルトリメトキシシラン等のアクリルシラン系;N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン塩酸塩等のカチオニックシラン系;スチリルシラン等のフェニルアリールシラン系のシランカップリング剤が挙げられ、一種又は二種以上を適宜組み合わせて使用することも可能である。また湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。具体例としては、例えば、ビッグケミー・ジャパン(株)製の商品名でDISPER−BYK110、111、118、180、161、BYK−W996、W9010、W903等の湿潤分散剤が挙げられる。
[Silane coupling agent, wetting and dispersing agent]
In the resin composition of the present embodiment, a silane coupling agent and / or a wet dispersing agent can be used in combination in order to improve the dispersibility of the fine particles of the filler and the adhesive strength between the resin and the fine particles or the glass cloth. is there. These silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for inorganic surface treatment. Specific examples include aminosilanes such as γ-aminopropyltriethoxysilane and N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane; epoxysilanes such as γ-glycidoxypropyltrimethoxysilane. Acrylic silanes such as γ-acryloxypropyltrimethoxysilane; cationic silanes such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride; phenylaryls such as styrylsilane; Silane-based silane coupling agents can be mentioned, and one or two or more can be used in appropriate combination. The wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for coatings. Specific examples include wet dispersing agents such as DISPER-BYK110, 111, 118, 180, 161, BYK-W996, W9010, and W903 under the trade names of Big Chemie Japan Co., Ltd.

〔硬化促進剤〕
本実施形態の樹脂組成物においては、所期の特性が損なわれない範囲において、硬化促進剤を併用することも可能である。硬化促進剤としては、特に限定されないが、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ−tert−ブチル−ジ−パーフタレート等で例示される有機過酸化物;アゾビスニトリル等のアゾ化合物;N,N−ジメチルベンジルアミン、N,N−ジメチルアニリン、N,N−ジメチルトルイジン、2−N−エチルアニリノエタノール、トリ−n−ブチルアミン、ピリジン、キノリン、N−メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N−メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物、及びトリフェニルイミダゾール(TPIZ)が挙げられる。
[Curing accelerator]
In the resin composition of this embodiment, a curing accelerator can be used in combination as long as the desired properties are not impaired. Although it does not specifically limit as a hardening accelerator, For example, the organic peroxide illustrated by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate etc. Azo compounds such as azobisnitrile; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, Tertiary amines such as N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine; phenols such as phenol, xylenol, cresol, resorcin, catechol; lead naphthenate, lead stearate , Naphth Organic metal salts such as zinc oxide, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate and acetylacetone iron; these organic metal salts are dissolved in hydroxyl group-containing compounds such as phenol and bisphenol Inorganic metal salts such as tin chloride, zinc chloride, and aluminum chloride; Dioctyl tin oxide, other organic tin compounds such as alkyl tin and alkyl tin oxide, and triphenylimidazole (TPIZ).

〔有機溶剤〕
本実施形態の樹脂組成物は、必要に応じて溶剤を含有していてもよい。例えば、有機溶剤を用いると、樹脂組成物の調製時における粘度が下がり、ハンドリング性が向上するとともにガラスクロスへの含浸性が高められる。溶剤の種類は、樹脂組成物中の樹脂の一部又は全部を溶解可能なものであれば、特に限定されない。その具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブ等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド等のアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートが挙げられる。溶剤は、一種又は二種以上を組み合わせて使用することができる。
〔Organic solvent〕
The resin composition of the present embodiment may contain a solvent as necessary. For example, when an organic solvent is used, the viscosity at the time of preparing the resin composition is lowered, the handling property is improved, and the impregnation property to the glass cloth is enhanced. The kind of solvent will not be specifically limited if it can melt | dissolve part or all of resin in a resin composition. Specific examples thereof include, but are not particularly limited to, for example, ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; propylene glycol monomethyl ether and acetate thereof Is mentioned. A solvent can be used 1 type or in combination of 2 or more types.

〔その他の成分〕
本実施形態の樹脂組成物には、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類等の種々の高分子化合物;他の難燃性の化合物;添加剤等の併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、メラミンやベンゾグアナミン等の窒素含有化合物、オキサジン環含有化合物が挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、重合禁止剤等を、所望に応じて適宜組み合わせて使用することも可能である。
[Other ingredients]
In the resin composition of the present embodiment, various polymer compounds such as other thermosetting resins, thermoplastic resins and oligomers thereof, elastomers, etc., as long as the desired characteristics are not impaired These compounds can be used in combination with additives. These are not particularly limited as long as they are generally used. For example, in a flame-retardant compound, nitrogen-containing compounds such as melamine and benzoguanamine, and oxazine ring-containing compounds are exemplified. Additives include UV absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, surface conditioners, brighteners, polymerization Inhibitors and the like can be used in appropriate combinations as desired.

〔樹脂組成物の製造方法〕
本実施形態の樹脂組成物の製造方法は、アミノ変性シリコーン(A)と、マレイミド化合物(B)と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させて得られた反応生成物(P)を、そのまま樹脂組成物として得ることができる。また、得られた反応生成物(P)と熱硬化性成分(B)とを混合させて樹脂組成物を得ることができる。さらに、必要に応じてその他の任意性分を混合させてもよい。
[Method for producing resin composition]
The method for producing the resin composition of the present embodiment is obtained by reacting amino-modified silicone (A), maleimide compound (B), and at least one of carboxylic acid (C) or carboxylic anhydride (D). The obtained reaction product (P) can be obtained as a resin composition as it is. Moreover, the resin composition can be obtained by mixing the obtained reaction product (P) and the thermosetting component (B). Furthermore, other optional components may be mixed as necessary.

本実施形態の樹脂組成物の製造方法は、特に限定されないが、好ましい態様として、アミノ変性シリコーン(A)と、マレイミド化合物(B)とを反応させて一次ポリマーを得る第一反応工程(以下、単に「第一反応工程」ともいう。)と、一次ポリマーと、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかとを反応させる第二反応工程(以下、単に「第二反応工程」ともいう。)と、を有することが、より優れた反応生成物(P)の保存安定性を得る観点から好ましい。   Although the manufacturing method of the resin composition of this embodiment is not specifically limited, As a preferable aspect, the first reaction step (hereinafter, referred to as “primary polymer”) is obtained by reacting amino-modified silicone (A) with maleimide compound (B). Simply referred to as “first reaction step”), a second reaction step (hereinafter simply referred to as “second reaction step”) in which the primary polymer is reacted with at least one of carboxylic acid (C) and carboxylic acid anhydride (D). It is preferable from the viewpoint of obtaining better storage stability of the reaction product (P).

第一反応工程における反応温度は、アミノ変性シリコーン(A)とマレイミド化合物(B)との反応が進行する温度であれば特に限定されないが、50℃〜200℃であることが好ましく、100℃〜150℃であることがより好ましい。   The reaction temperature in the first reaction step is not particularly limited as long as the reaction between the amino-modified silicone (A) and the maleimide compound (B) proceeds, but is preferably 50 ° C to 200 ° C, preferably 100 ° C to More preferably, the temperature is 150 ° C.

第二反応工程に供される、第一反応工程により得られる一次ポリマーの粘度は、より優れた反応生成物(P)の保存安定性を得る観点から、100〜500mPa・sであることが好ましく、150mPa・s〜400mPa・sであることがより好ましい。なお、一次ポリマーの粘度の測定方法は、特に限定されるものではなく、一般的な粘度計を用いて測定できる。例えば、コーンプレート型粘度計(例えば、ICI粘度計)を用いて測定できる。   The viscosity of the primary polymer obtained by the first reaction step provided in the second reaction step is preferably 100 to 500 mPa · s from the viewpoint of obtaining better storage stability of the reaction product (P). 150 mPa · s to 400 mPa · s is more preferable. In addition, the measuring method of the viscosity of a primary polymer is not specifically limited, It can measure using a general viscometer. For example, it can be measured using a cone plate viscometer (for example, ICI viscometer).

第二反応工程における反応温度は、特に限定されないが、50℃〜200℃であることが好ましく、100℃〜150℃であることがより好ましい。反応時間は、特に限定されないが、好ましくは0.5時間〜5時間であり、より好ましくは1.5時間〜3.5時間である。   Although the reaction temperature in a 2nd reaction process is not specifically limited, It is preferable that it is 50 to 200 degreeC, and it is more preferable that it is 100 to 150 degreeC. Although reaction time is not specifically limited, Preferably it is 0.5 hour-5 hours, More preferably, it is 1.5 hours-3.5 hours.

当然、本実施形態の樹脂組成物の製造方法は、アミノ変性シリコーン(A)と、マレイミド化合物(B)と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を同時に反応させてもよい。すなわち、第一反応工程と、第二反応工程とを同時に行ってもよい。   Naturally, in the method for producing the resin composition of the present embodiment, the amino-modified silicone (A), the maleimide compound (B), and at least one of the carboxylic acid (C) and the carboxylic acid anhydride (D) are reacted simultaneously. You may let them. That is, you may perform a 1st reaction process and a 2nd reaction process simultaneously.

第一工程及び第二工程において、アミノ変性シリコーン(A)、マレイミド化合物(B)、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれか、及び一次ポリマーは、これらのハンドリング性を向上させるために溶剤に希釈されていることが好ましい。溶剤の種類は、特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセルソルブ等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド等のアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートが挙げられる。溶剤は、一種又は二種以上を組み合わせて使用することができる。   In the first step and the second step, the amino-modified silicone (A), the maleimide compound (B), at least one of the carboxylic acid (C) and the carboxylic acid anhydride (D), and the primary polymer have these handling properties. In order to improve, it is preferable to be diluted with a solvent. The type of the solvent is not particularly limited, and examples thereof include ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; propylene glycol monomethyl ether and acetate thereof. Can be mentioned. A solvent can be used 1 type or in combination of 2 or more types.

樹脂組成物の製造時には、各成分を均一に溶解又は分散させるための公知の処理(攪拌、混合、混練処理等)を行うことができる。充填材(J)等の充填材の均一分散にあたり、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する分散性が高められる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。   During the production of the resin composition, a known process (such as stirring, mixing, and kneading process) for uniformly dissolving or dispersing each component can be performed. In uniformly dispersing the filler such as the filler (J), the dispersibility with respect to the resin composition is enhanced by performing the stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability. The above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill or a bead mill for mixing, or a revolving or rotating mixing device.

〔プリプレグ〕
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された本実施形態の樹脂組成物とを有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、上記の樹脂組成物を基材に含浸又は塗布させた後、100〜200℃の乾燥機中で1〜30分加熱するなどして半硬化(Bステ−ジ化)させることで、プリプレグを得る方法が挙げられる。なお、本実施形態において、プリプレグの総量(100質量%)に対する上記の樹脂組成物の含有量(充填材、添加剤成分を含む)は、特に限定されないが、30質量%以上90質量%以下の範囲であることが好ましい。
[Prepreg]
The prepreg of this embodiment has a base material and the resin composition of this embodiment impregnated or applied to the base material. The manufacturing method of a prepreg can be performed according to a conventional method, and is not specifically limited. For example, after impregnating or applying the above resin composition to a substrate, it is semi-cured (B-staged) by heating in a dryer at 100 to 200 ° C. for 1 to 30 minutes. The method of obtaining is mentioned. In the present embodiment, the content of the resin composition (including fillers and additive components) with respect to the total amount (100% by mass) of the prepreg is not particularly limited, but is 30% by mass to 90% by mass. A range is preferable.

本実施形態のプリプレグで使用される基材としては、特に限定されるものではなく、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。その具体例としては、特に限定されないが、例えば、Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Tガラス等のガラス繊維;クォーツ等のガラス以外の無機繊維;ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ社製)等の全芳香族ポリアミド;2,6−ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、クラレ社製)等のポリエステル;ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミド等の有機繊維が挙げられる。   The substrate used in the prepreg of the present embodiment is not particularly limited, and known materials used for various printed wiring board materials are appropriately selected and used depending on the intended use and performance. be able to. Specific examples thereof are not particularly limited. For example, glass fibers such as E glass, D glass, S glass, Q glass, spherical glass, NE glass, and T glass; inorganic fibers other than glass such as quartz; polyparaphenylene Totally aromatic polyamides such as terephthalamide (Kevlar (registered trademark), manufactured by DuPont), copolyparaphenylene 3,4'oxydiphenylene terephthalamide (Technola (registered trademark), manufactured by Teijin Techno Products); 2, Polyesters such as 6-hydroxynaphthoic acid and parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.); polyparaphenylene benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.), and organic fibers such as polyimide Can be mentioned.

これらの中でも低熱膨張性の観点から、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選択される一種又は二種以上であることが好ましい。   Among these, from the viewpoint of low thermal expansibility, one or more selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers are preferable.

基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、及びサーフェシングマットが挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織りが知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤等で表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01〜0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材は、厚み200μm以下、質量250g/m以下のガラス織布が好ましく、Eガラス、Sガラス、及びTガラス等のガラス繊維からなるガラス織布がより好ましい。Although it does not specifically limit as a shape of a base material, For example, a woven fabric, a nonwoven fabric, roving, a chopped strand mat, and a surfacing mat are mentioned. The weaving method of the woven fabric is not particularly limited, and for example, plain weave, Nanako weave, and twill weave are known, and these can be appropriately selected and used depending on the intended use and performance. Moreover, the thing which spread-processed these, and the glass woven fabric surface-treated with the silane coupling agent etc. are used suitably. Although the thickness and mass of the substrate are not particularly limited, those having a thickness of about 0.01 to 0.3 mm are preferably used. In particular, from the viewpoint of strength and water absorption, the base material is preferably a glass woven fabric having a thickness of 200 μm or less and a mass of 250 g / m 2 or less, and a glass woven fabric made of glass fibers such as E glass, S glass, and T glass. Is more preferable.

本実施形態の積層板は、例えば、上述のプリプレグを複数枚重ねて硬化して得ることができる。また、本実施形態の金属箔張積層板は、例えば、上述のプリプレグと、金属箔とを積層して硬化して得ることができる。   The laminated board of this embodiment can be obtained by, for example, stacking and curing a plurality of the above-described prepregs. Moreover, the metal foil tension laminated board of this embodiment can be obtained by laminating | stacking and hardening the above-mentioned prepreg and metal foil, for example.

本実施形態の金属箔張積層板は、具体的には、例えば、上述のプリプレグを少なくとも1枚以上重ね、その片面若しくは両面に金属箔を配して積層成形することにより、得ることができる。より具体的には、上述のプリプレグを1枚又は複数枚以上を重ね、所望によりその片面若しくは両面に銅やアルミニウム等の金属箔を配置した構成とし、これを必要に応じて積層成形することにより、金属箔張積層板を製造することができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔等の公知の銅箔が好ましい。また、金属箔の厚さは、特に限定されないが、1.0μm以上70μm以下が好ましく、より好ましくは1.5μm以上35μm以下である。金属箔張積層板の成形方法及びその成形条件についても、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を用いることができる。また、金属箔張積層板の成形において、温度は100〜300℃、圧力は面圧2.0〜100kgf/cm、加熱時間は0.05〜5時間の範囲が一般的である。さらに、必要に応じて、150〜300℃の温度で後硬化を行うこともできる。また、上述のプリプレグと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。Specifically, the metal foil-clad laminate of the present embodiment can be obtained, for example, by laminating at least one or more of the prepregs described above, and arranging and molding the metal foil on one or both sides thereof. More specifically, by laminating one or more of the above prepregs, and optionally placing a metal foil such as copper or aluminum on one or both sides of the prepreg, this is laminated and formed as necessary. A metal foil-clad laminate can be produced. Although the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable. The thickness of the metal foil is not particularly limited, but is preferably 1.0 μm or more and 70 μm or less, and more preferably 1.5 μm or more and 35 μm or less. There are no particular limitations on the method for forming the metal foil-clad laminate and the molding conditions thereof, and general methods and conditions for a laminate for a printed wiring board and a multilayer board can be applied. For example, a multi-stage press, a multi-stage vacuum press, a continuous molding machine, an autoclave molding machine, etc. can be used at the time of forming a metal foil-clad laminate. In forming a metal foil-clad laminate, the temperature is generally 100 to 300 ° C., the pressure is a surface pressure of 2.0 to 100 kgf / cm 2 , and the heating time is generally 0.05 to 5 hours. Furthermore, if necessary, post-curing can be performed at a temperature of 150 to 300 ° C. Also, a multilayer board can be formed by laminating and combining the above-described prepreg and a separately prepared wiring board for an inner layer.

本実施形態の金属箔張積層板は、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、本実施形態の金属箔張積層板は、低い熱膨張率、良好な成形性、金属箔ピール強度及び耐薬品性(特に耐デスミア性)を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。   The metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board by forming a predetermined wiring pattern. The metal foil-clad laminate of this embodiment has a low coefficient of thermal expansion, good formability, metal foil peel strength, and chemical resistance (particularly desmear resistance), and a semiconductor that requires such performance. It can be used particularly effectively as a printed wiring board for a package.

また、本実施形態において、上述したプリプレグの形態の他、上述の樹脂組成物を金属箔やフィルムに塗布した形態の埋め込みシートの形態とすることもできる。   Moreover, in this embodiment, it can also be set as the form of the embedding sheet of the form which apply | coated the above-mentioned resin composition to metal foil or a film other than the form of the prepreg mentioned above.

〔レジンシート〕
本実施形態のレジンシートは、支持体と、該支持体の表面に配された本実施形態の樹脂組成物とを有する。上述の樹脂組成物を支持体の片面又は両面に塗布したレジンシートである。ここで、レジンシートとは、薄葉化の1つの手段として用いられるもので、例えば、金属箔やフィルム等の支持体に、直接、プリプレグ等に用いられる熱硬化性樹脂(充填材を含む)を塗布及び乾燥して製造することができる。
[Resin sheet]
The resin sheet of this embodiment has a support body and the resin composition of this embodiment distribute | arranged to the surface of this support body. It is a resin sheet which apply | coated the above-mentioned resin composition to the single side | surface or both surfaces of a support body. Here, the resin sheet is used as one means of thinning, for example, a thermosetting resin (including a filler) used for a prepreg directly on a support such as a metal foil or a film. It can be produced by coating and drying.

本実施形態のレジンシートを製造する際において使用される支持体は、特に限定されないが、各種プリント配線板材料に用いられている公知のものを使用することができ、樹脂シート又は金属箔であることが好ましい。樹脂シート及び金属箔としては、例えば、ポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等の樹脂シート、及びアルミニウム箔、銅箔、金箔等の金属箔が挙げられる。その中でも電解銅箔、及びPETフィルムが好ましい。   Although the support body used when manufacturing the resin sheet of this embodiment is not specifically limited, the well-known thing used for various printed wiring board materials can be used, and it is a resin sheet or metal foil. It is preferable. Examples of the resin sheet and metal foil include a polyimide film, a polyamide film, a polyester film, a polyethylene terephthalate (PET) film, a polybutylene terephthalate (PBT) film, a polypropylene (PP) film, and a resin sheet such as a polyethylene (PE) film, And metal foils such as aluminum foil, copper foil, and gold foil. Among these, electrolytic copper foil and PET film are preferable.

本実施形態のレジンシートは、上述した樹脂組成物を支持体に塗布後、半硬化(Bステージ化)させたものであることが好ましい。本実施形態のレジンシートの製造方法は一般にBステージ樹脂及び支持体の複合体を製造する方法が好ましい。具体的には、例えば、上記樹脂組成物を銅箔などの支持体に塗布した後、100〜200℃の乾燥機中で、1〜60分加熱させる方法などにより半硬化させ、レジンシートを製造する方法などが挙げられる。支持体に対する樹脂組成物の付着量は、レジンシートの樹脂厚で1.0μm以上300μm以下の範囲が好ましい。   The resin sheet of the present embodiment is preferably one obtained by applying the above-described resin composition to a support and then semi-curing (B-stage). In general, the method for producing the resin sheet of this embodiment is preferably a method for producing a composite of a B-stage resin and a support. Specifically, for example, after the resin composition is applied to a support such as a copper foil, it is semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes to produce a resin sheet. The method of doing is mentioned. The amount of the resin composition attached to the support is preferably in the range of 1.0 to 300 μm in terms of the resin thickness of the resin sheet.

本実施形態のレジンシートは、プリント配線板のビルドアップ材料として使用可能である。   The resin sheet of this embodiment can be used as a build-up material for a printed wiring board.

本実施形態の積層板は、例えば、上述のレジンシートを1枚以上重ねて硬化して得ることができる。   The laminated board of this embodiment can be obtained, for example, by stacking and curing one or more of the above-described resin sheets.

また、本実施形態の金属箔張積層板は、例えば、上述のレジンシートと、金属箔とを積層して硬化して得ることができる。   Moreover, the metal foil tension laminated board of this embodiment can be obtained by laminating | stacking and hardening the above-mentioned resin sheet and metal foil, for example.

本実施形態の金属箔張積層板は、具体的には、例えば、上述のレジンシートを用いて、その片面又は両面に金属箔を配置して積層形成することにより、得ることができる。より具体的には、例えば、前述のレジンシートを1枚又は所望によりその支持体を剥離したものを複数枚重ね、その片面又は両面に銅やアルミニウム等の金属箔を配置した構成とし、これを必要に応じて積層成形することにより、金属箔張積層板を製造することができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔等の公知の銅箔が好ましい。金属箔張積層板の成形方法及びその成形条件についても、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができる。また、金属箔張積層板の成形時において、温度は100〜300℃、圧力は面圧2.0〜100kgf/cm、加熱時間は0.05〜5時間の範囲が一般的である。さらに、必要に応じて、150〜300℃の温度で後硬化を行うこともできる。Specifically, the metal foil-clad laminate of the present embodiment can be obtained by, for example, using the above-described resin sheet and arranging and laminating metal foils on one side or both sides thereof. More specifically, for example, one of the above-mentioned resin sheets or a plurality of the ones from which the support is peeled off are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides thereof. A metal foil-clad laminate can be produced by laminating as necessary. Although the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable. There are no particular limitations on the method for forming the metal foil-clad laminate and the molding conditions thereof, and general methods and conditions for a laminate for a printed wiring board and a multilayer board can be applied. For example, a multi-stage press, a multi-stage vacuum press, a continuous molding machine, an autoclave molding machine, etc. can be used at the time of forming a metal foil-clad laminate. Further, at the time of forming the metal foil-clad laminate, the temperature is generally 100 to 300 ° C., the pressure is 2.0 to 100 kgf / cm 2 , and the heating time is generally 0.05 to 5 hours. Furthermore, if necessary, post-curing can be performed at a temperature of 150 to 300 ° C.

本実施形態の積層板は、レジンシート及び/又はプリプレグを、複数備える積層板であってもよく、レジンシート及び/又はプリプレグと、金属箔とを備える金属箔張積層板であってもよい。これらの積層板は、レジンシート、プリプレグ、及び金属箔を重ねて硬化することによって得られる。   The laminate of this embodiment may be a laminate provided with a plurality of resin sheets and / or prepregs, or may be a metal foil-clad laminate provided with resin sheets and / or prepregs and metal foils. These laminates are obtained by stacking and curing a resin sheet, a prepreg, and a metal foil.

本実施形態において、回路となる導体層を形成しプリント配線板を作製する際、金属箔張積層板の形態をとらない場合、無電解めっきの手法を用いることもできる。   In this embodiment, when a conductor layer to be a circuit is formed to produce a printed wiring board, a method of electroless plating can also be used if the form of a metal foil-clad laminate is not taken.

〔プリント配線板〕
本実施形態のプリント配線板は、本実施形態の樹脂組成物を含む絶縁層と、該絶縁層の表面に形成された導体層とを備える。
[Printed wiring board]
The printed wiring board of the present embodiment includes an insulating layer containing the resin composition of the present embodiment and a conductor layer formed on the surface of the insulating layer.

本実施形態のプリント配線板は、例えば、絶縁層に金属箔や無電解めっきによって回路となる導体層が形成されて作製される。導体層は一般的に銅やアルミニウムから構成される。導体層が形成されたプリント配線板用絶縁層は、所定の配線パターンを形成することにより、プリント配線板に好適に用いることができる。そして本実施形態のプリント配線板は、絶縁層が上述の樹脂組成物を含むことにより半導体実装時のリフロー温度下においても優れた弾性率を維持することで、半導体プラスチックパッケージの反りを効果的に抑制し、金属箔ピール強度及び耐デスミア性に優れることから、半導体パッケージ用プリント配線板として、殊に有効に用いることができる。   The printed wiring board according to the present embodiment is manufactured, for example, by forming a conductive layer serving as a circuit on an insulating layer by metal foil or electroless plating. The conductor layer is generally made of copper or aluminum. The insulating layer for printed wiring board on which the conductor layer is formed can be suitably used for a printed wiring board by forming a predetermined wiring pattern. And the printed wiring board of this embodiment maintains the elastic modulus excellent also under the reflow temperature at the time of semiconductor mounting because an insulating layer contains the above-mentioned resin composition, and effectively warps a semiconductor plastic package. Since it suppresses and is excellent in metal foil peel strength and desmear resistance, it can be used particularly effectively as a printed wiring board for semiconductor packages.

本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、上述の金属箔張積層板(銅張積層板等)を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。   Specifically, the printed wiring board of this embodiment can be manufactured by the following method, for example. First, the metal foil-clad laminate (such as a copper-clad laminate) is prepared. An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to produce an inner layer substrate. If necessary, surface treatment is performed on the inner layer circuit surface of the inner layer substrate to increase the adhesive strength, and then the required number of the above-mentioned prepregs are stacked on the inner layer circuit surface. Then, it is integrally molded by heating and pressing. In this way, a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after this multi-layer laminate is subjected to drilling for through holes and via holes, desmear treatment is performed to remove smears, which are resin residues derived from the resin component contained in the cured product layer. . After that, a plated metal film is formed on the wall surface of this hole to connect the inner layer circuit and the metal foil for the outer layer circuit, and the outer layer circuit is formed by etching the metal foil for the outer layer circuit to produce a printed wiring board. Is done.

本実施形態のプリント配線板において、例えば、上述のプリプレグ(基材及びこれに添着された上述の樹脂組成物)、上述のレジンシート(支持体及びこれに添着された上述の樹脂組成物)、金属箔張積層板の樹脂組成物層(上述の樹脂組成物からなる層)が、上述の樹脂組成物を含む絶縁層を構成することになる。   In the printed wiring board of the present embodiment, for example, the above-described prepreg (base material and the above-described resin composition attached thereto), the above-described resin sheet (the support and the above-described resin composition attached thereto), The resin composition layer of the metal foil-clad laminate (layer made of the above-described resin composition) constitutes an insulating layer containing the above-described resin composition.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited at all by these Examples.

[重量平均分子量]
反応生成物の重量平均分子量は、下記実施例及び比較例で得られた樹脂組成物を試料として、ゲルパーミュエーションクロマトグラフィー(GPC)法で測定し、標準ポリスチレン検量線を用いて換算した値として算出した。具体的には、カラムからの溶出時間と分子量との関係をあらかじめ求めておき、これに基づいて溶出時間を分子量に置き換える。この時に用いる「溶出時間と分子量との関係」を示すグラフを「較正曲線」(又は検量線)という。「溶出時間と分子量との関係」は、ポリマーの種類毎に異なるため、原則としては、測定対象と同一構造で分子量既知の分子量分布の狭い標準ポリマーを用いる必要がある。しかし、現実的には困難な場合がほとんどのため、実際は、市販の標準ポリマーが用いられる。ここでは、標準ポリマーとしてポリスチレンを用いている。このように得られた分子量は、標準換算分子量という。これより下記の式から重量平均分子量(Mw)が算出される。

Figure 2017175614
式中、Nは、ポリマー分子の数を示し、Mは、分子量を示し、Cは、試料濃度を示す。試料濃度Cは、モノマーの単位数に比例するため、C=M×Nとなる。[Weight average molecular weight]
The weight average molecular weight of the reaction product was measured by gel permeation chromatography (GPC) method using the resin compositions obtained in the following examples and comparative examples as samples, and converted using a standard polystyrene calibration curve. Calculated as Specifically, the relationship between the elution time from the column and the molecular weight is obtained in advance, and based on this, the elution time is replaced with the molecular weight. A graph showing “relation between elution time and molecular weight” used at this time is called “calibration curve” (or calibration curve). Since the “relationship between the elution time and the molecular weight” varies depending on the type of polymer, in principle, it is necessary to use a standard polymer having the same structure as the measurement object and a narrow molecular weight distribution with a known molecular weight. However, since practically most cases are difficult, a commercially available standard polymer is actually used. Here, polystyrene is used as the standard polymer. The molecular weight obtained in this way is referred to as a standard equivalent molecular weight. From this, the weight average molecular weight (Mw) is calculated from the following formula.
Figure 2017175614
In the formula, N represents the number of polymer molecules, M represents the molecular weight, and C represents the sample concentration. Since the sample concentration C is proportional to the number of monomer units, C = M × N.

[合成例1]α−ナフトールアラルキル型シアン酸エステル樹脂の合成
温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予めブラインにより0〜5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸9.75g(0.0935mol)、水76mL、及び塩化メチレン44mLを仕込んだ。
[Synthesis Example 1] Synthesis of α-naphthol aralkyl-type cyanate ester resin A reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was cooled in advance to 0 to 5 ° C. with brine, and chlorinated there. 7.47 g (0.122 mol) of cyanide, 9.75 g (0.0935 mol) of 35% hydrochloric acid, 76 mL of water, and 44 mL of methylene chloride were charged.

この反応器内の温度を−5〜+5℃、pHを1以下に保ちながら、撹拌下、式(5)におけるRがすべて水素原子を示すα−ナフトールアラルキル型フェノール樹脂(SN485、OH基当量:214g/eq.軟化点:86℃、新日鐵化学(株)製)20g(0.0935mol)、及びトリエチルアミン14.16g(0.14mol)を塩化メチレン92mlに溶解した溶液を滴下漏斗により1時間かけて滴下し、滴下終了後、更にトリエチルアミン4.72g(0.047mol)を15分間かけて滴下した。

Figure 2017175614
は、1以上の整数を示す。An α-naphthol aralkyl type phenol resin (SN485, OH group equivalent) in which R 6 in Formula (5) all represents a hydrogen atom with stirring while maintaining the temperature in the reactor at −5 to + 5 ° C. and the pH at 1 or less. : 214 g / eq Softening point: 86 ° C., manufactured by Nippon Steel Chemical Co., Ltd.) 20 g (0.0935 mol) and triethylamine 14.16 g (0.14 mol) dissolved in 92 ml of methylene chloride were added to a 1 It dropped over time, and after completion | finish of dripping, 4.72 g (0.047 mol) of triethylamine was further dripped over 15 minutes.
Figure 2017175614
n 4 represents an integer of 1 or more.

滴下終了後、同温度で15分間撹拌後、反応液を分液し、有機層を分取した。得られた有機層を水100mLで2回洗浄した後、エバポレーターにより減圧下で塩化メチレンを留去し、最終的に80℃で1時間濃縮乾固させて、α−ナフトールアラルキル型フェノール樹脂のシアン酸エステル化物(α−ナフトールアラルキル型シアン酸エステル樹脂)23.5gを得た。   After completion of dropping, the reaction solution was separated after stirring at the same temperature for 15 minutes, and the organic layer was separated. The obtained organic layer was washed twice with 100 mL of water, and then methylene chloride was distilled off under reduced pressure using an evaporator. Finally, the mixture was concentrated to dryness at 80 ° C. for 1 hour, and an α-naphthol aralkyl type phenol resin cyanide was obtained. 23.5 g of acid esterified product (α-naphthol aralkyl cyanate ester resin) was obtained.

[実施例1]
マレイミド化合物(マレイミド基当量285g/eq、ケイ・アイ化成社製の商品名「BMI−80」)25質量部をプロピレングリコールモノメチルエーテル(KHネオケム社製)40質量部に加熱還流温度130℃の条件下において溶解させた溶液に、ジアミノ変性シリコーン(X−22−161B、アミノ基当量1500g/eq、信越化学工業社製の商品名「X−22−161B」)15質量部を溶解させて、一次ポリマーを調製した。その後、加熱還流温度130℃の条件下で攪拌を続け、ICI粘度計(コーンプレート型粘度計、東和工業社製)で一次ポリマーの粘度が200〜300mPa・sまで増加した時点で、一次ポリマーに、無水マレイン酸(東京化成社製)1.0質量部をプロピレングリコールモノエチルエーテルアセテート(ダウ・ケミカル社製)22.5質量部で溶解させた溶液を添加し、加熱還流温度130℃の条件下のまま、数時間反応させ、反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 1]
25 parts by mass of a maleimide compound (maleimide group equivalent 285 g / eq, trade name “BMI-80” manufactured by Kay Kasei Co., Ltd.) is heated to 40 parts by mass of propylene glycol monomethyl ether (KH Neochem) under conditions of heating to reflux 130 ° C. 15 parts by mass of diamino-modified silicone (X-22-161B, amino group equivalent 1500 g / eq, trade name “X-22-161B” manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved in the solution dissolved below. A polymer was prepared. Thereafter, stirring was continued under the condition of a heating reflux temperature of 130 ° C., and when the viscosity of the primary polymer increased to 200 to 300 mPa · s with an ICI viscometer (cone plate viscometer, manufactured by Towa Industries Co., Ltd.), And a solution prepared by dissolving 1.0 part by mass of maleic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) with 22.5 parts by mass of propylene glycol monoethyl ether acetate (manufactured by Dow Chemical Co., Ltd.) The reaction was allowed to proceed for several hours while leaving the resin composition containing the reaction product. Using a part of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A part of the resin composition was stored for 7 days at 25 ° C., and the weight average molecular weight of the reaction product after storage was measured. The results are shown in Table 1.

[実施例2]
無水マレイン酸1.0質量部を無水酢酸(東京化成工業社製)1.0質量部に替えた以外は、実施例1と同様の方法により、重量平均分子量が13200である反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 2]
A reaction product having a weight average molecular weight of 13200 is contained in the same manner as in Example 1 except that 1.0 part by mass of maleic anhydride is changed to 1.0 part by mass of acetic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.). A resin composition was obtained. Using a part of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A part of the resin composition was stored for 7 days at 25 ° C., and the weight average molecular weight of the reaction product after storage was measured. The results are shown in Table 1.

[実施例3]
無水マレイン酸1.0質量部を無水フタル酸(東京化成工業社製)1.0質量部に替えた以外は、実施例1と同様の方法により、重量平均分子量が12500である反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 3]
A reaction product having a weight average molecular weight of 12500 was obtained in the same manner as in Example 1 except that 1.0 part by mass of maleic anhydride was changed to 1.0 part by mass of phthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.). A resin composition containing was obtained. Using a part of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A part of the resin composition was stored for 7 days at 25 ° C., and the weight average molecular weight of the reaction product after storage was measured. The results are shown in Table 1.

[実施例4]
無水マレイン酸1.0質量部をマレイン酸(東京化成工業社製)1.0質量部に替えた以外は、実施例1と同様の方法により、重量平均分子量が12000である反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 4]
A reaction product having a weight average molecular weight of 12000 is contained in the same manner as in Example 1 except that 1.0 part by mass of maleic anhydride is changed to 1.0 part by mass of maleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.). A resin composition was obtained. Using a part of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A part of the resin composition was stored for 7 days at 25 ° C., and the weight average molecular weight of the reaction product after storage was measured. The results are shown in Table 1.

[実施例5]
無水マレイン酸1.0質量部を無水マレイン酸0.5質量部に替えた以外は、実施例1と同様の方法により、重量平均分子量が11710である反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 5]
A resin composition containing a reaction product having a weight average molecular weight of 11710 was obtained in the same manner as in Example 1 except that 1.0 part by mass of maleic anhydride was changed to 0.5 part by mass of maleic anhydride. . Using a part of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A part of the resin composition was stored for 7 days at 25 ° C., and the weight average molecular weight of the reaction product after storage was measured. The results are shown in Table 1.

[比較例1]
無水マレイン酸1.0質量部及びプロピレングリコールモノエチルエーテルアセテート22.5質量部を用いなかった以外は、実施例1と同様の方法により、重量平均分子量が13900である反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Comparative Example 1]
Resin composition containing a reaction product having a weight average molecular weight of 13900 by the same method as in Example 1 except that 1.0 part by weight of maleic anhydride and 22.5 parts by weight of propylene glycol monoethyl ether acetate were not used I got a thing. Using a part of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A part of the resin composition was stored for 7 days at 25 ° C., and the weight average molecular weight of the reaction product after storage was measured. The results are shown in Table 1.

[比較例2]
無水マレイン酸1.0質量部を用いなかった以外は、実施例1と同様の方法により、重量平均分子量が14100である反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Comparative Example 2]
A resin composition containing a reaction product having a weight average molecular weight of 14100 was obtained in the same manner as in Example 1 except that 1.0 part by mass of maleic anhydride was not used. Using a part of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A part of the resin composition was stored for 7 days at 25 ° C., and the weight average molecular weight of the reaction product after storage was measured. The results are shown in Table 1.

Figure 2017175614
Figure 2017175614

表1中、「増加率」とは、保存前における樹脂組成物の重量平均分子量に対する、7日間保存後における樹脂組成物の重量平均分子量の比率(%)である。なお、保存前における樹脂組成物の「重量平均分子量」は、各樹脂組成物を得た直後に測定して得られた値ではなく、各樹脂組成物を得た日に測定して得られた値であった。よって、初期の保存安定性については、表1中の「重量平均分子量」の結果から、比較することができる。   In Table 1, “Increase rate” is the ratio (%) of the weight average molecular weight of the resin composition after storage for 7 days to the weight average molecular weight of the resin composition before storage. In addition, the “weight average molecular weight” of the resin composition before storage is not a value obtained by measurement immediately after obtaining each resin composition, but obtained by measurement on the day of obtaining each resin composition. Value. Therefore, the initial storage stability can be compared from the result of “weight average molecular weight” in Table 1.

[実施例6]
実施例1で得られた樹脂組成物41.0質量部と、マレイミド化合物(マレイミド基当量186g/eq、大和化成工業社製の商品名「BMI−2300」)30質量部と、ビフェニルノボラック型エポキシ樹脂(日本化薬社製の商品名「NC−3000FH」)4.5質量部と、ビスジアリルナジイミド(アルケニル基当量286g/eq、丸善石油化学社製の商品名「BANI−M」)25質量部と、上記合成例1で得られたα−ナフトールアラルキル型フェノール樹脂のシアン酸エステル化物0.5質量部と、スラリーシリカ(アドマテックス社製の商品名「SC−2050MB」)200質量部と、エポキシシランカップリング剤(東レ・ダウコーティング社製の商品名「Z6040」)5質量部と、硬化促進剤のトリフェニルイミダゾール(東京化成工業社製)0.5質量部とを混合し、樹脂組成物を得た。
[Example 6]
41.0 parts by mass of the resin composition obtained in Example 1, 30 parts by mass of a maleimide compound (maleimide group equivalent 186 g / eq, trade name “BMI-2300” manufactured by Daiwa Kasei Kogyo Co., Ltd.), and a biphenyl novolac type epoxy 4.5 parts by mass of resin (trade name “NC-3000FH” manufactured by Nippon Kayaku Co., Ltd.) and bisdiallyl nadiimide (alkenyl group equivalent 286 g / eq, trade name “BANI-M” manufactured by Maruzen Petrochemical Co., Ltd.) 25 0.5 parts by mass of cyanate esterified product of α-naphthol aralkyl type phenol resin obtained in Synthesis Example 1 above, and 200 parts by mass of slurry silica (trade name “SC-2050MB” manufactured by Admatechs) And 5 parts by mass of an epoxy silane coupling agent (trade name “Z6040” manufactured by Toray Dow Coating Co., Ltd.) and triphenylimi which is a curing accelerator Tetrazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were mixed with 0.5 part by weight of the resin composition.

[比較例3]
実施例1で得られた樹脂組成物41.0質量部を比較例2で得られた樹脂組成物40.0質量部に替えた以外は、実施例6と同様の方法により樹脂組成物を得た。
[Comparative Example 3]
A resin composition was obtained in the same manner as in Example 6 except that 41.0 parts by mass of the resin composition obtained in Example 1 was replaced with 40.0 parts by mass of the resin composition obtained in Comparative Example 2. It was.

[アミン価]
実施例6、比較例3で得られた各樹脂組成物について、アミン価を測定した。具体的には、JIS K 7237:1995に準拠し、樹脂組成物の1級アミン及び2級アミンの合計量としてアミン価を測定した。結果は表2に示す。
[Amine value]
About each resin composition obtained in Example 6 and Comparative Example 3, the amine value was measured. Specifically, based on JIS K 7237: 1995, the amine value was measured as the total amount of primary amine and secondary amine of the resin composition. The results are shown in Table 2.

[プリプレグの作製]
実施例6及び比較例3で得られた各樹脂組成物をメチルエチルケトンで希釈することでワニスを得た。このワニスをTガラスクロス(T2118)に含浸塗工し、150℃で3分間加熱乾燥して、下記の積層板としたときに絶縁層の厚さが100μmとなるよう樹脂組成物の含有量(質量%)を調整し、プリプレグを得た。
[Preparation of prepreg]
Varnishes were obtained by diluting the resin compositions obtained in Example 6 and Comparative Example 3 with methyl ethyl ketone. This varnish is impregnated and coated on a T glass cloth (T2118), dried by heating at 150 ° C. for 3 minutes, and the content of the resin composition so that the insulating layer has a thickness of 100 μm when the following laminate is obtained ( Mass%) was adjusted to obtain a prepreg.

[ワニスゲルタイム]
上述したプリプレグの作成の際に得た各ワニスの一部を試料として、170℃でのゲルタイム(秒)を測定した。また、そのワニスの一部を25℃の条件下において7日間保存し、保存後のゲルタイム(秒)を上記同様に測定した。結果は表2に示す。
[Varnish gel time]
A gel time (second) at 170 ° C. was measured using a part of each varnish obtained at the time of producing the prepreg described above as a sample. A part of the varnish was stored for 7 days at 25 ° C., and the gel time (seconds) after storage was measured in the same manner as described above. The results are shown in Table 2.

[プリプレグ粘度]
上述の方法で作成したプリプレグから樹脂分を取得し、動的粘弾性測定装置(ティー・エイ・インスツルメント社製の商品名「AR2000」)を用い、角速度1rad/s、ジオメトリーギャップ1mmの120℃の測定条件における粘度(mPa・s)を測定した。また、上述したプリプレグを25℃の条件下において7日間保存し、保存後のプリプレグより樹脂分を取得し、せん断粘度(mPa・s)を上記同様に測定した。結果は表2に示す。
[Prepreg viscosity]
The resin content is obtained from the prepreg prepared by the above-mentioned method, and using a dynamic viscoelasticity measuring apparatus (trade name “AR2000” manufactured by TA Instruments Inc.), the angular velocity is 1 rad / s and the geometry gap is 1 mm. The viscosity (mPa · s) under the measurement condition of 120 ° C. was measured. Moreover, the prepreg mentioned above was preserve | saved for seven days on 25 degreeC conditions, resin content was acquired from the prepreg after preservation | save, and shear viscosity (mPa * s) was measured similarly to the above. The results are shown in Table 2.

Figure 2017175614
Figure 2017175614

[積層板]
得られたプリプレグ1枚の上下に、12μm厚の電解銅箔(三井金属鉱業社製の商品名「3EC−III」)を配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ100μmの銅張積層板(保存前成型)を得た。また、得られたプリプレグを25℃の条件下において7日間保存し、保存後のプリプレグ1枚を用いて上記と同様の方法により積層成型を行い、絶縁層厚さ100μmの銅張積層板(保存後成型)を得た。
[Laminated board]
A 12 μm thick electrolytic copper foil (trade name “3EC-III” manufactured by Mitsui Kinzoku Mining Co., Ltd.) is placed on the top and bottom of one prepreg obtained, and laminated molding is performed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes. To obtain a copper-clad laminate (molded before storage) having an insulating layer thickness of 100 μm. Further, the obtained prepreg was stored for 7 days under the condition of 25 ° C., and was laminated by the same method as described above using one prepreg after storage, and a copper-clad laminate (storage) having an insulating layer thickness of 100 μm After molding) was obtained.

〔熱膨張率〕
得られた各銅張積層板(保存前成型及び保存後成型)を全面エッチングすることにより銅箔を除去したのち、熱機械分析装置(TAインスツルメント社製)を用いて40℃から340℃まで毎分10℃で昇温して、60℃から120℃における面方向の線膨張係数を測定し、得られた値を熱膨張率(ppm/degC)の評価値とした。測定方向は積層板のガラスクロスの縦方向(Warp)を測定した。結果は表3に示す。
[Coefficient of thermal expansion]
Each copper-clad laminate obtained (molded before storage and molded after storage) was etched on the entire surface to remove the copper foil, and then used at 40 to 340 ° C. using a thermomechanical analyzer (TA Instruments). The temperature was increased at a rate of 10 ° C. per minute until the linear expansion coefficient in the plane direction from 60 ° C. to 120 ° C. was measured, and the obtained value was taken as the evaluation value of the coefficient of thermal expansion (ppm / degC). The measurement direction was the longitudinal direction (Warp) of the glass cloth of the laminate. The results are shown in Table 3.

Figure 2017175614
Figure 2017175614

本出願は、2016年4月5日に日本国特許庁へ出願された日本特許出願(特願2016−076144号)、及び2017年1月5日に日本国特許庁へ出願された日本特許出願(特願2017−000666号)に基づくものであり、それらの内容はここに参照として取り込まれる。   This application consists of a Japanese patent application (Japanese Patent Application No. 2006-076144) filed with the Japan Patent Office on April 5, 2016, and a Japanese patent application filed with the Japan Patent Office on January 5, 2017. (Japanese Patent Application No. 2017-000666), the contents of which are incorporated herein by reference.

本発明の樹脂組成物及び該樹脂組成物から得られるプリント配線板は、パーソナルコンピューターをはじめとする種々の電子機器や通信機の部材として好適に用いることができる。   The resin composition of the present invention and the printed wiring board obtained from the resin composition can be suitably used as members of various electronic devices such as personal computers and communication devices.

Claims (20)

アミノ変性シリコーン(A)と、
マレイミド化合物(B)と、
カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させて得られる反応生成物(P)、を含む、
樹脂組成物。
Amino-modified silicone (A);
A maleimide compound (B);
A reaction product (P) obtained by reacting at least one of carboxylic acid (C) and carboxylic acid anhydride (D),
Resin composition.
前記樹脂組成物のアミン価が、2.0mgKOH/g以下である、請求項1に記載の樹脂組成物。   The resin composition of Claim 1 whose amine value of the said resin composition is 2.0 mgKOH / g or less. 前記反応生成物(P)は、前記カルボン酸無水物(D)を少なくとも反応させて得られ、
前記カルボン酸無水物(D)は、無水マレイン酸、無水フタル酸、無水コハク酸、及び無水酢酸からなる群より選択される一種又は二種以上である、
請求項1又は2に記載の樹脂組成物。
The reaction product (P) is obtained by reacting at least the carboxylic acid anhydride (D),
The carboxylic anhydride (D) is one or more selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, and acetic anhydride.
The resin composition according to claim 1 or 2.
前記反応生成物(P)は、前記カルボン酸(C)を少なくとも反応させて得られ、
前記カルボン酸(C)は、マレイン酸、フタル酸、コハク酸、及び酢酸からなる群より選択される一種又は二種以上である、
請求項1〜3のいずれか一項に記載の樹脂組成物。
The reaction product (P) is obtained by reacting at least the carboxylic acid (C),
The carboxylic acid (C) is one or more selected from the group consisting of maleic acid, phthalic acid, succinic acid, and acetic acid.
The resin composition as described in any one of Claims 1-3.
熱硬化性成分(E)をさらに含む、
請求項1〜4のいずれか一項に記載の樹脂組成物。
Further comprising a thermosetting component (E),
The resin composition as described in any one of Claims 1-4.
前記熱硬化性成分(E)は、マレイミド化合物(B)、エポキシ樹脂(F)、シアン酸エステル化合物(G)、及びアルケニル置換ナジイミド(H)からなる群より選択される一種又は二種以上を含む、
請求項5に記載の樹脂組成物。
The thermosetting component (E) is one or more selected from the group consisting of a maleimide compound (B), an epoxy resin (F), a cyanate ester compound (G), and an alkenyl-substituted nadiimide (H). Including,
The resin composition according to claim 5.
前記反応生成物(P)における前記アミノ変性シリコーン(A)は、下記一般式(1)で表される化合物を含む、
請求項1〜6のいずれか一項に記載の樹脂組成物。
Figure 2017175614
(式(1)中、複数のRは、各々独立に水素原子、メチル基又はフェニル基を表し、複数のRは、各々独立に単結合、アルキレン基又はアリール基を表し、nは、1以上の整数を表す。)
The amino-modified silicone (A) in the reaction product (P) includes a compound represented by the following general formula (1).
The resin composition as described in any one of Claims 1-6.
Figure 2017175614
(In the formula (1), a plurality of R a s each independently represent a hydrogen atom, a methyl group or a phenyl group, a plurality of R b s each independently represent a single bond, an alkylene group or an aryl group, and n is Represents an integer of 1 or more.)
前記反応生成物(P)における前記アミノ変性シリコーン(A)のアミノ基当量が、130以上6000以下である、
請求項1〜7のいずれか一項に記載の樹脂組成物。
The amino group equivalent of the amino-modified silicone (A) in the reaction product (P) is from 130 to 6000,
The resin composition as described in any one of Claims 1-7.
前記マレイミド化合物(B)は、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ポリテトラメチレンオキシド−ビス(4−マレイミドベンゾエート)、及び下記一般式(2)で表される化合物からなる群より選択される一種又は二種以上を含む、
請求項1〜8のいずれか一項に記載の樹脂組成物。
Figure 2017175614
(式(2)中、複数のR5は、各々独立に水素原子又はメチル基を示し、n1は、1以上の整数を示す。)
The maleimide compound (B) includes bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) ) Including one or more selected from the group consisting of methane, polytetramethylene oxide-bis (4-maleimidobenzoate), and a compound represented by the following general formula (2),
The resin composition as described in any one of Claims 1-8.
Figure 2017175614
(In the formula (2), a plurality of R 5 each independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.)
充填材(J)をさらに含む、
請求項1〜9のいずれか一項に記載の樹脂組成物。
Further comprising a filler (J),
The resin composition as described in any one of Claims 1-9.
前記充填材(J)は、シリカ、アルミナ、及び窒化アルミニウムからなる群より選択される一種又は二種以上を含む、
請求項10に記載の樹脂組成物。
The filler (J) includes one or more selected from the group consisting of silica, alumina, and aluminum nitride.
The resin composition according to claim 10.
前記樹脂組成物は、前記反応生成物(P)及び熱硬化性成分(E)の合計量100質量部に対して、前記充填材(J)を50質量部以上300質量部以下含む、
請求項10又は11に記載の樹脂組成物。
The resin composition includes 50 parts by mass or more and 300 parts by mass or less of the filler (J) with respect to 100 parts by mass of the total amount of the reaction product (P) and the thermosetting component (E).
The resin composition according to claim 10 or 11.
基材と、該基材に含浸又は塗布された請求項1〜12のいずれか一項に記載の樹脂組成物と、を有する、
プリプレグ。
A base material and the resin composition according to any one of claims 1 to 12 impregnated or coated on the base material,
Prepreg.
前記基材は、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選ばれる一種又は二種以上である、
請求項13に記載のプリプレグ。
The substrate is one or more selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers.
The prepreg according to claim 13.
支持体と、該支持体の表面に配された請求項1〜12のいずれか一項に記載の樹脂組成物と、を有する、
レジンシート。
A support and a resin composition according to any one of claims 1 to 12 disposed on a surface of the support,
Resin sheet.
前記支持体は、樹脂シート又は金属箔である、
請求項15に記載のレジンシート。
The support is a resin sheet or a metal foil,
The resin sheet according to claim 15.
請求項13又は14に記載のプリプレグ、及び請求項15又は16に記載のレジンシートからなる群より選択される一種又は二種以上を、複数備える、
積層板。
A plurality of one or more selected from the group consisting of the prepreg according to claim 13 or 14 and the resin sheet according to claim 15 or 16,
Laminated board.
請求項13又は14に記載のプリプレグ、及び請求項15又は16に記載のレジンシートからなる群より選択される一種又は二種以上と、金属箔と、を備える、
金属箔張積層板。
One or two or more selected from the group consisting of the prepreg according to claim 13 or 14 and the resin sheet according to claim 15 or 16, and a metal foil.
Metal foil-clad laminate.
請求項1〜12のいずれか一項に記載の樹脂組成物を含む絶縁層と、該絶縁層の表面に形成された導体層と、を備える、
プリント配線板。
An insulating layer comprising the resin composition according to any one of claims 1 to 12, and a conductor layer formed on a surface of the insulating layer.
Printed wiring board.
アミノ変性シリコーン(A)と、マレイミド化合物(B)と、を反応させて一次ポリマーを得る第一反応工程と、
前記一次ポリマーと、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させる第二反応工程と、を有する、
樹脂組成物の製造方法。
A first reaction step in which an amino-modified silicone (A) and a maleimide compound (B) are reacted to obtain a primary polymer;
A second reaction step of reacting the primary polymer with at least one of carboxylic acid (C) or carboxylic acid anhydride (D).
A method for producing a resin composition.
JP2018510544A 2016-04-05 2017-03-27 Resin composition and its manufacturing method, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board Active JP7305349B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021140205A JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP2023085673A JP2023116516A (en) 2016-04-05 2023-05-24 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016076144 2016-04-05
JP2016076144 2016-04-05
JP2017000666 2017-01-05
JP2017000666 2017-01-05
PCT/JP2017/012309 WO2017175614A1 (en) 2016-04-05 2017-03-27 Resin composition and method for producing same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021140205A Division JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Publications (2)

Publication Number Publication Date
JPWO2017175614A1 true JPWO2017175614A1 (en) 2019-02-14
JP7305349B2 JP7305349B2 (en) 2023-07-10

Family

ID=60000455

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018510544A Active JP7305349B2 (en) 2016-04-05 2017-03-27 Resin composition and its manufacturing method, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP2021140205A Pending JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP2023085673A Pending JP2023116516A (en) 2016-04-05 2023-05-24 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021140205A Pending JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP2023085673A Pending JP2023116516A (en) 2016-04-05 2023-05-24 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Country Status (5)

Country Link
JP (3) JP7305349B2 (en)
KR (1) KR102376567B1 (en)
CN (1) CN108779247B (en)
TW (1) TWI730075B (en)
WO (1) WO2017175614A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443975B2 (en) * 2020-07-29 2024-03-06 味の素株式会社 resin composition
WO2023074646A1 (en) * 2021-10-27 2023-05-04 株式会社レゾナック Resin-coated metal foil, printed wiring board and manufacturing method thereof, and semiconductor package
JP7197047B1 (en) 2022-05-27 2022-12-27 三菱瓦斯化学株式会社 Resin compositions, cured products, sealing materials, adhesives, insulating materials, paints, prepregs, multilayer bodies, and fiber-reinforced composite materials
WO2024077887A1 (en) * 2022-10-11 2024-04-18 苏州生益科技有限公司 Modified bismaleimide prepolymer, resin composition, and use of resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPH0925471A (en) * 1995-07-11 1997-01-28 Yokohama Rubber Co Ltd:The Heat resistant adhesive
JPH09176309A (en) * 1995-12-22 1997-07-08 Sumitomo Bakelite Co Ltd Thermosetting resin composition and thermosetting adhesive tape
JP2004087897A (en) * 2002-08-28 2004-03-18 Toray Ind Inc Substrate for printed circuit and printed circuit board using the same
JP2006083307A (en) * 2004-09-16 2006-03-30 Kyocera Chemical Corp Photosensitive polyimide-siloxane and its composition
WO2008153101A1 (en) * 2007-06-15 2008-12-18 Nissan Chemical Industries, Ltd. Resin composition for forming heat-cured film
WO2012099133A1 (en) * 2011-01-18 2012-07-26 日立化成工業株式会社 Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234916A (en) * 1993-02-09 1994-08-23 Central Glass Co Ltd Low-stress polyimide composition and precursor composition solution
JP5024205B2 (en) 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 Prepreg and laminate
JPWO2011089922A1 (en) * 2010-01-25 2013-05-23 三井化学株式会社 Polyimide resin composition, adhesive containing the same, laminate and device
TW201204548A (en) 2010-02-05 2012-02-01 Sumitomo Bakelite Co Prepreg, laminate, printed wiring board, and semiconductor device
JP2013001807A (en) 2011-06-16 2013-01-07 Panasonic Corp Resin composition for electronic circuit board material, prepreg and laminated plate
JP3173332U (en) 2011-11-17 2012-02-02 奇▲こう▼科技股▲ふん▼有限公司 Oil-impregnated bearing fan structure
JP2013216884A (en) 2012-03-14 2013-10-24 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg and laminated plate
US10721817B2 (en) 2015-07-06 2020-07-21 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg or resin sheet comprising the resin composition, and laminate and printed circuit board comprising them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPH0925471A (en) * 1995-07-11 1997-01-28 Yokohama Rubber Co Ltd:The Heat resistant adhesive
JPH09176309A (en) * 1995-12-22 1997-07-08 Sumitomo Bakelite Co Ltd Thermosetting resin composition and thermosetting adhesive tape
JP2004087897A (en) * 2002-08-28 2004-03-18 Toray Ind Inc Substrate for printed circuit and printed circuit board using the same
JP2006083307A (en) * 2004-09-16 2006-03-30 Kyocera Chemical Corp Photosensitive polyimide-siloxane and its composition
WO2008153101A1 (en) * 2007-06-15 2008-12-18 Nissan Chemical Industries, Ltd. Resin composition for forming heat-cured film
WO2012099133A1 (en) * 2011-01-18 2012-07-26 日立化成工業株式会社 Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same

Also Published As

Publication number Publication date
TWI730075B (en) 2021-06-11
KR102376567B1 (en) 2022-03-21
JP2023116516A (en) 2023-08-22
WO2017175614A1 (en) 2017-10-12
TW201807063A (en) 2018-03-01
CN108779247A (en) 2018-11-09
CN108779247B (en) 2021-01-15
JP7305349B2 (en) 2023-07-10
JP2022000506A (en) 2022-01-04
KR20180134845A (en) 2018-12-19

Similar Documents

Publication Publication Date Title
TWI530526B (en) Resin composition, prepreg and laminate
JP6249345B2 (en) Resin composition, prepreg, laminate and printed wiring board
WO2014061812A1 (en) Resin composition, prepreg, laminate, and printed wiring board
JPWO2015105109A1 (en) Insulating layer for printed wiring board and printed wiring board
JP6764582B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP2007045984A (en) Flame retardant resin composition, and prepreg and lamination board using the same
JP2023116516A (en) Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP7116370B2 (en) Resin composition, prepreg, resin sheet, laminate, and printed wiring board
JP6774032B2 (en) Resin composition, prepreg or resin sheet using the resin composition, laminated board and printed wiring board using them
JP6639072B2 (en) Resin composition for printed wiring board, prepreg, laminated board and printed wiring board
JP7116927B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, and method for producing resin composition
WO2017006887A1 (en) Resin composition; prepreg or resin sheet using said resin composition; laminate plate using said prepreg or resin sheet; and printed wiring board
JPWO2017006896A1 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JPWO2017006897A1 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP6819019B2 (en) Resin composition, prepreg, metal foil laminated board, resin sheet, and printed wiring board
JP2017195334A (en) Resin composition for printed wiring board, prepreg, resin sheet, laminate board, metal foil-clad laminate board, and printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211005

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211006

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211228

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220105

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7305349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150