JP2023116516A - Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board - Google Patents

Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board Download PDF

Info

Publication number
JP2023116516A
JP2023116516A JP2023085673A JP2023085673A JP2023116516A JP 2023116516 A JP2023116516 A JP 2023116516A JP 2023085673 A JP2023085673 A JP 2023085673A JP 2023085673 A JP2023085673 A JP 2023085673A JP 2023116516 A JP2023116516 A JP 2023116516A
Authority
JP
Japan
Prior art keywords
resin composition
group
mass
composition according
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023085673A
Other languages
Japanese (ja)
Inventor
孝史 久保
Takashi Kubo
展義 大西
Nobuyoshi Onishi
与一 高野
Yoichi Takano
環 伊藤
Tamaki Ito
英祐 志賀
Eisuke Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JP2023116516A publication Critical patent/JP2023116516A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/08Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/08Anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/27Compounds containing a nitrogen atom bound to two other nitrogen atoms, e.g. diazoamino-compounds
    • C08K5/28Azides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a resin composition having high storage stability while comprising an amino-modified polymer.SOLUTION: The present invention provides a resin composition including a reaction product (P) obtained by reacting an amino-modified silicone (A), a maleimide compound (B), and one or more selected from the group consisting of carboxylic acids (C) and carboxylic anhydrides (D).SELECTED DRAWING: None

Description

本発明は、樹脂組成物及びその製造方法、プリプレグ、レジンシート、積層板、金属箔
張積層板、並びにプリント配線板に関する。
TECHNICAL FIELD The present invention relates to a resin composition and its manufacturing method, a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board.

近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パ
ッケージの高機能化、小型化が進むに従い、半導体パッケージ用の各部品の高集積化や高
密度実装化が近年益々加速している。その中でも、半導体素子と半導体プラスチックパッ
ケージ用プリント配線板との熱膨張率の差によって生じる半導体プラスチックパッケージ
の反りが問題となっており、様々な対策が講じられてきている。
In recent years, as semiconductor packages, which are widely used in electronic devices, communication devices, personal computers, etc., have become more sophisticated and smaller, the integration and high-density mounting of each component for semiconductor packages has accelerated in recent years. ing. Among them, warping of a semiconductor plastic package caused by a difference in coefficient of thermal expansion between a semiconductor element and a printed wiring board for a semiconductor plastic package has become a problem, and various countermeasures have been taken.

その対策の一つとして、プリント配線板に用いられる絶縁層の低熱膨張化が挙げられる
。これは、プリント配線板の熱膨張率を半導体素子の熱膨張率に近づけることで反りを抑
制する手法であり、現在盛んに取り組まれている(例えば、特許文献1~3参照)。
One of the countermeasures is to reduce the thermal expansion of insulating layers used in printed wiring boards. This is a method of suppressing warpage by bringing the coefficient of thermal expansion of a printed wiring board closer to that of a semiconductor element, and is currently being actively pursued (see Patent Documents 1 to 3, for example).

半導体プラスチックパッケージの反りを抑制する手法としては、プリント配線板の低熱
膨張化以外にも、積層板の剛性を高くすること(高剛性化)や積層板のガラス転移温度を
高くすること(高Tg化)が検討されている(例えば、特許文献4及び5参照)。
In addition to lowering the thermal expansion of the printed wiring board, methods for suppressing warping of semiconductor plastic packages include increasing the rigidity of the laminate (high rigidity) and increasing the glass transition temperature of the laminate (high Tg (for example, see Patent Documents 4 and 5).

特開2013-216884号公報JP 2013-216884 A 特許第3173332号公報Japanese Patent No. 3173332 特開2009-035728号公報Japanese Patent Application Laid-Open No. 2009-035728 特開2013-001807号公報JP 2013-001807 A 特開2011-178992号公報JP 2011-178992 A

しかしながら、特許文献1~5に記載されるような熱硬化性樹脂組成物を用いたプリン
ト配線板であっても、金属箔を積層した積層板のピール強度や例えば強アルカリ性の洗浄
液に対する耐薬品性(耐デスミア性)等の他の特性との両立が難しいことから、結果とし
て半導体プラスチックパッケージに反りが生じる問題が残存している。
However, even in printed wiring boards using thermosetting resin compositions as described in Patent Documents 1 to 5, the peel strength of laminates laminated with metal foils and chemical resistance to, for example, strong alkaline cleaning solutions Since it is difficult to achieve compatibility with other properties such as (anti-desmear property), there remains the problem of warping of the semiconductor plastic package as a result.

ここで、上記熱膨張率の差を低減し、上記反りが生じる問題を解決するために、樹脂組
成物に、低弾性成分として、例えば、アミノ変性シリコーンと熱硬化性成分とが反応して
生成するアミノ変性した重合体を含有させることができる。しかし、アミノ変性した重合
体は、一般的に、重合体同士で又は他の樹脂成分と、更に重合反応する性質を有している
。このため、樹脂組成物やプリプレグの保存中又は成形中に、アミノ変性した重合体が更
に重合反応を起こすことに起因して、優れた保存安定性を得ることができないことがある
Here, in order to reduce the difference in the coefficient of thermal expansion and solve the problem of warping, a low elastic component such as an amino-modified silicone and a thermosetting component are added to the resin composition by reacting with each other. can contain an amino-modified polymer that However, amino-modified polymers generally have the property of further polymerizing with each other or with other resin components. For this reason, excellent storage stability may not be obtained due to further polymerization reaction of the amino-modified polymer during storage or molding of the resin composition or prepreg.

そこで、本発明は、上述の課題を解決するためになされたものであり、アミノ変性した
重合体を含有しつつ、優れた保存安定性を有する樹脂組成物を提供することを目的とする
Accordingly, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a resin composition containing an amino-modified polymer and having excellent storage stability.

すなわち、本発明は以下のとおりである。
[1]
アミノ変性シリコーン(A)と、
マレイミド化合物(B)と、
カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させて
得られる反応生成物(P)、を含む、
樹脂組成物。
[2]
前記樹脂組成物のアミン価が、2.0mgKOH/g以下である、
[1]に記載の樹脂組成物。
[3]
前記反応生成物(P)は、前記カルボン酸無水物(D)を少なくとも反応させて得られ

前記カルボン酸無水物(D)は、無水マレイン酸、無水フタル酸、無水コハク酸、及び
無水酢酸からなる群より選択される一種又は二種以上である、
[1]又は[2]に記載の樹脂組成物。
[4]
前記反応生成物(P)は、前記カルボン酸(C)を少なくとも反応させて得られ、
前記カルボン酸(C)は、マレイン酸、フタル酸、コハク酸、及び酢酸からなる群より
選択される一種又は二種以上である、[1]~[3]のいずれかに記載の樹脂組成物。
[5]
熱硬化性成分(E)をさらに含む、
[1]~[4]のいずれかに記載の樹脂組成物。
[6]
前記熱硬化性成分(E)は、マレイミド化合物(B)、エポキシ樹脂(F)、シアン酸
エステル化合物(G)、及びアルケニル置換ナジイミド(H)からなる群より選択される
一種又は二種以上を含む、
[5]に記載の樹脂組成物。
[7]
前記反応生成物(P)における前記アミノ変性シリコーン(A)は、下記一般式(1)
で表される化合物を含む、
[1]~[6]のいずれかに記載の樹脂組成物。

Figure 2023116516000001
(式(1)中、複数のRは、各々独立に水素原子、メチル基又はフェニル基を表し、複
数のRは、各々独立に単結合、アルキレン基又はアリール基を表し、nは、1以上の整
数を表す。)
[8]
前記反応生成物(P)における前記アミノ変性シリコーン(A)のアミノ基当量が、1
30以上6000以下である、
[1]~[7]のいずれかに記載の樹脂組成物。
[9]
前記マレイミド化合物(B)は、ビス(4-マレイミドフェニル)メタン、2,2-ビ
ス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-
メチル-4-マレイミドフェニル)メタン、ポリテトラメチレンオキシド-ビス(4-マ
レイミドベンゾエート)、及び下記一般式(2)で表される化合物からなる群より選択さ
れる一種又は二種以上を含む、
[1]~[8]のいずれかに記載の樹脂組成物。
Figure 2023116516000002
(式(2)中、複数のR5は、各々独立に水素原子又はメチル基を示し、n1は、1以上の
整数を示す。)
[10]
充填材(J)をさらに含む、
[1]~[9]のいずれかに記載の樹脂組成物。
[11]
前記充填材(J)は、シリカ、アルミナ、及び窒化アルミニウムからなる群より選択さ
れる一種又は二種以上を含む、
[10]に記載の樹脂組成物。
[12]
前記樹脂組成物は、前記反応生成物(P)及び熱硬化性成分(E)の合計量100質量
部に対して、前記充填材(J)を50質量部以上300質量部以下含む、
[10]又は[11]に記載の樹脂組成物。
[13]
基材と、該基材に含浸又は塗布された[1]~[12]のいずれかに記載の樹脂組成物
と、を有する、
プリプレグ。
[14]
前記基材は、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及
び有機繊維からなる群より選ばれる一種又は二種以上である、
[13]に記載のプリプレグ。
[15]
支持体と、該支持体の表面に配された[1]~[12]のいずれかに記載の樹脂組成物
と、を有する、
レジンシート。
[16]
前記支持体は、樹脂シート又は金属箔である、
[15]に記載のレジンシート。
[17]
[13]又は[14]に記載のプリプレグ、及び[15]又は[16]に記載のレジン
シートからなる群より選択される一種又は二種以上を、複数備える、
積層板。
[18]
[13]又は[14]に記載のプリプレグ、及び[15]又は[16]に記載のレジン
シートからなる群より選択される一種又は二種以上と、金属箔と、を備える、
金属箔張積層板。
[19]
[1]~[12]のいずれかに記載の樹脂組成物を含む絶縁層と、該絶縁層の表面に形
成された導体層と、を備える、
プリント配線板。
[20]
アミノ変性シリコーン(A)と、マレイミド化合物(B)と、を反応させて一次ポリマ
ーを得る第一反応工程と、
前記一次ポリマーと、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいず
れかと、を反応させる第二反応工程と、を有する、
樹脂組成物の製造方法。 That is, the present invention is as follows.
[1]
Amino-modified silicone (A);
a maleimide compound (B);
a reaction product (P) obtained by reacting at least one of a carboxylic acid (C) or a carboxylic anhydride (D),
Resin composition.
[2]
The amine value of the resin composition is 2.0 mgKOH/g or less,
The resin composition according to [1].
[3]
The reaction product (P) is obtained by reacting at least the carboxylic anhydride (D),
The carboxylic anhydride (D) is one or more selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, and acetic anhydride,
The resin composition according to [1] or [2].
[4]
The reaction product (P) is obtained by reacting at least the carboxylic acid (C),
The resin composition according to any one of [1] to [3], wherein the carboxylic acid (C) is one or more selected from the group consisting of maleic acid, phthalic acid, succinic acid, and acetic acid. .
[5]
further comprising a thermosetting component (E),
[1] The resin composition according to any one of [4].
[6]
The thermosetting component (E) is one or more selected from the group consisting of maleimide compounds (B), epoxy resins (F), cyanate ester compounds (G), and alkenyl-substituted nadimides (H). include,
The resin composition according to [5].
[7]
The amino-modified silicone (A) in the reaction product (P) has the following general formula (1)
Including the compound represented by
The resin composition according to any one of [1] to [6].
Figure 2023116516000001
(In formula (1), a plurality of R a each independently represents a hydrogen atom, a methyl group or a phenyl group, a plurality of R b each independently represents a single bond, an alkylene group or an aryl group, n is represents an integer greater than or equal to 1.)
[8]
The amino group equivalent of the amino-modified silicone (A) in the reaction product (P) is 1
30 or more and 6000 or less,
[1] The resin composition according to any one of [7].
[9]
The maleimide compound (B) includes bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3-ethyl-5-
methyl-4-maleimidophenyl)methane, polytetramethylene oxide-bis(4-maleimidobenzoate), and one or more selected from the group consisting of compounds represented by the following general formula (2),
[1] The resin composition according to any one of [8].
Figure 2023116516000002
(In formula (2), a plurality of R 5 each independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.)
[10]
further comprising a filler (J);
[1] The resin composition according to any one of [9].
[11]
The filler (J) contains one or more selected from the group consisting of silica, alumina, and aluminum nitride.
The resin composition according to [10].
[12]
The resin composition contains 50 parts by mass or more and 300 parts by mass or less of the filler (J) with respect to the total amount of 100 parts by mass of the reaction product (P) and the thermosetting component (E).
The resin composition according to [10] or [11].
[13]
Having a base material and the resin composition according to any one of [1] to [12] impregnated or applied to the base material,
prepreg.
[14]
The substrate is one or more selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers.
The prepreg according to [13].
[15]
Having a support and the resin composition according to any one of [1] to [12] disposed on the surface of the support,
resin sheet.
[16]
The support is a resin sheet or metal foil,
The resin sheet according to [15].
[17]
prepreg according to [13] or [14] and resin sheet according to [15] or [16].
laminated board.
[18]
One or more selected from the group consisting of the prepreg according to [13] or [14] and the resin sheet according to [15] or [16], and a metal foil.
Metal foil clad laminate.
[19]
An insulating layer containing the resin composition according to any one of [1] to [12], and a conductor layer formed on the surface of the insulating layer,
printed wiring board.
[20]
a first reaction step of reacting an amino-modified silicone (A) with a maleimide compound (B) to obtain a primary polymer;
a second reaction step of reacting the primary polymer with at least one of carboxylic acid (C) or carboxylic anhydride (D);
A method for producing a resin composition.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に
説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内
容に限定する趣旨ではない。本発明はその要旨の範囲内で、適宜に変形して実施できる。
EMBODIMENT OF THE INVENTION Hereinafter, the form (henceforth "this embodiment") for implementing this invention is demonstrated in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the gist thereof.

〔樹脂組成物〕
本実施形態の樹脂組成物は、アミノ変性シリコーン(A)と、マレイミド化合物(B)
と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させ
て得られる反応生成物(P)(プレポリマー)を含む。ここで、反応生成物(P)は、上
述したアミノ変性した重合体の一種である。
[Resin composition]
The resin composition of the present embodiment comprises an amino-modified silicone (A) and a maleimide compound (B)
with at least one of carboxylic acid (C) or carboxylic acid anhydride (D), reaction product (P) (prepolymer) obtained by reacting. Here, the reaction product (P) is one of the above amino-modified polymers.

本実施形態の樹脂組成物は、優れた保存安定性を有する。この要因は、次のように推察
される(ただし、要因はこれに限定されない。)。従来のアミノ変性シリコーンと熱硬化
性成分とを含む樹脂組成物は、該樹脂組成物に含まれるアミノ変性した重合体中に、原料
のアミノ変性シリコーンの反応基であるアミノ基がプレポリマーの構造中に比較的多く残
存し、そのアミノ基が熱硬化性成分とさらに反応することに起因して、その樹脂組成物(
ワニスを含む)及び該樹脂組成物から得られる成形体(例えば、プリプレグ及びその成形
体)において優れた保存安定性が得られない。例えば、樹脂組成物を常温で保存した場合
において、残存したアミノ基と熱硬化性成分との反応がさらに進行することに起因して、
その樹脂組成物は、粘度の増加、分子量の増加により、優れた保存安定性を得ることがで
きない。また、ワニスの場合はゲル化を起こし、プリプレグの場合はプリプレグ粘度の上
昇により、成形性が悪くなり、優れた保存安定性を得ることができない。一方、本実施形
態の樹脂組成物は、アミノ変性シリコーン(A)とマレイミド化合物(B)との反応で残
存したアミノ基が、カルボン酸(C)及び/又はカルボン酸無水物(D)と反応した反応
生成物(P)を含むことにより、当該樹脂組成物及びその樹脂組成物から得られる成形体
において優れた保存安定性が得られる。
The resin composition of this embodiment has excellent storage stability. This factor is inferred as follows (however, the factor is not limited to this). A conventional resin composition containing an amino-modified silicone and a thermosetting component has a prepolymer structure in which amino groups, which are reactive groups of the starting amino-modified silicone, are present in the amino-modified polymer contained in the resin composition. A relatively large amount remains in the resin composition (
(including varnish) and molded articles obtained from the resin composition (for example, prepregs and molded articles thereof) do not exhibit excellent storage stability. For example, when the resin composition is stored at room temperature, due to further progress of the reaction between the remaining amino groups and the thermosetting component,
The resin composition cannot obtain excellent storage stability due to an increase in viscosity and an increase in molecular weight. Moreover, in the case of varnish, gelation occurs, and in the case of prepreg, the viscosity of the prepreg increases, resulting in poor moldability and poor storage stability. On the other hand, in the resin composition of the present embodiment, the amino groups remaining after the reaction between the amino-modified silicone (A) and the maleimide compound (B) react with the carboxylic acid (C) and/or the carboxylic anhydride (D). By containing the reaction product (P), the resin composition and the molded article obtained from the resin composition have excellent storage stability.

樹脂組成物のアミン価は、1級アミン及び2級アミンの合計量としてのアミン価である
。アミン価は、特に限定されないが、好ましくは2.0mgKOH/g以下であり、より
好ましくは1.0mgKOH/g以下であり、さらに好ましくは0.5mgKOH/g以
下である。アミン価が2.0mgKOH/g以下であることにより、樹脂組成物の粘度の
増加、分子量の増加、ワニスのゲル化、プリプレグ粘度の上昇を抑制できる傾向にある。
また、アミン価は、小さいほど樹脂組成物の粘度の増加、分子量の増加等が抑制できる傾
向にある。アミン価の下限値は、好ましくは0mgKOH/gである。アミン価は、JI
S K 7237:1995に準拠する方法により測定される。
The amine value of the resin composition is the total amount of primary amine and secondary amine. Although the amine value is not particularly limited, it is preferably 2.0 mgKOH/g or less, more preferably 1.0 mgKOH/g or less, and still more preferably 0.5 mgKOH/g or less. When the amine value is 2.0 mgKOH/g or less, it tends to be possible to suppress an increase in the viscosity of the resin composition, an increase in the molecular weight, gelation of the varnish, and an increase in the prepreg viscosity.
In addition, the smaller the amine value, the more likely it is that an increase in the viscosity of the resin composition and an increase in the molecular weight can be suppressed. The lower limit of the amine value is preferably 0 mgKOH/g. The amine value is JI
It is measured by a method according to S K 7237:1995.

〔反応生成物(P)〕
本実施形態の反応生成物(P)は、アミノ変性シリコーン(A)と、マレイミド化合物
(B)と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反
応させて得られる。
[Reaction product (P)]
The reaction product (P) of the present embodiment is obtained by reacting the amino-modified silicone (A), the maleimide compound (B), and at least one of the carboxylic acid (C) and the carboxylic anhydride (D). be done.

反応生成物(P)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 The reaction product (P) may be used alone or in combination of two or more.

反応生成物(P)の重量平均分子量(Mw)は、特に限定されないが、好ましくは50
00以上20000以下であり、より好ましくは10000以上15000以下である。
重量平均分子量が5000以上であることにより、プリプレグの熱膨張率が低下する傾向
にあり、重量平均分子量が20000以下であることにより、樹脂組成物の粘度の増加、
分子量の増加、ワニスのゲル化、プリプレグ粘度の上昇を抑制できる傾向にある。重量平
均分子量が5000以上20000以下である反応生成物(P)を得るためには、温度等
の反応条件を制御すればよい。重量平均分子量は、ゲルパーミュエーションクロマトグラ
フィー(GPC)法で測定し、標準ポリスチレン検量線を用いて換算した値として求める
ことができる。具体的には、後述する実施例に記載の方法により測定される。
The weight average molecular weight (Mw) of the reaction product (P) is not particularly limited, but preferably 50
It is 00 or more and 20000 or less, more preferably 10000 or more and 15000 or less.
When the weight average molecular weight is 5000 or more, the coefficient of thermal expansion of the prepreg tends to decrease, and when the weight average molecular weight is 20000 or less, the viscosity of the resin composition increases.
It tends to suppress increase in molecular weight, varnish gelation, and increase in prepreg viscosity. In order to obtain a reaction product (P) having a weight average molecular weight of 5000 or more and 20000 or less, reaction conditions such as temperature may be controlled. The weight average molecular weight can be obtained as a value measured by a gel permeation chromatography (GPC) method and converted using a standard polystyrene calibration curve. Specifically, it is measured by the method described in Examples described later.

本実施形態の樹脂組成物において、反応生成物(P)の含有量は、特に限定されないが
、熱硬化性成分(E)と組み合せる場合に、当該樹脂組成物中の反応生成物(P)及び熱
硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含まない固
形分量として)に対して、好ましくは10質量%以上80質量%以下であり、より好まし
くは15質量%以上70質量%以下であり、20質量%以上60質量%以下である。反応
生成物(P)の含有量が上記範囲内であることにより、充填材充填時においても成形性に
優れ、低熱膨張率、熱時弾性率、耐デスミア性、耐薬品性に優れるプリント配線板となる
傾向にある。
In the resin composition of the present embodiment, the content of the reaction product (P) is not particularly limited, but when combined with the thermosetting component (E), the reaction product (P) in the resin composition and the total amount of the thermosetting component (E) (100% by mass; as the solid content not including the solvent/solvent component and the filler (J)), preferably 10% by mass or more and 80% by mass or less, More preferably, it is 15% by mass or more and 70% by mass or less, and 20% by mass or more and 60% by mass or less. The content of the reaction product (P) is within the above range, so that the printed wiring board has excellent moldability even when the filler is filled, and has a low coefficient of thermal expansion, a thermal elastic modulus, desmear resistance, and excellent chemical resistance. tends to be

<アミノ変性シリコーン(A)>
本実施形態に用いるアミノ変性シリコーン(A)は、分子中に1個以上のアミノ基を有
するシリコーンであれば特に限定されるものではないが、下記一般式(1)で表される化
合物を含むことが好ましい。

Figure 2023116516000003
式(1)中、複数のRは、各々独立に水素原子、メチル基又はフェニル基を表し、中で
もメチル基が好ましい。複数のRは、各々独立に単結合、アルキレン基又はアリール基
を表し、中でもアルキレン基が好ましい。アルキレン基の炭素数は、その主鎖において1
~4であることが好ましい。具体的なアルキレン基は、特に限定されないが、メチレン基
、エチレン基、トリメチレン基、又はテトラメチレン基であることがより好ましく、トリ
メチレン基であることがさらに好ましい。式(1)中、nは1以上の整数を表す。 <Amino-modified silicone (A)>
The amino-modified silicone (A) used in the present embodiment is not particularly limited as long as it is a silicone having one or more amino groups in the molecule, but includes compounds represented by the following general formula (1). is preferred.
Figure 2023116516000003
In formula (1), a plurality of R a 's each independently represent a hydrogen atom, a methyl group or a phenyl group, with a methyl group being preferred. A plurality of Rb 's each independently represents a single bond, an alkylene group or an aryl group, with an alkylene group being preferred. The number of carbon atoms in the alkylene group is 1 in its main chain
~4 is preferred. A specific alkylene group is not particularly limited, but is more preferably a methylene group, an ethylene group, a trimethylene group, or a tetramethylene group, and still more preferably a trimethylene group. In formula (1), n represents an integer of 1 or more.

アミノ変性シリコーン(A)は、一種を単独で用いてもよく、二種以上を混合して用い
てもよい。
Amino-modified silicone (A) may be used alone or in combination of two or more.

アミノ変性シリコーン(A)のアミノ基当量は、特に限定されないが、好ましくは13
0以上6000以下であり、より好ましくは500以上3000以下であり、さらに好ま
しくは600以上2500以下である。アミノ変性シリコーン(A)のアミノ基当量が上
記範囲内であることにより、金属箔ピール強度及び耐デスミア性により優れるプリント配
線板を得ることができる。アミノ基当量は、JIS K 7237:1995に準拠する
方法により測定される。
The amino group equivalent of the amino-modified silicone (A) is not particularly limited, but preferably 13
It is 0 or more and 6000 or less, more preferably 500 or more and 3000 or less, and still more preferably 600 or more and 2500 or less. When the amino group equivalent of the amino-modified silicone (A) is within the above range, it is possible to obtain a printed wiring board that is more excellent in metal foil peel strength and desmear resistance. An amino group equivalent is measured by the method based on JISK7237:1995.

本実施形態の樹脂組成物において、アミノ変性シリコーン(A)の含有量は、特に限定
されないが、樹脂組成物中の反応生成物(P)の総量(100質量%;溶媒・溶剤成分、
充填材(J)は含まない固形分量として)に対して、好ましくは5.0質量%以上70質
量%以下であり、より好ましくは10質量%以上50質量%以下であり、さらに好ましく
は15質量%以上45質量%以下である。また、アミノ変性シリコーン(A)の含有量は
、反応生成物(P)と熱硬化性成分(E)とを組み合せる場合に、反応生成物(P)の作
製に用いられるアミノ変性シリコーン(A)及び熱硬化性成分(E)として含まれるアミ
ノ変性シリコーン(A)の合計量として、該樹脂組成物中の反応生成物(P)及び熱硬化
性成分(E)の合計量(100質量%;溶媒・溶剤成分は含まない固形分量として)に対
して、好ましくは1.0質量%以上70質量%以下であり、より好ましくは3.0質量%
以上40質量%以下であり、さらに好ましくは5.0質量%以上20質量%以下である。
また、アミノ変性シリコーン(A)の含有量が上記範囲内であることにより、金属箔ピー
ル強度及び耐デスミア性により優れるプリント配線板を得ることができる。なお、ここで
いうアミノ変性シリコーン(A)の含有量には、反応生成物(P)の作製に用いられたア
ミノ変性シリコーン(A)に加えて、後述する熱硬化性成分(E)としてのアミノ変性シ
リコーン(A)も含まれる。
In the resin composition of the present embodiment, the content of the amino-modified silicone (A) is not particularly limited, but the total amount of the reaction product (P) in the resin composition (100% by mass; solvent/solvent component,
It is preferably 5.0% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less, and still more preferably 15% by mass, based on the solid content not including the filler (J). % or more and 45 mass % or less. In addition, the content of the amino-modified silicone (A) is the amino-modified silicone (A ) and the total amount of the amino-modified silicone (A) contained as the thermosetting component (E), the total amount of the reaction product (P) and the thermosetting component (E) in the resin composition (100% by mass ; preferably 1.0% by mass or more and 70% by mass or less, more preferably 3.0% by mass, based on the amount of solid content not including solvent / solvent component)
40 mass % or less, more preferably 5.0 mass % or more and 20 mass % or less.
In addition, when the content of the amino-modified silicone (A) is within the above range, it is possible to obtain a printed wiring board that is more excellent in metal foil peel strength and desmear resistance. The content of the amino-modified silicone (A) referred to here includes the amino-modified silicone (A) used in the preparation of the reaction product (P), as well as the thermosetting component (E) described later. Amino-modified silicones (A) are also included.

<マレイミド化合物(B)>
本実施形態に用いるマレイミド化合物(B)は、分子中に一個以上のマレイミド基を有
する化合物であれば、特に限定されるものではない。その具体例としては、例えば、N-
フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニ
ル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、
ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メ
チル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェ
ニル)メタン、ポリテトラメチレンオキシド-ビス(4-マレイミドベンゾエート)、下
記一般式(2)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、
及びマレイミド化合物とアミン化合物とのプレポリマーが挙げられる。これらは一種又は
二種以上を適宜混合して使用することも可能である。
<Maleimide compound (B)>
The maleimide compound (B) used in this embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule. Specific examples thereof include N-
phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane,
Bis(3,5-dimethyl-4-maleimidophenyl)methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, polytetramethylene Oxide-bis(4-maleimidobenzoate), a maleimide compound represented by the following general formula (2), a prepolymer of these maleimide compounds,
and prepolymers of maleimide compounds and amine compounds. These may be used singly or in admixture of two or more.

その中でも、マレイミド化合物(B)は、ビス(4-マレイミドフェニル)メタン、2
,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチ
ル-5-メチル-4-マレイミドフェニル)メタン、ポリテトラメチレンオキシド-ビス
(4-マレイミドベンゾエート)、及び下記一般式(2)で表されるマレイミド化合物か
らなる群より選択される一種又は二種以上を含むことが好ましく、2,2-ビス{4-(
4-マレイミドフェノキシ)-フェニル}プロパンを含むことがより好ましい。
Among them, the maleimide compound (B) is bis(4-maleimidophenyl)methane, 2
, 2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, polytetramethylene oxide-bis(4-maleimidobenzoate), and the following It preferably contains one or more selected from the group consisting of maleimide compounds represented by the general formula (2), and 2,2-bis{4-(
More preferably, it contains 4-maleimidophenoxy)-phenyl}propane.

Figure 2023116516000004
式(2)中、複数のRは、各々独立に水素原子又はメチル基を示し、nは、1以上の
整数を示す。
Figure 2023116516000004
In formula (2), a plurality of R5 's each independently represents a hydrogen atom or a methyl group, and n1 represents an integer of 1 or more.

式(2)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子
を示すことが好ましい。
In formula (2), a plurality of R 5 each independently represent a hydrogen atom or a methyl group, preferably a hydrogen atom.

式(2)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好
ましくは7である。
In formula (2), n1 represents an integer of 1 or more. The upper limit of n1 is preferably 10, more preferably 7.

マレイミド化合物(B)は、一種を単独で用いてもよく、二種以上を混合して用いても
よい。
The maleimide compound (B) may be used alone or in combination of two or more.

本実施形態の反応生成物(P)において、アミノ変性シリコーン(A)に対するマレイ
ミド化合物(B)の含有比は、特に限定されないが、質量基準で、好ましくは1.0以上
3.0以下であり、より好ましくは1.0以上2.5以下であり、さらに好ましくは1.
0以上2.0以下である。含有比が上記範囲内であることにより、反応生成物(P)製造
性により優れる傾向にある。
In the reaction product (P) of the present embodiment, the content ratio of the maleimide compound (B) to the amino-modified silicone (A) is not particularly limited, but is preferably 1.0 or more and 3.0 or less on a mass basis. , more preferably 1.0 or more and 2.5 or less, and still more preferably 1.0.
It is 0 or more and 2.0 or less. When the content ratio is within the above range, the productivity of the reaction product (P) tends to be more excellent.

本実施形態の樹脂組成物において、マレイミド化合物(B)の含有量は、特に限定され
ないが、樹脂組成物中の反応生成物(P)の総量(100質量%;溶媒・溶剤成分、充填
材(J)は含まない固形分量として)に対して、好ましくは10質量%以上90質量%以
下であり、より好ましくは30質量%以上80質量%以下であり、さらに好ましくは45
質量%以上75質量%以下である。また、マレイミド化合物(B)の含有量は、反応生成
物(P)と熱硬化性成分(E)とを組み合せる場合に、反応生成物(P)の作製に用いら
れるマレイミド化合物(B)及び熱硬化性成分(E)として含まれるマレイミド化合物(
B)の合計量として、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%
;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは10
質量%以上90質量%以下であり、より好ましくは20質量%以上80質量%以下であり
、さらに好ましくは30質量%以上70質量%以下である。マレイミド化合物(B)の含
有量が上記範囲内であることにより、成形性、熱時弾性率、耐デスミア性、及び耐薬品性
により優れるプリント配線板を得ることができる傾向にある。なお、ここでいうマレイミ
ド化合物(B)の含有量には、反応生成物(P)に用いられたマレイミド化合物(B)に
加えて、後述する熱硬化性成分(E)としてのマレイミド化合物(B)も含まれる。
In the resin composition of the present embodiment, the content of the maleimide compound (B) is not particularly limited, but the total amount of the reaction product (P) in the resin composition (100% by mass; solvent/solvent component, filler ( J) is preferably 10% by mass or more and 90% by mass or less, more preferably 30% by mass or more and 80% by mass or less, and still more preferably 45
It is more than mass % and below 75 mass %. In addition, the content of the maleimide compound (B) is the maleimide compound (B) and the Maleimide compound (
B) as the total amount of the reaction product (P) and the total amount of the thermosetting component (E) (100% by mass
; as the solid content not including the solvent/solvent component and filler (J)), preferably 10
% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less, and even more preferably 30% by mass or more and 70% by mass or less. When the content of the maleimide compound (B) is within the above range, it tends to be possible to obtain a printed wiring board that is more excellent in moldability, thermal elastic modulus, desmear resistance, and chemical resistance. The content of the maleimide compound (B) referred to here includes the maleimide compound (B) used in the reaction product (P) and the maleimide compound (B) as a thermosetting component (E) described later. ) are also included.

<カルボン酸(C)、カルボン酸無水物(D)>
本実施形態に用いるカルボン酸(C)は、特に限定されないが、マレイン酸、フタル酸
、コハク酸、酢酸、及びプロピオン酸からなる群より選択される一種又は二種以上である
ことが好ましく、マレイン酸、フタル酸、コハク酸、及び酢酸からなる群より選択される
一種又は二種以上であることがより好ましく、マレイン酸、フタル酸、及びコハク酸から
なる群より選択される一種又は二種以上であることがさらに好ましい。また、本実施形態
に用いるカルボン酸無水物(D)は、特に限定されないが、無水マレイン酸、無水フタル
酸、無水コハク酸、無水酢酸、及び無水プロピオン酸からなる群より選択される一種又は
二種以上であることが好ましく、無水マレイン酸、無水フタル酸、無水コハク酸、及び無
水酢酸からなる群より選択される一種又は二種以上であることがより好ましく、無水マレ
イン酸、無水フタル酸、及び無水コハク酸からなる群より選択される一種又は二種以上で
あることがさらに好ましい。
<Carboxylic Acid (C), Carboxylic Anhydride (D)>
The carboxylic acid (C) used in the present embodiment is not particularly limited, but is preferably one or more selected from the group consisting of maleic acid, phthalic acid, succinic acid, acetic acid, and propionic acid. It is more preferably one or more selected from the group consisting of acid, phthalic acid, succinic acid and acetic acid, and one or more selected from the group consisting of maleic acid, phthalic acid and succinic acid. is more preferable. In addition, the carboxylic anhydride (D) used in the present embodiment is not particularly limited, but one or two selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, acetic anhydride, and propionic anhydride It is preferably one or more species, more preferably one or two or more selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, and acetic anhydride, maleic anhydride, phthalic anhydride, and succinic anhydride.

カルボン酸(C)及びカルボン酸無水物(D)は、それぞれ上述した中でも、一価のカ
ルボン酸及び一価のカルボン酸無水物、又は、二価のカルボン酸及び二価のカルボン酸無
水物であることが好ましく、二価のカルボン酸及び二価のカルボン酸無水物であることが
さらに好ましい。カルボン酸(C)及びカルボン酸無水物(D)は、それぞれ、二価のカ
ルボン酸及び二価のカルボン酸無水物であることにより、一価のカルボン酸及び一価のカ
ルボン酸無水物である場合と比較して、樹脂組成物の保存安定性により優れ、また、プリ
ント配線板としたときの絶縁信頼性の低下を抑制できる傾向にある。この要因は、特に限
定されるものではないが、二価のカルボン酸又は二価のカルボン酸無水物を用いると、一
価のカルボン酸及び一価のカルボン酸無水物を用いる場合と比較して、アミノ変性シリコ
ーン(A)のアミノ基と二価のカルボン酸又は二価のカルボン酸無水物のカルボキシル基
とが反応した場合に、反応したカルボキシル基と対をなしていたカルボキシル基が遊離カ
ルボン酸として樹脂組成物中に残留しにくいことに起因すると推察される。
Carboxylic acid (C) and carboxylic anhydride (D) are monovalent carboxylic acid and monovalent carboxylic anhydride, or divalent carboxylic acid and divalent carboxylic anhydride among those mentioned above, respectively. is preferred, and divalent carboxylic acids and divalent carboxylic acid anhydrides are more preferred. Carboxylic acid (C) and carboxylic anhydride (D) are respectively a divalent carboxylic acid and a divalent carboxylic anhydride, thereby being a monovalent carboxylic acid and a monovalent carboxylic anhydride Compared with the case, the storage stability of the resin composition is more excellent, and there is a tendency that deterioration in insulation reliability when used as a printed wiring board can be suppressed. This factor is not particularly limited, but when using a divalent carboxylic acid or a divalent carboxylic anhydride, compared to using a monovalent carboxylic acid and a monovalent carboxylic anhydride , When the amino group of the amino-modified silicone (A) reacts with the carboxyl group of the divalent carboxylic acid or divalent carboxylic acid anhydride, the carboxyl group paired with the reacted carboxyl group becomes a free carboxylic acid. It is speculated that this is due to the fact that it is difficult to remain in the resin composition as.

カルボン酸(C)及びカルボン酸無水物(D)は、それぞれ、一種を単独で用いてもよ
く、二種以上を混合して用いてもよい。また、カルボン酸(C)及びカルボン酸無水物(
D)は、それぞれを単独で用いてもよく、併用してもよい。
The carboxylic acid (C) and the carboxylic anhydride (D) may be used singly or in combination of two or more. In addition, carboxylic acid (C) and carboxylic anhydride (
D) may be used alone or in combination.

また、本実施形態において、カルボン酸(C)のみを用いることと比較して、カルボン
カルボン酸無水物(D)のみを用いることが好ましい。これにより、アミノ変性シリコー
ン(A)との反応性により優れることにより、保存安定性により優れる傾向にある。
Moreover, in the present embodiment, using only the carboxylic acid anhydride (D) is preferable to using only the carboxylic acid (C). As a result, the reactivity with the amino-modified silicone (A) is improved, and the storage stability tends to be improved.

本実施形態の反応生成物(P)において、アミノ変性シリコーン(A)に対するカルボ
ン酸(C)及びカルボン酸無水物(D)の含有比は、特に限定されないが、質量基準で、
好ましくは0.01以上0.4以下であり、より好ましくは0.01以上0.2以下であ
り、さらに好ましくは0.02以上0.1以下である。含有比が上記範囲内であることに
より、反応生成物(P)の保存安定性により優れる傾向にある。
In the reaction product (P) of the present embodiment, the content ratio of the carboxylic acid (C) and the carboxylic anhydride (D) to the amino-modified silicone (A) is not particularly limited.
It is preferably 0.01 or more and 0.4 or less, more preferably 0.01 or more and 0.2 or less, and still more preferably 0.02 or more and 0.1 or less. When the content ratio is within the above range, the storage stability of the reaction product (P) tends to be more excellent.

本実施形態の樹脂組成物において、カルボン酸(C)及びカルボン酸無水物(D)の含
有量は、特に限定されないが、反応生成物(P)の総量(100質量%;溶媒・溶剤成分
、充填材(J)は含まない固形分量として)に対して、好ましくは0.5質量%以上20
質量%以下であり、より好ましくは0.5質量%以上10質量%以下であり、さらに好ま
しくは1.0質量%以上5.0質量%以下である。また、カルボン酸(C)及びカルボン
酸無水物(D)の含有量は、反応生成物(P)と熱硬化性成分(E)とを組み合せる場合
に、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分
、充填材(J)は含まない固形分量として)に対して、好ましくは0.05質量%以上1
0質量%以下であり、より好ましくは0.1質量%以上5.0質量%以下であり、さらに
好ましくは0.2質量%以上2.0質量%以下である。カルボン酸(C)及びカルボン酸
無水物(D)の含有量が上記範囲内であることにより、成形性、熱時弾性率、耐デスミア
性、及び耐薬品性により優れるプリント配線板を得ることができる傾向にある。
In the resin composition of the present embodiment, the contents of carboxylic acid (C) and carboxylic anhydride (D) are not particularly limited, but the total amount of reaction product (P) (100% by mass; solvent/solvent component, Preferably 0.5 mass% or more 20
% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, and still more preferably 1.0% by mass or more and 5.0% by mass or less. In addition, the contents of the carboxylic acid (C) and the carboxylic anhydride (D) can be Based on the total amount of the organic component (E) (100% by mass; as the solid content excluding solvent/solvent component and filler (J)), preferably 0.05% by mass or more1
It is 0 mass % or less, more preferably 0.1 mass % or more and 5.0 mass % or less, and still more preferably 0.2 mass % or more and 2.0 mass % or less. When the contents of the carboxylic acid (C) and the carboxylic anhydride (D) are within the above ranges, it is possible to obtain a printed wiring board having excellent moldability, thermal elastic modulus, desmear resistance, and chemical resistance. tend to be able.

〔熱硬化性成分(E)〕
本実施形態の樹脂組成物は、熱硬化性成分(E)をさらに含むことが好ましい。
[Thermosetting component (E)]
The resin composition of the present embodiment preferably further contains a thermosetting component (E).

本実施形態に用いる熱硬化性成分(E)は、熱により硬化する成分であれば特に限定さ
れない。熱硬化性成分(E)としては、特に限定されないが、例えば、上述したアミノ変
性シリコーン(A)、マレイミド化合物(B)に加えて、後述するエポキシ樹脂(F)、
シアン酸エステル化合物(G)、及びアルケニル置換ナジイミド(H)が挙げられる。即
ち、熱硬化性成分(E)として用いるアミノ変性シリコーン(A)、及びマレイミド化合
物(B)は、上述したアミノ変性シリコーン(A)、及びマレイミド化合物(B)と同様
のものを用いることができる。なかでも、熱硬化性成分(E)は、マレイミド化合物(B
)、エポキシ樹脂(F)、シアン酸エステル化合物(G)、及びアルケニル置換ナジイミ
ド(H)からなる群より選択される一種又は二種以上を含むことが好ましく、マレイミド
化合物(B)を含むことがより好ましい。
The thermosetting component (E) used in the present embodiment is not particularly limited as long as it is a component that is cured by heat. The thermosetting component (E) is not particularly limited.
cyanate ester compounds (G), and alkenyl-substituted nadimides (H). That is, as the amino-modified silicone (A) and the maleimide compound (B) used as the thermosetting component (E), the same amino-modified silicone (A) and maleimide compound (B) as described above can be used. . Among them, the thermosetting component (E) is a maleimide compound (B
), epoxy resin (F), cyanate ester compound (G), and alkenyl-substituted nadimide (H). more preferred.

本実施形態の樹脂組成物において、熱硬化性成分(E)の含有量は、特に限定されない
が、反応生成物(P)と熱硬化性成分(E)とを組み合わせる場合に、反応生成物(P)
及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分、充填材(J)は含ま
ない固形分量として)に対して、好ましくは20質量%以上85質量%以下であり、より
好ましくは30質量%以上85質量%以下であり、さらに好ましくは40質量%以上80
質量%以下である。熱硬化性成分(E)の含有量が上記範囲内であることにより、充填材
充填時においても成形性に優れ、熱時弾性率、耐デスミア性、耐薬品性に優れるプリント
配線板となる傾向にある。
In the resin composition of the present embodiment, the content of the thermosetting component (E) is not particularly limited, but when combining the reaction product (P) and the thermosetting component (E), the reaction product ( P)
and the total amount of the thermosetting component (E) (100% by mass; as the solid content not including the solvent/solvent component and the filler (J)), preferably 20% by mass or more and 85% by mass or less, More preferably 30% by mass or more and 85% by mass or less, still more preferably 40% by mass or more and 80% by mass
% by mass or less. When the content of the thermosetting component (E) is within the above range, the printed wiring board tends to be excellent in moldability even when filled with a filler, thermal elastic modulus, desmear resistance, and chemical resistance. It is in.

<エポキシ樹脂(F)>
本実施形態の樹脂組成物は、エポキシ樹脂(F)を含むことにより、接着性、吸湿耐熱
性、可撓性等により優れる傾向にある。エポキシ樹脂(F)は、1分子中に2個以上のエ
ポキシ基を有する化合物であれば、特に限定されない。その具体例としては、例えば、ビ
スフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型
エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキ
シ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エ
ポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂
、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラ
セン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹
脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポ
キシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エ
ポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノ
ボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル
型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキ
シ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジ
エンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロル
ヒドリンとの反応により得られる化合物、及びこれらのハロゲン化物が挙げられる。
<Epoxy resin (F)>
By containing the epoxy resin (F), the resin composition of the present embodiment tends to be more excellent in adhesiveness, moisture absorption heat resistance, flexibility, and the like. Epoxy resin (F) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. Specific examples include bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, xylene novolak type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, naphthylene ether type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, Trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, triglycidyl isocyanurate, glycidyl ester type epoxy resin, alicyclic epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, phenol aralkyl novolac type epoxy resin resins, naphthol aralkyl novolac type epoxy resins, aralkyl novolac type epoxy resins, biphenylaralkyl type epoxy resins, naphthol aralkyl type epoxy resins, dicyclopentadiene type epoxy resins, polyol type epoxy resins, phosphorus-containing epoxy resins, glycidylamine, butadiene, etc. Compounds obtained by epoxidizing double bonds, compounds obtained by reacting hydroxyl group-containing silicone resins with epichlorohydrin, and halides thereof can be mentioned.

このなかでも、エポキシ樹脂(F)が、ビフェニルアラルキル型エポキシ樹脂、ナフチ
レンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ
樹脂からなる群より選択される一種以上であることが好ましい。このようなエポキシ樹脂
(F)を含むことにより、得られる硬化物の難燃性及び耐熱性がより向上する傾向にある
Among these, the epoxy resin (F) is preferably one or more selected from the group consisting of biphenyl aralkyl type epoxy resins, naphthylene ether type epoxy resins, polyfunctional phenol type epoxy resins, and naphthalene type epoxy resins. Including such an epoxy resin (F) tends to further improve the flame retardancy and heat resistance of the obtained cured product.

エポキシ樹脂(F)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい
Epoxy resin (F) may be used alone or in combination of two or more.

本実施形態の樹脂組成物において、エポキシ樹脂(F)の含有量は、特に限定されない
が、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒・溶剤成分
、充填材(J)は含まない固形分量として)に対して、好ましくは1.0質量%以上20
質量%以下であり、より好ましくは1.0質量%以上15質量%以下であり、さらに好ま
しくは2.0質量%以上10質量%以下である。エポキシ樹脂(F)の含有量が上記範囲
内であることにより、接着性及び可撓性により優れる傾向にある。
In the resin composition of the present embodiment, the content of the epoxy resin (F) is not particularly limited, but the total amount of the reaction product (P) and the thermosetting component (E) (100% by mass; solvent/solvent component , as a solid content not including the filler (J)), preferably 1.0% by mass or more 20
% by mass or less, more preferably 1.0% by mass or more and 15% by mass or less, and still more preferably 2.0% by mass or more and 10% by mass or less. When the content of the epoxy resin (F) is within the above range, it tends to be more excellent in adhesiveness and flexibility.

<シアン酸エステル化合物(G)>
本実施形態に用いるシアン酸エステル化合物(G)としては、特に限定されないが、例
えば、下記一般式(3)で表されるナフトールアラルキル型シアン酸エステル、下記一般
式(4)で表されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エ
ステル、ビス(3,3-ジメチル-4-シアナトフェニル)メタン、ビス(4-シアナト
フェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3
,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフ
タレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシ
アナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレ
ン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(
4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、及び2
、2-ビス(4-シアナトフェニル)プロパンが挙げられる。
<Cyanate ester compound (G)>
The cyanate ester compound (G) used in the present embodiment is not particularly limited. type cyanate, biphenyl aralkyl type cyanate, bis(3,3-dimethyl-4-cyanatophenyl)methane, bis(4-cyanatophenyl)methane, 1,3-dicyanatobenzene, 1,4- Dicyanatobenzene, 1,3
,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2, 7 -dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4'-dicyanatobiphenyl, bis(4-cyanatophenyl) ether, bis(
4-cyanatophenyl)thioether, bis(4-cyanatophenyl)sulfone, and 2
, 2-bis(4-cyanatophenyl)propane.

この中でも下記一般式(3)で表されるナフトールアラルキル型シアン酸エステル化合
物、下記一般式(4)で表されるノボラック型シアン酸エステル、及びビフェニルアラル
キル型シアン酸エステルが難燃性に優れ、硬化性が高く、かつ硬化物の熱膨張係数が低い
ことから好ましく、下記一般式(3)で表されるナフトールアラルキル型シアン酸エステ
ル化合物、及び下記一般式(4)で表されるノボラック型シアン酸エステルからなる群よ
り選択される一種又は二種以上がより好ましい。
Among these, the naphthol aralkyl cyanate ester compound represented by the following general formula (3), the novolak cyanate ester represented by the following general formula (4), and the biphenyl aralkyl cyanate ester have excellent flame retardancy. The naphthol aralkyl-type cyanate ester compound represented by the following general formula (3) and the novolac-type cyanide compound represented by the following general formula (4) are preferable because of their high curability and low coefficient of thermal expansion of the cured product. More preferably, one or more selected from the group consisting of acid esters.

Figure 2023116516000005
式(3)中、複数のRは、各々独立に水素原子又はメチル基を示し、nは、1以上の
整数を示す。
Figure 2023116516000005
In formula (3), a plurality of R6 's each independently represents a hydrogen atom or a methyl group, and n2 represents an integer of 1 or greater.

式(3)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子
を示すことが好ましい。
In formula (3), a plurality of R 6 each independently represents a hydrogen atom or a methyl group, preferably a hydrogen atom.

式(3)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好
ましくは6である。
In formula (3), n2 represents an integer of 1 or more. The upper limit of n2 is preferably 10, more preferably 6.

Figure 2023116516000006
式(4)中、複数のRは、各々独立に水素原子又はメチル基を示し、複数のRは、各
々独立に水素原子又は炭素数が1~4のアルキル基若しくはアルケニル基を示し、n
、1以上の整数を示す。
Figure 2023116516000006
In formula (4), a plurality of R 7 each independently represent a hydrogen atom or a methyl group, a plurality of R 8 each independently represent a hydrogen atom or an alkyl or alkenyl group having 1 to 4 carbon atoms, n3 represents an integer of 1 or more.

式(4)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子
を示すことが好ましい。
In formula (4), each of the plurality of R 7 independently represents a hydrogen atom or a methyl group, preferably a hydrogen atom.

式(4)中、複数のRは、各々独立に水素原子又は炭素数が1~4のアルキル基若し
くはアルケニル基を示す。
In formula (4), a plurality of R 8 each independently represents a hydrogen atom or an alkyl or alkenyl group having 1 to 4 carbon atoms.

式(4)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好
ましくは7である。
In formula (4), n3 represents an integer of 1 or more. The upper limit of n3 is preferably 10, more preferably 7.

これらのシアン酸エステル化合物の製法は、特に限定されず、シアン酸エステル合成法
として現存するいかなる方法で製造してもよい。具体的に例示すると、下記一般式(5)
で表されるナフトールアラルキル型フェノール樹脂とハロゲン化シアンとを不活性有機溶
媒中で、塩基性化合物存在下反応させることにより得ることができる。また、同様なナフ
トールアラルキル型フェノール樹脂と塩基性化合物による塩とを、水を含有する溶液中に
て形成させ、その後、ハロゲン化シアンと2相系界面反応を行い、合成する方法を採るこ
ともできる。
The method for producing these cyanate ester compounds is not particularly limited, and they may be produced by any existing method for synthesizing cyanate esters. As a specific example, the following general formula (5)
It can be obtained by reacting a naphthol aralkyl-type phenol resin represented by with cyanogen halide in an inert organic solvent in the presence of a basic compound. Alternatively, a similar naphthol-aralkyl-type phenolic resin and a salt of a basic compound are formed in a solution containing water, and then subjected to a two-phase interfacial reaction with a cyanogen halide to synthesize the resin. can.

Figure 2023116516000007
式(5)中、複数のRは、各々独立に水素原子又はメチル基を示し、nは、1以上の
整数を示す。
Figure 2023116516000007
In formula (5), a plurality of R6 's each independently represents a hydrogen atom or a methyl group, and n4 represents an integer of 1 or greater.

式(5)中、複数のRは、各々独立に水素原子又はメチル基を示し、中でも水素原子
が好ましい。
In formula (5), a plurality of R6 's each independently represent a hydrogen atom or a methyl group, with a hydrogen atom being preferred.

式(5)中、nは、1以上の整数を示す。nの上限値は、好ましくは10、より好
ましくは6である。
In formula (5), n4 represents an integer of 1 or more. The upper limit of n4 is preferably 10, more preferably 6.

また、ナフトールアラルキル型シアン酸エステル化合物は、α-ナフトールあるいはβ
-ナフトール等のナフトール類とp-キシリレングリコール、α,α’-ジメトキシ-p
-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等との反応により得
られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものから選択するこ
とができる。
Further, the naphthol aralkyl-type cyanate ester compound is α-naphthol or β
- naphthols such as naphthol and p-xylylene glycol, α,α'-dimethoxy-p
-xylene, 1,4-di(2-hydroxy-2-propyl)benzene, or the like, and those obtained by condensing a naphtholaralkyl resin with cyanic acid.

シアン酸エステル化合物(G)は、一種を単独で用いてもよく、二種以上を混合して用
いてもよい。
The cyanate ester compound (G) may be used alone or in combination of two or more.

本実施形態の樹脂組成物において、シアン酸エステル化合物(G)の含有量は、特に限
定されないが、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶媒
・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは0.005
質量%以上5.0質量%以下であり、より好ましくは0.005質量%以上3.0質量%
以下であり、さらに好ましくは0.1質量%以上1.0質量%以下である。シアン酸エス
テル化合物(G)の含有量が上記範囲内であることにより、成形性、熱時弾性率、耐デス
ミア性、及び耐薬品性により優れるプリント配線板を得ることができる傾向にある。
In the resin composition of the present embodiment, the content of the cyanate ester compound (G) is not particularly limited, but the total amount of the reaction product (P) and the thermosetting component (E) (100% by mass; Solvent component, solid content not including filler (J)), preferably 0.005
% by mass or more and 5.0% by mass or less, more preferably 0.005% by mass or more and 3.0% by mass
or less, more preferably 0.1% by mass or more and 1.0% by mass or less. When the content of the cyanate ester compound (G) is within the above range, it tends to be possible to obtain a printed wiring board that is more excellent in moldability, thermal elastic modulus, desmear resistance, and chemical resistance.

<アルケニル置換ナジイミド(H)>
本実施形態に用いるアルケニル置換ナジイミド(F)は、分子中に1個以上のアルケニ
ル置換ナジイミド基を有する化合物であれば、特に限定されるものではない。その具体例
としては、例えば、下記一般式(6)で表される化合物が挙げられる。
<Alkenyl-substituted nadimide (H)>
The alkenyl-substituted nadimide (F) used in this embodiment is not particularly limited as long as it is a compound having one or more alkenyl-substituted nadimide groups in the molecule. Specific examples thereof include compounds represented by the following general formula (6).

Figure 2023116516000008
Figure 2023116516000008

式(6)中、複数のRは、各々独立に水素原子、又は炭素数1~6のアルキル基を示
し、Rは、炭素数1~6のアルキレン基、フェニレン基、ビフェニレン基、ナフチレン
基、又は下記一般式(7)若しくは(8)で表される基を示す。
In formula (6), a plurality of R 1 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 2 represents an alkylene group having 1 to 6 carbon atoms, a phenylene group, a biphenylene group, or naphthylene. group, or a group represented by the following general formula (7) or (8).

Figure 2023116516000009
Figure 2023116516000009

式(7)中、Rは、メチレン基、イソプロピリデン基、CO、O、S、又はSO
表される置換基を示す。
In formula (7), R3 represents a substituent represented by a methylene group, an isopropylidene group, CO, O, S, or SO2 .

Figure 2023116516000010
Figure 2023116516000010

式(8)中、複数のRは、各々独立に炭素数1~4のアルキレン基、又は炭素数5~
8のシクロアルキレン基を示す。
In formula (8), a plurality of R 4 are each independently an alkylene group having 1 to 4 carbon atoms, or an alkylene group having 5 to 5 carbon atoms.
8 shows the cycloalkylene group.

また、式(6)で表されるアルケニル置換ナジイミド(F)は、市販のものを用いるこ
ともできる。市販されているものとしては、特に限定されないが、例えば、下記式(9)
で表される化合物(BANI-M(丸善石油化学(株)製))、下記式(10)で表され
る化合物(BANI-X(丸善石油化学(株)製))などが挙げられる。
A commercially available alkenyl-substituted nadimide (F) represented by formula (6) can also be used. Commercially available products are not particularly limited, but for example, the following formula (9)
(BANI-M (manufactured by Maruzen Petrochemical Co., Ltd.)), a compound (BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.)) represented by the following formula (10), and the like.

アルケニル置換ナジイミド(H)は、一種を単独で用いてもよく、二種以上を混合して
用いてもよい。
Alkenyl-substituted nadimide (H) may be used alone or in combination of two or more.

Figure 2023116516000011
Figure 2023116516000011

Figure 2023116516000012
Figure 2023116516000012

本実施形態の樹脂組成物において、アルケニル置換ナジイミド(H)の含有量は、特に
限定されないが、反応生成物(P)及び熱硬化性成分(E)の合計量(100質量%;溶
媒・溶剤成分、充填材(J)は含まない固形分量として)に対して、好ましくは5.0質
量%以上90質量%以下であり、より好ましくは10質量%以上60質量%以下であり、
さらに好ましくは20質量%以上40質量%以下である。アルケニル置換ナジイミド(H
)の含有量が上記範囲内であることにより、成形性、熱時弾性率、耐デスミア性、及び耐
薬品性により優れるプリント配線板を得ることができる傾向にある。
In the resin composition of the present embodiment, the content of alkenyl-substituted nadimide (H) is not particularly limited, but the total amount of reaction product (P) and thermosetting component (E) (100% by mass; solvent/solvent It is preferably 5.0% by mass or more and 90% by mass or less, more preferably 10% by mass or more and 60% by mass or less, based on the solid content amount not including the component and filler (J),
More preferably, it is 20% by mass or more and 40% by mass or less. alkenyl-substituted nadimide (H
) is within the above range, it tends to be possible to obtain a printed wiring board that is more excellent in moldability, thermal elastic modulus, desmear resistance, and chemical resistance.

上述したエポキシ樹脂(F)、シアン酸エステル化合物(G)、及びアルケニル置換ナ
ジイミド(H)は、反応生成物(P)の原料として用いてもよい。
The epoxy resin (F), cyanate ester compound (G), and alkenyl-substituted nadimide (H) described above may be used as raw materials for the reaction product (P).

熱硬化性成分(E)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい
The thermosetting component (E) may be used alone or in combination of two or more.

また、本実施形態の樹脂組成物においては、所期の特性が損なわない範囲において、反
応生成物(P)及び熱硬化性成分(E)に加え、他の樹脂を添加することも可能である。
当該他の樹脂の種類については絶縁性を有するものであれば特に限定されないが、例えば
、熱可塑性樹脂が挙げられる。熱可塑性樹脂を適宜併用することで、金属密着性や応力緩
和性といった特性を付与することができる。
Further, in the resin composition of the present embodiment, other resins can be added in addition to the reaction product (P) and the thermosetting component (E) within a range that does not impair the desired properties. .
The type of the other resin is not particularly limited as long as it has insulating properties, and examples thereof include thermoplastic resins. Properties such as metal adhesion and stress relaxation can be imparted by appropriately using a thermoplastic resin together.

〔充填材(J)〕
本実施形態の樹脂組成物は、充填材(J)をさらに含むことが好ましい。充填材(J)
としては、絶縁性を有するものであれば特に限定されないが、例えば、天然シリカ、溶融
シリカ、アモルファスシリカ、中空シリカ等のシリカ類;アルミナ、窒化アルミニウム、
窒化ホウ素、ベーマイト、酸化モリブデン、酸化チタン、ホウ酸亜鉛、錫酸亜鉛、クレー
、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(
EガラスやDガラス等のガラス微粉末類)、中空ガラス、及び球状ガラスなどの無機系の
充填材、シリコーンゴム、シリコーン複合パウダーなどの有機系の充填材が挙げられる。
これらは一種又は二種以上を適宜混合して使用することが可能である。
[Filler (J)]
Preferably, the resin composition of the present embodiment further contains a filler (J). Filler (J)
The material is not particularly limited as long as it has insulating properties. Examples include silicas such as natural silica, fused silica, amorphous silica, and hollow silica; alumina, aluminum nitride,
Boron nitride, boehmite, molybdenum oxide, titanium oxide, zinc borate, zinc stannate, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, short glass fibers (
Glass fine powders such as E glass and D glass), inorganic fillers such as hollow glass and spherical glass, and organic fillers such as silicone rubber and silicone composite powder.
These can be used singly or in admixture of two or more.

これらの中でも、充填材(J)は、低熱膨張の観点からのシリカ、高熱伝導性の観点か
らのアルミナ及び窒化アルミニウムからなる群より選択される一種又は二種以上を含むこ
とが好ましい。
Among these, the filler (J) preferably contains one or more selected from the group consisting of silica from the viewpoint of low thermal expansion and alumina and aluminum nitride from the viewpoint of high thermal conductivity.

本実施形態の樹脂組成物における充填材(J)の含有量は、特に限定されないが、反応
生成物(P)と熱硬化性成分(E)とを組み合わせる場合における反応生成物(P)及び
熱硬化性成分(E)の合計量(100質量部;溶媒・溶剤成分、充填材(J)は含まない
固形分量として)又は反応生成物(P)のみを用いる場合における反応生成物(P)の総
量(100質量部;溶媒・溶剤成分、充填材(J)は含まない固形分量として)に対して
、充填材(J)を50質量部以上300質量部以下含むことが、低熱膨張や、高熱伝導と
いった特性の観点から好ましく、その中でも、100質量部以上300質量部以下である
ことがより好ましく、100質量部以上250質量部以下であることがさらに好ましい。
The content of the filler (J) in the resin composition of the present embodiment is not particularly limited, but the reaction product (P) and heat when combining the reaction product (P) and the thermosetting component (E) Total amount of curable component (E) (100 parts by mass; solvent/solvent component, solid content not including filler (J)) or reaction product (P) when using only reaction product (P) With respect to the total amount (100 parts by mass; solid content not including solvent/solvent component and filler (J)), containing 50 parts by mass or more and 300 parts by mass or less of filler (J) is effective for low thermal expansion and high heat It is preferable from the viewpoint of properties such as conductivity, more preferably 100 parts by mass or more and 300 parts by mass or less, and further preferably 100 parts by mass or more and 250 parts by mass or less.

〔シランカップリング剤、湿潤分散剤〕
本実施形態の樹脂組成物には、充填材の微粒子の分散性、樹脂と微粒子やガラスクロス
の接着強度を向上させるために、シランカップリング剤及び/又は湿潤分散剤を併用する
ことも可能である。これらのシランカップリング剤としては、一般に無機物の表面処理に
使用されているシランカップリング剤であれば、特に限定されるものではない。具体例と
しては、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-
γ-アミノプロピルトリメトキシシラン等のアミノシラン系;γ-グリシドキシプロピル
トリメトキシシラン等のエポキシシラン系;γ-アクリロキシプロピルトリメトキシシラ
ン等のアクリルシラン系;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプ
ロピルトリメトキシシラン塩酸塩等のカチオニックシラン系;スチリルシラン等のフェニ
ルアリールシラン系のシランカップリング剤が挙げられ、一種又は二種以上を適宜組み合
わせて使用することも可能である。また湿潤分散剤としては、塗料用に使用されている分
散安定剤であれば、特に限定されるものではない。具体例としては、例えば、ビッグケミ
ー・ジャパン(株)製の商品名でDISPER-BYK110、111、118、180
、161、BYK-W996、W9010、W903等の湿潤分散剤が挙げられる。
[Silane coupling agent, wetting and dispersing agent]
A silane coupling agent and/or a wetting and dispersing agent can be used in combination with the resin composition of the present embodiment in order to improve the dispersibility of the fine particles of the filler and the adhesive strength between the resin and fine particles or glass cloth. be. These silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for surface treatment of inorganic substances. Specific examples include γ-aminopropyltriethoxysilane, N-β-(aminoethyl)-
aminosilanes such as γ-aminopropyltrimethoxysilane; epoxysilanes such as γ-glycidoxypropyltrimethoxysilane; acrylsilanes such as γ-acryloxypropyltrimethoxysilane; N-β-(N-vinylbenzyl aminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride; and phenylarylsilane-based silane coupling agents such as styrylsilane. It is possible. The wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints. Specific examples include DISPER-BYK110, 111, 118, and 180 under the trade name of Big Chemie Japan Co., Ltd.
, 161, BYK-W996, W9010 and W903.

〔硬化促進剤〕
本実施形態の樹脂組成物においては、所期の特性が損なわれない範囲において、硬化促
進剤を併用することも可能である。硬化促進剤としては、特に限定されないが、例えば、
過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベ
ンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有
機過酸化物;アゾビスニトリル等のアゾ化合物;N,N-ジメチルベンジルアミン、N,
N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノー
ル、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノ
ールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジ
ンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコ
ールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸
亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、
アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノール
などの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなど
の無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドな
どの有機錫化合物、及びトリフェニルイミダゾール(TPIZ)が挙げられる。
[Curing accelerator]
In the resin composition of the present embodiment, it is possible to use a curing accelerator as long as the intended properties are not impaired. Although the curing accelerator is not particularly limited, for example,
Organic peroxides exemplified by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate; azo compounds such as azobisnitrile; dimethylbenzylamine, N,
N-dimethylaniline, N,N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N- tertiary amines such as methyl piperidine; phenols such as phenol, xylenol, cresol, resorcinol, and catechol; lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, naphthenic acid manganese, cobalt naphthenate,
Organic metal salts such as iron acetylacetonate; products obtained by dissolving these organic metal salts in hydroxyl group-containing compounds such as phenol and bisphenol; inorganic metal salts such as tin chloride, zinc chloride and aluminum chloride; dioctyltin oxide and other alkyltins , organotin compounds such as alkyltin oxides, and triphenylimidazole (TPIZ).

〔有機溶剤〕
本実施形態の樹脂組成物は、必要に応じて溶剤を含有していてもよい。例えば、有機溶
剤を用いると、樹脂組成物の調製時における粘度が下がり、ハンドリング性が向上すると
ともにガラスクロスへの含浸性が高められる。溶剤の種類は、樹脂組成物中の樹脂の一部
又は全部を溶解可能なものであれば、特に限定されない。その具体例としては、特に限定
されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブ等のケトン類;
トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド等のアミド類;プロピ
レングリコールモノメチルエーテル及びそのアセテートが挙げられる。溶剤は、一種又は
二種以上を組み合わせて使用することができる。
〔Organic solvent〕
The resin composition of this embodiment may contain a solvent, if necessary. For example, the use of an organic solvent lowers the viscosity during preparation of the resin composition, improves the handleability, and enhances the ability to impregnate the glass cloth. The type of solvent is not particularly limited as long as it can dissolve part or all of the resin in the resin composition. Specific examples thereof include, but are not limited to, ketones such as acetone, methyl ethyl ketone, and methyl cellosolve;
aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; propylene glycol monomethyl ether and its acetate. A solvent can be used 1 type, or in combination of 2 or more types.

〔その他の成分〕
本実施形態の樹脂組成物には、所期の特性が損なわれない範囲において、他の熱硬化性
樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類等の種々の高分子化合物;他の
難燃性の化合物;添加剤等の併用も可能である。これらは一般に使用されているものであ
れば、特に限定されるものではない。例えば、難燃性の化合物では、メラミンやベンゾグ
アナミン等の窒素含有化合物、オキサジン環含有化合物が挙げられる。添加剤としては、
紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤
、滑剤、消泡剤、表面調整剤、光沢剤、重合禁止剤等を、所望に応じて適宜組み合わせて
使用することも可能である。
[Other ingredients]
The resin composition of the present embodiment includes various polymer compounds such as other thermosetting resins, thermoplastic resins and their oligomers, and elastomers, as long as the desired properties are not impaired; compound; additives and the like can also be used in combination. These are not particularly limited as long as they are commonly used. Examples of flame-retardant compounds include nitrogen-containing compounds such as melamine and benzoguanamine, and oxazine ring-containing compounds. As an additive,
UV absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, defoamers, surface conditioners, brighteners, polymerization inhibitors, etc. It is also possible to use them in combination as desired.

〔樹脂組成物の製造方法〕
本実施形態の樹脂組成物の製造方法は、アミノ変性シリコーン(A)と、マレイミド化
合物(B)と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、
を反応させて得られた反応生成物(P)を、そのまま樹脂組成物として得ることができる
。また、得られた反応生成物(P)と熱硬化性成分(B)とを混合させて樹脂組成物を得
ることができる。さらに、必要に応じてその他の任意性分を混合させてもよい。
[Method for producing resin composition]
The method for producing the resin composition of the present embodiment comprises amino-modified silicone (A), maleimide compound (B), at least one of carboxylic acid (C) or carboxylic acid anhydride (D),
The reaction product (P) obtained by reacting can be obtained as it is as a resin composition. A resin composition can also be obtained by mixing the obtained reaction product (P) with the thermosetting component (B). Furthermore, other arbitrary ingredients may be mixed as necessary.

本実施形態の樹脂組成物の製造方法は、特に限定されないが、好ましい態様として、ア
ミノ変性シリコーン(A)と、マレイミド化合物(B)とを反応させて一次ポリマーを得
る第一反応工程(以下、単に「第一反応工程」ともいう。)と、一次ポリマーと、カルボ
ン酸(C)又はカルボン酸無水物(D)の少なくともいずれかとを反応させる第二反応工
程(以下、単に「第二反応工程」ともいう。)と、を有することが、より優れた反応生成
物(P)の保存安定性を得る観点から好ましい。
The method for producing the resin composition of the present embodiment is not particularly limited, but as a preferred embodiment, a first reaction step (hereinafter referred to as Also simply referred to as “first reaction step”) and a second reaction step (hereinafter simply referred to as “second reaction step ) and are preferable from the viewpoint of obtaining better storage stability of the reaction product (P).

第一反応工程における反応温度は、アミノ変性シリコーン(A)とマレイミド化合物(
B)との反応が進行する温度であれば特に限定されないが、50℃~200℃であること
が好ましく、100℃~150℃であることがより好ましい。
The reaction temperature in the first reaction step is the amino-modified silicone (A) and the maleimide compound (
The temperature is not particularly limited as long as the reaction with B) proceeds, but the temperature is preferably 50°C to 200°C, more preferably 100°C to 150°C.

第二反応工程に供される、第一反応工程により得られる一次ポリマーの粘度は、より優
れた反応生成物(P)の保存安定性を得る観点から、100~500mPa・sであるこ
とが好ましく、150mPa・s~400mPa・sであることがより好ましい。なお、
一次ポリマーの粘度の測定方法は、特に限定されるものではなく、一般的な粘度計を用い
て測定できる。例えば、コーンプレート型粘度計(例えば、ICI粘度計)を用いて測定
できる。
The viscosity of the primary polymer obtained in the first reaction step, which is subjected to the second reaction step, is preferably 100 to 500 mPa s from the viewpoint of obtaining better storage stability of the reaction product (P). , 150 mPa·s to 400 mPa·s. In addition,
A method for measuring the viscosity of the primary polymer is not particularly limited, and it can be measured using a general viscometer. For example, it can be measured using a cone-plate viscometer (eg, ICI viscometer).

第二反応工程における反応温度は、特に限定されないが、50℃~200℃であること
が好ましく、100℃~150℃であることがより好ましい。反応時間は、特に限定され
ないが、好ましくは0.5時間~5時間であり、より好ましくは1.5時間~3.5時間
である。
The reaction temperature in the second reaction step is not particularly limited, but is preferably 50°C to 200°C, more preferably 100°C to 150°C. Although the reaction time is not particularly limited, it is preferably 0.5 hours to 5 hours, more preferably 1.5 hours to 3.5 hours.

当然、本実施形態の樹脂組成物の製造方法は、アミノ変性シリコーン(A)と、マレイ
ミド化合物(B)と、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれ
かと、を同時に反応させてもよい。すなわち、第一反応工程と、第二反応工程とを同時に
行ってもよい。
Naturally, in the method for producing the resin composition of the present embodiment, the amino-modified silicone (A), the maleimide compound (B), and at least one of the carboxylic acid (C) and the carboxylic anhydride (D) are simultaneously reacted. You may let That is, the first reaction step and the second reaction step may be performed simultaneously.

第一工程及び第二工程において、アミノ変性シリコーン(A)、マレイミド化合物(B
)、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれか、及び一次ポリ
マーは、これらのハンドリング性を向上させるために溶剤に希釈されていることが好まし
い。溶剤の種類は、特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセ
ルソルブ等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミ
ド等のアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートが挙げら
れる。溶剤は、一種又は二種以上を組み合わせて使用することができる。
In the first and second steps, amino-modified silicone (A), maleimide compound (B
), at least one of the carboxylic acid (C) or the carboxylic anhydride (D), and the primary polymer are preferably diluted with a solvent in order to improve their handling properties. The type of solvent is not particularly limited, and examples include ketones such as acetone, methyl ethyl ketone and methyl cellosolve; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; mentioned. A solvent can be used 1 type, or in combination of 2 or more types.

樹脂組成物の製造時には、各成分を均一に溶解又は分散させるための公知の処理(攪拌
、混合、混練処理等)を行うことができる。充填材(J)等の充填材の均一分散にあたり
、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、
樹脂組成物に対する分散性が高められる。上記の攪拌、混合、混練処理は、例えば、ボー
ルミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公
知の装置を用いて適宜行うことができる。
During the production of the resin composition, known treatments (stirring, mixing, kneading treatment, etc.) for uniformly dissolving or dispersing each component can be performed. In uniformly dispersing the filler such as the filler (J), a stirring and dispersing treatment is performed using a stirring tank equipped with a stirrer having an appropriate stirring ability.
Dispersibility in the resin composition is enhanced. The above stirring, mixing, and kneading treatments can be appropriately performed using, for example, a device for mixing such as a ball mill or a bead mill, or a known device such as a revolution or rotation type mixing device.

〔プリプレグ〕
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された本実施形態の樹脂組
成物とを有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定
されない。例えば、上記の樹脂組成物を基材に含浸又は塗布させた後、100~200℃
の乾燥機中で1~30分加熱するなどして半硬化(Bステ-ジ化)させることで、プリプ
レグを得る方法が挙げられる。なお、本実施形態において、プリプレグの総量(100質
量%)に対する上記の樹脂組成物の含有量(充填材、添加剤成分を含む)は、特に限定さ
れないが、30質量%以上90質量%以下の範囲であることが好ましい。
[Prepreg]
The prepreg of the present embodiment has a substrate and the resin composition of the present embodiment impregnated or applied to the substrate. A method for producing the prepreg is not particularly limited and can be carried out according to a conventional method. For example, after impregnating or applying the above resin composition to a substrate, the
A prepreg is obtained by semi-curing (to B stage) by heating in a dryer for 1 to 30 minutes. In the present embodiment, the content of the resin composition (including fillers and additive components) relative to the total amount of prepreg (100% by mass) is not particularly limited, but is 30% by mass or more and 90% by mass or less. A range is preferred.

本実施形態のプリプレグで使用される基材としては、特に限定されるものではなく、各
種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜
選択して使用することができる。その具体例としては、特に限定されないが、例えば、E
ガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Tガラス等のガラス
繊維;クォーツ等のガラス以外の無機繊維;ポリパラフェニレンテレフタラミド(ケブラ
ー(登録商標)、デュポン社製)、コポリパラフェニレン・3,4’オキシジフェニレン
・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ社製)等の全芳香族
ポリアミド;2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登
録商標)、クラレ社製)等のポリエステル;ポリパラフェニレンベンズオキサゾール(ザ
イロン(登録商標)、東洋紡績株式会社製)、ポリイミド等の有機繊維が挙げられる。
The base material used in the prepreg of the present embodiment is not particularly limited, and known materials used in various printed wiring board materials are appropriately selected and used depending on the intended use and performance. be able to. Specific examples thereof are not particularly limited, but for example, E
Glass fibers such as glass, D glass, S glass, Q glass, spherical glass, NE glass, and T glass; Inorganic fibers other than glass such as quartz; Polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont) , wholly aromatic polyamides such as copolyparaphenylene/3,4'oxydiphenylene/terephthalamide (Technora (registered trademark), manufactured by Teijin Techno Products Co., Ltd.); 2,6-hydroxynaphthoic acid/parahydroxybenzoic acid (Vectran (registered (trademark), manufactured by Kuraray Co., Ltd.); organic fibers such as polyparaphenylene benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.) and polyimide;

これらの中でも低熱膨張性の観点から、Eガラスクロス、Tガラスクロス、Sガラスク
ロス、Qガラスクロス、及び有機繊維からなる群より選択される一種又は二種以上である
ことが好ましい。
Among these, one or more selected from the group consisting of E-glass cloth, T-glass cloth, S-glass cloth, Q-glass cloth, and organic fibers is preferred from the viewpoint of low thermal expansion.

基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョ
ップドストランドマット、及びサーフェシングマットが挙げられる。織布の織り方として
は、特に限定されないが、例えば、平織り、ななこ織り、綾織りが知られており、これら
公知のものから目的とする用途や性能により適宜選択して使用することができる。また、
これらを開繊処理したものやシランカップリング剤等で表面処理したガラス織布が好適に
使用される。基材の厚さや質量は、特に限定されないが、通常は0.01~0.3mm程
度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材は、厚み20
0μm以下、質量250g/m以下のガラス織布が好ましく、Eガラス、Sガラス、及
びTガラス等のガラス繊維からなるガラス織布がより好ましい。
The shape of the substrate is not particularly limited, but examples thereof include woven fabrics, nonwoven fabrics, rovings, chopped strand mats, and surfacing mats. Although the weaving method of the woven fabric is not particularly limited, for example, plain weave, Nanako weave, and twill weave are known, and it is possible to appropriately select and use from these known ones depending on the intended use and performance. Also,
Glass woven fabrics surface-treated with a silane coupling agent or the like are preferably used. The thickness and mass of the base material are not particularly limited, but usually about 0.01 to 0.3 mm is suitably used. In particular, from the viewpoint of strength and water absorption, the base material has a thickness of 20
A woven glass fabric having a mass of 0 μm or less and a mass of 250 g/m 2 or less is preferable, and a woven glass fabric made of glass fibers such as E glass, S glass, and T glass is more preferable.

本実施形態の積層板は、例えば、上述のプリプレグを複数枚重ねて硬化して得ることが
できる。また、本実施形態の金属箔張積層板は、例えば、上述のプリプレグと、金属箔と
を積層して硬化して得ることができる。
The laminate of the present embodiment can be obtained, for example, by stacking a plurality of the prepregs described above and curing them. Moreover, the metal foil-clad laminate of the present embodiment can be obtained, for example, by laminating and curing the above-described prepreg and metal foil.

本実施形態の金属箔張積層板は、具体的には、例えば、上述のプリプレグを少なくとも
1枚以上重ね、その片面若しくは両面に金属箔を配して積層成形することにより、得るこ
とができる。より具体的には、上述のプリプレグを1枚又は複数枚以上を重ね、所望によ
りその片面若しくは両面に銅やアルミニウム等の金属箔を配置した構成とし、これを必要
に応じて積層成形することにより、金属箔張積層板を製造することができる。ここで使用
する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧
延銅箔や電解銅箔等の公知の銅箔が好ましい。また、金属箔の厚さは、特に限定されない
が、1.0μm以上70μm以下が好ましく、より好ましくは1.5μm以上35μm以
下である。金属箔張積層板の成形方法及びその成形条件についても、特に限定されず、一
般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例え
ば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オート
クレーブ成形機等を用いることができる。また、金属箔張積層板の成形において、温度は
100~300℃、圧力は面圧2.0~100kgf/cm、加熱時間は0.05~5
時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を
行うこともできる。また、上述のプリプレグと、別途作成した内層用の配線板とを組み合
わせて積層成形することにより、多層板とすることも可能である。
Specifically, the metal foil-clad laminate of the present embodiment can be obtained, for example, by stacking at least one sheet of the prepreg described above, disposing a metal foil on one or both sides of the stack, and laminating and molding the stack. More specifically, one or more of the above prepregs are stacked, and if desired, a metal foil such as copper or aluminum is placed on one or both sides of the prepreg, and if necessary, laminated molding is performed. , metal foil clad laminates can be produced. The metal foil used here is not particularly limited as long as it is used for printed wiring board materials, but known copper foils such as rolled copper foil and electrolytic copper foil are preferred. The thickness of the metal foil is not particularly limited, but is preferably 1.0 μm or more and 70 μm or less, more preferably 1.5 μm or more and 35 μm or less. The molding method and molding conditions for the metal foil-clad laminate are not particularly limited, either, and general techniques and conditions for printed wiring board laminates and multilayer boards can be applied. For example, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like can be used when molding a metal foil-clad laminate. In molding the metal foil-clad laminate, the temperature is 100 to 300° C., the pressure is 2.0 to 100 kgf/cm 2 , and the heating time is 0.05 to 5.
Time ranges are common. Furthermore, if desired, post-curing can be performed at a temperature of 150-300°C. Moreover, it is also possible to form a multi-layer board by combining the above-mentioned prepreg and a wiring board for an inner layer separately prepared and performing lamination molding.

本実施形態の金属箔張積層板は、所定の配線パターンを形成することにより、プリント
配線板として好適に用いることができる。そして、本実施形態の金属箔張積層板は、低い
熱膨張率、良好な成形性、金属箔ピール強度及び耐薬品性(特に耐デスミア性)を有し、
そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用い
ることができる。
The metal foil-clad laminate of the present embodiment can be suitably used as a printed wiring board by forming a predetermined wiring pattern. The metal foil-clad laminate of the present embodiment has a low coefficient of thermal expansion, good moldability, metal foil peel strength and chemical resistance (especially desmear resistance),
It can be used particularly effectively as a printed wiring board for a semiconductor package that requires such performance.

また、本実施形態において、上述したプリプレグの形態の他、上述の樹脂組成物を金属
箔やフィルムに塗布した形態の埋め込みシートの形態とすることもできる。
Moreover, in this embodiment, in addition to the form of the prepreg described above, the form of an embedded sheet in which the resin composition described above is applied to a metal foil or film can also be used.

〔レジンシート〕
本実施形態のレジンシートは、支持体と、該支持体の表面に配された本実施形態の樹脂
組成物とを有する。上述の樹脂組成物を支持体の片面又は両面に塗布したレジンシートで
ある。ここで、レジンシートとは、薄葉化の1つの手段として用いられるもので、例えば
、金属箔やフィルム等の支持体に、直接、プリプレグ等に用いられる熱硬化性樹脂(充填
材を含む)を塗布及び乾燥して製造することができる。
[Resin sheet]
The resin sheet of this embodiment has a support and the resin composition of this embodiment arranged on the surface of the support. It is a resin sheet obtained by coating one side or both sides of a support with the resin composition described above. Here, the resin sheet is used as one means of thinning the sheet. It can be manufactured by coating and drying.

本実施形態のレジンシートを製造する際において使用される支持体は、特に限定されな
いが、各種プリント配線板材料に用いられている公知のものを使用することができ、樹脂
シート又は金属箔であることが好ましい。樹脂シート及び金属箔としては、例えば、ポリ
イミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレ
ート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピ
レン(PP)フィルム、ポリエチレン(PE)フィルム等の樹脂シート、及びアルミニウ
ム箔、銅箔、金箔等の金属箔が挙げられる。その中でも電解銅箔、及びPETフィルムが
好ましい。
The support used in producing the resin sheet of the present embodiment is not particularly limited, but can be a known one used for various printed wiring board materials, such as a resin sheet or metal foil. is preferred. Examples of resin sheets and metal foils include resin sheets such as polyimide film, polyamide film, polyester film, polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polypropylene (PP) film, polyethylene (PE) film, etc. and metal foils such as aluminum foil, copper foil and gold foil. Among them, electrolytic copper foil and PET film are preferable.

本実施形態のレジンシートは、上述した樹脂組成物を支持体に塗布後、半硬化(Bステ
ージ化)させたものであることが好ましい。本実施形態のレジンシートの製造方法は一般
にBステージ樹脂及び支持体の複合体を製造する方法が好ましい。具体的には、例えば、
上記樹脂組成物を銅箔などの支持体に塗布した後、100~200℃の乾燥機中で、1~
60分加熱させる方法などにより半硬化させ、レジンシートを製造する方法などが挙げら
れる。支持体に対する樹脂組成物の付着量は、レジンシートの樹脂厚で1.0μm以上3
00μm以下の範囲が好ましい。
The resin sheet of the present embodiment is preferably obtained by applying the resin composition described above to a support and then semi-curing it (making it B-stage). The method for producing the resin sheet of the present embodiment is generally preferably a method for producing a composite of a B-stage resin and a support. Specifically, for example,
After applying the resin composition to a support such as a copper foil, in a dryer at 100 to 200 ° C., 1 to
A method of semi-curing by heating for 60 minutes or the like to produce a resin sheet may be mentioned. The adhesion amount of the resin composition to the support is 1.0 μm or more in terms of resin thickness of the resin sheet.
A range of 00 μm or less is preferred.

本実施形態のレジンシートは、プリント配線板のビルドアップ材料として使用可能であ
る。
The resin sheet of this embodiment can be used as a build-up material for printed wiring boards.

本実施形態の積層板は、例えば、上述のレジンシートを1枚以上重ねて硬化して得るこ
とができる。
The laminate of the present embodiment can be obtained, for example, by stacking one or more of the resin sheets described above and curing them.

また、本実施形態の金属箔張積層板は、例えば、上述のレジンシートと、金属箔とを積
層して硬化して得ることができる。
Moreover, the metal foil-clad laminate of the present embodiment can be obtained, for example, by laminating and curing the resin sheet described above and a metal foil.

本実施形態の金属箔張積層板は、具体的には、例えば、上述のレジンシートを用いて、
その片面又は両面に金属箔を配置して積層形成することにより、得ることができる。より
具体的には、例えば、前述のレジンシートを1枚又は所望によりその支持体を剥離したも
のを複数枚重ね、その片面又は両面に銅やアルミニウム等の金属箔を配置した構成とし、
これを必要に応じて積層成形することにより、金属箔張積層板を製造することができる。
ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定され
ないが、圧延銅箔や電解銅箔等の公知の銅箔が好ましい。金属箔張積層板の成形方法及び
その成形条件についても、特に限定されず、一般的なプリント配線板用積層板及び多層板
の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレ
ス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができる
。また、金属箔張積層板の成形時において、温度は100~300℃、圧力は面圧2.0
~100kgf/cm、加熱時間は0.05~5時間の範囲が一般的である。さらに、
必要に応じて、150~300℃の温度で後硬化を行うこともできる。
Specifically, for example, the metal foil-clad laminate of the present embodiment uses the resin sheet described above,
It can be obtained by arranging a metal foil on one side or both sides thereof and forming a laminate. More specifically, for example, one sheet of the above-mentioned resin sheet or, if desired, a plurality of sheets from which the support is peeled off are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides thereof,
A metal foil-clad laminate can be produced by lamination-molding this as necessary.
The metal foil used here is not particularly limited as long as it is used for printed wiring board materials, but known copper foils such as rolled copper foil and electrolytic copper foil are preferable. The molding method and molding conditions for the metal foil-clad laminate are not particularly limited, either, and general techniques and conditions for printed wiring board laminates and multilayer boards can be applied. For example, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like can be used when molding a metal foil-clad laminate. In molding the metal foil-clad laminate, the temperature is 100 to 300°C and the pressure is 2.0.
It is generally up to 100 kgf/cm 2 and the heating time is in the range of 0.05 to 5 hours. moreover,
Post-curing can also be carried out at temperatures between 150 and 300° C., if desired.

本実施形態の積層板は、レジンシート及び/又はプリプレグを、複数備える積層板であ
ってもよく、レジンシート及び/又はプリプレグと、金属箔とを備える金属箔張積層板で
あってもよい。これらの積層板は、レジンシート、プリプレグ、及び金属箔を重ねて硬化
することによって得られる。
The laminate of the present embodiment may be a laminate comprising a plurality of resin sheets and/or prepregs, or may be a metal foil-clad laminate comprising a resin sheet and/or prepreg and a metal foil. These laminates are obtained by stacking and curing resin sheets, prepregs and metal foils.

本実施形態において、回路となる導体層を形成しプリント配線板を作製する際、金属箔
張積層板の形態をとらない場合、無電解めっきの手法を用いることもできる。
In the present embodiment, when a printed wiring board is produced by forming a conductor layer to form a circuit, electroless plating can be used if the printed wiring board is not in the form of a metal foil-clad laminate.

〔プリント配線板〕
本実施形態のプリント配線板は、本実施形態の樹脂組成物を含む絶縁層と、該絶縁層の
表面に形成された導体層とを備える。
[Printed wiring board]
The printed wiring board of this embodiment includes an insulating layer containing the resin composition of this embodiment, and a conductor layer formed on the surface of the insulating layer.

本実施形態のプリント配線板は、例えば、絶縁層に金属箔や無電解めっきによって回路
となる導体層が形成されて作製される。導体層は一般的に銅やアルミニウムから構成され
る。導体層が形成されたプリント配線板用絶縁層は、所定の配線パターンを形成すること
により、プリント配線板に好適に用いることができる。そして本実施形態のプリント配線
板は、絶縁層が上述の樹脂組成物を含むことにより半導体実装時のリフロー温度下におい
ても優れた弾性率を維持することで、半導体プラスチックパッケージの反りを効果的に抑
制し、金属箔ピール強度及び耐デスミア性に優れることから、半導体パッケージ用プリン
ト配線板として、殊に有効に用いることができる。
The printed wiring board of the present embodiment is produced, for example, by forming a conductor layer, which becomes a circuit, on an insulating layer by metal foil or electroless plating. The conductor layer is generally composed of copper or aluminum. A printed wiring board insulating layer having a conductor layer formed thereon can be suitably used for a printed wiring board by forming a predetermined wiring pattern. In the printed wiring board of the present embodiment, since the insulating layer contains the above-described resin composition, an excellent elastic modulus is maintained even under the reflow temperature at the time of semiconductor mounting, so that the warp of the semiconductor plastic package can be effectively prevented. It can be particularly effectively used as a printed wiring board for a semiconductor package because it suppresses the peeling strength of the metal foil and is excellent in desmear resistance.

本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造すること
ができる。まず、上述の金属箔張積層板(銅張積層板等)を用意する。金属箔張積層板の
表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基
板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその
内層回路表面に上述のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を
積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔と
の間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板
が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工
を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去
するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔
とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施
して外層回路を形成し、プリント配線板が製造される。
Specifically, the printed wiring board of this embodiment can be manufactured, for example, by the following method. First, the aforementioned metal foil-clad laminate (copper-clad laminate, etc.) is prepared. An inner layer circuit is formed by subjecting the surface of the metal foil-clad laminate to an etching treatment to prepare an inner layer substrate. The surface of the inner layer circuit of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, and then the required number of prepregs are laminated on the surface of the inner layer circuit, and a metal foil for the outer layer circuit is laminated on the outer side. Then, heat and pressurize to integrally mold. In this manner, a multilayer laminate is produced in which an insulating layer composed of the base material and the cured product of the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after drilling holes for through holes and via holes in this multilayer laminate, desmear treatment is performed to remove smear, which is a resin residue derived from the resin component contained in the cured product layer. . After that, a plated metal film is formed on the wall surface of this hole to connect the metal foil for the inner layer circuit and the outer layer circuit, and the metal foil for the outer layer circuit is etched to form the outer layer circuit, and the printed wiring board is manufactured. be done.

本実施形態のプリント配線板において、例えば、上述のプリプレグ(基材及びこれに添
着された上述の樹脂組成物)、上述のレジンシート(支持体及びこれに添着された上述の
樹脂組成物)、金属箔張積層板の樹脂組成物層(上述の樹脂組成物からなる層)が、上述
の樹脂組成物を含む絶縁層を構成することになる。
In the printed wiring board of the present embodiment, for example, the above-mentioned prepreg (the base material and the above-mentioned resin composition attached thereto), the above-mentioned resin sheet (the support and the above-mentioned resin composition attached thereto), The resin composition layer (the layer made of the resin composition described above) of the metal foil-clad laminate constitutes the insulating layer containing the resin composition described above.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例
によりなんら限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

[重量平均分子量]
反応生成物の重量平均分子量は、下記実施例及び比較例で得られた樹脂組成物を試料と
して、ゲルパーミュエーションクロマトグラフィー(GPC)法で測定し、標準ポリスチ
レン検量線を用いて換算した値として算出した。具体的には、カラムからの溶出時間と分
子量との関係をあらかじめ求めておき、これに基づいて溶出時間を分子量に置き換える。
この時に用いる「溶出時間と分子量との関係」を示すグラフを「較正曲線」(又は検量線
)という。「溶出時間と分子量との関係」は、ポリマーの種類毎に異なるため、原則とし
ては、測定対象と同一構造で分子量既知の分子量分布の狭い標準ポリマーを用いる必要が
ある。しかし、現実的には困難な場合がほとんどのため、実際は、市販の標準ポリマーが
用いられる。ここでは、標準ポリマーとしてポリスチレンを用いている。このように得ら
れた分子量は、標準換算分子量という。これより下記の式から重量平均分子量(Mw)が
算出される。

Figure 2023116516000013
式中、Nは、ポリマー分子の数を示し、Mは、分子量を示し、Cは、試料濃度を示す。試
料濃度Cは、モノマーの単位数に比例するため、C=M×Nとなる。 [Weight average molecular weight]
The weight-average molecular weight of the reaction product is measured by gel permeation chromatography (GPC) using the resin compositions obtained in the following Examples and Comparative Examples as samples, and converted using a standard polystyrene calibration curve. calculated as Specifically, the relationship between the elution time from the column and the molecular weight is determined in advance, and based on this, the elution time is replaced with the molecular weight.
A graph showing the "relationship between elution time and molecular weight" used at this time is called a "calibration curve" (or calibration curve). Since the "relationship between elution time and molecular weight" differs depending on the type of polymer, it is necessary, in principle, to use a standard polymer having the same structure as the object to be measured, a known molecular weight and a narrow molecular weight distribution. However, in most cases, it is practically difficult to do so, and in practice, standard commercially available polymers are used. Here, polystyrene is used as the standard polymer. Molecular weights thus obtained are referred to as standard reduced molecular weights. From this, the weight average molecular weight (Mw) is calculated from the following formula.
Figure 2023116516000013
where N denotes the number of polymer molecules, M denotes the molecular weight, and C denotes the sample concentration. Since the sample concentration C is proportional to the number of monomer units, C=M×N.

[合成例1]α-ナフトールアラルキル型シアン酸エステル樹脂の合成
温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予めブラインにより0
~5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸
9.75g(0.0935mol)、水76mL、及び塩化メチレン44mLを仕込んだ
[Synthesis Example 1] Synthesis of α-naphthol aralkyl-type cyanate ester resin
After cooling to ~5°C, 7.47 g (0.122 mol) of cyanogen chloride, 9.75 g (0.0935 mol) of 35% hydrochloric acid, 76 mL of water, and 44 mL of methylene chloride were charged.

この反応器内の温度を-5~+5℃、pHを1以下に保ちながら、撹拌下、式(5)に
おけるRがすべて水素原子を示すα-ナフトールアラルキル型フェノール樹脂(SN4
85、OH基当量:214g/eq.軟化点:86℃、新日鐵化学(株)製)20g(0
.0935mol)、及びトリエチルアミン14.16g(0.14mol)を塩化メチ
レン92mlに溶解した溶液を滴下漏斗により1時間かけて滴下し、滴下終了後、更にト
リエチルアミン4.72g(0.047mol)を15分間かけて滴下した。

Figure 2023116516000014
は、1以上の整数を示す。 While maintaining the temperature in the reactor at -5 to +5 ° C. and the pH at 1 or less, α-naphthol aralkyl phenolic resin (SN4
85, OH group equivalent: 214 g/eq. Softening point: 86 ° C., manufactured by Nippon Steel Chemical Co., Ltd.) 20 g (0
. 0935 mol) and 14.16 g (0.14 mol) of triethylamine dissolved in 92 ml of methylene chloride were added dropwise over 1 hour using a dropping funnel. dripped.
Figure 2023116516000014
n4 represents an integer of 1 or more.

滴下終了後、同温度で15分間撹拌後、反応液を分液し、有機層を分取した。得られた
有機層を水100mLで2回洗浄した後、エバポレーターにより減圧下で塩化メチレンを
留去し、最終的に80℃で1時間濃縮乾固させて、α-ナフトールアラルキル型フェノー
ル樹脂のシアン酸エステル化物(α-ナフトールアラルキル型シアン酸エステル樹脂)2
3.5gを得た。
After the dropwise addition was completed, the mixture was stirred at the same temperature for 15 minutes, and the reaction liquid was separated to separate the organic layer. After the obtained organic layer was washed twice with 100 mL of water, methylene chloride was distilled off under reduced pressure using an evaporator, and finally concentrated to dryness at 80° C. for 1 hour to obtain cyanogen of the α-naphthol aralkyl phenolic resin. Acid ester (α-naphthol aralkyl type cyanate ester resin) 2
3.5 g was obtained.

[実施例1]
マレイミド化合物(マレイミド基当量285g/eq、ケイ・アイ化成社製の商品名「
BMI-80」)25質量部をプロピレングリコールモノメチルエーテル(KHネオケム
社製)40質量部に加熱還流温度130℃の条件下において溶解させた溶液に、ジアミノ
変性シリコーン(X-22-161B、アミノ基当量1500g/eq、信越化学工業社
製の商品名「X-22-161B」)15質量部を溶解させて、一次ポリマーを調製した
。その後、加熱還流温度130℃の条件下で攪拌を続け、ICI粘度計(コーンプレート
型粘度計、東和工業社製)で一次ポリマーの粘度が200~300mPa・sまで増加し
た時点で、一次ポリマーに、無水マレイン酸(東京化成社製)1.0質量部をプロピレン
グリコールモノエチルエーテルアセテート(ダウ・ケミカル社製)22.5質量部で溶解
させた溶液を添加し、加熱還流温度130℃の条件下のまま、数時間反応させ、反応生成
物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量
平均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保
存し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 1]
Maleimide compound (maleimide group equivalent 285 g / eq, trade name manufactured by K-I Kasei Co., Ltd.
BMI-80") was dissolved in 40 parts by mass of propylene glycol monomethyl ether (manufactured by KH Neochem) at a heating reflux temperature of 130 ° C., and a diamino-modified silicone (X-22-161B, amino group A primary polymer was prepared by dissolving 15 parts by mass of X-22-161B (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., equivalent weight: 1500 g/eq). After that, stirring is continued at a heating reflux temperature of 130° C., and when the viscosity of the primary polymer increases to 200 to 300 mPa s with an ICI viscometer (cone plate type viscometer, manufactured by Towa Kogyo Co., Ltd.), the primary polymer , Add a solution obtained by dissolving 1.0 part by mass of maleic anhydride (manufactured by Tokyo Kasei Co., Ltd.) in 22.5 parts by mass of propylene glycol monoethyl ether acetate (manufactured by Dow Chemical Co., Ltd.), and heat under reflux temperature of 130 ° C. A resin composition containing a reaction product was obtained by allowing the reaction to proceed for several hours. Using a portion of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A portion of the resin composition was stored at 25° C. for 7 days, and the weight average molecular weight of the reaction product after storage was measured. Results are shown in Table 1.

[実施例2]
無水マレイン酸1.0質量部を無水酢酸(東京化成工業社製)1.0質量部に替えた以
外は、実施例1と同様の方法により、重量平均分子量が13200である反応生成物を含
む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分
子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、
保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 2]
Including a reaction product having a weight average molecular weight of 13,200 in the same manner as in Example 1, except that 1.0 part by mass of maleic anhydride was replaced with 1.0 part by mass of acetic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) A resin composition was obtained. Using a portion of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. Also, a part of the resin composition is stored for 7 days under conditions of 25 ° C.,
The weight average molecular weight of the reaction product after storage was measured. Results are shown in Table 1.

[実施例3]
無水マレイン酸1.0質量部を無水フタル酸(東京化成工業社製)1.0質量部に替え
た以外は、実施例1と同様の方法により、重量平均分子量が12500である反応生成物
を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平
均分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存
し、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 3]
A reaction product having a weight average molecular weight of 12,500 was obtained in the same manner as in Example 1, except that 1.0 part by mass of maleic anhydride was replaced with 1.0 part by mass of phthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.). A resin composition containing Using a portion of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A portion of the resin composition was stored at 25° C. for 7 days, and the weight average molecular weight of the reaction product after storage was measured. Results are shown in Table 1.

[実施例4]
無水マレイン酸1.0質量部をマレイン酸(東京化成工業社製)1.0質量部に替えた
以外は、実施例1と同様の方法により、重量平均分子量が12000である反応生成物を
含む樹脂組成物を得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均
分子量を測定した。また、その樹脂組成物の一部を25℃の条件下において7日間保存し
、保存後の反応生成物の重量平均分子量を測定した。結果は表1に示す。
[Example 4]
Including a reaction product having a weight average molecular weight of 12000 in the same manner as in Example 1 except that 1.0 parts by mass of maleic anhydride was replaced with 1.0 parts by mass of maleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) A resin composition was obtained. Using a portion of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A portion of the resin composition was stored at 25° C. for 7 days, and the weight average molecular weight of the reaction product after storage was measured. Results are shown in Table 1.

[実施例5]
無水マレイン酸1.0質量部を無水マレイン酸0.5質量部に替えた以外は、実施例1
と同様の方法により、重量平均分子量が11710である反応生成物を含む樹脂組成物を
得た。得られた樹脂組成物の一部を試料として、反応生成物の重量平均分子量を測定した
。また、その樹脂組成物の一部を25℃の条件下において7日間保存し、保存後の反応生
成物の重量平均分子量を測定した。結果は表1に示す。
[Example 5]
Example 1 except that 1.0 parts by mass of maleic anhydride was replaced with 0.5 parts by mass of maleic anhydride
A resin composition containing a reaction product having a weight-average molecular weight of 11,710 was obtained by the same method. Using a portion of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A portion of the resin composition was stored at 25° C. for 7 days, and the weight average molecular weight of the reaction product after storage was measured. Results are shown in Table 1.

[比較例1]
無水マレイン酸1.0質量部及びプロピレングリコールモノエチルエーテルアセテート
22.5質量部を用いなかった以外は、実施例1と同様の方法により、重量平均分子量が
13900である反応生成物を含む樹脂組成物を得た。得られた樹脂組成物の一部を試料
として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物の一部を25℃
の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を測定した。結果
は表1に示す。
[Comparative Example 1]
A resin composition containing a reaction product having a weight average molecular weight of 13,900 was prepared in the same manner as in Example 1, except that 1.0 parts by mass of maleic anhydride and 22.5 parts by mass of propylene glycol monoethyl ether acetate were not used. got stuff Using a portion of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. Moreover, a part of the resin composition was heated at 25°C.
and the weight average molecular weight of the reaction product after storage was measured. Results are shown in Table 1.

[比較例2]
無水マレイン酸1.0質量部を用いなかった以外は、実施例1と同様の方法により、重
量平均分子量が14100である反応生成物を含む樹脂組成物を得た。得られた樹脂組成
物の一部を試料として、反応生成物の重量平均分子量を測定した。また、その樹脂組成物
の一部を25℃の条件下において7日間保存し、保存後の反応生成物の重量平均分子量を
測定した。結果は表1に示す。
[Comparative Example 2]
A resin composition containing a reaction product having a weight average molecular weight of 14,100 was obtained in the same manner as in Example 1, except that 1.0 parts by mass of maleic anhydride was not used. Using a portion of the obtained resin composition as a sample, the weight average molecular weight of the reaction product was measured. A portion of the resin composition was stored at 25° C. for 7 days, and the weight average molecular weight of the reaction product after storage was measured. Results are shown in Table 1.

Figure 2023116516000015
Figure 2023116516000015

表1中、「増加率」とは、保存前における樹脂組成物の重量平均分子量に対する、7日
間保存後における樹脂組成物の重量平均分子量の比率(%)である。なお、保存前におけ
る樹脂組成物の「重量平均分子量」は、各樹脂組成物を得た直後に測定して得られた値で
はなく、各樹脂組成物を得た日に測定して得られた値であった。よって、初期の保存安定
性については、表1中の「重量平均分子量」の結果から、比較することができる。
In Table 1, "rate of increase" is the ratio (%) of the weight average molecular weight of the resin composition after storage for 7 days to the weight average molecular weight of the resin composition before storage. The "weight average molecular weight" of the resin composition before storage is not the value obtained by measuring immediately after obtaining each resin composition, but the value obtained by measuring on the day when each resin composition was obtained. was value. Therefore, the initial storage stability can be compared from the results of "weight average molecular weight" in Table 1.

[実施例6]
実施例1で得られた樹脂組成物41.0質量部と、マレイミド化合物(マレイミド基当
量186g/eq、大和化成工業社製の商品名「BMI-2300」)30質量部と、ビ
フェニルノボラック型エポキシ樹脂(日本化薬社製の商品名「NC-3000FH」)4
.5質量部と、ビスジアリルナジイミド(アルケニル基当量286g/eq、丸善石油化
学社製の商品名「BANI-M」)25質量部と、上記合成例1で得られたα-ナフトー
ルアラルキル型フェノール樹脂のシアン酸エステル化物0.5質量部と、スラリーシリカ
(アドマテックス社製の商品名「SC-2050MB」)200質量部と、エポキシシラ
ンカップリング剤(東レ・ダウコーティング社製の商品名「Z6040」)5質量部と、
硬化促進剤のトリフェニルイミダゾール(東京化成工業社製)0.5質量部とを混合し、
樹脂組成物を得た。
[Example 6]
41.0 parts by mass of the resin composition obtained in Example 1, 30 parts by mass of a maleimide compound (a maleimide group equivalent of 186 g/eq, trade name "BMI-2300" manufactured by Daiwa Kasei Kogyo Co., Ltd.), and a biphenyl novolac type epoxy Resin (trade name "NC-3000FH" manufactured by Nippon Kayaku Co., Ltd.) 4
. 5 parts by mass, 25 parts by mass of bisdiallyl nadimide (alkenyl group equivalent weight 286 g/eq, trade name "BANI-M" manufactured by Maruzen Petrochemical Co., Ltd.), and the α-naphthol aralkyl-type phenol obtained in Synthesis Example 1. 0.5 parts by mass of cyanate ester of resin, 200 parts by mass of slurry silica (trade name "SC-2050MB" manufactured by Admatechs), and an epoxy silane coupling agent (trade name manufactured by Toray Dow Coating Co., Ltd. Z6040") 5 parts by mass,
Mix 0.5 parts by mass of triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) as a curing accelerator,
A resin composition was obtained.

[比較例3]
実施例1で得られた樹脂組成物41.0質量部を比較例2で得られた樹脂組成物40.
0質量部に替えた以外は、実施例6と同様の方法により樹脂組成物を得た。
[Comparative Example 3]
41.0 parts by mass of the resin composition obtained in Example 1 was mixed with 40.0 parts by mass of the resin composition obtained in Comparative Example 2.
A resin composition was obtained in the same manner as in Example 6, except that the content was changed to 0 parts by mass.

[アミン価]
実施例6、比較例3で得られた各樹脂組成物について、アミン価を測定した。具体的に
は、JIS K 7237:1995に準拠し、樹脂組成物の1級アミン及び2級アミン
の合計量としてアミン価を測定した。結果は表2に示す。
[Amine value]
The amine value of each resin composition obtained in Example 6 and Comparative Example 3 was measured. Specifically, according to JIS K 7237:1995, the amine value was measured as the total amount of primary amine and secondary amine in the resin composition. Results are shown in Table 2.

[プリプレグの作製]
実施例6及び比較例3で得られた各樹脂組成物をメチルエチルケトンで希釈することで
ワニスを得た。このワニスをTガラスクロス(T2118)に含浸塗工し、150℃で3
分間加熱乾燥して、下記の積層板としたときに絶縁層の厚さが100μmとなるよう樹脂
組成物の含有量(質量%)を調整し、プリプレグを得た。
[Production of prepreg]
A varnish was obtained by diluting each resin composition obtained in Example 6 and Comparative Example 3 with methyl ethyl ketone. This varnish was impregnated on a T-glass cloth (T2118) and coated at 150°C for 3 hours.
A prepreg was obtained by adjusting the content (% by mass) of the resin composition so that the thickness of the insulating layer would be 100 μm when the prepreg was heated and dried for a minute to form the laminate described below.

[ワニスゲルタイム]
上述したプリプレグの作成の際に得た各ワニスの一部を試料として、170℃でのゲル
タイム(秒)を測定した。また、そのワニスの一部を25℃の条件下において7日間保存
し、保存後のゲルタイム(秒)を上記同様に測定した。結果は表2に示す。
[varnish gel time]
A gel time (second) at 170° C. was measured using a portion of each varnish obtained in the preparation of the prepreg described above as a sample. A portion of the varnish was stored at 25° C. for 7 days, and the gel time (seconds) after storage was measured in the same manner as above. Results are shown in Table 2.

[プリプレグ粘度]
上述の方法で作成したプリプレグから樹脂分を取得し、動的粘弾性測定装置(ティー・
エイ・インスツルメント社製の商品名「AR2000」)を用い、角速度1rad/s、
ジオメトリーギャップ1mmの120℃の測定条件における粘度(mPa・s)を測定し
た。また、上述したプリプレグを25℃の条件下において7日間保存し、保存後のプリプ
レグより樹脂分を取得し、せん断粘度(mPa・s)を上記同様に測定した。結果は表2
に示す。
[Prepreg viscosity]
The resin content was obtained from the prepreg prepared by the above method, and
A product name "AR2000" manufactured by A Instruments Co., Ltd.) was used, and the angular velocity was 1 rad/s,
Viscosity (mPa·s) was measured at 120° C. with a geometry gap of 1 mm. Also, the prepreg described above was stored at 25° C. for 7 days, the resin content was obtained from the prepreg after storage, and the shear viscosity (mPa·s) was measured in the same manner as described above. Table 2
shown in

Figure 2023116516000016
Figure 2023116516000016

[積層板]
得られたプリプレグ1枚の上下に、12μm厚の電解銅箔(三井金属鉱業社製の商品名
「3EC-III」)を配置し、圧力30kgf/cm、温度220℃で120分間の
積層成型を行い、絶縁層厚さ100μmの銅張積層板(保存前成型)を得た。また、得ら
れたプリプレグを25℃の条件下において7日間保存し、保存後のプリプレグ1枚を用い
て上記と同様の方法により積層成型を行い、絶縁層厚さ100μmの銅張積層板(保存後
成型)を得た。
[Laminate]
A 12 μm-thick electrolytic copper foil (trade name “3EC-III” manufactured by Mitsui Kinzoku Mining Co., Ltd.) was placed above and below one sheet of the obtained prepreg, and laminate molding was performed at a pressure of 30 kgf/cm 2 and a temperature of 220° C. for 120 minutes. was performed to obtain a copper-clad laminate (molded before storage) having an insulating layer thickness of 100 μm. In addition, the obtained prepreg was stored at 25° C. for 7 days, and one sheet of the prepreg after storage was laminated in the same manner as described above to obtain a copper-clad laminate having an insulating layer thickness of 100 μm (stored post-molding) was obtained.

〔熱膨張率〕
得られた各銅張積層板(保存前成型及び保存後成型)を全面エッチングすることにより
銅箔を除去したのち、熱機械分析装置(TAインスツルメント社製)を用いて40℃から
340℃まで毎分10℃で昇温して、60℃から120℃における面方向の線膨張係数を
測定し、得られた値を熱膨張率(ppm/degC)の評価値とした。測定方向は積層板
のガラスクロスの縦方向(Warp)を測定した。結果は表3に示す。
[Thermal expansion coefficient]
After removing the copper foil by etching the entire surface of each copper-clad laminate (pre-storage molding and post-storage molding), using a thermomechanical analyzer (manufactured by TA Instruments) from 40 ° C. to 340 ° C. The temperature was raised at a rate of 10°C per minute up to 60°C to 120°C, and the coefficient of linear expansion in the surface direction was measured. The direction of measurement was the longitudinal direction (Warp) of the glass cloth of the laminate. The results are shown in Table 3.

Figure 2023116516000017
Figure 2023116516000017

本出願は、2016年4月5日に日本国特許庁へ出願された日本特許出願(特願201
6-076144号)、及び2017年1月5日に日本国特許庁へ出願された日本特許出
願(特願2017-000666号)に基づくものであり、それらの内容はここに参照と
して取り込まれる。
This application is a Japanese patent application filed with the Japan Patent Office on April 5, 2016 (Japanese Patent Application No. 201
6-076144), and a Japanese patent application (Japanese Patent Application No. 2017-000666) filed with the Japan Patent Office on January 5, 2017, the contents of which are incorporated herein by reference.

本発明の樹脂組成物及び該樹脂組成物から得られるプリント配線板は、パーソナルコン
ピューターをはじめとする種々の電子機器や通信機の部材として好適に用いることができ
る。
The resin composition of the present invention and printed wiring boards obtained from the resin composition can be suitably used as members of various electronic devices including personal computers and communication devices.

Claims (20)

アミノ変性シリコーン(A)と、
マレイミド化合物(B)と、
カルボン酸(C)又はカルボン酸無水物(D)の少なくともいずれかと、を反応させて
得られる反応生成物(P)、を含む、
樹脂組成物。
Amino-modified silicone (A);
a maleimide compound (B);
a reaction product (P) obtained by reacting at least one of a carboxylic acid (C) or a carboxylic anhydride (D),
Resin composition.
前記樹脂組成物のアミン価が、2.0mgKOH/g以下である、請求項1に記載の樹
脂組成物。
2. The resin composition according to claim 1, wherein the resin composition has an amine value of 2.0 mgKOH/g or less.
前記反応生成物(P)は、前記カルボン酸無水物(D)を少なくとも反応させて得られ

前記カルボン酸無水物(D)は、無水マレイン酸、無水フタル酸、無水コハク酸、及び
無水酢酸からなる群より選択される一種又は二種以上である、
請求項1又は2に記載の樹脂組成物。
The reaction product (P) is obtained by reacting at least the carboxylic anhydride (D),
The carboxylic anhydride (D) is one or more selected from the group consisting of maleic anhydride, phthalic anhydride, succinic anhydride, and acetic anhydride,
The resin composition according to claim 1 or 2.
前記反応生成物(P)は、前記カルボン酸(C)を少なくとも反応させて得られ、
前記カルボン酸(C)は、マレイン酸、フタル酸、コハク酸、及び酢酸からなる群より
選択される一種又は二種以上である、
請求項1~3のいずれか一項に記載の樹脂組成物。
The reaction product (P) is obtained by reacting at least the carboxylic acid (C),
The carboxylic acid (C) is one or more selected from the group consisting of maleic acid, phthalic acid, succinic acid, and acetic acid.
The resin composition according to any one of claims 1 to 3.
熱硬化性成分(E)をさらに含む、
請求項1~4のいずれか一項に記載の樹脂組成物。
further comprising a thermosetting component (E),
The resin composition according to any one of claims 1-4.
前記熱硬化性成分(E)は、マレイミド化合物(B)、エポキシ樹脂(F)、シアン酸
エステル化合物(G)、及びアルケニル置換ナジイミド(H)からなる群より選択される
一種又は二種以上を含む、
請求項5に記載の樹脂組成物。
The thermosetting component (E) is one or more selected from the group consisting of maleimide compounds (B), epoxy resins (F), cyanate ester compounds (G), and alkenyl-substituted nadimides (H). include,
The resin composition according to claim 5.
前記反応生成物(P)における前記アミノ変性シリコーン(A)は、下記一般式(1)
で表される化合物を含む、
請求項1~6のいずれか一項に記載の樹脂組成物。
Figure 2023116516000018
(式(1)中、複数のRは、各々独立に水素原子、メチル基又はフェニル基を表し、複
数のRは、各々独立に単結合、アルキレン基又はアリール基を表し、nは、1以上の整
数を表す。)
The amino-modified silicone (A) in the reaction product (P) has the following general formula (1)
Including the compound represented by
The resin composition according to any one of claims 1-6.
Figure 2023116516000018
(In formula (1), a plurality of R a each independently represents a hydrogen atom, a methyl group or a phenyl group, a plurality of R b each independently represents a single bond, an alkylene group or an aryl group, n is represents an integer greater than or equal to 1.)
前記反応生成物(P)における前記アミノ変性シリコーン(A)のアミノ基当量が、1
30以上6000以下である、
請求項1~7のいずれか一項に記載の樹脂組成物。
The amino group equivalent of the amino-modified silicone (A) in the reaction product (P) is 1
30 or more and 6000 or less,
The resin composition according to any one of claims 1-7.
前記マレイミド化合物(B)は、ビス(4-マレイミドフェニル)メタン、2,2-ビ
ス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-
メチル-4-マレイミドフェニル)メタン、ポリテトラメチレンオキシド-ビス(4-マ
レイミドベンゾエート)、及び下記一般式(2)で表される化合物からなる群より選択さ
れる一種又は二種以上を含む、
請求項1~8のいずれか一項に記載の樹脂組成物。
Figure 2023116516000019
(式(2)中、複数のR5は、各々独立に水素原子又はメチル基を示し、n1は、1以上の
整数を示す。)
The maleimide compound (B) includes bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3-ethyl-5-
methyl-4-maleimidophenyl)methane, polytetramethylene oxide-bis(4-maleimidobenzoate), and one or more selected from the group consisting of compounds represented by the following general formula (2),
The resin composition according to any one of claims 1-8.
Figure 2023116516000019
(In formula (2), a plurality of R 5 each independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.)
充填材(J)をさらに含む、
請求項1~9のいずれか一項に記載の樹脂組成物。
further comprising a filler (J);
The resin composition according to any one of claims 1-9.
前記充填材(J)は、シリカ、アルミナ、及び窒化アルミニウムからなる群より選択さ
れる一種又は二種以上を含む、
請求項10に記載の樹脂組成物。
The filler (J) contains one or more selected from the group consisting of silica, alumina, and aluminum nitride.
The resin composition according to claim 10.
前記樹脂組成物は、前記反応生成物(P)及び熱硬化性成分(E)の合計量100質量
部に対して、前記充填材(J)を50質量部以上300質量部以下含む、
請求項10又は11に記載の樹脂組成物。
The resin composition contains 50 parts by mass or more and 300 parts by mass or less of the filler (J) with respect to the total amount of 100 parts by mass of the reaction product (P) and the thermosetting component (E).
The resin composition according to claim 10 or 11.
基材と、該基材に含浸又は塗布された請求項1~12のいずれか一項に記載の樹脂組成
物と、を有する、
プリプレグ。
Having a base material and the resin composition according to any one of claims 1 to 12 impregnated or applied to the base material,
prepreg.
前記基材は、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及
び有機繊維からなる群より選ばれる一種又は二種以上である、
請求項13に記載のプリプレグ。
The substrate is one or more selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers.
The prepreg according to claim 13.
支持体と、該支持体の表面に配された請求項1~12のいずれか一項に記載の樹脂組成
物と、を有する、
レジンシート。
Having a support and the resin composition according to any one of claims 1 to 12 disposed on the surface of the support,
resin sheet.
前記支持体は、樹脂シート又は金属箔である、
請求項15に記載のレジンシート。
The support is a resin sheet or metal foil,
The resin sheet according to claim 15.
請求項13又は14に記載のプリプレグ、及び請求項15又は16に記載のレジンシー
トからなる群より選択される一種又は二種以上を、複数備える、
積層板。
A plurality of one or more selected from the group consisting of the prepreg according to claim 13 or 14 and the resin sheet according to claim 15 or 16,
laminated board.
請求項13又は14に記載のプリプレグ、及び請求項15又は16に記載のレジンシー
トからなる群より選択される一種又は二種以上と、金属箔と、を備える、
金属箔張積層板。
One or more selected from the group consisting of the prepreg according to claim 13 or 14 and the resin sheet according to claim 15 or 16, and a metal foil,
Metal foil clad laminate.
請求項1~12のいずれか一項に記載の樹脂組成物を含む絶縁層と、該絶縁層の表面に
形成された導体層と、を備える、
プリント配線板。
An insulating layer containing the resin composition according to any one of claims 1 to 12, and a conductor layer formed on the surface of the insulating layer,
printed wiring board.
アミノ変性シリコーン(A)と、マレイミド化合物(B)と、を反応させて一次ポリマ
ーを得る第一反応工程と、
前記一次ポリマーと、カルボン酸(C)又はカルボン酸無水物(D)の少なくともいず
れかと、を反応させる第二反応工程と、を有する、
樹脂組成物の製造方法。
a first reaction step of reacting an amino-modified silicone (A) with a maleimide compound (B) to obtain a primary polymer;
a second reaction step of reacting the primary polymer with at least one of carboxylic acid (C) or carboxylic anhydride (D);
A method for producing a resin composition.
JP2023085673A 2016-04-05 2023-05-24 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board Pending JP2023116516A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016076144 2016-04-05
JP2016076144 2016-04-05
JP2017000666 2017-01-05
JP2017000666 2017-01-05
JP2018510544A JP7305349B2 (en) 2016-04-05 2017-03-27 Resin composition and its manufacturing method, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP2021140205A JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021140205A Division JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Publications (1)

Publication Number Publication Date
JP2023116516A true JP2023116516A (en) 2023-08-22

Family

ID=60000455

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018510544A Active JP7305349B2 (en) 2016-04-05 2017-03-27 Resin composition and its manufacturing method, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP2021140205A Pending JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP2023085673A Pending JP2023116516A (en) 2016-04-05 2023-05-24 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018510544A Active JP7305349B2 (en) 2016-04-05 2017-03-27 Resin composition and its manufacturing method, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP2021140205A Pending JP2022000506A (en) 2016-04-05 2021-08-30 Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board

Country Status (5)

Country Link
JP (3) JP7305349B2 (en)
KR (1) KR102376567B1 (en)
CN (1) CN108779247B (en)
TW (1) TWI730075B (en)
WO (1) WO2017175614A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443975B2 (en) * 2020-07-29 2024-03-06 味の素株式会社 resin composition
WO2023074646A1 (en) * 2021-10-27 2023-05-04 株式会社レゾナック Resin-coated metal foil, printed wiring board and manufacturing method thereof, and semiconductor package
JP7197047B1 (en) 2022-05-27 2022-12-27 三菱瓦斯化学株式会社 Resin compositions, cured products, sealing materials, adhesives, insulating materials, paints, prepregs, multilayer bodies, and fiber-reinforced composite materials
WO2024077887A1 (en) * 2022-10-11 2024-04-18 苏州生益科技有限公司 Modified bismaleimide prepolymer, resin composition, and use of resin composition

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPH06234916A (en) * 1993-02-09 1994-08-23 Central Glass Co Ltd Low-stress polyimide composition and precursor composition solution
JP3570579B2 (en) * 1995-07-11 2004-09-29 横浜ゴム株式会社 Heat resistant adhesive
JPH09176309A (en) * 1995-12-22 1997-07-08 Sumitomo Bakelite Co Ltd Thermosetting resin composition and thermosetting adhesive tape
JP4192531B2 (en) * 2002-08-28 2008-12-10 東レ株式会社 Printed circuit board and printed circuit board using the same
JP2006083307A (en) * 2004-09-16 2006-03-30 Kyocera Chemical Corp Photosensitive polyimide-siloxane and its composition
WO2008153101A1 (en) * 2007-06-15 2008-12-18 Nissan Chemical Industries, Ltd. Resin composition for forming heat-cured film
JP5024205B2 (en) 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 Prepreg and laminate
SG182739A1 (en) * 2010-01-25 2012-08-30 Mitsui Chemicals Inc Polyimide resin composition, adhesive agent and laminate each comprising same, and device
TW201204548A (en) 2010-02-05 2012-02-01 Sumitomo Bakelite Co Prepreg, laminate, printed wiring board, and semiconductor device
EP2666804A1 (en) * 2011-01-18 2013-11-27 Hitachi Chemical Co., Ltd. Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same
JP2013001807A (en) 2011-06-16 2013-01-07 Panasonic Corp Resin composition for electronic circuit board material, prepreg and laminated plate
JP3173332U (en) 2011-11-17 2012-02-02 奇▲こう▼科技股▲ふん▼有限公司 Oil-impregnated bearing fan structure
JP2013216884A (en) 2012-03-14 2013-10-24 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg and laminated plate
KR102288007B1 (en) 2015-07-06 2021-08-09 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition; prepreg or resin sheet using said resin composition; laminate plate using said prepreg or resin sheet; and printed wiring board

Also Published As

Publication number Publication date
WO2017175614A1 (en) 2017-10-12
TWI730075B (en) 2021-06-11
JP2022000506A (en) 2022-01-04
JP7305349B2 (en) 2023-07-10
CN108779247B (en) 2021-01-15
TW201807063A (en) 2018-03-01
KR102376567B1 (en) 2022-03-21
KR20180134845A (en) 2018-12-19
CN108779247A (en) 2018-11-09
JPWO2017175614A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
TWI530526B (en) Resin composition, prepreg and laminate
JP2023116516A (en) Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
TW201720849A (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
WO2017191771A1 (en) Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metallic foil laminated board, and printed wiring board
JPWO2015105109A1 (en) Insulating layer for printed wiring board and printed wiring board
TWI734690B (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP7116370B2 (en) Resin composition, prepreg, resin sheet, laminate, and printed wiring board
JP2019006869A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JPWO2017006889A1 (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
TWI769983B (en) Resin composition, prepreg and resin sheet using the resin composition, laminate and printed wiring board using the same
JP2015147869A (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board
JP7116927B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, and method for producing resin composition
WO2017006887A1 (en) Resin composition; prepreg or resin sheet using said resin composition; laminate plate using said prepreg or resin sheet; and printed wiring board
WO2019203291A1 (en) Thermosetting composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP6819019B2 (en) Resin composition, prepreg, metal foil laminated board, resin sheet, and printed wiring board
JP2018123196A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP2018044120A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP2018030974A (en) Resin composition, prepreg, metal foil-clad laminate, laminate resin sheet, resin sheet, and printed wiring board
JP2018035327A (en) Resin composition, prepreg, metal foil-clad laminate, laminate resin sheet, resin sheet, and printed wiring board
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board