WO2023074646A1 - Resin-coated metal foil, printed wiring board and manufacturing method thereof, and semiconductor package - Google Patents

Resin-coated metal foil, printed wiring board and manufacturing method thereof, and semiconductor package Download PDF

Info

Publication number
WO2023074646A1
WO2023074646A1 PCT/JP2022/039600 JP2022039600W WO2023074646A1 WO 2023074646 A1 WO2023074646 A1 WO 2023074646A1 JP 2022039600 W JP2022039600 W JP 2022039600W WO 2023074646 A1 WO2023074646 A1 WO 2023074646A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin
group
metal foil
mass
Prior art date
Application number
PCT/JP2022/039600
Other languages
French (fr)
Japanese (ja)
Inventor
香織 佐々木
圭芸 日▲高▼
淳生 染川
栞 田端
幸雄 中村
陽佳 篠崎
剛 廣瀬
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023074646A1 publication Critical patent/WO2023074646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present embodiment relates to a resin-coated metal foil, a printed wiring board and its manufacturing method, and a semiconductor package.
  • Thermosetting resins are mainly used as insulating materials for printed wiring boards.
  • Thermosetting resins are excellent in insulating properties, heat resistance, etc., but have a higher coefficient of thermal expansion than inorganic members such as semiconductor elements and circuits. may cause it to occur.
  • a method of suppressing the occurrence of warpage a method of highly filling a thermosetting resin with an inorganic filler has been performed (see, for example, Patent Document 1).
  • the inorganic filler By highly filling the inorganic filler with a small thermal expansion coefficient, it is possible to reduce the difference in thermal expansion coefficient between the insulating material containing the thermosetting resin and the inorganic member such as a semiconductor element, thereby suppressing warpage. It is possible.
  • a resin-coated metal foil having a resin layer formed using a resin composition on a metal foil is sometimes used as an insulating material for printed wiring boards.
  • the resin layer of the resin-coated metal foil is normally adjusted to a B-stage state, and forms an insulating layer by curing while embedding the circuit of the circuit board.
  • the present embodiment provides a resin-coated metal foil in which the occurrence of cracks and curls in the resin layer is suppressed, a printed wiring board using the resin-coated metal foil, a method for manufacturing the same, and a semiconductor package.
  • the task is to
  • thermosetting resin layer containing an inorganic filler; a second thermosetting resin layer containing a rubber component; and a metal foil in this order,
  • the content of the inorganic filler in the first thermosetting resin layer is 50 to 90 mass%,
  • the content of the inorganic filler in the second thermosetting resin layer is 0 to 20% by mass, Metal foil with resin.
  • the first thermosetting resin layer is a layer formed from a first thermosetting resin composition containing a thermosetting resin and an inorganic filler, The above [ 1].
  • At least one type selected from the group consisting of maleimide resins having at least one N-substituted maleimide group and derivatives thereof is a structure derived from a maleimide resin having at least two N-substituted maleimide groups;
  • the resin-coated metal foil according to [2] above which is a resin containing a structure derived from a silicone compound having a group amino group.
  • the second thermosetting resin layer is a layer formed from a second thermosetting resin composition containing a thermosetting resin and a rubber component;
  • the present embodiment it is possible to provide a resin-coated metal foil in which the occurrence of cracks and curls in the resin layer is suppressed, a printed wiring board using the resin-coated metal foil, a method for manufacturing the same, and a semiconductor package.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the notation of a numerical range “X to Y” means a numerical range that is greater than or equal to X and less than or equal to Y.
  • the description "X or more” in this specification means X and a numerical value exceeding X.
  • the description “Y or less” in this specification means Y and a numerical value less than Y.
  • the lower and upper limits of any numerical range recited herein are optionally combined with the lower or upper limits of other numerical ranges, respectively. In the numerical ranges described herein, the lower or upper limit of the numerical range may be replaced with the values shown in the examples.
  • each component and material exemplified in this specification may be used alone or in combination of two or more unless otherwise specified.
  • the content of each component in the resin composition refers to the content of the plurality of substances present in the resin composition when there are multiple substances corresponding to each component in the resin composition, unless otherwise specified. means the total amount of
  • the term "resin composition” includes a mixture of each component described below and a semi-cured product of the mixture.
  • solid content means components other than the solvent, including those that are liquid at room temperature, starch syrup, and wax.
  • room temperature means 25°C.
  • (Meth)acrylate as used herein means “acrylate” and its corresponding "methacrylate”.
  • (meth)acrylic means “acrylic” and corresponding "methacrylic”
  • (meth)acryloyl means “acryloyl” and corresponding "methacryloyl”.
  • the term "layer” in addition to the solid layer, it is not a solid layer, but is partially island-shaped, has holes, and is adjacent to the layer.
  • the “layer” also includes a mode in which the interface between is unclear.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) in this specification mean values measured in terms of polystyrene by gel permeation chromatography (GPC; Gel Permeation Chromatography). Specifically, the number average molecular weight (Mn) and weight average molecular weight (Mw) in this specification can be measured by methods described in Examples.
  • the metal foil with resin of this embodiment is a first thermosetting resin layer containing an inorganic filler; a second thermosetting resin layer containing a rubber component; and a metal foil in this order,
  • the content of the inorganic filler in the first thermosetting resin layer is 50 to 90 mass%
  • the content of the inorganic filler in the second thermosetting resin layer is 0 to 20% by mass, It is a metal foil with resin.
  • FIG. 1 shows a schematic cross-sectional view of a resin-coated metal foil 1, which is one aspect of the resin-coated metal foil of this embodiment.
  • the resin-coated metal foil 1 has a second thermosetting resin layer 3 on one surface of the metal foil 2, and the surface of the second thermosetting resin layer 3 opposite to the metal foil 2 has A first thermosetting resin layer 4 is provided.
  • a first thermosetting resin layer 4 is provided.
  • the first thermosetting resin layer is a thermosetting resin layer containing an inorganic filler.
  • the first thermosetting resin layer is usually laminated on the circuit of the circuit board and melted and cured by heating to form a cured material layer in which the circuit is embedded.
  • the fluid may flow into these holes and fill the holes.
  • thermosetting resin layer means a resin layer having thermosetting properties
  • resin layer means a layer containing a resin.
  • the content of the inorganic filler in the first thermosetting resin layer is 50 to 90% by mass.
  • the content of the inorganic filler in the first thermosetting resin layer is at least the above lower limit, excellent low thermal expansion and heat resistance can be obtained.
  • the content of the inorganic filler in the first thermosetting resin layer is equal to or less than the above upper limit value, excellent moldability and conductor adhesion can be obtained.
  • the content of the inorganic filler in the first thermosetting resin layer is not particularly limited, but is preferably 50 to 80% by mass, more preferably 50 to 75% by mass, and still more preferably 50 to 75% by mass. 70% by mass.
  • the content of the inorganic filler in the first thermosetting resin layer may be 55 to 80% by mass, may be 60 to 75% by mass, or may be 65 to 70% by mass. good too. Suitable types of inorganic fillers are described below.
  • the thickness of the first thermosetting resin layer is not particularly limited, it is preferably 4 to 100 ⁇ m, more preferably 6 to 60 ⁇ m, still more preferably 8 to 40 ⁇ m.
  • the thickness of the first thermosetting resin layer is at least the above lower limit, the circuit embedding property tends to be more favorable. Further, when the thickness of the first thermosetting resin layer is equal to or less than the above upper limit value, it tends to be preferable due to high wiring density.
  • the first thermosetting resin layer is preferably a layer formed from a first thermosetting resin composition containing a thermosetting resin and an inorganic filler.
  • first thermosetting resin composition containing a thermosetting resin and an inorganic filler.
  • thermosetting resin (A) examples include epoxy resins, phenol resins, maleimide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, Examples include silicone resins, triazine resins, melamine resins, and the like. Among these, from the viewpoint of heat resistance, maleimide resins, epoxy resins, and cyanate resins are preferred, maleimide resins and epoxy resins are more preferred, and maleimide resins are even more preferred.
  • the thermosetting resin (A) may be used alone or in combination of two or more.
  • the maleimide resin is preferably one or more selected from the group consisting of maleimide resins having one or more N-substituted maleimide groups and derivatives thereof. That is, the first thermosetting resin layer is a layer formed from a first thermosetting resin composition containing a thermosetting resin and an inorganic filler, and the first thermosetting resin composition The contained thermosetting resin is preferably one or more selected from the group consisting of maleimide resins having one or more N-substituted maleimide groups and derivatives thereof.
  • maleimide resins having one or more N-substituted maleimide groups and derivatives thereof include maleimide resins having two or more N-substituted maleimide groups (hereinafter referred to as "maleimide resin (A1)" Also referred to as), a resin containing a structure derived from a maleimide resin having two or more N-substituted maleimide groups and a structure derived from a silicone compound having a primary amino group (hereinafter referred to as "silicone-modified maleimide resin (A2)” Also referred to as) is preferable, and from the viewpoint of heat resistance and low thermal expansion, the silicone-modified maleimide resin (A2) is more preferable.
  • the silicone-modified maleimide resin (A2) is one aspect of the maleimide resin.
  • a compound represented by the following general formula (A1-1) is preferable.
  • X A11 is a divalent organic group.
  • X A11 in general formula (A1-1) above is a divalent organic group.
  • the divalent organic group represented by X A11 in the general formula (A1-1) includes, for example, a divalent group represented by the following general formula (A1-2), and a divalent group represented by the following general formula (A1-3).
  • a divalent group represented by is mentioned.
  • R A11 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • n A11 is an integer of 0 to 4. * represents a bonding site.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A11 in the general formula (A1-2) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl t-butyl group, n-pentyl group and other alkyl groups having 1 to 5 carbon atoms; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
  • n A11 in the general formula (A1-2) is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0, from the viewpoint of availability. When n A11 is an integer of 2 or more, the plurality of R A11 may be the same or different.
  • R A12 and R A13 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom;
  • X A12 is an alkylene group having 1 to 5 carbon atoms;
  • n A12 and n A13 are an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, a single bond, or a divalent group represented by the following general formula (A1-3-1). , each independently an integer from 0 to 4. * represents a binding site.
  • Examples of aliphatic hydrocarbon groups having 1 to 5 carbon atoms represented by R 12 and R 13 in general formula (A1-3) include methyl, ethyl, n-propyl, isopropyl and n-butyl. alkyl groups having 1 to 5 carbon atoms such as isobutyl group, t-butyl group and n-pentyl group; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group or an ethyl group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by X A12 in the above general formula (A1-3) include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group and a 1,4-tetramethylene group. group, 1,5-pentamethylene group, and the like.
  • the alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
  • the alkylidene group having 2 to 5 carbon atoms represented by X A12 in the general formula (A1-3) includes, for example, an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group. etc.
  • an alkylidene group having 2 to 4 carbon atoms is preferred, an alkylidene group having 2 or 3 carbon atoms is more preferred, and an isopropylidene group is even more preferred.
  • n A12 and n A13 in general formula (A1-3) are each independently an integer of 0 to 4.
  • n A12 or n A13 is an integer of 2 or more, the plurality of RA12s or the plurality of RA13s may be the same or different.
  • the divalent group represented by general formula (A1-3-1) represented by X A12 in general formula (A1-3) is as follows.
  • R A14 and R A15 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom;
  • X A13 is an alkylene group having 1 to 5 carbon atoms; an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond,
  • nA14 and nA15 are each independently an integer of 0 to 4. * represents a binding site.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A14 and R A15 in the general formula (A1-3-1) include methyl group, ethyl group, n-propyl group, isopropyl group, n C1-5 alkyl groups such as -butyl group, isobutyl group, t-butyl group and n-pentyl group; C2-5 alkenyl groups and C2-5 alkynyl groups.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
  • alkylene group having 1 to 5 carbon atoms represented by X A13 in the general formula (A1-3-1) examples include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4- A tetramethylene group, a 1,5-pentamethylene group and the like can be mentioned.
  • the alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A13 in the general formula (A1-3-1) include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentyl A lidene group and the like can be mentioned.
  • an alkylidene group having 2 to 4 carbon atoms is preferred, an alkylidene group having 2 or 3 carbon atoms is more preferred, and an isopropylidene group is even more preferred.
  • X A13 in the general formula (A1-3-1) is preferably an alkylidene group having 2 to 5 carbon atoms, more preferably an alkylidene group having 2 to 4 carbon atoms, and further an isopropylidene group. preferable.
  • n A14 and n A15 in the general formula (A1-3-1) are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, and more It is preferably 0 or 1, more preferably 0.
  • n A14 or n A15 is an integer of 2 or more, the plurality of R A14 or the plurality of R A15 may be the same or different.
  • an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, and the above general formula (A1-3-1) is preferred, an alkylene group having 1 to 5 carbon atoms is more preferred, and a methylene group is even more preferred.
  • n A16 is an integer from 0 to 10. * represents a binding site.
  • n A16 in the general formula (A1-4) is preferably an integer of 0 to 5, more preferably an integer of 0 to 4, and still more preferably an integer of 0 to 3, from the viewpoint of availability.
  • n A17 is a number from 0 to 5. * represents a binding site.
  • R A16 and R A17 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • n A18 is an integer of 1 to 8. * represents a bonding site.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R 16 and R 17 in general formula (A1-6) includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl alkyl groups having 1 to 5 carbon atoms such as isobutyl group, t-butyl group and n-pentyl group; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • n A18 in the general formula (A1-6) is an integer of 1 to 8, preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1.
  • n A18 is an integer of 2 or more, the plurality of R A16 or the plurality of R A17 may be the same or different.
  • maleimide resin (A1) examples include aromatic bismaleimide resins, aromatic polymaleimide resins, and aliphatic maleimide resins.
  • aromatic bismaleimide resin means a compound having two N-substituted maleimide groups directly bonded to an aromatic ring.
  • aromatic polymaleimide resin as used herein means a compound having 3 or more N-substituted maleimide groups directly bonded to an aromatic ring.
  • aliphatic maleimide resin as used herein means a compound having an N-substituted maleimide group directly bonded to an aliphatic hydrocarbon.
  • maleimide resin (A1) examples include N,N'-ethylenebismaleimide, N,N'-hexamethylenebismaleimide, N,N'-(1,3-phenylene)bismaleimide, N,N'- [1,3-(2-methylphenylene)]bismaleimide, N,N'-[1,3-(4-methylphenylene)]bismaleimide, N,N'-(1,4-phenylene)bismaleimide, Bis(4-maleimidophenyl)methane, bis(3-methyl-4-maleimidophenyl)methane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, bis(4-maleimide phenyl)ether, bis(4-maleimidophenyl)sulfone, bis(4-maleimidophenyl)sulfide, bis(4-maleimidophenyl)ketone, bis(4-maleimi
  • the silicone-modified maleimide resin (A2) is a resin containing a structure derived from a maleimide resin having two or more N-substituted maleimide groups and a structure derived from a silicone compound having a primary amino group.
  • the structure derived from a maleimide resin having two or more N-substituted maleimide groups includes, for example, among the N-substituted maleimide groups possessed by the maleimide resin (A1), at least one N-substituted maleimide group is a primary amino group.
  • a structure formed by a Michael addition reaction with a primary amino group of a silicone compound having The structure derived from the maleimide resin (A1) contained in the silicone-modified maleimide resin (A2) may be one type alone or two or more types.
  • the content of the structure derived from the maleimide resin (A1) in the silicone-modified maleimide resin (A2) is not particularly limited, but is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and still more preferably 20 to 40%. % by mass.
  • the content of the structure derived from the maleimide resin (A1) is at least the above lower limit, the heat resistance tends to be better.
  • the content of the structure derived from the maleimide resin (A1) is equal to or less than the above upper limit, the low thermal expansion property tends to be more favorable.
  • the primary amino group possessed by the silicone compound having a primary amino group is an N-substituted maleimide group possessed by the maleimide resin (A1) and Michael addition.
  • a structure formed by reaction can be mentioned.
  • the structure derived from the silicone compound having a primary amino group contained in the silicone-modified maleimide resin (A2) may be one type alone or two or more types.
  • the number of primary amino groups in the silicone compound having primary amino groups is preferably 1 to 4, more preferably 2 to 3, still more preferably 2.
  • the silicone compound having a primary amino group may have the primary amino group in the side chain or at the end, but preferably at the end.
  • the silicone compound having a primary amino group may have a primary amino group at one end or at both ends, preferably at both ends.
  • the silicone compound having a primary amino group is preferably a compound containing a structure represented by general formula (A2-1) below, and is a compound represented by general formula (A2-2) below. is more preferred.
  • R A21 and R A22 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a phenyl group or a substituted phenyl group. * represents a bonding site.
  • R A21 and R A22 are the same as those in the above general formula (A2-1), R A23 and R A24 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a phenyl group or a substituted phenyl group, X A21 and X A22 are each independently a divalent organic group, and n A21 is an integer of 1 to 100.
  • Examples of aliphatic hydrocarbon groups having 1 to 5 carbon atoms represented by R A21 to R A24 in general formulas (A2-1) and (A2-2) include methyl group, ethyl group, n-propyl group, C1-5 alkyl groups such as isopropyl group, n-butyl group, isobutyl group, t-butyl group and n-pentyl group; C2-5 alkenyl groups, C2-5 alkynyl groups, etc. mentioned.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • substituents possessed by the phenyl groups in the substituted phenyl groups represented by R A21 to R A24 include the aforementioned aliphatic hydrocarbon groups having 1 to 5 carbon atoms.
  • Examples of the divalent organic group represented by X A21 and X A22 include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, —O—, and a divalent linking group in which these are combined.
  • Examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms such as a methylene group, ethylene group and propylene group.
  • Examples of the alkenylene group include alkenylene groups having 2 to 10 carbon atoms.
  • Examples of the alkynylene group include alkynylene groups having 2 to 10 carbon atoms.
  • Examples of the arylene group include arylene groups having 6 to 20 carbon atoms such as phenylene group and naphthylene group.
  • X A21 and X A22 are preferably an alkylene group or an arylene group, and more preferably an alkylene group.
  • nA21 is an integer of 1-100, preferably an integer of 2-50, more preferably an integer of 3-40, and still more preferably an integer of 5-30.
  • n A21 is an integer of 2 or more
  • the plurality of RA21s or the plurality of RA22s may be the same or different.
  • the primary amino group equivalent weight of the silicone compound having a primary amino group is not particularly limited, but is preferably 200 to 1,000 g/mol, more preferably 250 to 700 g/mol, still more preferably 300 to 500 g/mol. is.
  • the content of the structure derived from the silicone compound having a primary amino group in the silicone-modified maleimide resin (A2) is not particularly limited, but is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and still more preferably. is 55 to 75% by mass.
  • the content of the structure derived from the silicone compound having a primary amino group is at least the above lower limit, the low thermal expansion property tends to be more favorable.
  • the content of the structure derived from the silicone compound having a primary amino group is equal to or less than the above upper limit, the heat resistance tends to be more favorable.
  • the silicone-modified maleimide resin (A2) preferably further contains a structure derived from an amine compound having an acidic substituent.
  • the structure derived from the amine compound having an acidic substituent contained in the silicone-modified maleimide resin (A2) may be one type alone or two or more types.
  • the amine compound having an acidic substituent is preferably a compound having an acidic substituent and a primary amino group, more preferably an aromatic compound having an acidic substituent and a primary amino group, represented by the following general formula (A2-3 ) is more preferred.
  • R A25 is a hydroxyl group, a carboxy group or a sulfonic acid group
  • R A26 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom
  • n A22 is an integer of 1 to 5
  • n A23 is an integer of 0 to 5
  • the sum of nA22 and nA23 is an integer of 1 to 5.
  • R A25 in general formula (A2-3) above is a hydroxyl group, a carboxy group or a sulfonic acid group, preferably a carboxy group.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A26 in the general formula (A2-3) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl t-butyl group, n-pentyl group and other alkyl groups having 1 to 5 carbon atoms; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • Examples of the halogen atom represented by R 1 A26 in the general formula (A2-3) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • n A22 in the general formula (A2-3) is an integer of 1 to 5, preferably an integer of 1 to 3, more preferably 1 or 2, still more preferably 1, from the viewpoint of availability.
  • n A23 in the general formula (A2-3) is an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0, from the viewpoint of availability.
  • the sum of n A22 and n A23 in the general formula (A2-3) is an integer of 1 to 5, preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably, from the viewpoint of availability. is 1.
  • Examples of amine compounds having an acidic substituent include aminophenols such as o-aminophenol, m-aminophenol and p-aminophenol; p-aminobenzoic acid, m-aminobenzoic acid and o-aminobenzoic acid. aminobenzoic acid; aminobenzenesulfonic acids such as o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid and p-aminobenzenesulfonic acid; 3,5-dihydroxyaniline, 3,5-dicarboxyaniline and the like. Among these, aminophenol, aminobenzoic acid and 3,5-dihydroxyaniline are preferable from the viewpoint of solubility and synthesis yield, and m-aminophenol and p-aminophenol are more preferable from the viewpoint of heat resistance.
  • aminophenols such as o-aminophenol, m-aminophenol and p-aminophenol
  • the content of the structure derived from the amine compound having an acidic substituent in the silicone-modified maleimide resin (A2) is not particularly limited, but is preferably 0.1 to 4% by mass, more preferably 0.5 to 2% by mass. , more preferably 0.8 to 1.5% by mass.
  • the content of the structure derived from the amine compound having an acidic substituent is at least the above lower limit, the heat resistance and conductor adhesion tend to be better.
  • the content of the structure derived from the amine compound having an acidic substituent is equal to or less than the above upper limit, the heat resistance tends to be more favorable.
  • the silicone-modified maleimide resin (A2) may contain a structure derived from a compound (C) having at least two primary amino groups in one molecule, which will be described later.
  • the silicone-modified maleimide resin (A2) can be produced, for example, by reacting the maleimide resin (A1) with a silicone compound having a primary amino group. and an amine compound having an acidic substituent are preferably reacted.
  • a suitable blending amount of each component is such that the content of the structure derived from each component in the resulting silicone-modified maleimide resin (A2) is within the above range.
  • the above reaction is preferably carried out in an organic solvent.
  • the organic solvent include the same organic solvents as those that may be contained in the first thermosetting resin composition described later.
  • propylene glycol monomethyl ether is preferred.
  • the reaction temperature for the above reaction is not particularly limited, but is preferably 50 to 160°C, more preferably 60 to 150°C, and still more preferably 70 to 140°C from the viewpoint of obtaining an appropriate reaction rate.
  • the reaction time for the above reaction is not particularly limited, but from the viewpoint of productivity, it is preferably 0.5 to 12 hours, more preferably 1 to 10 hours, and even more preferably 4 to 8 hours. However, these reaction conditions are not particularly limited and can be appropriately adjusted depending on the type of raw material used.
  • a reaction catalyst may or may not be used as necessary.
  • the content of the maleimide resin in the thermosetting resin (A) is not particularly limited, but is preferably 40 to 98% by mass, more preferably 60 to 95% by mass. % by mass, more preferably 80 to 90% by mass.
  • the content of the maleimide resin in the thermosetting resin (A) is at least the above lower limit, the heat resistance tends to be better.
  • the content of the maleimide resin in the thermosetting resin (A) is equal to or less than the above upper limit, the electrical properties tend to be more favorable.
  • the epoxy resin used as the thermosetting resin (A) is preferably an epoxy resin having two or more epoxy groups.
  • Epoxy resins are classified into glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, glycidyl ester type epoxy resins, and the like. Among these, glycidyl ether type epoxy resins are preferred.
  • Epoxy resins are classified into various epoxy resins depending on the difference in the main skeleton.
  • epoxy resins include, for example, bisphenol-based epoxy resins such as bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, and bisphenol S-type epoxy resin; Bisphenol-based novolak-type epoxy resins; novolac-type epoxy resins other than the above bisphenol-based novolac-type epoxy resins, such as phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, and biphenyl novolac-type epoxy resins; phenol aralkyl-type epoxy resins; stilbene-type epoxy resins Resin; naphthol novolac type epoxy resin, naphthol type epoxy resin, naphthol aralkyl type epoxy resin, naphthylene ether type epoxy resin, and other naphthalene skeleton-containing epoxy resins; biphenyl type epoxy resin; biphenyl aralkyl type epoxy resin; xylylene type epoxy resin
  • the epoxy group equivalent weight of the epoxy resin is not particularly limited, it is preferably 150 to 600 g/mol, more preferably 200 to 450 g/mol, still more preferably 250 to 350 g/mol.
  • the content of the epoxy resin in the thermosetting resin (A) is not particularly limited, but is preferably 2 to 60% by mass, more preferably 5 to 40% by mass. % by mass, more preferably 10 to 20% by mass.
  • the content of the epoxy resin in the thermosetting resin (A) is at least the above lower limit, moldability tends to be better.
  • the content of the epoxy resin in the thermosetting resin (A) is equal to or less than the above upper limit, the heat resistance tends to be more favorable.
  • the content of the thermosetting resin (A) in the first thermosetting resin composition is not particularly limited, but the total amount of resin components in the first thermosetting resin composition (100% by mass) , preferably 30 to 95% by mass, more preferably 50 to 90% by mass, still more preferably 70 to 85% by mass.
  • the content of the thermosetting resin (A) in the first thermosetting resin composition is at least the above lower limit, heat resistance, moldability and conductor adhesion tend to be better.
  • the content of the thermosetting resin (A) in the first thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
  • the term "resin component” means a resin and a compound that forms a resin through a curing reaction.
  • the thermosetting resin (A) corresponds to the resin component.
  • the first thermosetting resin composition contains, as an optional component, a resin or a compound that forms a resin by a curing reaction in addition to the thermosetting resin (A), these optional components are also included in the resin component.
  • Optional components corresponding to resin components include compounds (C) having at least two primary amino groups in one molecule, styrene elastomers (D), polyamide resins (E), curing accelerators (F ) and the like.
  • the total content of the resin components in the first thermosetting resin composition is not particularly limited, but the total solid content (100% by mass) of the first thermosetting resin composition is preferably 20 to 45% by mass, more preferably 25 to 40% by mass, still more preferably 30 to 35% by mass.
  • the content of the resin component in the first thermosetting resin composition is at least the above lower limit, heat resistance, moldability and conductor adhesion tend to be better.
  • the content of the resin component in the first thermosetting resin composition is equal to or less than the above upper limit, the low thermal expansion tends to be more favorable.
  • thermosetting resin composition contains an inorganic filler (B).
  • the inorganic filler (B) may be used alone or in combination of two or more.
  • Examples of the inorganic filler (B) include silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, silicon aluminum oxide, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay, talc, aluminum borate, silicon carbide and the like.
  • silica, alumina, mica, and talc are preferred, silica and alumina are more preferred, and silica is even more preferred, from the viewpoints of low thermal expansion, heat resistance, and flame retardancy.
  • Silica includes, for example, precipitated silica that is produced by a wet method and has a high water content, and dry-process silica that is produced by a dry method and contains almost no bound water.
  • dry process silica include crushed silica, fumed silica, fused silica, etc., depending on the production method.
  • the average particle size of the inorganic filler (B) is not particularly limited, it is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, from the viewpoint of the dispersibility and fine wiring properties of the inorganic filler (B). , more preferably 0.2 to 1 ⁇ m, particularly preferably 0.3 to 0.8 ⁇ m.
  • the average particle size is the particle size at the point corresponding to 50% volume when the cumulative frequency distribution curve of the particle size is obtained with the total volume of the particles being 100%.
  • the average particle size of the inorganic filler (B) can be measured, for example, with a particle size distribution analyzer using a laser diffraction scattering method.
  • Examples of the shape of the inorganic filler (B) include a spherical shape and a crushed shape, and a spherical shape is preferred.
  • a coupling agent may be used in the first thermosetting resin composition for the purpose of improving the dispersibility of the inorganic filler (B) and the adhesion with the organic component.
  • Examples of coupling agents include silane coupling agents and titanate coupling agents. Among these, silane coupling agents are preferred.
  • Silane coupling agents include, for example, aminosilane coupling agents, vinylsilane coupling agents, and epoxysilane coupling agents.
  • the surface treatment method for the inorganic filler (B) is to mix the inorganic filler (B) in the resin composition and then add the coupling agent.
  • an integral blend treatment method may be used, a method in which the inorganic filler (B) is surface-treated in advance with a coupling agent in a dry or wet manner is preferable.
  • the inorganic filler (B) may be previously dispersed in an organic solvent to form a slurry, and then mixed with other components.
  • the content of the inorganic filler (B) in the first thermosetting resin composition is such that the content of the inorganic filler (B) in the first thermosetting resin layer is within the range described above. .
  • the first thermosetting resin composition preferably further contains a compound (C) having at least two primary amino groups in one molecule (hereinafter also referred to as "diamine compound (C)").
  • the diamine compound (C) may be used as a raw material for the silicone-modified maleimide resin (A2).
  • a diamine compound (C) may be used individually by 1 type, and may use 2 or more types together.
  • a compound represented by the following general formula (C-1) is preferable as the diamine compound (C).
  • X C1 is a divalent organic group.
  • X C1 in general formula (C-1) above is preferably a divalent group represented by general formula (C-2) below.
  • R C1 and R C2 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom.
  • X C2 is 1 carbon atom; -5 alkylene group, C2-5 alkylidene group, ether group, sulfide group, sulfonyl group, carbonyloxy group, keto group, fluorenylene group, single bond, or general formula (C-2-1) below or below It is a divalent group represented by the general formula (C-2-2).
  • n C1 and n C2 are each independently an integer of 0 to 4. * represents a binding site.
  • R C3 and R C4 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom;
  • X C3 is an alkylene group having 1 to 5 carbon atoms; an alkylidene group, a m-phenylenediisopropylidene group, a p-phenylenediisopropylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond,
  • nC3 and nC4 are each independently , an integer from 0 to 4. * represents a binding site.
  • R C5 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom; X C4 and X C5 each independently represent an alkylene group having 1 to 5 carbon atoms; is an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, or a single bond.n C5 is an integer of 0 to 4. * represents a bonding site.
  • 1 to 5 aliphatic hydrocarbon groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group and the like. to 5 alkyl groups; alkenyl groups having 2 to 5 carbon atoms; and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group or an ethyl group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
  • the number of carbon atoms represented by X C2 in the general formula (C-2), X C3 in the general formula (C-2-1), and X C4 and X C5 in the general formula (C-2-2) is 1
  • the alkylene group of 1 to 5 include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like.
  • the alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
  • alkylidene groups of 2 to 5 include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group and the like.
  • the alkylidene group having 2 to 5 carbon atoms is preferably an alkylidene group having 2 to 4 carbon atoms, more preferably an alkylidene group having 2 or 3 carbon atoms, and still more preferably an isopropylidene group.
  • n C1 and n C2 in the general formula (C-2) are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 3, more preferably It is an integer from 0 to 2, more preferably 0 or 2.
  • n C1 or n C2 is an integer of 2 or more, the plurality of R C1 or the plurality of R C2 may be the same or different.
  • n C3 and n C4 in the general formula (C-2-1) are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, and more It is preferably 0 or 1, more preferably 0.
  • n C3 or n C4 is an integer of 2 or more, the plurality of R C3s or the plurality of R C4s may be the same or different.
  • n C5 in the general formula (C-2-2) is an integer of 0 to 4, and from the viewpoint of availability, preferably an integer of 0 to 2, more preferably 0 or 1, more preferably 0 is.
  • n C5 is an integer of 2 or more, the plurality of R C5 may be the same or different.
  • diamine compound (C) examples include aliphatic diamine compounds and aromatic diamine compounds, among which aromatic diamine compounds are preferred from the viewpoint of heat resistance.
  • aliphatic diamine compound means a compound having two amino groups directly bonded to an aliphatic hydrocarbon
  • aromatic diamine compound means a compound that directly binds to an aromatic hydrocarbon. It means a compound having two binding amino groups.
  • aromatic diamine compounds examples include 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4,4 '-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4 '-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 3,3'- dimethyl-5,5′-diethyl-4,4′-di
  • the diamine compound (C) is 4,4′-diaminodiphenylmethane, 3,3′-dimethyl, and is excellent in solubility in organic solvents, reactivity, heat resistance, dielectric properties and low water absorption.
  • the content of the diamine compound (C) in the first thermosetting resin composition is not particularly limited. It is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, still more preferably 3 to 7% by mass, relative to the total amount (100% by mass) of the resin components in the curable resin composition.
  • the content of the diamine compound (C) in the first thermosetting resin composition is at least the above lower limit, the heat resistance tends to be better.
  • the content of the diamine compound (C) in the first thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
  • the first thermosetting resin composition preferably further contains a styrene elastomer (D).
  • the styrene-based elastomer (D) may be used alone or in combination of two or more.
  • styrene-based elastomer (D) one having a structural unit derived from a styrene-based compound represented by the following general formula (D-1) is preferable.
  • R D1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R D2 is an alkyl group having 1 to 5 carbon atoms
  • n D1 is an integer of 0 to 5.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R D1 and R D2 in the general formula (D-1) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl. group, t-butyl group, n-pentyl group and the like.
  • Alkyl groups having 1 to 5 carbon atoms may be linear or branched. Among these, an alkyl group having 1 to 3 carbon atoms is preferred, an alkyl group having 1 or 2 carbon atoms is more preferred, and a methyl group is even more preferred.
  • n D1 in the general formula (D-1) is an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0.
  • the styrene-based elastomer (D) may contain structural units other than structural units derived from styrene-based compounds.
  • Structural units other than the styrene-based compound-derived structural units possessed by the styrene-based elastomer (D) include, for example, butadiene-derived structural units, isoprene-derived structural units, maleic acid-derived structural units, and maleic anhydride-derived structural units. etc.
  • the butadiene-derived structural unit and the isoprene-derived structural unit may be hydrogenated. When hydrogenated, structural units derived from butadiene become structural units in which ethylene units and butylene units are mixed, and structural units derived from isoprene become structural units in which ethylene units and propylene units are mixed.
  • Examples of the styrene elastomer (D) include hydrogenated styrene-butadiene-styrene block copolymers, hydrogenated styrene-isoprene-styrene block copolymers, styrene-maleic anhydride copolymers, and the like. be done. Hydrogenated products of styrene-butadiene-styrene block copolymers are SEBS obtained by completely hydrogenating the carbon-carbon double bonds in the butadiene block, and SBBS obtained by partially hydrogenating a heavy bond can be mentioned.
  • complete hydrogenation in SEBS usually means that the hydrogenation rate of the entire carbon-carbon double bond is 90% or more, may be 95% or more, or may be 99% or more. It may be 100%.
  • the partial hydrogenation rate in SBBS is, for example, 60 to 85% with respect to the entire carbon-carbon double bond.
  • a hydrogenated styrene-isoprene-styrene block copolymer is obtained as SEPS by hydrogenating the polyisoprene portion.
  • SEBS and SEPS are preferred, and SEBS is more preferred, from the viewpoint of dielectric properties, conductor adhesion, heat resistance, glass transition temperature and low thermal expansion.
  • the content of structural units derived from styrene is not particularly limited, but is preferably 5 to 60 mol%, more preferably 10 to 50 mol%. , more preferably 20 to 40 mol %.
  • Examples of commercially available styrene elastomers (D) include Tuftec (registered trademark) H series and M series manufactured by Asahi Kasei Corporation, Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and Kraton manufactured by Kraton Polymer Japan Co., Ltd. (registered trademark) G polymer series and the like.
  • the styrene elastomer (D) may be acid-modified with maleic anhydride or the like.
  • the acid value of the acid-modified styrene elastomer (D) is not particularly limited, but is preferably 2 to 20 mg CH 3 ONa/g, more preferably 5 to 15 mg CH 3 ONa/g, and still more preferably 7 to 13 mg CH 3 ONa/g. is g.
  • the number average molecular weight (Mn) of the styrene elastomer (D) is not particularly limited, but is preferably 10,000 to 500,000, more preferably 30,000 to 350,000, still more preferably 50,000 to 100, 000.
  • the content of the styrene-based elastomer (D) in the first thermosetting resin composition is not particularly limited. With respect to the total amount (100% by mass) of the resin components in the thermosetting resin composition, preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, more preferably 3 to 7% by mass. be. When the content of the styrene-based elastomer (D) in the first thermosetting resin composition is at least the above lower limit, the dielectric properties tend to be better. Moreover, when the content of the styrene-based elastomer (D) in the first thermosetting resin composition is equal to or less than the above upper limit, there is a tendency to favorably adjust the balance of various properties.
  • the first thermosetting resin composition preferably further contains a polyamide resin (E).
  • the polyamide resin (E) may be used alone or in combination of two or more.
  • the polyamide resin (E) is preferably a polyamide resin containing a polybutadiene skeleton, a structural unit represented by the following general formula (E-1), a structural unit represented by the following general formula (E-2) and the following general A polyamide resin containing a structural unit represented by formula (E-3) (hereinafter also referred to as “modified polyamide resin”) is more preferred.
  • n E7 is an integer of 1 or 2.
  • R E1 , R E2 and R E3 each independently represent a divalent diamine obtained by removing two amino groups from an aromatic diamine compound or an aliphatic diamine compound.
  • R E4 is a divalent group obtained by removing two carboxy groups from an aromatic dicarboxylic acid compound, an aliphatic dicarboxylic acid compound, or an oligomer having carboxy groups at both ends.
  • aromatic dicarboxylic acid compound means a compound having two carboxyl groups directly bonded to an aromatic hydrocarbon
  • aliphatic dicarboxylic acid compound means an aliphatic hydrocarbon. means a compound having two carboxyl groups directly bonded to
  • the modified polyamide resin includes, for example, a diamine compound that is an aromatic diamine compound or an aliphatic diamine compound, an aromatic dicarboxylic acid compound, an aliphatic dicarboxylic acid compound, or a dicarboxylic acid compound that is an oligomer having carboxy groups at both ends, and phenol and a polybutadiene having carboxyl groups at both ends are reacted with each other to polycondense the carboxyl groups and amino groups of each component.
  • these raw material components may be used individually by 1 type, and may use 2 or more types together about each.
  • aromatic diamine compounds include diaminobenzene, diaminotoluene, diaminophenol, diaminodimethylbenzene, diaminomesitylene, diaminonitrobenzene, diaminodiazobenzene, diaminonaphthalene, diaminobiphenyl, diaminodimethoxybiphenyl, diaminodiphenyl ether, diaminodimethyldiphenyl ether, Methylenebis (dimethylaniline), Methylenebis (methoxyaniline), Methylenebis (dimethoxyaniline), Methylenebis (ethylaniline), Methylenebis (diethylaniline), Methylenebis (ethoxyaniline), Methylenebis (diethoxyaniline), Isopropylidenedianiline, Diaminobenzophenone , diaminodimethylbenzophenone, diaminoanthraquinone, diaminodiphenylthioether, di
  • aliphatic diamine compounds examples include methylenediamine, ethylenediamine, propanediamine, hydroxypropanediamine, butanediamine, heptanediamine, hexanediamine, diaminodiethylamine, diaminopropylamine, cyclopentanediamine, cyclohexanediamine, azapentanediamine, tri zaunde diamine and the like.
  • aromatic dicarboxylic acid compounds include phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, methylene dibenzoic acid, thiodibenzoic acid, carbonyl dibenzoic acid, sulfonylbenzoic acid, and naphthalenedicarboxylic acid. .
  • Examples of the aliphatic dicarboxylic acid compounds include oxalic acid, malonic acid, methylmalonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, malic acid, tartaric acid, (meth)acryloyloxysuccinic acid, di (Meth)acryloyloxysuccinic acid, (meth)acryloyloxymalic acid, (meth)acrylamidosuccinic acid, (meth)acrylamidomalic acid and the like.
  • phenolic hydroxyl group-containing dicarboxylic acid compounds examples include hydroxyisophthalic acid, hydroxyphthalic acid, hydroxyterephthalic acid, dihydroxyisophthalic acid, and dihydroxyterephthalic acid.
  • the number average molecular weight (Mn) of the polyamide resin (E) is preferably 20,000 to 30,000, more preferably 22,000 to 29,000, from the viewpoint of solvent solubility and film thickness retention after lamination. , more preferably 24,000 to 28,000. From the same viewpoint, the weight average molecular weight (Mw) of the polyamide resin (E) is preferably 100,000 to 140,000, more preferably 103,000 to 130,000, still more preferably 105,000 to 120,000. is.
  • a commercially available product may be used as the polyamide resin (E).
  • Examples of commercially available polyamide resins (E) include polyamide resins “BPAM-01” and “BPAM-155” (both trade names) manufactured by Nippon Kayaku Co., Ltd., and the like.
  • the content of the polyamide resin (E) in the first thermosetting resin composition is not particularly limited. It is preferably 1 to 30% by mass, more preferably 4 to 20% by mass, still more preferably 7 to 15% by mass, relative to the total amount (100% by mass) of the resin components in the curable resin composition.
  • the content of the polyamide resin (E) in the first thermosetting resin composition is at least the above lower limit, the conductor adhesion tends to be better.
  • the content of the polyamide resin (E) in the first thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
  • the first thermosetting resin composition preferably further contains a curing accelerator (F).
  • the curing accelerator (F) may be used alone or in combination of two or more.
  • curing accelerator (F) examples include acidic catalysts such as p-toluenesulfonic acid; amine compounds such as triethylamine, pyridine, tributylamine and dicyandiamide; methylimidazole, phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1 -Imidazole compounds such as cyanoethyl-2-phenylimidazolium trimellitate; isocyanate mask imidazole compounds such as addition reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole; quaternary ammonium compounds; Dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, 2,5-dimethyl-2,5-bis(t-butylperoxy) organic peroxides such as hexane, t-butylperoxyisopropyl
  • the content of the curing accelerator (F) in the first thermosetting resin composition is not particularly limited, but thermosetting It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, still more preferably 0.4 to 1 part by mass with respect to 100 parts by mass of the resin (A).
  • thermosetting It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, still more preferably 0.4 to 1 part by mass with respect to 100 parts by mass of the resin (A).
  • the content of the curing accelerator (F) in the first thermosetting resin composition is at least the above lower limit, curability tends to be better.
  • the content of the curing accelerator (F) in the first thermosetting resin composition is equal to or less than the above upper limit, the storage stability tends to be better.
  • the first thermosetting resin composition may be a varnish-like resin composition containing an organic solvent from the viewpoint of ease of handling.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • organic solvents examples include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene, xylene and mesitylene; nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfur atom-containing solvents such as dimethylsulfoxide; ester solvents such as ⁇ -butyrolactone, etc. mentioned.
  • alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether
  • ketone solvents such as acetone, methyl ethy
  • ketone solvents are more preferred, and methyl ethyl ketone is even more preferred.
  • the solid content concentration of the first thermosetting resin composition is not particularly limited, but from the viewpoint of coatability, preferably 40 to 90% by mass. , more preferably 50 to 80% by mass, more preferably 60 to 70% by mass.
  • the first thermosetting resin composition further contains a resin material other than the above components, a flame retardant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, and a lubricant. and one or more optional components selected from the group consisting of additives other than these.
  • a resin material other than the above components a flame retardant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, and a lubricant.
  • one or more optional components selected from the group consisting of additives other than these Each of the above optional components may be used alone or in combination of two or more.
  • the content of the above optional component in the first thermosetting resin composition is not particularly limited, and may be used as necessary within a range that does not impair the effects of the present embodiment.
  • the first thermosetting resin composition may be free of the above optional components depending on the desired performance.
  • the first thermosetting resin composition can be produced by mixing the above components.
  • each component When mixing each component, each component may be dissolved or dispersed while stirring.
  • Conditions such as the order of mixing raw materials, mixing temperature, and mixing time are not particularly limited, and may be arbitrarily set according to the type of raw materials.
  • the second thermosetting resin layer is a thermosetting resin layer containing a rubber component.
  • the term "rubber component” means a crosslinked elastomer or a crosslinkable elastomer.
  • the rubber component contained in the second thermosetting resin layer may exist in a form reacted with other components.
  • the content of the inorganic filler in the second thermosetting resin layer is 0 to 20% by mass.
  • the content of the inorganic filler in the second thermosetting resin layer is equal to or less than the above upper limit, cracks in the resin layer and curling of the resin-coated metal foil can be sufficiently suppressed.
  • the content of the inorganic filler in the second thermosetting resin layer is not particularly limited, but is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and still more preferably It is 0 to 1% by mass.
  • Examples of the inorganic filler include the same inorganic filler (B) as described above.
  • the thickness of the second thermosetting resin layer is not particularly limited, but is preferably 0.5 to 10 ⁇ m, more preferably 0.5 to 10 ⁇ m, from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. It is 1 to 7 ⁇ m, more preferably 1.5 to 4 ⁇ m.
  • the second thermosetting resin layer is preferably a layer formed from a second thermosetting resin composition containing a thermosetting resin and a rubber component.
  • thermosetting resin (a) the thermosetting resin contained in the second thermosetting resin composition
  • rubber component (b) the rubber component contained in the second thermosetting resin composition
  • thermosetting resins (a) examples include epoxy resins, phenol resins, maleimide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, Examples include silicone resins, triazine resins, melamine resins, and the like. Among these, from the viewpoint of heat resistance, maleimide resins, epoxy resins and cyanate resins are preferred, maleimide resins and epoxy resins are more preferred, and epoxy resins are even more preferred.
  • the thermosetting resin (a) may be used alone or in combination of two or more.
  • the epoxy resin used as the thermosetting resin (a) is preferably an epoxy resin having two or more epoxy groups.
  • Epoxy resins are classified into glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, glycidyl ester type epoxy resins, and the like. Among these, glycidyl ether type epoxy resins are preferred.
  • Epoxy resins are classified into various epoxy resins depending on the difference in the main skeleton.
  • epoxy resins include, for example, bisphenol-based epoxy resins such as bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, and bisphenol S-type epoxy resin; Bisphenol-based novolak-type epoxy resins; novolac-type epoxy resins other than the above bisphenol-based novolac-type epoxy resins, such as phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, and biphenyl novolac-type epoxy resins; phenol aralkyl-type epoxy resins; stilbene-type epoxy resins Resin; naphthol novolac type epoxy resin, naphthol type epoxy resin, naphthol aralkyl type epoxy resin, naphthylene ether type epoxy resin, and other naphthalene skeleton-containing epoxy resins; biphenyl type epoxy resin; biphenyl aralkyl type epoxy resin; xylylene type epoxy resin
  • the epoxy group equivalent weight of the epoxy resin is not particularly limited, it is preferably 150 to 600 g/mol, more preferably 200 to 450 g/mol, still more preferably 250 to 350 g/mol.
  • the content of the epoxy resin in the thermosetting resin (a) is not particularly limited, but is preferably 80 to 100% by mass, more preferably 90 to 100%. % by mass, more preferably 95 to 100% by mass.
  • the content of the epoxy resin in the thermosetting resin (a) is within the above range, heat resistance and moldability tend to be better.
  • the content of the thermosetting resin (a) in the second thermosetting resin composition is not particularly limited, but the total amount of resin components in the second thermosetting resin composition (100% by mass) , preferably 30 to 80% by mass, more preferably 40 to 75% by mass, still more preferably 50 to 70% by mass.
  • the content of the thermosetting resin (a) in the second thermosetting resin composition is at least the above lower limit, heat resistance and moldability tend to be better.
  • the content of the thermosetting resin (a) in the second thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
  • the total content of the resin components in the second thermosetting resin composition is not particularly limited, but from the viewpoint of heat resistance, the total solid content (100% by mass) of the second thermosetting resin composition , preferably 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 99 to 100% by mass.
  • the thermosetting resin (a) and the rubber component (b) correspond to the resin component.
  • Optional components corresponding to the resin component include a curing agent (c), a thermoplastic resin (d), a curing accelerator (e), and the like, which will be described later.
  • Examples of the rubber component (b) include crosslinked rubber particles and liquid rubber. Among these, crosslinked rubber particles are preferable from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil.
  • Examples of crosslinked rubber particles include butadiene rubber particles, isoprene rubber particles, chloroprene rubber particles, styrene rubber particles, acrylic rubber particles, silicone rubber particles, natural rubber particles, styrene-butadiene rubber particles, acrylonitrile-butadiene rubber particles, and carboxylic acid-modified rubber particles. Examples include acrylonitrile-butadiene rubber particles and core-shell type rubber particles.
  • acrylonitrile-butadiene rubber particles and carboxylic acid-modified acrylonitrile-butadiene rubber particles are preferred, and carboxylic acid-modified acrylonitrile-butadiene rubber particles are more preferred.
  • the rubber component (b) may be used alone or in combination of two or more.
  • Acrylonitrile-butadiene rubber particles are particles obtained by partially cross-linking acrylonitrile and butadiene during copolymerization. Moreover, carboxylic acid-modified acrylonitrile-butadiene rubber particles can be obtained by copolymerizing carboxylic acids such as acrylic acid and methacrylic acid together.
  • the average primary particle diameter (D 50 ) of the crosslinked rubber particles is not particularly limited, but is preferably 50 to 1,000 nm from the viewpoint of more easily suppressing cracks in the resin layer and curling of the resin-coated metal foil.
  • the average primary particle size (D 50 ) of the crosslinked rubber particles can be obtained by measuring with a laser diffraction particle size distribution meter.
  • the content of the rubber component (b) in the second thermosetting resin composition is not particularly limited. It is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, still more preferably 3 to 7% by mass.
  • the content of the rubber component (b) in the second thermosetting resin composition is at least the above lower limit, cracks in the resin layer and curling of the resin-coated metal foil tend to be more easily suppressed.
  • the content of the rubber component (b) in the second thermosetting resin composition is equal to or less than the above upper limit, the heat resistance tends to be better.
  • the second thermosetting resin composition may further contain a curing agent (c).
  • a curing agent e.g., an epoxy resin is contained as the thermosetting resin (a)
  • an epoxy resin curing agent e.g., an epoxy resin curing agent for a thermosetting resin (a)
  • an epoxy resin curing agent e.g., an epoxy resin curing agent
  • epoxy resin curing agents examples include amine curing agents, phenolic resin curing agents, acid anhydride curing agents, and the like. Among these, phenolic resin curing agents are preferred.
  • phenolic resin curing agents are preferred.
  • a novolak-type phenolic resin is preferred.
  • the novolak-type phenolic resin may be a phenol having no substituents other than hydroxyl groups that has been novolacified, or a phenol having substituents other than hydroxyl groups such as cresol and the like that has been novolakified.
  • the novolac-type phenolic resin may be a triazine ring-containing novolak-type phenolic resin containing a triazine ring in the main chain.
  • the nitrogen content in the triazine ring-containing novolac-type phenolic resin is not particularly limited, but from the viewpoint of dielectric properties and solvent solubility, it is preferably 10 to 25% by mass, more preferably 11 to 22% by mass, and still more preferably 12% by mass. ⁇ 19% by mass.
  • the phenolic hydroxyl group equivalent of the phenolic resin-based curing agent is not particularly limited, but is preferably 100 to 300 g/mol, more preferably 120 to 200 g/mol, and still more preferably 140 to 170 g/mol.
  • the content of the curing agent (c) in the second thermosetting resin composition is not particularly limited, but the thermosetting resin (a) is preferably 5 to 100 parts by mass, more preferably 10 to 70 parts by mass, and still more preferably 20 to 40 parts by mass based on 100 parts by mass.
  • the content of the curing agent (c) in the second thermosetting resin composition is within the above range, the heat resistance tends to be better.
  • thermoplastic resin (d) The second thermosetting resin composition preferably further contains a thermoplastic resin (d).
  • the thermoplastic resin (d) may be used alone or in combination of two or more.
  • thermoplastic resins (d) examples include polyethylene resins, polypropylene resins, polybutadiene resins, polystyrene resins, polyphenylene ether resins, polycarbonate resins, polyester resins, polyamide resins, polyvinyl acetal resins, and copolymerization of monomers constituting these resins. A coalescence etc. are mentioned. Among these, polyvinyl acetal resin is preferable.
  • the polyvinyl acetal resin may be a polyvinyl acetal resin having a carboxy group modified with a carboxylic acid.
  • the polymerization degree of the polyvinyl acetal resin is preferably 1,000 to 2,500 from the viewpoint of heat resistance.
  • the degree of polymerization of polyvinyl acetal resin can be calculated from the number average molecular weight (Mn) of polyvinyl acetate as a raw material.
  • the content of the thermoplastic resin (d) in the second thermosetting resin composition is not particularly limited. It is preferably 1 to 30% by mass, more preferably 3 to 20% by mass, and still more preferably 7 to 15% by mass relative to the total amount (100% by mass) of the resin components in the thermosetting resin composition.
  • the content of the thermoplastic resin (d) in the second thermosetting resin composition is at least the above lower limit, cracks in the resin layer and curling of the resin-coated metal foil tend to be more easily suppressed.
  • the content of the thermoplastic resin (d) in the second thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
  • the second thermosetting resin composition preferably further contains a curing accelerator (e).
  • the curing accelerator (e) may be used alone or in combination of two or more.
  • curing accelerator (e) examples include acidic catalysts such as p-toluenesulfonic acid; amine compounds such as triethylamine, pyridine, tributylamine and dicyandiamide; methylimidazole, phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1 -Imidazole compounds such as cyanoethyl-2-phenylimidazolium trimellitate; isocyanate mask imidazole compounds such as addition reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole; quaternary ammonium compounds; Dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, 2,5-dimethyl-2,5-bis(t-butylperoxy) organic peroxides such as hexane, t-butylperoxyisopropyl
  • the content of the curing accelerator (e) in the second thermosetting resin composition is not particularly limited. It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, still more preferably 0.3 to 1 part by mass, based on 100 parts by mass of the flexible resin (a).
  • the content of the curing accelerator (e) in the second thermosetting resin composition is at least the above lower limit, curability tends to be better.
  • the content of the curing accelerator (e) in the second thermosetting resin composition is equal to or less than the above upper limit, the storage stability tends to be better.
  • the second thermosetting resin composition may be a varnish-like resin composition containing an organic solvent from the viewpoint of ease of handling.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together. Examples of the organic solvent include the same organic solvent as the organic solvent that may be contained in the first thermosetting resin composition, and preferred aspects of the type and amount used are also the same.
  • the second thermosetting resin composition further contains a resin material other than the above components, a flame retardant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, and a lubricant. and one or more optional components selected from the group consisting of additives other than these.
  • a resin material other than the above components a flame retardant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, and a lubricant.
  • one or more optional components selected from the group consisting of additives other than these Each of the above optional components may be used alone or in combination of two or more.
  • the content of the above-described optional components in the second thermosetting resin composition is not particularly limited, and may be used as necessary within a range that does not impair the effects of the present embodiment.
  • the second thermosetting resin composition may be free of the above optional components depending on the desired performance.
  • the second thermosetting resin composition can be produced by mixing the above components.
  • each component When mixing each component, each component may be dissolved or dispersed while stirring.
  • Conditions such as the order of mixing raw materials, mixing temperature, and mixing time are not particularly limited, and may be arbitrarily set according to the type of raw materials.
  • the cured product of the second thermosetting resin layer has a storage elastic modulus E′ at 25° C. (hereinafter also referred to as “25° C. storage elastic modulus E′(i)”), although not particularly limited, it is preferably 1.2 to 4.0 GPa, more preferably 1.5 to 3.5 GPa, still more preferably 1.5 to 3.5 GPa, from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. 2.0 to 3.0 GPa.
  • the cured product of the second thermosetting resin layer has a storage elastic modulus E′ at 150° C.
  • 150° C. storage elastic modulus E′(i) (hereinafter also referred to as “150° C. storage elastic modulus E′(i)”) of Although it is not particularly limited, it is preferably 0.1 to 1.0 GPa, more preferably 0.3 to 0.8 GPa, and still more preferably from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. 0.4 to 0.6 GPa.
  • the 25°C storage modulus E'(i) and the 150°C storage modulus E'(i) can be measured by the method described in Examples.
  • the cured product of the resin layer composed of the second thermosetting resin layer and the first thermosetting resin layer has a storage elastic modulus E' at 25 ° C. (hereinafter referred to as "25 ° C. storage
  • the elastic modulus E′(ii)”) is not particularly limited, but from the viewpoint of forming an insulating layer having an appropriate mechanical strength, it is preferably 4.0 to 9.0 GPa, more preferably 5.0 to 8.0 GPa, more preferably 6.0 to 7.0 GPa.
  • the cured product of the resin layer composed of the second thermosetting resin layer and the first thermosetting resin layer has a storage elastic modulus E' at 150 ° C.
  • 150 ° C. storage Elastic modulus E′(ii) is not particularly limited, but is preferably 2.0 to 7.0 GPa, more preferably 3.0 to 7.0 GPa, from the viewpoint of forming an insulating layer having appropriate mechanical strength. 6.0 GPa, more preferably 4.0 to 5.0 GPa.
  • the 25°C storage modulus E'(ii) and the 150°C storage modulus E'(ii) can be measured by the method described in Examples.
  • the difference between the 25° C. storage modulus E′(ii) and the 25° C. storage modulus E′(i) [25° C. storage modulus E′(ii) ⁇ 25° C. storage modulus E′(i)] is particularly although not limited, it is preferably 2.0 to 7.0 GPa, more preferably 3.0 to 6.0 GPa, still more preferably 4 from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. .0 to 5.0 GPa.
  • E′(i) is particularly Although not limited, it is preferably 2.0 to 7.0 GPa, more preferably 3.0 to 6.0 GPa, still more preferably 4 from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. .0 to 5.0 GPa.
  • metal foil examples include copper foil, tin foil, tin-lead alloy foil, and nickel foil. Among these, copper foil is preferable.
  • the copper foil preferably has a copper content of 95% by mass or more.
  • the metal foil conforms to JIS standards (electrolytic copper foil for printed wiring boards: JIS C6512, rolled copper foil for printed wiring boards: JIS C6513) or IPC standards (IPC 4562 standards Grades 1, 2, and 3). , is preferable from the viewpoint of use in semiconductor packages.
  • the surface of the metal foil on which the resin layer is to be formed may be roughened from the viewpoint of adhesion.
  • the roughening treatment can be applied by forming roughening particles on the surface of the metal foil.
  • roughening particles for example, electrodeposited particles made of a single substance selected from copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt and zinc, or alloys containing one or more of these Electrodeposited grains are preferred.
  • the roughening particles may be used singly or in combination of two or more.
  • the metal foil is subjected to, for example, a single substance selected from nickel, cobalt, copper and zinc, an alloy containing one or more of these, and the like to remove secondary particles, tertiary particles, and A rust layer, a heat-resistant layer, or the like may be formed.
  • the surface may be subjected to surface treatment such as chromate treatment or silane coupling treatment.
  • the thickness of the metal foil is not particularly limited and may be appropriately adjusted depending on the application of the metal foil with resin, but is preferably 0.1 to 35 ⁇ m, more preferably 0.3 to 15 ⁇ m, and still more preferably 0.1 ⁇ m. 5 to 5 ⁇ m.
  • the thickness of the metal foil is equal to or greater than the above lower limit, the handleability of the resin-coated metal foil tends to be further improved.
  • the thickness of the metal foil is equal to or greater than the above lower limit, it tends to be more suitable for increasing the wiring density. Note that the thickness of the metal foil described above does not include the thickness of the carrier foil, which will be described later.
  • a carrier foil may be provided on the metal foil.
  • the carrier foil corresponds to a support that is provided as necessary in order to improve handleability when the thickness of the metal foil is thin. Therefore, the carrier foil is removed during the manufacturing process of the printed wiring board.
  • Examples of carrier foil include copper foil, aluminum foil, and nickel foil. Among these, copper foil is preferable.
  • the thickness of the carrier foil is preferably 5 to 50 ⁇ m, more preferably 7 to 35 ⁇ m, still more preferably 10 to 25 ⁇ m, from the viewpoints of improving the handleability of the resin-coated metal foil and from the viewpoint of production cost.
  • the thickness of the carrier foil is at least the above lower limit, the handleability of the resin-coated metal foil tends to be further improved.
  • the thickness of the carrier foil is equal to or less than the above upper limit, there is a tendency that the cost of the resin-coated metal foil can be further reduced.
  • a release layer may be provided between the metal foil and the carrier foil.
  • a peeling layer is a layer provided between the metal foil and the carrier foil as necessary in order to facilitate the peeling of the carrier foil from the metal foil.
  • Exfoliation layers include, for example, layers containing one or more metals selected from chromium, nickel, cobalt, iron, molybdenum, titanium, tungsten, phosphorus, copper, and aluminum. These metals may be alloys, hydrates, oxides, and the like.
  • the release layer may be one layer or multiple layers.
  • the peeling layer is, for example, electroplating, electroless plating, wet plating such as immersion plating; sputtering, chemical vapor deposition (CVD; Chemical Vapor Deposition), physical vapor deposition (PDV; Physical Vapor Deposition), etc. can be formed by
  • the method for producing the resin-coated metal foil of the present embodiment is not particularly limited.
  • a second thermosetting resin layer is formed on the metal foil, and then the first thermosetting resin layer is formed on the second thermosetting resin layer. and a method of forming a thermosetting resin layer.
  • thermosetting resin layer on the metal foil As a method of forming the second thermosetting resin layer on the metal foil, a method of applying the second varnish-like thermosetting resin composition on the metal foil and then drying is preferable.
  • the drying temperature of the applied second thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the second thermosetting resin composition, it is preferably 160 to 210 ° C. , more preferably 170 to 200°C, more preferably 180 to 190°C.
  • the drying time of the applied second thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the second thermosetting resin composition, preferably 1 to 10 minutes. , more preferably 1 to 7 minutes, more preferably 1 to 4 minutes.
  • thermosetting resin layer As a method for forming the first thermosetting resin layer on the second thermosetting resin layer, a varnish-like first thermosetting resin composition was applied on the second thermosetting resin layer.
  • a drying method is preferred.
  • the drying temperature of the applied first thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the first thermosetting resin composition, it is preferably 90 to 170 ° C. , more preferably 100 to 160°C, more preferably 110 to 150°C.
  • the drying time of the applied first thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the second thermosetting resin composition, preferably 1 to 15 minutes. , more preferably 1 to 10 minutes, more preferably 2 to 6 minutes.
  • coating devices for coating the first and second thermosetting resin compositions include coating devices known to those skilled in the art such as comma coaters, bar coaters, kiss coaters, roll coaters, gravure coaters, and die coaters. can be used. These coating apparatuses may be appropriately selected according to the film thickness to be formed.
  • the printed wiring board of the present embodiment is a printed wiring board formed using the resin-coated metal foil of the present embodiment, comprising: a circuit board having a circuit on at least one surface;
  • the printed wiring board includes a laminated structure having a cured product layer of the thermosetting resin layer and a cured product layer of the second thermosetting resin layer in this order.
  • the printed wiring board of the present embodiment can be manufactured by a method of embedding the circuit of a circuit board having a circuit on at least one surface with the first thermosetting resin layer of the resin-coated metal foil.
  • circuit boards include glass epoxy, metal substrates, polyester substrates, polyimide substrates, BT resin substrates, thermosetting polyphenylene ether substrates, and the like, on which a patterned circuit is formed on one or both sides. From the viewpoint of adhesiveness, the surface of the circuit may be roughened in advance by blackening treatment or the like.
  • the resin-coated metal foil is placed on the circuit board so that the first thermosetting resin layer is in contact with the circuit, and is molded under heat and pressure so that the first thermosetting resin layer mainly melts and melts.
  • a cured material layer is formed that cures to embed the circuit.
  • the cured material layer functions as an insulating layer for circuits.
  • heat-press molding for example, a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine, etc. can be used.
  • the heating temperature for hot-press molding is not particularly limited, but is preferably 100 to 300.degree. C., more preferably 150 to 280.degree. C., still more preferably 200 to 250.degree.
  • the heating and pressing time for the heating and pressing molding is not particularly limited, but is preferably 10 to 300 minutes, more preferably 30 to 200 minutes, still more preferably 80 to 150 minutes.
  • the pressure for hot-press molding is not particularly limited, but is preferably 1.5 to 5 MPa, more preferably 1.7 to 3 MPa, still more preferably 1.8 to 2.5 MPa. However, these conditions can be appropriately adjusted according to the type of raw material used, etc., and are not particularly limited.
  • a laminate is formed in which the circuit board, the cured layer of the first thermosetting resin layer in which the circuit is embedded, the cured layer of the second thermosetting resin layer, and the metal foil are laminated in this order.
  • the metal foil of the outermost layer may be removed by etching, or may be used as it is to form the circuit.
  • Drilling is a step of drilling holes in the circuit board and the formed cured material layer by a method such as a drill, laser, plasma, or a combination thereof to form via holes, through holes, and the like.
  • lasers used for drilling include carbon dioxide lasers, YAG lasers, UV lasers, excimer lasers, and the like.
  • the exposed hardened layer of the second thermosetting resin layer may be roughened with an oxidizing agent.
  • the roughening treatment can form uneven anchors on the surface of the cured material layer.
  • the oxidizing agent include permanganates such as potassium permanganate and sodium permanganate, bichromate, ozone, hydrogen peroxide, sulfuric acid, and nitric acid. Among these, potassium permanganate and sodium permanganate are preferable from the viewpoint of versatility.
  • a circuit may be formed on the metal foil, or the metal foil itself may be patterned to form a circuit, depending on the form of the metal foil. Further, when the outermost layer is a cured layer of the second thermosetting resin layer, a circuit may be formed on the cured layer after the above roughening treatment, if necessary. good.
  • the conductor is preferably formed by a plating method such as an electroless plating method or an electrolytic plating method.
  • a plating method such as an electroless plating method or an electrolytic plating method.
  • metals for plating include copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, and alloys containing at least one of these metal elements. .
  • copper and nickel are preferable, and copper is more preferable.
  • the semiconductor package of this embodiment is a semiconductor package formed using the printed wiring board of this embodiment.
  • the semiconductor package of this embodiment can be manufactured, for example, by mounting a semiconductor chip, a memory, etc. on the printed wiring board of this embodiment by a known method.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) were converted from calibration curves using standard polystyrene by gel permeation chromatography (GPC). Calibration curve, standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation, product name] and approximated by a cubic equation. GPC measurement conditions are shown below.
  • Production example 1 Synthesis of silicone-modified maleimide resin
  • Polydimethylsiloxane having primary amino groups at both ends (Shin-Etsu Chemical Co., Ltd., product Name "KF-8012", primary amino group equivalent weight 400 g / mol) 172.0 parts by mass, bis (4-maleimidophenyl) methane 75.1 parts by mass, p-aminophenol 2.8 parts by mass, 250 parts by mass of propylene glycol monomethyl ether was added and reacted at 115° C. for 6 hours to obtain a silicone-modified maleimide resin.
  • thermosetting resin composition 69.5 parts by mass of the silicone-modified maleimide resin obtained in Production Example 1, and 10 parts of a biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name "NC-3000-H", epoxy group equivalent: 290 g/mol).
  • thermosetting resin composition 65.0 parts by mass of biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name “NC-3000S-H”, epoxy group equivalent 285 g / mol), carboxylic acid-modified acrylonitrile butadiene rubber particles (manufactured by JSR Corporation, 5 parts by mass of carboxylic acid-modified polyvinyl acetal resin (manufactured by Sekisui Chemical Co., Ltd., product name "KS-23Z”), 10.0 parts by mass of cresol novolac-type phenolic resin ( DIC Corporation, trade name “Phenolite (registered trademark) EXB-9829, hydroxyl equivalent 151 g / mol) 20.0 parts by mass, 1-cyanoethyl-2-phenylimidazolium trimellitate 0.3 parts by mass , and methyl ethyl ketone to obtain a second thermosetting resin composition having
  • Comparative example 1 The first thermosetting resin composition obtained in the same manner as in Example 1 was placed on the same copper foil as that used in Example 1, and the thickness of the first thermosetting resin layer after drying was shown. 1 and then dried under the conditions shown in Table 1 to obtain a resin-coated metal foil having a first thermosetting resin layer on a copper foil.
  • a resin film having a thickness of 200 ⁇ m was formed from the second thermosetting resin composition obtained in Example 1, and copper foil was placed on both sides of the film.
  • the resin film was cured by pressing for 60 minutes at a holding temperature of 180°C.
  • the obtained laminate having copper foils on both sides was immersed in a copper etchant to remove the copper foils on both sides, and a 5 mm ⁇ 40 mm piece was cut out to obtain a test piece.
  • the measurement temperature range is 25 to 320 ° C.
  • the temperature increase rate is 5 ° C./min
  • the frequency is 10 Hz.
  • the storage modulus E' was measured under the conditions of As a result, the 25° C. storage elastic modulus E′(i) of the cured product of the second thermosetting resin layer alone was 2.4 GPa, and the 150° C. storage elastic modulus E′(i) was 0.5 GPa. .
  • Example 4 Two metal foils with resin obtained in Example 4 were prepared and placed so that the first thermosetting resin layers faced each other. Then, using a molding press, this was pressed for 90 minutes under conditions of a pressure of 2.0 MPa and a maximum holding temperature of 230° C. to cure each resin layer.
  • the obtained laminate having copper foils on both sides is immersed in a copper etching solution to remove the copper foils on both sides, and a test piece cut into 5 mm ⁇ 40 mm is used as a test piece, and the storage elastic modulus E is measured under the same conditions as above. ' was measured. As a result, the 25° C.
  • the metal foil with resin obtained in each example was cut into a size of 335 mm ⁇ 300 mm, and the maximum height when the metal foil was placed on a flat surface with the metal foil facing downward was taken as the curl value (mm).
  • the resin-coated metal foil obtained in each example was placed on both sides of a circuit board having circuits on both sides so that the first thermosetting resin layer was on the circuit side. Next, using a molding press, this is pressed for 90 minutes under conditions of a pressure of 2.0 MPa and a maximum holding temperature of 230° C., and the resin layers are cured while embedding the circuit with the first thermosetting resin composition. let me The obtained laminate having copper foils on both sides was cut into a size of 50 mm square, and only half of one surface was left with copper, and the other surface was immersed in a copper etching solution to remove the copper from the entire surface. An evaluation board was produced.
  • the half-copper-attached evaluation board was treated in a pressure cooker test apparatus (manufactured by Hirayama Seisakusho Co., Ltd.) under conditions of 121° C. and 2.2 atm for 1 to 5 hours. After immersing the evaluation board with semi-copper after treatment in a solder bath at 288° C. for 20 seconds, the appearance was visually observed to confirm the presence or absence of swelling. In each example and each processing time, three evaluation substrates were evaluated. In Table 1, "A” indicates that no swelling was observed in any of the three, "B” indicates that one swelling was observed, "C” indicates that two swellings were observed, and three swellings were observed. Those observed were labeled as "D".
  • the resin-coated metal foil of the present embodiment suppresses cracking of the resin layer and curling of the resin-coated metal foil, it is suitable for electronic component applications such as prepregs, laminates, printed wiring boards, and semiconductor packages. .

Abstract

The present invention relates to a resin-coated metal foil that has a first thermosetting resin layer containing an inorganic filler, a second thermosetting resin layer containing a rubber component, and a metal foil in this order, the content of the inorganic filler in the first thermosetting resin layer being 50-90% by mass, and the content of the inorganic filler in the second thermosetting resin layer being 0-20% by mass, and also relates to a printed wiring board using the resin-coated metal foil, a manufacturing method thereof, and a semiconductor package.

Description

樹脂付き金属箔、プリント配線板及びその製造方法、並びに半導体パッケージMETAL FOIL WITH RESIN, PRINTED WIRING BOARD AND MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR PACKAGE
 本実施形態は、樹脂付き金属箔、プリント配線板及びその製造方法、並びに半導体パッケージに関する。 The present embodiment relates to a resin-coated metal foil, a printed wiring board and its manufacturing method, and a semiconductor package.
 近年、電子機器の小型化及び高性能化の流れに伴い、プリント配線板では配線密度の高度化及び高集積化が進展している。
 プリント配線板の絶縁材料としては、熱硬化性樹脂が主に用いられている。熱硬化性樹脂は、絶縁性、耐熱性等に優れる一方で、半導体素子、回路等の無機部材よりも熱膨張率が大きいことから、上記無機部材との熱膨張率の差に起因する反りの発生の原因になる場合がある。
 反りの発生を抑制する方法として、熱硬化性樹脂に無機充填材を高充填する方法が行われている(例えば、特許文献1参照)。熱膨張率が小さい無機充填材を高充填することによって、熱硬化性樹脂を含む絶縁材料と半導体素子等の無機部材との熱膨張率の差を小さくすることができ、反りを抑制することが可能である。
2. Description of the Related Art In recent years, with the trend toward miniaturization and high performance of electronic devices, printed wiring boards are progressing toward higher wiring densities and higher integration.
Thermosetting resins are mainly used as insulating materials for printed wiring boards. Thermosetting resins are excellent in insulating properties, heat resistance, etc., but have a higher coefficient of thermal expansion than inorganic members such as semiconductor elements and circuits. may cause it to occur.
As a method of suppressing the occurrence of warpage, a method of highly filling a thermosetting resin with an inorganic filler has been performed (see, for example, Patent Document 1). By highly filling the inorganic filler with a small thermal expansion coefficient, it is possible to reduce the difference in thermal expansion coefficient between the insulating material containing the thermosetting resin and the inorganic member such as a semiconductor element, thereby suppressing warpage. It is possible.
特開2020-059820号公報Japanese Patent Application Laid-Open No. 2020-059820
 ところで、プリント配線板の絶縁材料として、金属箔上に樹脂組成物を用いて形成された樹脂層を有する樹脂付き金属箔が用いられることがある。該樹脂付き金属箔の樹脂層は、通常、Bステージ状態に調整されており、回路基板の回路を埋め込みつつ硬化されることで絶縁層を形成する。 By the way, as an insulating material for printed wiring boards, a resin-coated metal foil having a resin layer formed using a resin composition on a metal foil is sometimes used. The resin layer of the resin-coated metal foil is normally adjusted to a B-stage state, and forms an insulating layer by curing while embedding the circuit of the circuit board.
 樹脂付き金属箔においても無機充填材の高充填化は反りの低減に有効であるが、無機充填材を高充填した樹脂組成物を用いて樹脂付き金属箔の樹脂層を形成すると、金属箔上で樹脂層をBステージ化する際に、樹脂層にクラックが発生する問題が生じる。これは、樹脂組成物がBステージ化される際に硬化収縮することで、金属箔との間で応力が発生し、該応力によって無機充填材同士或いは無機充填材と樹脂成分との界面が破壊されるためであると考えられる。このようなクラックの発生は、製品の歩留まりを低下させる要因になるため、抑制されることが望ましい。
 また、上記の応力の発生は、樹脂付き金属箔のカールの原因ともなる。カールの発生は、樹脂付き金属箔の取り扱い性を低下させ、樹脂付き金属箔を用いたプリント配線板の生産性を悪化させる要因になり得るため、抑制されることが望ましい。
In metal foil with resin, high filling of inorganic fillers is also effective in reducing warpage. When the resin layer is B-staged in , there arises a problem that cracks occur in the resin layer. This is because curing shrinkage occurs when the resin composition is B-staged, and stress is generated between the metal foil and the interface between the inorganic fillers or between the inorganic filler and the resin component is destroyed by the stress. This is thought to be because Since the occurrence of such cracks is a factor in lowering the yield of products, it is desirable to suppress them.
Moreover, the occurrence of the above stress also causes curling of the resin-coated metal foil. Curling is desirably suppressed, because it can be a factor in lowering the handleability of the resin-coated metal foil and lowering the productivity of printed wiring boards using the resin-coated metal foil.
 本実施形態は、このような現状に鑑み、樹脂層のクラック及びカールの発生が抑制された樹脂付き金属箔、該樹脂付き金属箔を用いたプリント配線板及びその製造方法、並びに半導体パッケージを提供することを課題とする。 In view of such circumstances, the present embodiment provides a resin-coated metal foil in which the occurrence of cracks and curls in the resin layer is suppressed, a printed wiring board using the resin-coated metal foil, a method for manufacturing the same, and a semiconductor package. The task is to
 本発明者等は上記の課題を解決すべく検討を進めた結果、下記の本実施形態によって、上記の課題を解決できることを見出した。
 すなわち、本実施形態は、下記[1]~[11]に関する。
[1]無機充填材を含有する第1の熱硬化性樹脂層と、
 ゴム成分を含有する第2の熱硬化性樹脂層と、
 金属箔と、をこの順に有し、
 前記第1の熱硬化性樹脂層中における無機充填材の含有量が、50~90質量%であり、
 前記第2の熱硬化性樹脂層中における無機充填材の含有量が、0~20質量%である、
 樹脂付き金属箔。
[2]前記第1の熱硬化性樹脂層が、熱硬化性樹脂及び無機充填材を含有する第1の熱硬化性樹脂組成物から形成される層であり、
 前記第1の熱硬化性樹脂組成物に含有される熱硬化性樹脂が、N-置換マレイミド基を1個以上有するマレイミド樹脂及びその誘導体からなる群から選択される1種以上である、上記[1]に記載の樹脂付き金属箔。
[3]前記N-置換マレイミド基を1個以上有するマレイミド樹脂及びその誘導体からなる群から選択される1種以上が、N-置換マレイミド基を2個以上有するマレイミド樹脂由来の構造と、第1級アミノ基を有するシリコーン化合物由来の構造と、を含む樹脂である、上記[2]に記載の樹脂付き金属箔。
[4]前記第2の熱硬化性樹脂層が、熱硬化性樹脂及びゴム成分を含有する第2の熱硬化性樹脂組成物から形成される層であり、
 前記第2の熱硬化性樹脂組成物に含有される熱硬化性樹脂が、エポキシ樹脂である、上記[1]~[3]のいずれかに記載の樹脂付き金属箔。
[5]前記第2の熱硬化性樹脂組成物が、さらに、フェノール樹脂系硬化剤を含有する、上記[4]に記載の樹脂付き金属箔。
[6]前記ゴム成分が、架橋ゴム粒子である、上記[1]~[5]のいずれかに記載の樹脂付き金属箔。
[7]前記第2の熱硬化性樹脂層中における無機充填材の含有量が、0~5質量%である、上記[1]~[6]のいずれかに記載の樹脂付き金属箔。
[8]前記金属箔が、銅箔である、上記[1]~[7]のいずれかに記載の樹脂付き金属箔。
[9]上記[1]~[8]のいずれかに記載の樹脂付き金属箔を用いて形成されるプリント配線板であって、
 少なくとも一方の面に回路を有する回路基板と、
 該回路を埋め込む前記第1の熱硬化性樹脂層の硬化物層と、
 前記第2の熱硬化性樹脂層の硬化物層と、
 をこの順に有する積層構造を含む、プリント配線板。
[10]上記[9]に記載のプリント配線板を用いて形成された半導体パッケージ。
[11]上記[9]に記載のプリント配線板の製造方法であって、
 前記少なくとも一方の面に回路を有する回路基板の前記回路を、前記樹脂付き金属箔が有する前記第1の熱硬化性樹脂層で埋め込む、プリント配線板の製造方法。
The inventors of the present invention conducted studies to solve the above problems, and as a result, found that the above problems can be solved by the present embodiment described below.
That is, the present embodiment relates to the following [1] to [11].
[1] A first thermosetting resin layer containing an inorganic filler;
a second thermosetting resin layer containing a rubber component;
and a metal foil in this order,
The content of the inorganic filler in the first thermosetting resin layer is 50 to 90 mass%,
The content of the inorganic filler in the second thermosetting resin layer is 0 to 20% by mass,
Metal foil with resin.
[2] The first thermosetting resin layer is a layer formed from a first thermosetting resin composition containing a thermosetting resin and an inorganic filler,
The above [ 1].
[3] at least one type selected from the group consisting of maleimide resins having at least one N-substituted maleimide group and derivatives thereof is a structure derived from a maleimide resin having at least two N-substituted maleimide groups; The resin-coated metal foil according to [2] above, which is a resin containing a structure derived from a silicone compound having a group amino group.
[4] the second thermosetting resin layer is a layer formed from a second thermosetting resin composition containing a thermosetting resin and a rubber component;
The resin-coated metal foil according to any one of [1] to [3] above, wherein the thermosetting resin contained in the second thermosetting resin composition is an epoxy resin.
[5] The metal foil with resin according to [4] above, wherein the second thermosetting resin composition further contains a phenol resin-based curing agent.
[6] The resin-coated metal foil according to any one of [1] to [5] above, wherein the rubber component is crosslinked rubber particles.
[7] The resin-coated metal foil according to any one of [1] to [6] above, wherein the content of the inorganic filler in the second thermosetting resin layer is 0 to 5% by mass.
[8] The resin-coated metal foil according to any one of [1] to [7] above, wherein the metal foil is a copper foil.
[9] A printed wiring board formed using the resin-coated metal foil according to any one of [1] to [8] above,
a circuit board having a circuit on at least one side;
a cured material layer of the first thermosetting resin layer in which the circuit is embedded;
A cured product layer of the second thermosetting resin layer;
A printed wiring board, comprising a laminate structure having in that order:
[10] A semiconductor package formed using the printed wiring board according to [9] above.
[11] A method for manufacturing a printed wiring board according to [9] above,
A method of manufacturing a printed wiring board, wherein the circuit of the circuit board having the circuit on at least one surface is embedded with the first thermosetting resin layer of the metal foil with resin.
 本実施形態によれば、樹脂層のクラック及びカールの発生が抑制された樹脂付き金属箔、該樹脂付き金属箔を用いたプリント配線板及びその製造方法、並びに半導体パッケージを提供することができる。 According to the present embodiment, it is possible to provide a resin-coated metal foil in which the occurrence of cracks and curls in the resin layer is suppressed, a printed wiring board using the resin-coated metal foil, a method for manufacturing the same, and a semiconductor package.
本実施形態の樹脂付き金属箔の一態様を表す模式的断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing showing the one aspect|mode of the metal foil with resin of this embodiment.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 例えば、数値範囲「X~Y」(X、Yは実数)という表記は、X以上、Y以下である数値範囲を意味する。そして、本明細書における「X以上」という記載は、X及びXを超える数値を意味する。また、本明細書における「Y以下」という記載は、Y及びY未満の数値を意味する。
 本明細書中に記載されている数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
 本明細書中に記載されている数値範囲において、その数値範囲の下限値又は上限値は、実施例に示されている値に置き換えてもよい。
In this specification, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
For example, the notation of a numerical range “X to Y” (X and Y are real numbers) means a numerical range that is greater than or equal to X and less than or equal to Y. And the description "X or more" in this specification means X and a numerical value exceeding X. In addition, the description “Y or less” in this specification means Y and a numerical value less than Y.
The lower and upper limits of any numerical range recited herein are optionally combined with the lower or upper limits of other numerical ranges, respectively.
In the numerical ranges described herein, the lower or upper limit of the numerical range may be replaced with the values shown in the examples.
 本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で用いてもよく、2種以上を併用してもよい。
 本明細書において、樹脂組成物中の各成分の含有量は、樹脂組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、樹脂組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において「樹脂組成物」とは、後述する各成分の混合物、当該混合物を半硬化させた物を含む。
Each component and material exemplified in this specification may be used alone or in combination of two or more unless otherwise specified.
In the present specification, the content of each component in the resin composition refers to the content of the plurality of substances present in the resin composition when there are multiple substances corresponding to each component in the resin composition, unless otherwise specified. means the total amount of
As used herein, the term "resin composition" includes a mixture of each component described below and a semi-cured product of the mixture.
 本明細書において、「固形分」とは、溶媒以外の成分を意味し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を意味する。 As used herein, the term "solid content" means components other than the solvent, including those that are liquid at room temperature, starch syrup, and wax. Here, in this specification, room temperature means 25°C.
 本明細書における「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。同様に「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味し、「(メタ)アクリロイル」とは「アクリロイル」及びそれに対応する「メタクリロイル」を意味する。 "(Meth)acrylate" as used herein means "acrylate" and its corresponding "methacrylate". Similarly, "(meth)acrylic" means "acrylic" and corresponding "methacrylic", and "(meth)acryloyl" means "acryloyl" and corresponding "methacryloyl".
 本明細書において、「層」と表記されている場合、ベタ層である態様の他、ベタ層ではなく、一部が島状になっている態様、穴が開いている態様、及び隣接層との界面が不明確になっている態様等も「層」に含まれる。 In the present specification, when the term "layer" is used, in addition to the solid layer, it is not a solid layer, but is partially island-shaped, has holes, and is adjacent to the layer. The "layer" also includes a mode in which the interface between is unclear.
 本明細書における数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC;Gel Permeation Chromatography)によってポリスチレン換算にて測定される値を意味する。具体的には、本明細書における数平均分子量(Mn)及び重量平均分子量(Mw)は、実施例に記載される方法によって測定することができる。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in this specification mean values measured in terms of polystyrene by gel permeation chromatography (GPC; Gel Permeation Chromatography). Specifically, the number average molecular weight (Mn) and weight average molecular weight (Mw) in this specification can be measured by methods described in Examples.
 本明細書に記載されている作用機序は推測であって、本実施形態の効果を奏する機序を限定するものではない。 The mechanism of action described in this specification is speculation, and does not limit the mechanism that produces the effects of this embodiment.
 本明細書の記載事項を任意に組み合わせた態様も本実施形態に含まれる。 Aspects in which the items described in this specification are arbitrarily combined are also included in the present embodiment.
[樹脂付き金属箔]
 本実施形態の樹脂付き金属箔は、
 無機充填材を含有する第1の熱硬化性樹脂層と、
 ゴム成分を含有する第2の熱硬化性樹脂層と、
 金属箔と、をこの順に有し、
 前記第1の熱硬化性樹脂層中における無機充填材の含有量が、50~90質量%であり、
 前記第2の熱硬化性樹脂層中における無機充填材の含有量が、0~20質量%である、
 樹脂付き金属箔である。
[Metal foil with resin]
The metal foil with resin of this embodiment is
a first thermosetting resin layer containing an inorganic filler;
a second thermosetting resin layer containing a rubber component;
and a metal foil in this order,
The content of the inorganic filler in the first thermosetting resin layer is 50 to 90 mass%,
The content of the inorganic filler in the second thermosetting resin layer is 0 to 20% by mass,
It is a metal foil with resin.
 図1には、本実施形態の樹脂付き金属箔の一態様である樹脂付き金属箔1の断面模式図が示されている。
 樹脂付き金属箔1は、金属箔2の一方の面上に第2の熱硬化性樹脂層3を有し、第2の熱硬化性樹脂層3の金属箔2とは反対側の面には第1の熱硬化性樹脂層4が設けられている。
 以下、本実施形態の樹脂付き金属箔が有する各構成について説明する。
FIG. 1 shows a schematic cross-sectional view of a resin-coated metal foil 1, which is one aspect of the resin-coated metal foil of this embodiment.
The resin-coated metal foil 1 has a second thermosetting resin layer 3 on one surface of the metal foil 2, and the surface of the second thermosetting resin layer 3 opposite to the metal foil 2 has A first thermosetting resin layer 4 is provided.
Each configuration of the resin-coated metal foil of this embodiment will be described below.
<第1の熱硬化性樹脂層>
 第1の熱硬化性樹脂層は、無機充填材を含有する熱硬化性樹脂層である。
 第1の熱硬化性樹脂層は、通常、回路基板の回路上に積層され、加熱によって溶融及び硬化して回路を埋め込む硬化物層を形成する層である。また、回路基板に、スルーホール、ビアホール等が存在する場合、これらの中に流動してホール内を充填する役割を果たす場合もある。
 なお、本明細書において「熱硬化性樹脂層」とは、熱硬化性を有する樹脂層を意味し、「樹脂層」とは、樹脂を含有する層を意味する。
<First thermosetting resin layer>
The first thermosetting resin layer is a thermosetting resin layer containing an inorganic filler.
The first thermosetting resin layer is usually laminated on the circuit of the circuit board and melted and cured by heating to form a cured material layer in which the circuit is embedded. In addition, when there are through holes, via holes, etc. on the circuit board, the fluid may flow into these holes and fill the holes.
In this specification, the term "thermosetting resin layer" means a resin layer having thermosetting properties, and the term "resin layer" means a layer containing a resin.
 本実施形態の樹脂付き金属箔において、第1の熱硬化性樹脂層中における無機充填材の含有量は、50~90質量%である。
 第1の熱硬化性樹脂層中における無機充填材の含有量が上記下限値以上であると、優れた低熱膨張性及び耐熱性が得られる。また、第1の熱硬化性樹脂層中における無機充填材の含有量が上記上限値以下であると、優れた成形性及び導体接着性が得られる。
 同様の観点から、第1の熱硬化性樹脂層中における無機充填材の含有量は、特に限定されないが、好ましくは50~80質量%、より好ましくは50~75質量%、さらに好ましくは50~70質量%である。また、第1の熱硬化性樹脂層中における無機充填材の含有量は、55~80質量%であってもよく、60~75質量%であってもよく、65~70質量%であってもよい。無機充填材の好適な種類については、後述する通りである。
In the metal foil with resin of this embodiment, the content of the inorganic filler in the first thermosetting resin layer is 50 to 90% by mass.
When the content of the inorganic filler in the first thermosetting resin layer is at least the above lower limit, excellent low thermal expansion and heat resistance can be obtained. Moreover, when the content of the inorganic filler in the first thermosetting resin layer is equal to or less than the above upper limit value, excellent moldability and conductor adhesion can be obtained.
From the same point of view, the content of the inorganic filler in the first thermosetting resin layer is not particularly limited, but is preferably 50 to 80% by mass, more preferably 50 to 75% by mass, and still more preferably 50 to 75% by mass. 70% by mass. Further, the content of the inorganic filler in the first thermosetting resin layer may be 55 to 80% by mass, may be 60 to 75% by mass, or may be 65 to 70% by mass. good too. Suitable types of inorganic fillers are described below.
 第1の熱硬化性樹脂層の厚さは、特に限定されないが、好ましくは4~100μm、より好ましくは6~60μm、さらに好ましくは8~40μmである。
 第1の熱硬化性樹脂層の厚さが上記下限値以上であると、回路埋め込み性がより良好になり易い傾向にある。また、第1の熱硬化性樹脂層の厚さが上記上限値以下であると、配線密度の高密度化により好適になり易い傾向にある。
Although the thickness of the first thermosetting resin layer is not particularly limited, it is preferably 4 to 100 μm, more preferably 6 to 60 μm, still more preferably 8 to 40 μm.
When the thickness of the first thermosetting resin layer is at least the above lower limit, the circuit embedding property tends to be more favorable. Further, when the thickness of the first thermosetting resin layer is equal to or less than the above upper limit value, it tends to be preferable due to high wiring density.
 第1の熱硬化性樹脂層は、熱硬化性樹脂及び無機充填材を含有する第1の熱硬化性樹脂組成物から形成される層であることが好ましい。
 次に、第1の熱硬化性樹脂組成物が含有し得る各成分について説明する。なお、以下の説明において、第1の熱硬化性樹脂組成物に含有される熱硬化性樹脂を「熱硬化性樹脂(A)」、第1の熱硬化性樹脂組成物に含有される無機充填材を「無機充填材(B)」と称する場合がある。
The first thermosetting resin layer is preferably a layer formed from a first thermosetting resin composition containing a thermosetting resin and an inorganic filler.
Next, each component that the first thermosetting resin composition may contain will be described. In the following description, the thermosetting resin contained in the first thermosetting resin composition is "thermosetting resin (A)", and the inorganic filler contained in the first thermosetting resin composition The material may be referred to as "inorganic filler (B)".
(熱硬化性樹脂(A))
 熱硬化性樹脂(A)としては、例えば、エポキシ樹脂、フェノール樹脂、マレイミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。これらの中でも、耐熱性の観点から、マレイミド樹脂、エポキシ樹脂、シアネート樹脂が好ましく、マレイミド樹脂、エポキシ樹脂がより好ましく、マレイミド樹脂がさらに好ましい。
 熱硬化性樹脂(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Thermosetting resin (A))
Examples of thermosetting resins (A) include epoxy resins, phenol resins, maleimide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, Examples include silicone resins, triazine resins, melamine resins, and the like. Among these, from the viewpoint of heat resistance, maleimide resins, epoxy resins, and cyanate resins are preferred, maleimide resins and epoxy resins are more preferred, and maleimide resins are even more preferred.
The thermosetting resin (A) may be used alone or in combination of two or more.
〔マレイミド樹脂〕
 マレイミド樹脂としては、N-置換マレイミド基を1個以上有するマレイミド樹脂及びその誘導体からなる群から選択される1種以上が好ましい。
 すなわち、第1の熱硬化性樹脂層は、熱硬化性樹脂及び無機充填材を含有する第1の熱硬化性樹脂組成物から形成される層であり、第1の熱硬化性樹脂組成物に含有される熱硬化性樹脂が、N-置換マレイミド基を1個以上有するマレイミド樹脂及びその誘導体からなる群から選択される1種以上であることが好ましい。
 N-置換マレイミド基を1個以上有するマレイミド樹脂及びその誘導体からなる群から選択される1種以上としては、N-置換マレイミド基を2個以上有するマレイミド樹脂(以下、「マレイミド樹脂(A1)」ともいう)、N-置換マレイミド基を2個以上有するマレイミド樹脂由来の構造と、第1級アミノ基を有するシリコーン化合物由来の構造と、を含む樹脂(以下、「シリコーン変性マレイミド樹脂(A2)」ともいう)が好ましく、耐熱性及び低熱膨張性の観点から、シリコーン変性マレイミド樹脂(A2)がより好ましい。なお、本実施形態において、シリコーン変性マレイミド樹脂(A2)は、マレイミド樹脂の一態様である。
[Maleimide resin]
The maleimide resin is preferably one or more selected from the group consisting of maleimide resins having one or more N-substituted maleimide groups and derivatives thereof.
That is, the first thermosetting resin layer is a layer formed from a first thermosetting resin composition containing a thermosetting resin and an inorganic filler, and the first thermosetting resin composition The contained thermosetting resin is preferably one or more selected from the group consisting of maleimide resins having one or more N-substituted maleimide groups and derivatives thereof.
The one or more selected from the group consisting of maleimide resins having one or more N-substituted maleimide groups and derivatives thereof include maleimide resins having two or more N-substituted maleimide groups (hereinafter referred to as "maleimide resin (A1)" Also referred to as), a resin containing a structure derived from a maleimide resin having two or more N-substituted maleimide groups and a structure derived from a silicone compound having a primary amino group (hereinafter referred to as "silicone-modified maleimide resin (A2)" Also referred to as) is preferable, and from the viewpoint of heat resistance and low thermal expansion, the silicone-modified maleimide resin (A2) is more preferable. In addition, in this embodiment, the silicone-modified maleimide resin (A2) is one aspect of the maleimide resin.
《マレイミド樹脂(A1)》
 マレイミド樹脂(A1)としては、下記一般式(A1-1)で表される化合物が好ましい。
<<Maleimide resin (A1)>>
As the maleimide resin (A1), a compound represented by the following general formula (A1-1) is preferable.
Figure JPOXMLDOC01-appb-C000001

(式中、XA11は2価の有機基である。)
Figure JPOXMLDOC01-appb-C000001

(In the formula, X A11 is a divalent organic group.)
 上記一般式(A1-1)中のXA11は、2価の有機基である。
 上記一般式(A1-1)中のXA11が表す2価の有機基としては、例えば、下記一般式(A1-2)で表される2価の基、下記一般式(A1-3)で表される2価の基、下記一般式(A1-4)で表される2価の基、下記一般式(A1-5)で表される2価の基、下記一般式(A1-6)で表される2価の基等が挙げられる。
X A11 in general formula (A1-1) above is a divalent organic group.
The divalent organic group represented by X A11 in the general formula (A1-1) includes, for example, a divalent group represented by the following general formula (A1-2), and a divalent group represented by the following general formula (A1-3). a divalent group represented by the following general formula (A1-4), a divalent group represented by the following general formula (A1-5), a following general formula (A1-6) A divalent group represented by is mentioned.
Figure JPOXMLDOC01-appb-C000002

(式中、RA11は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。nA11は0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000002

(In the formula, R A11 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. n A11 is an integer of 0 to 4. * represents a bonding site.)
 上記一般式(A1-2)中のRA11が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記一般式(A1-2)中のnA11は0~4の整数であり、入手容易性の観点から、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 nA11が2以上の整数である場合、複数のRA11同士は、同一であってもよいし、異なっていてもよい。
Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A11 in the general formula (A1-2) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl t-butyl group, n-pentyl group and other alkyl groups having 1 to 5 carbon atoms; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms. The aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched. The aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
n A11 in the general formula (A1-2) is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0, from the viewpoint of availability.
When n A11 is an integer of 2 or more, the plurality of R A11 may be the same or different.
Figure JPOXMLDOC01-appb-C000003

(式中、RA12及びRA13は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。XA12は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、単結合、又は下記一般式(A1-3-1)で表される2価の基である。nA12及びnA13は、各々独立に、0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000003

(wherein R A12 and R A13 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom; X A12 is an alkylene group having 1 to 5 carbon atoms; n A12 and n A13 are an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, a single bond, or a divalent group represented by the following general formula (A1-3-1). , each independently an integer from 0 to 4. * represents a binding site.)
 上記一般式(A1-3)中のRA12及びRA13が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基、エチル基がさらに好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
Examples of aliphatic hydrocarbon groups having 1 to 5 carbon atoms represented by R 12 and R 13 in general formula (A1-3) include methyl, ethyl, n-propyl, isopropyl and n-butyl. alkyl groups having 1 to 5 carbon atoms such as isobutyl group, t-butyl group and n-pentyl group; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms. The aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched. The aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group or an ethyl group.
Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
 上記一般式(A1-3)中のXA12が表す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該炭素数1~5のアルキレン基としては、炭素数1~3のアルキレン基が好ましく、炭素数1又は2のアルキレン基がより好ましく、メチレン基がさらに好ましい。 Examples of the alkylene group having 1 to 5 carbon atoms represented by X A12 in the above general formula (A1-3) include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group and a 1,4-tetramethylene group. group, 1,5-pentamethylene group, and the like. The alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
 上記一般式(A1-3)中のXA12が表す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、炭素数2~4のアルキリデン基が好ましく、炭素数2又は3のアルキリデン基がより好ましく、イソプロピリデン基がさらに好ましい。 The alkylidene group having 2 to 5 carbon atoms represented by X A12 in the general formula (A1-3) includes, for example, an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group. etc. Among these, an alkylidene group having 2 to 4 carbon atoms is preferred, an alkylidene group having 2 or 3 carbon atoms is more preferred, and an isopropylidene group is even more preferred.
 上記一般式(A1-3)中のnA12及びnA13は、各々独立に、0~4の整数である。
 nA12又はnA13が2以上の整数である場合、複数のRA12同士又は複数のRA13同士は、それぞれ同一であってもよいし、異なっていてもよい。
n A12 and n A13 in general formula (A1-3) are each independently an integer of 0 to 4.
When n A12 or n A13 is an integer of 2 or more, the plurality of RA12s or the plurality of RA13s may be the same or different.
 上記一般式(A1-3)中のXA12が表す一般式(A1-3-1)で表される2価の基は以下のとおりである。 The divalent group represented by general formula (A1-3-1) represented by X A12 in general formula (A1-3) is as follows.
Figure JPOXMLDOC01-appb-C000004

(式中、RA14及びRA15は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。XA13は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。nA14及びnA15は、各々独立に、0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000004

(wherein R A14 and R A15 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom; X A13 is an alkylene group having 1 to 5 carbon atoms; an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond, nA14 and nA15 are each independently an integer of 0 to 4. * represents a binding site. )
 上記一般式(A1-3-1)中のRA14及びRA15が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A14 and R A15 in the general formula (A1-3-1) include methyl group, ethyl group, n-propyl group, isopropyl group, n C1-5 alkyl groups such as -butyl group, isobutyl group, t-butyl group and n-pentyl group; C2-5 alkenyl groups and C2-5 alkynyl groups. The aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched. The aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
 上記一般式(A1-3-1)中のXA13が表す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該炭素数1~5のアルキレン基としては、炭素数1~3のアルキレン基が好ましく、炭素数1又は2のアルキレン基がより好ましく、メチレン基がさらに好ましい。 Examples of the alkylene group having 1 to 5 carbon atoms represented by X A13 in the general formula (A1-3-1) include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4- A tetramethylene group, a 1,5-pentamethylene group and the like can be mentioned. The alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
 上記一般式(A1-3-1)中のXA13が表す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、炭素数2~4のアルキリデン基が好ましく、炭素数2又は3のアルキリデン基がより好ましく、イソプロピリデン基がさらに好ましい。 Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A13 in the general formula (A1-3-1) include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentyl A lidene group and the like can be mentioned. Among these, an alkylidene group having 2 to 4 carbon atoms is preferred, an alkylidene group having 2 or 3 carbon atoms is more preferred, and an isopropylidene group is even more preferred.
 上記一般式(A1-3-1)中のXA13としては、上記選択肢の中でも、炭素数2~5のアルキリデン基が好ましく、炭素数2~4のアルキリデン基がより好ましく、イソプロピリデン基がさらに好ましい。 Among the above options, X A13 in the general formula (A1-3-1) is preferably an alkylidene group having 2 to 5 carbon atoms, more preferably an alkylidene group having 2 to 4 carbon atoms, and further an isopropylidene group. preferable.
 上記一般式(A1-3-1)中のnA14及びnA15は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 nA14又はnA15が2以上の整数である場合、複数のRA14同士又は複数のRA15同士は、それぞれ同一であってもよいし、異なっていてもよい。
n A14 and n A15 in the general formula (A1-3-1) are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, and more It is preferably 0 or 1, more preferably 0.
When n A14 or n A15 is an integer of 2 or more, the plurality of R A14 or the plurality of R A15 may be the same or different.
 上記一般式(A1-3)中のXA12としては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、上記一般式(A1-3-1)で表される2価の基が好ましく、炭素数1~5のアルキレン基がより好ましく、メチレン基がさらに好ましい。 As X A12 in the general formula (A1-3), among the above options, an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, and the above general formula (A1-3-1) is preferred, an alkylene group having 1 to 5 carbon atoms is more preferred, and a methylene group is even more preferred.
Figure JPOXMLDOC01-appb-C000005

(式中、nA16は0~10の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000005

(Wherein, n A16 is an integer from 0 to 10. * represents a binding site.)
 上記一般式(A1-4)中のnA16は、入手容易性の観点から、好ましくは0~5の整数、より好ましくは0~4の整数、さらに好ましくは0~3の整数である。 n A16 in the general formula (A1-4) is preferably an integer of 0 to 5, more preferably an integer of 0 to 4, and still more preferably an integer of 0 to 3, from the viewpoint of availability.
Figure JPOXMLDOC01-appb-C000006

(式中、nA17は0~5の数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000006

(Wherein, n A17 is a number from 0 to 5. * represents a binding site.)
Figure JPOXMLDOC01-appb-C000007

(式中、RA16及びRA17は、各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。nA18は1~8の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000007

(In the formula, R A16 and R A17 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. n A18 is an integer of 1 to 8. * represents a bonding site. )
 上記一般式(A1-6)中のRA16及びRA17が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。
 上記一般式(A1-6)中のnA18は1~8の整数であり、好ましくは1~5の整数、より好ましくは1~3の整数、さらに好ましくは1である。nA18が2以上の整数である場合、複数のRA16同士又は複数のRA17同士は、それぞれ同一であってもよいし、異なっていてもよい。
The aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R 16 and R 17 in general formula (A1-6) includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl alkyl groups having 1 to 5 carbon atoms such as isobutyl group, t-butyl group and n-pentyl group; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms. The aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
n A18 in the general formula (A1-6) is an integer of 1 to 8, preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1. When n A18 is an integer of 2 or more, the plurality of R A16 or the plurality of R A17 may be the same or different.
 マレイミド樹脂(A1)としては、例えば、芳香族ビスマレイミド樹脂、芳香族ポリマレイミド樹脂、脂肪族マレイミド樹脂等が挙げられる。
 なお、本明細書中、「芳香族ビスマレイミド樹脂」とは、芳香環に直接結合するN-置換マレイミド基を2個有する化合物を意味する。また、本明細書中、「芳香族ポリマレイミド樹脂」とは、芳香環に直接結合するN-置換マレイミド基を3個以上有する化合物を意味する。また、本明細書中、「脂肪族マレイミド樹脂」とは、脂肪族炭化水素に直接結合するN-置換マレイミド基を有する化合物を意味する。
Examples of the maleimide resin (A1) include aromatic bismaleimide resins, aromatic polymaleimide resins, and aliphatic maleimide resins.
As used herein, the term "aromatic bismaleimide resin" means a compound having two N-substituted maleimide groups directly bonded to an aromatic ring. Further, the term "aromatic polymaleimide resin" as used herein means a compound having 3 or more N-substituted maleimide groups directly bonded to an aromatic ring. Further, the term "aliphatic maleimide resin" as used herein means a compound having an N-substituted maleimide group directly bonded to an aliphatic hydrocarbon.
 マレイミド樹脂(A1)の具体例としては、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,4-ビス(マレイミドメチル)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4-ビス(3-マレイミドフェノキシ)ビフェニル、4,4-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、ビス(4-マレイミドフェニル)ジスルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル、1,4-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド、ビフェニルアラルキル型マレイミド等が挙げられる。これらの中でも、ビス(4-マレイミドフェニル)メタンが好ましい。 Specific examples of the maleimide resin (A1) include N,N'-ethylenebismaleimide, N,N'-hexamethylenebismaleimide, N,N'-(1,3-phenylene)bismaleimide, N,N'- [1,3-(2-methylphenylene)]bismaleimide, N,N'-[1,3-(4-methylphenylene)]bismaleimide, N,N'-(1,4-phenylene)bismaleimide, Bis(4-maleimidophenyl)methane, bis(3-methyl-4-maleimidophenyl)methane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, bis(4-maleimide phenyl)ether, bis(4-maleimidophenyl)sulfone, bis(4-maleimidophenyl)sulfide, bis(4-maleimidophenyl)ketone, bis(4-maleimidocyclohexyl)methane, 1,4-bis(4-maleimidophenyl) ) cyclohexane, 1,4-bis(maleimidomethyl)cyclohexane, 1,4-bis(maleimidomethyl)benzene, 1,3-bis(4-maleimidophenoxy)benzene, 1,3-bis(3-maleimidophenoxy)benzene , bis[4-(3-maleimidophenoxy)phenyl]methane, bis[4-(4-maleimidophenoxy)phenyl]methane, 1,1-bis[4-(3-maleimidophenoxy)phenyl]ethane, 1,1 -bis[4-(4-maleimidophenoxy)phenyl]ethane, 1,2-bis[4-(3-maleimidophenoxy)phenyl]ethane, 1,2-bis[4-(4-maleimidophenoxy)phenyl]ethane , 2,2-bis[4-(3-maleimidophenoxy)phenyl]propane, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, 2,2-bis[4-(3-maleimidophenoxy) ) phenyl]butane, 2,2-bis[4-(4-maleimidophenoxy)phenyl]butane, 2,2-bis[4-(3-maleimidophenoxy)phenyl]-1,1,1,3,3, 3-hexafluoropropane, 2,2-bis[4-(4-maleimidophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 4,4-bis(3-maleimidophenoxy) Biphenyl, 4,4-bis(4-maleimidophenoxy)biphenyl, bis[4-(3-maleimidophenoxy)phenyl]ketone, bis[4-(4-maleimidophenoxy)phenyl]ketone, bis(4-maleimidophenyl) Disulfide, bis[4-(3-maleimidophenoxy)phenyl]sulfide, bis[4-(4-maleimidophenoxy)phenyl]sulfide, bis[4-(3-maleimidophenoxy)phenyl]sulfoxide, bis[4-(4 -maleimidophenoxy)phenyl]sulfoxide, bis[4-(3-maleimidophenoxy)phenyl]sulfone, bis[4-(4-maleimidophenoxy)phenyl]sulfone, bis[4-(3-maleimidophenoxy)phenyl]ether, bis[4-(4-maleimidophenoxy)phenyl] ether, 1,4-bis[4-(4-maleimidophenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-maleimide phenoxy)-α,α-dimethylbenzyl]benzene, 1,4-bis[4-(3-maleimidophenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(3-maleimidophenoxy) -α,α-dimethylbenzyl]benzene, 1,4-bis[4-(4-maleimidophenoxy)-3,5-dimethyl-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4 -maleimidophenoxy)-3,5-dimethyl-α,α-dimethylbenzyl]benzene, 1,4-bis[4-(3-maleimidophenoxy)-3,5-dimethyl-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(3-maleimidophenoxy)-3,5-dimethyl-α,α-dimethylbenzyl]benzene, polyphenylmethane maleimide, biphenylaralkyl type maleimide and the like. Among these, bis(4-maleimidophenyl)methane is preferred.
《シリコーン変性マレイミド樹脂(A2)》
 シリコーン変性マレイミド樹脂(A2)は、N-置換マレイミド基を2個以上有するマレイミド樹脂由来の構造と、第1級アミノ基を有するシリコーン化合物由来の構造と、を含む樹脂である。
<<Silicone modified maleimide resin (A2)>>
The silicone-modified maleimide resin (A2) is a resin containing a structure derived from a maleimide resin having two or more N-substituted maleimide groups and a structure derived from a silicone compound having a primary amino group.
 N-置換マレイミド基を2個以上有するマレイミド樹脂由来の構造としては、例えば、マレイミド樹脂(A1)が有するN-置換マレイミド基のうち、少なくとも1つのN-置換マレイミド基が、第1級アミノ基を有するシリコーン化合物が有する第1級アミノ基とマイケル付加反応してなる構造が挙げられる。
 シリコーン変性マレイミド樹脂(A2)中に含まれるマレイミド樹脂(A1)由来の構造は、1種単独であってもよく、2種以上であってもよい。
The structure derived from a maleimide resin having two or more N-substituted maleimide groups includes, for example, among the N-substituted maleimide groups possessed by the maleimide resin (A1), at least one N-substituted maleimide group is a primary amino group. A structure formed by a Michael addition reaction with a primary amino group of a silicone compound having
The structure derived from the maleimide resin (A1) contained in the silicone-modified maleimide resin (A2) may be one type alone or two or more types.
 シリコーン変性マレイミド樹脂(A2)中におけるマレイミド樹脂(A1)由来の構造の含有量は、特に限定されないが、好ましくは5~60質量%、より好ましくは10~50質量%、さらに好ましくは20~40質量%である。
 マレイミド樹脂(A1)由来の構造の含有量が上記下限値以上であると、耐熱性がより良好になり易い傾向にある。また、マレイミド樹脂(A1)由来の構造の含有量が上記上限値以下であると、低熱膨張性がより良好になり易い傾向にある。
The content of the structure derived from the maleimide resin (A1) in the silicone-modified maleimide resin (A2) is not particularly limited, but is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and still more preferably 20 to 40%. % by mass.
When the content of the structure derived from the maleimide resin (A1) is at least the above lower limit, the heat resistance tends to be better. Moreover, when the content of the structure derived from the maleimide resin (A1) is equal to or less than the above upper limit, the low thermal expansion property tends to be more favorable.
 第1級アミノ基を有するシリコーン化合物由来の構造としては、例えば、第1級アミノ基を有するシリコーン化合物が有する第1級アミノ基が、マレイミド樹脂(A1)が有するN-置換マレイミド基とマイケル付加反応してなる構造が挙げられる。
 シリコーン変性マレイミド樹脂(A2)中に含まれる第1級アミノ基を有するシリコーン化合物由来の構造は、1種単独であってもよく、2種以上であってもよい。
As the structure derived from the silicone compound having a primary amino group, for example, the primary amino group possessed by the silicone compound having a primary amino group is an N-substituted maleimide group possessed by the maleimide resin (A1) and Michael addition. A structure formed by reaction can be mentioned.
The structure derived from the silicone compound having a primary amino group contained in the silicone-modified maleimide resin (A2) may be one type alone or two or more types.
 第1級アミノ基を有するシリコーン化合物が有する第1級アミノ基の数は、好ましくは1~4個、より好ましくは2~3個、さらに好ましくは2個である。
 第1級アミノ基を有するシリコーン化合物は、第1級アミノ基を側鎖に有していてもよく、末端に有していてもよいが、末端に有することが好ましい。
 第1級アミノ基を有するシリコーン化合物は、第1級アミノ基を、片末端に有していてもよく、両末端に有していてもよいが、両末端に有することが好ましい。
The number of primary amino groups in the silicone compound having primary amino groups is preferably 1 to 4, more preferably 2 to 3, still more preferably 2.
The silicone compound having a primary amino group may have the primary amino group in the side chain or at the end, but preferably at the end.
The silicone compound having a primary amino group may have a primary amino group at one end or at both ends, preferably at both ends.
 第1級アミノ基を有するシリコーン化合物は、下記一般式(A2-1)で表される構造を含有する化合物であることが好ましく、下記一般式(A2-2)で表される化合物であることがより好ましい。 The silicone compound having a primary amino group is preferably a compound containing a structure represented by general formula (A2-1) below, and is a compound represented by general formula (A2-2) below. is more preferred.
Figure JPOXMLDOC01-appb-C000008

(式中、RA21及びRA22は、各々独立に、炭素数1~5の脂肪族炭化水素基、フェニル基又は置換フェニル基である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000008

(In the formula, R A21 and R A22 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a phenyl group or a substituted phenyl group. * represents a bonding site.)
Figure JPOXMLDOC01-appb-C000009

(式中、RA21及びRA22は、上記一般式(A2-1)中のものと同じであり、RA23及びRA24は、各々独立に、炭素数1~5の脂肪族炭化水素基、フェニル基又は置換フェニル基である。XA21及びXA22は、各々独立に、2価の有機基であり、nA21は、1~100の整数である。)
Figure JPOXMLDOC01-appb-C000009

(Wherein, R A21 and R A22 are the same as those in the above general formula (A2-1), R A23 and R A24 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a phenyl group or a substituted phenyl group, X A21 and X A22 are each independently a divalent organic group, and n A21 is an integer of 1 to 100.)
 上記一般式(A2-1)及び(A2-2)中のRA21~RA24が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 RA21~RA24が表す置換フェニル基におけるフェニル基が有する置換基としては、上記した炭素数1~5の脂肪族炭化水素基が挙げられる。
Examples of aliphatic hydrocarbon groups having 1 to 5 carbon atoms represented by R A21 to R A24 in general formulas (A2-1) and (A2-2) include methyl group, ethyl group, n-propyl group, C1-5 alkyl groups such as isopropyl group, n-butyl group, isobutyl group, t-butyl group and n-pentyl group; C2-5 alkenyl groups, C2-5 alkynyl groups, etc. mentioned. The aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched. The aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
Examples of substituents possessed by the phenyl groups in the substituted phenyl groups represented by R A21 to R A24 include the aforementioned aliphatic hydrocarbon groups having 1 to 5 carbon atoms.
 XA21及びXA22が表す2価の有機基としては、例えば、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-又はこれらが組み合わされた2価の連結基等が挙げられる。
 上記アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基等の炭素数1~10のアルキレン基が挙げられる。
 上記アルケニレン基としては、例えば、炭素数2~10のアルケニレン基が挙げられる。
 上記アルキニレン基としては、例えば、炭素数2~10のアルキニレン基が挙げられる。
 上記アリーレン基としては、例えば、フェニレン基、ナフチレン基等の炭素数6~20のアリーレン基が挙げられる。
 これらの中でも、XA21及びXA22としては、アルキレン基、アリーレン基が好ましく、アルキレン基がより好ましい。
Examples of the divalent organic group represented by X A21 and X A22 include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, —O—, and a divalent linking group in which these are combined.
Examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms such as a methylene group, ethylene group and propylene group.
Examples of the alkenylene group include alkenylene groups having 2 to 10 carbon atoms.
Examples of the alkynylene group include alkynylene groups having 2 to 10 carbon atoms.
Examples of the arylene group include arylene groups having 6 to 20 carbon atoms such as phenylene group and naphthylene group.
Among these, X A21 and X A22 are preferably an alkylene group or an arylene group, and more preferably an alkylene group.
 nA21は、1~100の整数であり、好ましくは2~50の整数、より好ましくは3~40の整数、さらに好ましくは5~30の整数である。nA21が2以上の整数である場合、複数のRA21同士又は複数のRA22同士は、それぞれ同一であってもよいし、異なっていてもよい。 nA21 is an integer of 1-100, preferably an integer of 2-50, more preferably an integer of 3-40, and still more preferably an integer of 5-30. When n A21 is an integer of 2 or more, the plurality of RA21s or the plurality of RA22s may be the same or different.
 第1級アミノ基を有するシリコーン化合物の第1級アミノ基当量は、特に限定されないが、好ましくは200~1,000g/mol、より好ましくは250~700g/mol、さらに好ましくは300~500g/molである。 The primary amino group equivalent weight of the silicone compound having a primary amino group is not particularly limited, but is preferably 200 to 1,000 g/mol, more preferably 250 to 700 g/mol, still more preferably 300 to 500 g/mol. is.
 シリコーン変性マレイミド樹脂(A2)中における第1級アミノ基を有するシリコーン化合物由来の構造の含有量は、特に限定されないが、好ましくは30~90質量%、より好ましくは40~80質量%、さらに好ましくは55~75質量%である。
 第1級アミノ基を有するシリコーン化合物由来の構造の含有量が上記下限値以上であると、低熱膨張性がより良好になり易い傾向にある。また、第1級アミノ基を有するシリコーン化合物由来の構造の含有量が上記上限値以下であると、耐熱性がより良好になり易い傾向にある。
The content of the structure derived from the silicone compound having a primary amino group in the silicone-modified maleimide resin (A2) is not particularly limited, but is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and still more preferably. is 55 to 75% by mass.
When the content of the structure derived from the silicone compound having a primary amino group is at least the above lower limit, the low thermal expansion property tends to be more favorable. Moreover, when the content of the structure derived from the silicone compound having a primary amino group is equal to or less than the above upper limit, the heat resistance tends to be more favorable.
 シリコーン変性マレイミド樹脂(A2)は、さらに、酸性置換基を有するアミン化合物に由来する構造を含むことが好ましい。
 シリコーン変性マレイミド樹脂(A2)中に含まれる酸性置換基を有するアミン化合物に由来する構造は、1種単独であってもよく、2種以上であってもよい。
The silicone-modified maleimide resin (A2) preferably further contains a structure derived from an amine compound having an acidic substituent.
The structure derived from the amine compound having an acidic substituent contained in the silicone-modified maleimide resin (A2) may be one type alone or two or more types.
 酸性置換基を有するアミン化合物としては、酸性置換基と第1級アミノ基を有する化合物が好ましく、酸性置換基と第1級アミノ基を有する芳香族化合物がより好ましく、下記一般式(A2-3)で表される化合物がさらに好ましい。 The amine compound having an acidic substituent is preferably a compound having an acidic substituent and a primary amino group, more preferably an aromatic compound having an acidic substituent and a primary amino group, represented by the following general formula (A2-3 ) is more preferred.
Figure JPOXMLDOC01-appb-C000010

(式中、RA25は、水酸基、カルボキシ基又はスルホン酸基であり、RA26は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子であり、nA22は1~5の整数、nA23は0~5の整数であり、nA22とnA23の合計は1~5の整数である。)
Figure JPOXMLDOC01-appb-C000010

(In the formula, R A25 is a hydroxyl group, a carboxy group or a sulfonic acid group, R A26 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, n A22 is an integer of 1 to 5, n A23 is an integer of 0 to 5, and the sum of nA22 and nA23 is an integer of 1 to 5.)
 上記一般式(A2-3)中のRA25は、水酸基、カルボキシ基又はスルホン酸基であり、カルボキシ基であることが好ましい。
 上記一般式(A2-3)中のRA26が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 上記一般式(A2-3)中のRA26が表すハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記一般式(A2-3)中のnA22は1~5の整数であり、入手容易性の観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。
 上記一般式(A2-3)中のnA23は0~5の整数であり、入手容易性の観点から、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 上記一般式(A2-3)中のnA22とnA23の合計は1~5の整数であり、入手容易性の観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。
R A25 in general formula (A2-3) above is a hydroxyl group, a carboxy group or a sulfonic acid group, preferably a carboxy group.
Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A26 in the general formula (A2-3) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl t-butyl group, n-pentyl group and other alkyl groups having 1 to 5 carbon atoms; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms. The aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched. The aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
Examples of the halogen atom represented by R 1 A26 in the general formula (A2-3) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
n A22 in the general formula (A2-3) is an integer of 1 to 5, preferably an integer of 1 to 3, more preferably 1 or 2, still more preferably 1, from the viewpoint of availability.
n A23 in the general formula (A2-3) is an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0, from the viewpoint of availability.
The sum of n A22 and n A23 in the general formula (A2-3) is an integer of 1 to 5, preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably, from the viewpoint of availability. is 1.
 酸性置換基を有するアミン化合物としては、例えば、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール等のアミノフェノール;p-アミノ安息香酸、m-アミノ安息香酸、o-アミノ安息香酸等のアミノ安息香酸;o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸等のアミノベンゼンスルホン酸;3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリンなどが挙げられる。これらの中でも、溶解性及び合成収率の観点から、アミノフェノール、アミノ安息香酸、3,5-ジヒドロキシアニリンが好ましく、耐熱性の観点から、m-アミノフェノール、p-アミノフェノールがより好ましい。 Examples of amine compounds having an acidic substituent include aminophenols such as o-aminophenol, m-aminophenol and p-aminophenol; p-aminobenzoic acid, m-aminobenzoic acid and o-aminobenzoic acid. aminobenzoic acid; aminobenzenesulfonic acids such as o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid and p-aminobenzenesulfonic acid; 3,5-dihydroxyaniline, 3,5-dicarboxyaniline and the like. Among these, aminophenol, aminobenzoic acid and 3,5-dihydroxyaniline are preferable from the viewpoint of solubility and synthesis yield, and m-aminophenol and p-aminophenol are more preferable from the viewpoint of heat resistance.
 シリコーン変性マレイミド樹脂(A2)中における、酸性置換基を有するアミン化合物由来の構造の含有量は、特に限定されないが、好ましくは0.1~4質量%、より好ましくは0.5~2質量%、さらに好ましくは0.8~1.5質量%である。
 酸性置換基を有するアミン化合物由来の構造の含有量が上記下限値以上であると、耐熱性及び導体接着性がより良好になり易い傾向にある。また、酸性置換基を有するアミン化合物由来の構造の含有量が上記上限値以下であると、耐熱性がより良好になり易い傾向にある。
The content of the structure derived from the amine compound having an acidic substituent in the silicone-modified maleimide resin (A2) is not particularly limited, but is preferably 0.1 to 4% by mass, more preferably 0.5 to 2% by mass. , more preferably 0.8 to 1.5% by mass.
When the content of the structure derived from the amine compound having an acidic substituent is at least the above lower limit, the heat resistance and conductor adhesion tend to be better. Moreover, when the content of the structure derived from the amine compound having an acidic substituent is equal to or less than the above upper limit, the heat resistance tends to be more favorable.
 シリコーン変性マレイミド樹脂(A2)は、後述する1分子中に少なくとも2個の1級アミノ基を有する化合物(C)に由来する構造を含むものであってもよい。 The silicone-modified maleimide resin (A2) may contain a structure derived from a compound (C) having at least two primary amino groups in one molecule, which will be described later.
 シリコーン変性マレイミド樹脂(A2)は、例えば、マレイミド樹脂(A1)と第1級アミノ基を有するシリコーン化合物と、を反応させて製造することができ、マレイミド樹脂(A1)と、第1級アミノ基を有するシリコーン化合物と、酸性置換基を有するアミン化合物と、を反応させて製造することが好ましい。
 各成分の好適な配合量は、得られるシリコーン変性マレイミド樹脂(A2)中における各成分由来の構造の含有量が上記した範囲になる量である。
The silicone-modified maleimide resin (A2) can be produced, for example, by reacting the maleimide resin (A1) with a silicone compound having a primary amino group. and an amine compound having an acidic substituent are preferably reacted.
A suitable blending amount of each component is such that the content of the structure derived from each component in the resulting silicone-modified maleimide resin (A2) is within the above range.
 上記反応は、有機溶媒中で行うことが好ましい。有機溶媒としては、後述する第1の熱硬化性樹脂組成物が含有していてもよい有機溶媒と同じものが挙げられる。これらの中でも、プロピレングリコールモノメチルエーテルが好ましい。
 上記反応の反応温度は、特に限定されないが、適度な反応速度を得るという観点から、好ましくは50~160℃、より好ましくは60~150℃、さらに好ましくは70~140℃である。
 上記反応の反応時間は、特に限定されないが、生産性の観点から、好ましくは0.5~12時間、より好ましくは1~10時間、さらに好ましくは4~8時間である。
 但し、これらの反応条件は、使用する原料の種類等に応じて適宜調整することができ、特に限定されない。
 上記反応を行う際には、必要に応じて反応触媒を使用してもよく、使用しなくてもよい。
The above reaction is preferably carried out in an organic solvent. Examples of the organic solvent include the same organic solvents as those that may be contained in the first thermosetting resin composition described later. Among these, propylene glycol monomethyl ether is preferred.
The reaction temperature for the above reaction is not particularly limited, but is preferably 50 to 160°C, more preferably 60 to 150°C, and still more preferably 70 to 140°C from the viewpoint of obtaining an appropriate reaction rate.
The reaction time for the above reaction is not particularly limited, but from the viewpoint of productivity, it is preferably 0.5 to 12 hours, more preferably 1 to 10 hours, and even more preferably 4 to 8 hours.
However, these reaction conditions are not particularly limited and can be appropriately adjusted depending on the type of raw material used.
When carrying out the above reaction, a reaction catalyst may or may not be used as necessary.
 熱硬化性樹脂(A)がマレイミド樹脂を含有する場合、熱硬化性樹脂(A)中におけるマレイミド樹脂の含有量は、特に限定されないが、好ましくは40~98質量%、より好ましくは60~95質量%、さらに好ましくは80~90質量%である。
 熱硬化性樹脂(A)中におけるマレイミド樹脂の含有量が上記下限値以上であると、耐熱性がより良好になり易い傾向にある。また、熱硬化性樹脂(A)中におけるマレイミド樹脂の含有量が上記上限値以下であると、電気特性がより良好になり易い傾向にある。
When the thermosetting resin (A) contains a maleimide resin, the content of the maleimide resin in the thermosetting resin (A) is not particularly limited, but is preferably 40 to 98% by mass, more preferably 60 to 95% by mass. % by mass, more preferably 80 to 90% by mass.
When the content of the maleimide resin in the thermosetting resin (A) is at least the above lower limit, the heat resistance tends to be better. Moreover, when the content of the maleimide resin in the thermosetting resin (A) is equal to or less than the above upper limit, the electrical properties tend to be more favorable.
〔エポキシ樹脂〕
 熱硬化性樹脂(A)として用いられるエポキシ樹脂としては、2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
〔Epoxy resin〕
The epoxy resin used as the thermosetting resin (A) is preferably an epoxy resin having two or more epoxy groups. Epoxy resins are classified into glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, glycidyl ester type epoxy resins, and the like. Among these, glycidyl ether type epoxy resins are preferred.
 エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類される。
 具体的には、エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール系エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のビスフェノール系ノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等の、上記ビスフェノール系ノボラック型エポキシ樹脂以外のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン骨格含有エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;飽和ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;脂肪族鎖状エポキシ樹脂;ゴム変性エポキシ樹脂;などに分類される。これらの中でも、ビフェニルアラルキル型エポキシ樹脂が好ましい。
Epoxy resins are classified into various epoxy resins depending on the difference in the main skeleton.
Specifically, epoxy resins include, for example, bisphenol-based epoxy resins such as bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, and bisphenol S-type epoxy resin; Bisphenol-based novolak-type epoxy resins; novolac-type epoxy resins other than the above bisphenol-based novolac-type epoxy resins, such as phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, and biphenyl novolac-type epoxy resins; phenol aralkyl-type epoxy resins; stilbene-type epoxy resins Resin; naphthol novolac type epoxy resin, naphthol type epoxy resin, naphthol aralkyl type epoxy resin, naphthylene ether type epoxy resin, and other naphthalene skeleton-containing epoxy resins; biphenyl type epoxy resin; biphenyl aralkyl type epoxy resin; xylylene type epoxy resin; Anthracene type epoxy resin; alicyclic epoxy resin such as saturated dicyclopentadiene type epoxy resin; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexanedimethanol type epoxy resin; trimethylol type epoxy resin; resin; rubber-modified epoxy resin; Among these, biphenyl aralkyl type epoxy resins are preferred.
 エポキシ樹脂のエポキシ基当量は、特に限定されないが、好ましくは150~600g/mol、より好ましくは200~450g/mol、さらに好ましくは250~350g/molである。 Although the epoxy group equivalent weight of the epoxy resin is not particularly limited, it is preferably 150 to 600 g/mol, more preferably 200 to 450 g/mol, still more preferably 250 to 350 g/mol.
 熱硬化性樹脂(A)がエポキシ樹脂を含有する場合、熱硬化性樹脂(A)中におけるエポキシ樹脂の含有量は、特に限定されないが、好ましくは2~60質量%、より好ましくは5~40質量%、さらに好ましくは10~20質量%である。
 熱硬化性樹脂(A)中におけるエポキシ樹脂の含有量が上記下限値以上であると、成形性がより良好になり易い傾向にある。また、熱硬化性樹脂(A)中におけるエポキシ樹脂の含有量が上記上限値以下であると、耐熱性がより良好になり易い傾向にある。
When the thermosetting resin (A) contains an epoxy resin, the content of the epoxy resin in the thermosetting resin (A) is not particularly limited, but is preferably 2 to 60% by mass, more preferably 5 to 40% by mass. % by mass, more preferably 10 to 20% by mass.
When the content of the epoxy resin in the thermosetting resin (A) is at least the above lower limit, moldability tends to be better. Moreover, when the content of the epoxy resin in the thermosetting resin (A) is equal to or less than the above upper limit, the heat resistance tends to be more favorable.
〔熱硬化性樹脂(A)の含有量〕
 第1の熱硬化性樹脂組成物中における熱硬化性樹脂(A)の含有量は、特に限定されないが、第1の熱硬化性樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは30~95質量%、より好ましくは50~90質量%、さらに好ましくは70~85質量%である。
 第1の熱硬化性樹脂組成物中における熱硬化性樹脂(A)の含有量が上記下限値以上であると、耐熱性、成形性及び導体接着性がより良好になり易い傾向にある。また、第1の熱硬化性樹脂組成物中における熱硬化性樹脂(A)の含有量が上記上限値以下であると、諸特性のバランスを良好に調整し易い傾向にある。
[Content of thermosetting resin (A)]
The content of the thermosetting resin (A) in the first thermosetting resin composition is not particularly limited, but the total amount of resin components in the first thermosetting resin composition (100% by mass) , preferably 30 to 95% by mass, more preferably 50 to 90% by mass, still more preferably 70 to 85% by mass.
When the content of the thermosetting resin (A) in the first thermosetting resin composition is at least the above lower limit, heat resistance, moldability and conductor adhesion tend to be better. Moreover, when the content of the thermosetting resin (A) in the first thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
 ここで、本明細書において、「樹脂成分」とは、樹脂及び硬化反応によって樹脂を形成する化合物を意味する。
 例えば、第1の熱硬化性樹脂組成物においては熱硬化性樹脂(A)が樹脂成分に相当する。また、第1の熱硬化性樹脂組成物が、任意成分として、熱硬化性樹脂(A)以外に樹脂又は硬化反応によって樹脂を形成する化合物を含有する場合、これらの任意成分も樹脂成分に含まれる。樹脂成分に相当する任意成分としては、後述する、1分子中に少なくとも2個の1級アミノ基を有する化合物(C)、スチレン系エラストマー(D)、ポリアミド樹脂(E)、硬化促進剤(F)等が挙げられる。
As used herein, the term "resin component" means a resin and a compound that forms a resin through a curing reaction.
For example, in the first thermosetting resin composition, the thermosetting resin (A) corresponds to the resin component. Further, when the first thermosetting resin composition contains, as an optional component, a resin or a compound that forms a resin by a curing reaction in addition to the thermosetting resin (A), these optional components are also included in the resin component. be Optional components corresponding to resin components include compounds (C) having at least two primary amino groups in one molecule, styrene elastomers (D), polyamide resins (E), curing accelerators (F ) and the like.
 第1の熱硬化性樹脂組成物中における樹脂成分の合計含有量は、特に限定されないが、第1の熱硬化性樹脂組成物の固形分総量(100質量%)に対して、好ましくは20~45質量%、より好ましくは25~40質量%、さらに好ましくは30~35質量%である。
 第1の熱硬化性樹脂組成物中における樹脂成分の含有量が上記下限値以上であると、耐熱性、成形性及び導体接着性がより良好になり易い傾向にある。また、第1の熱硬化性樹脂組成物中における樹脂成分の含有量が上記上限値以下であると、低熱膨張性がより良好になり易い傾向にある。
The total content of the resin components in the first thermosetting resin composition is not particularly limited, but the total solid content (100% by mass) of the first thermosetting resin composition is preferably 20 to 45% by mass, more preferably 25 to 40% by mass, still more preferably 30 to 35% by mass.
When the content of the resin component in the first thermosetting resin composition is at least the above lower limit, heat resistance, moldability and conductor adhesion tend to be better. Moreover, when the content of the resin component in the first thermosetting resin composition is equal to or less than the above upper limit, the low thermal expansion tends to be more favorable.
(無機充填材(B))
 第1の熱硬化性樹脂組成物は、無機充填材(B)を含有する。
 無機充填材(B)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Inorganic filler (B))
The first thermosetting resin composition contains an inorganic filler (B).
The inorganic filler (B) may be used alone or in combination of two or more.
 無機充填材(B)としては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー、タルク、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらの中でも、低熱膨張性、耐熱性及び難燃性の観点から、シリカ、アルミナ、マイカ、タルクが好ましく、シリカ、アルミナがより好ましく、シリカがさらに好ましい。 Examples of the inorganic filler (B) include silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, silicon aluminum oxide, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay, talc, aluminum borate, silicon carbide and the like. Among these, silica, alumina, mica, and talc are preferred, silica and alumina are more preferred, and silica is even more preferred, from the viewpoints of low thermal expansion, heat resistance, and flame retardancy.
 シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカ等が挙げられる。乾式法シリカとしては、さらに、製造法の違いによって、例えば、破砕シリカ、フュームドシリカ、溶融シリカ等が挙げられる。 Silica includes, for example, precipitated silica that is produced by a wet method and has a high water content, and dry-process silica that is produced by a dry method and contains almost no bound water. Examples of dry process silica include crushed silica, fumed silica, fused silica, etc., depending on the production method.
 無機充填材(B)の平均粒子径は、特に限定されないが、無機充填材(B)の分散性及び微細配線性の観点から、好ましくは0.01~20μm、より好ましくは0.1~10μm、さらに好ましくは0.2~1μm、特に好ましくは0.3~0.8μmである。
 なお、本明細書において平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことである。
 無機充填材(B)の平均粒子径は、例えば、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 無機充填材(B)の形状としては、例えば、球状、破砕状等が挙げられ、球状であることが好ましい。
Although the average particle size of the inorganic filler (B) is not particularly limited, it is preferably 0.01 to 20 μm, more preferably 0.1 to 10 μm, from the viewpoint of the dispersibility and fine wiring properties of the inorganic filler (B). , more preferably 0.2 to 1 μm, particularly preferably 0.3 to 0.8 μm.
In this specification, the average particle size is the particle size at the point corresponding to 50% volume when the cumulative frequency distribution curve of the particle size is obtained with the total volume of the particles being 100%.
The average particle size of the inorganic filler (B) can be measured, for example, with a particle size distribution analyzer using a laser diffraction scattering method.
Examples of the shape of the inorganic filler (B) include a spherical shape and a crushed shape, and a spherical shape is preferred.
 第1の熱硬化性樹脂組成物には、無機充填材(B)の分散性及び有機成分との密着性を向上させる目的で、カップリング剤を用いてもよい。カップリング剤としては、例えば、シランカップリング剤、チタネートカップリング剤等が挙げられる。これらの中でも、シランカップリング剤が好ましい。シランカップリング剤としては、例えば、アミノシランカップリング剤、ビニルシランカップリング剤、エポキシシランカップリング剤等が挙げられる。 A coupling agent may be used in the first thermosetting resin composition for the purpose of improving the dispersibility of the inorganic filler (B) and the adhesion with the organic component. Examples of coupling agents include silane coupling agents and titanate coupling agents. Among these, silane coupling agents are preferred. Silane coupling agents include, for example, aminosilane coupling agents, vinylsilane coupling agents, and epoxysilane coupling agents.
 第1の熱硬化性樹脂組成物にカップリング剤を用いる場合、無機充填材(B)の表面処理方法は、樹脂組成物中に無機充填材(B)を配合した後、カップリング剤を添加するインテグラルブレンド処理方法であってもよいが、予め無機充填材(B)にカップリング剤を乾式又は湿式で表面処理する方法が好ましい。
 無機充填材(B)は、分散性を向上させる目的で、予め有機溶媒中に分散させたスラリーの状態にしてから、他の成分と混合してもよい。
When a coupling agent is used in the first thermosetting resin composition, the surface treatment method for the inorganic filler (B) is to mix the inorganic filler (B) in the resin composition and then add the coupling agent. Although an integral blend treatment method may be used, a method in which the inorganic filler (B) is surface-treated in advance with a coupling agent in a dry or wet manner is preferable.
For the purpose of improving dispersibility, the inorganic filler (B) may be previously dispersed in an organic solvent to form a slurry, and then mixed with other components.
 第1の熱硬化性樹脂組成物中における無機充填材(B)の含有量は、第1の熱硬化性樹脂層中の無機充填材(B)の含有量が上記した範囲になる量である。 The content of the inorganic filler (B) in the first thermosetting resin composition is such that the content of the inorganic filler (B) in the first thermosetting resin layer is within the range described above. .
(1分子中に少なくとも2個の1級アミノ基を有する化合物(C))
 第1の熱硬化性樹脂組成物は、さらに、1分子中に少なくとも2個の1級アミノ基を有する化合物(C)(以下、「ジアミン化合物(C)」ともいう)を含有することが好ましい。上記の通り、ジアミン化合物(C)は、シリコーン変性マレイミド樹脂(A2)の原料として用いられてもよい。
 ジアミン化合物(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Compound (C) having at least two primary amino groups in one molecule)
The first thermosetting resin composition preferably further contains a compound (C) having at least two primary amino groups in one molecule (hereinafter also referred to as "diamine compound (C)"). . As described above, the diamine compound (C) may be used as a raw material for the silicone-modified maleimide resin (A2).
A diamine compound (C) may be used individually by 1 type, and may use 2 or more types together.
 ジアミン化合物(C)としては、下記一般式(C-1)で表される化合物が好ましい。 A compound represented by the following general formula (C-1) is preferable as the diamine compound (C).
Figure JPOXMLDOC01-appb-C000011

(式中、XC1は2価の有機基である。)
Figure JPOXMLDOC01-appb-C000011

(In the formula, X C1 is a divalent organic group.)
 上記一般式(C-1)中のXC1は、下記一般式(C-2)で表される2価の基であることが好ましい。 X C1 in general formula (C-1) above is preferably a divalent group represented by general formula (C-2) below.
Figure JPOXMLDOC01-appb-C000012

(式中、RC1及びRC2は、各々独立に、炭素数1~5の脂肪族炭化水素基、炭素数1~5のアルコキシ基、水酸基又はハロゲン原子である。XC2は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、フルオレニレン基、単結合、又は下記一般式(C-2-1)若しくは下記一般式(C-2-2)で表される2価の基である。nC1及びnC2は、各々独立に、0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000012

(In the formula, R C1 and R C2 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom. X C2 is 1 carbon atom; -5 alkylene group, C2-5 alkylidene group, ether group, sulfide group, sulfonyl group, carbonyloxy group, keto group, fluorenylene group, single bond, or general formula (C-2-1) below or below It is a divalent group represented by the general formula (C-2-2).n C1 and n C2 are each independently an integer of 0 to 4. * represents a binding site.)
Figure JPOXMLDOC01-appb-C000013

(式中、RC3及びRC4は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。XC3は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、m-フェニレンジイソプロピリデン基、p-フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。nC3及びnC4は、各々独立に、0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000013

(wherein R C3 and R C4 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom; X C3 is an alkylene group having 1 to 5 carbon atoms; an alkylidene group, a m-phenylenediisopropylidene group, a p-phenylenediisopropylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond, nC3 and nC4 are each independently , an integer from 0 to 4. * represents a binding site.)
Figure JPOXMLDOC01-appb-C000014

(式中、RC5は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。XC4及びXC5は、各々独立に、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。nC5は0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000014

(In the formula, R C5 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom; X C4 and X C5 each independently represent an alkylene group having 1 to 5 carbon atoms; is an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, or a single bond.n C5 is an integer of 0 to 4. * represents a bonding site.)
 上記一般式(C-2)、上記一般式(C-2-1)及び上記一般式(C-2-2)中のRC1、RC2、RC3、RC4及びRC5が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基、エチル基がさらに好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
Number of carbon atoms represented by R C1 , R C2 , R C3 , R C4 and R C5 in general formula (C-2), general formula (C-2-1) and general formula (C-2-2) Examples of 1 to 5 aliphatic hydrocarbon groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group and the like. to 5 alkyl groups; alkenyl groups having 2 to 5 carbon atoms; and alkynyl groups having 2 to 5 carbon atoms. The aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched. The aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group or an ethyl group.
Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
 上記一般式(C-2)中のXC2、上記一般式(C-2-1)中のXC3並びに上記一般式(C-2-2)中のXC4及びXC5が表す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該炭素数1~5のアルキレン基としては、炭素数1~3のアルキレン基が好ましく、炭素数1又は2のアルキレン基がより好ましく、メチレン基がさらに好ましい。 The number of carbon atoms represented by X C2 in the general formula (C-2), X C3 in the general formula (C-2-1), and X C4 and X C5 in the general formula (C-2-2) is 1 Examples of the alkylene group of 1 to 5 include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like. The alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
 上記一般式(C-2)中のXC2、上記一般式(C-2-1)中のXC3、並びに上記一般式(C-2-2)中のXC4及びXC5が表す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。該炭素数2~5のアルキリデン基としては、炭素数2~4のアルキリデン基が好ましく、炭素数2又は3のアルキリデン基がより好ましく、イソプロピリデン基がさらに好ましい。 The number of carbon atoms represented by X C2 in the general formula (C-2), X C3 in the general formula (C-2-1), and X C4 and X C5 in the general formula (C-2-2) Examples of alkylidene groups of 2 to 5 include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group and the like. The alkylidene group having 2 to 5 carbon atoms is preferably an alkylidene group having 2 to 4 carbon atoms, more preferably an alkylidene group having 2 or 3 carbon atoms, and still more preferably an isopropylidene group.
 上記一般式(C-2)中のnC1及びnC2は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、好ましくは0~3の整数、より好ましくは0~2の整数、さらに好ましくは0又は2である。
 nC1又はnC2が2以上の整数である場合、複数のRC1同士又は複数のRC2同士は、それぞれ同一であってもよいし、異なっていてもよい。
n C1 and n C2 in the general formula (C-2) are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 3, more preferably It is an integer from 0 to 2, more preferably 0 or 2.
When n C1 or n C2 is an integer of 2 or more, the plurality of R C1 or the plurality of R C2 may be the same or different.
 上記一般式(C-2-1)中のnC3及びnC4は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 nC3又はnC4が2以上の整数である場合、複数のRC3同士又は複数のRC4同士は、それぞれ同一であってもよいし、異なっていてもよい。
n C3 and n C4 in the general formula (C-2-1) are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, and more It is preferably 0 or 1, more preferably 0.
When n C3 or n C4 is an integer of 2 or more, the plurality of R C3s or the plurality of R C4s may be the same or different.
 上記一般式(C-2-2)中のnC5は、0~4の整数であり、入手容易性の観点から、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 nC5が2以上の整数である場合、複数のRC5同士は、それぞれ同一であってもよいし、異なっていてもよい。
n C5 in the general formula (C-2-2) is an integer of 0 to 4, and from the viewpoint of availability, preferably an integer of 0 to 2, more preferably 0 or 1, more preferably 0 is.
When n C5 is an integer of 2 or more, the plurality of R C5 may be the same or different.
 ジアミン化合物(C)としては、例えば、脂肪族ジアミン化合物、芳香族ジアミン化合物等が挙げられ、これらの中でも、耐熱性の観点から、芳香族ジアミン化合物が好ましい。
 なお、本明細書中、「脂肪族ジアミン化合物」とは、脂肪族炭化水素に直接結合するアミノ基を2個有する化合物を意味し、「芳香族ジアミン化合物」とは、芳香族炭化水素に直接結合するアミノ基を2個有する化合物を意味する。
Examples of the diamine compound (C) include aliphatic diamine compounds and aromatic diamine compounds, among which aromatic diamine compounds are preferred from the viewpoint of heat resistance.
In this specification, the term "aliphatic diamine compound" means a compound having two amino groups directly bonded to an aliphatic hydrocarbon, and the term "aromatic diamine compound" means a compound that directly binds to an aromatic hydrocarbon. It means a compound having two binding amino groups.
 芳香族ジアミン化合物としては、例えば、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、1,4-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,3’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン等が挙げられる。 Examples of aromatic diamine compounds include 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4,4 '-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4 '-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 3,3'- dimethyl-5,5′-diethyl-4,4′-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 1, 3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl , 1,3-bis[1-[4-(4-aminophenoxy)phenyl]-1-methylethyl]benzene, 1,4-bis[1-[4-(4-aminophenoxy)phenyl]-1- methylethyl]benzene, 4,4'-[1,3-phenylenebis(1-methylethylidene)]bisaniline, 4,4'-[1,4-phenylenebis(1-methylethylidene)]bisaniline, 3,3 '-[1,3-phenylenebis(1-methylethylidene)]bisaniline, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 9,9- bis(4-aminophenyl)fluorene and the like.
 これらの中でも、ジアミン化合物(C)は、有機溶媒への溶解性、反応性、耐熱性、誘電特性及び低吸水性に優れるという観点から、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましく、3,3’-ジエチル-4,4’-ジアミノジフェニルメタンがより好ましい。 Among these, the diamine compound (C) is 4,4′-diaminodiphenylmethane, 3,3′-dimethyl, and is excellent in solubility in organic solvents, reactivity, heat resistance, dielectric properties and low water absorption. -4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4'-[1, 3-phenylenebis(1-methylethylidene)]bisaniline, 4,4′-[1,4-phenylenebis(1-methylethylidene)]bisaniline are preferred, and 3,3′-diethyl-4,4′-diaminodiphenylmethane is more preferred.
〔ジアミン化合物(C)の含有量〕
 第1の熱硬化性樹脂組成物がジアミン化合物(C)を含有する場合、第1の熱硬化性樹脂組成物中におけるジアミン化合物(C)の含有量は、特に限定されないが、第1の熱硬化性樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは0.5~20質量%、より好ましくは1~10質量%、さらに好ましくは3~7質量%である。
 第1の熱硬化性樹脂組成物中におけるジアミン化合物(C)の含有量が上記下限値以上であると、耐熱性がより良好になり易い傾向にある。また、第1の熱硬化性樹脂組成物中におけるジアミン化合物(C)の含有量が上記上限値以下であると、諸特性のバランスを良好に調整し易い傾向にある。
[Content of diamine compound (C)]
When the first thermosetting resin composition contains the diamine compound (C), the content of the diamine compound (C) in the first thermosetting resin composition is not particularly limited. It is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, still more preferably 3 to 7% by mass, relative to the total amount (100% by mass) of the resin components in the curable resin composition.
When the content of the diamine compound (C) in the first thermosetting resin composition is at least the above lower limit, the heat resistance tends to be better. Moreover, when the content of the diamine compound (C) in the first thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
(スチレン系エラストマー(D))
 第1の熱硬化性樹脂組成物は、さらに、スチレン系エラストマー(D)を含有することが好ましい。
 スチレン系エラストマー(D)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Styrene-based elastomer (D))
The first thermosetting resin composition preferably further contains a styrene elastomer (D).
The styrene-based elastomer (D) may be used alone or in combination of two or more.
 スチレン系エラストマー(D)としては、下記一般式(D-1)で表されるスチレン系化合物由来の構造単位を有するものが好ましい。 As the styrene-based elastomer (D), one having a structural unit derived from a styrene-based compound represented by the following general formula (D-1) is preferable.
Figure JPOXMLDOC01-appb-C000015

(式中、RD1は水素原子又は炭素数1~5のアルキル基であり、RD2は、炭素数1~5のアルキル基である。nD1は、0~5の整数である。)
Figure JPOXMLDOC01-appb-C000015

(In the formula, R D1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R D2 is an alkyl group having 1 to 5 carbon atoms, and n D1 is an integer of 0 to 5.)
 上記一般式(D-1)中のRD1及びRD2が表す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。炭素数1~5のアルキル基は、直鎖状又は分岐鎖状のいずれであってもよい。これらの中でも、炭素数1~3のアルキル基が好ましく、炭素数1又は2のアルキル基がより好ましく、メチル基がさらに好ましい。
 上記一般式(D-1)中のnD1は、0~5の整数であり、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
Examples of the alkyl group having 1 to 5 carbon atoms represented by R D1 and R D2 in the general formula (D-1) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl. group, t-butyl group, n-pentyl group and the like. Alkyl groups having 1 to 5 carbon atoms may be linear or branched. Among these, an alkyl group having 1 to 3 carbon atoms is preferred, an alkyl group having 1 or 2 carbon atoms is more preferred, and a methyl group is even more preferred.
n D1 in the general formula (D-1) is an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0.
 スチレン系エラストマー(D)は、スチレン系化合物由来の構造単位以外の構造単位を含有していてもよい。
 スチレン系エラストマー(D)が有するスチレン系化合物由来の構造単位以外の構造単位としては、例えば、ブタジエン由来の構造単位、イソプレン由来の構造単位、マレイン酸由来の構造単位、無水マレイン酸由来の構造単位等が挙げられる。
 上記ブタジエン由来の構造単位及び上記イソプレン由来の構造単位は、水素添加されていてもよい。水素添加されている場合、ブタジエン由来の構造単位はエチレン単位とブチレン単位とが混合した構造単位となり、イソプレン由来の構造単位はエチレン単位とプロピレン単位とが混合した構造単位となる。
The styrene-based elastomer (D) may contain structural units other than structural units derived from styrene-based compounds.
Structural units other than the styrene-based compound-derived structural units possessed by the styrene-based elastomer (D) include, for example, butadiene-derived structural units, isoprene-derived structural units, maleic acid-derived structural units, and maleic anhydride-derived structural units. etc.
The butadiene-derived structural unit and the isoprene-derived structural unit may be hydrogenated. When hydrogenated, structural units derived from butadiene become structural units in which ethylene units and butylene units are mixed, and structural units derived from isoprene become structural units in which ethylene units and propylene units are mixed.
 スチレン系エラストマー(D)としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、スチレン-イソプレン-スチレンブロック共重合体の水素添加物、スチレン-無水マレイン酸共重合体等が挙げられる。
 スチレン-ブタジエン-スチレンブロック共重合体の水素添加物は、ブタジエンブロック中の炭素-炭素二重結合を完全水添してなるSEBSと、ブタジエンブロック中の1,2-結合部位の炭素-炭素二重結合を部分水添してなるSBBSが挙げられる。なお、SEBSにおける完全水添とは、通常、全体の炭素-炭素二重結合の水添率が、90%以上であり、95%以上であってもよく、99%以上であってもよく、100%であってもよい。また、SBBSにおける部分水添率は、例えば、全体の炭素-炭素二重結合に対して60~85%である。スチレン-イソプレン-スチレンブロック共重合体の水素添加物は、ポリイソプレン部が水素添加され、SEPSとして得られる。
 これらの中でも、誘電特性、導体接着性、耐熱性、ガラス転移温度及び低熱膨張性の観点から、SEBS、SEPSが好ましく、SEBSがより好ましい。
Examples of the styrene elastomer (D) include hydrogenated styrene-butadiene-styrene block copolymers, hydrogenated styrene-isoprene-styrene block copolymers, styrene-maleic anhydride copolymers, and the like. be done.
Hydrogenated products of styrene-butadiene-styrene block copolymers are SEBS obtained by completely hydrogenating the carbon-carbon double bonds in the butadiene block, and SBBS obtained by partially hydrogenating a heavy bond can be mentioned. In addition, complete hydrogenation in SEBS usually means that the hydrogenation rate of the entire carbon-carbon double bond is 90% or more, may be 95% or more, or may be 99% or more. It may be 100%. Also, the partial hydrogenation rate in SBBS is, for example, 60 to 85% with respect to the entire carbon-carbon double bond. A hydrogenated styrene-isoprene-styrene block copolymer is obtained as SEPS by hydrogenating the polyisoprene portion.
Among these, SEBS and SEPS are preferred, and SEBS is more preferred, from the viewpoint of dielectric properties, conductor adhesion, heat resistance, glass transition temperature and low thermal expansion.
 スチレン系エラストマー(D)において、スチレン由来の構造単位の含有率(以下、「スチレン含有率」ともいう)は、特に限定されないが、好ましくは5~60モル%、より好ましくは10~50モル%、さらに好ましくは20~40モル%である。 In the styrene elastomer (D), the content of structural units derived from styrene (hereinafter also referred to as "styrene content") is not particularly limited, but is preferably 5 to 60 mol%, more preferably 10 to 50 mol%. , more preferably 20 to 40 mol %.
 スチレン系エラストマー(D)の市販品としては、例えば、旭化成株式会社製のタフテック(登録商標)Hシリーズ、Mシリーズ、株式会社クラレ製のセプトン(登録商標)シリーズ、クレイトンポリマージャパン株式会社製のクレイトン(登録商標)Gポリマーシリーズ等が挙げられる。 Examples of commercially available styrene elastomers (D) include Tuftec (registered trademark) H series and M series manufactured by Asahi Kasei Corporation, Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and Kraton manufactured by Kraton Polymer Japan Co., Ltd. (registered trademark) G polymer series and the like.
 スチレン系エラストマー(D)は、無水マレイン酸等によって酸変性されたものであってもよい。酸変性されたスチレン系エラストマー(D)の酸価は、特に限定されないが、好ましくは2~20mgCHONa/g、より好ましくは5~15mgCHONa/g、さらに好ましくは7~13mgCHONa/gである。 The styrene elastomer (D) may be acid-modified with maleic anhydride or the like. The acid value of the acid-modified styrene elastomer (D) is not particularly limited, but is preferably 2 to 20 mg CH 3 ONa/g, more preferably 5 to 15 mg CH 3 ONa/g, and still more preferably 7 to 13 mg CH 3 ONa/g. is g.
 スチレン系エラストマー(D)の数平均分子量(Mn)は、特に限定されないが、好ましくは10,000~500,000、より好ましくは30,000~350,000、さらに好ましくは50,000~100,000である。 The number average molecular weight (Mn) of the styrene elastomer (D) is not particularly limited, but is preferably 10,000 to 500,000, more preferably 30,000 to 350,000, still more preferably 50,000 to 100, 000.
〔スチレン系エラストマー(D)の含有量〕
 第1の熱硬化性樹脂組成物がスチレン系エラストマー(D)を含有する場合、第1の熱硬化性樹脂組成物中におけるスチレン系エラストマー(D)の含有量は、特に限定されないが、第1の熱硬化性樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは0.5~20質量%、より好ましくは1~10質量%、さらに好ましくは3~7質量%である。
 第1の熱硬化性樹脂組成物中におけるスチレン系エラストマー(D)の含有量が上記下限値以上であると、誘電特性がより良好になり易い傾向にある。また、第1の熱硬化性樹脂組成物中におけるスチレン系エラストマー(D)の含有量が上記上限値以下であると、諸特性のバランスを良好に調整し易い傾向にある。
[Content of styrene elastomer (D)]
When the first thermosetting resin composition contains the styrene-based elastomer (D), the content of the styrene-based elastomer (D) in the first thermosetting resin composition is not particularly limited. With respect to the total amount (100% by mass) of the resin components in the thermosetting resin composition, preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, more preferably 3 to 7% by mass. be.
When the content of the styrene-based elastomer (D) in the first thermosetting resin composition is at least the above lower limit, the dielectric properties tend to be better. Moreover, when the content of the styrene-based elastomer (D) in the first thermosetting resin composition is equal to or less than the above upper limit, there is a tendency to favorably adjust the balance of various properties.
(ポリアミド樹脂(E))
 第1の熱硬化性樹脂組成物は、さらに、ポリアミド樹脂(E)を含有することが好ましい。
 ポリアミド樹脂(E)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Polyamide resin (E))
The first thermosetting resin composition preferably further contains a polyamide resin (E).
The polyamide resin (E) may be used alone or in combination of two or more.
 ポリアミド樹脂(E)としては、ポリブタジエン骨格を含有するポリアミド樹脂が好ましく、下記一般式(E-1)で表される構造単位、下記一般式(E-2)で表される構造単位及び下記一般式(E-3)で表される構造単位を含むポリアミド樹脂(以下、「変性ポリアミド樹脂」ともいう)がより好ましい。 The polyamide resin (E) is preferably a polyamide resin containing a polybutadiene skeleton, a structural unit represented by the following general formula (E-1), a structural unit represented by the following general formula (E-2) and the following general A polyamide resin containing a structural unit represented by formula (E-3) (hereinafter also referred to as “modified polyamide resin”) is more preferred.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記一般式(E-1)~(E-3)中、nE1、nE2、nE3、nE4、nE5及びnE6は、平均重合度であって、nE1は2~10の数、nE2は0~3の数、nE3は3~30の数である。但し、nE4=1に対してnE5+nE6=2~300の数であり、nE5=1に対してnE6≧20である。上記一般式(E-2)中、nE7は1又は2の整数である。
 上記一般式(E-1)~(E-3)中、RE1、RE2及びRE3は、各々独立に、芳香族ジアミン化合物又は脂肪族ジアミン化合物から2個のアミノ基を除いた2価の基であり、RE4は、芳香族ジカルボン酸化合物、脂肪族ジカルボン酸化合物又は両末端にカルボキシ基を有するオリゴマーから2個のカルボキシ基を除いた2価の基である。
 なお、本明細書中、「芳香族ジカルボン酸化合物」とは、芳香族炭化水素に直接結合するカルボキシ基を2個有する化合物を意味し、「脂肪族ジカルボン酸化合物」とは、脂肪族炭化水素に直接結合するカルボキシ基を2個有する化合物を意味する。
In the general formulas (E-1) to (E-3), n E1 , n E2 , n E3 , n E4 , n E5 and n E6 are average degrees of polymerization, and n E1 is a number from 2 to 10. , n E2 is a number from 0 to 3, and n E3 is a number from 3 to 30. However, n E5 +n E6 = a number from 2 to 300 for n E4 =1, and n E6 ≧20 for n E5 =1. In general formula (E-2) above, n E7 is an integer of 1 or 2.
In general formulas (E-1) to (E-3) above, R E1 , R E2 and R E3 each independently represent a divalent diamine obtained by removing two amino groups from an aromatic diamine compound or an aliphatic diamine compound. and R E4 is a divalent group obtained by removing two carboxy groups from an aromatic dicarboxylic acid compound, an aliphatic dicarboxylic acid compound, or an oligomer having carboxy groups at both ends.
In the present specification, the term "aromatic dicarboxylic acid compound" means a compound having two carboxyl groups directly bonded to an aromatic hydrocarbon, and the term "aliphatic dicarboxylic acid compound" means an aliphatic hydrocarbon. means a compound having two carboxyl groups directly bonded to
 変性ポリアミド樹脂は、例えば、芳香族ジアミン化合物又は脂肪族ジアミン化合物であるジアミン化合物と、芳香族ジカルボン酸化合物、脂肪族ジカルボン酸化合物又は両末端にカルボキシ基を有するオリゴマーであるジカルボン酸化合物と、フェノール性水酸基含有ジカルボン酸化合物と、両末端にカルボキシ基を有するポリブタジエンと、を反応させて、各成分のカルボキシ基とアミノ基とを重縮合させることによって合成されてなるものが挙げられる。なお、これらの原料成分は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。 The modified polyamide resin includes, for example, a diamine compound that is an aromatic diamine compound or an aliphatic diamine compound, an aromatic dicarboxylic acid compound, an aliphatic dicarboxylic acid compound, or a dicarboxylic acid compound that is an oligomer having carboxy groups at both ends, and phenol and a polybutadiene having carboxyl groups at both ends are reacted with each other to polycondense the carboxyl groups and amino groups of each component. In addition, these raw material components may be used individually by 1 type, and may use 2 or more types together about each.
 上記芳香族ジアミン化合物としては、例えば、ジアミノベンゼン、ジアミノトルエン、ジアミノフェノール、ジアミノジメチルベンゼン、ジアミノメシチレン、ジアミノニトロベンゼン、ジアミノジアゾベンゼン、ジアミノナフタレン、ジアミノビフェニル、ジアミノジメトキシビフェニル、ジアミノジフェニルエーテル、ジアミノジメチルジフェニルエーテル、メチレンビス(ジメチルアニリン)、メチレンビス(メトキシアニリン)、メチレンビス(ジメトキシアニリン)、メチレンビス(エチルアニリン)、メチレンビス(ジエチルアニリン)、メチレンビス(エトキシアニリン)、メチレンビス(ジエトキシアニリン)、イソプロピリデンジアニリン、ジアミノベンゾフェノン、ジアミノジメチルベンゾフェノン、ジアミノアントラキノン、ジアミノジフェニルチオエーテル、ジアミノジメチルジフェニルチオエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルスルホキシド、ジアミノフルオレン等が挙げられる。
 上記脂肪族ジアミン化合物としては、例えば、メチレンジアミン、エチレンジアミン、プロパンジアミン、ヒドロキシプロパンジアミン、ブタンジアミン、ヘプタンジアミン、ヘキサンジアミン、ジアミノジエチルアミン、ジアミノプロピルアミン、シクロペンタンジアミン、シクロヘキサンジアミン、アザペンタンジアミン、トリアザウンデカジアミン等が挙げられる。
Examples of the aromatic diamine compounds include diaminobenzene, diaminotoluene, diaminophenol, diaminodimethylbenzene, diaminomesitylene, diaminonitrobenzene, diaminodiazobenzene, diaminonaphthalene, diaminobiphenyl, diaminodimethoxybiphenyl, diaminodiphenyl ether, diaminodimethyldiphenyl ether, Methylenebis (dimethylaniline), Methylenebis (methoxyaniline), Methylenebis (dimethoxyaniline), Methylenebis (ethylaniline), Methylenebis (diethylaniline), Methylenebis (ethoxyaniline), Methylenebis (diethoxyaniline), Isopropylidenedianiline, Diaminobenzophenone , diaminodimethylbenzophenone, diaminoanthraquinone, diaminodiphenylthioether, diaminodimethyldiphenylthioether, diaminodiphenylsulfone, diaminodiphenylsulfoxide, diaminofluorene and the like.
Examples of the aliphatic diamine compounds include methylenediamine, ethylenediamine, propanediamine, hydroxypropanediamine, butanediamine, heptanediamine, hexanediamine, diaminodiethylamine, diaminopropylamine, cyclopentanediamine, cyclohexanediamine, azapentanediamine, tri zaunde diamine and the like.
 上記芳香族ジカルボン酸化合物としては、例えば、フタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、メチレン二安息香酸、チオ二安息香酸、カルボニル二安息香酸、スルホニル安息香酸、ナフタレンジカルボン酸等が挙げられる。
 上記脂肪族ジカルボン酸化合物としては、例えば、シュウ酸、マロン酸、メチルマロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、りんご酸、酒石酸、(メタ)アクリロイルオキシコハク酸、ジ(メタ)アクリロイルオキシコハク酸、(メタ)アクリロイルオキシりんご酸、(メタ)アクリルアミドコハク酸、(メタ)アクリルアミドりんご酸等が挙げられる。
Examples of the aromatic dicarboxylic acid compounds include phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, methylene dibenzoic acid, thiodibenzoic acid, carbonyl dibenzoic acid, sulfonylbenzoic acid, and naphthalenedicarboxylic acid. .
Examples of the aliphatic dicarboxylic acid compounds include oxalic acid, malonic acid, methylmalonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, malic acid, tartaric acid, (meth)acryloyloxysuccinic acid, di (Meth)acryloyloxysuccinic acid, (meth)acryloyloxymalic acid, (meth)acrylamidosuccinic acid, (meth)acrylamidomalic acid and the like.
 上記フェノール性水酸基含有ジカルボン酸化合物としては、例えば、ヒドロキシイソフタル酸、ヒドロキシフタル酸、ヒドロキシテレフタル酸、ジヒドロキシイソフタル酸、ジヒドロキシテレフタル酸等が挙げられる。 Examples of the phenolic hydroxyl group-containing dicarboxylic acid compounds include hydroxyisophthalic acid, hydroxyphthalic acid, hydroxyterephthalic acid, dihydroxyisophthalic acid, and dihydroxyterephthalic acid.
 ポリアミド樹脂(E)の数平均分子量(Mn)は、溶媒溶解性、及びラミネート後の膜厚保持性の観点から、好ましくは20,000~30,000、より好ましくは22,000~29,000、さらに好ましくは24,000~28,000である。
 ポリアミド樹脂(E)の重量平均分子量(Mw)は、同様の観点から、好ましくは100,000~140,000、より好ましくは103,000~130,000、さらに好ましくは105,000~120,000である。
The number average molecular weight (Mn) of the polyamide resin (E) is preferably 20,000 to 30,000, more preferably 22,000 to 29,000, from the viewpoint of solvent solubility and film thickness retention after lamination. , more preferably 24,000 to 28,000.
From the same viewpoint, the weight average molecular weight (Mw) of the polyamide resin (E) is preferably 100,000 to 140,000, more preferably 103,000 to 130,000, still more preferably 105,000 to 120,000. is.
 ポリアミド樹脂(E)としては、市販品を用いてもよい。市販品のポリアミド樹脂(E)としては、日本化薬株式会社製のポリアミド樹脂「BPAM-01」、「BPAM-155」(共に商品名)等が挙げられる。 A commercially available product may be used as the polyamide resin (E). Examples of commercially available polyamide resins (E) include polyamide resins “BPAM-01” and “BPAM-155” (both trade names) manufactured by Nippon Kayaku Co., Ltd., and the like.
〔ポリアミド樹脂(E)の含有量〕
 第1の熱硬化性樹脂組成物がポリアミド樹脂(E)を含有する場合、第1の熱硬化性樹脂組成物中におけるポリアミド樹脂(E)の含有量は、特に限定されないが、第1の熱硬化性樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは1~30質量%、より好ましくは4~20質量%、さらに好ましくは7~15質量%である。
 第1の熱硬化性樹脂組成物中におけるポリアミド樹脂(E)の含有量が上記下限値以上であると、導体接着性がより良好になり易い傾向にある。また、第1の熱硬化性樹脂組成物中におけるポリアミド樹脂(E)の含有量が上記上限値以下であると、諸特性のバランスを良好に調整し易い傾向にある。
[Content of polyamide resin (E)]
When the first thermosetting resin composition contains the polyamide resin (E), the content of the polyamide resin (E) in the first thermosetting resin composition is not particularly limited. It is preferably 1 to 30% by mass, more preferably 4 to 20% by mass, still more preferably 7 to 15% by mass, relative to the total amount (100% by mass) of the resin components in the curable resin composition.
When the content of the polyamide resin (E) in the first thermosetting resin composition is at least the above lower limit, the conductor adhesion tends to be better. Moreover, when the content of the polyamide resin (E) in the first thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
(硬化促進剤(F))
 第1の熱硬化性樹脂組成物は、さらに、硬化性の観点から、硬化促進剤(F)を含有することが好ましい。
 硬化促進剤(F)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Curing accelerator (F))
From the viewpoint of curability, the first thermosetting resin composition preferably further contains a curing accelerator (F).
The curing accelerator (F) may be used alone or in combination of two or more.
 硬化促進剤(F)としては、例えば、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン、ジシアンジアミド等のアミン化合物;メチルイミダゾール、フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート等のイミダゾール化合物;ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物等のイソシアネートマスクイミダゾール化合物;第4級アンモニウム化合物;トリフェニルホスフィン等のリン系化合物;ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン等の有機過酸化物;マンガン、コバルト、亜鉛等のカルボン酸塩などが挙げられる。
 これらの中でも、イソシアネートマスクイミダゾール化合物が好ましい。
Examples of the curing accelerator (F) include acidic catalysts such as p-toluenesulfonic acid; amine compounds such as triethylamine, pyridine, tributylamine and dicyandiamide; methylimidazole, phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1 -Imidazole compounds such as cyanoethyl-2-phenylimidazolium trimellitate; isocyanate mask imidazole compounds such as addition reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole; quaternary ammonium compounds; Dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, 2,5-dimethyl-2,5-bis(t-butylperoxy) organic peroxides such as hexane, t-butylperoxyisopropylmonocarbonate, α,α'-bis(t-butylperoxy)diisopropylbenzene; and carboxylates such as manganese, cobalt and zinc.
Among these, isocyanate masked imidazole compounds are preferred.
 第1の熱硬化性樹脂組成物が硬化促進剤(F)を含有する場合、第1の熱硬化性樹脂組成物中における硬化促進剤(F)の含有量は、特に限定されないが、熱硬化性樹脂(A)100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~5質量部、さらに好ましくは0.4~1質量部である。
 第1の熱硬化性樹脂組成物中における硬化促進剤(F)の含有量が上記下限値以上であると、硬化性がより良好になり易い傾向にある。また、第1の熱硬化性樹脂組成物中における硬化促進剤(F)の含有量が上記上限値以下であると、保存安定性がより良好になり易い傾向にある。
When the first thermosetting resin composition contains the curing accelerator (F), the content of the curing accelerator (F) in the first thermosetting resin composition is not particularly limited, but thermosetting It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, still more preferably 0.4 to 1 part by mass with respect to 100 parts by mass of the resin (A).
When the content of the curing accelerator (F) in the first thermosetting resin composition is at least the above lower limit, curability tends to be better. Moreover, when the content of the curing accelerator (F) in the first thermosetting resin composition is equal to or less than the above upper limit, the storage stability tends to be better.
(有機溶媒)
 第1の熱硬化性樹脂組成物は、取り扱い性の観点から、有機溶媒を含有するワニス状の樹脂組成物としてもよい。
 有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
(organic solvent)
The first thermosetting resin composition may be a varnish-like resin composition containing an organic solvent from the viewpoint of ease of handling.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
 有機溶媒としては、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;γ-ブチロラクトン等のエステル系溶媒などが挙げられる。
 これらの中でも、溶解性の観点から、アルコール系溶媒、ケトン系溶媒、窒素原子含有溶媒、芳香族炭化水素系溶媒が好ましく、ケトン系溶媒がより好ましく、メチルエチルケトンがさらに好ましい。
Examples of organic solvents include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene, xylene and mesitylene; nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfur atom-containing solvents such as dimethylsulfoxide; ester solvents such as γ-butyrolactone, etc. mentioned.
Among these, from the viewpoint of solubility, alcohol solvents, ketone solvents, nitrogen atom-containing solvents, and aromatic hydrocarbon solvents are preferred, ketone solvents are more preferred, and methyl ethyl ketone is even more preferred.
 第1の熱硬化性樹脂組成物が有機溶媒を含有する場合、第1の熱硬化性樹脂組成物の固形分濃度は、特に限定されないが、塗布性の観点から、好ましくは40~90質量%、より好ましくは50~80質量%、さらに好ましくは60~70質量%である。 When the first thermosetting resin composition contains an organic solvent, the solid content concentration of the first thermosetting resin composition is not particularly limited, but from the viewpoint of coatability, preferably 40 to 90% by mass. , more preferably 50 to 80% by mass, more preferably 60 to 70% by mass.
(その他の成分)
 第1の熱硬化性樹脂組成物は、さらに必要に応じて、上記各成分以外の樹脂材料、難燃剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤及びこれら以外の添加剤からなる群から選択される1種以上の任意成分を含有していてもよい。
 上記の任意成分は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。
 第1の熱硬化性樹脂組成物中における上記の任意成分の含有量は特に限定されず、必要に応じて、本実施形態の効果を阻害しない範囲で使用すればよい。
 第1の熱硬化性樹脂組成物は、所望する性能に応じて、上記の任意成分を含有しないものであってもよい。なお、第1の熱硬化性樹脂組成物及び第1の熱硬化性樹脂層は、繊維基材を含有しないことが好ましい。
(other ingredients)
If necessary, the first thermosetting resin composition further contains a resin material other than the above components, a flame retardant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, and a lubricant. and one or more optional components selected from the group consisting of additives other than these.
Each of the above optional components may be used alone or in combination of two or more.
The content of the above optional component in the first thermosetting resin composition is not particularly limited, and may be used as necessary within a range that does not impair the effects of the present embodiment.
The first thermosetting resin composition may be free of the above optional components depending on the desired performance. In addition, it is preferable that the first thermosetting resin composition and the first thermosetting resin layer do not contain a fiber base material.
(第1の熱硬化性樹脂組成物の製造方法)
 第1の熱硬化性樹脂組成物は、上記各成分を混合することによって製造することができる。
 各成分を混合する際には、各成分は撹拌しながら溶解又は分散させてもよい。また、原料を混合する順序、混合温度、混合時間等の条件は、特に限定されず、原料の種類等に応じて任意に設定すればよい。
(Method for producing the first thermosetting resin composition)
The first thermosetting resin composition can be produced by mixing the above components.
When mixing each component, each component may be dissolved or dispersed while stirring. Conditions such as the order of mixing raw materials, mixing temperature, and mixing time are not particularly limited, and may be arbitrarily set according to the type of raw materials.
<第2の熱硬化性樹脂層>
 第2の熱硬化性樹脂層は、ゴム成分を含有する熱硬化性樹脂層である。
 本実施形態の樹脂付き金属箔は、金属箔と第1の熱硬化性樹脂層との間に第2の熱硬化性樹脂層を設けることによって、樹脂層におけるクラック及び樹脂付き金属箔のカールの発生が抑制されたものになる。
 なお、本明細書において「ゴム成分」とは、架橋したエラストマー又は架橋可能なエラストマーを意味する。第2の熱硬化性樹脂層に含有されるゴム成分は、他の成分と反応した形態で存在していてもよい。
<Second thermosetting resin layer>
The second thermosetting resin layer is a thermosetting resin layer containing a rubber component.
In the metal foil with resin of this embodiment, cracks in the resin layer and curling of the metal foil with resin are prevented by providing the second thermosetting resin layer between the metal foil and the first thermosetting resin layer. occurrence is suppressed.
As used herein, the term "rubber component" means a crosslinked elastomer or a crosslinkable elastomer. The rubber component contained in the second thermosetting resin layer may exist in a form reacted with other components.
 本実施形態の樹脂付き金属箔において、第2の熱硬化性樹脂層中における無機充填材の含有量は、0~20質量%である。
 第2の熱硬化性樹脂層中における無機充填材の含有量が上記上限値以下であると、樹脂層におけるクラック及び樹脂付き金属箔のカールの発生を十分に抑制することができる。
 上記と同様の観点から、第2の熱硬化性樹脂層中における無機充填材の含有量は、特に限定されないが、好ましくは0~10質量%、より好ましくは0~5質量%、さらに好ましくは0~1質量%である。
 無機充填材としては、上記した無機充填材(B)と同じものが挙げられる。
In the metal foil with resin of this embodiment, the content of the inorganic filler in the second thermosetting resin layer is 0 to 20% by mass.
When the content of the inorganic filler in the second thermosetting resin layer is equal to or less than the above upper limit, cracks in the resin layer and curling of the resin-coated metal foil can be sufficiently suppressed.
From the same viewpoint as above, the content of the inorganic filler in the second thermosetting resin layer is not particularly limited, but is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and still more preferably It is 0 to 1% by mass.
Examples of the inorganic filler include the same inorganic filler (B) as described above.
 第2の熱硬化性樹脂層の厚さは、特に限定されないが、樹脂層のクラック及び樹脂付き金属箔のカールをより抑制し易くするという観点から、好ましくは0.5~10μm、より好ましくは1~7μm、さらに好ましくは1.5~4μmである。 The thickness of the second thermosetting resin layer is not particularly limited, but is preferably 0.5 to 10 μm, more preferably 0.5 to 10 μm, from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. It is 1 to 7 μm, more preferably 1.5 to 4 μm.
 第2の熱硬化性樹脂層は、熱硬化性樹脂及びゴム成分を含有する第2の熱硬化性樹脂組成物から形成される層であることが好ましい。
 なお、以下の説明において、第2の熱硬化性樹脂組成物に含有される熱硬化性樹脂を「熱硬化性樹脂(a)」、第2の熱硬化性樹脂組成物に含有されるゴム成分を「ゴム成分(b)」と称する場合がある。
The second thermosetting resin layer is preferably a layer formed from a second thermosetting resin composition containing a thermosetting resin and a rubber component.
In the following description, the thermosetting resin contained in the second thermosetting resin composition is referred to as "thermosetting resin (a)", and the rubber component contained in the second thermosetting resin composition may be referred to as "rubber component (b)".
(熱硬化性樹脂(a))
 熱硬化性樹脂(a)としては、例えば、エポキシ樹脂、フェノール樹脂、マレイミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。これらの中でも、耐熱性の観点から、マレイミド樹脂、エポキシ樹脂、シアネート樹脂が好ましく、マレイミド樹脂、エポキシ樹脂がより好ましく、エポキシ樹脂がさらに好ましい。
 熱硬化性樹脂(a)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Thermosetting resin (a))
Examples of thermosetting resins (a) include epoxy resins, phenol resins, maleimide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, Examples include silicone resins, triazine resins, melamine resins, and the like. Among these, from the viewpoint of heat resistance, maleimide resins, epoxy resins and cyanate resins are preferred, maleimide resins and epoxy resins are more preferred, and epoxy resins are even more preferred.
The thermosetting resin (a) may be used alone or in combination of two or more.
 熱硬化性樹脂(a)として用いられるエポキシ樹脂としては、2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。 The epoxy resin used as the thermosetting resin (a) is preferably an epoxy resin having two or more epoxy groups. Epoxy resins are classified into glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, glycidyl ester type epoxy resins, and the like. Among these, glycidyl ether type epoxy resins are preferred.
 エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類される。
 具体的には、エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール系エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のビスフェノール系ノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等の、上記ビスフェノール系ノボラック型エポキシ樹脂以外のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン骨格含有エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;飽和ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;脂肪族鎖状エポキシ樹脂;ゴム変性エポキシ樹脂;などに分類される。これらの中でも、ビフェニルアラルキル型エポキシ樹脂が好ましい。
Epoxy resins are classified into various epoxy resins depending on the difference in the main skeleton.
Specifically, epoxy resins include, for example, bisphenol-based epoxy resins such as bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, and bisphenol S-type epoxy resin; Bisphenol-based novolak-type epoxy resins; novolac-type epoxy resins other than the above bisphenol-based novolac-type epoxy resins, such as phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, and biphenyl novolac-type epoxy resins; phenol aralkyl-type epoxy resins; stilbene-type epoxy resins Resin; naphthol novolac type epoxy resin, naphthol type epoxy resin, naphthol aralkyl type epoxy resin, naphthylene ether type epoxy resin, and other naphthalene skeleton-containing epoxy resins; biphenyl type epoxy resin; biphenyl aralkyl type epoxy resin; xylylene type epoxy resin; Anthracene type epoxy resin; alicyclic epoxy resin such as saturated dicyclopentadiene type epoxy resin; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexanedimethanol type epoxy resin; trimethylol type epoxy resin; resin; rubber-modified epoxy resin; Among these, biphenyl aralkyl type epoxy resins are preferred.
 エポキシ樹脂のエポキシ基当量は、特に限定されないが、好ましくは150~600g/mol、より好ましくは200~450g/mol、さらに好ましくは250~350g/molである。 Although the epoxy group equivalent weight of the epoxy resin is not particularly limited, it is preferably 150 to 600 g/mol, more preferably 200 to 450 g/mol, still more preferably 250 to 350 g/mol.
 熱硬化性樹脂(a)がエポキシ樹脂を含有する場合、熱硬化性樹脂(a)中におけるエポキシ樹脂の含有量は、特に限定されないが、好ましくは80~100質量%、より好ましくは90~100質量%、さらに好ましくは95~100質量%である。
 熱硬化性樹脂(a)中におけるエポキシ樹脂の含有量が上記範囲内であると、耐熱性及び成形性がより良好になり易い傾向にある。
When the thermosetting resin (a) contains an epoxy resin, the content of the epoxy resin in the thermosetting resin (a) is not particularly limited, but is preferably 80 to 100% by mass, more preferably 90 to 100%. % by mass, more preferably 95 to 100% by mass.
When the content of the epoxy resin in the thermosetting resin (a) is within the above range, heat resistance and moldability tend to be better.
〔熱硬化性樹脂(a)の含有量〕
 第2の熱硬化性樹脂組成物中における熱硬化性樹脂(a)の含有量は、特に限定されないが、第2の熱硬化性樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは30~80質量%、より好ましくは40~75質量%、さらに好ましくは50~70質量%である。
 第2の熱硬化性樹脂組成物中における熱硬化性樹脂(a)の含有量が上記下限値以上であると、耐熱性及び成形性がより良好になり易い傾向にある。また、第2の熱硬化性樹脂組成物中における熱硬化性樹脂(a)の含有量が上記上限値以下であると、諸特性のバランスを良好に調整し易い傾向にある。
[Content of thermosetting resin (a)]
The content of the thermosetting resin (a) in the second thermosetting resin composition is not particularly limited, but the total amount of resin components in the second thermosetting resin composition (100% by mass) , preferably 30 to 80% by mass, more preferably 40 to 75% by mass, still more preferably 50 to 70% by mass.
When the content of the thermosetting resin (a) in the second thermosetting resin composition is at least the above lower limit, heat resistance and moldability tend to be better. Moreover, when the content of the thermosetting resin (a) in the second thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
 第2の熱硬化性樹脂組成物中における樹脂成分の合計含有量は、特に限定されないが、耐熱性の観点から、第2の熱硬化性樹脂組成物の固形分総量(100質量%)に対して、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは99~100質量%である。
 第2の熱硬化性樹脂組成物中における樹脂成分の含有量が上記範囲内であると、耐熱性及び成形性がより良好になり易い傾向にある。
 なお、第2の熱硬化性樹脂組成物においては熱硬化性樹脂(a)及びゴム成分(b)が樹脂成分に相当する。また、樹脂成分に相当する任意成分としては、後述する、硬化剤(c)、熱可塑性樹脂(d)、硬化促進剤(e)等が挙げられる。
The total content of the resin components in the second thermosetting resin composition is not particularly limited, but from the viewpoint of heat resistance, the total solid content (100% by mass) of the second thermosetting resin composition , preferably 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 99 to 100% by mass.
When the content of the resin component in the second thermosetting resin composition is within the above range, heat resistance and moldability tend to be better.
In addition, in the second thermosetting resin composition, the thermosetting resin (a) and the rubber component (b) correspond to the resin component. Optional components corresponding to the resin component include a curing agent (c), a thermoplastic resin (d), a curing accelerator (e), and the like, which will be described later.
(ゴム成分(b))
 ゴム成分(b)としては、例えば、架橋ゴム粒子、液状ゴム等が挙げられる。これらの中でも、樹脂層のクラック及び樹脂付き金属箔のカールをより抑制し易くするという観点から、架橋ゴム粒子が好ましい。
 架橋ゴム粒子としては、例えば、ブタジエンゴム粒子、イソプレンゴム粒子、クロロプレンゴム粒子、スチレンゴム粒子、アクリルゴム粒子、シリコーンゴム粒子、天然ゴム粒子、スチレン・ブタジエンゴム粒子、アクリロニトリルブタジエンゴム粒子、カルボン酸変性アクリロニトリルブタジエンゴム粒子、コアシェル型ゴム粒子等が挙げられる。これらの中でも、アクリロニトリルブタジエンゴム粒子、カルボン酸変性アクリロニトリルブタジエンゴム粒子が好ましく、カルボン酸変性アクリロニトリルブタジエンゴム粒子がより好ましい。
 ゴム成分(b)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Rubber component (b))
Examples of the rubber component (b) include crosslinked rubber particles and liquid rubber. Among these, crosslinked rubber particles are preferable from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil.
Examples of crosslinked rubber particles include butadiene rubber particles, isoprene rubber particles, chloroprene rubber particles, styrene rubber particles, acrylic rubber particles, silicone rubber particles, natural rubber particles, styrene-butadiene rubber particles, acrylonitrile-butadiene rubber particles, and carboxylic acid-modified rubber particles. Examples include acrylonitrile-butadiene rubber particles and core-shell type rubber particles. Among these, acrylonitrile-butadiene rubber particles and carboxylic acid-modified acrylonitrile-butadiene rubber particles are preferred, and carboxylic acid-modified acrylonitrile-butadiene rubber particles are more preferred.
The rubber component (b) may be used alone or in combination of two or more.
 アクリロニトリルブタジエンゴム粒子は、アクリロニトリルとブタジエンを共重合させる際、部分的に架橋させて粒子状にしたものである。また、アクリル酸、メタクリル酸等のカルボン酸を併せて共重合することによって、カルボン酸変性アクリロニトリルブタジエンゴム粒子を得ることができる。 Acrylonitrile-butadiene rubber particles are particles obtained by partially cross-linking acrylonitrile and butadiene during copolymerization. Moreover, carboxylic acid-modified acrylonitrile-butadiene rubber particles can be obtained by copolymerizing carboxylic acids such as acrylic acid and methacrylic acid together.
 架橋ゴム粒子の平均一次粒子径(D50)は、特に限定されないが、樹脂層のクラック及び樹脂付き金属箔のカールをより抑制し易くするという観点から、好ましくは50~1,000nmである。
 架橋ゴム粒子の平均一次粒子径(D50)は、レーザー回折式粒度分布計で測定して求めることができる。
The average primary particle diameter (D 50 ) of the crosslinked rubber particles is not particularly limited, but is preferably 50 to 1,000 nm from the viewpoint of more easily suppressing cracks in the resin layer and curling of the resin-coated metal foil.
The average primary particle size (D 50 ) of the crosslinked rubber particles can be obtained by measuring with a laser diffraction particle size distribution meter.
〔ゴム成分(b)の含有量〕
 第2の熱硬化性樹脂組成物中におけるゴム成分(b)の含有量は、特に限定されないが、第2の熱硬化性樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは0.5~20質量%、より好ましくは1~10質量%、さらに好ましくは3~7質量%である。
 第2の熱硬化性樹脂組成物中におけるゴム成分(b)の含有量が上記下限値以上であると、樹脂層のクラック及び樹脂付き金属箔のカールがより抑制され易くなる傾向にある。また、第2の熱硬化性樹脂組成物中におけるゴム成分(b)の含有量が上記上限値以下であると、耐熱性がより良好になり易い傾向にある。
[Content of rubber component (b)]
The content of the rubber component (b) in the second thermosetting resin composition is not particularly limited. It is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, still more preferably 3 to 7% by mass.
When the content of the rubber component (b) in the second thermosetting resin composition is at least the above lower limit, cracks in the resin layer and curling of the resin-coated metal foil tend to be more easily suppressed. Moreover, when the content of the rubber component (b) in the second thermosetting resin composition is equal to or less than the above upper limit, the heat resistance tends to be better.
(硬化剤(c))
 第2の熱硬化性樹脂組成物は、さらに、硬化剤(c)を含有していてもよい。特に熱硬化性樹脂(a)としてエポキシ樹脂を含有する場合は、硬化剤(c)としてエポキシ樹脂硬化剤を含有することが好ましい。
 硬化剤(c)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Curing agent (c))
The second thermosetting resin composition may further contain a curing agent (c). In particular, when an epoxy resin is contained as the thermosetting resin (a), it is preferable to contain an epoxy resin curing agent as the curing agent (c).
The curing agent (c) may be used alone or in combination of two or more.
 エポキシ樹脂硬化剤としては、例えば、アミン系硬化剤、フェノール樹脂系硬化剤、酸無水物系硬化剤等が挙げられる。これらの中でも、フェノール樹脂系硬化剤が好ましい。
 フェノール樹脂系硬化剤としては、ノボラック型フェノール樹脂が好ましい。
 ノボラック型フェノール樹脂は、水酸基以外の置換基を有さないフェノールをノボラック化したものであってもよく、クレゾール等の水酸基以外の置換基を有するフェノールをノボラック化したものであってもよい。
Examples of epoxy resin curing agents include amine curing agents, phenolic resin curing agents, acid anhydride curing agents, and the like. Among these, phenolic resin curing agents are preferred.
As the phenolic resin-based curing agent, a novolak-type phenolic resin is preferred.
The novolak-type phenolic resin may be a phenol having no substituents other than hydroxyl groups that has been novolacified, or a phenol having substituents other than hydroxyl groups such as cresol and the like that has been novolakified.
 また、ノボラック型フェノール樹脂は、主鎖にトリアジン環を含むトリアジン環含有ノボラック型フェノール樹脂であってもよい。
 トリアジン環含有ノボラック型フェノール樹脂中における窒素含有量は、特に限定されないが、誘電特性及び溶媒溶解性の観点から、好ましくは10~25質量%、より好ましくは11~22質量%、さらに好ましくは12~19質量%である。
Moreover, the novolac-type phenolic resin may be a triazine ring-containing novolak-type phenolic resin containing a triazine ring in the main chain.
The nitrogen content in the triazine ring-containing novolac-type phenolic resin is not particularly limited, but from the viewpoint of dielectric properties and solvent solubility, it is preferably 10 to 25% by mass, more preferably 11 to 22% by mass, and still more preferably 12% by mass. ~19% by mass.
 フェノール樹脂系硬化剤のフェノール性水酸基当量は、特に限定されないが、好ましくは100~300g/mol、より好ましくは120~200g/mol、さらに好ましくは140~170g/molである。 The phenolic hydroxyl group equivalent of the phenolic resin-based curing agent is not particularly limited, but is preferably 100 to 300 g/mol, more preferably 120 to 200 g/mol, and still more preferably 140 to 170 g/mol.
〔硬化剤(c)の含有量〕
 第2の熱硬化性樹脂組成物が硬化剤(c)を含有する場合、第2の熱硬化性樹脂組成物中における硬化剤(c)の含有量は、特に限定されないが、熱硬化性樹脂(a)100質量部に対して、好ましくは5~100質量部、より好ましくは10~70質量部、さらに好ましくは20~40質量部である。
 第2の熱硬化性樹脂組成物中における硬化剤(c)の含有量が上記範囲内であると、耐熱性がより良好になり易い傾向にある。
[Content of curing agent (c)]
When the second thermosetting resin composition contains the curing agent (c), the content of the curing agent (c) in the second thermosetting resin composition is not particularly limited, but the thermosetting resin (a) is preferably 5 to 100 parts by mass, more preferably 10 to 70 parts by mass, and still more preferably 20 to 40 parts by mass based on 100 parts by mass.
When the content of the curing agent (c) in the second thermosetting resin composition is within the above range, the heat resistance tends to be better.
(熱可塑性樹脂(d))
 第2の熱硬化性樹脂組成物は、さらに、熱可塑性樹脂(d)を含有することが好ましい。
 熱可塑性樹脂(d)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Thermoplastic resin (d))
The second thermosetting resin composition preferably further contains a thermoplastic resin (d).
The thermoplastic resin (d) may be used alone or in combination of two or more.
 熱可塑性樹脂(d)としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリスチレン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアセタール樹脂、これらの樹脂を構成するモノマーの共重合体等が挙げられる。これらの中でも、ポリビニルアセタール樹脂が好ましい。
 ポリビニルアセタール樹脂はカルボン酸で変性されたカルボキシ基を有するポリビニルアセタール樹脂であってもよい。
 ポリビニルアセタール樹脂の重合度は、耐熱性の観点から、好ましくは1,000~2,500である。なお、ポリビニルアセタール樹脂の重合度は、原料であるポリ酢酸ビニルの数平均分子量(Mn)から算出することができる。
Examples of thermoplastic resins (d) include polyethylene resins, polypropylene resins, polybutadiene resins, polystyrene resins, polyphenylene ether resins, polycarbonate resins, polyester resins, polyamide resins, polyvinyl acetal resins, and copolymerization of monomers constituting these resins. A coalescence etc. are mentioned. Among these, polyvinyl acetal resin is preferable.
The polyvinyl acetal resin may be a polyvinyl acetal resin having a carboxy group modified with a carboxylic acid.
The polymerization degree of the polyvinyl acetal resin is preferably 1,000 to 2,500 from the viewpoint of heat resistance. The degree of polymerization of polyvinyl acetal resin can be calculated from the number average molecular weight (Mn) of polyvinyl acetate as a raw material.
〔熱可塑性樹脂(d)の含有量〕
 第2の熱硬化性樹脂組成物が熱可塑性樹脂(d)を含有する場合、第2の熱硬化性樹脂組成物中における熱可塑性樹脂(d)の含有量は、特に限定されないが、第2の熱硬化性樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは1~30質量%、より好ましくは3~20質量%、さらに好ましくは7~15質量%である。
 第2の熱硬化性樹脂組成物中における熱可塑性樹脂(d)の含有量が上記下限値以上であると、樹脂層のクラック及び樹脂付き金属箔のカールがより抑制され易くなる傾向にある。また、第2の熱硬化性樹脂組成物中における熱可塑性樹脂(d)の含有量が上記上限値以下であると、諸特性のバランスを良好に調整し易い傾向にある。
[Content of thermoplastic resin (d)]
When the second thermosetting resin composition contains the thermoplastic resin (d), the content of the thermoplastic resin (d) in the second thermosetting resin composition is not particularly limited. It is preferably 1 to 30% by mass, more preferably 3 to 20% by mass, and still more preferably 7 to 15% by mass relative to the total amount (100% by mass) of the resin components in the thermosetting resin composition.
When the content of the thermoplastic resin (d) in the second thermosetting resin composition is at least the above lower limit, cracks in the resin layer and curling of the resin-coated metal foil tend to be more easily suppressed. Moreover, when the content of the thermoplastic resin (d) in the second thermosetting resin composition is equal to or less than the above upper limit, it tends to be easy to adjust the balance of various properties well.
(硬化促進剤(e))
 第2の熱硬化性樹脂組成物は、さらに、硬化促進剤(e)を含有することが好ましい。
 硬化促進剤(e)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Curing accelerator (e))
The second thermosetting resin composition preferably further contains a curing accelerator (e).
The curing accelerator (e) may be used alone or in combination of two or more.
 硬化促進剤(e)としては、例えば、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン、ジシアンジアミド等のアミン化合物;メチルイミダゾール、フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート等のイミダゾール化合物;ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物等のイソシアネートマスクイミダゾール化合物;第4級アンモニウム化合物;トリフェニルホスフィン等のリン系化合物;ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン等の有機過酸化物;マンガン、コバルト、亜鉛等のカルボン酸塩などが挙げられる。これらの中でも、イミダゾール化合物が好ましく、1-シアノエチル-2-フェニルイミダゾリウムトリメリテートがより好ましい。 Examples of the curing accelerator (e) include acidic catalysts such as p-toluenesulfonic acid; amine compounds such as triethylamine, pyridine, tributylamine and dicyandiamide; methylimidazole, phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1 -Imidazole compounds such as cyanoethyl-2-phenylimidazolium trimellitate; isocyanate mask imidazole compounds such as addition reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole; quaternary ammonium compounds; Dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, 2,5-dimethyl-2,5-bis(t-butylperoxy) organic peroxides such as hexane, t-butylperoxyisopropylmonocarbonate, α,α'-bis(t-butylperoxy)diisopropylbenzene; and carboxylates such as manganese, cobalt and zinc. Among these, imidazole compounds are preferred, and 1-cyanoethyl-2-phenylimidazolium trimellitate is more preferred.
 第2の熱硬化性樹脂組成物が硬化促進剤(e)を含有する場合、第2の熱硬化性樹脂組成物中における硬化促進剤(e)の含有量は、特に限定されないが、熱硬化性樹脂(a)100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~5質量部、さらに好ましくは0.3~1質量部である。
 第2の熱硬化性樹脂組成物中における硬化促進剤(e)の含有量が上記下限値以上であると、硬化性がより良好になり易い傾向にある。また、第2の熱硬化性樹脂組成物中における硬化促進剤(e)の含有量が上記上限値以下であると、保存安定性がより良好になり易い傾向にある。
When the second thermosetting resin composition contains the curing accelerator (e), the content of the curing accelerator (e) in the second thermosetting resin composition is not particularly limited. It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, still more preferably 0.3 to 1 part by mass, based on 100 parts by mass of the flexible resin (a).
When the content of the curing accelerator (e) in the second thermosetting resin composition is at least the above lower limit, curability tends to be better. Moreover, when the content of the curing accelerator (e) in the second thermosetting resin composition is equal to or less than the above upper limit, the storage stability tends to be better.
(有機溶媒)
 第2の熱硬化性樹脂組成物は、取り扱い性の観点から、有機溶媒を含有するワニス状の樹脂組成物としてもよい。
 有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 有機溶媒としては、第1の熱硬化性樹脂組成物が含有していてもよい有機溶媒と同じものが挙げられ、種類及び使用量の好ましい態様も同じである。
(organic solvent)
The second thermosetting resin composition may be a varnish-like resin composition containing an organic solvent from the viewpoint of ease of handling.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
Examples of the organic solvent include the same organic solvent as the organic solvent that may be contained in the first thermosetting resin composition, and preferred aspects of the type and amount used are also the same.
(その他の成分)
 第2の熱硬化性樹脂組成物は、さらに必要に応じて、上記各成分以外の樹脂材料、難燃剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤及びこれら以外の添加剤からなる群から選択される1種以上の任意成分を含有していてもよい。
 上記の任意成分は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。
 第2の熱硬化性樹脂組成物中における上記の任意成分の含有量は特に限定されず、必要に応じて、本実施形態の効果を阻害しない範囲で使用すればよい。
 第2の熱硬化性樹脂組成物は、所望する性能に応じて、上記の任意成分を含有しないものであってもよい。なお、第2の熱硬化性樹脂組成物及び第2の熱硬化性樹脂層は、繊維基材を含有しないことが好ましい。
(other ingredients)
If necessary, the second thermosetting resin composition further contains a resin material other than the above components, a flame retardant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, and a lubricant. and one or more optional components selected from the group consisting of additives other than these.
Each of the above optional components may be used alone or in combination of two or more.
The content of the above-described optional components in the second thermosetting resin composition is not particularly limited, and may be used as necessary within a range that does not impair the effects of the present embodiment.
The second thermosetting resin composition may be free of the above optional components depending on the desired performance. In addition, it is preferable that the second thermosetting resin composition and the second thermosetting resin layer do not contain a fiber base material.
(第2の熱硬化性樹脂組成物の製造方法)
 第2の熱硬化性樹脂組成物は、上記各成分を混合することによって製造することができる。
 各成分を混合する際には、各成分は撹拌しながら溶解又は分散させてもよい。また、原料を混合する順序、混合温度、混合時間等の条件は、特に限定されず、原料の種類等に応じて任意に設定すればよい。
(Method for producing second thermosetting resin composition)
The second thermosetting resin composition can be produced by mixing the above components.
When mixing each component, each component may be dissolved or dispersed while stirring. Conditions such as the order of mixing raw materials, mixing temperature, and mixing time are not particularly limited, and may be arbitrarily set according to the type of raw materials.
<樹脂層の弾性率>
 本実施形態の樹脂付き金属箔において、第2の熱硬化性樹脂層の硬化物の25℃における貯蔵弾性率E’(以下、「25℃貯蔵弾性率E’(i)」ともいう)は、特に限定されないが、樹脂層のクラック及び樹脂付き金属箔のカールをより抑制し易くするという観点から、好ましくは1.2~4.0GPa、より好ましくは1.5~3.5GPa、さらに好ましくは2.0~3.0GPaである。
 本実施形態の樹脂付き金属箔において、第2の熱硬化性樹脂層の硬化物の150℃における貯蔵弾性率E’(以下、「150℃貯蔵弾性率E’(i)」ともいう)は、特に限定されないが、樹脂層のクラック及び樹脂付き金属箔のカールをより抑制し易くするという観点から、好ましくは0.1~1.0GPa、より好ましくは0.3~0.8GPa、さらに好ましくは0.4~0.6GPaである。
 25℃貯蔵弾性率E’(i)及び150℃貯蔵弾性率E’(i)は、実施例に記載の方法によって測定することができる。
<Elastic modulus of resin layer>
In the resin-coated metal foil of the present embodiment, the cured product of the second thermosetting resin layer has a storage elastic modulus E′ at 25° C. (hereinafter also referred to as “25° C. storage elastic modulus E′(i)”), Although not particularly limited, it is preferably 1.2 to 4.0 GPa, more preferably 1.5 to 3.5 GPa, still more preferably 1.5 to 3.5 GPa, from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. 2.0 to 3.0 GPa.
In the resin-coated metal foil of the present embodiment, the cured product of the second thermosetting resin layer has a storage elastic modulus E′ at 150° C. (hereinafter also referred to as “150° C. storage elastic modulus E′(i)”) of Although it is not particularly limited, it is preferably 0.1 to 1.0 GPa, more preferably 0.3 to 0.8 GPa, and still more preferably from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. 0.4 to 0.6 GPa.
The 25°C storage modulus E'(i) and the 150°C storage modulus E'(i) can be measured by the method described in Examples.
 本実施形態の樹脂付き金属箔において、第2の熱硬化性樹脂層及び第1の熱硬化性樹脂層からなる樹脂層の硬化物の25℃における貯蔵弾性率E’(以下、「25℃貯蔵弾性率E’(ii)」ともいう)は、特に限定されないが、適度な機械強度を有する絶縁層を形成するという観点から、好ましくは4.0~9.0GPa、より好ましくは5.0~8.0GPa、さらに好ましくは6.0~7.0GPaである。
 本実施形態の樹脂付き金属箔において、第2の熱硬化性樹脂層及び第1の熱硬化性樹脂層からなる樹脂層の硬化物の150℃における貯蔵弾性率E’(以下、「150℃貯蔵弾性率E’(ii)」ともいう)は、特に限定されないが、適度な機械強度を有する絶縁層を形成するという観点から、好ましくは2.0~7.0GPa、より好ましくは3.0~6.0GPa、さらに好ましくは4.0~5.0GPaである。
 25℃貯蔵弾性率E’(ii)及び150℃貯蔵弾性率E’(ii)は、実施例に記載の方法によって測定することができる。
In the resin-coated metal foil of the present embodiment, the cured product of the resin layer composed of the second thermosetting resin layer and the first thermosetting resin layer has a storage elastic modulus E' at 25 ° C. (hereinafter referred to as "25 ° C. storage The elastic modulus E′(ii)”) is not particularly limited, but from the viewpoint of forming an insulating layer having an appropriate mechanical strength, it is preferably 4.0 to 9.0 GPa, more preferably 5.0 to 8.0 GPa, more preferably 6.0 to 7.0 GPa.
In the resin-coated metal foil of the present embodiment, the cured product of the resin layer composed of the second thermosetting resin layer and the first thermosetting resin layer has a storage elastic modulus E' at 150 ° C. (hereinafter referred to as "150 ° C. storage Elastic modulus E′(ii)”) is not particularly limited, but is preferably 2.0 to 7.0 GPa, more preferably 3.0 to 7.0 GPa, from the viewpoint of forming an insulating layer having appropriate mechanical strength. 6.0 GPa, more preferably 4.0 to 5.0 GPa.
The 25°C storage modulus E'(ii) and the 150°C storage modulus E'(ii) can be measured by the method described in Examples.
 25℃貯蔵弾性率E’(ii)と25℃貯蔵弾性率E’(i)との差[25℃貯蔵弾性率E’(ii)-25℃貯蔵弾性率E’(i)]は、特に限定されないが、樹脂層のクラック及び樹脂付き金属箔のカールをより抑制し易くするという観点から、好ましくは2.0~7.0GPa、より好ましくは3.0~6.0GPa、さらに好ましくは4.0~5.0GPaである。
 150℃貯蔵弾性率E’(ii)と150℃貯蔵弾性率E’(i)との差[150℃貯蔵弾性率E’(ii)-150℃貯蔵弾性率E’(i)]は、特に限定されないが、樹脂層のクラック及び樹脂付き金属箔のカールをより抑制し易くするという観点から、好ましくは2.0~7.0GPa、より好ましくは3.0~6.0GPa、さらに好ましくは4.0~5.0GPaである。
The difference between the 25° C. storage modulus E′(ii) and the 25° C. storage modulus E′(i) [25° C. storage modulus E′(ii)−25° C. storage modulus E′(i)] is particularly Although not limited, it is preferably 2.0 to 7.0 GPa, more preferably 3.0 to 6.0 GPa, still more preferably 4 from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. .0 to 5.0 GPa.
The difference between the 150° C. storage modulus E′(ii) and the 150° C. storage modulus E′(i) [150° C. storage modulus E′(ii)−150° C. storage modulus E′(i)] is particularly Although not limited, it is preferably 2.0 to 7.0 GPa, more preferably 3.0 to 6.0 GPa, still more preferably 4 from the viewpoint of making it easier to suppress cracks in the resin layer and curling of the resin-coated metal foil. .0 to 5.0 GPa.
<金属箔>
 金属箔としては、例えば、銅箔、錫箔、錫鉛合金箔、ニッケル箔等が挙げられる。これらの中でも、銅箔が好ましい。銅箔としては、銅の含有量が95質量%以上の銅箔であることが好ましい。
 金属箔は、JIS規格(プリント配線板用電解銅箔:JIS C6512、プリント配線板用圧延銅箔:JIS C6513)又はIPC規格(IPC 4562規格Grade1,2,3)に準拠したものであることが、半導体パッケージに利用するという観点から好ましい。
<Metal foil>
Examples of metal foil include copper foil, tin foil, tin-lead alloy foil, and nickel foil. Among these, copper foil is preferable. The copper foil preferably has a copper content of 95% by mass or more.
The metal foil conforms to JIS standards (electrolytic copper foil for printed wiring boards: JIS C6512, rolled copper foil for printed wiring boards: JIS C6513) or IPC standards (IPC 4562 standards Grades 1, 2, and 3). , is preferable from the viewpoint of use in semiconductor packages.
 金属箔の樹脂層を形成する面は、密着性の観点から、粗化処理されていてもよい。
 粗化処理は、金属箔の表面に粗化粒子を形成することによって施すことができる。
 粗化粒子としては、例えば、銅、ニッケル、リン、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛から選択される単体からなる電着粒、又はこれらのうちのいずれか1種以上を含む合金からなる電着粒が好ましい。
 粗化粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
The surface of the metal foil on which the resin layer is to be formed may be roughened from the viewpoint of adhesion.
The roughening treatment can be applied by forming roughening particles on the surface of the metal foil.
As roughening particles, for example, electrodeposited particles made of a single substance selected from copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt and zinc, or alloys containing one or more of these Electrodeposited grains are preferred.
The roughening particles may be used singly or in combination of two or more.
 金属箔は、上記の粗化処理に加え、例えば、ニッケル、コバルト、銅及び亜鉛から選択される単体、これらのうちのいずれか1種以上を含む合金等によって、二次粒子、三次粒子、防錆層、耐熱層等を形成したものであってもよい。
 また、上記の各層に加えて、さらに表面に、クロメート処理、シランカップリング処理等の表面処理を施したものであってもよい。
In addition to the above roughening treatment, the metal foil is subjected to, for example, a single substance selected from nickel, cobalt, copper and zinc, an alloy containing one or more of these, and the like to remove secondary particles, tertiary particles, and A rust layer, a heat-resistant layer, or the like may be formed.
In addition to the layers described above, the surface may be subjected to surface treatment such as chromate treatment or silane coupling treatment.
 金属箔の厚さは、樹脂付き金属箔の用途等に応じて適宜調整すればよく、特に限定されないが、好ましくは0.1~35μm、より好ましくは0.3~15μm、さらに好ましくは0.5~5μmである。
 金属箔の厚さが上記下限値以上であると、樹脂付き金属箔の取り扱い性がより一層向上する傾向にある。一方、金属箔の厚さが上記下限値以上であると、配線密度の高密度化により好適になり易い傾向にある。
 なお、上記の金属箔の厚さには、後述するキャリア箔の厚さは含めないものとする。
The thickness of the metal foil is not particularly limited and may be appropriately adjusted depending on the application of the metal foil with resin, but is preferably 0.1 to 35 μm, more preferably 0.3 to 15 μm, and still more preferably 0.1 μm. 5 to 5 μm.
When the thickness of the metal foil is equal to or greater than the above lower limit, the handleability of the resin-coated metal foil tends to be further improved. On the other hand, if the thickness of the metal foil is equal to or greater than the above lower limit, it tends to be more suitable for increasing the wiring density.
Note that the thickness of the metal foil described above does not include the thickness of the carrier foil, which will be described later.
 金属箔には、キャリア箔が設けられていてもよい。キャリア箔は、金属箔の厚さが薄い場合に取り扱い性を向上させるために必要に応じて設けられる支持体に相当するものである。そのため、キャリア箔は、プリント配線板の製造過程で取り除かれる。
 キャリア箔としては、例えば、銅箔、アルミニウム箔、ニッケル箔等が挙げられる。これらの中でも、銅箔が好ましい。
A carrier foil may be provided on the metal foil. The carrier foil corresponds to a support that is provided as necessary in order to improve handleability when the thickness of the metal foil is thin. Therefore, the carrier foil is removed during the manufacturing process of the printed wiring board.
Examples of carrier foil include copper foil, aluminum foil, and nickel foil. Among these, copper foil is preferable.
 キャリア箔の厚さは、樹脂付き金属箔の取り扱い性を向上させる観点及び生産コストの観点から、好ましくは5~50μm、より好ましくは7~35μm、さらに好ましくは10~25μmである。
 キャリア箔の厚さが上記下限値以上であると、樹脂付き金属箔の取り扱い性がより一層向上する傾向にある。一方、キャリア箔の厚さが上記上限値以下であると、樹脂付き金属箔のコストをより低減できる傾向にある。
The thickness of the carrier foil is preferably 5 to 50 μm, more preferably 7 to 35 μm, still more preferably 10 to 25 μm, from the viewpoints of improving the handleability of the resin-coated metal foil and from the viewpoint of production cost.
When the thickness of the carrier foil is at least the above lower limit, the handleability of the resin-coated metal foil tends to be further improved. On the other hand, when the thickness of the carrier foil is equal to or less than the above upper limit, there is a tendency that the cost of the resin-coated metal foil can be further reduced.
 金属箔とキャリア箔との間には剥離層が設けられていてもよい。剥離層は、キャリア箔を金属箔から剥離し易くするために金属箔とキャリア箔との間に必要に応じて設けられる層である。
 剥離層としては、例えば、クロム、ニッケル、コバルト、鉄、モリブデン、チタン、タングステン、リン、銅及びアルミニウムから選択される1種以上の金属を含む層が挙げられる。これらの金属は、合金、水和物、酸化物等であってもよい。剥離層は、1層であってもよく、複数層であってもよい。
 剥離層は、例えば、電気めっき、無電解めっき、浸漬めっき等の湿式めっき;スパッタリング、化学的蒸着法(CVD;Chemical Vapor Deposition)、物理的蒸着法(PDV;Physical Vapor Deposition)等の乾式めっきなどによって形成することができる。
A release layer may be provided between the metal foil and the carrier foil. A peeling layer is a layer provided between the metal foil and the carrier foil as necessary in order to facilitate the peeling of the carrier foil from the metal foil.
Exfoliation layers include, for example, layers containing one or more metals selected from chromium, nickel, cobalt, iron, molybdenum, titanium, tungsten, phosphorus, copper, and aluminum. These metals may be alloys, hydrates, oxides, and the like. The release layer may be one layer or multiple layers.
The peeling layer is, for example, electroplating, electroless plating, wet plating such as immersion plating; sputtering, chemical vapor deposition (CVD; Chemical Vapor Deposition), physical vapor deposition (PDV; Physical Vapor Deposition), etc. can be formed by
<樹脂付き金属箔の製造方法>
 本実施形態の樹脂付き金属箔の製造方法は、特に限定されないが、例えば、金属箔上に第2の熱硬化性樹脂層を形成し、次いで、第2の熱硬化性樹脂層上に第1の熱硬化性樹脂層を形成する方法が挙げられる。
<Method for manufacturing resin-coated metal foil>
The method for producing the resin-coated metal foil of the present embodiment is not particularly limited. For example, a second thermosetting resin layer is formed on the metal foil, and then the first thermosetting resin layer is formed on the second thermosetting resin layer. and a method of forming a thermosetting resin layer.
 金属箔上に第2の熱硬化性樹脂層を形成する方法としては、金属箔上にワニス状の第2の熱硬化性樹脂組成物を塗布した後、乾燥する方法が好ましい。
 塗布した第2の熱硬化性樹脂組成物の乾燥温度は、特に限定されないが、生産性及び第2の熱硬化性樹脂組成物を適度にBステージ化させるという観点から、好ましくは160~210℃、より好ましくは170~200℃、さらに好ましくは180~190℃である。
 塗布した第2の熱硬化性樹脂組成物の乾燥時間は、特に限定されないが、生産性及び第2の熱硬化性樹脂組成物を適度にBステージ化させるという観点から、好ましくは1~10分間、より好ましくは1~7分間、さらに好ましくは1~4分間である。
As a method of forming the second thermosetting resin layer on the metal foil, a method of applying the second varnish-like thermosetting resin composition on the metal foil and then drying is preferable.
The drying temperature of the applied second thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the second thermosetting resin composition, it is preferably 160 to 210 ° C. , more preferably 170 to 200°C, more preferably 180 to 190°C.
The drying time of the applied second thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the second thermosetting resin composition, preferably 1 to 10 minutes. , more preferably 1 to 7 minutes, more preferably 1 to 4 minutes.
 第2の熱硬化性樹脂層上に第1の熱硬化性樹脂層を形成する方法としては、第2の熱硬化性樹脂層上にワニス状の第1の熱硬化性樹脂組成物を塗布した後、乾燥する方法が好ましい。
 塗布した第1の熱硬化性樹脂組成物の乾燥温度は、特に限定されないが、生産性及び第1の熱硬化性樹脂組成物を適度にBステージ化させるという観点から、好ましくは90~170℃、より好ましくは100~160℃、さらに好ましくは110~150℃である。
 塗布した第1の熱硬化性樹脂組成物の乾燥時間は、特に限定されないが、生産性及び第2の熱硬化性樹脂組成物を適度にBステージ化させるという観点から、好ましくは1~15分間、より好ましくは1~10分間、さらに好ましくは2~6分間である。
As a method for forming the first thermosetting resin layer on the second thermosetting resin layer, a varnish-like first thermosetting resin composition was applied on the second thermosetting resin layer. A drying method is preferred.
The drying temperature of the applied first thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the first thermosetting resin composition, it is preferably 90 to 170 ° C. , more preferably 100 to 160°C, more preferably 110 to 150°C.
The drying time of the applied first thermosetting resin composition is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the second thermosetting resin composition, preferably 1 to 15 minutes. , more preferably 1 to 10 minutes, more preferably 2 to 6 minutes.
 第1及び第2の熱硬化性樹脂組成物を塗布するための塗布装置としては、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の当業者に公知の塗布装置を用いることができる。これらの塗布装置は、形成する膜厚に応じて、適宜選択すればよい。 Examples of coating devices for coating the first and second thermosetting resin compositions include coating devices known to those skilled in the art such as comma coaters, bar coaters, kiss coaters, roll coaters, gravure coaters, and die coaters. can be used. These coating apparatuses may be appropriately selected according to the film thickness to be formed.
[プリント配線板及びその製造方法]
 本実施形態のプリント配線板は、本実施形態の樹脂付き金属箔を用いて形成されるプリント配線板であって、少なくとも一方の面に回路を有する回路基板と、該回路を埋め込む前記第1の熱硬化性樹脂層の硬化物層と、前記第2の熱硬化性樹脂層の硬化物層と、をこの順に有する積層構造を含む、プリント配線板である。
[Printed wiring board and its manufacturing method]
The printed wiring board of the present embodiment is a printed wiring board formed using the resin-coated metal foil of the present embodiment, comprising: a circuit board having a circuit on at least one surface; The printed wiring board includes a laminated structure having a cured product layer of the thermosetting resin layer and a cured product layer of the second thermosetting resin layer in this order.
 本実施形態のプリント配線板は、少なくとも一方の面に回路を有する回路基板の前記回路を、樹脂付き金属箔が有する第1の熱硬化性樹脂層で埋め込む方法によって製造することができる。 The printed wiring board of the present embodiment can be manufactured by a method of embedding the circuit of a circuit board having a circuit on at least one surface with the first thermosetting resin layer of the resin-coated metal foil.
 回路基板としては、例えば、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化性ポリフェニレンエーテル基板等の片面又は両面に、パターン加工された回路が形成されたものが挙げられる。
 回路の表面は、接着性の観点から、黒化処理等によって、予め粗化処理が施されていてもよい。
Examples of circuit boards include glass epoxy, metal substrates, polyester substrates, polyimide substrates, BT resin substrates, thermosetting polyphenylene ether substrates, and the like, on which a patterned circuit is formed on one or both sides.
From the viewpoint of adhesiveness, the surface of the circuit may be roughened in advance by blackening treatment or the like.
 樹脂付き金属箔は、第1の熱硬化性樹脂層が回路と接する向きで回路基板上に載置され、加熱加圧成形されることによって、主に第1の熱硬化性樹脂層が溶融及び硬化して回路を埋め込む硬化物層が形成される。該硬化物層は、回路の絶縁層として機能する。
 加熱加圧成形は、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
 加熱加圧成形の加熱温度は、特に限定されないが、好ましくは100~300℃、より好ましくは150~280℃、さらに好ましくは200~250℃である。
 加熱加圧成形の加熱加圧時間は、特に限定されないが、好ましくは10~300分間、より好ましくは30~200分間、さらに好ましくは80~150分間である。
 加熱加圧成形の圧力は、特に限定されないが、好ましくは1.5~5MPa、より好ましくは1.7~3MPa、さらに好ましくは1.8~2.5MPaである。
 但し、これらの条件は、使用する原料の種類等に応じて適宜調整することができ、特に限定されない。
The resin-coated metal foil is placed on the circuit board so that the first thermosetting resin layer is in contact with the circuit, and is molded under heat and pressure so that the first thermosetting resin layer mainly melts and melts. A cured material layer is formed that cures to embed the circuit. The cured material layer functions as an insulating layer for circuits.
For heat-press molding, for example, a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine, etc. can be used.
The heating temperature for hot-press molding is not particularly limited, but is preferably 100 to 300.degree. C., more preferably 150 to 280.degree. C., still more preferably 200 to 250.degree.
The heating and pressing time for the heating and pressing molding is not particularly limited, but is preferably 10 to 300 minutes, more preferably 30 to 200 minutes, still more preferably 80 to 150 minutes.
The pressure for hot-press molding is not particularly limited, but is preferably 1.5 to 5 MPa, more preferably 1.7 to 3 MPa, still more preferably 1.8 to 2.5 MPa.
However, these conditions can be appropriately adjusted according to the type of raw material used, etc., and are not particularly limited.
 上記の方法によって、回路基板、該回路を埋め込む第1の熱硬化性樹脂層の硬化物層、第2の熱硬化性樹脂層の硬化物層及び金属箔がこの順に積層された積層体が形成される。
 最外層の金属箔は、エッチングによって除去されてもよいし、そのまま回路の形成に用いてもよい。
By the above method, a laminate is formed in which the circuit board, the cured layer of the first thermosetting resin layer in which the circuit is embedded, the cured layer of the second thermosetting resin layer, and the metal foil are laminated in this order. be done.
The metal foil of the outermost layer may be removed by etching, or may be used as it is to form the circuit.
 硬化物層を形成した後、必要に応じて穴あけを行ってもよい。穴あけは、回路基板及び形成された硬化物層に、ドリル、レーザー、プラズマ、これらの組み合わせ等の方法によって穴あけを行い、ビアホール、スルーホール等を形成する工程である。穴あけに用いるレーザーとしては、例えば、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等が用いられる。 After forming the cured material layer, holes may be drilled as necessary. Drilling is a step of drilling holes in the circuit board and the formed cured material layer by a method such as a drill, laser, plasma, or a combination thereof to form via holes, through holes, and the like. Examples of lasers used for drilling include carbon dioxide lasers, YAG lasers, UV lasers, excimer lasers, and the like.
 樹脂付き金属箔由来の金属箔をエッチング除去する場合、露出した第2の熱硬化性樹脂層の硬化物層は、酸化剤によって粗化処理してもよい。粗化処理によって、硬化物層の表面に凹凸のアンカーを形成することができる。
 酸化剤としては、例えば、過マンガン酸カリウム、過マンガン酸ナトリウム等の過マンガン酸塩、重クロム酸塩、オゾン、過酸化水素、硫酸、硝酸などが挙げられる。これらの中でも、汎用性の観点から、過マンガン酸カリウム、過マンガン酸ナトリウムが好ましい。
When removing the metal foil derived from the resin-coated metal foil by etching, the exposed hardened layer of the second thermosetting resin layer may be roughened with an oxidizing agent. The roughening treatment can form uneven anchors on the surface of the cured material layer.
Examples of the oxidizing agent include permanganates such as potassium permanganate and sodium permanganate, bichromate, ozone, hydrogen peroxide, sulfuric acid, and nitric acid. Among these, potassium permanganate and sodium permanganate are preferable from the viewpoint of versatility.
 最外層が金属箔である場合は、金属箔の態様に応じて、該金属箔上に回路を形成してもよいし、該金属箔自体をパターン加工して回路を形成してもよい。
 また、最外層が第2の熱硬化性樹脂層の硬化物層である場合は、必要に応じて、上記の粗化処理を施した後、該硬化物層上に、回路を形成してもよい。
When the outermost layer is a metal foil, a circuit may be formed on the metal foil, or the metal foil itself may be patterned to form a circuit, depending on the form of the metal foil.
Further, when the outermost layer is a cured layer of the second thermosetting resin layer, a circuit may be formed on the cured layer after the above roughening treatment, if necessary. good.
 回路を形成するための導体を設ける場合、導体は、無電解めっき法、電解めっき法等のめっき法によって形成することが好ましい。めっき用の金属としては、例えば、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、これらの金属元素のうちの少なくとも1種を含む合金等が挙げられる。これらの中でも、銅、ニッケルが好ましく、銅がより好ましい。 When providing a conductor for forming a circuit, the conductor is preferably formed by a plating method such as an electroless plating method or an electrolytic plating method. Examples of metals for plating include copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, and alloys containing at least one of these metal elements. . Among these, copper and nickel are preferable, and copper is more preferable.
 導体のパターン加工には、例えば、サブトラクティブ法、フルアディティブ法、セミアディティブ法(SAP:SemiAdditive Process)、モディファイドセミアディティブ法(m-SAP:modified Semi Additive Process)等の公知の方法を利用することができる。 For conductor pattern processing, use known methods such as the subtractive method, full additive method, semi-additive method (SAP: SemiAdditive Process), modified semi-additive process (m-SAP: modified Semi Additive Process), etc. can be done.
[半導体パッケージ]
 本実施形態の半導体パッケージは、本実施形態のプリント配線板を用いて形成された半導体パッケージである。
 本実施形態の半導体パッケージは、例えば、本実施形態のプリント配線板に、公知の方法によって、半導体チップ、メモリ等を搭載することによって製造することができる。
[Semiconductor package]
The semiconductor package of this embodiment is a semiconductor package formed using the printed wiring board of this embodiment.
The semiconductor package of this embodiment can be manufactured, for example, by mounting a semiconductor chip, a memory, etc. on the printed wiring board of this embodiment by a known method.
 以下、実施例を挙げて、本実施形態を具体的に説明する。ただし、本実施形態は以下の実施例に限定されるものではない。 The present embodiment will be specifically described below with reference to Examples. However, this embodiment is not limited to the following examples.
[重量平均分子量(Mw)及び数平均分子量(Mn)の測定方法]
 重量平均分子量(Mw)及び数平均分子量(Mn)はゲル浸透クロマトグラフィー(GPC)によって、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製、商品名]を用いて3次式で近似した。GPCの測定条件を、以下に示す。
〔GPCの測定条件〕
・装置:高速GPC装置 HLC-8320GPC
・検出器:紫外吸光検出器 UV-8320[東ソー株式会社製]
・カラム:ガードカラム;TSK Guardcolumn SuperHZ-L+カラム;TSKgel SuperHZM-N+TSKgel SuperHZM-M+TSKgel SuperH-RC(すべて東ソー株式会社製、商品名)
 カラムサイズ:4.6×20mm(ガードカラム)、4.6×150mm(カラム)、6.0×150mm(リファレンスカラム)
・溶離液:テトラヒドロフラン
・試料濃度:10mg/5mL
・注入量:25μL
・流量:1.00mL/分
・測定温度:40℃
[Method for measuring weight average molecular weight (Mw) and number average molecular weight (Mn)]
Weight average molecular weight (Mw) and number average molecular weight (Mn) were converted from calibration curves using standard polystyrene by gel permeation chromatography (GPC). Calibration curve, standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation, product name] and approximated by a cubic equation. GPC measurement conditions are shown below.
[Measurement conditions for GPC]
・Apparatus: High-speed GPC apparatus HLC-8320GPC
・ Detector: UV absorption detector UV-8320 [manufactured by Tosoh Corporation]
Column: Guard column; TSK Guardcolumn SuperHZ-L + column; TSKgel SuperHZM-N + TSKgel SuperHZM-M + TSKgel SuperH-RC (all manufactured by Tosoh Corporation, trade name)
Column size: 4.6 x 20 mm (guard column), 4.6 x 150 mm (column), 6.0 x 150 mm (reference column)
・ Eluent: tetrahydrofuran ・ Sample concentration: 10 mg / 5 mL
・Injection volume: 25 μL
・Flow rate: 1.00 mL/min ・Measurement temperature: 40°C
製造例1
(シリコーン変性マレイミド樹脂の合成)
 温度計、撹拌装置及び還流冷却管付き水分定量器を備えた加熱及び冷却可能な容積2リットルの反応容器に、両末端に第1級アミノ基を有するポリジメチルシロキサン(信越化学工業株式会社、商品名「KF-8012」、第1級アミノ基当量400g/mol)を172.0質量部、ビス(4-マレイミドフェニル)メタンを75.1質量部、p-アミノフェノールを2.8質量部、プロピレングリコールモノメチルエーテルを250質量部投入し、115℃で6時間反応させて、シリコーン変性マレイミド樹脂を得た。
Production example 1
(Synthesis of silicone-modified maleimide resin)
Polydimethylsiloxane having primary amino groups at both ends (Shin-Etsu Chemical Co., Ltd., product Name "KF-8012", primary amino group equivalent weight 400 g / mol) 172.0 parts by mass, bis (4-maleimidophenyl) methane 75.1 parts by mass, p-aminophenol 2.8 parts by mass, 250 parts by mass of propylene glycol monomethyl ether was added and reacted at 115° C. for 6 hours to obtain a silicone-modified maleimide resin.
[樹脂付き金属箔の製造]
実施例1~8
(第1の熱硬化性樹脂組成物の調製)
 製造例1で得られたシリコーン変性マレイミド樹脂を69.5質量部、ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名「NC-3000-H」、エポキシ基当量290g/mol)を10.0質量部、3,3’-ジエチル-4,4’-ジアミノジフェニルメタンを5.0質量部、カルボン酸変性水添スチレン-ブタジエン共重合樹脂(旭化成ケミカルズ株式会社製、商品名「タフテック(登録商標)M1913」、スチレン由来の構造単位とブタジエン由来の構造単位とのモル比(スチレン:ブタジエン)=30:70、酸価10mgCHONa/g)を5.0質量部、ポリアミド樹脂(日本化薬株式会社製、商品名「BPAM-155」、数平均分子量(Mn):26,000、重量平均分子量(Mw):110,000)を10.0質量部、イソシアネートマスクイミダゾール(第一工業製薬株式会社製、商品名「G-8009L」)を0.5質量部、溶融球状シリカ(平均粒子径(D50)0.5μm)を200.0質量部、メチルエチルケトンを配合して、固形分濃度が65質量%である第1の熱硬化性樹脂組成物を得た。
[Manufacturing of resin-coated metal foil]
Examples 1-8
(Preparation of first thermosetting resin composition)
69.5 parts by mass of the silicone-modified maleimide resin obtained in Production Example 1, and 10 parts of a biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name "NC-3000-H", epoxy group equivalent: 290 g/mol). .0 parts by mass, 5.0 parts by mass of 3,3'-diethyl-4,4'-diaminodiphenylmethane, carboxylic acid-modified hydrogenated styrene-butadiene copolymer resin (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name "Tuftec (registered Trademark) M1913", molar ratio of structural units derived from styrene and structural units derived from butadiene (styrene:butadiene) = 30:70, acid value 10 mgCH3ONa /g), 5.0 parts by mass, polyamide resin (Nippon Kagaku Pharmaceutical Co., Ltd., trade name "BPAM-155", number average molecular weight (Mn): 26,000, weight average molecular weight (Mw): 110,000) 10.0 parts by mass, isocyanate mask imidazole (Daiichi Kogyo Seiyaku Co., Ltd., trade name “G-8009L”), 200.0 parts by mass of fused spherical silica (average particle size (D 50 ) 0.5 μm), methyl ethyl ketone, and solid content concentration A first thermosetting resin composition having a content of 65% by mass was obtained.
(第2の熱硬化性樹脂組成物の調製)
 ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名「NC-3000S-H」、エポキシ基当量285g/mol)を65.0質量部、カルボン酸変性アクリロニトリルブタジエンゴム粒子(JSR株式会社製、商品名「XER-91SE-15」)を5質量部、カルボン酸変性ポリビニルアセタール樹脂(積水化学工業株式会社製、商品名「KS-23Z」)を10.0質量部、クレゾールノボラック型フェノール樹脂(DIC株式会社製、商品名「フェノライト(登録商標)EXB-9829」、水酸基当量151g/mol)を20.0質量部、1-シアノエチル-2-フェニルイミダゾリウムトリメリテートを0.3質量部、メチルエチルケトンを配合して、固形分濃度が70質量%である第2の熱硬化性樹脂組成物を得た。
(Preparation of second thermosetting resin composition)
65.0 parts by mass of biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name “NC-3000S-H”, epoxy group equivalent 285 g / mol), carboxylic acid-modified acrylonitrile butadiene rubber particles (manufactured by JSR Corporation, 5 parts by mass of carboxylic acid-modified polyvinyl acetal resin (manufactured by Sekisui Chemical Co., Ltd., product name "KS-23Z"), 10.0 parts by mass of cresol novolac-type phenolic resin ( DIC Corporation, trade name “Phenolite (registered trademark) EXB-9829, hydroxyl equivalent 151 g / mol) 20.0 parts by mass, 1-cyanoethyl-2-phenylimidazolium trimellitate 0.3 parts by mass , and methyl ethyl ketone to obtain a second thermosetting resin composition having a solid concentration of 70% by mass.
(樹脂付き金属箔の製造)
 キャリア付き銅箔(三井金属鉱業株式会社製、商品名「MT18SP2-1.5」、キャリア箔の厚さが18μm、キャリア箔を除く銅箔の厚さが1.5μm)の銅箔上に、上記で得た第2の熱硬化性樹脂組成物を、乾燥後の第2の熱硬化性樹脂層の厚さが表1に記載の厚さになるように塗布した後、表1に記載の条件で乾燥して、銅箔上に第2の熱硬化性樹脂層を形成した。
 次いで、上記で形成した第2の熱硬化性樹脂層上に第1の熱硬化性樹脂組成物を、乾燥後の第1の熱硬化性樹脂層の厚さが表1に記載の厚さになるように塗布した後、表1に記載の条件で乾燥し、第1の熱硬化性樹脂層、第2の熱硬化性樹脂層及び銅箔をこの順で有する樹脂付き金属箔を得た。
(Manufacture of resin-coated metal foil)
On a copper foil with a carrier (manufactured by Mitsui Mining & Smelting Co., Ltd., trade name "MT18SP2-1.5", the thickness of the carrier foil is 18 μm, the thickness of the copper foil excluding the carrier foil is 1.5 μm), After applying the second thermosetting resin composition obtained above so that the thickness of the second thermosetting resin layer after drying becomes the thickness shown in Table 1, After drying under the conditions, a second thermosetting resin layer was formed on the copper foil.
Then, the first thermosetting resin composition is applied on the second thermosetting resin layer formed above, and the thickness of the first thermosetting resin layer after drying is shown in Table 1. After being coated so as to obtain a resin-coated metal foil having a first thermosetting resin layer, a second thermosetting resin layer and a copper foil in this order, the resin-coated metal foil was dried under the conditions shown in Table 1.
比較例1
 実施例1と同様にして得た第1の熱硬化性樹脂組成物を、実施例1で用いたものと同じ銅箔上に、乾燥後の第1の熱硬化性樹脂層の厚さが表1に記載の厚さになるように塗布した後、表1に記載の条件で乾燥して、銅箔上に第1の熱硬化性樹脂層を有する樹脂付き金属箔を得た。
Comparative example 1
The first thermosetting resin composition obtained in the same manner as in Example 1 was placed on the same copper foil as that used in Example 1, and the thickness of the first thermosetting resin layer after drying was shown. 1 and then dried under the conditions shown in Table 1 to obtain a resin-coated metal foil having a first thermosetting resin layer on a copper foil.
[評価方法]
 各例で得られた樹脂組成物及び樹脂付き金属箔を用いて、下記方法に従って各評価を行った。
[Evaluation method]
Using the resin composition and resin-coated metal foil obtained in each example, each evaluation was performed according to the following methods.
(樹脂層の貯蔵弾性率E’の測定方法)
 実施例1で得られた第2の熱硬化性樹脂組成物を、厚さ200μmの樹脂フィルムとしたものの両面に銅箔を配し、これを成型プレス機を用いて、圧力3.0MPa、最高保持温度180℃の条件で60分間プレスして樹脂フィルムを硬化させた。得られた両面に銅箔を有する積層体を銅エッチング液に浸漬することによって両面の銅箔を除去し、5mm×40mmに切り出したものを試験片とした。該試験片を測定対象として、動的粘弾性測定装置(株式会社UBM製、商品名「Rheogel-E4000」)を用いて、測定温度領域25~320℃、昇温速度5℃/分、周波数10Hzの条件下で、貯蔵弾性率E’を測定した。
 その結果、第2の熱硬化性樹脂層単独の硬化物の25℃貯蔵弾性率E’(i)は2.4GPaであり、150℃貯蔵弾性率E’(i)は0.5GPaであった。
(Method for measuring storage elastic modulus E' of resin layer)
A resin film having a thickness of 200 μm was formed from the second thermosetting resin composition obtained in Example 1, and copper foil was placed on both sides of the film. The resin film was cured by pressing for 60 minutes at a holding temperature of 180°C. The obtained laminate having copper foils on both sides was immersed in a copper etchant to remove the copper foils on both sides, and a 5 mm×40 mm piece was cut out to obtain a test piece. Using the test piece as a measurement object, using a dynamic viscoelasticity measuring device (manufactured by UBM Co., Ltd., trade name "Rheogel-E4000"), the measurement temperature range is 25 to 320 ° C., the temperature increase rate is 5 ° C./min, and the frequency is 10 Hz. The storage modulus E' was measured under the conditions of
As a result, the 25° C. storage elastic modulus E′(i) of the cured product of the second thermosetting resin layer alone was 2.4 GPa, and the 150° C. storage elastic modulus E′(i) was 0.5 GPa. .
 次に、実施例4で得られた樹脂付き金属箔を2つ準備し、第1の熱硬化性樹脂層同士が向かい合うように載置した。次いで、これを成型プレス機を用いて、圧力2.0MPa、最高保持温度230℃の条件で90分間プレスして、各樹脂層を硬化させた。得られた両面に銅箔を有する積層体を銅エッチング液に浸漬することによって両面の銅箔を除去し、5mm×40mmに切り出したものを試験片として、上記と同じ条件で、貯蔵弾性率E’を測定した。
 その結果、第2の熱硬化性樹脂層と第1の熱硬化性樹脂層とからなる樹脂層の硬化物の25℃貯蔵弾性率E’(ii)は6.8GPaであり、150℃貯蔵弾性率E’(ii)は4.7GPaであった。すなわち、25℃貯蔵弾性率E’(ii)と25℃貯蔵弾性率E’(i)との差[25℃貯蔵弾性率E’(ii)-25℃貯蔵弾性率E’(i)]は、4.4GPaであり、150℃貯蔵弾性率E’(ii)と150℃貯蔵弾性率E’(i)との差[150℃貯蔵弾性率E’(ii)-150℃貯蔵弾性率E’(i)]は、4.2GPaであった。
Next, two metal foils with resin obtained in Example 4 were prepared and placed so that the first thermosetting resin layers faced each other. Then, using a molding press, this was pressed for 90 minutes under conditions of a pressure of 2.0 MPa and a maximum holding temperature of 230° C. to cure each resin layer. The obtained laminate having copper foils on both sides is immersed in a copper etching solution to remove the copper foils on both sides, and a test piece cut into 5 mm × 40 mm is used as a test piece, and the storage elastic modulus E is measured under the same conditions as above. ' was measured.
As a result, the 25° C. storage elastic modulus E′(ii) of the cured product of the resin layer composed of the second thermosetting resin layer and the first thermosetting resin layer was 6.8 GPa, and the 150° C. storage elastic modulus was 6.8 GPa. The modulus E'(ii) was 4.7 GPa. That is, the difference between the 25° C. storage modulus E′(ii) and the 25° C. storage modulus E′(i) [25° C. storage modulus E′(ii)−25° C. storage modulus E′(i)] is , 4.4 GPa, and the difference between the 150° C. storage modulus E′(ii) and the 150° C. storage modulus E′(i) [150° C. storage modulus E′(ii)−150° C. storage modulus E′ (i)] was 4.2 GPa.
(樹脂層のクラックの評価方法)
 各例で得られた樹脂付き金属箔の第1の熱硬化性樹脂層の表面のうち、任意に選択した335mm×300mmの範囲を、蛍光顕微鏡によって観察することによって、樹脂層のクラックの有無を確認した。表1中、樹脂層にクラックが観察されなかったものを「A」、樹脂層にクラックが観察されたものを「C」と記載した。
(Method for evaluating cracks in resin layer)
On the surface of the first thermosetting resin layer of the resin-coated metal foil obtained in each example, an arbitrarily selected range of 335 mm × 300 mm was observed with a fluorescence microscope to determine the presence or absence of cracks in the resin layer. confirmed. In Table 1, "A" indicates that cracks were not observed in the resin layer, and "C" indicates that cracks were observed in the resin layer.
(カールの大きさの測定方法)
 各例で得られた樹脂付き金属箔を335mm×300mmに切り出し、これを金属箔が下側になるように平坦面に載置した場合における最大高さをカールの値(mm)とした。
(Method for measuring curl size)
The metal foil with resin obtained in each example was cut into a size of 335 mm×300 mm, and the maximum height when the metal foil was placed on a flat surface with the metal foil facing downward was taken as the curl value (mm).
(吸湿耐熱性の評価方法)
 両面に回路を有する回路基板の両面に、各例で得られた樹脂付き金属箔を、第1の熱硬化性樹脂層が回路側になるように載置した。次いで、これを成型プレス機を用いて、圧力2.0MPa、最高保持温度230℃の条件で90分間プレスして、第1の熱硬化性樹脂組成物によって回路を埋め込みつつ、各樹脂層を硬化させた。得られた両面に銅箔を有する積層体を50mm角の大きさに切断し、一方の表面のみ半面銅を残し、他方の表面は銅エッチング液に浸漬して全面銅を除去することによって半銅付評価基板を作製した。
 該半銅付評価基板を、プレッシャークッカーテスト用装置(株式会社平山製作所製)中で、121℃、2.2気圧の条件下で1~5時間処理した。処理後の半銅付評価基板を、288℃のはんだ浴に20秒間浸漬した後、外観を目視によって観察することによって、膨れの有無を確認した。なお、各例及び各処理時間において、3個の評価基板について評価した。表1には、3個とも膨れが観察されなかったものを「A」、1個膨れが観察されたものを「B」、2個膨れが観察されたものを「C」、3個膨れが観察されたものを「D」と記載した。
(Method for evaluating moisture absorption and heat resistance)
The resin-coated metal foil obtained in each example was placed on both sides of a circuit board having circuits on both sides so that the first thermosetting resin layer was on the circuit side. Next, using a molding press, this is pressed for 90 minutes under conditions of a pressure of 2.0 MPa and a maximum holding temperature of 230° C., and the resin layers are cured while embedding the circuit with the first thermosetting resin composition. let me The obtained laminate having copper foils on both sides was cut into a size of 50 mm square, and only half of one surface was left with copper, and the other surface was immersed in a copper etching solution to remove the copper from the entire surface. An evaluation board was produced.
The half-copper-attached evaluation board was treated in a pressure cooker test apparatus (manufactured by Hirayama Seisakusho Co., Ltd.) under conditions of 121° C. and 2.2 atm for 1 to 5 hours. After immersing the evaluation board with semi-copper after treatment in a solder bath at 288° C. for 20 seconds, the appearance was visually observed to confirm the presence or absence of swelling. In each example and each processing time, three evaluation substrates were evaluated. In Table 1, "A" indicates that no swelling was observed in any of the three, "B" indicates that one swelling was observed, "C" indicates that two swellings were observed, and three swellings were observed. Those observed were labeled as "D".
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1から、本実施形態の実施例1~8で得られた樹脂付き金属箔は、樹脂層にクラックが観察されず、樹脂付き金属箔のカールも抑制できていることが分かる。また、これらの樹脂付き金属箔は、吸湿耐熱性にも優れていた。
 一方、第2の熱硬化性樹脂層を形成しなかった比較例1で得られた樹脂付き金属箔は、樹脂層にクラックが観察され、樹脂付き金属箔のカールも大きかった。また、比較例1の樹脂付き金属箔は吸湿耐熱性にも劣っていた。
As can be seen from Table 1, no cracks were observed in the resin layers of the resin-coated metal foils obtained in Examples 1 to 8 of the present embodiment, and curling of the resin-coated metal foils was suppressed. In addition, these resin-coated metal foils were also excellent in moisture absorption and heat resistance.
On the other hand, in the resin-coated metal foil obtained in Comparative Example 1, in which the second thermosetting resin layer was not formed, cracks were observed in the resin layer, and the resin-coated metal foil was greatly curled. In addition, the resin-coated metal foil of Comparative Example 1 was also inferior in moisture absorption and heat resistance.
 本実施形態の樹脂付き金属箔は、樹脂層のクラック及び樹脂付き金属箔のカールが抑制されたものであるため、プリプレグ、積層板、プリント配線板、半導体パッケージ等の電子部品用途に好適である。 Since the resin-coated metal foil of the present embodiment suppresses cracking of the resin layer and curling of the resin-coated metal foil, it is suitable for electronic component applications such as prepregs, laminates, printed wiring boards, and semiconductor packages. .
1 樹脂付き金属箔
2 金属箔
3 第2の熱硬化性樹脂層
4 第1の熱硬化性樹脂層

 
1 metal foil with resin 2 metal foil 3 second thermosetting resin layer 4 first thermosetting resin layer

Claims (11)

  1.  無機充填材を含有する第1の熱硬化性樹脂層と、
     ゴム成分を含有する第2の熱硬化性樹脂層と、
     金属箔と、をこの順に有し、
     前記第1の熱硬化性樹脂層中における無機充填材の含有量が、50~90質量%であり、
     前記第2の熱硬化性樹脂層中における無機充填材の含有量が、0~20質量%である、
     樹脂付き金属箔。
    a first thermosetting resin layer containing an inorganic filler;
    a second thermosetting resin layer containing a rubber component;
    and a metal foil in this order,
    The content of the inorganic filler in the first thermosetting resin layer is 50 to 90 mass%,
    The content of the inorganic filler in the second thermosetting resin layer is 0 to 20% by mass,
    Metal foil with resin.
  2.  前記第1の熱硬化性樹脂層が、熱硬化性樹脂及び無機充填材を含有する第1の熱硬化性樹脂組成物から形成される層であり、
     前記第1の熱硬化性樹脂組成物に含有される熱硬化性樹脂が、N-置換マレイミド基を1個以上有するマレイミド樹脂及びその誘導体からなる群から選択される1種以上である、請求項1に記載の樹脂付き金属箔。
    The first thermosetting resin layer is a layer formed from a first thermosetting resin composition containing a thermosetting resin and an inorganic filler,
    The thermosetting resin contained in the first thermosetting resin composition is at least one selected from the group consisting of maleimide resins having at least one N-substituted maleimide group and derivatives thereof. 2. The metal foil with resin according to 1.
  3.  前記N-置換マレイミド基を1個以上有するマレイミド樹脂及びその誘導体からなる群から選択される1種以上が、N-置換マレイミド基を2個以上有するマレイミド樹脂由来の構造と、第1級アミノ基を有するシリコーン化合物由来の構造と、を含む樹脂である、請求項2に記載の樹脂付き金属箔。 one or more selected from the group consisting of maleimide resins having one or more N-substituted maleimide groups and derivatives thereof, a structure derived from a maleimide resin having two or more N-substituted maleimide groups, and a primary amino group; The resin-coated metal foil according to claim 2, which is a resin containing a structure derived from a silicone compound having
  4.  前記第2の熱硬化性樹脂層が、熱硬化性樹脂及びゴム成分を含有する第2の熱硬化性樹脂組成物から形成される層であり、
     前記第2の熱硬化性樹脂組成物に含有される熱硬化性樹脂が、エポキシ樹脂である、請求項1~3のいずれか1項に記載の樹脂付き金属箔。
    The second thermosetting resin layer is a layer formed from a second thermosetting resin composition containing a thermosetting resin and a rubber component,
    4. The resin-coated metal foil according to claim 1, wherein the thermosetting resin contained in said second thermosetting resin composition is an epoxy resin.
  5.  前記第2の熱硬化性樹脂組成物が、さらに、フェノール樹脂系硬化剤を含有する、請求項4に記載の樹脂付き金属箔。 The resin-coated metal foil according to claim 4, wherein the second thermosetting resin composition further contains a phenol resin-based curing agent.
  6.  前記ゴム成分が、架橋ゴム粒子である、請求項1~3のいずれか1項に記載の樹脂付き金属箔。 The resin-coated metal foil according to any one of claims 1 to 3, wherein the rubber component is crosslinked rubber particles.
  7.  前記第2の熱硬化性樹脂層中における無機充填材の含有量が、0~5質量%である、請求項1~3のいずれか1項に記載の樹脂付き金属箔。 The resin-coated metal foil according to any one of claims 1 to 3, wherein the content of the inorganic filler in the second thermosetting resin layer is 0 to 5% by mass.
  8.  前記金属箔が、銅箔である、請求項1~3のいずれか1項に記載の樹脂付き金属箔。 The resin-coated metal foil according to any one of claims 1 to 3, wherein the metal foil is a copper foil.
  9.  請求項1~3のいずれか1項に記載の樹脂付き金属箔を用いて形成されるプリント配線板であって、
     少なくとも一方の面に回路を有する回路基板と、
     該回路を埋め込む前記第1の熱硬化性樹脂層の硬化物層と、
     前記第2の熱硬化性樹脂層の硬化物層と、
     をこの順に有する積層構造を含む、プリント配線板。
    A printed wiring board formed using the resin-coated metal foil according to any one of claims 1 to 3,
    a circuit board having a circuit on at least one side;
    a cured material layer of the first thermosetting resin layer in which the circuit is embedded;
    A cured product layer of the second thermosetting resin layer;
    A printed wiring board, comprising a laminate structure having in that order:
  10.  請求項9に記載のプリント配線板を用いて形成された半導体パッケージ。 A semiconductor package formed using the printed wiring board according to claim 9.
  11.  請求項9に記載のプリント配線板の製造方法であって、
     前記少なくとも一方の面に回路を有する回路基板の前記回路を、前記樹脂付き金属箔が有する前記第1の熱硬化性樹脂層で埋め込む、プリント配線板の製造方法。

     
    A method for manufacturing a printed wiring board according to claim 9,
    A method of manufacturing a printed wiring board, wherein the circuit of the circuit board having the circuit on at least one surface is embedded with the first thermosetting resin layer of the metal foil with resin.

PCT/JP2022/039600 2021-10-27 2022-10-25 Resin-coated metal foil, printed wiring board and manufacturing method thereof, and semiconductor package WO2023074646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-175736 2021-10-27
JP2021175736 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074646A1 true WO2023074646A1 (en) 2023-05-04

Family

ID=86157809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039600 WO2023074646A1 (en) 2021-10-27 2022-10-25 Resin-coated metal foil, printed wiring board and manufacturing method thereof, and semiconductor package

Country Status (2)

Country Link
TW (1) TW202327874A (en)
WO (1) WO2023074646A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214725A (en) * 1994-01-31 1995-08-15 Shin Kobe Electric Mach Co Ltd Production of metal foil clad laminated sheet and metal foil used therein
JPH07232405A (en) * 1993-12-28 1995-09-05 Shin Kobe Electric Mach Co Ltd Production of metal foil clad laminated sheet
WO2003009655A1 (en) * 2001-07-18 2003-01-30 Ajinomoto Co., Inc. Film for circuit board
US20160150644A1 (en) * 2012-11-09 2016-05-26 Doosan Corporation Resin composition and laminate for printed circuit board comprising same
WO2016117282A1 (en) * 2015-01-19 2016-07-28 パナソニックIpマネジメント株式会社 Multilayer printed wiring board, multilayer metal-clad laminated board, and resin-coated metal foil
WO2017130947A1 (en) * 2016-01-26 2017-08-03 パナソニックIpマネジメント株式会社 Resin-clad metal foil and flexible printed wiring board
WO2017175614A1 (en) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Resin composition and method for producing same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP2017193693A (en) * 2016-04-18 2017-10-26 日立化成株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and method for manufacturing the same
US20190203003A1 (en) * 2018-01-03 2019-07-04 Taiwan Union Technology Corporation Resin composition, and pre-preg, metal-clad laminate and printed circuit board prepared using the same
WO2021132495A1 (en) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board and semiconductor package

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232405A (en) * 1993-12-28 1995-09-05 Shin Kobe Electric Mach Co Ltd Production of metal foil clad laminated sheet
JPH07214725A (en) * 1994-01-31 1995-08-15 Shin Kobe Electric Mach Co Ltd Production of metal foil clad laminated sheet and metal foil used therein
WO2003009655A1 (en) * 2001-07-18 2003-01-30 Ajinomoto Co., Inc. Film for circuit board
US20160150644A1 (en) * 2012-11-09 2016-05-26 Doosan Corporation Resin composition and laminate for printed circuit board comprising same
WO2016117282A1 (en) * 2015-01-19 2016-07-28 パナソニックIpマネジメント株式会社 Multilayer printed wiring board, multilayer metal-clad laminated board, and resin-coated metal foil
WO2017130947A1 (en) * 2016-01-26 2017-08-03 パナソニックIpマネジメント株式会社 Resin-clad metal foil and flexible printed wiring board
WO2017175614A1 (en) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Resin composition and method for producing same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP2017193693A (en) * 2016-04-18 2017-10-26 日立化成株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and method for manufacturing the same
US20190203003A1 (en) * 2018-01-03 2019-07-04 Taiwan Union Technology Corporation Resin composition, and pre-preg, metal-clad laminate and printed circuit board prepared using the same
WO2021132495A1 (en) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board and semiconductor package

Also Published As

Publication number Publication date
TW202327874A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
TWI751169B (en) Thermosetting resin composition, prepreg, build-up board, printed circuit board and modules corresponding to high-speed communication
JP7088105B2 (en) Resin composition, cured product of resin composition, resin sheet, printed wiring board and semiconductor device
JP2021175795A (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and production method of the same
JP2021025053A (en) Resin material and multilayer printed wiring board
CN114206989A (en) Resin material and multilayer printed wiring board
JP2019099712A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
WO2020130008A1 (en) Composite material, method of manufacturing same, prepreg, laminated board, printed wiring board, and semiconductor package
JP2019099710A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
JP6848215B2 (en) Thermosetting resin composition, prepreg, laminated board and printed wiring board
JP6801280B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and its manufacturing method
WO2020017551A1 (en) Copper-clad laminate, printed wiring board, semiconductor package and method for producing copper-clad laminate
WO2023074646A1 (en) Resin-coated metal foil, printed wiring board and manufacturing method thereof, and semiconductor package
JP7069561B2 (en) Manufacturing method of laminated board, manufacturing method of printed wiring board, manufacturing method of semiconductor package
JP7298383B2 (en) Resin composition, cured product of resin composition, resin sheet, printed wiring board and semiconductor device
JP2021025051A (en) Resin material and multilayer printed wiring board
JP7251482B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and semiconductor package
JP7238798B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and semiconductor package
WO2023281692A1 (en) Resin composition, resin film, multilayered printed wiring board, and semiconductor package
WO2023062769A1 (en) Resin sheet, laminated board, metal-clad laminated board, printed wiring board, and semiconductor package
JP2019099711A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
WO2023153445A1 (en) Member for forming wiring, method for forming wiring layer using member for forming wiring, and formed wiring member
JP7124410B2 (en) Resin film for interlayer insulating layer, laminate, printed wiring board, semiconductor device, and method for producing laminate
WO2023033131A1 (en) Resin composition, prepreg, laminate, resin film, printed wiring board, and semiconductor package
WO2023243676A1 (en) Resin composition, prepreg, laminate, resin film, printed wiring board, and semiconductor package
JP2023060674A (en) Resin composition, prepreg, laminate, resin film, printed wiring board and semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556442

Country of ref document: JP