JPWO2017134970A1 - Work bending method and work bending apparatus - Google Patents

Work bending method and work bending apparatus Download PDF

Info

Publication number
JPWO2017134970A1
JPWO2017134970A1 JP2017565436A JP2017565436A JPWO2017134970A1 JP WO2017134970 A1 JPWO2017134970 A1 JP WO2017134970A1 JP 2017565436 A JP2017565436 A JP 2017565436A JP 2017565436 A JP2017565436 A JP 2017565436A JP WO2017134970 A1 JPWO2017134970 A1 JP WO2017134970A1
Authority
JP
Japan
Prior art keywords
processing
angle
trajectory
bending
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017565436A
Other languages
Japanese (ja)
Other versions
JP6587698B2 (en
Inventor
陽介 金枝
陽介 金枝
耕宏 松井
耕宏 松井
康昭 富永
康昭 富永
山下 進
進 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2017134970A1 publication Critical patent/JPWO2017134970A1/en
Application granted granted Critical
Publication of JP6587698B2 publication Critical patent/JP6587698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/02Flanging or other edge treatment, e.g. of tubes by continuously-acting tools moving along the edge
    • B21D19/04Flanging or other edge treatment, e.g. of tubes by continuously-acting tools moving along the edge shaped as rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/02Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder
    • B21D39/021Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder for panels, e.g. vehicle doors
    • B21D39/023Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder for panels, e.g. vehicle doors using rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/02Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder

Abstract

加工前のワークの形状及び目標とする加工後のワークの形状に基づいて加工具の軌跡を適切に設定できるワーク曲げ加工方法及びワーク曲げ加工装置を提供することを目的とする。加工ローラ10によってワークWaのフランジWFに対して曲げ加工を行うワーク曲げ加工方法であって、加工前のフランジWFの加工前角度θ0及びフランジWFの折り曲げ部分のフランジ長さLを取得する工程と、加工前角度θ0及び加工後の目標角度Ψと、フランジ長さLと、に基づいて加工ローラ10のパス(軌跡)を決定する軌跡決定工程と、軌跡決定工程で決定されたパスに基づいて加工ローラ10を所定方向に移動させ、目標角度ΨまでフランジWFを折り曲げる加工工程と、を含む。It is an object of the present invention to provide a workpiece bending method and a workpiece bending apparatus capable of appropriately setting the trajectory of a processing tool based on the shape of a workpiece before processing and the target shape of a workpiece after processing. A workpiece bending method in which a bending process is performed on the flange WF of the workpiece Wa by the processing roller 10, and a process of obtaining a pre-processing angle θ 0 of the flange WF before processing and a flange length L of a bent portion of the flange WF; Based on the path determined in the path determination step, the path determination step for determining the path (trajectory) of the processing roller 10 based on the pre-processing angle θ0, the target angle Ψ after processing, and the flange length L. A processing step of moving the processing roller 10 in a predetermined direction and bending the flange WF to a target angle Ψ.

Description

本発明は、加工具によってワークの端部に対して曲げ加工を行う技術に関する。   The present invention relates to a technique for bending an end portion of a workpiece with a processing tool.

従来から、ヘミングローラ等の加工具を板材の端部に押し当てながら移動させて板材の端部に曲げ加工を行う技術が知られている。この種の技術を開示するものとして例えば特許文献1がある。特許文献1には、ヘミングローラによって曲げ加工を行うヘミング装置において、予備曲げと本曲げとの角度変更動作等を学習させる技術が開示されている。   2. Description of the Related Art Conventionally, a technique is known in which a processing tool such as a hemming roller is moved while being pressed against an end portion of a plate material to bend the end portion of the plate material. For example, Patent Literature 1 discloses this type of technology. Patent Document 1 discloses a technique for learning an angle changing operation or the like between preliminary bending and main bending in a hemming apparatus that performs bending with a hemming roller.

特開平2−197331号公報JP-A-2-197331

曲げ加工をワークに行うための加工具の軌跡は、ワークの形状だけでなく、曲げ加工を行う前のワークの状態及び目標とする角度まで折り曲げた後のワークの状態によっても変わってくる。加工具の軌跡は、熟練の技術者の経験等により設定しているため、作業者によっては現場での加工装置に対する教示作業に時間が掛かってしまう。この点、事前に学習する特許文献1に開示される技術においても、曲げ加工を行う前のワークの状態及び目標とする角度まで折り曲げた後のワークの状態を加工具の軌跡に考慮して学習させる必要があり、効率性及び再現性の観点から改善の余地があった。   The trajectory of the processing tool for performing bending on the workpiece varies depending not only on the shape of the workpiece but also on the state of the workpiece before bending and the state of the workpiece after bending to a target angle. Since the locus of the processing tool is set based on the experience of a skilled engineer or the like, depending on the operator, it takes time to teach the processing apparatus at the site. In this regard, even in the technology disclosed in Patent Document 1 that learns in advance, learning is performed in consideration of the state of the workpiece before bending and the state of the workpiece after bending to a target angle in the trajectory of the processing tool. There is room for improvement in terms of efficiency and reproducibility.

本発明は、加工前のワークの形状及び目標とする加工後のワークの形状に基づいて加工具の軌跡を適切に設定できるワーク曲げ加工方法及びワーク曲げ加工装置を提供することを目的とする。   An object of the present invention is to provide a workpiece bending method and a workpiece bending apparatus capable of appropriately setting a locus of a processing tool based on a shape of a workpiece before processing and a target shape of a workpiece after processing.

本発明は、加工具(例えば、後述の加工ローラ10)によってワーク(例えば、後述のワークW)の端部(例えば、後述のフランジWF)に対して曲げ加工を行うワーク曲げ加工方法であって、加工前の前記端部の加工前角度(例えば、後述の加工前角度θ)及び端部の折り曲げ部分の端部長さ(例えば、後述のフランジ長さL)を取得する工程と、前記加工前角度及び加工後の目標角度(例えば、後述の目標角度Ψ)と、前記端部長さと、に基づいて前記加工具の軌跡(例えば、後述のパス)を決定する軌跡決定工程と、前記軌跡決定工程で決定された軌跡に基づいて前記加工具を所定方向に移動させ、前記目標角度まで前記端部を折り曲げる加工工程と、を含むワーク曲げ加工方法に関する。The present invention is a workpiece bending method for bending an end portion (for example, a later-described flange WF) of a workpiece (for example, a later-described flange WF) by a processing tool (for example, a later-described processing roller 10). Obtaining a pre-processing angle of the end portion before processing (for example, a pre-processing angle θ 0 described later) and an end length of a bent portion of the end portion (for example, a flange length L described later), and the processing A trajectory determining step for determining a trajectory (for example, a path to be described later) of the processing tool based on a front angle and a target angle after the processing (for example, a target angle Ψ described later) and the end length, and the trajectory determination And a processing step of bending the end to the target angle by moving the processing tool in a predetermined direction based on the trajectory determined in the process.

これにより、加工前角度と目標角度に基づいて加工具の軌跡を適切に決定できるので、教示作業で加工具の軌跡を設定するために必要な工数を効果的に削減できる。作業者の経験が少ない場合であっても、適切な軌跡が設定されるので加工工程を安定化させることができる。   Thereby, since the locus of the processing tool can be appropriately determined based on the pre-machining angle and the target angle, the man-hours necessary for setting the locus of the processing tool in the teaching work can be effectively reduced. Even when the operator has little experience, an appropriate trajectory is set, so that the machining process can be stabilized.

前記軌跡決定工程では、前記加工前角度と前記目標角度の差分(例えば、後述のθ−Ψ)又は前記差分を前記端部長さで割った値(例えば、後述の(θ−Ψ)/L)又はその両方を軌跡決定値として算出し、前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップ(例えば、後述の図8に示す軌跡数決定マップ)と、算出した前記軌跡決定値と、から前記折り曲げ回数(例えば、後述のパス数)及び各段階の折り曲げ角度(例えば、後述の加工途中角度θn)を算出することが好ましい。In the trajectory determination step, a difference between the pre-processing angle and the target angle (for example, θ 0 −Ψ described later) or a value obtained by dividing the difference by the end length (for example, (θ 0 −Ψ) / described later). L) or both of them are calculated as trajectory determination values, and the trajectory number indicating the number of times of bending from the pre-processing angle to the target angle in a stepwise manner is determined stepwise according to the size of the trajectory determination value. Based on a determination map (for example, a trajectory number determination map shown in FIG. 8 to be described later) and the calculated trajectory determination value, the number of bendings (for example, the number of passes to be described later) and bending angles at each stage (for example, processing to be described later) It is preferable to calculate the midway angle θn).

これにより、加工前角度と目標角度の差分によって加工難易度を反映して折り曲げ回数を自動的かつ適切に算出できる。   Thereby, the number of bendings can be automatically and appropriately calculated by reflecting the processing difficulty level by the difference between the pre-processing angle and the target angle.

前記加工具の移動方向で前記ワーク(例えば、後述のワークWb)の前記端部の形状が異なる場合において前記軌跡決定工程では、前記加工具の移動方向で見る前記端部の第1の断面(図12のNo.1の項目参照)の前記加工前角度、前記目標角度及び前記端部長さと、前記加工具の移動方向で見る前記端部の前記第1の断面とは異なる第2の断面(図12のNo.2〜15の項目参照)の前記加工前角度、前記目標角度及び前記端部長さと、に基づいて前記加工具の軌跡を決定することが好ましい。   When the shape of the end portion of the workpiece (for example, a workpiece Wb described later) differs in the moving direction of the processing tool, in the trajectory determining step, a first cross section of the end portion viewed in the moving direction of the processing tool ( A second cross section different from the first cross section of the end portion viewed in the moving direction of the processing tool, and the pre-processing angle, the target angle, and the end length of No. 1 in FIG. It is preferable to determine the locus of the processing tool based on the pre-processing angle, the target angle, and the end length of No. 2 to 15 in FIG.

これにより、断面の形状が異なる場合であっても、形状の違いを考慮して加工具の軌跡を決定することができる。   Thereby, even if the cross-sectional shape is different, the locus of the processing tool can be determined in consideration of the difference in shape.

前記第1の断面の前記加工前角度と前記目標角度の差分(例えば、後述のθ−Ψ)又は前記差分を前記端部長さで割った値(例えば、後述の(θ−Ψ)/L)又はその両方を第1の軌跡決定値として算出し、前記第2の断面の前記加工前角度と前記目標角度の差分(例えば、後述のθ−Ψ)又は前記差分を前記端部長さで割った値(例えば、後述の(θ−Ψ)/L)又はその両方に基づいて第2の軌跡決定値として算出し、前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップ(図13に示す軌跡数決定マップ)と、算出した前記第1の軌跡決定値及び前記第2の軌跡決定値と、から前記折り曲げ回数及び各段階の折り曲げ角度を算出することが好ましい。A difference between the pre-processing angle of the first cross section and the target angle (for example, θ 0 -Ψ described later) or a value obtained by dividing the difference by the end length (for example, (θ 0 -Ψ) described later / L) or both are calculated as the first trajectory determination value, and the difference between the pre-processing angle of the second cross section and the target angle (for example, θ 0 -Ψ described later) or the difference is the end length. Calculated as a second trajectory determination value based on a value divided by (for example, (θ 0 −Ψ) / L described later) or both, and the number of times of bending in a stepwise manner from the pre-processing angle to the target angle is calculated. The trajectory number determination map (the trajectory number determination map shown in FIG. 13) in which the number of trajectories shown is determined stepwise according to the magnitude of the trajectory determination value, the calculated first trajectory determination value, and the second trajectory. Determine the number of folds and the fold angle at each stage from the determined value. It is preferable to leave.

これにより、移動方向で断面が異なるような場合であっても、加工難易度を反映して折り曲げ回数を自動的かつ適切に算出できる。   Thereby, even if it is a case where a cross section changes with a moving direction, the frequency | count of bending can be calculated automatically and appropriately reflecting a processing difficulty.

前記軌跡数決定マップでは前記軌跡数ごとに上限値(例えば、後述の軌跡数決定マップにおける1パスにおける7.0又は2パスにおける12.0又は3パスにおける19.0)を決定する値が定められており、前記軌跡数決定マップにプロットされた前記軌跡決定値が属する範囲(例えば、後述の1パスの範囲又は2パスの範囲又は3パスの範囲)における前記上限値に対する偏り(例えば、後述のマージンMα又はマージンMβ)を反映して各段階における折り曲げ角度を算出することが好ましい。   In the trajectory number determination map, a value for determining an upper limit value (for example, 7.0 in one path in the trajectory number determination map described later or 12.0 in two paths or 19.0 in three paths) is determined for each trajectory number. And a bias (for example, described later) with respect to the upper limit value in a range (for example, a 1-pass range, 2-pass range, or 3-pass range described later) to which the track determination value plotted in the track number determination map belongs. It is preferable to calculate the bending angle at each stage reflecting the margin Mα or the margin Mβ).

これにより、断面の形状が異なる場合における加工難易度を適切に平均化することができ、ワークの曲げ加工をより安定的に行うことができる。   Thereby, the processing difficulty in the case where the shape of a cross section differs can be averaged appropriately, and the bending process of a workpiece | work can be performed more stably.

また、本発明は、加工具(例えば、後述の加工ローラ10)によってワーク(例えば、後述のワークW)の端部(例えば、後述のフランジWF)に対して曲げ加工を行うワーク曲げ加工装置(例えば、後述のローラヘミング装置1)であって、加工前の前記端部の加工前角度(例えば、後述の加工前角度θ)及び端部の折り曲げ部分の端部長さ(例えば、後述のフランジ長さL)を取得し、前記加工前角度及び加工後の目標角度(例えば、後述の目標角度Ψ)と、前記端部長さと、に基づいて前記加工具の軌跡(例えば、後述のパス)を決定する制御部(例えば、後述の制御部50)と、前記制御部で決定された軌跡に基づいて前記加工具を所定方向に移動させ、前記目標角度まで前記端部を折り曲げるロボット(例えば、後述のロボット40)と、を備えるワーク曲げ加工装置に関する。Further, the present invention provides a workpiece bending apparatus (for example, bending a workpiece (for example, a workpiece W, which will be described later)) (for example, a flange WF, which will be described later) with a processing tool (for example, a processing roller 10 described later). For example, in a roller hemming device 1 described later, a pre-processing angle of the end portion before processing (for example, a pre-processing angle θ 0 described later) and an end length of a bent portion of the end portion (for example, a flange described later) Length L), and the trajectory of the processing tool (for example, a path described later) based on the pre-processing angle and the target angle after processing (for example, target angle Ψ described later) and the end length. A control unit (for example, a control unit 50 to be described later) to be determined and a robot (for example, to be described later) that moves the processing tool in a predetermined direction based on the locus determined by the control unit and bends the end to the target angle. Robot 0) and relates to workpiece bending apparatus comprising a.

これにより、加工前角度と目標角度に基づいて加工具の軌跡を適切に決定できるので、教示作業で加工具の軌跡を設定するために必要な工数を効果的に削減できる。作業者の経験が少ない場合であっても、適切な軌跡が設定されるので加工工程を安定化させることができる。   Thereby, since the locus of the processing tool can be appropriately determined based on the pre-machining angle and the target angle, the man-hours necessary for setting the locus of the processing tool in the teaching work can be effectively reduced. Even when the operator has little experience, an appropriate trajectory is set, so that the machining process can be stabilized.

前記制御部は、前記加工前角度と前記目標角度の差分(例えば、後述のθ−Ψ)又は前記差分を前記端部長さで割った値(例えば、後述の(θ−Ψ)/L)又はその両方を軌跡決定値として算出し、前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップ(例えば、後述の図6に示す軌跡数決定マップ)と、算出した前記軌跡決定値と、から前記折り曲げ回数(例えば、後述のパス数)及び各段階の折り曲げ角度(例えば、後述の加工途中角度θn)を算出することが好ましい。The control unit is configured such that a difference between the pre-processing angle and the target angle (for example, θ 0 −Ψ described later) or a value obtained by dividing the difference by the end length (for example, (θ 0 −Ψ) / L described later). ) Or both are calculated as trajectory determination values, and the trajectory number is determined such that the trajectory number indicating the number of times of bending from the pre-processing angle to the target angle is determined stepwise according to the size of the trajectory determination value. From the map (for example, a trajectory number determination map shown in FIG. 6 to be described later) and the calculated trajectory determination value, the number of bendings (for example, the number of passes to be described later) and the bending angle at each stage (for example, to be described later during processing) It is preferable to calculate the angle θn).

これにより、加工前角度と目標角度の差分によって加工難易度を反映して折り曲げ回数を自動的かつ適切に算出できる。   Thereby, the number of bendings can be automatically and appropriately calculated by reflecting the processing difficulty level by the difference between the pre-processing angle and the target angle.

前記制御部は、前記加工具の移動方向で前記ワーク(例えば、後述のワークWb)の前記端部の形状が異なる場合において前記軌跡決定工程では、前記加工具の移動方向で見る前記端部の第1の断面の前記加工前角度、前記目標角度及び前記端部長さと、前記加工具の移動方向で見る前記端部の前記第1の断面とは異なる第2の断面の前記加工前角度、前記目標角度及び前記端部長さと、に基づいて前記加工具の軌跡を決定することが好ましい。   When the shape of the end of the workpiece (for example, a workpiece Wb described later) is different in the movement direction of the processing tool, the control unit determines the end of the end viewed in the movement direction of the processing tool in the trajectory determination step. The pre-processing angle of the first cross section, the target angle and the end length, and the pre-processing angle of the second cross section different from the first cross section of the end viewed in the moving direction of the processing tool, It is preferable to determine a locus of the processing tool based on a target angle and the end length.

これにより、断面の形状が異なる場合であっても、形状の違いを考慮して加工具の軌跡を決定することができる。   Thereby, even if the cross-sectional shape is different, the locus of the processing tool can be determined in consideration of the difference in shape.

前記第1の断面の前記加工前角度と前記目標角度の差分(例えば、後述のθ−Ψ)又は前記差分を前記端部長さで割った値(例えば、後述の(θ−Ψ)/L)又はその両方を第1の軌跡決定値として算出し、前記第2の断面の前記加工前角度と前記目標角度の差分(例えば、後述のθ−Ψ)又は前記差分を前記端部長さで割った値(例えば、後述の(θ−Ψ)/L)又はその両方に基づいて第2の軌跡決定値として算出し、前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップ(図13に示す軌跡数決定マップ)と、算出した前記第1の軌跡決定値及び前記第2の軌跡決定値と、から前記折り曲げ回数及び各段階の折り曲げ角度を算出することが好ましい。A difference between the pre-processing angle of the first cross section and the target angle (for example, θ 0 -Ψ described later) or a value obtained by dividing the difference by the end length (for example, (θ 0 -Ψ) described later / L) or both are calculated as the first trajectory determination value, and the difference between the pre-processing angle of the second cross section and the target angle (for example, θ 0 -Ψ described later) or the difference is the end length. Calculated as a second trajectory determination value based on a value divided by (for example, (θ 0 −Ψ) / L described later) or both, and the number of times of bending in a stepwise manner from the pre-processing angle to the target angle is calculated. The trajectory number determination map (the trajectory number determination map shown in FIG. 13) in which the number of trajectories shown is determined stepwise according to the magnitude of the trajectory determination value, the calculated first trajectory determination value, and the second trajectory. Determine the number of folds and the fold angle at each stage from the determined value. It is preferable to leave.

これにより、移動方向で断面が異なるような場合であっても、加工難易度を反映して折り曲げ回数を自動的かつ適切に算出できる。   Thereby, even if it is a case where a cross section changes with a moving direction, the frequency | count of bending can be calculated automatically and appropriately reflecting a processing difficulty.

前記軌跡数決定マップでは前記軌跡数ごとに上限値(例えば、後述の軌跡数決定マップにおける1パスにおける7.0又は2パスにおける12.0又は3パスにおける19.0)を決定する値が定められており、前記軌跡数決定マップにプロットされた前記軌跡決定値が属する範囲(例えば、後述の1パスの範囲又は2パスの範囲又は3パスの範囲)における前記上限値に対する偏り(例えば、後述のマージンMα又はマージンMβ)を反映して各段階における折り曲げ角度を算出することが好ましい。   In the trajectory number determination map, a value for determining an upper limit value (for example, 7.0 in one path in the trajectory number determination map described later or 12.0 in two paths or 19.0 in three paths) is determined for each trajectory number. And a bias (for example, described later) with respect to the upper limit value in a range (for example, a 1-pass range, 2-pass range, or 3-pass range described later) to which the track determination value plotted in the track number determination map belongs. It is preferable to calculate the bending angle at each stage reflecting the margin Mα or the margin Mβ).

これにより、断面の形状が異なる場合における加工難易度を適切に平均化することができ、ワークの曲げ加工をより安定的に行うことができる。   Thereby, the processing difficulty in the case where the shape of a cross section differs can be averaged appropriately, and the bending process of a workpiece | work can be performed more stably.

本発明によれば、加工前のワークの形状及び目標とする加工後のワークの形状に基づいて加工具の軌跡を適切に設定できるワーク曲げ加工方法及びワーク曲げ加工装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the workpiece | work bending method and workpiece | work bending apparatus which can set the locus | trajectory of a processing tool appropriately based on the shape of the workpiece | work before a process and the target workpiece | work after a process can be provided.

本発明の一実施形態に係るローラヘミング装置1の概略構成を示す図である。It is a figure showing the schematic structure of roller hemming device 1 concerning one embodiment of the present invention. 本実施形態の予備工程前のアウタパネルW1及びインナパネルW2をテーブル部32に載置した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which mounted the outer panel W1 and the inner panel W2 in the table part 32 before the preliminary | backup process of this embodiment. 本実施形態の予備工程で加工ローラ10によって目標角度ΨまでフランジWFが折り曲げられた状態のアウタパネルW1及びインナパネルW2を示す断面図である。It is sectional drawing which shows the outer panel W1 and the inner panel W2 of the state by which the flange WF was bend | folded to the target angle (PSI) with the process roller 10 at the preliminary process of this embodiment. 本実施形態の本工程で所定形状に折り曲げられたアウタパネルW1及びインナパネルW2を示す断面図である。It is sectional drawing which shows the outer panel W1 and the inner panel W2 which were bend | folded by the predetermined process at this process of this embodiment. 加工ローラ10の移動方向で断面形状が同じワークWaの例を示す断面斜視図である。3 is a cross-sectional perspective view showing an example of a workpiece Wa having the same cross-sectional shape in the moving direction of the processing roller 10. FIG. 加工ローラ10の移動方向でワークWの断面形状が同じ場合の加工ローラ10の移動制御の流れを示すフローである。It is a flow which shows the flow of the movement control of the processing roller 10 when the cross-sectional shape of the workpiece | work W is the same in the moving direction of the processing roller 10. FIG. 加工難易度による加工ローラ10のパス数の違いを説明する図である。It is a figure explaining the difference in the number of passes of processing roller 10 by processing difficulty. 加工ローラ10の移動方向でワークWの断面形状が同じ場合の加工ローラ10のパス数を決定する軌跡数決定マップを示す図である。It is a figure which shows the locus | trajectory number determination map which determines the number of path | passes of the processing roller 10 when the cross-sectional shape of the workpiece | work W is the same in the moving direction of the processing roller 10. FIG. フランジ長さLによる加工ローラ10の移動制御の違いを説明する図である。It is a figure explaining the difference in the movement control of the processing roller 10 by the flange length L. FIG. 加工ローラ10の移動方向で断面形状が異なるワークWbの例を示す断面斜視図である。3 is a cross-sectional perspective view showing an example of a workpiece Wb having a different cross-sectional shape in the moving direction of the processing roller 10. FIG. 加工ローラ10の移動方向でワークWの断面形状が異なる場合の加工ローラ10の移動制御の流れを示すフローである。It is a flow which shows the flow of movement control of the processing roller 10 when the cross-sectional shape of the workpiece | work W differs with the moving direction of the processing roller 10. FIG. 予備工程を行う範囲で取得された複数個所の断面と加工難易度の関係を示す表である。It is a table | surface which shows the relationship between the cross section of the several places acquired in the range which performs a preliminary | backup process, and a processing difficulty level. 加工ローラ10の移動方向でワークWの断面形状が異なる場合の加工ローラ10のパス数を決定する軌跡数決定マップを示す図である。It is a figure which shows the locus | trajectory number determination map which determines the path | pass number of the process roller 10 when the cross-sectional shape of the workpiece | work W differs in the moving direction of the process roller 10. FIG.

以下、本発明の好ましい実施形態について、図面を参照しながら説明する。まず、本実施形態の板材加工方法を適用するローラヘミング装置1の全体構成について説明する。図1は、本発明の一実施形態に係るローラヘミング装置1の概略構成を示す図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the whole structure of the roller hemming apparatus 1 to which the plate material processing method of this embodiment is applied will be described. FIG. 1 is a diagram showing a schematic configuration of a roller hemming device 1 according to an embodiment of the present invention.

図1に示すように、本実施形態のローラヘミング装置1は、加工用テーブル30と、加工ローラ10と、ロボット40と、制御部50と、を備える。   As shown in FIG. 1, the roller hemming device 1 of this embodiment includes a processing table 30, a processing roller 10, a robot 40, and a control unit 50.

加工用テーブル30は、床面に設置された支持台31と、支持台31に支持されたテーブル部32と、を備える。テーブル部32には、ワークWが載置される。ワークWは、例えば自動車用ドアパネルなどであり、アウタパネルW1及びインナパネルW2から構成される。アウタパネルW1は、インナパネルW2を中央に配置する部分(本体)に対して残りの周縁部にフランジWFが略90°に折り曲げられている。   The processing table 30 includes a support base 31 installed on the floor surface and a table unit 32 supported by the support base 31. A work W is placed on the table portion 32. The workpiece W is, for example, an automobile door panel or the like, and includes an outer panel W1 and an inner panel W2. In the outer panel W1, the flange WF is bent at approximately 90 ° at the remaining peripheral edge with respect to the portion (main body) where the inner panel W2 is arranged at the center.

テーブル部32には、フランジWFをテーブル部32の表面に対して垂直な上向きに立てた状態でアウタパネルW1が載置される。アウタパネルW1上には、アウタパネルW1のフランジWFがインナパネルW2の端部を包み込むようにインナパネルW2が配置される。アウタパネルW1本体とインナパネルW2の端部との間やフランジWFの折り返し面には、接着剤が塗布される。接着剤は、ガラスビーズなどの固形材が含まれている。   The outer panel W <b> 1 is placed on the table portion 32 in a state where the flange WF stands upright perpendicular to the surface of the table portion 32. On the outer panel W1, the inner panel W2 is disposed so that the flange WF of the outer panel W1 wraps the end portion of the inner panel W2. An adhesive is applied between the outer panel W1 main body and the end of the inner panel W2 and on the folded surface of the flange WF. The adhesive contains a solid material such as glass beads.

加工ローラ10は、テーブル部32に載置されたアウタパネルW1のフランジWFに折り曲げ加工(ローラヘミング加工)を施すものである。加工ローラ10は、ロボット40のアーム42によって3次元方向に移動可能に支持され、アーム42に対して回転可能である。   The processing roller 10 performs bending processing (roller hemming processing) on the flange WF of the outer panel W <b> 1 placed on the table portion 32. The processing roller 10 is supported by the arm 42 of the robot 40 so as to be movable in a three-dimensional direction, and is rotatable with respect to the arm 42.

ロボット40は、床面に固定された基部41と、加工ローラ10を3次元方向に移動可能に支持するアーム42と、を備える。ロボット40は、加工ローラ10が所定の軌道に沿って移動するようにアーム42を可動させる。   The robot 40 includes a base 41 fixed to the floor surface and an arm 42 that supports the processing roller 10 so as to be movable in a three-dimensional direction. The robot 40 moves the arm 42 so that the processing roller 10 moves along a predetermined trajectory.

次に、ローラヘミング装置1による曲げ加工の流れについて説明する。本実施形態の曲げ加工では、アウタパネルW1のフランジWFを目標角度Ψまで段階的に折り曲げる予備工程と、目標角度Ψに曲げられたフランジWFをかしめて最終的な折り曲げ形状に加工する本工程と、が行われる。   Next, the flow of bending by the roller hemming device 1 will be described. In the bending process of the present embodiment, a preliminary process of bending the flange WF of the outer panel W1 stepwise to the target angle Ψ, a main process of crimping the flange WF bent to the target angle Ψ and processing into a final bent shape, Is done.

図2は、予備工程を行う前のアウタパネルW1及びインナパネルW2をテーブル部32に載置した状態を模式的に示す断面図である。図2では、アウタパネルW1のフランジWF近傍が示されている。   FIG. 2 is a cross-sectional view schematically showing a state where the outer panel W1 and the inner panel W2 are placed on the table portion 32 before the preliminary process is performed. In FIG. 2, the vicinity of the flange WF of the outer panel W1 is shown.

図2に示すように、アウタパネルW1は、その端部に位置するフランジWFが上方に折り曲げられた状態でテーブル部32の表面に載置される。なお、図中のR1は、フランジWFの曲げられた部分であるR状部分の始端となる部分であり、R2はR状部分の終端となる部分を示している。また、Lは、アウタパネルW1におけるR2から端部までのフランジ長さを示している。次に、アウタパネルW1の中央部(本体)上にインナパネルW2を重ね合わせる。インナパネルW2の端部は、アウタパネルW1本体のフランジWF内側に収納される。アウタパネルW1の厚みをTとし、インナパネルW2の厚みをTとすると、この時点でアウタパネルW1とインナパネルW2を積み重ねた厚みは(T+T)と表現できる。As shown in FIG. 2, the outer panel W <b> 1 is placed on the surface of the table portion 32 with the flange WF located at the end thereof being bent upward. In the figure, R1 is a portion that becomes the start end of the R-shaped portion that is a bent portion of the flange WF, and R2 indicates a portion that becomes the end of the R-shaped portion. Moreover, L has shown the flange length from R2 to an edge part in the outer panel W1. Next, the inner panel W2 is overlaid on the central portion (main body) of the outer panel W1. The end of the inner panel W2 is housed inside the flange WF of the outer panel W1 body. The thickness of the outer panel W1 and T 1, the thickness of the inner panel W2 When T 2, the thickness of a stack of outer panel W1 and the inner panel W2 at this time can be expressed as (T 1 + T 2).

図3は、予備工程で加工ローラ10によって目標角度ΨまでフランジWFが折り曲げられた状態のアウタパネルW1及びインナパネルW2を示す断面図である。   FIG. 3 is a cross-sectional view showing the outer panel W1 and the inner panel W2 in a state where the flange WF is bent to the target angle Ψ by the processing roller 10 in the preliminary process.

図3に示すように、本実施形態の加工ローラ10は、回転軸C1を中心に回転可能な略円筒状であり、その加工面は、円周形状部11とR形状部12とを有する。円周形状部11とR形状部12との間には、境界部13が形成されている。円周形状部11は、加工ローラ10におけるロボット40のアーム42の支持側に設けられ、R形状部12は、加工ローラ10におけるロボット40のアーム42の支持側とは反対側である先端側に設けられる。なお、図3中のlは、アウタパネルW1のR形状の始端部R1から加工ローラ10の基準位置までの水平方向の長さを示す。Dは、基準位置から加工ローラ10がフランジWFに接触する加工位置までの水平方向の長さを示すものであり、加工ローラ10の押し込み量を示す。Ψは、かしめ加工を行うための目標角度Ψである。   As shown in FIG. 3, the processing roller 10 of the present embodiment has a substantially cylindrical shape that can rotate around a rotation axis C <b> 1, and the processing surface includes a circumferential shape portion 11 and an R shape portion 12. A boundary portion 13 is formed between the circumferential shape portion 11 and the R shape portion 12. The circumferentially shaped portion 11 is provided on the support side of the arm 42 of the robot 40 in the processing roller 10, and the R-shaped portion 12 is on the tip side opposite to the support side of the arm 42 of the robot 40 in the processing roller 10. Provided. 3 indicates the horizontal length from the R-shaped start end R1 of the outer panel W1 to the reference position of the processing roller 10. D indicates the horizontal length from the reference position to the processing position at which the processing roller 10 contacts the flange WF, and indicates the amount by which the processing roller 10 is pushed. Ψ is a target angle Ψ for performing caulking.

ロボット40は、予め設定される軌跡に従って予備曲げを行う。本実施形態の予備工程では、段階的に予備曲げが複数回行われる。   The robot 40 performs preliminary bending according to a preset trajectory. In the preliminary process of this embodiment, preliminary bending is performed a plurality of times stepwise.

本実施形態では、加工ローラ10の高さは一定であり、押し込み量Dの変更によって1回に変更する加工途中角度θn(=1,2,3・・)を調節する。予備曲げの回数や1回の予備曲げの角度の設定方法については後述する。   In this embodiment, the height of the processing roller 10 is constant, and the processing intermediate angle θn (= 1, 2, 3,...) That is changed to one time by adjusting the push-in amount D is adjusted. A method of setting the number of times of preliminary bending and the angle of one preliminary bending will be described later.

加工ローラ10のフランジWFへの押圧は、加工ローラ10をフランジWFに対して、テーブル部32の表面と平行にアーム42を設定されるパスに沿って移動させることによって行われる。   The processing roller 10 is pressed against the flange WF by moving the processing roller 10 with respect to the flange WF along a path in which the arm 42 is set parallel to the surface of the table portion 32.

目標角度Ψまで折り曲げられたフランジWFに対して本工程によるかしめ加工が行われる。図4は、本実施形態の本工程で所定形状に折り曲げられたアウタパネルW1及びインナパネルW2を示す断面図である。   The caulking process according to this process is performed on the flange WF bent to the target angle Ψ. FIG. 4 is a cross-sectional view showing the outer panel W1 and the inner panel W2 that are bent into a predetermined shape in this step of the present embodiment.

本工程では、フランジWFがインナパネルW2の端部に接触するまで折り曲げられ、インナパネルW2の端部がフランジWFとアウタパネルW1本体によって挟み込まれた状態となる。本実施形態では、アウタパネルW1本体とインナパネルW2の端部との間やフランジWFの折り返し面に接着剤が塗布されており、接着剤に含まれる固形材がアウタパネルW1とインナパネルW2との間に食い込み、アウタパネルW1とインナパネルW2とを強く結合する。インナパネルW2にアウタパネルW1を積み重ねた厚みhは(2T+T)と表現できる。このように、かしめ加工では、予備加工により目標角度Ψまで折り曲げられたフランジWFが更に押し込まれてインナパネルW2がアウタパネルW1によって挟み込まれた状態となる。In this step, the flange WF is bent until it comes into contact with the end of the inner panel W2, and the end of the inner panel W2 is sandwiched between the flange WF and the outer panel W1 main body. In the present embodiment, an adhesive is applied between the outer panel W1 main body and the end of the inner panel W2 or on the folded surface of the flange WF, and the solid material contained in the adhesive is between the outer panel W1 and the inner panel W2. The outer panel W1 and the inner panel W2 are strongly coupled. The thickness h obtained by stacking the outer panel W1 on the inner panel W2 can be expressed as (2T 1 + T 2 ). In this way, in the caulking process, the flange WF bent to the target angle Ψ by the preliminary process is further pushed in, and the inner panel W2 is sandwiched by the outer panel W1.

次に、予備工程における加工回数及び加工角度の設定方法について説明する。本実施形態のローラヘミング装置1では、加工ローラ10の移動方向でワークWの断面形状が同じ場合と、加工ローラ10の移動方向でワークWの断面形状が異なる場合と、では異なる算出方法で加工回数及び加工角度を設定し、加工ローラ10の移動制御を行う。   Next, a method for setting the number of machining times and the machining angle in the preliminary process will be described. In the roller hemming device 1 of the present embodiment, machining is performed with different calculation methods when the cross-sectional shape of the workpiece W is the same in the moving direction of the processing roller 10 and when the cross-sectional shape of the work W is different in the moving direction of the processing roller 10. The number of times and the processing angle are set, and movement control of the processing roller 10 is performed.

まず、加工ローラ10の移動方向でワークWの断面形状が同じ場合について説明する。図5は、加工ローラ10の移動方向で断面形状が同じワークWa(ワークW)の例を示す断面斜視図である。図6は、加工ローラ10の移動方向でワークWの断面形状が同じ場合の加工ローラ10の移動制御の流れを示すフローである。図7は、加工難易度による加工ローラ10のパス数の違いを説明する図である。図8は、加工ローラ10の移動方向でワークWの断面形状が同じ場合の加工ローラ10のパス数を決定する軌跡数決定マップを示す図である。図9は、フランジ長さLによる加工ローラ10の移動制御の違いを説明する図である。   First, a case where the cross-sectional shape of the workpiece W is the same in the moving direction of the processing roller 10 will be described. FIG. 5 is a cross-sectional perspective view showing an example of a work Wa (work W) having the same cross-sectional shape in the moving direction of the processing roller 10. FIG. 6 is a flow showing a flow of movement control of the processing roller 10 when the cross-sectional shape of the workpiece W is the same in the moving direction of the processing roller 10. FIG. 7 is a diagram for explaining the difference in the number of passes of the processing roller 10 depending on the processing difficulty level. FIG. 8 is a diagram illustrating a trajectory number determination map for determining the number of passes of the processing roller 10 when the cross-sectional shape of the workpiece W is the same in the moving direction of the processing roller 10. FIG. 9 is a diagram for explaining a difference in movement control of the processing roller 10 depending on the flange length L. FIG.

図5に示すワークWaは、車両用ドアのサイドシルにあたる部分であり、ワークWの端部のフランジWFが、フランジ長さL、所定の角度(以下、加工前角度θ)で折り曲げられた状態でテーブル部32に載置される。A workpiece Wa shown in FIG. 5 is a portion corresponding to a side sill of a vehicle door, and a flange WF at an end portion of the workpiece W is bent at a flange length L and a predetermined angle (hereinafter, pre-processing angle θ 0 ). Is placed on the table section 32.

図6に示すように、ローラヘミング装置1の制御部50は、加工ローラ10の移動制御のフローでは、フランジ長さLと加工前角度θを取得する(S101)。本実施形態では、前工程で設定されている設計データ等、予め設定されるデータに基づいてフランジ長さLと、加工前角度θを設定する。As illustrated in FIG. 6, the control unit 50 of the roller hemming device 1 acquires the flange length L and the pre-processing angle θ 0 in the flow of movement control of the processing roller 10 (S101). In the present embodiment, the flange length L and the pre-processing angle θ 0 are set based on preset data such as design data set in the previous process.

予め設定されるかしめ加工前の目標角度Ψと、S101で取得したフランジ長さL及び加工前角度θと、に基づいて加工難易度の分析を行うための値を式1、式2より算出する(S102)。(θ−Ψ)/L・・・式1
θ−Ψ・・・式2
Based on the preset target angle Ψ before caulking, the flange length L and the pre-machining angle θ 0 acquired in S101, values for analyzing the processing difficulty are calculated from Expression 1 and Expression 2. (S102). (Θ 0 −Ψ) / L Expression 1
θ 0Ψ Equation 2

図7を参照して加工難易度について説明する。図7の(a)は、加工前角度θが比較的大きい場合のワークWの例を模式的に示しており、図7の(b)は、加工前角度θが比較的小さい場合のワークWの例を模式的に示している。なお、図7の(a)のθ及び図7の(b)のθは、かしめ加工を行う目標角度であり、略同じ角度であるものとする。The processing difficulty level will be described with reference to FIG. FIG. 7A schematically shows an example of the workpiece W when the pre-machining angle θ 0 is relatively large, and FIG. 7B shows the case where the pre-machining angle θ 0 is relatively small. An example of the workpiece W is schematically shown. Incidentally, theta 2 (b), the theta 3 and 7 (a) of FIG. 7 is a target angle for performing caulking, it is assumed that substantially the same angle.

加工前角度θが大きく加工難易度が高い場合はパス数を大きく設定し、加工前角度θが小さく加工難易度が低い場合はパス数を小さく設定している。例えば、加工前角度θが大きい図7の(a)では3回に分けて予備工程を行っており、加工前角度θ小さい図7の(b)では2回に分けて予備工程を行う。When the pre-machining angle θ 0 is large and the machining difficulty is high, the number of passes is set large, and when the pre-machining angle θ 0 is small and the machining difficulty is low, the number of passes is set small. For example, in FIG. 7A where the pre-processing angle θ 0 is large, the preliminary process is performed three times, and in FIG. 7B where the pre-processing angle θ 0 is small, the preliminary process is performed twice. .

図8に示すように、S102で算出された(θ−Ψ)/Lの値に基づいてパス数を決定するための範囲と、(θ−Ψ)の値に基づいてパス数を決定するための範囲と、がそれぞれ予め設定される。As shown in FIG. 8, the range for determining the number of paths based on the value of (θ 0 −Ψ) / L calculated in S102 and the number of paths based on the value of (θ 0 −Ψ) are determined. And a range to be set in advance.

本実施形態では、(θ−Ψ)/Lの値に基づいてパス数を決定するための範囲は、(θ−Ψ)/Lの値が7.0未満では1パスであり、7.0以上12.0未満では2パスであり、12.0以上では3パスとなっている。一方、θ−Ψの値に基づいてパス数を決定するための範囲は、θ−Ψの値が10deg未満では1パスであり、10deg以上60度未満では2パスであり、60deg以上では3パスとなっている。In the present embodiment, the range for determining the number of paths based on the value of (θ 0 -Ψ) / L is a 1-pass is less than 7.0 the value of (θ 0 -Ψ) / L, 7 .0 or more and less than 12.0 is 2 passes, and 12.0 or more is 3 passes. On the other hand, the range for determining the number of paths based on the value of θ 0 -Ψ is one path is less than the value of θ 0 -Ψ is 10 deg, a two-pass is less than 60 degrees or more 10 deg, the above 60deg is There are 3 passes.

パス数を決定するステップでは、(θ−Ψ)/L式1によって算出された値に基づいてパス数を算出するとともに、θ−Ψ式2によって算出された値に基づいてパス数を算出する。そして、(θ−Ψ)/L式1の値に基づくパス数と、θ−Ψ式2の値に基づくパス数と、を比較して加工難易度の高い方を予備工程のパス数として決定する。In the step of determining the number of paths, the number of paths is calculated based on the value calculated by (θ 0 −Ψ) / L expression 1, and the number of paths is calculated based on the value calculated by θ 0Ψ expression 2. calculate. Then, the number of passes based on the value of (θ 0 −Ψ) / L expression 1 and the number of paths based on the value of θ 0Ψ expression 2 are compared, and the higher processing difficulty is determined as the number of passes in the preliminary process. Determine as.

式1及び式2に具体的な数値を代入してパス数の決定について説明する。図5に示す加工対象のワークWが、加工前角度θ=98.17deg、フランジ長さL=7.57(mm)であって、目標角度Ψ=30degの場合、以下のような結果となる。
(θ−Ψ)/L=9.00
θ−Ψ=68.17
The determination of the number of passes will be described by substituting specific numerical values into Equation 1 and Equation 2. When the workpiece W shown in FIG. 5 has a pre-machining angle θ 0 = 98.17 deg, a flange length L = 7.57 (mm), and a target angle Ψ = 30 deg, the following results are obtained. Become.
0 −Ψ) /L=9.00
θ 0 −Ψ = 68.17

(θ−Ψ)/L=9.00は、2パスが設定される7.0以上12.0未満の範囲であり、パス数が2となる。θ−Ψ=68.17degは、3パスが設定される60deg以上になるので、パス数が3となる。加工難易度が高い方が優先されるので、今回の場合は、パス数は3が設定されることになる。0 −Ψ) /L=9.00 is a range from 7.0 to less than 12.0 in which two paths are set, and the number of paths is two. Since θ 0 −Ψ = 68.17 deg is 60 deg or more in which three paths are set, the number of paths is three. Since the higher processing difficulty is given priority, in this case, the number of passes is set to 3.

パス数が決定されると、パスごとに設定される加工途中角度θnを計算する(S104)。加工ローラ10の移動方向でワークWの断面形状が同じ場合では、加工途中角度θnは加工前角度θ0から目標角度Ψを差し引いた角度をパス数で分割した角度が設定される。上述の例では、θ0=98.17deg、θ1=75.4deg、θ2=52.7deg、θ3=30deg(=目標角度Ψ)が加工途中角度θnとして設定されることになる。   When the number of passes is determined, a machining intermediate angle θn set for each pass is calculated (S104). When the cross-sectional shape of the workpiece W is the same in the moving direction of the processing roller 10, the processing intermediate angle θn is set to an angle obtained by subtracting the target angle Ψ from the pre-processing angle θ0 by the number of passes. In the above example, θ0 = 98.17 deg, θ1 = 75.4 deg, θ2 = 52.7 deg, θ3 = 30 deg (= target angle Ψ) is set as the machining intermediate angle θn.

次に、θ0に基づいてCAD上で中間断面を作成し(S105)、この中間断面に基づいて加工ローラ10の押し込み量D1→nを算出する(S106)。   Next, an intermediate cross section is created on the CAD based on θ0 (S105), and the pushing amount D1 → n of the processing roller 10 is calculated based on the intermediate cross section (S106).

本実施形態では、加工ローラ10の高さを変更せずに曲げ工程を行う。図9を参照してフランジ長さLによる加工ローラ10の移動制御の違いを説明する。図9中の(a)はフランジ長さLが相対的に長い場合を示し、図9中の(b)はフランジ長さLが相対的に短い場合を示す。   In the present embodiment, the bending process is performed without changing the height of the processing roller 10. The difference in the movement control of the processing roller 10 depending on the flange length L will be described with reference to FIG. 9A shows a case where the flange length L is relatively long, and FIG. 9B shows a case where the flange length L is relatively short.

図9中の(a)に示すように、フランジ長さLが相対的に長い場合は、加工ローラ10のR形状部12をフランジWFの外側の面に面接触させる。図9中の(b)に示すように、フランジ長さLが相対的に短い場合は、加工ローラ10の円周形状部11をフランジWFの端面に線接触させる。   As shown in FIG. 9A, when the flange length L is relatively long, the R-shaped portion 12 of the processing roller 10 is brought into surface contact with the outer surface of the flange WF. As shown in FIG. 9B, when the flange length L is relatively short, the circumferentially shaped portion 11 of the processing roller 10 is brought into line contact with the end face of the flange WF.

パスごとに設定される押し込み量Dは、各パスで設定される加工途中角度ごとに設定される。例えば、θ0=98.17deg、θ1=75.4deg、θ2=52.7deg、θ3=30degが設定される上述の例では、1回目の曲げ加工では押し込み量D1=4.6mmが設定され、2回目の曲げ加工では押し込み量D2=7.8mmが設定され、3回目の曲げ加工では押し込み量D3=10.4mmが設定される。   The push-in amount D set for each pass is set for each machining intermediate angle set for each pass. For example, in the above example in which θ0 = 98.17 deg, θ1 = 75.4 deg, θ2 = 52.7 deg, and θ3 = 30 deg are set, the push amount D1 = 4.6 mm is set in the first bending process. In the second bending process, an indentation amount D2 = 7.8 mm is set, and in the third bending process, an indentation amount D3 = 10.4 mm is set.

パスごとに押し込み量が設定されると、ローラヘミング装置1の加工ローラ10の位置をロボット40のアーム42によって制御し、実際の折り曲げ作業を行っていく。ローラヘミング装置1は、予備工程で目標角度Ψまで折り曲げられたワークWに対してかしめ加工を行う。   When the pushing amount is set for each pass, the position of the processing roller 10 of the roller hemming device 1 is controlled by the arm 42 of the robot 40, and the actual bending work is performed. The roller hemming device 1 performs caulking on the workpiece W bent to the target angle ψ in the preliminary process.

以上説明した実施形態のワーク曲げ加工方法及びローラヘミング装置1によれば、以下のような効果を奏する。
加工ローラ10によってワークWaのフランジWFに対して曲げ加工を行うワーク曲げ加工方法であって、加工前のフランジWFの加工前角度θ及びフランジWFの折り曲げ部分のフランジ長さLを取得する工程と、加工前角度θ及び加工後の目標角度Ψと、フランジ長さLと、に基づいて加工ローラ10のパス(軌跡)を決定する軌跡決定工程と、軌跡決定工程で決定されたパスに基づいて加工ローラ10を所定方向に移動させ、目標角度ΨまでフランジWFを折り曲げる加工工程と、を含む。
According to the workpiece bending method and the roller hemming device 1 of the embodiment described above, the following effects are obtained.
A workpiece bending method in which bending is performed on the flange WF of the workpiece Wa by the processing roller 10, and a process of obtaining a pre-processing angle θ 0 of the flange WF before processing and a flange length L of a bent portion of the flange WF. And a path determination step for determining the path (trajectory) of the processing roller 10 based on the pre-processing angle θ 0, the post-processing target angle Ψ, and the flange length L, and the path determined in the path determination step. Based on the processing step of moving the processing roller 10 in a predetermined direction and bending the flange WF to the target angle Ψ.

これにより、加工前角度θと目標角度Ψに基づいて加工ローラ10のパスを適切に決定できるので、教示作業で加工ローラ10のパスを設定するために必要な工数を効果的に削減できる。作業者の経験が少ない場合であっても、適切な軌跡が設定されるので加工工程を安定化させることができる。Thereby, since the path of the processing roller 10 can be appropriately determined based on the pre-processing angle θ 0 and the target angle Ψ, the man-hours necessary for setting the path of the processing roller 10 in the teaching work can be effectively reduced. Even when the operator has little experience, an appropriate trajectory is set, so that the machining process can be stabilized.

軌跡決定工程では、加工前角度θと目標角度Ψの差分(θ−Ψ)及び差分をフランジ長さLで割った値((θ−Ψ)/L)の両方を軌跡決定値として算出し、加工前角度θから目標角度Ψまで段階的に曲げる折り曲げる回数を示すパス数が軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップ(図8参照)と、算出した軌跡決定値と、からパス数及び各段階の加工途中角度θnを算出する。In the locus determination step, both the difference (θ 0 −Ψ) between the pre-machining angle θ 0 and the target angle Ψ and the value obtained by dividing the difference by the flange length L ((θ 0 −Ψ) / L) are determined as the locus determination value. A trajectory number determination map (see FIG. 8) in which the number of passes indicating the number of times of bending to be calculated and bent stepwise from the pre-machining angle θ 0 to the target angle Ψ is determined stepwise according to the size of the trajectory determination value. Based on the determined trajectory value, the number of passes and the machining intermediate angle θn at each stage are calculated.

これにより、加工前角度θと目標角度Ψの差分によって加工難易度を反映して折り曲げ回数を自動的かつ適切に算出できる。As a result, the number of bendings can be automatically and appropriately calculated by reflecting the processing difficulty level by the difference between the pre-processing angle θ 0 and the target angle Ψ.

次に、加工ローラ10の移動方向でワークWの断面形状が異なる場合について説明する図10は、加工ローラ10の移動方向で断面形状が異なるワークWb(ワークW)の例を示す断面斜視図である。図11は、加工ローラ10の移動方向でワークWの断面形状が異なる場合の加工ローラ10の移動制御の流れを示すフローである。図12は、予備工程を行う範囲で取得された複数個所の断面と加工難易度の関係を示す表である。図13は、加工ローラ10の移動方向でワークWの断面形状が異なる場合の加工ローラ10のパス数を決定する軌跡数決定マップを示す図である。   Next, FIG. 10 for explaining the case where the cross-sectional shape of the work W is different in the moving direction of the processing roller 10 is a cross-sectional perspective view showing an example of a work Wb (work W) having a different cross-sectional shape in the moving direction of the processing roller 10. is there. FIG. 11 is a flow showing a flow of movement control of the processing roller 10 when the cross-sectional shape of the workpiece W is different in the moving direction of the processing roller 10. FIG. 12 is a table showing the relationship between the cross-sections at a plurality of locations acquired within the scope of the preliminary process and the processing difficulty level. FIG. 13 is a diagram illustrating a trajectory number determination map for determining the number of passes of the processing roller 10 when the cross-sectional shape of the workpiece W is different in the moving direction of the processing roller 10.

図10に示すワークWbは、車両用ドアのリア側の部分であり、ワークWの端部のフランジWFが曲面を有している。加工ローラ10の移動方向で断面形状が異なる形状となっている。   A workpiece Wb shown in FIG. 10 is a rear side portion of the vehicle door, and a flange WF at an end portion of the workpiece W has a curved surface. The cross-sectional shape is different in the moving direction of the processing roller 10.

図11に示すように、まず移動方向で異なる位置の断面を複数(N個)取得し、それぞれの断面情報を作成する(S201)。本実施形態では、前工程で設定されている設計データ等、予め設定されるデータに基づいて所定の間隔、例えば数mmピッチ程度で断面形状を取得する。図12に示す例では、15個の断面が作成されている。なお、断面を何個作成するかは、例えば、予備工程を行う範囲や断面の形状に基づいて設定する等、適宜の方法を採用できる。   As shown in FIG. 11, first, a plurality (N) of cross sections at different positions in the moving direction are acquired, and cross section information for each is created (S201). In the present embodiment, the cross-sectional shape is acquired at a predetermined interval, for example, about a few mm pitch based on preset data such as design data set in the previous process. In the example shown in FIG. 12, 15 cross sections are created. In addition, how many cross sections are created can employ | adopt appropriate methods, such as setting based on the range which performs a preliminary process, or the shape of a cross section, for example.

次に、S201で取得した断面に基づいて各断面のフランジ長さLと、加工前角度θを取得する(S202)。次に、断面ごとに(θ−Ψ)/L及び(θ−Ψ)の値を算出する。図12に示す例では、15個の断面のそれぞれで(θ−Ψ)/L及び(θ−Ψ)が算出される。Next, the flange length L of each cross section and the pre-processing angle θ 0 are acquired based on the cross section acquired in S201 (S202). Next, the values of (θ 0 −Ψ) / L and (θ 0 −Ψ) are calculated for each cross section. In the example shown in FIG. 12, (θ 0 −Ψ) / L and (θ 0 −Ψ) are calculated for each of the 15 cross sections.

各断面の(θ−Ψ)/Lの値のうち、最も高い(θ−Ψ)/Lの値を取得するとともに、θ−Ψの最も高い値を取得する。図12に示す例では、(θ−Ψ)/Lの最も高い値は17.79となり、θ−Ψの最も高い値は62.61となる。パス数の決定は、加工ローラ10の移動方向でワークWの断面形状が同じ場合と同様の方法で行う。Among the values of (θ 0 -Ψ) / L of each cross section, the highest value of (θ 0 -Ψ) / L is acquired, and the highest value of θ 0 -Ψ is acquired. In the example shown in FIG. 12, the highest value of (θ 0 −Ψ) / L is 17.79, and the highest value of θ 0 −Ψ is 62.61. The number of passes is determined by the same method as in the case where the cross-sectional shape of the workpiece W is the same in the moving direction of the processing roller 10.

本実施形態においても、図13の軌跡数決定マップに示すように、(θ−Ψ)/Lの値に基づいてパス数を決定するための範囲は、(θ−Ψ)/Lの値が7.0未満では1パスであり、7.0以上12.0未満では2パスであり、12.0以上19.0未満では3パスとなっている。一方、θ−Ψの値に基づいてパス数を決定するための範囲は、θ−Ψの値が10deg未満では1パスであり、10deg以上60度未満では2パスであり、60deg以上110deg未満では3パスとなっている。図12に示す例では、(θ−Ψ)/Lの最も高い値は17.79であるので3パスとなり、θ−Ψの最も高い値は62.61degなので3パスとなる。In this embodiment, as shown in locus number determination map in FIG. 13, the range for determining the number of paths based on the value of (θ 0 -Ψ) / L is the (θ 0 -Ψ) / L If the value is less than 7.0, there is one pass, 7.0 or more and less than 12.0, two passes, and 12.0 or more and less than 19.0, there are three passes. On the other hand, the range for determining the number of paths based on the value of θ 0 -Ψ is one path is less than the value of θ 0 -Ψ is 10 deg, a two-pass is less than 60 degrees or more 10 deg, 60 deg or 110deg Less than 3 passes. In the example shown in FIG. 12, since the highest value of (θ 0 −Ψ) / L is 17.79, there are 3 paths, and the highest value of θ 0 −Ψ is 62.61 degrees, so there are 3 paths.

(θ−Ψ)/Lの最も高い値に基づいて設定されたパス数と、θ−Ψの最も高い値に基づいて設定されたパス数と、を比較し、加工難易度が高い方のパス数に決定される。図12に示す例では、何れも3パスとなっているのでパス数が3に設定される。The number of passes set based on the highest value of (θ 0 −Ψ) / L is compared with the number of passes set based on the highest value of θ 0 −Ψ, and the degree of processing difficulty is higher The number of passes is determined. In the example shown in FIG. 12, since there are three paths, the number of paths is set to three.

S204の処理でパス数が決定されると、加工途中角度を計算する処理に移行する(S205)。本実施形態では、S205の加工途中角度の計算においても、S204パス数の決定と同様に、(θ−Ψ)/Lの値のうち最も高い値を取得するとともに、θ−Ψの値のうち最も高い値を取得する。(θ−Ψ)/Lの最も高い値と、θ−Ψの最も高い値と、に対して以降の処理における加工途中角度及び押し込み量が設定される。When the number of passes is determined in the process of S204, the process proceeds to a process of calculating a machining intermediate angle (S205). In the present embodiment, in the calculation of the machining intermediate angle in S205, the highest value among the values of (θ 0 −Ψ) / L is acquired and the value of θ 0 −Ψ is obtained as in the determination of the number of S204 passes. Get the highest value of. For the highest value of (θ 0 -Ψ) / L and the highest value of θ 0 -Ψ, the machining intermediate angle and the push-in amount in the subsequent processing are set.

加工途中角度の算出方法について説明する。(θ−Ψ)/Lの値によって決定したパス数に基づいて加工途中角度θ1αを取得するとともに、(θ−Ψ)の値によって決定したパス数に基づいて加工途中角度θ1βを取得する。加工途中角度はθ1α及びθ1βは、加工前角度θ0から目標角度Ψを差し引いた角度をパス数で分割したものである。A method for calculating the midway angle will be described. The processing intermediate angle θ1α is acquired based on the number of passes determined by the value of (θ 0 −Ψ) / L, and the processing intermediate angle θ1β is acquired based on the number of passes determined by the value of (θ 0 −Ψ). . The machining intermediate angles θ1α and θ1β are obtained by dividing the angle obtained by subtracting the target angle ψ from the pre-machining angle θ0 by the number of passes.

図12の例で最も加工前角度が大きいNo.13を加工前角度θn=92.61として、目標角度Ψ=30degとする。この場合、(θ−Ψ)/Lについても、加工途中角度θ1α=71.74deg、θ2α=50.87deg、θ3α=30degとなり、パス数が同じなのでθ−Ψについても、加工途中角度θ1β=71.74deg、θ2β=50.87deg、θ3β=30degとなる。In the example of FIG. 13 is a pre-processing angle θn = 92.61, and a target angle Ψ = 30 deg. In this case, for the (θ 0 -Ψ) / L, during processing angle θ1α = 71.74deg, θ2α = 50.87deg, θ3α = 30deg next, for the θ 0 -Ψ Since the number of paths is the same, during processing angle θ1β = 71.74 deg, θ2β = 50.87 deg, and θ3β = 30 deg.

また、設定範囲内の(θ−Ψ)/Lの値の偏りをマージンMαとして算出する。マージンMαは、設定範囲の上限側を基準に算出される無次元数である。設定範囲におけるパス数が決定される上限を決める数値と、(θ−Ψ)/Lの最も高い数値と、下限を決める数値と、に基づいてマージンMαが設定される。マージンMαは、上限を決める数値に対してパス数を決める数値がどの程度離れているかを示すことになる。上述の例では、Mα=(19−17.79)/(19−12)となり、Mα=0.17となる。Further, the deviation of the value of (θ 0 −Ψ) / L within the setting range is calculated as the margin Mα. The margin Mα is a dimensionless number calculated based on the upper limit side of the setting range. The margin Mα is set based on a numerical value that determines an upper limit for determining the number of paths in the setting range, a numerical value that has the highest (θ 0 −Ψ) / L, and a numerical value that determines the lower limit. The margin Mα indicates how far the numerical value that determines the number of passes is away from the numerical value that determines the upper limit. In the above example, Mα = (19-17.79) / (19-12), and Mα = 0.17.

同様に、設定範囲内のθ−Ψの値の偏りをマージンMβとして算出する。マージンMβは、設定範囲の上限側を基準に算出される。設定範囲におけるパス数が決定される上限を決める数値と、θ−Ψの最も高い数値と、下限を決める数値と、に基づいてマージンMβが設定される。マージンMβは、上限を決める数値に対してパス数を決める数値がどの程度離れているかを示すことになる。上述の例では、Mβ=(110−61.92)/(110−60)となり、Mβ=0.95となる。Similarly, the deviation of the value of θ 0 −Ψ within the setting range is calculated as the margin Mβ. The margin Mβ is calculated based on the upper limit side of the setting range. The margin Mβ is set based on a numerical value that determines an upper limit for determining the number of paths in the setting range, a numerical value that has the highest θ 0 −Ψ, and a numerical value that determines the lower limit. The margin Mβ indicates how far the numerical value that determines the number of passes is away from the numerical value that determines the upper limit. In the above example, Mβ = (110−61.92) / (110−60), and Mβ = 0.95.

加工途中角度θ1α、加工途中角度θ1β、マージンMα及びマージンMβに基づいて加工途中角度θnを算出する。図13に示すように、θn=1/(Mα+Mβ)×(Mβθnα+Mαθnβ)式3によって加工途中角度を算出する。なお、図12の例に、θn=1/(Mα+Mβ)×(Mβθnα+Mαθnβ)式3を適用すると、加工途中角度θ1=71.74deg、θ2=50.87deg、θ3=30degとなる。   An intermediate machining angle θn is calculated based on the intermediate machining angle θ1α, the intermediate machining angle θ1β, the margin Mα, and the margin Mβ. As shown in FIG. 13, θn = 1 / (Mα + Mβ) × (Mβθnα + Mαθnβ) Equation 3 calculates the midway angle of machining. If the equation 3 of θn = 1 / (Mα + Mβ) × (Mβθnα + Mαθnβ) is applied to the example of FIG.

次に、各断面θ0のうち、最も大きい角度θ0に基づいてCAD上で中間断面を作成する(S206)。図12の例では、θ0=92.61degが用いられる。S206で設定された中間断面に基づいて加工ローラ10の押し込み量D1→nを算出する(S207)。パスごとに設定される押し込み量Dは、各パスで設定される加工途中角度ごとに設定される。押し込み量Dの算出は、上記実施形態と同様である。なお、図12の例では、1回目の曲げ加工では押し込み量D1=2.9mmが設定され、2回目の曲げ加工では押し込み量D2=4.3mmが設定され、3回目の曲げ加工では押し込み量D3=5.4mmが設定される。各断面で作図したデータを出力し、当該フローは終了する(S208)。   Next, an intermediate cross section is created on CAD based on the largest angle θ0 among the cross sections θ0 (S206). In the example of FIG. 12, θ0 = 92.61 deg is used. Based on the intermediate section set in S206, the push amount D1 → n of the processing roller 10 is calculated (S207). The push-in amount D set for each pass is set for each machining intermediate angle set for each pass. The calculation of the push amount D is the same as in the above embodiment. In the example of FIG. 12, the pushing amount D1 = 2.9 mm is set in the first bending process, the pushing amount D2 = 4.3 mm is set in the second bending process, and the pushing amount is set in the third bending process. D3 = 5.4 mm is set. Data drawn in each cross section is output, and the flow ends (S208).

以上説明した実施形態の曲げ加工方法及びローラヘミング装置1によれば、以下のような効果を奏する。
加工ローラ10の移動方向でワークWbの形状が異なる場合において軌跡決定工程では、加工ローラ10の移動方向で見るフランジWFの第1の断面の加工前角度θ、目標角度Ψ及びフランジ長さLと、加工ローラ10の移動方向で見るフランジWFの第1の断面とは異なる第2の断面の加工前角度θ、目標角度Ψ及びフランジ長さLと、に基づいて加工ローラ10の軌跡を決定する。
According to the bending method and the roller hemming device 1 of the embodiment described above, the following effects can be obtained.
When the shape of the workpiece Wb differs in the moving direction of the processing roller 10, in the trajectory determination step, the pre-processing angle θ 0 , the target angle Ψ, and the flange length L of the first cross section of the flange WF viewed in the moving direction of the processing roller 10. And the locus of the processing roller 10 based on the pre-processing angle θ 0 , the target angle ψ, and the flange length L of the second cross section different from the first cross section of the flange WF viewed in the moving direction of the processing roller 10. decide.

これにより、断面の形状が異なる場合であっても、形状の違いを考慮して加工ローラ10の軌跡を決定することができる。   Thereby, even if it is a case where the shape of a cross section differs, the locus | trajectory of the processing roller 10 can be determined in consideration of the difference in shape.

第1の断面の加工前角度θと目標角度Ψの差分(θ−Ψ)及び差分をフランジ長さLで割った値((θ−Ψ)/L)の両方を第1の軌跡決定値として算出する。また、第2の断面の加工前角度θと目標角度Ψの差分(θ−Ψ)及び差分をフランジ長さLで割った値((θ−Ψ)/L)の両方に基づいて第2の軌跡決定値として算出する。おっして、加工前角度θから前記目標角度Ψまで段階的に曲げる折り曲げる回数を示すパス数が軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップ(図13参照)と、算出した第1の軌跡決定値及び第2の軌跡決定値と、からパス数及び各段階の折り曲げ角度を算出する。Both the difference (θ 0 −Ψ) between the pre-processing angle θ 0 and the target angle Ψ of the first cross section and the value obtained by dividing the difference by the flange length L ((θ 0 −Ψ) / L) are the first trajectory. Calculate as the decision value. Further, based on both the difference (θ 0 −Ψ) between the pre-processing angle θ 0 and the target angle Ψ of the second cross section and the value obtained by dividing the difference by the flange length L ((θ 0 −Ψ) / L). Calculated as the second locus determination value. In addition, a trajectory number determination map (see FIG. 13) in which the number of passes indicating the number of times of bending in a stepwise manner from the pre-machining angle θ 0 to the target angle Ψ is determined stepwise according to the size of the trajectory determination value; The number of passes and the bending angle at each stage are calculated from the calculated first locus determination value and second locus determination value.

これにより、移動方向で断面が異なるような場合であっても、加工難易度を反映して折り曲げ回数を自動的かつ適切に算出できる。   Thereby, even if it is a case where a cross section changes with a moving direction, the frequency | count of bending can be calculated automatically and appropriately reflecting a processing difficulty.

軌跡数決定マップではパスごとに上限値(1パスにおける7.0、2パスにおける12.0、3パスにおける19.0)を決定する値が定められており、軌跡数決定マップにプロットされた軌跡決定値が属する範囲(1パスの範囲又は2パスの範囲又は3パスの範囲)における上限値に対するマージンMα又はマージンMβを反映して各段階における折り曲げ角度を算出する。   In the trajectory number determination map, a value for determining an upper limit value (7.0 in 1 pass, 12.0 in 2 passes, 19.0 in 3 passes) is determined for each path, and is plotted in the trajectory number determination map. The bending angle at each stage is calculated by reflecting the margin Mα or the margin Mβ with respect to the upper limit value in the range to which the locus determination value belongs (1 pass range, 2 pass range, or 3 pass range).

これにより、断面の形状が異なる場合における加工難易度を適切に平均化することができ、ワークの曲げ加工をより安定的に行うことができる。   Thereby, the processing difficulty in the case where the shape of a cross section differs can be averaged appropriately, and the bending process of a workpiece | work can be performed more stably.

以上、本発明の好ましい実施形態について説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。例えば、上記実施形態の加工ローラの形状に限定されず、折り曲げ加工を行うことができる構成であれば、適宜変更することができる。また、軌跡数決定マップは、上記実施形態で説明したものに限定されず、加工前角度から目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が軌跡決定値の大きさに応じて段階的に定められるテーブル形式としてもよい。このように、軌跡数決定マップは、事情に応じて適宜変更可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not restrict | limited to the above-mentioned embodiment, It can change suitably. For example, it is not limited to the shape of the processing roller of the above-described embodiment, and can be appropriately changed as long as it can be bent. Further, the trajectory number determination map is not limited to that described in the above embodiment, and the trajectory number indicating the number of times of bending to be performed stepwise from the pre-processing angle to the target angle is stepwise according to the size of the trajectory determination value. The table format may be determined. Thus, the trajectory number determination map can be changed as appropriate according to circumstances.

1 ローラヘミング装置(ワーク曲げ加工装置)
10 加工ローラ(加工具)
40 ロボット
50 制御部
W ワーク
WF フランジ
θ 加工前角度
θn 加工途中角度
Ψ 目標角度
1 Roller hemming device (work bending machine)
10 Processing roller (processing tool)
40 Robot 50 Control part W Work WF Flange θ 0 Pre-machining angle θn Machining angle Ψ Target angle

Claims (10)

加工具によってワークの端部に対して曲げ加工を行うワーク曲げ加工方法であって、
加工前の前記端部の加工前角度及び端部の折り曲げ部分の端部長さを取得する工程と、
前記加工前角度及び加工後の目標角度と、前記端部長さと、に基づいて前記加工具の軌跡を決定する軌跡決定工程と、
前記軌跡決定工程で決定された軌跡に基づいて前記加工具を所定方向に移動させ、前記目標角度まで前記端部を折り曲げる加工工程と、
を含むワーク曲げ加工方法。
A workpiece bending method for bending an end of a workpiece with a processing tool,
Obtaining a pre-processing angle of the end before processing and an end length of a bent portion of the end; and
A trajectory determination step for determining a trajectory of the processing tool based on the pre-processing angle and the target angle after processing, and the end length;
A processing step of moving the processing tool in a predetermined direction based on the trajectory determined in the trajectory determination step, and bending the end portion to the target angle;
Bending method including workpiece.
前記軌跡決定工程では、
前記加工前角度と前記目標角度の差分又は前記差分を前記端部長さで割った値又はその両方を軌跡決定値として算出し、
前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップと、算出した前記軌跡決定値と、から前記折り曲げ回数及び各段階の折り曲げ角度を算出する請求項1に記載のワーク曲げ加工方法。
In the locus determination step,
A difference between the pre-processing angle and the target angle or a value obtained by dividing the difference by the end length or both are calculated as a locus determination value,
From the trajectory number determination map in which the trajectory number indicating the number of times of bending to be bent stepwise from the pre-processing angle to the target angle is determined stepwise according to the size of the trajectory determination value, and the calculated trajectory determination value The work bending method according to claim 1, wherein the number of bending times and the bending angle at each stage are calculated.
前記加工具の移動方向で前記ワークの前記端部の形状が異なる場合において前記軌跡決定工程では、
前記加工具の移動方向で見る前記端部の第1の断面の前記加工前角度、前記目標角度及び前記端部長さと、
前記加工具の移動方向で見る前記端部の前記第1の断面とは異なる第2の断面の前記加工前角度、前記目標角度及び前記端部長さと、
に基づいて前記加工具の軌跡を決定する請求項1に記載のワーク曲げ加工方法。
In the trajectory determination step when the shape of the end of the workpiece is different in the moving direction of the processing tool,
The pre-processing angle, the target angle, and the end length of the first cross section of the end viewed in the moving direction of the processing tool;
The pre-processing angle, the target angle and the end length of a second cross section different from the first cross section of the end viewed in the moving direction of the processing tool;
The workpiece bending method according to claim 1, wherein a trajectory of the processing tool is determined based on the method.
前記第1の断面の前記加工前角度と前記目標角度の差分又は前記差分を前記端部長さで割った値又はその両方を第1の軌跡決定値として算出し、
前記第2の断面の前記加工前角度と前記目標角度の差分又は前記差分を前記端部長さで割った値又はその両方に基づいて第2の軌跡決定値として算出し、
前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップと、算出した第1の軌跡決定値及び第2の軌跡決定値と、から前記折り曲げ回数及び各段階の折り曲げ角度を算出する請求項3に記載のワーク曲げ加工方法。
A difference between the pre-processing angle of the first cross section and the target angle or a value obtained by dividing the difference by the end length or both are calculated as a first locus determination value,
A difference between the pre-processing angle of the second cross section and the target angle or a value obtained by dividing the difference by the end length or both as the second locus determination value,
A trajectory number determination map in which a trajectory number indicating the number of times of bending to be bent stepwise from the pre-processing angle to the target angle is determined stepwise according to the size of the trajectory determination value, a calculated first trajectory determination value, and The work bending method according to claim 3, wherein the number of bendings and the bending angle at each stage are calculated from the second locus determination value.
前記軌跡数決定マップでは前記軌跡数ごとに上限値を決定する値が定められており、
前記軌跡数決定マップにプロットされた軌跡決定値が属する範囲における前記上限値に対する偏りを反映して各段階における折り曲げ角度を算出する請求項4に記載のワーク曲げ加工方法。
In the trajectory number determination map, a value for determining an upper limit value is determined for each trajectory number,
5. The workpiece bending method according to claim 4, wherein a bending angle at each stage is calculated by reflecting a deviation with respect to the upper limit value in a range to which a locus determination value plotted in the locus number determination map belongs.
加工具によってワークの端部に対して曲げ加工を行うワーク曲げ加工装置であって、
加工前の前記端部の加工前角度及び端部の折り曲げ部分の端部長さを取得し、前記加工前角度及び加工後の目標角度と、前記端部長さと、に基づいて前記加工具の軌跡を決定する制御部と、
前記制御部で決定された軌跡に基づいて前記加工具を所定方向に移動させ、前記目標角度まで前記端部を折り曲げるロボットと、
を備えるワーク曲げ加工装置。
A workpiece bending apparatus that performs bending on an end of a workpiece with a processing tool,
The pre-processing angle of the end before processing and the end length of the bent portion of the end are acquired, and the trajectory of the processing tool is obtained based on the pre-processing angle, the target angle after processing, and the end length. A control unit to determine;
A robot that moves the processing tool in a predetermined direction based on the trajectory determined by the control unit and bends the end to the target angle;
A workpiece bending apparatus comprising:
前記制御部は、
前記加工前角度と前記目標角度の差分又は前記差分を前記端部長さで割った値又はその両方を軌跡決定値として算出し、
前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップと、算出した前記軌跡決定値と、から前記折り曲げ回数及び各段階の折り曲げ角度を算出する請求項6に記載のワーク曲げ加工装置。
The controller is
A difference between the pre-processing angle and the target angle or a value obtained by dividing the difference by the end length or both are calculated as a locus determination value,
From the trajectory number determination map in which the trajectory number indicating the number of times of bending to be bent stepwise from the pre-processing angle to the target angle is determined stepwise according to the size of the trajectory determination value, and the calculated trajectory determination value The work bending apparatus according to claim 6, wherein the number of bending times and a bending angle at each stage are calculated.
前記制御部は、
前記加工具の移動方向で前記ワークの前記端部の形状が異なる場合において、
前記加工具の移動方向で見る前記端部の第1の断面の前記加工前角度、前記目標角度及び前記端部長さと、
前記加工具の移動方向で見る前記端部の前記第1の断面とは異なる第2の断面の前記加工前角度、前記目標角度及び前記端部長さと、
に基づいて前記加工具の軌跡を決定する請求項6に記載のワーク曲げ加工装置。
The controller is
In the case where the shape of the end portion of the workpiece is different in the moving direction of the processing tool,
The pre-processing angle, the target angle, and the end length of the first cross section of the end viewed in the moving direction of the processing tool;
The pre-processing angle, the target angle and the end length of a second cross section different from the first cross section of the end viewed in the moving direction of the processing tool;
The workpiece bending apparatus according to claim 6, wherein a trajectory of the processing tool is determined based on the workpiece.
前記第1の断面の前記加工前角度と前記目標角度の差分又は前記差分を前記端部長さで割った値又はその両方を第1の軌跡決定値として算出し、
前記第2の断面の前記加工前角度と前記目標角度の差分又は前記差分を前記端部長さで割った値又はその両方に基づいて第2の軌跡決定値として算出し、
前記加工前角度から前記目標角度まで段階的に曲げる折り曲げる回数を示す軌跡数が前記軌跡決定値の大きさに応じて段階的に定められる軌跡数決定マップと、算出した第1の軌跡決定値及び第2の軌跡決定値と、から前記折り曲げ回数及び各段階の折り曲げ角度を算出する請求項8に記載のワーク曲げ加工装置。
A difference between the pre-processing angle of the first cross section and the target angle or a value obtained by dividing the difference by the end length or both are calculated as a first locus determination value,
A difference between the pre-processing angle of the second cross section and the target angle or a value obtained by dividing the difference by the end length or both as the second locus determination value,
A trajectory number determination map in which a trajectory number indicating the number of times of bending to be bent stepwise from the pre-processing angle to the target angle is determined stepwise according to the size of the trajectory determination value, a calculated first trajectory determination value, and The workpiece bending apparatus according to claim 8, wherein the number of bendings and a bending angle at each stage are calculated from the second locus determination value.
前記軌跡数決定マップでは前記軌跡数ごとに上限値を決定する値が定められており、
前記軌跡数決定マップにプロットされた軌跡決定値が属する範囲における前記上限値に対する偏りを反映して各段階における折り曲げ角度を算出する請求項9に記載のワーク曲げ加工装置。
In the trajectory number determination map, a value for determining an upper limit value is determined for each trajectory number,
10. The workpiece bending apparatus according to claim 9, wherein a bending angle at each stage is calculated by reflecting a deviation from the upper limit value in a range to which a locus determination value plotted in the locus number determination map belongs.
JP2017565436A 2016-02-02 2016-12-28 Work bending method and work bending apparatus Active JP6587698B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016017847 2016-02-02
JP2016017847 2016-02-02
PCT/JP2016/089057 WO2017134970A1 (en) 2016-02-02 2016-12-28 Workpiece bending method and workpiece bending apparatus

Publications (2)

Publication Number Publication Date
JPWO2017134970A1 true JPWO2017134970A1 (en) 2018-10-11
JP6587698B2 JP6587698B2 (en) 2019-10-09

Family

ID=59499517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017565436A Active JP6587698B2 (en) 2016-02-02 2016-12-28 Work bending method and work bending apparatus

Country Status (5)

Country Link
US (1) US20190255586A1 (en)
JP (1) JP6587698B2 (en)
CN (1) CN108602108B (en)
MY (1) MY175828A (en)
WO (1) WO2017134970A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230166315A1 (en) * 2021-11-26 2023-06-01 Industrial Technology Research Institute Hemming path planning method and hemming system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061931A (en) * 2004-08-25 2006-03-09 Honda Motor Co Ltd Hemming apparatus
JP2010284692A (en) * 2009-06-12 2010-12-24 Honda Motor Co Ltd Roller hemming device and roller hemming method
JP2011104599A (en) * 2009-11-12 2011-06-02 Fanuc Ltd Roller hemming device using robot manipulator mounted with force sensor
JP2013188770A (en) * 2012-03-13 2013-09-26 Honda Motor Co Ltd Apparatus and method for roller hemming

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882401A (en) * 2003-11-21 2006-12-20 乔纳森·莱奥·坎彼安 Tool and method for the joining sheet material
MXPA06006351A (en) * 2003-12-03 2006-08-23 Jonathon R Campian Short-flanged sheet material forming and joining.
JP5111911B2 (en) * 2007-03-23 2013-01-09 本田技研工業株式会社 Hemming processing method and panel assembly manufacturing method
DE202012101187U1 (en) * 2012-04-02 2013-07-09 Kuka Systems Gmbh Pressing tool, in particular folding tool
JP5971226B2 (en) * 2013-11-01 2016-08-17 株式会社安川電機 Robot system and method of manufacturing workpiece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061931A (en) * 2004-08-25 2006-03-09 Honda Motor Co Ltd Hemming apparatus
JP2010284692A (en) * 2009-06-12 2010-12-24 Honda Motor Co Ltd Roller hemming device and roller hemming method
JP2011104599A (en) * 2009-11-12 2011-06-02 Fanuc Ltd Roller hemming device using robot manipulator mounted with force sensor
JP2013188770A (en) * 2012-03-13 2013-09-26 Honda Motor Co Ltd Apparatus and method for roller hemming

Also Published As

Publication number Publication date
WO2017134970A1 (en) 2017-08-10
CN108602108B (en) 2020-01-07
MY175828A (en) 2020-07-10
US20190255586A1 (en) 2019-08-22
JP6587698B2 (en) 2019-10-09
CN108602108A (en) 2018-09-28

Similar Documents

Publication Publication Date Title
US8733143B2 (en) Method of incremental forming with successive wrap surfaces
US7070368B2 (en) Method for setting a machining feed rate and a machine tool using the same
US20100313621A1 (en) Roller hemming apparatus and roller hemming method
JP2011104599A (en) Roller hemming device using robot manipulator mounted with force sensor
JP5915816B2 (en) Roller hemming processing apparatus and roller hemming processing method
JP6587698B2 (en) Work bending method and work bending apparatus
US20100104798A1 (en) Roller hemming method and hemmed member
CN105717874B (en) A kind of five-shaft numerical control processing singular regions cutter location optimization method
JP5729052B2 (en) Robot control device
JP6847398B2 (en) Sequential molding method
JP7165951B2 (en) Robot control method
AU769433B2 (en) Manufacturing method of structural body and structural body
JP5932411B2 (en) Roller hemming apparatus and roller hemming method
JP6557128B2 (en) Control method of press brake and back gauge
JP6318664B2 (en) Roll flange processing method
JP2007316862A (en) Servo driver and servo system with multiple axes
JP2008093691A (en) Roller hemming method
JP2015147241A (en) Method for processing roll flange
JPH06122025A (en) Followup method for work bending in press brake robot system
JP5438433B2 (en) Roller type hemming machine
JP2013020436A (en) Machining device and machining method
JP2008093692A (en) Roller hemming method
JP2018187669A (en) Sequential molding method
WO2021230237A1 (en) Processing path creation device
CN114126778B (en) Tool and method for machining plate-shaped workpieces, in particular plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190910

R150 Certificate of patent or registration of utility model

Ref document number: 6587698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150