JPWO2017104047A1 - Lighting device and endoscope system - Google Patents

Lighting device and endoscope system Download PDF

Info

Publication number
JPWO2017104047A1
JPWO2017104047A1 JP2017556274A JP2017556274A JPWO2017104047A1 JP WO2017104047 A1 JPWO2017104047 A1 JP WO2017104047A1 JP 2017556274 A JP2017556274 A JP 2017556274A JP 2017556274 A JP2017556274 A JP 2017556274A JP WO2017104047 A1 JPWO2017104047 A1 JP WO2017104047A1
Authority
JP
Japan
Prior art keywords
light
primary light
optical
intensity
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017556274A
Other languages
Japanese (ja)
Inventor
駒崎 岩男
岩男 駒崎
真博 西尾
真博 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JPWO2017104047A1 publication Critical patent/JPWO2017104047A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

照明装置(60)の分配ユニット(77)は、少なくとも強度領域(93)に配置され、少なくとも強度領域(93)における1次光(63)の強度を低減するために、1次光(63)の少なくとも一部の進行方向を変更する進路変更部材(79)と、進路変更部材(79)によって進行方向が変更された1次光(63)を出射面(71b)に向けて反射し、且つ、出射面(71b)とは逆方向に進行する2次光(65)を出射面(71b)に向けて反射する第1反射部材(81)とを有する。  The distribution unit (77) of the illuminating device (60) is disposed at least in the intensity region (93), and at least in order to reduce the intensity of the primary light (63) in the intensity region (93), the primary light (63). A path changing member (79) that changes at least a part of the traveling direction, and primary light (63) whose traveling direction has been changed by the path changing member (79) is reflected toward the emission surface (71b), and The first reflecting member (81) reflects the secondary light (65) traveling in the direction opposite to the exit surface (71b) toward the exit surface (71b).

Description

本発明は、照明装置とこの照明装置を有する内視鏡システムとに関する。   The present invention relates to an illumination device and an endoscope system having the illumination device.

例えば特許文献1に開示されている照明装置は、励起光源から出射された後に光ファイバによって導光された1次光である励起光の一部を、光ファイバの先端に配置された出力部にて波長変換し、波長変換光である2次光を生成する。照明装置は、1次光と2次光とを混色し、照明光として出射する。   For example, in the illumination device disclosed in Patent Document 1, a part of excitation light, which is primary light guided by an optical fiber after being emitted from an excitation light source, is output to an output unit disposed at the tip of the optical fiber. The wavelength is converted to generate secondary light that is wavelength-converted light. The illumination device mixes the primary light and the secondary light and emits them as illumination light.

励起光源は、405nm近傍に発光ピーク波長を有する1次光を出射するレーザダイオード素子を有する。レーザダイオード素子は、GaN系の半導体素子である。光ファイバは、石英系の光ファイバである。出力部は、1次光の一部を吸収し波長変換して所定の波長域の2次光を出射する波長変換部材を有する。波長変換部材はシリコーン樹脂に含有された蛍光物質を有しており、蛍光物質はCa10(POl2:Euと、LuAl12:Ceと、(Ca,Sr)Si:Euとを使用する。蛍光物質は、シリコーン樹脂中に均一に混ぜられる。The excitation light source has a laser diode element that emits primary light having an emission peak wavelength in the vicinity of 405 nm. The laser diode element is a GaN-based semiconductor element. The optical fiber is a silica-based optical fiber. The output unit includes a wavelength conversion member that absorbs a part of the primary light, converts the wavelength, and emits secondary light in a predetermined wavelength range. The wavelength converting member has a fluorescent substance contained in the silicone resin, phosphor Ca 10 (PO 4) 6 C l2: and Eu, Lu 3 Al 5 O 12 : and Ce, (Ca, Sr) 2 Si 5 N 8 : Eu is used. The fluorescent material is uniformly mixed in the silicone resin.

レーザダイオード素子から出射された1次光は、励起光源に配置されるレンズを透過し、レンズによって励起光源の出射部に集光される。出射部は光ファイバに光学的に接続されており、出射部から出射された1次光は光ファイバに入射し光ファイバによって導光される。そして1次光は、光ファイバの出射端面から出力部に向かって出射される。出力部の波長変換部材は、1次光の一部を吸収して2次光を生成する。そして照明光が出射される。   The primary light emitted from the laser diode element passes through a lens arranged in the excitation light source and is condensed by the lens on the emission part of the excitation light source. The emission part is optically connected to the optical fiber, and the primary light emitted from the emission part enters the optical fiber and is guided by the optical fiber. And primary light is radiate | emitted toward the output part from the output end surface of an optical fiber. The wavelength conversion member of the output unit absorbs a part of the primary light and generates secondary light. And illumination light is emitted.

照明光は白色に発光しており、照明光の平均演色評価数(Ra)が80以上であり、特に赤色の色票を示す特殊演色評価数(R9)が高い。これにより演色性の高い照明装置が提供される。   The illumination light is emitted in white, the average color rendering index (Ra) of the illumination light is 80 or more, and the special color rendering index (R9) indicating a red color chart is particularly high. As a result, a lighting device having high color rendering properties is provided.

特開2005−205195号公報JP 2005-205195 A

ここで、光ファイバの出射端面から出力部に向かって出射される1次光の中心軸を、光軸と称する。光軸周辺とは、光軸を含むものとする。波長変換部材は、少なくとも光軸上に配置される。   Here, the central axis of the primary light emitted from the emission end face of the optical fiber toward the output unit is referred to as an optical axis. The optical axis periphery includes the optical axis. The wavelength conversion member is disposed at least on the optical axis.

励起光である1次光の指向性は強いため、1次光はレンズと出射部とによって光ファイバに高効率で入射することが可能である。しかしながら、指向性が強いため、光ファイバの出射端面から出射された1次光の広がり角度は小さい。したがって、1次光が波長変換部材を照射する際、光軸方向において光ファイバの出射端面と波長変換部材との間に透明部材が配置されても、波長変換部材における1次光の照射領域は狭い。この狭い照射領域は、光軸周辺の領域である周辺領域と、照射領域の内側且つ周辺領域の外側に配置され照射領域の外縁側の領域である外縁領域とを有する。外縁領域に比べて周辺領域では1次光の強度がより一層高まっている。また波長変換部材が2次光を生成する際に、生成によって波長変換部材に熱が発生し、熱の大部分は周辺領域から発生する。そして、波長変換部材における周辺領域では、1次光の高い強度と熱とによって劣化が加速する。また、1次光を2次光に変換する変換効率言い換えると照明光の取り出し効率は、この劣化により低下し、照明光の出力が低下する。したがって、周辺領域における1次光の強度を低減でき、照明光の取り出し効率が高く且つ照明光の出力が高い照明装置が望まれている。   Since the directivity of the primary light that is the excitation light is strong, the primary light can be incident on the optical fiber with high efficiency by the lens and the emitting portion. However, since the directivity is strong, the spread angle of the primary light emitted from the emission end face of the optical fiber is small. Therefore, when the primary light irradiates the wavelength conversion member, even if a transparent member is disposed between the output end face of the optical fiber and the wavelength conversion member in the optical axis direction, the irradiation region of the primary light in the wavelength conversion member is narrow. This narrow irradiation region has a peripheral region that is a region around the optical axis, and an outer edge region that is disposed on the inner side of the irradiation region and on the outer side of the peripheral region and is an outer edge side region of the irradiation region. The intensity of the primary light is further increased in the peripheral region as compared to the outer edge region. Further, when the wavelength conversion member generates secondary light, heat is generated in the wavelength conversion member by generation, and most of the heat is generated from the peripheral region. In the peripheral region of the wavelength conversion member, deterioration is accelerated by the high intensity of primary light and heat. Further, the conversion efficiency for converting the primary light into the secondary light, in other words, the illumination light extraction efficiency decreases due to this deterioration, and the output of the illumination light decreases. Therefore, there is a demand for an illuminating device that can reduce the intensity of primary light in the peripheral region, has high extraction efficiency of illumination light, and high output of illumination light.

本発明は、これらの事情に鑑みてなされたものであり、光軸の周辺領域における1次光の強度を低減でき、照明光の取り出し効率が高く且つ照明光の出力が高い照明装置とこの照明装置を有する内視鏡システムとを提供することを目的とする。   The present invention has been made in view of these circumstances, and an illumination device capable of reducing the intensity of primary light in the peripheral region of the optical axis, having high illumination light extraction efficiency, and high illumination light output, and the illumination It is an object of the present invention to provide an endoscope system having the apparatus.

本発明の照明装置の一態様は、光源ユニットの出射部から照明ユニットに向けて出射された1次光の一部の光学特性を前記照明ユニットの光変換部材にて変換して2次光を生成して照明光を前記照明ユニットの出射面から出射する。前記出射部から出射された前記1次光の中心軸を光軸と定義し、前記光変換部材が前記出射部から出射された前記1次光を直接照射されたと想定した際に、前記光変換部材において前記1次光を照射された照射領域を第1照射領域と定義し、前記第1照射領域において前記1次光の強度が所定値以上である領域を強度領域と定義する。前記照明装置は、前記照明ユニットに配置され、少なくとも前記強度領域における前記1次光の強度を低減し、低減された分の前記1次光の強度を前記光変換部材における前記強度領域以外の領域に分配すると共に、分配によって前記照射領域を前記第1照射領域よりも広い第2照射領域に広げる分配ユニットを具備する。前記分配ユニットは、少なくとも前記強度領域に配置され、少なくとも前記強度領域における前記1次光の強度を低減するために、前記1次光の少なくとも一部の進行方向を変更する進路変更部材と、前記進路変更部材によって進行方向が変更された前記1次光を前記出射面に向けて反射し、且つ、前記出射面とは逆方向に進行する前記2次光を前記出射面に向けて反射する第1反射部材とを具備する。   In one aspect of the illumination device of the present invention, a part of the optical characteristics of the primary light emitted from the emission part of the light source unit toward the illumination unit is converted by the light conversion member of the illumination unit to convert the secondary light. The generated illumination light is emitted from the exit surface of the illumination unit. When the central axis of the primary light emitted from the emission part is defined as an optical axis and the light conversion member is assumed to be directly irradiated with the primary light emitted from the emission part, the light conversion is performed. An irradiation region irradiated with the primary light in the member is defined as a first irradiation region, and a region in the first irradiation region where the intensity of the primary light is a predetermined value or more is defined as an intensity region. The lighting device is disposed in the lighting unit, reduces at least the intensity of the primary light in the intensity region, and reduces the intensity of the primary light corresponding to the reduced region other than the intensity region in the light conversion member. And a distribution unit that distributes the irradiation area to a second irradiation area wider than the first irradiation area. The distribution unit is disposed at least in the intensity region, and at least a course changing member that changes a traveling direction of the primary light in order to reduce the intensity of the primary light in the intensity region; The primary light whose traveling direction has been changed by the path changing member is reflected toward the exit surface, and the secondary light traveling in the direction opposite to the exit surface is reflected toward the exit surface. 1 reflective member.

本発明の内視鏡システムの一態様は、内視鏡と、1次光を出射する出射部を有する光源ユニットと、前記内視鏡に配置される上記に記載の照明装置とを具備する。   One aspect of the endoscope system of the present invention includes an endoscope, a light source unit having an emission part that emits primary light, and the above-described illumination device disposed in the endoscope.

本発明によれば、光軸の周辺領域における1次光の強度を低減でき、照明光の取り出し効率が高く且つ照明光の出力が高い照明装置とこの照明装置を有する内視鏡システムとを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the intensity | strength of the primary light in the peripheral area | region of an optical axis can be reduced, the illuminating device with high extraction efficiency of illumination light and high output of illumination light, and an endoscope system having this illuminating device are provided. it can.

図1は、本発明の第1の実施形態に係る内視鏡システムの模式図である。FIG. 1 is a schematic diagram of an endoscope system according to the first embodiment of the present invention. 図2Aは、光源ユニットと照明装置との第1構成を示す図である。FIG. 2A is a diagram illustrating a first configuration of the light source unit and the illumination device. 図2Bは、光源ユニットと照明装置との第2構成の第1タイプを示す図である。Drawing 2B is a figure showing the 1st type of the 2nd composition of a light source unit and an illuminating device. 図2Cは、光源ユニットと照明装置との第2構成の第2タイプを示す図である。FIG. 2C is a diagram illustrating a second type of the second configuration of the light source unit and the illumination device. 図3Aは、図2Aに示す第1構成における照明装置の構成の一例を示す図である。FIG. 3A is a diagram illustrating an example of the configuration of the illumination device in the first configuration illustrated in FIG. 2A. 図3Bは、図3A示す照明装置の照明ユニットにおける各種の角度の関係を示す図である。FIG. 3B is a diagram illustrating a relationship between various angles in the illumination unit of the illumination device illustrated in FIG. 3A. 図3Cは、図2Aに示す第1構成における照明装置の構成の一例を示す図である。FIG. 3C is a diagram illustrating an example of the configuration of the illumination device in the first configuration illustrated in FIG. 2A. 図3Dは、図2Aに示す第1構成における照明装置の構成の一例を示す図である。FIG. 3D is a diagram illustrating an example of the configuration of the illumination device in the first configuration illustrated in FIG. 2A. 図4Aは、進路変更部材が配置されていない照明装置の構成の一例を示し、この構成に配置される光変換部材における第1照射領域と強度領域と第1外縁領域との位置関係を示す図である。FIG. 4A shows an example of a configuration of an illumination device in which a course changing member is not arranged, and a diagram showing a positional relationship among a first irradiation region, an intensity region, and a first outer edge region in a light conversion member arranged in this configuration. It is. 図4Bは、図4Aに示す光変換部材の照射領域における1次光の強度と1次光の広がり角度との関係である1次光の強度分布を示す図である。4B is a diagram illustrating a primary light intensity distribution which is a relationship between the primary light intensity and the primary light spreading angle in the irradiation region of the light conversion member illustrated in FIG. 4A. 図4Cは、図4Aに示す1次光の強度分布と図3Aに示す構成における1次光の強度分布とを示す図である。4C is a diagram showing the intensity distribution of the primary light shown in FIG. 4A and the intensity distribution of the primary light in the configuration shown in FIG. 3A. 図5Aは、第2の実施形態に係る照明装置の構成の一例を示す図である。FIG. 5A is a diagram illustrating an example of the configuration of the illumination device according to the second embodiment. 図5Bは、図5Aに示す照明装置の構成の第1変形例を示す図である。FIG. 5B is a diagram illustrating a first modification of the configuration of the illumination device illustrated in FIG. 5A. 図5Cは、図5Aに示す照明装置の構成の第2変形例を示す図である。FIG. 5C is a diagram illustrating a second modification of the configuration of the lighting device illustrated in FIG. 5A. 図6は、第3の実施形態に係る照明装置の構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of the configuration of the illumination device according to the third embodiment.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、一部の図面では図示の明瞭化のために部材の一部の図示を省略する。また図示の明瞭化のために、例えば1次光63、2次光65及び照明光67それぞれの一部のみを図示している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that in some drawings, illustration of some of the members is omitted for clarity of illustration. For clarity of illustration, for example, only a part of each of the primary light 63, the secondary light 65, and the illumination light 67 is illustrated.

[第1の実施形態]
[構成]
図面を参照して第1の実施形態について説明する。
[内視鏡システム10]
図1に示すような内視鏡システム10は、例えば検査室または手術室等に備えられる。内視鏡システム10は、例えば患者の管腔といった管路部内を撮像する内視鏡20と、内視鏡20の図示しない撮像ユニットによって撮像された管路部内の画像を画像処理する図示しない画像処理部を有する制御装置30とを有する。内視鏡システム10は、制御装置30に接続され、画像処理部によって画像処理された画像を表示する表示装置40を有する。
[First Embodiment]
[Constitution]
A first embodiment will be described with reference to the drawings.
[Endoscope system 10]
An endoscope system 10 as shown in FIG. 1 is provided, for example, in an examination room or an operating room. The endoscope system 10 is an image (not shown) that performs image processing on an image of the endoscope 20 that is imaged by an imaging unit (not shown) of the endoscope 20 and an endoscope 20 that images the inside of the channel such as a patient's lumen. And a control device 30 having a processing unit. The endoscope system 10 includes a display device 40 that is connected to the control device 30 and displays an image subjected to image processing by the image processing unit.

本実施形態では、被挿入体に挿入される挿入装置の一例として、医療用の軟性の内視鏡20を用いて説明するが、これに限定される必要はない。挿入装置は、例えば、医療用の硬性内視鏡、工業用の軟性内視鏡または工業用の硬性内視鏡、カテーテル、処置具といったように、被挿入体の内部に挿入される挿入部21を有していればよい。本実施形態の挿入部21は、軟性であっても硬性であってもよい。被挿入体は、例えば、人に限らず、動物、またはほかの構造物であってもよい。   In the present embodiment, the medical flexible endoscope 20 will be described as an example of an insertion device to be inserted into the insertion target body, but the present invention is not limited to this. The insertion device is, for example, a medical rigid endoscope, an industrial flexible endoscope, an industrial rigid endoscope, a catheter, a treatment tool, or the like, and an insertion unit 21 that is inserted into an inserted body. As long as it has. The insertion portion 21 of this embodiment may be soft or hard. The object to be inserted is not limited to a person, but may be an animal or another structure.

図1に示すように、内視鏡20は、管路部に挿入される中空の細長い挿入部21と、挿入部21の基端部に連結され、内視鏡20を操作する操作部23とを有する。内視鏡20は、操作部23の側面から延出されるユニバーサルコード25を有する。ユニバーサルコード25は、制御装置30に着脱可能な接続部25aを有する。   As shown in FIG. 1, the endoscope 20 includes a hollow and elongated insertion portion 21 that is inserted into a duct portion, and an operation portion 23 that is connected to a proximal end portion of the insertion portion 21 and operates the endoscope 20. Have The endoscope 20 includes a universal cord 25 that extends from the side surface of the operation unit 23. The universal cord 25 has a connection portion 25 a that can be attached to and detached from the control device 30.

[光源ユニット50と照明装置60との構成]
図2Aと図2Bと図2Cとに示すように、内視鏡システム10は、光源ユニット50と、内視鏡20に配置され、内視鏡20から出射される照明光67を生成する照明装置60とをさらに有する。光源ユニット50は、照明装置60に含まれてもよい。照明光67は、撮像のために出射される。
[Configuration of Light Source Unit 50 and Lighting Device 60]
As shown in FIGS. 2A, 2B, and 2C, the endoscope system 10 includes a light source unit 50 and an illumination device that is disposed in the endoscope 20 and generates illumination light 67 emitted from the endoscope 20. 60. The light source unit 50 may be included in the lighting device 60. The illumination light 67 is emitted for imaging.

図2Aに示す光源ユニット50と照明装置60との第1構成と、図2Bと図2Cとに示す光源ユニット50と照明装置60との第2構成とにおいて、照明装置60の構成は同一であるが、光源ユニット50の構成は異なる。   In the first configuration of the light source unit 50 and the illumination device 60 shown in FIG. 2A and the second configuration of the light source unit 50 and the illumination device 60 shown in FIGS. 2B and 2C, the configuration of the illumination device 60 is the same. However, the configuration of the light source unit 50 is different.

第1構成と第2構成とにおいて、照明装置60は、光源ユニット50から出射された1次光63を基に照明光67を出射する照明ユニット70を有する。具体的には、照明装置60は、光源ユニット50の後述する出射部から照明ユニット70に向けて出射された1次光63の一部の光学特性を照明ユニット70の光変換部材73にて変換して2次光65を生成する。照明装置60は、例えば1次光63と2次光65とが混色した照明光67を照明ユニット70の出射面71bから出射する。   In the first configuration and the second configuration, the illumination device 60 includes an illumination unit 70 that emits illumination light 67 based on the primary light 63 emitted from the light source unit 50. Specifically, the illuminating device 60 converts a part of the optical characteristics of the primary light 63 emitted from the later-described emission unit of the light source unit 50 toward the illumination unit 70 by the light conversion member 73 of the illumination unit 70. Thus, the secondary light 65 is generated. For example, the illumination device 60 emits illumination light 67 in which the primary light 63 and the secondary light 65 are mixed from the emission surface 71 b of the illumination unit 70.

図2Aに示す第1構成では、光源ユニット50は光源51と集光部53と導光部材55とを有し、照明ユニット70は光源ユニット50の出射部である導光部材55の出射部59に光学的に接続される。
図2Bと図2Cとに示す第2構成では、光源ユニット50は光源51を有し、照明ユニット70は、光源ユニット50の出射部である光源51に光学的に接続される。
In the first configuration shown in FIG. 2A, the light source unit 50 includes a light source 51, a condensing unit 53, and a light guide member 55, and the illumination unit 70 is an output unit 59 of the light guide member 55 that is an output unit of the light source unit 50. To be optically connected.
In the second configuration shown in FIG. 2B and FIG. 2C, the light source unit 50 includes a light source 51, and the illumination unit 70 is optically connected to the light source 51 that is an emission part of the light source unit 50.

第1構成において、例えば、光源51と集光部53とは制御装置30または操作部23に内蔵され、導光部材55は内視鏡20に内蔵され、照明ユニット70は挿入部21の先端部に内蔵される。第2構成において、光源ユニット50と照明ユニット70とは挿入部21の先端部に内蔵される。   In the first configuration, for example, the light source 51 and the light collecting unit 53 are built in the control device 30 or the operation unit 23, the light guide member 55 is built in the endoscope 20, and the illumination unit 70 is the tip of the insertion unit 21. Built in. In the second configuration, the light source unit 50 and the illumination unit 70 are built in the distal end portion of the insertion portion 21.

第1構成と第2構成とにおいて、光源ユニット50の出射部から照明ユニット70に向かって出射された1次光63の中心軸を、光軸61と定義する。具体的には、第1構成では、導光部材55の出射部59から照明ユニット70に向かって出射された1次光63の中心軸を、光軸61と定義する。第2構成では、光源51から照明ユニット70に向かって出射された1次光63の中心軸を、光軸61と定義する。   In the first configuration and the second configuration, the central axis of the primary light 63 emitted from the emission part of the light source unit 50 toward the illumination unit 70 is defined as an optical axis 61. Specifically, in the first configuration, the central axis of the primary light 63 emitted from the emission part 59 of the light guide member 55 toward the illumination unit 70 is defined as the optical axis 61. In the second configuration, the central axis of the primary light 63 emitted from the light source 51 toward the illumination unit 70 is defined as the optical axis 61.

図2Aに示す第1構成において、光源51から出射された1次光63は、導光部材55によって照明ユニット70に導光され、照明ユニット70を照射する。   In the first configuration shown in FIG. 2A, the primary light 63 emitted from the light source 51 is guided to the illumination unit 70 by the light guide member 55 and irradiates the illumination unit 70.

図2Bと図2Cとに示す第2構成において、光源51から出射された1次光63は、照明ユニット70を直接照射する。第2構成は、ランプまたは発光体オードのような光源51が所望する広いビーム広がり角度を有する1次光63を出射する第1タイプ(図2B参照)と、レーザダイオードのような光源51が所望する狭いビーム広がり角度を有する1次光63を出射する第2タイプ(図2C参照)とを有する。   In the second configuration shown in FIGS. 2B and 2C, the primary light 63 emitted from the light source 51 directly illuminates the illumination unit 70. In the second configuration, the first type (see FIG. 2B) that emits the primary light 63 having a wide beam divergence angle desired by the light source 51 such as a lamp or a light emitter Aode, and the light source 51 such as a laser diode is desired. And a second type (see FIG. 2C) that emits primary light 63 having a narrow beam divergence angle.

以下において、第1構成を基に、本実施形態を説明する。   In the following, the present embodiment will be described based on the first configuration.

[光源ユニット50]
図2Aに示す光源ユニット50は、特定の波長域の1次光63を出射する1以上の光源51と、光源51から出射された1次光63を導光部材55に集光する集光部53と、1次光63を導光する導光部材55とを有する。
[Light source unit 50]
The light source unit 50 shown in FIG. 2A includes one or more light sources 51 that emit primary light 63 in a specific wavelength range, and a light collecting unit that condenses the primary light 63 emitted from the light source 51 on the light guide member 55. 53 and a light guide member 55 that guides the primary light 63.

光源51は、例えば、レーザダイオードと、発光ダイオードと、面発光半導体レーザと、ランプとのいずれかである。本実施形態では、光源51が集光部53を介して導光部材55に光結合される際に光結合効率が高く、光源51としての信頼性が高く、小型である、レーザダイオードが光源51として好ましい。なお互いに異なる波長域の1次光63を出射する複数の光源51が配置され、1次光63がファイバカプラなどの合波部によって合波されて導光部材55に入射されてよい。   The light source 51 is, for example, one of a laser diode, a light emitting diode, a surface emitting semiconductor laser, and a lamp. In the present embodiment, when the light source 51 is optically coupled to the light guide member 55 via the light condensing unit 53, the optical coupling efficiency is high, the reliability as the light source 51 is high, and the laser diode is the light source 51. As preferred. A plurality of light sources 51 that emit primary light 63 in different wavelength ranges may be disposed, and the primary light 63 may be combined by a combining unit such as a fiber coupler and incident on the light guide member 55.

集光部53は、例えば、レンズなどの光学部材である。   The condensing part 53 is an optical member such as a lens, for example.

導光部材55は、例えば、柔軟性と可撓性とを有し、外力を受けることによって曲げられる。導光部材55は、例えば、細長く、円柱形状を有する。導光部材55は、集光部53によって集光された1次光63が入射する入射部57と、1次光63を照明ユニット70に向けて出射する出射部59とを有する。入射部57は、集光部53の焦点位置に配置される。平面状の入射部57は導光部材55の一端部に配置され、平面状の出射部59は導光部材55の他端部に配置される。導光部材55は、1次光63を入射部57から出射部59に向けて導光する。   The light guide member 55 has flexibility and flexibility, for example, and is bent by receiving an external force. The light guide member 55 is elongate and has a cylindrical shape, for example. The light guide member 55 includes an incident portion 57 into which the primary light 63 collected by the condensing portion 53 is incident, and an emitting portion 59 that emits the primary light 63 toward the illumination unit 70. The incident portion 57 is disposed at the focal position of the light collecting portion 53. The planar incident portion 57 is disposed at one end portion of the light guide member 55, and the planar exit portion 59 is disposed at the other end portion of the light guide member 55. The light guide member 55 guides the primary light 63 from the incident part 57 toward the emission part 59.

導光部材55は、例えば、ライトガイドと、ライトパイプと、光導光路と、バンドルファイバと、光ファイバとのいずれかである。本実施形態では、導光部材55は、単線の光ファイバである。図3Aに示すように、光ファイバは、コア55aと、コア55aの外周を覆うクラッド55bとを有する。コア55aの一端部に入射部57が配置され、コア55aの他端部に出射部59が配置される。この光ファイバには、例えば、開口数Fnaが略0.22、コア55aの直径が50μmのマルチモードの単線の光ファイバが用いられる。1次光63は、開口数Fnaに応じて光軸61との間に形成される角度で、出射部59から出射される。   The light guide member 55 is, for example, one of a light guide, a light pipe, a light guide path, a bundle fiber, and an optical fiber. In the present embodiment, the light guide member 55 is a single-wire optical fiber. As shown in FIG. 3A, the optical fiber includes a core 55a and a clad 55b that covers the outer periphery of the core 55a. An incident portion 57 is disposed at one end of the core 55a, and an emitting portion 59 is disposed at the other end of the core 55a. As this optical fiber, for example, a multimode single-wire optical fiber having a numerical aperture Fna of approximately 0.22 and a core 55a diameter of 50 μm is used. The primary light 63 is emitted from the emission part 59 at an angle formed with the optical axis 61 according to the numerical aperture Fna.

[照明ユニット70]
図3Aに示すように、照明ユニット70の中心軸は、光軸61上に位置していることが好ましい。
照明ユニット70は、円錐台状の透明部材71と、柱形状の光変換部材73と、分配ユニット77とを有する。分配ユニット77は、進路変更部材79と第1反射部材81とを有する。光変換部材73と進路変更部材79とは、透明部材71に埋め込まれる。透明部材71の中心軸と光変換部材73の中心軸と進路変更部材79の中心軸とは、光軸61上に配置されることが好ましい。第1反射部材81は、後述する入射面71aと出射面71bとを除いた面である、透明部材71のテーパ状の外周面に配置される。
[Lighting unit 70]
As shown in FIG. 3A, the central axis of the illumination unit 70 is preferably located on the optical axis 61.
The illumination unit 70 includes a frustoconical transparent member 71, a columnar light conversion member 73, and a distribution unit 77. The distribution unit 77 includes a course changing member 79 and a first reflecting member 81. The light conversion member 73 and the course changing member 79 are embedded in the transparent member 71. The central axis of the transparent member 71, the central axis of the light conversion member 73, and the central axis of the course changing member 79 are preferably disposed on the optical axis 61. The 1st reflection member 81 is arrange | positioned at the taper-shaped outer peripheral surface of the transparent member 71 which is a surface except the entrance surface 71a and the output surface 71b mentioned later.

[透明部材71]
図3Aに示すように、透明部材71は、出射部59に光学的に接続され且つ1次光63が透明部材71に入射する入射面71aと、照明光67を出射する出射面71bとを有する。入射面71aの直径は、出射面71bの直径よりも小さい。入射面71aは透明部材71の平面状の一端面であり、出射面71bは透明部材71の平面状の他端面である。入射面71aの外径は、導光部材55の外径と略同一である。なお入射面71aの外径は導光部材55の外径よりも大きくてもよく、この場合、第1反射部材81が、導光部材55に対して露出する入射面71aの露出部分に配置されることが好ましい。
[Transparent member 71]
As shown in FIG. 3A, the transparent member 71 has an incident surface 71 a that is optically connected to the emitting portion 59 and the primary light 63 is incident on the transparent member 71, and an emitting surface 71 b that emits the illumination light 67. . The diameter of the entrance surface 71a is smaller than the diameter of the exit surface 71b. The incident surface 71 a is a planar end surface of the transparent member 71, and the emission surface 71 b is a planar other end surface of the transparent member 71. The outer diameter of the incident surface 71 a is substantially the same as the outer diameter of the light guide member 55. The outer diameter of the incident surface 71a may be larger than the outer diameter of the light guide member 55. In this case, the first reflecting member 81 is disposed on the exposed portion of the incident surface 71a exposed to the light guide member 55. It is preferable.

透明部材71は、1次光63と2次光65とを殆ど吸収及び減衰させることを無く透過させる部材である。透明部材71は、1次光63と2次光65とに対して高い透過率を有する光学的に透明な部材である。このような部材は、例えば、シリコーン樹脂、ガラス、または石英ガラスである。   The transparent member 71 is a member that transmits the primary light 63 and the secondary light 65 with almost no absorption and attenuation. The transparent member 71 is an optically transparent member having a high transmittance with respect to the primary light 63 and the secondary light 65. Such a member is, for example, silicone resin, glass, or quartz glass.

透明部材71は、光変換部材73が2次光65の生成に伴い熱を発生した際に、熱を外部に放出する。透明部材71は、熱を効率的に放出するために、熱伝導率の高い部材であることが好ましい。このような部材は、例えば、ガラス、またはガラス系の樹脂である。なお熱が発生した際に熱を外部に効率的に放出するために、導光部材55の他端部と照明ユニット70とを保持する保持部85は、高い熱伝導性を有することが好ましい。   The transparent member 71 releases heat when the light conversion member 73 generates heat as the secondary light 65 is generated. The transparent member 71 is preferably a member having high thermal conductivity in order to efficiently release heat. Such a member is, for example, glass or glass-based resin. In order to efficiently release heat to the outside when heat is generated, the holding portion 85 that holds the other end portion of the light guide member 55 and the lighting unit 70 preferably has high thermal conductivity.

なお透明部材71は、光軸61方向において、出射部59と光変換部材73との間に配置されればよい、
[光変換部材73]
図3Aに示すように、透明部材71に埋め込まれる光変換部材73は、光軸61方向において、出射部59(入射面71a)と出射面71bとの間に配置され、入射面71a及び出射面71bそれぞれから離れている。光変換部材73は、例えば、円柱形状である。光変換部材73は、出射部59と対向する平面上に配置され且つ少なくとも1次光63が入射する入射面73aと、入射面73aの裏側に配置される裏面73bとを有する。入射面73aには、図3Aに破線で示すように2次光65も入射する。光軸61方向において、入射面73aは入射面71aから離れ、裏面73bは出射面71bから離れている。このような位置関係によって、光変換部材73は、確実に透明部材71に埋め込まれる。入射面73aと裏面73bとを含む光変換部材73の周面は、平面である。
The transparent member 71 may be disposed between the emitting portion 59 and the light conversion member 73 in the direction of the optical axis 61.
[Light conversion member 73]
As shown in FIG. 3A, the light conversion member 73 embedded in the transparent member 71 is disposed between the emission portion 59 (incident surface 71a) and the emission surface 71b in the direction of the optical axis 61, and the incident surface 71a and the emission surface. 71b away from each other. The light conversion member 73 has, for example, a cylindrical shape. The light conversion member 73 has an incident surface 73a that is disposed on a plane that faces the emitting portion 59 and that receives at least the primary light 63, and a back surface 73b that is disposed on the back side of the incident surface 73a. Secondary light 65 is also incident on the incident surface 73a as shown by the broken line in FIG. 3A. In the direction of the optical axis 61, the incident surface 73a is separated from the incident surface 71a, and the back surface 73b is separated from the exit surface 71b. With such a positional relationship, the light conversion member 73 is reliably embedded in the transparent member 71. The peripheral surface of the light conversion member 73 including the incident surface 73a and the back surface 73b is a flat surface.

ここで、第1反射部材81と光軸61方向との間に形成される角度を、角度φ3(図3B参照)と定義する。第1反射部材81で反射される1次光63の光量と2次光65の光量とに偏りが角度φ3によって発生してしまうと、照明光67に色むらが発生してしまう。このため、少なくとも光変換部材73の縁部73cは、第1反射部材81に接していることが好ましい。これにより、色むらが抑制される。なお縁部73cは、光変換部材73の入射面73aの縁部73cを示す。   Here, an angle formed between the first reflecting member 81 and the direction of the optical axis 61 is defined as an angle φ3 (see FIG. 3B). If a deviation occurs between the light quantity of the primary light 63 and the light quantity of the secondary light 65 reflected by the first reflecting member 81 at the angle φ3, the illumination light 67 will be uneven in color. For this reason, it is preferable that at least the edge 73 c of the light conversion member 73 is in contact with the first reflecting member 81. Thereby, uneven color is suppressed. Note that the edge portion 73 c indicates the edge portion 73 c of the incident surface 73 a of the light conversion member 73.

光変換部材73は、1次光63を照射されることによって1次光63の光学特性を変換し、2次光65を生成及び出射する。光学特性の変換とは、例えば、波長の変換と、配光(広がり角度)の変換と、色むらの低減と、1次光63と2次光65との良好な混色の実現とのいずれかを示す。
以下に、光変換部材73の一例を、図を用いずに簡単に説明する。
The light conversion member 73 converts the optical characteristics of the primary light 63 by being irradiated with the primary light 63, and generates and emits the secondary light 65. The optical property conversion is, for example, any one of wavelength conversion, light distribution (spreading angle) conversion, color unevenness reduction, and good color mixing of the primary light 63 and the secondary light 65. Indicates.
Below, an example of the light conversion member 73 is demonstrated easily, without using a figure.

光変換部材73は、例えば、1以上の波長変換部材を有する。
波長変換部材は、1次光63を照射されることによって、1次光63の一部を吸収し、吸収した1次光63を波長変換して、1次光63とは異なる2次光65を生成する。波長変換部材は、1次光63を所望の波長を有する光に変換する蛍光物質を有し、この場合では1次光63と2次光65とは、混色されて照明光67として出射される。
The light conversion member 73 has, for example, one or more wavelength conversion members.
The wavelength converting member absorbs a part of the primary light 63 by being irradiated with the primary light 63, converts the wavelength of the absorbed primary light 63, and converts the secondary light 65 different from the primary light 63. Is generated. The wavelength conversion member includes a fluorescent material that converts the primary light 63 into light having a desired wavelength. In this case, the primary light 63 and the secondary light 65 are mixed and emitted as illumination light 67. .

なお、波長変換部材の構成として、波長変換部材は互いに対して混合された複数の波長変換物質を有してもよい。この場合、波長変換物質それぞれは、互いに異なる波長を有する2次光65を生成する。または波長変換部材の構成として、一方の波長変換部材は他方の波長変換部材に積層してもよい。この場合、波長変換部材それぞれは、互いに異なる波長を有する2次光65を生成する。そして、互いに異なる波長を有する2次光65は、混色されて、照明光67として出射される。   In addition, as a structure of a wavelength conversion member, a wavelength conversion member may have a some wavelength conversion substance mixed with respect to each other. In this case, each of the wavelength conversion materials generates secondary light 65 having a different wavelength. Or as a structure of a wavelength conversion member, you may laminate | stack one wavelength conversion member on the other wavelength conversion member. In this case, each of the wavelength conversion members generates secondary light 65 having different wavelengths. Then, the secondary lights 65 having different wavelengths are mixed and emitted as illumination light 67.

本実施形態では、光変換部材73は波長変換部材であり、照明光67は1次光63と2次光65との混色であるものとして説明する。照明光67が生成され、色むらが低減されるためには、光変換部材73は光軸61に対して垂直に配置されることが好ましい。   In the present embodiment, the light conversion member 73 is a wavelength conversion member, and the illumination light 67 is described as a mixed color of the primary light 63 and the secondary light 65. In order to generate the illumination light 67 and reduce the color unevenness, the light conversion member 73 is preferably arranged perpendicular to the optical axis 61.

なお光変換部材73は、例えば、1次光63を拡散して2次光65を生成する拡散部材を有してもよい。拡散部材は、透明部材と、透明部材に添加されるフィラーと呼ばれる図示しない拡散物質とを有する。拡散部材は、光軸61に対する1次光63の広がり角度を広げ、これにより広がり角度が広い2次光65を生成する。また1次光63がレーザ光である場合、拡散物質は1次光63を繰り返し反射または散乱する。このため、拡散部材は、レーザ光特有の可干渉性を低下させる。拡散部材において、照明光67の取り出し効率を高めるために、散乱による損失を最小限に抑えることが重要である。このため拡散物質として、例えば、アルミナが好ましい。   The light conversion member 73 may include a diffusion member that diffuses the primary light 63 to generate the secondary light 65, for example. The diffusion member includes a transparent member and a diffusion material (not shown) called a filler added to the transparent member. The diffusing member widens the spread angle of the primary light 63 with respect to the optical axis 61, thereby generating the secondary light 65 having a wide spread angle. When the primary light 63 is laser light, the diffusing material repeatedly reflects or scatters the primary light 63. For this reason, a diffusing member reduces the coherence characteristic of laser light. In the diffusing member, in order to increase the extraction efficiency of the illumination light 67, it is important to minimize loss due to scattering. For this reason, for example, alumina is preferable as the diffusion material.

互いに異なる複数の波長を有するレーザ光が合波された場合、拡散部材は照射されることによって可干渉性を低減する。また拡散部材は、照明光67の出射位置による色むらを低減し、良好な混色光を実現する。   When laser beams having a plurality of different wavelengths are combined, the diffusing member is irradiated to reduce coherence. Further, the diffusing member reduces uneven color due to the emission position of the illumination light 67 and realizes good color mixing light.

[分配ユニット77]
ここで、図4Aに示すように、進路変更部材79が配置されておらず、光変換部材73は、出射部59から出射された1次光63を直接照射されたと想定する。このときの光変換部材73において1次光63を照射された照射領域を第1照射領域91と定義し、第1照射領域91において1次光63の強度が所定値以上である領域を強度領域93と定義する。所定値とは、図4Bと図4Cとに示す後述する第1強度ISである。強度領域93は、光軸61周辺の領域である。第1照射領域91は、強度領域93と、強度領域93の外縁側の領域である第1外縁領域95とを有する。第1外縁領域95は、第1照射領域91の内側且つ強度領域93の外側に配置される。
[Distribution unit 77]
Here, as shown in FIG. 4A, it is assumed that the course changing member 79 is not disposed and the light conversion member 73 is directly irradiated with the primary light 63 emitted from the emission unit 59. An irradiation area irradiated with the primary light 63 in the light conversion member 73 at this time is defined as a first irradiation area 91, and an area where the intensity of the primary light 63 is equal to or higher than a predetermined value in the first irradiation area 91 is an intensity area. 93. The predetermined value is a first intensity IS described later shown in FIGS. 4B and 4C. The intensity region 93 is a region around the optical axis 61. The first irradiation area 91 includes an intensity area 93 and a first outer edge area 95 that is an area on the outer edge side of the intensity area 93. The first outer edge region 95 is disposed inside the first irradiation region 91 and outside the intensity region 93.

ここで図4Bの実線と図4Cの点線とは、図4Aに示す光変換部材73の照射領域における1次光63の強度と1次光63の広がり角度との関係を示す1次光63の強度分布である。図4Cの実線は、図3Aに示す構成における強度分布である。図4Bの実線にて示すように、第1外縁領域95に比べて強度領域93では1次光63の強度がより一層高まっている。第1照射領域91において、1次光63と光軸61との間に形成される角度をφ0とする。第1照射領域91の内側に存在する強度領域93において、1次光63と光軸61との間に形成される角度をφ1とする。角度φ1は角度φ0よりも小さい。   Here, the solid line in FIG. 4B and the dotted line in FIG. 4C indicate the relationship between the intensity of the primary light 63 and the spread angle of the primary light 63 in the irradiation region of the light conversion member 73 shown in FIG. 4A. Intensity distribution. The solid line in FIG. 4C is the intensity distribution in the configuration shown in FIG. 3A. As indicated by the solid line in FIG. 4B, the intensity of the primary light 63 is further increased in the intensity region 93 as compared with the first outer edge region 95. In the first irradiation region 91, an angle formed between the primary light 63 and the optical axis 61 is φ0. In the intensity region 93 existing inside the first irradiation region 91, an angle formed between the primary light 63 and the optical axis 61 is defined as φ1. The angle φ1 is smaller than the angle φ0.

なお例えば図3Aにおいても、上記した想定下における強度領域93と第1外縁領域95と第1照射領域91とを図示している。   For example, also in FIG. 3A, the intensity region 93, the first outer edge region 95, and the first irradiation region 91 under the above assumption are illustrated.

強度領域93と第1外縁領域95とを有する第1照射領域91は、光変換部材73の入射面73aに配置される1次光63のスポットである。   The first irradiation region 91 having the intensity region 93 and the first outer edge region 95 is a spot of the primary light 63 disposed on the incident surface 73 a of the light conversion member 73.

本実施形態の分配ユニット77は、図4Bの実線と図4Cの点線とで示す強度分布を図4Cの実線で示す強度分布に調整し、これにより照射領域の面積を調整する。言い換えると、分配ユニット77は、強度分布と照射領域の面積とを変更する。図4Bと図4Cとに示すように強度領域93における1次光63の強度を低減し、照明光67の取り出し効率が高く且つ照明光67の出力が高くなるように、分配ユニット77は、強度領域93における1次光63の強度を低減し、低減された分の1次光63の強度を光変換部材73における強度領域93以外の領域である例えば第1外縁領域95と第2外縁領域99とに分配する。分配ユニット77は、分配と共に、分配によって照射領域を第1照射領域91よりも広い第2照射領域97に広げ、第1外縁領域95第2外縁領域99とにおける1次光63の強度を増加させる。このため、分配ユニット77は、進路変更部材79と第1反射部材81とを有する。なお第2照射領域97は、光変換部材73の入射面73aに配置される1次光63のスポットである。第2外縁領域99は、第2照射領域97の内側且つ第1外縁領域95の外側に配置される。第2外縁領域99は、第2照射領域97の外縁側の領域である。   The distribution unit 77 of this embodiment adjusts the intensity distribution indicated by the solid line in FIG. 4B and the dotted line in FIG. 4C to the intensity distribution indicated by the solid line in FIG. 4C, thereby adjusting the area of the irradiation region. In other words, the distribution unit 77 changes the intensity distribution and the area of the irradiation region. As shown in FIGS. 4B and 4C, the distribution unit 77 has an intensity that reduces the intensity of the primary light 63 in the intensity region 93, increases the extraction efficiency of the illumination light 67, and increases the output of the illumination light 67. The intensity of the primary light 63 in the area 93 is reduced, and the intensity of the reduced primary light 63 is an area other than the intensity area 93 in the light conversion member 73, for example, the first outer edge area 95 and the second outer edge area 99. And distribute to. The distribution unit 77 expands the irradiation area to the second irradiation area 97 wider than the first irradiation area 91 by distribution, and increases the intensity of the primary light 63 in the first outer edge area 95 and the second outer edge area 99. . For this reason, the distribution unit 77 includes a route changing member 79 and a first reflecting member 81. Note that the second irradiation region 97 is a spot of the primary light 63 disposed on the incident surface 73 a of the light conversion member 73. The second outer edge region 99 is disposed inside the second irradiation region 97 and outside the first outer edge region 95. The second outer edge region 99 is a region on the outer edge side of the second irradiation region 97.

[進路変更部材79]
図3Aに示すように、進路変更部材79は、少なくとも強度領域93に配置され、少なくとも強度領域93における1次光63の強度を低減するために、照射された1次光63の少なくとも一部の進行方向を変更する。言い換えると、進路変更部材79は、進行方向を変更する進行方向変更部材として機能し、進行方向を調整する調整部材として機能する。また進路変更部材79は、進路変更部材79が配置されていない際における1次光63の光路を変更する光路変更部材として機能する。例えば、進路変更部材79は、1次光63の伝播方向を第1反射部材81に向けて変えるために、第1反射部材81に向けて1次光63の少なくとも一部を反射する。進路変更部材79は、少なくとも強度領域93に配置されていればよく、例えば第1外縁領域95にまではみ出て配置されてもよいし、図3Aのように第1照射領域91全体に配置されてもよいし、第1照射領域91からさらに外側にはみ出て配置されてもよい。
[Course Change Member 79]
As shown in FIG. 3A, the course changing member 79 is disposed at least in the intensity region 93, and at least a part of the irradiated primary light 63 is reduced in order to reduce the intensity of the primary light 63 in at least the intensity region 93. Change the direction of travel. In other words, the course changing member 79 functions as a traveling direction changing member that changes the traveling direction, and functions as an adjusting member that adjusts the traveling direction. The course changing member 79 functions as an optical path changing member that changes the optical path of the primary light 63 when the course changing member 79 is not disposed. For example, the path changing member 79 reflects at least a part of the primary light 63 toward the first reflecting member 81 in order to change the propagation direction of the primary light 63 toward the first reflecting member 81. The course changing member 79 may be disposed at least in the strength region 93, for example, may be disposed so as to protrude to the first outer edge region 95, or may be disposed in the entire first irradiation region 91 as illustrated in FIG. 3A. Alternatively, it may be arranged so as to protrude further outward from the first irradiation region 91.

図3Aと図3Cと図3Dとに示すように、進路変更部材79は、例えば、円錐状または半球状の光学部材79aを有する。光学部材79aの表面は、出射部59側に対向する。例えば、光学部材79aの最大直径は、強度領域93の直径と同一またはこれよりも大きければよく、例えば第1照射領域91の直径と同一またはこれよりも大きくてもよい。円錐状の光学部材79aは、例えば直円錐状であることが好ましい。この場合において、光学部材79aの中心軸が光軸61上に配置され、図3Bに示すように円錐状の光学部材79aの母線と光軸61との間に角度φ2が形成される。光学部材79aは、光学部材79aの表面で、1次光63を反射する。透明部材71の屈折率n1は、光学部材79aの屈折率n2よりも大きい。   As shown in FIGS. 3A, 3C, and 3D, the course changing member 79 includes, for example, a conical or hemispherical optical member 79a. The surface of the optical member 79a faces the emission part 59 side. For example, the maximum diameter of the optical member 79a may be the same as or larger than the diameter of the intensity region 93, and may be the same as or larger than the diameter of the first irradiation region 91, for example. The conical optical member 79a is preferably, for example, a right cone. In this case, the central axis of the optical member 79a is disposed on the optical axis 61, and an angle φ2 is formed between the optical axis 61 and the generatrix of the conical optical member 79a as shown in FIG. 3B. The optical member 79a reflects the primary light 63 on the surface of the optical member 79a. The refractive index n1 of the transparent member 71 is larger than the refractive index n2 of the optical member 79a.

本実施形態では、円錐状の光学部材79aの円錐先端部に入射する1次光63の入射角度が臨界角度よりも大きい。したがって、図3Aに示すように、光学部材79aは、光学部材79aの表面で、1次光63を全反射する。そして光学部材79aを透過する1次光63は抑制される。例えば、透明部材71がガラス(n=1.44)の場合、光学部材79aは、透明部材71の屈折率よりも小さい屈折率を有する透明部材である。なお臨界角度は、例えば、透明部材71の屈折率と光学部材79aの屈折率とによって決まる。   In the present embodiment, the incident angle of the primary light 63 incident on the conical tip of the conical optical member 79a is larger than the critical angle. Therefore, as shown in FIG. 3A, the optical member 79a totally reflects the primary light 63 on the surface of the optical member 79a. And the primary light 63 which permeate | transmits the optical member 79a is suppressed. For example, when the transparent member 71 is glass (n = 1.44), the optical member 79 a is a transparent member having a refractive index smaller than that of the transparent member 71. The critical angle is determined by, for example, the refractive index of the transparent member 71 and the refractive index of the optical member 79a.

なお屈折率n1と屈折率n2との差が小さい場合、全反射が実施されない。この場合、図3Bに示すように、1次光63の一部は、光学部材79aによって第1反射部材81に向けて反射される。また、1次光63の残りの一部が光軸61周辺から離れるように1次光63の残りの一部と光軸61との間の広がり角度が広がった状態で、1次光63の残りの一部は、光学部材79aを透過し光変換部材73に向けて進行する。つまり、光学部材79aは、1次光63を反射光と屈折透過光とに分離する。1次光63の残りの一部は、光学部材79aにて光軸61から離れる方向に屈折し、光学部材79aを透過する。   When the difference between the refractive index n1 and the refractive index n2 is small, total reflection is not performed. In this case, as shown in FIG. 3B, a part of the primary light 63 is reflected toward the first reflecting member 81 by the optical member 79a. Further, in the state where the spread angle between the remaining part of the primary light 63 and the optical axis 61 is widened so that the remaining part of the primary light 63 is separated from the periphery of the optical axis 61, The remaining part passes through the optical member 79 a and travels toward the light conversion member 73. That is, the optical member 79a separates the primary light 63 into reflected light and refracted transmitted light. The remaining part of the primary light 63 is refracted in the direction away from the optical axis 61 by the optical member 79a and passes through the optical member 79a.

全反射が発生しない場合、図3Cに示すように、進路変更部材79は、例えば、円錐状の光学部材79aの表面に配置され、光軸61に対して傾斜して配置され、1次光63を第1反射部材81に向けて反射する第2反射部材79bを有してもよい。第2反射部材79bは、光軸61近傍の光学部材79aにおいて全反射が発生しない領域に、少なくとも配置される。この領域は、例えば、光軸61方向において強度領域93と同軸上に配置される。例えば、第2反射部材79bは、光軸61周辺且つ光学部材79aの円錐先端部に配置される。これにより第2反射部材79bは、光軸61近傍の1次光63を確実に第1反射部材81に向けて反射する。   When total reflection does not occur, as shown in FIG. 3C, the path changing member 79 is disposed on the surface of the conical optical member 79 a, for example, inclined with respect to the optical axis 61, and the primary light 63. May be included in the second reflecting member 79 b that reflects the first reflecting member 81 toward the first reflecting member 81. The second reflecting member 79b is disposed at least in a region where total reflection does not occur in the optical member 79a in the vicinity of the optical axis 61. This region is arranged coaxially with the intensity region 93 in the direction of the optical axis 61, for example. For example, the second reflecting member 79b is disposed around the optical axis 61 and at the conical tip of the optical member 79a. Thus, the second reflecting member 79 b reliably reflects the primary light 63 in the vicinity of the optical axis 61 toward the first reflecting member 81.

第2反射部材79bの反射率は、90%以上が好ましい。第2反射部材79bは、例えば、1次光63を高い反射率で反射する誘電体多層膜である。   The reflectance of the second reflecting member 79b is preferably 90% or more. The second reflecting member 79b is, for example, a dielectric multilayer film that reflects the primary light 63 with a high reflectance.

なお1次光63の入射角度が臨界角度よりも小さい場合、第2反射部材79bは、少なくとも光軸61から入射角度が臨界角度となる領域まで配置されていればよい。   When the incident angle of the primary light 63 is smaller than the critical angle, the second reflecting member 79b may be disposed at least from the optical axis 61 to a region where the incident angle becomes the critical angle.

簡略化のため図示を省略するが、全反射が発生しない状態で、第2反射部材79bを1次光63の一部が照射し、第2反射部材79bが配置されていない領域における光学部材79aの表面を1次光63の残りの一部が照射したとする。この場合、1次光63の一部は、第2反射部材79bによって第1反射部材81に向けて反射される。また、1次光63の残りの一部が光軸61周辺から離れるように1次光63の残りの一部と光軸61との間の広がり角度が広がった状態で、1次光63の残りの一部は、光学部材79aを透過し光変換部材73に向けて進行する。つまり、光学部材79aは、1次光63を反射光と屈折透過光とに分離する。1次光63の残りの一部は、光学部材79aにて光軸61から離れる方向に屈折し、光学部材79aを透過する。   Although not shown for simplicity, the optical member 79a in a region where the second reflecting member 79b is irradiated with a part of the primary light 63 and the second reflecting member 79b is not disposed in a state where total reflection does not occur. Is assumed to be irradiated with the remaining part of the primary light 63. In this case, a part of the primary light 63 is reflected toward the first reflecting member 81 by the second reflecting member 79b. Further, in the state where the spread angle between the remaining part of the primary light 63 and the optical axis 61 is widened so that the remaining part of the primary light 63 is separated from the periphery of the optical axis 61, The remaining part passes through the optical member 79 a and travels toward the light conversion member 73. That is, the optical member 79a separates the primary light 63 into reflected light and refracted transmitted light. The remaining part of the primary light 63 is refracted in the direction away from the optical axis 61 by the optical member 79a and passes through the optical member 79a.

図3Dに示すように、進路変更部材79は、例えば、半球状の光学部材79aの表面に配置される第3反射部材79cと、第3反射部材79cの表面の少なくとも一部である乱反射部79dとを有してもよい。   As shown in FIG. 3D, the course changing member 79 includes, for example, a third reflecting member 79c disposed on the surface of the hemispherical optical member 79a, and a random reflecting portion 79d that is at least part of the surface of the third reflecting member 79c. You may have.

第3反射部材79cは、例えば、光学部材79aの表面全体に配置される。第3反射部材79cは、出射部59側に対向する。第3反射部材79cは、1次光63を第1反射部材81に向けて反射する。第3反射部材79cの反射率は、90%以上が好ましい。第3反射部材79cは、第3反射部材79cによる1次光63の減衰を抑制し、波長選択性を有し、2次光65を低反射する。このため第3反射部材79cは、高反射率を有する金属膜よりも、第3反射部材79cにて反射が繰り返し実施され1次光63が減衰しない波長選択性を有する誘電体多層膜であることが好ましい。   For example, the third reflecting member 79c is disposed on the entire surface of the optical member 79a. The third reflecting member 79c faces the emitting part 59 side. The third reflecting member 79 c reflects the primary light 63 toward the first reflecting member 81. The reflectance of the third reflecting member 79c is preferably 90% or more. The third reflecting member 79c suppresses the attenuation of the primary light 63 by the third reflecting member 79c, has wavelength selectivity, and reflects the secondary light 65 low. For this reason, the third reflecting member 79c is a dielectric multilayer film having wavelength selectivity in which reflection is repeatedly performed by the third reflecting member 79c and the primary light 63 is not attenuated, rather than a metal film having a high reflectance. Is preferred.

簡略化のため図示を省略するが、第3反射部材79cを照射する1次光63の大部分は、第3反射部材79cによって第1反射部材81に向かって反射される。1次光63の残りの一部は、第3反射部材79cによって反射されずに第3反射部材79cを透過する。そして1次光63は、光学部材79aの焦点方向に向かって光学部材79aを透過し、光変換部材73を照射する。   Although illustration is omitted for simplification, most of the primary light 63 that irradiates the third reflecting member 79c is reflected toward the first reflecting member 81 by the third reflecting member 79c. The remaining part of the primary light 63 passes through the third reflecting member 79c without being reflected by the third reflecting member 79c. The primary light 63 passes through the optical member 79a toward the focal direction of the optical member 79a and irradiates the light conversion member 73.

図3Dに示すように、乱反射部79dは、少なくとも光軸61周辺に配置され、光軸61方向において強度領域93と同軸上に配置される。乱反射部79dである第3反射部材79cの表面は凹凸形状で、凹凸の、高さ、サイズ、または周期は不規則となっている。凹凸の高さは、1次光63の波長以下となっている。乱反射部79dは、乱反射部79dを照射する1次光63を乱反射し、1次光63を、出射部59以外に向けて反射する。   As shown in FIG. 3D, the irregular reflection portion 79d is disposed at least around the optical axis 61, and is disposed coaxially with the intensity region 93 in the optical axis 61 direction. The surface of the third reflecting member 79c, which is the irregular reflection portion 79d, has an uneven shape, and the height, size, or period of the unevenness is irregular. The height of the unevenness is equal to or less than the wavelength of the primary light 63. The irregular reflection part 79d diffusely reflects the primary light 63 that irradiates the irregular reflection part 79d, and reflects the primary light 63 toward other than the emission part 59.

簡略化のため図示を省略するが、乱反射部79dに平面状の反射部材が配置されたとする。この場合、1次光63は、反射によって出射部59から導光部材55に侵入し、光源51に戻ってしまう。例えば、出射部59から出射された1次光63の10%以上が戻る場合、この戻り光の量は無視できない。この場合、戻り光の位相と光源51から出射された1次光63の位相とが互いに干渉し、光源51の出力が変動し、照明装置60の出力が不安定となる。このため、戻り光を抑制する必要がある。   Although illustration is omitted for simplification, it is assumed that a planar reflection member is disposed in the irregular reflection portion 79d. In this case, the primary light 63 enters the light guide member 55 from the emission part 59 by reflection and returns to the light source 51. For example, when 10% or more of the primary light 63 emitted from the emission part 59 returns, the amount of this return light cannot be ignored. In this case, the phase of the return light and the phase of the primary light 63 emitted from the light source 51 interfere with each other, the output of the light source 51 fluctuates, and the output of the illumination device 60 becomes unstable. For this reason, it is necessary to suppress return light.

このため本実施形態では、乱反射部79dは、1次光63が導光部材55に侵入し光源51に戻ることを、乱反射によって抑制する。このため、光源51の出力の変動は抑制され、照明装置60の出力は安定する。   For this reason, in this embodiment, the irregular reflection part 79d suppresses the primary light 63 from entering the light guide member 55 and returning to the light source 51 by irregular reflection. For this reason, the fluctuation | variation of the output of the light source 51 is suppressed, and the output of the illuminating device 60 is stabilized.

[第1反射部材81]
図3Aに示すように第1反射部材81は、進路変更部材79によって進行方向が変更された1次光63を出射面71bに向けて反射し、且つ、出射面71bとは逆方向に進行する2次光65を出射面71bに向けて反射する。第1反射部材81は、第2照射領域97のために、1次光63を、例えば強度領域93以外の領域に向けて反射する。第1反射部材81は、光軸61方向において出射部59から出射面71bまで配置され、且つ光変換部材73と進路変更部材79とを取り囲んで配置される。第1反射部材81は、出射部59から出射面71bに向かってテーパ状に広がっている。
[First reflective member 81]
As shown in FIG. 3A, the first reflecting member 81 reflects the primary light 63 whose traveling direction has been changed by the path changing member 79 toward the exit surface 71b and travels in the opposite direction to the exit surface 71b. The secondary light 65 is reflected toward the emission surface 71b. The first reflecting member 81 reflects the primary light 63 toward a region other than the intensity region 93, for example, for the second irradiation region 97. The first reflecting member 81 is disposed from the emitting portion 59 to the emitting surface 71b in the direction of the optical axis 61, and is disposed so as to surround the light conversion member 73 and the course changing member 79. The first reflecting member 81 extends in a tapered shape from the emitting portion 59 toward the emitting surface 71b.

第1反射部材81は、1次光63と2次光65との伝播方向を出射面71bに向けて変えるために、1次光63と2次光65とを出射面71bに向けて反射する。また第1反射部材81は、テーパ状に広がっているため、1次光63と2次光65と照明光67との配光特性を制御する機能を有することとなる。第1反射部材81における角度φ3は、配光特性を制御するものである。   The first reflecting member 81 reflects the primary light 63 and the secondary light 65 toward the exit surface 71b in order to change the propagation direction of the primary light 63 and the secondary light 65 toward the exit surface 71b. . Moreover, since the 1st reflection member 81 has spread in the taper shape, it will have the function to control the light distribution characteristic of the primary light 63, the secondary light 65, and the illumination light 67. FIG. The angle φ3 in the first reflecting member 81 controls the light distribution characteristics.

第1反射部材81は、例えば、誘電体多層膜、または1次光63と2次光65とに対して高い反射率を有する金属膜である。金属は、例えば、AgまたはAlである。   The first reflecting member 81 is, for example, a dielectric multilayer film or a metal film having a high reflectance with respect to the primary light 63 and the secondary light 65. The metal is, for example, Ag or Al.

なお第1反射部材81の表面に、散乱損失を抑制する散乱膜が配置されてもよい。これにより、第1反射部材81における反射角度の広がりが大きくなり、光変換部材73における1次光63の強度分布が均一となり、出射面71bにおける色むらが低減する。   A scattering film that suppresses scattering loss may be disposed on the surface of the first reflecting member 81. Thereby, the spread of the reflection angle in the first reflection member 81 is increased, the intensity distribution of the primary light 63 in the light conversion member 73 is uniform, and the color unevenness in the emission surface 71b is reduced.

なお図3Bに示す角度φ3は、光軸61に対する透明部材71の外周面の角度に依存する。   3B depends on the angle of the outer peripheral surface of the transparent member 71 with respect to the optical axis 61. The angle φ3 shown in FIG.

[作用]
光源51から出射された1次光63は、集光部53によって導光部材55の入射部57に集光され、導光部材55によって出射部59まで導光される。図3Aに示すように、出射部59から出射された1次光63は、入射面71aから透明部材71に入射し、透明部材71を透過する。
[Action]
The primary light 63 emitted from the light source 51 is condensed on the incident portion 57 of the light guide member 55 by the light collecting portion 53 and guided to the emission portion 59 by the light guide member 55. As shown in FIG. 3A, the primary light 63 emitted from the emission part 59 enters the transparent member 71 from the incident surface 71 a and passes through the transparent member 71.

ここで、図3Bに示すように、1次光63が円錐状の光学部材79aの母線上の入射位置Pから光学部材79aに入射すると仮定する。入射位置Pは、光軸61上に位置する光学部材79aの頂点ではなく、光学部材79aのテーパ状の外周面の一部分である。   Here, as shown in FIG. 3B, it is assumed that the primary light 63 is incident on the optical member 79a from the incident position P on the generatrix of the conical optical member 79a. The incident position P is not the apex of the optical member 79a located on the optical axis 61 but a part of the tapered outer peripheral surface of the optical member 79a.

ここで、以下を定義する。
出射部59から出射された1次光63と光軸61との間に形成される角度:角度φ1
角度φ1を有した状態で1次光63が光学部材79aに入射した際、光学部材79aの入射位置Pにおける法線に対する1次光63の入射角度:ψ1
1次光63が光学部材79aにて屈折した後に光学部材79aを透過する際、屈折した1次光63と光軸61との間に形成される屈折角度:ψ2
入射角度ψ1と屈折角度ψ2との関係は、透明部材71の屈折率n1と光学部材79aの屈折率n2との差Δnに依存する。
Here we define:
Angle formed between the primary light 63 emitted from the emission part 59 and the optical axis 61: angle φ1
When the primary light 63 is incident on the optical member 79a with the angle φ1, the incident angle of the primary light 63 with respect to the normal at the incident position P of the optical member 79a: ψ1
When the primary light 63 is refracted by the optical member 79a and then passes through the optical member 79a, a refraction angle formed between the refracted primary light 63 and the optical axis 61: ψ2
The relationship between the incident angle ψ1 and the refractive angle ψ2 depends on the difference Δn between the refractive index n1 of the transparent member 71 and the refractive index n2 of the optical member 79a.

全反射の条件が満たされれば、入射位置Pにおいて1次光63は全反射され、図3Aに示すように1次光63は第1反射部材81に向かって反射される。この1次光63は第1反射部材81によって再び反射され、反射された1次光63は強度領域93以外の領域を照射し、この領域から光変換部材73に入射する。   If the total reflection condition is satisfied, the primary light 63 is totally reflected at the incident position P, and the primary light 63 is reflected toward the first reflecting member 81 as shown in FIG. 3A. The primary light 63 is reflected again by the first reflecting member 81, and the reflected primary light 63 irradiates a region other than the intensity region 93 and enters the light conversion member 73 from this region.

また全反射の条件が満たされなければ、図3Bに示すように、入射位置Pにおいて、1次光63の一部は、光学部材79aによって第1反射部材81に向けて反射される。1次光63の一部は、第1反射部材81によって再び反射され、強度領域93以外の領域を照射し、この領域から光変換部材73に入射する。また、1次光63の残りの一部が光軸61周辺から離れるように1次光63の残りの一部と光軸61との間の広がり角度が広がった状態で、1次光63の残りの一部は、光学部材79aを透過し光変換部材73に向けて進行し光変換部材73に入射する。   If the condition of total reflection is not satisfied, as shown in FIG. 3B, a part of the primary light 63 is reflected toward the first reflecting member 81 by the optical member 79a at the incident position P. A part of the primary light 63 is reflected again by the first reflecting member 81, irradiates a region other than the intensity region 93, and enters the light conversion member 73 from this region. Further, in the state where the spread angle between the remaining part of the primary light 63 and the optical axis 61 is widened so that the remaining part of the primary light 63 is separated from the periphery of the optical axis 61, The remaining part passes through the optical member 79 a, travels toward the light conversion member 73, and enters the light conversion member 73.

全反射の条件が満たされても満たされていなくても、進路変更部材79が配置されて、1次光63は第1反射部材81に向かって反射される。このため、例えば1次光63の第1光路長(図示せず)は、1次光63の第2光路長(図示せず)に比べて、長くなる。第1光路長は、1次光63が入射面71aから進路変更部材79と第1反射部材81とを経由して光変換部材73まで進行する長さである。第2光路長は、進路変更部材79が配置されていない状態で1次光63が入射面71aから光変換部材73に直接進行する長さである。また進路変更部材79が配置されて、1次光63は、強度領域93以外の領域から光変換部材73に入射する。このため図4Cに示すように、強度領域93における1次光63の強度は低減し、低減された1次光63の強度は光変換部材73における強度領域93以外の領域に分配される。また分配によって、光変換部材73における照射領域は第1照射領域91から第2照射領域97に広がり、強度領域93以外の領域における1次光63の強度は増加する。   Whether the total reflection condition is satisfied or not satisfied, the course changing member 79 is arranged and the primary light 63 is reflected toward the first reflecting member 81. For this reason, for example, the first optical path length (not shown) of the primary light 63 is longer than the second optical path length (not shown) of the primary light 63. The first optical path length is a length by which the primary light 63 travels from the incident surface 71 a to the light conversion member 73 via the path changing member 79 and the first reflecting member 81. The second optical path length is a length in which the primary light 63 travels directly from the incident surface 71a to the light conversion member 73 in a state where the course changing member 79 is not disposed. Further, the course changing member 79 is disposed, and the primary light 63 enters the light conversion member 73 from a region other than the intensity region 93. Therefore, as shown in FIG. 4C, the intensity of the primary light 63 in the intensity region 93 is reduced, and the reduced intensity of the primary light 63 is distributed to areas other than the intensity area 93 in the light conversion member 73. In addition, due to the distribution, the irradiation region in the light conversion member 73 extends from the first irradiation region 91 to the second irradiation region 97, and the intensity of the primary light 63 in the region other than the intensity region 93 increases.

図3Aに示すように、光変換部材73に入射した1次光63の一部は、光変換部材73に吸収されて2次光65に変換される。1次光63の残りの一部は、光変換部材73に吸収されずに光変換部材73から出射面71bに向かって出射される。入射面73aから出射された1次光63は、第1反射部材81によって光変換部材73に向かって反射され、再び前述した動作を繰り返す。   As shown in FIG. 3A, a part of the primary light 63 incident on the light conversion member 73 is absorbed by the light conversion member 73 and converted into the secondary light 65. The remaining part of the primary light 63 is emitted from the light conversion member 73 toward the emission surface 71 b without being absorbed by the light conversion member 73. The primary light 63 emitted from the incident surface 73a is reflected toward the light conversion member 73 by the first reflecting member 81, and the above-described operation is repeated again.

図3Aに示すように、2次光65の一部は光変換部材73から出射面71bに向かって出射される。また2次光65の残りの一部は、入射面73aから第1反射部材81に向かって出射され、第1反射部材81によって反射され、光変換部材73を透過する。そして2次光65は、光変換部材73に吸収されずに光変換部材73から出射された1次光63と混色し、照明光67として出射面71bから出射される。   As shown in FIG. 3A, a part of the secondary light 65 is emitted from the light conversion member 73 toward the emission surface 71b. The remaining part of the secondary light 65 is emitted from the incident surface 73 a toward the first reflecting member 81, is reflected by the first reflecting member 81, and passes through the light conversion member 73. The secondary light 65 is mixed with the primary light 63 emitted from the light conversion member 73 without being absorbed by the light conversion member 73, and is emitted from the emission surface 71 b as illumination light 67.

次に、図4Aと図4Bと図4Cとを参照して、一次光の強度の低減と一次光の分配とについて説明する。
図4Aは、進路変更部材79が配置されておらず、光変換部材73が出射部59から出射された1次光63を直接照射された状態である。なお、光軸61方向において、出射部59と光変換部材73との間には、透明部材71が配置される。透明部材71は、透明部材71が配置されず出射部59が光変換部材73と当接している当接状態に比べて、出射部59から光変換部材73までの長さを長く確保する。
Next, with reference to FIG. 4A, FIG. 4B, and FIG. 4C, the reduction | decrease of the intensity | strength of primary light and distribution of primary light are demonstrated.
FIG. 4A shows a state in which the route changing member 79 is not disposed and the light conversion member 73 is directly irradiated with the primary light 63 emitted from the emission unit 59. A transparent member 71 is disposed between the emitting portion 59 and the light conversion member 73 in the direction of the optical axis 61. The transparent member 71 ensures a longer length from the emitting portion 59 to the light converting member 73 than in a contact state where the transparent member 71 is not disposed and the emitting portion 59 is in contact with the light converting member 73.

図4Bの実線にて示すように、第1外縁領域95に比べて強度領域93では1次光63の強度がより一層高まっている。光変換部材73が2次光65を生成する際に、生成によって第1照射領域91に熱が発生し、熱の大部分は強度領域93から発生する。   As indicated by the solid line in FIG. 4B, the intensity of the primary light 63 is further increased in the intensity region 93 as compared with the first outer edge region 95. When the light conversion member 73 generates the secondary light 65, heat is generated in the first irradiation region 91 due to the generation, and most of the heat is generated from the intensity region 93.

このため強度領域93は、1次光63の高い強度と2次光65の生成によって発生する熱とに起因して光変換部材73の劣化が加速してしまう虞がある熱劣化加速領域となる。以下において、1次光63の高い強度と熱とに起因する光変換部材73の劣化を、熱劣化と称する。図4Bに示すように、強度領域93は、中心領域である熱劣化領域93aと、熱劣化領域93aの外側領域である熱劣化警戒領域93bとを有する。強度領域93における1次光63の強度は、ピーク強度IPから所定の第1強度ISまでとなっている。ピーク強度IPは、最も高い強度である。第1強度ISは、発生する熱の伝導を考慮した光変換部材73の高温時の光変換効率に依存する強度である。実際の第1強度ISの設定の一例として、IS=IP×1/eとなる。eは、自然対数である。第1強度ISは、強度領域93における1次光の所定値であり、例えば1次光の強度のピーク値であるピーク強度IPに対して1/eであることを示す。Therefore, the intensity region 93 is a heat deterioration acceleration region in which the deterioration of the light conversion member 73 may be accelerated due to the high intensity of the primary light 63 and the heat generated by the generation of the secondary light 65. . Hereinafter, the deterioration of the light conversion member 73 caused by the high intensity and heat of the primary light 63 is referred to as heat deterioration. As shown in FIG. 4B, the strength region 93 includes a heat deterioration region 93a that is a central region and a heat deterioration warning region 93b that is an outer region of the heat deterioration region 93a. The intensity of the primary light 63 in the intensity region 93 is from the peak intensity IP to a predetermined first intensity IS. The peak intensity IP is the highest intensity. The first intensity IS is an intensity that depends on the light conversion efficiency of the light conversion member 73 at a high temperature in consideration of conduction of generated heat. As an example of the actual setting of the first intensity IS, IS = IP × 1 / e 2 . e is a natural logarithm. The first intensity IS is a predetermined value of the primary light in the intensity region 93 and indicates, for example, 1 / e 2 with respect to the peak intensity IP that is the peak value of the intensity of the primary light.

熱劣化領域93aにおける1次光63の強度は、ピーク強度IPから所定の第2強度IDまでとなっている。第2強度IDは、ピーク強度IPと第1強度ISとの間を示し、所望に設定される。熱劣化領域93aは、照射領域において1次光63の強度が最も高く、熱劣化の加速が光変換部材73において最も多い部位を示す。   The intensity of the primary light 63 in the thermally deteriorated region 93a is from the peak intensity IP to a predetermined second intensity ID. The second intensity ID indicates between the peak intensity IP and the first intensity IS and is set as desired. The heat deterioration region 93a indicates a portion where the intensity of the primary light 63 is highest in the irradiation region and the acceleration of heat deterioration is the highest in the light conversion member 73.

熱劣化警戒領域93bにおける1次光63の強度は、第2強度IDから第1強度ISまでとなっている。熱劣化警戒領域93bは、熱劣化領域93aに比べて1次光63の強度が低く、熱劣化の加速が熱劣化領域93aの次に多く、劣化を警戒する部位を示す。   The intensity of the primary light 63 in the heat deterioration warning area 93b is from the second intensity ID to the first intensity IS. The heat deterioration warning area 93b is a portion where the intensity of the primary light 63 is lower than that of the heat deterioration area 93a and the acceleration of the heat deterioration is next to the heat deterioration area 93a, and the deterioration is watched.

第1外縁領域95は、熱劣化警戒領域93bの外側且つ第1照射領域91の内側の安全領域であり、熱劣化の加速が無いとみなせる領域を示す。第1外縁領域95における1次光63の強度は、熱劣化警戒領域93bのそれに比べて低く、第1強度IS未満から0までとなっている。第1外縁領域95における1次光63の強度は、熱劣化の加速が無いとみなせる、安全な強度となる。   The first outer edge region 95 is a safety region outside the heat deterioration warning region 93b and inside the first irradiation region 91, and indicates a region that can be regarded as having no acceleration of heat deterioration. The intensity of the primary light 63 in the first outer edge area 95 is lower than that in the heat deterioration warning area 93b, and is less than the first intensity IS to 0. The intensity of the primary light 63 in the first outer edge region 95 is a safe intensity that can be regarded as no acceleration of thermal degradation.

熱劣化が発生すると、照明光67に変換する変換効率言い換えると照明光67の取り出し効率が低下し、照明光67の出力が低下する。   When thermal degradation occurs, the conversion efficiency for conversion to the illumination light 67, in other words, the extraction efficiency of the illumination light 67 decreases, and the output of the illumination light 67 decreases.

このため本実施形態では、図3Aに示すように進路変更部材79は少なくとも強度領域93(熱劣化領域93aと熱劣化警戒領域93bと)に配置されており、さらに第1反射部材81も配置される。このため、図4Cに示すように、強度領域93における1次光63の強度は低減し、低減された1次光63の強度は光変換部材73における強度領域93以外の領域に分配される。また分配によって、光変換部材73における照射領域は第1照射領域91から第2照射領域97に広がり、強度領域93以外の領域における1次光63の強度は増加する。これにより、強度分布は、図4Cにて実線で示されるドーナッツ状に変更される。なお強度領域93において、上述したように1次光63の強度は低減するため、低減領域99aが発生する。低減領域99aは、図4Cの強度領域93において、点線と実線とによって囲まれた領域である。また図3Bと図4Cとに示すように、照射領域は第1照射領域91から第2照射領域97に広がり、角度φ0は角度φ0’に広がり、強度領域93以外の領域も第1外縁領域95と第2外縁領域99とに広がる。図3B示すように、角度φ0’は、第1反射部材81によって反射された1次光63が入射面73aを照射した際に、出射部59と入射面73a上の入射位置とを結ぶ直線と、光軸61との間に形成される最大の角度である。照射領域が第1照射領域91から第2照射領域97に広がると、増加領域99bが発生する。増加領域99bは、低減領域99aと略同一の1次光63のトータル強度を有する。増加領域99bは、図4Cの強度領域93以外の領域において、点線と実線とによって囲まれた領域である。第1外縁領域95と第2外縁領域99とにおける1次光63のトータル強度も、低減した1次光63の分だけ略均等に増加する。   For this reason, in this embodiment, as shown in FIG. 3A, the course changing member 79 is disposed at least in the strength region 93 (the heat deterioration region 93a and the heat deterioration warning region 93b), and the first reflecting member 81 is also disposed. The Therefore, as shown in FIG. 4C, the intensity of the primary light 63 in the intensity region 93 is reduced, and the reduced intensity of the primary light 63 is distributed to areas other than the intensity area 93 in the light conversion member 73. In addition, due to the distribution, the irradiation region in the light conversion member 73 extends from the first irradiation region 91 to the second irradiation region 97, and the intensity of the primary light 63 in the region other than the intensity region 93 increases. As a result, the intensity distribution is changed to a donut shape indicated by a solid line in FIG. 4C. In the intensity region 93, as described above, the intensity of the primary light 63 is reduced, so that a reduced region 99a is generated. The reduced region 99a is a region surrounded by a dotted line and a solid line in the intensity region 93 of FIG. 4C. 3B and 4C, the irradiation region extends from the first irradiation region 91 to the second irradiation region 97, the angle φ0 extends to the angle φ0 ′, and regions other than the intensity region 93 are also included in the first outer edge region 95. And the second outer edge region 99. As shown in FIG. 3B, the angle φ0 ′ is a straight line connecting the emitting portion 59 and the incident position on the incident surface 73a when the primary light 63 reflected by the first reflecting member 81 irradiates the incident surface 73a. , The maximum angle formed with the optical axis 61. When the irradiation region extends from the first irradiation region 91 to the second irradiation region 97, an increased region 99b is generated. The increase region 99b has a total intensity of the primary light 63 that is substantially the same as that of the decrease region 99a. The increase area 99b is an area surrounded by a dotted line and a solid line in an area other than the intensity area 93 in FIG. 4C. The total intensity of the primary light 63 in the first outer edge region 95 and the second outer edge region 99 also increases substantially equally by the reduced primary light 63.

光変換部材73で発生した熱は、ドーナッツ状の強度分布(照射面積の広がり)によって、透明部材71と第1反射部材81とを介して保持部85に効率的に伝達される。このため熱の伝達の流れから保持部85から遠い強度領域93における発熱が抑制され、光変換部材73の温度分布を均一にすることが可能となる。光変換部材73が波長変換部材である場合、波長変換部材は、1次光63のスペクトルのピーク波長に対して温度依存性を有する。このため分配ユニット77が配置されていないと照明光67の色味に色むらが発生してしまう。しかしながら分配ユニット77によって、色むらが解消される。   The heat generated in the light conversion member 73 is efficiently transmitted to the holding unit 85 via the transparent member 71 and the first reflecting member 81 by the donut-shaped intensity distribution (expansion of irradiation area). Therefore, heat generation in the intensity region 93 far from the holding portion 85 from the heat transfer flow is suppressed, and the temperature distribution of the light conversion member 73 can be made uniform. When the light conversion member 73 is a wavelength conversion member, the wavelength conversion member has temperature dependency with respect to the peak wavelength of the spectrum of the primary light 63. For this reason, if the distribution unit 77 is not arranged, color unevenness occurs in the color of the illumination light 67. However, the distribution unit 77 eliminates uneven color.

次に、図3Bを参照して、進路変更部材79における反射と第1反射部材81における反射とについて説明する。
ここで、以下を定義する。
出射部59から出射された1次光63と光軸61との間に形成される角度:φ1
角度φ1の最大角度:φ0
光学部材79aの中心軸が光軸61上に配置された状態で、円錐状の光学部材79aの母線と、光軸61との間に形成される角度:φ2
第1反射部材81と光軸61方向との間に形成される角度:φ3
角度φ1を有した状態で1次光63が光学部材79aに入射した際、光学部材79aの入射位置Pにおける法線に対する1次光63の入射角度:ψ1
1次光63が光学部材79aにて屈折した後に光学部材79aを透過する際、屈折した1次光63と光軸61との間に形成される屈折角度:ψ2
透明部材71の屈折率:n1
光学部材79aの屈折率:n2
この定義を基に、進路変更部材79によって変更される1次光63の伝播方向を検討する。
ここで、n2<n1、且つ、0≦φ1≦φ0<φ2 という条件が発生するとする。
Next, with reference to FIG. 3B, the reflection at the course changing member 79 and the reflection at the first reflecting member 81 will be described.
Here we define:
Angle formed between the primary light 63 emitted from the emission part 59 and the optical axis 61: φ1
Maximum angle of angle φ1: φ0
With the central axis of the optical member 79a disposed on the optical axis 61, an angle formed between the bus bar of the conical optical member 79a and the optical axis 61: φ2
Angle formed between the first reflecting member 81 and the direction of the optical axis 61: φ3
When the primary light 63 is incident on the optical member 79a with the angle φ1, the incident angle of the primary light 63 with respect to the normal at the incident position P of the optical member 79a: ψ1
When the primary light 63 is refracted by the optical member 79a and then passes through the optical member 79a, a refraction angle formed between the refracted primary light 63 and the optical axis 61: ψ2
Refractive index of transparent member 71: n1
Refractive index of the optical member 79a: n2
Based on this definition, the propagation direction of the primary light 63 changed by the route changing member 79 is examined.
Here, it is assumed that the conditions of n2 <n1 and 0 ≦ φ1 ≦ φ0 <φ2 occur.

まず、n1とψ1と、n2とψ2とによって、下記式(1)が成り立つ。
n1×sinψ1=n2×sinψ2 ・・・・式(1)
ここで、全反射における臨界角度をψtとすると、下記式(2)が成り立つ。
sinψt=n2/n1 ・・・・式(2)
入射角度ψ1が臨界角度ψtよりも大きい場合、図3Aに示すように、1次光63は、光学部材79aにて屈折せずまた光学部材79aを透過せず、全反射される。このため、入射位置Pにおける入射角度ψ1と臨界角度ψtと角度φ1,φ2との関係で、下記式(3)が成り立ち、式(3)から式(4)が算出され、式(4)が全反射の条件となる。
ψt<ψ1=π/2−(φ2−φ1) ・・・・式(3)
φ2<π/2+φ1−ψt ・・・・式(4)
φ2は固定、φ1は増加関数、ψ1は増加関数である。
First, the following formula (1) is established by n1 and ψ1, and n2 and ψ2.
n1 × sin ψ1 = n2 × sin ψ2 (1)
Here, when the critical angle in total reflection is ψt, the following equation (2) is established.
sinψt = n2 / n1 (2)
When the incident angle ψ1 is larger than the critical angle ψt, as shown in FIG. 3A, the primary light 63 is not refracted by the optical member 79a and does not pass through the optical member 79a, and is totally reflected. For this reason, the following equation (3) is established by the relationship between the incident angle ψ1, the critical angle ψt, and the angles φ1 and φ2 at the incident position P, and the equation (4) is calculated from the equations (3) and (4). This is a condition for total reflection.
ψt <ψ1 = π / 2− (φ2−φ1) (3)
φ2 <π / 2 + φ1-ψt (4)
φ2 is fixed, φ1 is an increasing function, and ψ1 is an increasing function.

また角度φ2は、母線に向かう1次光63が母線への入射角度と同じ反射角度で第1反射部材81に進行するように、母線と光変換部材73の入射面73aとの間に形成される角度よりも小さい必要がある。このため下記式(5)が満たされる必要ある。
2ψ1<π/2+φ2・・・・式(5)
角度φ1を有した状態で1次光63が光学部材79aで反射して第1反射部材81に進行するために、式(5)のψ1に、式(3)を代入し、下記式(6a)が満たされる必要がある。
Further, the angle φ2 is formed between the bus and the incident surface 73a of the light conversion member 73 so that the primary light 63 traveling toward the bus travels to the first reflecting member 81 at the same reflection angle as the incident angle on the bus. It must be smaller than the angle. For this reason, the following formula (5) needs to be satisfied.
2ψ1 <π / 2 + φ2 (5)
Since the primary light 63 is reflected by the optical member 79a and travels to the first reflecting member 81 with the angle φ1, the equation (3) is substituted into ψ1 of the equation (5), and the following equation (6a ) Needs to be satisfied.

2(π/2−(φ2−φ1))<π/2+φ2
π−2φ2+2φ1<π/2+φ2
π/2+2φ1<3φ2
π/6+2/3φ1<φ2・・・式(6a)
角度φ1は、0°から最大で角度φ0まで変化するため、式(6a)を基に、下記式(6b)が満たされる必要がある。
30+2/3φ0<φ2・・・式(6b)
角度φ1は、0°から最大で角度φ0まで変化するため、式(4)を基に、全反射が実施されるためには、下記式(7)が設定される必要がある。
φ2<π/2+φ1−ψt≦π/2+φ0−ψt・・・式(7)
例えば、透明部材71の屈折率n1=1.6、光学部材79aの屈折率n2=1.35の場合、臨界角度ψtは、57.5°である。
2 (π / 2− (φ2−φ1)) <π / 2 + φ2
π-2φ2 + 2φ1 <π / 2 + φ2
π / 2 + 2φ1 <3φ2
π / 6 + 2 / 3φ1 <φ2 Formula (6a)
Since the angle φ1 changes from 0 ° to the maximum angle φ0, the following equation (6b) needs to be satisfied based on the equation (6a).
30 + 2 / 3φ0 <φ2 Formula (6b)
Since the angle φ1 changes from 0 ° to the maximum angle φ0, the following equation (7) needs to be set in order to perform total reflection based on the equation (4).
φ2 <π / 2 + φ1-ψt ≦ π / 2 + φ0−ψt (7)
For example, when the refractive index n1 of the transparent member 71 is 1.6 and the refractive index n2 of the optical member 79a is 1.35, the critical angle ψt is 57.5 °.

光ファイバのNaが0.22の場合、透明部材71の屈折率1.6の媒質内では、簡易的に、ピーク強度に対して、半分となるビームの角度である半値全角は、7.9°(半値は3.95°)中心強度に対して、1/4以下となる光軸61となす角度を半値の3倍である11.9°と仮定すれば、すなわち、φ0=12.0°と設定される。   When Na of the optical fiber is 0.22, in the medium having the refractive index of 1.6 of the transparent member 71, the full width at half maximum, which is the angle of the beam that is halved with respect to the peak intensity, is 7.9. Assuming that the angle formed with the optical axis 61 that is 1/4 or less with respect to the center intensity is 11.9 °, which is three times the half value, that is, φ0 = 12.0. Set with °.

φ0=12.0°を式(6b)に代入すると、式(6b)に示す第1反射部材81に1次光63が入射する条件から、38°<φ2 が算出される。   Substituting φ0 = 12.0 ° into equation (6b), 38 ° <φ2 is calculated from the condition that the primary light 63 is incident on the first reflecting member 81 shown in equation (6b).

式(4)の臨界角度ψtは光軸61上で臨界角度ψtよりも大きければ、角度φ1の増加につれて、入射角度ψ1も増加する。このため、式(4)において、例えばφ2をπ/2−ψtとなる32.5°に設定すれば、光学部材79aの表面で全反射が実施される。しかしながら、この場合は、反射光が第1反射部材81に入射する条件を満たさない。このため、光軸61周辺では、第2反射部材79bが配置されており、透過光量と反射光量との比率において、透過光量の割合よりも反射光量の割合を高めて、1次光63の強度分布を分配している。   If the critical angle ψt in the equation (4) is larger than the critical angle ψt on the optical axis 61, the incident angle ψ1 also increases as the angle φ1 increases. For this reason, in Formula (4), if (phi) 2 is set to 32.5 degrees used as (pi) / 2-psit, for example, total reflection will be implemented in the surface of the optical member 79a. However, in this case, the condition for the reflected light to enter the first reflecting member 81 is not satisfied. For this reason, the second reflecting member 79b is disposed around the optical axis 61, and the ratio of the amount of reflected light is higher than the ratio of the amount of transmitted light in the ratio of the amount of transmitted light and the amount of reflected light. Distribution is distributed.

すなわち式(6b)が満足されれば、光軸61周辺で、1次光63は、反射光と屈折透過光とに分離される。   That is, if Expression (6b) is satisfied, the primary light 63 is separated into reflected light and refracted transmitted light around the optical axis 61.

本実施形態では、照射領域は第1照射領域91から第2照射領域97に広がる。つまり1次光63と光軸61との間に形成される角度は、角度φ0から角度φ0’に広がる。したがって少なくとも角度φ0’の広がり角度を有する1次光63を、光変換部材73は受光する必要がある。このためφ0<φ3となる。例えば、φ3=20°と設定されることが好ましい。   In the present embodiment, the irradiation area extends from the first irradiation area 91 to the second irradiation area 97. That is, the angle formed between the primary light 63 and the optical axis 61 extends from the angle φ0 to the angle φ0 ′. Therefore, the light conversion member 73 needs to receive the primary light 63 having a spread angle of at least the angle φ0 ′. Therefore, φ0 <φ3. For example, it is preferable to set φ3 = 20 °.

なお、強度領域93における強度が高い1次光63は、確実に第1反射部材81に向けて反射される必要がある。このため、図3Cに示すように第2反射部材79bが、少なくとも円錐先端部に配置されることが好ましい。第2反射部材79bは、入射した1次光63の大部分を確実に第2反射部材79bに向けて反射させる。これにより、強度領域93における1次光63の強度は低減する。そして第1反射部材81は、1次光63を光変換部材73に向けて反射する。低減された1次光63の強度は光変換部材73における強度領域93以外の領域に分配される。また分配によって、光変換部材73における照射領域は第1照射領域91から第2照射領域97に広がり、強度領域93以外の領域における1次光63の強度は増加する。   The primary light 63 having a high intensity in the intensity region 93 needs to be reliably reflected toward the first reflecting member 81. For this reason, as shown in FIG. 3C, the second reflecting member 79b is preferably disposed at least at the tip of the cone. The second reflecting member 79b reliably reflects most of the incident primary light 63 toward the second reflecting member 79b. As a result, the intensity of the primary light 63 in the intensity region 93 is reduced. The first reflecting member 81 reflects the primary light 63 toward the light conversion member 73. The reduced intensity of the primary light 63 is distributed to areas other than the intensity area 93 in the light conversion member 73. In addition, due to the distribution, the irradiation region in the light conversion member 73 extends from the first irradiation region 91 to the second irradiation region 97, and the intensity of the primary light 63 in the region other than the intensity region 93 increases.

1次光63が第1反射部材81の反射点Qにて反射することを検討する。   Consider that the primary light 63 is reflected at the reflection point Q of the first reflecting member 81.

反射点Qにおける法線となる入射角度をψ3と定義する。ここで、下記式(8)が成り立つ。   An incident angle that is a normal line at the reflection point Q is defined as ψ3. Here, the following formula (8) is established.

ψ3=2ψ1+(φ3−φ1)−π/2・・・式(8)
式(8)のψ1に、式(3)を代入する、下記式(9)が成り立つ
ψ3=2(π/2−(φ2−φ1))+(φ3−φ1)−π/2
ψ3=π−2φ2+2φ1+φ3−φ1−π/2
ψ3=π/2−[(φ2−φ3)+(φ2−φ1)]・・・式(9)
式(9)において、角度φ1に対して、第1反射部材81によって反射された1次光63が必ず光変換部材73に入射するためには、ψ3<π/2、且つ、(φ2−φ3)+(φ2−φ1)>0が満たされる必要がある。
ψ3 = 2ψ1 + (φ3-φ1) −π / 2 Formula (8)
Substituting equation (3) into ψ1 in equation (8), the following equation (9) holds: ψ3 = 2 (π / 2− (φ2−φ1)) + (φ3−φ1) −π / 2
ψ3 = π-2φ2 + 2φ1 + φ3-φ1-π / 2
ψ3 = π / 2 − [(φ2−φ3) + (φ2−φ1)] (9)
In Expression (9), in order for the primary light 63 reflected by the first reflecting member 81 to be incident on the light conversion member 73 with respect to the angle φ1, ψ3 <π / 2 and (φ2−φ3 ) + (Φ2−φ1)> 0 needs to be satisfied.

すなわち、φ3<φ2、且つ、φ1≦φ0<φ2が満たされる必要がある。   That is, φ3 <φ2 and φ1 ≦ φ0 <φ2 need to be satisfied.

φ1<φ3であるため、下記式(10)が満たされることが、第1反射部材81で反射された1次光63が光変換部材73に入射するための条件となる。
φ1<φ3<φ2・・・式(10)
実際に照明装置60が利用される場合、照明装置60の配置位置に応じて、出射面71bの最大直径は規定される。したがって、角度φ3と入射面71aから出射面71bまでの長さとは、最大直径によって限定される。
Since φ1 <φ3, satisfying the following formula (10) is a condition for the primary light 63 reflected by the first reflecting member 81 to enter the light converting member 73.
φ1 <φ3 <φ2 Formula (10)
When the illumination device 60 is actually used, the maximum diameter of the emission surface 71b is defined according to the arrangement position of the illumination device 60. Therefore, the angle φ3 and the length from the entrance surface 71a to the exit surface 71b are limited by the maximum diameter.

[効果]
本実施形態では、分配ユニット77の進路変更部材79は、強度領域93に配置され、光軸61周辺の1次光63を第1反射部材81に向けて反射する。このため、強度領域93における1次光63の強度を低減できる。また分配ユニット77の第1反射部材81は、進路変更部材79によって反射された1次光63を、光変換部材73の入射面73aにおいて強度領域93以外の領域に向けて反射する。このため、照射領域は第1照射領域91から第2照射領域97に広がり、強度領域93以外の領域における1次光63の強度は増加する。したがって、照明光67の取り出し効率を高めることができ、照明光67の出力を高めることができる。
[effect]
In the present embodiment, the course changing member 79 of the distribution unit 77 is disposed in the intensity region 93 and reflects the primary light 63 around the optical axis 61 toward the first reflecting member 81. For this reason, the intensity of the primary light 63 in the intensity region 93 can be reduced. Further, the first reflecting member 81 of the distribution unit 77 reflects the primary light 63 reflected by the route changing member 79 toward an area other than the intensity area 93 on the incident surface 73 a of the light converting member 73. For this reason, the irradiation region extends from the first irradiation region 91 to the second irradiation region 97, and the intensity of the primary light 63 in the region other than the intensity region 93 increases. Therefore, the extraction efficiency of the illumination light 67 can be increased, and the output of the illumination light 67 can be increased.

本実施形態では、強度領域93における1次光63の強度が低減するため、光変換部材73の熱劣化を抑制できる。また照射領域が第1照射領域91から第2照射領域97に広がるため、2次光65の生成によって発生する熱の分布を、略均一にできる。   In the present embodiment, since the intensity of the primary light 63 in the intensity region 93 is reduced, thermal deterioration of the light conversion member 73 can be suppressed. Further, since the irradiation area extends from the first irradiation area 91 to the second irradiation area 97, the distribution of heat generated by the generation of the secondary light 65 can be made substantially uniform.

第1反射部材81は、光変換部材73と進路変更部材79とを取り囲んで配置される。このため、第1反射部材81は、強度領域93以外の領域に向けて、1次光63と2次光65とを漏らすことなく反射できる。第1反射部材81は、テーパ状に広がっている。このため、第1反射部材81は、強度領域93以外の領域に向けて、1次光63と2次光65とを確実に反射できる。また照明光67は、所定の広がり角度を有することができる。   The first reflecting member 81 is disposed so as to surround the light conversion member 73 and the course changing member 79. For this reason, the first reflecting member 81 can reflect the primary light 63 and the secondary light 65 toward the region other than the intensity region 93 without leaking. The first reflecting member 81 extends in a tapered shape. For this reason, the first reflecting member 81 can reliably reflect the primary light 63 and the secondary light 65 toward an area other than the intensity area 93. The illumination light 67 can have a predetermined spread angle.

透明部材71の屈折率は、光学部材79aの屈折率よりも大きい。このため、簡単な構成で、1次光63を第1反射部材81に向けて反射できる。   The refractive index of the transparent member 71 is larger than the refractive index of the optical member 79a. For this reason, the primary light 63 can be reflected toward the first reflecting member 81 with a simple configuration.

全反射が実施されない場合、1次光63の残りの一部が光軸61周辺から離れるように1次光63の残りの一部と光軸61との間の広がり角度が広がった状態で、1次光63の残りの一部は、光学部材79aを透過し光変換部材73に向けて進行する。このとき、1次光63は、強度領域93以外の領域に進行するため、強度領域93における1次光63の強度を低減できる。   When total reflection is not performed, in a state where the spreading angle between the remaining part of the primary light 63 and the optical axis 61 is widened so that the remaining part of the primary light 63 is separated from the periphery of the optical axis 61, The remaining part of the primary light 63 passes through the optical member 79 a and travels toward the light conversion member 73. At this time, since the primary light 63 travels to a region other than the intensity region 93, the intensity of the primary light 63 in the intensity region 93 can be reduced.

第2反射部材79bは、全反射が実施されなくても、1次光63を第1反射部材81に向けて確実に反射できる。   The second reflecting member 79b can reliably reflect the primary light 63 toward the first reflecting member 81 even if total reflection is not performed.

乱反射部79dは、1次光63を第1反射部材81に向けて乱反射でき、1次光63が光源51に戻ることを防止できる。   The irregular reflection part 79 d can diffusely reflect the primary light 63 toward the first reflecting member 81 and can prevent the primary light 63 from returning to the light source 51.

なお図2Cにおいて、進路変更部材79は、柱形状、例えば円柱形状となっている。この場合、進路変更部材79は、1次光を拡散してもよい。   In FIG. 2C, the course changing member 79 has a columnar shape, for example, a cylindrical shape. In this case, the course changing member 79 may diffuse the primary light.

[第2の実施形態]
図5Aを参照して、第2の実施形態について説明する。本実施形態では、第1の実施形態とは異なる部分のみ記載する。
[Second Embodiment]
The second embodiment will be described with reference to FIG. 5A. In the present embodiment, only the parts different from the first embodiment will be described.

本実施形態の進路変更部材79は、第1反射部材81に向けて1次光63の少なくとも一部を拡散する。このため、進路変更部材79は、1次光63の一部を拡散する柱状の拡散部材79eと、光軸61方向において拡散部材79eと光変換部材73の入射面73aとの間に配置され、1次光63の残りの一部を第1反射部材81に向けて反射する第4反射部材79fとを有する。   The course changing member 79 of this embodiment diffuses at least a part of the primary light 63 toward the first reflecting member 81. For this reason, the course changing member 79 is disposed between the columnar diffusing member 79e that diffuses a part of the primary light 63, and the diffusing member 79e and the incident surface 73a of the light converting member 73 in the optical axis 61 direction. A fourth reflecting member 79f that reflects the remaining part of the primary light 63 toward the first reflecting member 81;

拡散部材79eは、例えば、円柱形状である。拡散部材79eは、透明部材と、透明部材に添加されるフィラーと呼ばれる拡散物質とを有する。拡散部材79eは、光軸61に対する1次光63の広がり角度を広げる。また1次光63がレーザである場合、拡散物質は1次光63を繰り返し反射または散乱する。このため、拡散部材79eは、レーザ光特有の可干渉性を低下させる。拡散部材79eにおいて、照明光67の取り出し効率を高めるために、散乱による損失を最小限に抑えることが重要である。このため拡散物質として、例えば、アルミナが好ましい。   The diffusion member 79e has, for example, a cylindrical shape. The diffusing member 79e includes a transparent member and a diffusing substance called a filler added to the transparent member. The diffusing member 79e widens the spreading angle of the primary light 63 with respect to the optical axis 61. When the primary light 63 is a laser, the diffusing material repeatedly reflects or scatters the primary light 63. For this reason, the diffusing member 79e reduces the coherence characteristic of laser light. In the diffusing member 79e, in order to increase the extraction efficiency of the illumination light 67, it is important to minimize loss due to scattering. For this reason, for example, alumina is preferable as the diffusion material.

拡散部材79eの透明部材における拡散物質の濃度分布は、角度φ1と1次光63の強度とに対応する。角度φ1が増加するほど、反比例して、濃度は低くなる。例えば、1次光63の強度Iと濃度Nとの比I/Nが一定となるように、角度φ1と濃度Nとが算出されてもよい。なお拡散損失を抑制するために、拡散物質の濃度は、光軸61に近いほど高く、光軸61から離れるほど低いことが好ましい。   The concentration distribution of the diffusing substance in the transparent member of the diffusing member 79e corresponds to the angle φ1 and the intensity of the primary light 63. As the angle φ1 increases, the concentration decreases in inverse proportion. For example, the angle φ1 and the density N may be calculated so that the ratio I / N between the intensity I and the density N of the primary light 63 is constant. In order to suppress diffusion loss, it is preferable that the concentration of the diffusing substance is higher as it is closer to the optical axis 61 and lower as it is farther from the optical axis 61.

光軸61方向において、拡散部材79eは第4反射部材79fに積層され、第4反射部材79fは光変換部材73の入射面73aに積層される。第4反射部材79fは、少なくとも光軸61周辺に配置される。第4反射部材79fは、1次光63の波長に対して高い反射率を有する。第4反射部材79fは、波長選択性を有する。第4反射部材79fは、例えば、誘電体多層膜である。   In the direction of the optical axis 61, the diffusing member 79e is stacked on the fourth reflecting member 79f, and the fourth reflecting member 79f is stacked on the incident surface 73a of the light converting member 73. The fourth reflecting member 79f is disposed at least around the optical axis 61. The fourth reflecting member 79 f has a high reflectance with respect to the wavelength of the primary light 63. The fourth reflecting member 79f has wavelength selectivity. The fourth reflecting member 79f is, for example, a dielectric multilayer film.

第4反射部材79f及び透明部材71として、熱を効率的に光源51に放出するために、熱伝導率の高い部材が好ましい。   As the fourth reflecting member 79f and the transparent member 71, a member having high thermal conductivity is preferable in order to efficiently release heat to the light source 51.

[作用]
出射部59から出射された1次光63は、角度φ1を有する状態で、透明部材71を透過し、拡散部材79eに入射する。1次光63の一部は、拡散物質によって様々な方向に拡散され、第1反射部材81に向かって進行する。1次光63の残りの一部は、拡散物質によって拡散された後に第4反射部材79fによって反射され、再び拡散物質によって拡散され、角度φ1よりも大きい広がり角度を有する状態で第1反射部材81に向かって進行する。1次光63は、第1反射部材81によって反射され、光変換部材73に入射する。
[Action]
The primary light 63 emitted from the emission part 59 is transmitted through the transparent member 71 and incident on the diffusion member 79e in a state having an angle φ1. Part of the primary light 63 is diffused in various directions by the diffusing material and travels toward the first reflecting member 81. The remaining part of the primary light 63 is diffused by the diffusing material, then reflected by the fourth reflecting member 79f, diffused again by the diffusing material, and having a spreading angle larger than the angle φ1, the first reflecting member 81. Proceed toward. The primary light 63 is reflected by the first reflecting member 81 and enters the light conversion member 73.

光変換部材73に入射した1次光63の一部は、光変換部材73に吸収されて2次光65に変換される。1次光63の残りの一部は、光変換部材73に吸収されずに光変換部材73から出射面71bに向かって出射される。入射面73aから出射された1次光63は、第1反射部材81によって光変換部材73に向かって反射され、再び前述した動作を繰り返す。   A part of the primary light 63 incident on the light conversion member 73 is absorbed by the light conversion member 73 and converted into the secondary light 65. The remaining part of the primary light 63 is emitted from the light conversion member 73 toward the emission surface 71 b without being absorbed by the light conversion member 73. The primary light 63 emitted from the incident surface 73a is reflected toward the light conversion member 73 by the first reflecting member 81, and the above-described operation is repeated again.

2次光65の一部は光変換部材73から出射面71bに向かって出射される。また2次光65の残りの一部は、入射面73aから第1反射部材81に向かって出射され、第1反射部材81によって反射され、光変換部材73を透過する。そして2次光65は、光変換部材73に吸収されずに光変換部材73から出射された1次光63と混色し、照明光67として出射面71bから出射される。   A part of the secondary light 65 is emitted from the light conversion member 73 toward the emission surface 71b. The remaining part of the secondary light 65 is emitted from the incident surface 73 a toward the first reflecting member 81, is reflected by the first reflecting member 81, and passes through the light conversion member 73. The secondary light 65 is mixed with the primary light 63 emitted from the light conversion member 73 without being absorbed by the light conversion member 73, and is emitted from the emission surface 71 b as illumination light 67.

[効果]
本実施形態では、進路変更部材79の構成を簡素にでき、進路変更部材79を容易に製造できる。本実施形態では、拡散部材79eによって1次光63を拡散するため、1次光63を確実に第1反射部材81に進行させることができる。第4反射部材79fによって、拡散されなかった1次光63を確実に第1反射部材81に向けて反射できる。
[effect]
In the present embodiment, the configuration of the course changing member 79 can be simplified, and the course changing member 79 can be easily manufactured. In this embodiment, since the primary light 63 is diffused by the diffusing member 79e, the primary light 63 can surely travel to the first reflecting member 81. The primary light 63 that has not been diffused can be reliably reflected toward the first reflective member 81 by the fourth reflective member 79f.

なお本実施形態では、進路変更部材79は、拡散部材79eのみを有してもよい。   In the present embodiment, the course changing member 79 may include only the diffusion member 79e.

[第1変形例]
図5Bを参照して、第2の実施形態の第1変形例について説明する。本変形例では、第2の実施形態とは異なる部分のみ記載する。
[構成]
透明部材71は、出射部59(入射面71a)から出射面71bに向かって放物状に広がっている。
第1反射部材81は、この透明部材71の曲面状の外周面に配置されており、出射部59から出射面71bに向かって放物状に広がっている。本変形例における第1反射部材81の材料は、第1の実施形態における第1反射部材81の材料と同一である。第1反射部材81は、1次光63を光軸61に対して略平行に反射し、且つ1次光63を強度領域93以外の領域に向かって反射する。
[First Modification]
A first modification of the second embodiment will be described with reference to FIG. 5B. In this modification, only the parts different from the second embodiment will be described.
[Constitution]
The transparent member 71 spreads in a parabolic shape from the emitting portion 59 (incident surface 71a) toward the emitting surface 71b.
The first reflecting member 81 is disposed on the curved outer peripheral surface of the transparent member 71 and spreads in a parabolic shape from the emitting portion 59 toward the emitting surface 71b. The material of the first reflecting member 81 in this modification is the same as the material of the first reflecting member 81 in the first embodiment. The first reflecting member 81 reflects the primary light 63 substantially parallel to the optical axis 61 and reflects the primary light 63 toward a region other than the intensity region 93.

照明光67を光軸61に対して略平行にするためには、光変換部材73は、出射部59近傍の所定の位置に配置されることが好ましい。光変換部材73は、第1反射部材81の焦点位置を避けて配置される。これにより第1反射部材81によって反射された1次光63は、少なくとも光軸61周辺を避けて光変換部材73に略平行に照射され、発生した照明光も第1反射部材81により略平行に出射される。   In order to make the illumination light 67 substantially parallel to the optical axis 61, the light conversion member 73 is preferably disposed at a predetermined position in the vicinity of the emitting portion 59. The light conversion member 73 is disposed avoiding the focal position of the first reflecting member 81. As a result, the primary light 63 reflected by the first reflecting member 81 is irradiated to the light conversion member 73 substantially parallel avoiding at least the periphery of the optical axis 61, and the generated illumination light is also substantially parallel by the first reflecting member 81. Emitted.

[作用]
出射部59から出射された1次光63は、角度φ1を有する状態で、透明部材71を透過し、拡散部材79eに入射する。1次光63の一部は、拡散物質によって様々な方向に拡散され、第1反射部材81に向かって進行する。1次光63の残りの一部は、第4反射部材79fによって反射され、再び拡散物質によって拡散され、角度φ1よりも大きい広がり角度を有する状態で第1反射部材81に向かって進行する。1次光63は、第1反射部材81によって光軸61に対して略平行に反射され、光変換部材73に入射する。光軸61に対して略平行に進行する1次光63を、平行光と称する。
[Action]
The primary light 63 emitted from the emission part 59 is transmitted through the transparent member 71 and incident on the diffusion member 79e in a state having an angle φ1. Part of the primary light 63 is diffused in various directions by the diffusing material and travels toward the first reflecting member 81. The remaining part of the primary light 63 is reflected by the fourth reflecting member 79f, diffused again by the diffusing material, and travels toward the first reflecting member 81 in a state of having a spread angle larger than the angle φ1. The primary light 63 is reflected substantially parallel to the optical axis 61 by the first reflecting member 81 and enters the light conversion member 73. The primary light 63 traveling substantially parallel to the optical axis 61 is referred to as parallel light.

光変換部材73に入射した平行光の一部は、光変換部材73に吸収されて2次光65に変換される。平行光の残りの一部は、光変換部材73に吸収されずに裏面73bから出射面71bに向かって出射される。入射面73aから出射された図示しない平行光は、第1反射部材81によって光変換部材73に向かって反射され、再び前述した動作を繰り返す。   Part of the parallel light incident on the light conversion member 73 is absorbed by the light conversion member 73 and converted into the secondary light 65. The remaining part of the parallel light is not absorbed by the light conversion member 73 but is emitted from the back surface 73b toward the emission surface 71b. Parallel light (not shown) emitted from the incident surface 73a is reflected by the first reflecting member 81 toward the light conversion member 73, and the above-described operation is repeated again.

2次光65の一部は、裏面73bから出射面71bに向かって光軸61に対して略平行に出射される。2次光65の残りの一部は、入射面73aから第1反射部材81に向かって出射される。この2次光65は、第1反射部材81によって光軸61に対して略平行に光変換部材73に向かって反射され、光変換部材73を透過する。そして裏面73bから出射された光軸61に対して略平行な2次光65は、光変換部材73に吸収されずに裏面73bから出射された平行光と混色し、光軸61に対して略平行な照明光67として出射面71bから出射される。   A part of the secondary light 65 is emitted substantially parallel to the optical axis 61 from the back surface 73b toward the emission surface 71b. The remaining part of the secondary light 65 is emitted toward the first reflecting member 81 from the incident surface 73a. The secondary light 65 is reflected by the first reflecting member 81 toward the light conversion member 73 substantially parallel to the optical axis 61 and passes through the light conversion member 73. The secondary light 65 substantially parallel to the optical axis 61 emitted from the back surface 73 b is mixed with the parallel light emitted from the back surface 73 b without being absorbed by the light conversion member 73, and is substantially the same as the optical axis 61. The light is emitted from the emission surface 71 b as parallel illumination light 67.

[効果]
本変形例では、第1反射部材81が放物状であるため、照明光67の広がり角度を抑制でき、光軸61に対して略平行な照明光67を提供できる。
[effect]
In the present modification, since the first reflecting member 81 is parabolic, the spread angle of the illumination light 67 can be suppressed, and the illumination light 67 substantially parallel to the optical axis 61 can be provided.

[第2変形例]
図5Cを参照して、第2の実施形態の第2変形例について説明する。本変形例では、第2の実施形態とは異なる部分のみ記載する。
[構成]
透明部材71は、出射部59(入射面71a)から出射面71bに向かってホーン状に広がっている。
第1反射部材81は、この透明部材71の曲面状の外周面に配置されており、出射部59から出射面71bに向かってホーン状に広がっている。本変形例における第1反射部材81の材料は、第1の実施形態における第1反射部材81の材料と同一である。第1反射部材81は、1次光63を強度領域93以外の領域に向かって反射する。
[Second Modification]
A second modification of the second embodiment will be described with reference to FIG. 5C. In this modification, only the parts different from the second embodiment will be described.
[Constitution]
The transparent member 71 spreads in a horn shape from the emitting portion 59 (incident surface 71a) toward the emitting surface 71b.
The first reflecting member 81 is disposed on the curved outer peripheral surface of the transparent member 71 and spreads in a horn shape from the emitting portion 59 toward the emitting surface 71b. The material of the first reflecting member 81 in this modification is the same as the material of the first reflecting member 81 in the first embodiment. The first reflecting member 81 reflects the primary light 63 toward a region other than the intensity region 93.

光変換部材73は、ホーン状の透明部材71の広がりの焦点位置に配置される。   The light conversion member 73 is disposed at a focal position where the horn-shaped transparent member 71 spreads.

[作用]
出射部59から出射された1次光63は、角度φ1を有する状態で、透明部材71を透過し、拡散部材79eに入射する。1次光63の一部は、拡散物質によって様々な方向に拡散され、第1反射部材81に向かって進行する。1次光63の残りの一部は、第4反射部材79fによって反射され、再び拡散物質によって拡散され、角度φ1よりも大きい広がり角度を有する状態で第1反射部材81に向かって進行する。1次光63は、第1反射部材81によって反射されて光変換部材73に入射する。このとき、1次光63の光路長が長くなることで、1次光63の照射領域が広がり、図4Cにて実線で示す1次光63の強度分布はドーナッツ状の強度分布からさらに広がる。具体的には、図4Cに示す角度φ0は角度φ0’よりもさらに広がり、強度領域93(熱劣化領域93a)における1次光63の強度は大幅に低減し、分配によって、強度領域93以外の領域における1次光63の強度は大幅に増加し、照射領域における強度分布は略均一となる。
[Action]
The primary light 63 emitted from the emission part 59 is transmitted through the transparent member 71 and incident on the diffusion member 79e in a state having an angle φ1. Part of the primary light 63 is diffused in various directions by the diffusing material and travels toward the first reflecting member 81. The remaining part of the primary light 63 is reflected by the fourth reflecting member 79f, diffused again by the diffusing material, and travels toward the first reflecting member 81 in a state of having a spread angle larger than the angle φ1. The primary light 63 is reflected by the first reflecting member 81 and enters the light converting member 73. At this time, by increasing the optical path length of the primary light 63, the irradiation area of the primary light 63 is widened, and the intensity distribution of the primary light 63 indicated by a solid line in FIG. 4C is further expanded from the donut-shaped intensity distribution. Specifically, the angle φ0 shown in FIG. 4C is further expanded than the angle φ0 ′, and the intensity of the primary light 63 in the intensity region 93 (thermal degradation region 93a) is greatly reduced. The intensity of the primary light 63 in the area is greatly increased, and the intensity distribution in the irradiated area becomes substantially uniform.

光変換部材73に入射した1次光63の一部は、光変換部材73に吸収されて2次光65に変換される。1次光63の残りの一部は、光変換部材73に吸収されずに光変換部材73から出射面71bに向かって出射される。入射面73aから出射された1次光63は、第1反射部材81によって光変換部材73に向かって反射され、再び前述した動作を繰り返す。   A part of the primary light 63 incident on the light conversion member 73 is absorbed by the light conversion member 73 and converted into the secondary light 65. The remaining part of the primary light 63 is emitted from the light conversion member 73 toward the emission surface 71 b without being absorbed by the light conversion member 73. The primary light 63 emitted from the incident surface 73a is reflected toward the light conversion member 73 by the first reflecting member 81, and the above-described operation is repeated again.

2次光65の一部は光変換部材73から出射面71bに向かって出射される。図示はしないが、2次光65の残りの一部は、入射面73aから第1反射部材81に向かって出射され、第1反射部材81によって反射され、光変換部材73を透過する。そして2次光65は、光変換部材73に吸収されずに光変換部材73から出射された1次光63と混色し、広がり角度が拡大し且つ略均一な強度分布を有する照明光67として出射面71bから出射される。   A part of the secondary light 65 is emitted from the light conversion member 73 toward the emission surface 71b. Although not shown, the remaining part of the secondary light 65 is emitted from the incident surface 73 a toward the first reflecting member 81, reflected by the first reflecting member 81, and transmitted through the light conversion member 73. Then, the secondary light 65 is mixed with the primary light 63 emitted from the light conversion member 73 without being absorbed by the light conversion member 73, and is emitted as illumination light 67 having a widening angle and a substantially uniform intensity distribution. The light is emitted from the surface 71b.

[効果]
本変形例では、第1反射部材81がホーン状であるため、照明光67の配光特性を変更できる、具体的には照明光67の広がり角度を拡大できる。本変形例では、指向性が弱く、略均一な強度分布を有する照明光67を提供できる。
[effect]
In the present modification, since the first reflecting member 81 has a horn shape, the light distribution characteristic of the illumination light 67 can be changed, specifically, the spread angle of the illumination light 67 can be expanded. In this modification, it is possible to provide the illumination light 67 having a weak directivity and a substantially uniform intensity distribution.

[第3の実施形態]
図6を参照して、第3の実施形態について説明する。本実施形態では、第1の実施形態とは異なる部分のみ記載する。
[Third Embodiment]
The third embodiment will be described with reference to FIG. In the present embodiment, only the parts different from the first embodiment will be described.

[構成]
進路変更部材79は、光軸61方向において出射部59と光変換部材73との間に配置される第5反射部材79gと、第5反射部材79gの表面の少なくとも一部である乱反射部79hとを有する。
[Constitution]
The course changing member 79 includes a fifth reflecting member 79g disposed between the emitting portion 59 and the light converting member 73 in the direction of the optical axis 61, and an irregular reflecting portion 79h that is at least a part of the surface of the fifth reflecting member 79g. Have

第5反射部材79gは、少なくとも光軸61周辺に配置される。第5反射部材79gは、1次光63の波長に対して高い反射率を有する。第5反射部材79gは、波長選択性を有する。第5反射部材79gは、例えば、誘電体多層膜である。   The fifth reflecting member 79g is disposed at least around the optical axis 61. The fifth reflecting member 79 g has a high reflectance with respect to the wavelength of the primary light 63. The fifth reflecting member 79g has wavelength selectivity. The fifth reflecting member 79g is, for example, a dielectric multilayer film.

乱反射部79hは、出射部59に対向する。乱反射部79hは、少なくとも光軸61周辺に配置され、光軸61方向において強度領域93と同軸上に配置される。乱反射部79hである第5反射部材79gの表面は凹凸形状で、凹凸の、高さ、サイズ、または周期は不規則となっている。   The irregular reflection portion 79 h faces the emission portion 59. The irregular reflection portion 79h is disposed at least around the optical axis 61, and is disposed coaxially with the intensity region 93 in the optical axis 61 direction. The surface of the fifth reflecting member 79g, which is the irregular reflection portion 79h, has an uneven shape, and the height, size, or period of the unevenness is irregular.

強度領域93における1次光63の強度が低減し、強度領域93以外の領域における1次光63の強度が増加するために、少なくとも強度領域93において、凹凸の高さは、1次光63の波長以下となっている。したがって、屈折率の差を有する界面での光の損失が低減し、1次光63が乱反射部79hによって散乱する。   Since the intensity of the primary light 63 in the intensity region 93 is reduced and the intensity of the primary light 63 in the region other than the intensity region 93 is increased, the height of the unevenness is at least in the intensity region 93. It is below the wavelength. Therefore, the loss of light at the interface having a difference in refractive index is reduced, and the primary light 63 is scattered by the irregular reflection portion 79h.

凹凸の形成方法としては、半導体プロセスにおける干渉露光パターンで作成する1次光63の波長に対応する回折格子パターン作成において、干渉波長または回折格子のピッチの方向を変えた多重露光で、回折格子の間隔を不均一にして作成する。   As a method of forming the unevenness, in the diffraction grating pattern creation corresponding to the wavelength of the primary light 63 created by the interference exposure pattern in the semiconductor process, multiple exposures in which the direction of the interference wavelength or the pitch of the diffraction grating is changed are used. Create with non-uniform spacing.

[作用]
出射部59から出射された1次光63は、角度φ1を有する状態で、透明部材71を透過し、第5反射部材79gに入射する。1次光63の一部は、乱反射部79hによって乱反射され、第1反射部材81に向かって進行する。1次光63の残りの一部は、第5反射部材79gによって反射され、再び乱反射部79hによって乱反射され、第1反射部材81に向かって進行する。1次光63は、第1反射部材81によって反射され、光変換部材73に入射する。そして、第1実施形態と同様に、照明光67が出射面71bから出射される。
[Action]
The primary light 63 emitted from the emission part 59 is transmitted through the transparent member 71 and incident on the fifth reflecting member 79g in a state having an angle φ1. Part of the primary light 63 is diffusely reflected by the irregular reflection portion 79 h and travels toward the first reflecting member 81. The remaining part of the primary light 63 is reflected by the fifth reflecting member 79g, is diffusely reflected again by the irregular reflecting portion 79h, and travels toward the first reflecting member 81. The primary light 63 is reflected by the first reflecting member 81 and enters the light conversion member 73. And illumination light 67 is radiate | emitted from the output surface 71b similarly to 1st Embodiment.

[効果]
本実施形態では、乱反射部79hの凹凸の製造が容易であるため、進路変更部材79の構成を簡素にでき、進路変更部材79を容易に製造できる。
[effect]
In this embodiment, since the unevenness of the irregular reflection portion 79h is easy to manufacture, the configuration of the course changing member 79 can be simplified, and the course changing member 79 can be easily manufactured.

本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示される複数の構成要素の適宜な組み合せにより種々の発明を形成できる。   The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.

Claims (23)

光源ユニットの出射部から照明ユニットに向けて出射された1次光の一部の光学特性を前記照明ユニットの光変換部材にて変換して2次光を生成して照明光を前記照明ユニットの出射面から出射する照明装置であって、
前記出射部から出射された前記1次光の中心軸を光軸と定義し、
前記光変換部材が前記出射部から出射された前記1次光を直接照射されたと想定した際に、前記光変換部材において前記1次光を照射された照射領域を第1照射領域と定義し、前記第1照射領域において前記1次光の強度が所定値以上である領域を強度領域と定義し、
前記照明ユニットに配置され、少なくとも前記強度領域における前記1次光の強度を低減し、低減された分の前記1次光の強度を前記光変換部材における前記強度領域以外の領域に分配すると共に、分配によって前記照射領域を前記第1照射領域よりも広い第2照射領域に広げる分配ユニットを具備し、
前記分配ユニットは、
少なくとも前記強度領域に配置され、少なくとも前記強度領域における前記1次光の強度を低減するために、前記1次光の少なくとも一部の進行方向を変更する進路変更部材と、
前記進路変更部材によって進行方向が変更された前記1次光を前記出射面に向けて反射し、且つ、前記出射面とは逆方向に進行する前記2次光を前記出射面に向けて反射する第1反射部材と、
を具備する照明装置。
A part of the optical characteristics of the primary light emitted from the light emission unit of the light source unit toward the illumination unit is converted by the light conversion member of the illumination unit to generate secondary light, and the illumination light is converted into the illumination unit. An illumination device that emits light from an exit surface,
The central axis of the primary light emitted from the emission part is defined as an optical axis,
When it is assumed that the light conversion member is directly irradiated with the primary light emitted from the emission part, an irradiation region irradiated with the primary light in the light conversion member is defined as a first irradiation region, In the first irradiation area, an area where the intensity of the primary light is a predetermined value or more is defined as an intensity area,
Disposed in the lighting unit, reducing at least the intensity of the primary light in the intensity region, and distributing the reduced intensity of the primary light to a region other than the intensity region in the light conversion member; A distribution unit that spreads the irradiation area into a second irradiation area wider than the first irradiation area by distribution;
The dispensing unit is
A course changing member that is disposed at least in the intensity region and changes a traveling direction of at least a part of the primary light in order to reduce the intensity of the primary light in at least the intensity region;
The primary light whose traveling direction has been changed by the path changing member is reflected toward the exit surface, and the secondary light traveling in a direction opposite to the exit surface is reflected toward the exit surface. A first reflecting member;
A lighting device comprising:
前記光変換部材は、前記光軸方向において、前記出射部と前記出射面との間に配置され、
前記強度領域を含む前記第1照射領域と前記第2照射領域とは、前記出射部と対向する平面上に配置され且つ前記1次光が入射する前記光変換部材の入射面に配置され、
前記進路変更部材は、前記第1反射部材に向けて、前記1次光の少なくとも一部を反射または拡散する請求項1に記載の照明装置。
The light conversion member is disposed between the emission part and the emission surface in the optical axis direction,
The first irradiation region and the second irradiation region including the intensity region are disposed on a plane facing the emitting portion and disposed on an incident surface of the light conversion member on which the primary light is incident,
The lighting device according to claim 1, wherein the path changing member reflects or diffuses at least a part of the primary light toward the first reflecting member.
前記第1反射部材は、前記光軸方向において前記出射部から前記出射面まで配置され、且つ、前記光変換部材と前記進路変更部材とを取り囲んで配置される請求項2に記載の照明装置。   The lighting device according to claim 2, wherein the first reflecting member is disposed from the emitting portion to the emitting surface in the optical axis direction, and is disposed so as to surround the light conversion member and the route changing member. 前記進路変更部材は、直円錐状または半球状の光学部材を有し、
前記光学部材は、前記光学部材の表面で、前記1次光を反射する請求項3に記載の照明装置。
The course changing member has a right conical or hemispherical optical member,
The lighting device according to claim 3, wherein the optical member reflects the primary light on a surface of the optical member.
前記照明ユニットは、前記光軸方向において前記出射部と前記光学部材との間に配置される透明部材を有し、
前記透明部材の屈折率は、前記光学部材の屈折率よりも大きい請求項4に記載の照明装置。
The illumination unit has a transparent member disposed between the emitting portion and the optical member in the optical axis direction,
The lighting device according to claim 4, wherein a refractive index of the transparent member is larger than a refractive index of the optical member.
円錐状の前記光学部材の円錐先端部に入射する前記1次光の入射角度が、前記透明部材の前記屈折率と前記光学部材の前記屈折率とによって決まる臨界角度よりも大きい場合、前記光学部材は、前記1次光を全反射する請求項5に記載の照明装置。   When the incident angle of the primary light incident on the conical tip of the conical optical member is larger than a critical angle determined by the refractive index of the transparent member and the refractive index of the optical member, the optical member The illumination device according to claim 5, wherein the primary light is totally reflected. 前記所定値は、1次光の強度のピーク値に対して1/eである請求項1乃至請求項6のいずれかに記載の照明装置。The lighting device according to claim 1, wherein the predetermined value is 1 / e 2 with respect to a peak value of the intensity of the primary light. 前記進路変更部材は、円錐状の前記光学部材の表面に配置され、前記光軸に対して傾斜して配置され、前記1次光を前記第1反射部材に向けて反射する第2反射部材を有する請求項5に記載の照明装置。   The path changing member is disposed on a surface of the conical optical member, and is disposed to be inclined with respect to the optical axis, and a second reflecting member that reflects the primary light toward the first reflecting member. The lighting device according to claim 5. 円錐状の前記光学部材の円錐先端部に入射する前記1次光の入射角度が臨界角度よりも小さい場合、前記第2反射部材は、少なくとも前記光軸から入射角度が臨界角度となる領域まで配置される請求項8に記載の照明装置。   When the incident angle of the primary light incident on the conical tip of the conical optical member is smaller than the critical angle, the second reflecting member is disposed at least from the optical axis to a region where the incident angle is a critical angle. The lighting device according to claim 8. 前記第1反射部材は、前記出射部から前記出射面に向かってテーパ状に広がっており、
円錐状の前記光学部材の母線と前記光軸との間に形成される角度は、前記母線に向かう前記1次光が前記母線への入射角度と同じ反射角度で前記第1反射部材に進行するように、前記母線と前記光変換部材の入射面との間に形成される角度よりも小さい請求項5に記載の照明装置。
The first reflecting member extends in a tapered shape from the emitting portion toward the emitting surface,
The angle formed between the conical bus of the optical member and the optical axis is such that the primary light traveling toward the bus travels to the first reflecting member at the same reflection angle as the angle of incidence on the bus. Thus, the illuminating device of Claim 5 smaller than the angle formed between the said bus-line and the entrance plane of the said light conversion member.
前記出射部から出射された前記1次光と前記光軸との間に形成される角度をφ1、
前記光学部材の中心軸が前記光軸上に配置された状態で、前記母線と、前記光軸との間に形成される角度をφ2、
前記角度φ1を有した状態で前記1次光が前記光学部材に入射した際、前記光学部材の入射位置における法線に対する前記1次光の入射角度をψ1、
前記1次光が前記光学部材にて屈折した後に前記光学部材を透過する際、屈折した前記1次光と前記光軸との間に形成される屈折角度をψ2、
前記透明部材の屈折率をn1、
前記光学部材の屈折率をn2、
とすると、
n2<n1、且つ、0≦φ1≦φ2、という条件下では、
式(1)と式(2)とが成り立ち、
n1×sinψ1=n2×sinψ2・・・式(1)
ψ1=π/2−(φ2−φ1)・・・式(2)
前記角度φ2が前記母線と前記光変換部材の入射面との間に形成される角度よりも小さくなるために式(3)が満たされ、
2ψ1<π/2+φ2・・・式(3)
前記1次光が前記光学部材で反射して前記第1反射部材に進行するために式(4)が満たされる
π/6+2/3φ1<φ2・・・式(4)
請求項10に記載の照明装置。
An angle formed between the primary light emitted from the emission part and the optical axis is φ1,
With the central axis of the optical member being disposed on the optical axis, an angle formed between the bus and the optical axis is φ2,
When the primary light is incident on the optical member with the angle φ1, the incident angle of the primary light with respect to the normal at the incident position of the optical member is ψ1,
When the primary light is refracted by the optical member and then passes through the optical member, a refraction angle formed between the refracted primary light and the optical axis is ψ2,
The refractive index of the transparent member is n1,
The refractive index of the optical member is n2,
Then,
Under the condition of n2 <n1 and 0 ≦ φ1 ≦ φ2,
Equations (1) and (2) hold,
n1 × sin ψ1 = n2 × sin ψ2 Expression (1)
ψ1 = π / 2− (φ2−φ1) (2)
Formula (3) is satisfied because the angle φ2 is smaller than the angle formed between the bus and the incident surface of the light conversion member,
2ψ1 <π / 2 + φ2 Formula (3)
Equation (4) is satisfied because the primary light is reflected by the optical member and travels to the first reflecting member. Π / 6 + 2 / 3φ1 <φ2 (Equation (4))
The lighting device according to claim 10.
前記進路変更部材は、
半球状の前記光学部材の表面に配置される第3反射部材と、
前記第3反射部材の前記表面の少なくとも一部であり、少なくとも前記光軸周辺に配置される乱反射部と、
を有し、
前記乱反射部である前記第3反射部材の前記表面は凹凸形状で、凹凸の、高さ、サイズまたは周期は不規則となっている請求項5に記載の照明装置。
The course changing member is
A third reflecting member disposed on the surface of the hemispherical optical member;
An irregular reflection portion that is at least part of the surface of the third reflecting member and is disposed at least around the optical axis;
Have
The illuminating device according to claim 5, wherein the surface of the third reflecting member which is the irregular reflection portion has an uneven shape, and the height, size, or period of the unevenness is irregular.
前記進路変更部材は、前記1次光を拡散する柱状の拡散部材を有する請求項3に記載の照明装置。   The lighting device according to claim 3, wherein the route changing member includes a columnar diffusion member that diffuses the primary light. 前記進路変更部材は、前記光軸方向において、前記拡散部材と前記光変換部材との間に配置され、前記1次光を反射する第4反射部材を有する請求項13に記載の照明装置。   The lighting device according to claim 13, wherein the path changing member includes a fourth reflecting member that is disposed between the diffusing member and the light converting member in the optical axis direction and reflects the primary light. 前記第1反射部材は、前記出射部から前記出射面に向かってテーパ状に広がっている請求項4に記載の照明装置。   The lighting device according to claim 4, wherein the first reflecting member extends in a tapered shape from the emitting portion toward the emitting surface. 前記出射部から出射された前記1次光と、前記光軸との間に形成される角度をφ1、
前記光学部材の中心軸が前記光軸上に配置された状態で、円錐状の前記光学部材の母線と、前記光軸との間に形成される角度をφ2、
テーパ状の前記第1反射部材と、前記光軸方向との間に形成される角度をφ3、
と定義すると、
φ1<φ3<φ2である請求項15に記載の照明装置。
An angle formed between the primary light emitted from the emission part and the optical axis is φ1,
With the central axis of the optical member disposed on the optical axis, an angle formed between the optical axis and the generatrix of the conical generating member is φ2,
An angle formed between the tapered first reflecting member and the optical axis direction is φ3,
Defined as
The lighting device according to claim 15, wherein φ1 <φ3 <φ2.
前記第1反射部材は、放物状またはホーン状であり、前記1次光を、前記光軸周辺を除いた部分の前記光変換部材に反射する請求項3に記載の照明装置。   The lighting device according to claim 3, wherein the first reflecting member has a parabolic shape or a horn shape, and reflects the primary light to the light conversion member in a portion excluding the periphery of the optical axis. 前記進路変更部材は、
前記光軸方向において前記出射部と前記光変換部材との間に配置される第5反射部材と、
前記第5反射部材の表面の少なくとも一部であり、少なくとも前記光軸周辺に配置される乱反射部と、
を有し、
前記乱反射部である前記第5反射部材の前記表面は凹凸形状で、凹凸の、高さ、サイズまたは周期は不規則となっている請求項3に記載の照明装置。
The course changing member is
A fifth reflecting member disposed between the emitting portion and the light converting member in the optical axis direction;
An irregular reflection portion that is at least part of the surface of the fifth reflecting member and is disposed at least around the optical axis;
Have
The lighting device according to claim 3, wherein the surface of the fifth reflecting member that is the irregular reflection portion has an uneven shape, and the height, size, or period of the unevenness is irregular.
前記光変換部材は、前記1次光を波長変換して前記2次光を生成する波長変換部材を有する請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the light conversion member includes a wavelength conversion member that converts the wavelength of the primary light to generate the secondary light. 前記光変換部材は、前記1次光を拡散して前記2次光を生成する拡散部材を有する請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the light conversion member includes a diffusion member that diffuses the primary light to generate the secondary light. 前記照明ユニットは、前記光源ユニットの光源から出射された前記1次光を導光する導光部材に配置される前記出射部に光学的に接続される請求項1に記載の照明装置。   The illuminating device according to claim 1, wherein the illumination unit is optically connected to the emission unit disposed in a light guide member that guides the primary light emitted from the light source of the light source unit. 前記照明ユニットは、前記光源ユニットの光源に配置され且つ前記1次光を出射する前記出射部に光学的に接続される請求項1に記載の照明装置。   The illuminating device according to claim 1, wherein the illuminating unit is disposed in a light source of the light source unit and is optically connected to the emitting unit that emits the primary light. 内視鏡と、
1次光を出射する出射部を有する光源ユニットと、
前記内視鏡に配置される請求項1に記載の照明装置と、
を具備する内視鏡システム。
An endoscope,
A light source unit having an emission part for emitting primary light;
The illuminating device according to claim 1, which is disposed in the endoscope,
An endoscope system comprising:
JP2017556274A 2015-12-17 2015-12-17 Lighting device and endoscope system Pending JPWO2017104047A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085358 WO2017104047A1 (en) 2015-12-17 2015-12-17 Illumination device and endoscope system

Publications (1)

Publication Number Publication Date
JPWO2017104047A1 true JPWO2017104047A1 (en) 2018-10-04

Family

ID=59056243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556274A Pending JPWO2017104047A1 (en) 2015-12-17 2015-12-17 Lighting device and endoscope system

Country Status (2)

Country Link
JP (1) JPWO2017104047A1 (en)
WO (1) WO2017104047A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021132814A1 (en) 2021-12-10 2023-06-15 Olympus Winter & Ibe Gmbh Medical lighting device, system for fluorescence image-guided surgery and method for producing a medical lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043668A (en) * 2007-08-10 2009-02-26 Olympus Corp Optical fiber lighting system
JP2012120635A (en) * 2010-12-07 2012-06-28 Fujifilm Corp Illumination optical system unit for endoscope and method of manufacturing the same
JP2013090674A (en) * 2011-10-24 2013-05-16 Fujifilm Corp Endoscopic illumination device and endoscope device
JP2013236665A (en) * 2012-05-11 2013-11-28 Olympus Corp Illumination optical system for endoscope, and endoscope
JP2014124490A (en) * 2012-12-27 2014-07-07 Olympus Corp Subject observation system and method, and capsule endoscope system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043668A (en) * 2007-08-10 2009-02-26 Olympus Corp Optical fiber lighting system
JP2012120635A (en) * 2010-12-07 2012-06-28 Fujifilm Corp Illumination optical system unit for endoscope and method of manufacturing the same
JP2013090674A (en) * 2011-10-24 2013-05-16 Fujifilm Corp Endoscopic illumination device and endoscope device
JP2013236665A (en) * 2012-05-11 2013-11-28 Olympus Corp Illumination optical system for endoscope, and endoscope
JP2014124490A (en) * 2012-12-27 2014-07-07 Olympus Corp Subject observation system and method, and capsule endoscope system

Also Published As

Publication number Publication date
WO2017104047A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US8186864B2 (en) Light source device
US9134010B2 (en) Light source apparatus
JP2010081957A (en) Light source device
JP2005328921A (en) Endoscope apparatus and adapter for endoscope
JP5608500B2 (en) Light source device
WO2013168594A1 (en) Endoscope illumination optical assembly and endoscope
US9341344B2 (en) Illumination apparatus
JP6495437B2 (en) Illumination device and observation system
US20170367569A1 (en) Illumination apparatus, endoscope and endoscope system
EP3309451A1 (en) Lighting device
JP2012248401A (en) Light source device
WO2017104047A1 (en) Illumination device and endoscope system
US20190353890A1 (en) Light source apparatus, light amount distribution adjustment method, and image acquisition system
WO2018216118A1 (en) Lighting device
JP5480929B2 (en) Endoscopic light projecting unit
US20190246888A1 (en) Illuminating device
US10598850B2 (en) Lighting unit
JP7141540B2 (en) Illumination optical system for endoscope
JP7249550B2 (en) lighting equipment
JP2012248402A (en) Light source device
JP6239016B2 (en) Light source device and endoscope device
US10849487B2 (en) Illumination unit and endoscope system
JP2014082154A (en) Light source device capable of switching illumination direction and imaging device including the same
JP2023055523A (en) Beam shaping lens, beam shaping element, light source device for endoscope, and endoscope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128