JP2013090674A - Endoscopic illumination device and endoscope device - Google Patents

Endoscopic illumination device and endoscope device Download PDF

Info

Publication number
JP2013090674A
JP2013090674A JP2011233204A JP2011233204A JP2013090674A JP 2013090674 A JP2013090674 A JP 2013090674A JP 2011233204 A JP2011233204 A JP 2011233204A JP 2011233204 A JP2011233204 A JP 2011233204A JP 2013090674 A JP2013090674 A JP 2013090674A
Authority
JP
Japan
Prior art keywords
light
endoscope
light emitting
illumination device
endoscope illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011233204A
Other languages
Japanese (ja)
Inventor
Akira Mizuyoshi
明 水由
Takayuki Iida
孝之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011233204A priority Critical patent/JP2013090674A/en
Publication of JP2013090674A publication Critical patent/JP2013090674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoscopic illumination device which can have a configuration having a high degree of freedom in design by improving light-emission efficiency by enabling a configuration in which a phosphor is sealed with a resin material in a light-emitting member; and to provide an endoscope device.SOLUTION: The endoscopic illumination device irradiates a subject with illumination light through illumination windows 43A, 43B formed on a distal end of an endoscope insertion portion. The endoscopic illumination device includes: a blue semiconductor light source LD1; a red semiconductor light source LD2; a light guide member 55 for guiding blue and red light to the illumination windows; and light-emitting members 57A, 57B which are disposed on light-emission end of the light guide member inside the illumination windows, and include a green phosphor not substantially absorbing the red light but transmitting it, absorbing part of the blue light as an excitation light to emit green-based fluorescence and transmitting part of the residue. The green phosphor is sealed with a resin material in the light-emitting member.

Description

本発明は、内視鏡用照明装置及び内視鏡装置に関する。   The present invention relates to an endoscope illumination device and an endoscope device.

内視鏡用光源装置としては、その発光源としてキセノンランプ等の白色ランプが広く使用されている。また、近年になって高効率で高輝度なレーザ光を用いるものが開発されている。レーザ光を用いる白色光源としては、例えば、青色レーザ光源と、青色レーザ光を励起光として発光する発光部材とを備えたレーザ白色光源がある。この場合の発光部材には、緑色発光の緑色蛍光体と赤色発光の赤色蛍光体が含まれており、各蛍光体は励起光を受けて緑色及び赤色に発光する。レーザ白色光源は、これら蛍光体からの発光と青色レーザ光による青色光とを混合して発光部材全体を白色に発光させ、白色の照明光を生成する。   As a light source device for an endoscope, a white lamp such as a xenon lamp is widely used as a light emission source. In recent years, those using high-efficiency and high-intensity laser light have been developed. As a white light source using laser light, for example, there is a laser white light source including a blue laser light source and a light emitting member that emits blue laser light as excitation light. The light-emitting member in this case includes a green-emitting green phosphor and a red-emitting red phosphor. Each phosphor receives excitation light and emits green and red light. The laser white light source mixes light emitted from these phosphors and blue light generated by blue laser light to cause the entire light emitting member to emit white light, thereby generating white illumination light.

上記の発光部材を内視鏡挿入部の先端に配置して、レーザ白色光源を内視鏡装置に搭載した場合、内視鏡挿入部の細径化のためには発光部材をできるだけ小さくする必要がある。ところが、発光部材の外径を例えばφ1mm以下に小型化して、この小型化された微小スポットにレーザ光を照射するとき、発光部材はレーザ光に励起されて発熱する。このときの発熱は、内視鏡装置の出力が150〜200mW(1灯)程度でも150℃程度に達することがある。   When the above light emitting member is arranged at the tip of the endoscope insertion portion and the laser white light source is mounted on the endoscope apparatus, it is necessary to make the light emitting member as small as possible in order to reduce the diameter of the endoscope insertion portion. There is. However, when the outer diameter of the light emitting member is reduced to, for example, φ1 mm or less, and the laser beam is irradiated to the reduced minute spot, the light emitting member is excited by the laser light and generates heat. The heat generated at this time may reach about 150 ° C. even when the output of the endoscope apparatus is about 150 to 200 mW (one lamp).

蛍光体の封止材料として、例えばフェニルシリコーン等のシリコン樹脂を用いると、発光部材が上記の高温になったときに樹脂の分解が進んでしまう。また、メタノールやエタノール、ノルマルヘキサン、ベンゼン等の溶剤の揮発が始まる。そのため、一般にレーザ光を用いる場合の発光部材は、蛍光体を耐熱性の高いガラス粉末(珪酸塩ガラス等の低融点ガラス)に混合して加熱焼結したものが使用されている(特許文献1参照)。   For example, when a silicone resin such as phenyl silicone is used as the phosphor sealing material, decomposition of the resin proceeds when the light emitting member reaches the above-described high temperature. Also, volatilization of solvents such as methanol, ethanol, normal hexane, and benzene begins. Therefore, in general, as a light emitting member in the case of using laser light, a phosphor is mixed in a heat-resistant glass powder (low melting point glass such as silicate glass) and heated and sintered (Patent Document 1). reference).

しかし、蛍光体をガラス粉末と加熱焼結する際、蛍光体は600℃もの熱に晒されて熱ダメージを受け、発光効率が低下する。また、耐熱性を要するために蛍光体の材料選択肢が狭まる不利もある。   However, when the phosphor is heated and sintered with the glass powder, the phosphor is exposed to heat as high as 600 ° C. and is thermally damaged, resulting in a decrease in luminous efficiency. Moreover, since heat resistance is required, there is a disadvantage that the material choices of the phosphor are narrowed.

また、蛍光部室は、発光波長が励起光波長から離れるほどストークスロスにより発光効率が低下する。このため、青色励起光に対して赤色発光の蛍光体を用いること自体、発光効率を低下させる要因となる。また、蛍光体の発光特性は温度依存性を有し、発光による発光部材の温度上昇に伴って緑色(黄色)発光強度と赤色発光強度のバランスが変化する。その結果、発光体の温度変化によって発光の色味が変化して、照明光の色調が変化することになる。   Further, the emission efficiency of the fluorescent part chamber decreases due to the Stokes loss as the emission wavelength becomes farther from the excitation light wavelength. For this reason, the use of a phosphor emitting red light with respect to blue excitation light itself becomes a factor of reducing luminous efficiency. Further, the light emission characteristics of the phosphor have temperature dependence, and the balance between the green (yellow) light emission intensity and the red light emission intensity changes as the temperature of the light emitting member increases due to light emission. As a result, the color of the emitted light changes due to the temperature change of the light emitter, and the color tone of the illumination light changes.

上記のような発光の色味変化を防ぐには、単に発光効率が高いことだけで、使用する蛍光体の組み合わせを決定するのでなく、蛍光体の温度変化に伴う発光効率の変化を各発光色で同じに設定する必要がある。しかし、図16に示すように、温度上昇に伴う各色の蛍光体の発光効率は、色毎に異なるカーブを呈する。即ち、温度上昇に伴って緑色発光の蛍光体より赤色発光の蛍光体の発光効率が低くなり、発光光量比であるR:B比は、G:B比よりも低くなる。   In order to prevent the above-mentioned color change of light emission, it is not only to determine the combination of phosphors to be used, but also to determine the change in the light emission efficiency due to the temperature change of each phosphor. Must be set the same. However, as shown in FIG. 16, the luminous efficiency of the phosphors of the respective colors as the temperature rises exhibits different curves for each color. That is, as the temperature rises, the luminous efficiency of the red light emitting phosphor becomes lower than that of the green light emitting phosphor, and the R: B ratio, which is the light emission amount ratio, becomes lower than the G: B ratio.

この蛍光体の発光の温度依存性については、蛍光体の材料選定によってある程度軽減できるが、蛍光体の材料の選択自由度が損なわれる。例えば、YAG(イットリウム・アルミ・ガーネット)蛍光体の代わりに発光効率の高いα−サイアロン(緑色発光蛍光体)を用いる場合、このα−サイアロンと同等の温度特性を有し、発光効率の高い赤色発光の蛍光体は存在しない。そのため、近い特性の蛍光体で代用せざるを得ず、結果として発光効率の低下とばらつきの増加を招くことになる。   The temperature dependence of the phosphor emission can be reduced to some extent by selecting the phosphor material, but the degree of freedom in selecting the phosphor material is impaired. For example, when α-sialon (green light-emitting phosphor) having high luminous efficiency is used instead of YAG (yttrium, aluminum, garnet) phosphor, red having high temperature efficiency and the same temperature characteristics as α-sialon. There are no luminescent phosphors. For this reason, phosphors having similar characteristics must be substituted, resulting in a decrease in luminous efficiency and an increase in variation.

更に、蛍光体を封止するための樹脂材料は、一般にレーザ光による光耐久性と耐湿性とがトレードオフの関係にある。耐湿性が高い樹脂材料は光耐久性が低いため、出射光路以外の部分等に適用され、使用範囲が限られるのが実情である。   Further, resin materials for sealing phosphors generally have a trade-off relationship between light durability by laser light and moisture resistance. Since the resin material having high moisture resistance has low light durability, it is applied to portions other than the outgoing optical path and the use range is limited.

特許第4638837号公報Japanese Patent No. 4638837

本発明は、発光部材内で蛍光体を樹脂材料により封止する構成にすることで、発光効率を高めて設計自由度の高い構成にできる内視鏡用照明装置及び内視鏡装置を提供することを目的とする。   The present invention provides an endoscope illumination device and an endoscope device that can be configured to have high luminous efficiency and a high degree of design freedom by adopting a configuration in which a phosphor is sealed with a resin material in a light emitting member. For the purpose.

本発明は下記構成からなる。
(1) 内視鏡挿入部の先端に設けた照明窓から被検体に向けて照明光を照射する内視鏡用照明装置であって、
青色光を生成する青色半導体光源と、
赤色光を生成する赤色半導体光源と、
前記青色半導体光源からの青色光及び前記赤色半導体光源からの赤色光を導光する導光部材と、
前記照明窓の内側で前記導光部材の光出射端に対面して配置された発光部材と、
を備え、
前記発光部材が、前記赤色光を実質的に吸収せず透過させ、前記青色光の一部を励起光として吸収して緑色系の蛍光を発すると共に残りの一部を透過させる緑色蛍光体を含んで構成され、
前記緑色蛍光体が、前記発光部材内で樹脂材料により封止されている内視鏡用照明装置。
(2) (1)の内視鏡用照明装置を搭載した内視鏡装置。
The present invention has the following configuration.
(1) An endoscope illumination device that irradiates illumination light toward an object from an illumination window provided at a distal end of an endoscope insertion portion,
A blue semiconductor light source that generates blue light;
A red semiconductor light source that generates red light; and
A light guide member for guiding blue light from the blue semiconductor light source and red light from the red semiconductor light source;
A light emitting member disposed facing the light exit end of the light guide member inside the illumination window;
With
The light emitting member includes a green phosphor that transmits the red light substantially without absorbing it, absorbs part of the blue light as excitation light, emits green-based fluorescence, and transmits the remaining part. Consists of
An endoscope illumination device in which the green phosphor is sealed with a resin material in the light emitting member.
(2) An endoscope apparatus equipped with the endoscope illumination apparatus according to (1).

本発明の内視鏡用照明装置及び内視鏡装置は、発光部材内で蛍光体を樹脂材料により封止する構成にすることで、発光効率を高めて設計自由度の高い構成にできる。   The endoscope illumination device and the endoscope device according to the present invention can be configured with a high degree of design freedom by increasing the light emission efficiency by sealing the phosphor with a resin material in the light emitting member.

本発明の実施形態を説明するための図で、内視鏡及び内視鏡が接続される各装置を表す内視鏡装置の構成図である。It is a figure for describing an embodiment of the present invention, and is a lineblock diagram of an endoscope apparatus showing each apparatus to which an endoscope and an endoscope are connected. 内視鏡装置の具体的な構成例を示す外観図である。It is an external view which shows the specific structural example of an endoscope apparatus. 内視鏡先端部の外観斜視図である。It is an external appearance perspective view of an endoscope front-end | tip part. 発光部材からの出射光の分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the emitted light from a light emitting member. (A)は第1の発光部材を模式的に示す概略構成図、(B)は第2の発光部材を模式的に示す概略構成図、(C)は第3の発光部材を模式的に示す概略構成図である。(A) is a schematic block diagram schematically showing the first light emitting member, (B) is a schematic block diagram schematically showing the second light emitting member, and (C) schematically shows the third light emitting member. It is a schematic block diagram. (A)は第4の発光部材を模式的に示す概略構成図、(B)は第5の発光部材を模式的に示す概略構成図、(C)は第6の発光部材を模式的に示す概略構成図である。(A) is a schematic block diagram schematically showing a fourth light emitting member, (B) is a schematic block diagram schematically showing a fifth light emitting member, and (C) schematically shows a sixth light emitting member. It is a schematic block diagram. 第7の発光部材を模式的に示す概略構成図である。It is a schematic block diagram which shows a 7th light emission member typically. 蛍光反射膜の波長に対する透過率、反射率の特性を示すグラフである。It is a graph which shows the transmittance | permeability with respect to the wavelength of a fluorescent reflective film, and the characteristic of a reflectance. 第8の発光部材を模式的に示す概略構成図である。It is a schematic block diagram which shows typically an 8th light emitting member. 第9の発光部材を模式的に示す概略構成図である。It is a schematic block diagram which shows the 9th light emitting member typically. 第10の発光部材を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the 10th light emitting member. 蛍光体を封止する樹脂材料の特性を示す説明図で、光耐久性と耐湿性との関係を示すグラフである。It is explanatory drawing which shows the characteristic of the resin material which seals fluorescent substance, and is a graph which shows the relationship between light durability and moisture resistance. 発光部材の他の構成を示す構成図である。It is a block diagram which shows the other structure of a light emitting member. 発光部の外側表面を耐湿性コーティング層で覆った発光部材の構成を示す構成図である。It is a block diagram which shows the structure of the light emitting member which covered the outer surface of the light emission part with the moisture-resistant coating layer. スリーブの内周面とカバーガラスの外周面との隙間に、耐湿性コーティング層を形成した発光部材の構成を示す構成図である。It is a block diagram which shows the structure of the light emitting member which formed the moisture-resistant coating layer in the clearance gap between the inner peripheral surface of a sleeve, and the outer peripheral surface of a cover glass. 従来構成における、温度上昇に伴う各色の蛍光体の発光効率を示すグラフである。It is a graph which shows the luminous efficiency of the fluorescent substance of each color with a temperature rise in a conventional structure.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、内視鏡及び内視鏡が接続される各装置を表す内視鏡装置の構成図、図2は内視鏡装置の具体的な構成例を示す外観図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the present invention. FIG. 1 is a configuration diagram of an endoscope apparatus representing an endoscope and each apparatus to which the endoscope is connected. FIG. 2 is a specific example of the endoscope apparatus. It is an external view which shows a structural example.

内視鏡装置100は、図1に示すように、内視鏡11と、制御装置13と、モニタ等の表示部15と、制御装置13に情報を入力するキーボードやマウス等の入力部17とを備えている。制御装置13は、光源装置19と、撮像画像の信号処理を行うプロセッサ21とを有して構成される。   As shown in FIG. 1, the endoscope apparatus 100 includes an endoscope 11, a control device 13, a display unit 15 such as a monitor, and an input unit 17 such as a keyboard and a mouse that input information to the control device 13. It has. The control device 13 includes a light source device 19 and a processor 21 that performs signal processing of a captured image.

内視鏡11は、本体操作部23と、この本体操作部23に連設され被検体(体腔)内に挿入される細長状の挿入部25とを備える。本体操作部23には、ユニバーサルコード27が接続されている。このユニバーサルコード27の先端は、光源装置19にライトガイド(LG)コネクタ29Aを介して接続され、また、ビデオコネクタ29Bを介してプロセッサ21に接続されている。   The endoscope 11 includes a main body operation unit 23 and an elongated insertion unit 25 that is connected to the main body operation unit 23 and is inserted into a subject (body cavity). A universal cord 27 is connected to the main body operation unit 23. The distal end of the universal cord 27 is connected to the light source device 19 through a light guide (LG) connector 29A, and is connected to the processor 21 through a video connector 29B.

図2に示すように、内視鏡11の本体操作部23には、挿入部25の先端側で吸引、送気、送水を実施するためのボタンや、撮像時のシャッターボタン等の各種操作ボタン31が併設されると共に、一対のアングルノブ33が設けられている。   As shown in FIG. 2, the main body operation unit 23 of the endoscope 11 has various operation buttons such as buttons for performing suction, air supply, and water supply on the distal end side of the insertion unit 25, and a shutter button at the time of imaging. 31 is also provided, and a pair of angle knobs 33 are provided.

挿入部25は、基端側に配置される本体操作部23から順に、軟性部35、湾曲部37、及び先端部(内視鏡先端部)39で構成される。湾曲部37は、本体操作部23のアングルノブ33を回動することによって遠隔的に湾曲操作されて、これにより先端部39を所望の方向に向けることができる。   The insertion portion 25 is composed of a flexible portion 35, a bending portion 37, and a distal end portion (endoscope distal end portion) 39 in order from the main body operation portion 23 disposed on the proximal end side. The bending portion 37 is remotely bent by turning the angle knob 33 of the main body operation portion 23, and thereby the tip portion 39 can be directed in a desired direction.

図3に内視鏡先端部の外観斜視図を示した。
内視鏡先端部39には、撮像光学系の観察窓41と、照明光学系の照明窓43A,43Bが配置されている。観察窓41を挟んで配置された一対の照明窓43A,43Bから照射される照明光は、被検体に照射される。照射した照明光による被検体からの反射光は、図1に示すように、観察窓41を通じて撮像素子45で撮像される。撮像された観察画像は、プロセッサ21に接続された表示部15に適宜な画像処理を施した後に表示される。
FIG. 3 shows an external perspective view of the distal end portion of the endoscope.
An observation window 41 of the imaging optical system and illumination windows 43A and 43B of the illumination optical system are disposed at the endoscope distal end portion 39. Illumination light emitted from the pair of illumination windows 43A and 43B arranged with the observation window 41 in between is irradiated to the subject. The reflected light from the subject due to the illuminated illumination light is imaged by the image sensor 45 through the observation window 41 as shown in FIG. The captured observation image is displayed after appropriate image processing is performed on the display unit 15 connected to the processor 21.

撮像光学系は、CCD(Charge Coupled Device)型イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の撮像素子45と、撮像素子45に観察像を結像させるレンズ等の光学部材47とを有する。撮像素子45の受光面に結像されて取り込まれる観察像は、電気信号に変換されて信号ケーブル51を通じてプロセッサ21の撮像信号処理部53に入力され、この撮像信号処理部53で映像信号に変換される。   The imaging optical system includes an imaging element 45 such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, and an optical member 47 such as a lens for forming an observation image on the imaging element 45. Have The observation image formed and captured on the light receiving surface of the image sensor 45 is converted into an electric signal and input to the image signal processing unit 53 of the processor 21 through the signal cable 51, and is converted into a video signal by the image signal processing unit 53. Is done.

プロセッサ21は、各部を統括制御する制御部63と、映像信号を生成する撮像信号処理部53とを備えている。制御部63は、撮像信号処理部53から出力される観察画像の画像データに対し、適宜な画像処理を施して表示部15に映出させる。また、光源装置19のレーザ光源LD1、レーザ光源LD2に駆動信号を出力して、各照明窓43A,43Bから所望の光量の照明光を出射させる。この制御部63は、図示しないLAN等のネットワークに接続されて、画像データを含む情報を配信する等、内視鏡装置100全体を制御する。   The processor 21 includes a control unit 63 that performs overall control of each unit, and an imaging signal processing unit 53 that generates a video signal. The control unit 63 performs appropriate image processing on the image data of the observation image output from the imaging signal processing unit 53 and displays the image data on the display unit 15. In addition, a drive signal is output to the laser light source LD1 and the laser light source LD2 of the light source device 19, and a desired amount of illumination light is emitted from each of the illumination windows 43A and 43B. The control unit 63 is connected to a network such as a LAN (not shown) and controls the entire endoscope apparatus 100 such as distributing information including image data.

内視鏡用照明装置である照明光学系は、光源装置19と、光源装置19にコネクタ29Aを介して接続される一対の光ファイバ55A,55Bと、光ファイバ55A,55Bの光出射端にそれぞれ配置した発光部材57A,57Bとを有する。光源装置19は、半導体発光素子である青色発光のレーザ光源LD1と、赤色発光のレーザ光源LD2と、各レーザ光源LD1,LD2からの出射光を合波するコンバイナ61と、合波された光を分波して各光ファイバ55A,55Bに導入する光カプラ62とを有する。   The illumination optical system which is an endoscope illumination device includes a light source device 19, a pair of optical fibers 55A and 55B connected to the light source device 19 via a connector 29A, and light emitting ends of the optical fibers 55A and 55B, respectively. The light emitting members 57A and 57B are arranged. The light source device 19 includes a blue light emitting laser light source LD1 that is a semiconductor light emitting element, a red light emitting laser light source LD2, a combiner 61 that combines light emitted from the laser light sources LD1 and LD2, and a combined light. And an optical coupler 62 that demultiplexes and introduces the optical fibers 55A and 55B.

レーザ光源LD1は、中心波長445nmの青色発光の半導体レーザであり、レーザ光源LD2は、中心波長640nmの赤色発光の半導体レーザである。これらレーザ光源LD1,LD2は、例えばブロードエリア型のInGaN系レーザダイオードが使用できる。   The laser light source LD1 is a blue-emitting semiconductor laser having a central wavelength of 445 nm, and the laser light source LD2 is a red-emitting semiconductor laser having a central wavelength of 640 nm. As these laser light sources LD1 and LD2, for example, a broad area type InGaN laser diode can be used.

発光部材57A,57Bは、レーザ光源LD1から出射される青色レーザ光の一部を吸収して緑色系に励起発光する蛍光体(例えば、Ca3Sc2Si3O12,(BaSr)2SiO4,(Sr,Ba)Si2O2N2,αサイアロン,βサイアロン等)を含んで構成される。これら発光部材57A,57Bからの出射光の分光特性を図4に示した。発光部材57A,57Bからは、レーザ光源LD1からの青色レーザ光65と、この青色レーザ光65が波長変換された緑色の蛍光67と、レーザ光源LD2からの赤色レーザ光69とが合成されて白色光が生成される。なお、図中点線71は、比較用として、青色レーザ光65により励起発光するYAG蛍光体の緑〜黄色の蛍光を示している。 The light emitting members 57A and 57B absorb a part of the blue laser light emitted from the laser light source LD1 and excite and emit green light (for example, Ca 3 Sc 2 Si 3 O 12 , (BaSr) 2 SiO 4 , (Sr, Ba) Si 2 O 2 N 2 , α sialon, β sialon, etc.). The spectral characteristics of the emitted light from these light emitting members 57A and 57B are shown in FIG. From the light emitting members 57A and 57B, the blue laser light 65 from the laser light source LD1, the green fluorescence 67 obtained by wavelength-converting the blue laser light 65, and the red laser light 69 from the laser light source LD2 are combined to produce a white color. Light is generated. A dotted line 71 in the figure indicates green to yellow fluorescence of a YAG phosphor that emits light by excitation with the blue laser light 65 for comparison.

上記各蛍光体の特性を表1に示す。発光効率の温度特性は、(BaSr)2SiO4が比較的低くなるが、発光光量、耐湿性は共に良好であり、実使用に問題はない。なお、表中の◎はYAG蛍光体に比較して同等以上、○はほぼ同等、△は劣ること、を表している。 Table 1 shows the characteristics of each phosphor. Although the temperature characteristic of the luminous efficiency is relatively low for (BaSr) 2 SiO 4 , both the amount of emitted light and moisture resistance are good, and there is no problem in actual use. In the table, ◎ indicates equal or better than YAG phosphor, ○ indicates approximately equal, and Δ indicates inferior.

Figure 2013090674
Figure 2013090674

プロセッサ21の制御部63は、レーザ光源LDを光量制御して、レーザ光源LDからレーザ光を出力させる。この出力されたレーザ光は、各光ファイバ55A,55Bに導入され、内視鏡先端部39まで導光される。光ファイバ55A,55Bに導光されたレーザ光は発光部材57A,57Bに照射され、これにより、照明窓43A,43Bから白色の照明光が出射される。   The control unit 63 of the processor 21 controls the light amount of the laser light source LD and outputs laser light from the laser light source LD. The output laser light is introduced into each of the optical fibers 55A and 55B and guided to the endoscope distal end portion 39. The laser light guided to the optical fibers 55A and 55B is applied to the light emitting members 57A and 57B, and thereby white illumination light is emitted from the illumination windows 43A and 43B.

上記のように本構成の内視鏡装置100の光源装置は、白色照明用に使用する蛍光体を緑色発光の蛍光体一種類とし、青色レーザ光と緑色蛍光、及び赤色レーザ光を所定(或いは任意)の強度比で混合して白色光を得ている。赤色レーザ光を赤色の照明光とするため、発光効率が比較的低い赤色発光の蛍光体を用いることなく、高効率で高輝度な照明光を生成できる。また、赤色光の強度を青色光の強度とは独立して制御可能になるため、照明光の色調の制御可能範囲が色空間内で拡大すると共に、より微妙な色調調整が可能となる。   As described above, the light source device of the endoscope apparatus 100 configured as described above uses a phosphor used for white illumination as one kind of green light-emitting phosphor and emits blue laser light, green fluorescence, and red laser light to a predetermined (or White light is obtained by mixing at an arbitrary intensity ratio. Since the red laser light is used as red illumination light, high-efficiency and high-luminance illumination light can be generated without using a red light-emitting phosphor having a relatively low light emission efficiency. Further, since the intensity of red light can be controlled independently of the intensity of blue light, the controllable range of the color tone of illumination light is expanded in the color space, and more delicate color tone adjustment is possible.

また、蛍光体で青色レーザ光を波長変換させて赤色光を生成する場合より、赤色光を赤色レーザ光源で直接生成した方が、エネルギ効率が高く、省電力で、しかも応答性良く所望の光量の照明光が得られる。   In addition, it is more energy-efficient, energy-saving, and responsive with a desired light intensity when red light is directly generated with a red laser light source than when red light is generated by converting the wavelength of blue laser light with a phosphor. The illumination light can be obtained.

そして、発光効率の比較的低い赤色発光の蛍光体がなくなるので、青色レーザ光を発光部材に照射した際の発光部材の発熱が小さく抑えられる。例えば蛍光体をα−サイアロンを用いた場合、レーザ光の照射時の加熱温度は、150℃から120℃程度にまで低減が可能となる。このため、特に耐熱性の高いガラス等により蛍光体を封止する必要がなくなり、加工の自由度が高い樹脂材料で封止した構成にできる。特に、150℃以下の耐熱性樹脂である、フェニルメチルシリコーンを基材とするものでは、密封性も良好な材料であり、耐光性も良好な特性を有する。つまり、気密性、水密性に優れたシリコーン系の材料を使用することで、耐湿性の低い蛍光体を利用することも可能となり、蛍光体の材料選択の自由度が向上する。   Further, since there is no red light emitting phosphor having a relatively low light emission efficiency, heat generation of the light emitting member when the light emitting member is irradiated with blue laser light can be suppressed to be small. For example, when α-sialon is used as the phosphor, the heating temperature at the time of laser light irradiation can be reduced from 150 ° C. to about 120 ° C. For this reason, it is not necessary to seal the phosphor with glass having particularly high heat resistance, and a configuration in which the phosphor is sealed with a resin material having a high degree of freedom in processing can be achieved. In particular, a material based on phenylmethylsilicone, which is a heat resistant resin at 150 ° C. or lower, is a material having good sealing properties and also has good light resistance. That is, by using a silicone material having excellent airtightness and watertightness, it is possible to use a phosphor with low moisture resistance, and the degree of freedom in selecting the phosphor material is improved.

また、樹脂材料により蛍光体を封止することで、内視鏡挿入部の先端に配置する発光部材の構造を大きく変更でき、より均一な強度分布の照明光を高効率で得られる構造にできる。例えば、蛍光体を含む発光部材の光出射面積を拡大した構成等、種々の設計変更が可能となる。   In addition, by sealing the phosphor with a resin material, the structure of the light emitting member disposed at the distal end of the endoscope insertion portion can be greatly changed, and the illumination light with a more uniform intensity distribution can be obtained with high efficiency. . For example, various design changes such as a configuration in which a light emitting area of a light emitting member including a phosphor is enlarged are possible.

次に、発光部材57A,57Bの具体的な構成例について説明する。
図5(A)〜(C)はそれぞれ第1〜第3の発光部材を模式的に示す概略構成図である。
<第1の発光部材の構成>
図5(A)に光ファイバ55の光出射端に配置した第1の発光部材81Aを示した。第1の発光部材81Aは、光ファイバ55の光出射端に配置される光拡散部83と、光拡散部83の光路前方に配置され緑色蛍光体が分散配置された発光部85と、発光部85の光路前方で発光部85を覆う透光性保護層となるレンズ87とを有して構成されている。この第1の発光部材81Aは、内視鏡挿入部の先端部39に固定される。
Next, a specific configuration example of the light emitting members 57A and 57B will be described.
5A to 5C are schematic configuration diagrams schematically showing the first to third light emitting members, respectively.
<Configuration of first light emitting member>
FIG. 5A shows the first light emitting member 81 </ b> A disposed at the light emitting end of the optical fiber 55. 81 A of 1st light emission members are the light-diffusion part 83 arrange | positioned at the light emission end of the optical fiber 55, the light-emitting part 85 arrange | positioned ahead of the optical path of the light-diffusion part 83, and disperse | distributed green fluorescent substance, and the light emission part And a lens 87 serving as a translucent protective layer covering the light emitting portion 85 in front of the optical path 85. The first light emitting member 81A is fixed to the distal end portion 39 of the endoscope insertion portion.

発光部85は、その光路前方側の光出射面89は、光散乱効果を有する凹凸面で形成されている。光拡散部83は、光ファイバ55の光出射端55aから光路前方に向けて拡径するテーパ側面91を有し、全体が円錐状に形成されている。テーパ側面91は、光出射端55aから光拡散部83に入射された光の一部を全反射して光路前方に向けて出射させることで、光利用効率を向上させている。   In the light emitting unit 85, the light exit surface 89 on the front side of the optical path is formed as an uneven surface having a light scattering effect. The light diffusing portion 83 has a tapered side surface 91 whose diameter increases from the light emitting end 55a of the optical fiber 55 toward the front of the optical path, and is entirely formed in a conical shape. The tapered side surface 91 improves the light utilization efficiency by totally reflecting a part of the light incident on the light diffusion portion 83 from the light emitting end 55a and emitting it toward the front of the optical path.

<第2の発光部材の構成>
図5(B)に第2の発光部材81Bを示した。第2の発光部材81Bは、発光部85の光路後方側の光入射面93が凸状に形成され、発光部85の中央部が、周辺部より厚肉に形成されている。つまり、発光部85の光路に対する垂直断面において、中央部がその周縁の領域となる周辺部より厚肉に形成されている。その他の構成は、上記第1の発光部材81Aと同様である。
<Configuration of second light emitting member>
FIG. 5B shows a second light emitting member 81B. In the second light emitting member 81B, the light incident surface 93 on the rear side of the light path of the light emitting portion 85 is formed in a convex shape, and the central portion of the light emitting portion 85 is formed thicker than the peripheral portion. That is, in the cross section perpendicular to the optical path of the light emitting portion 85, the central portion is formed thicker than the peripheral portion that is the peripheral region. Other configurations are the same as those of the first light emitting member 81A.

この構成によれば、発光部85の中央部が特に厚肉に形成されることで、光出射端55aから出射される光の強度が大きい領域に蛍光体をより多く配置でき、発光部85の発光強度を向上できる。即ち、光出射端55aから出射される光の強度分布は、光出射端55aの中心部分が最大となるガウス分布となる。この光強度分布における光強度の高い領域に対応して、発光部85の厚みを大きくすることで、発光に寄与する蛍光体が増加する。これにより、発光部85全体の発光強度が増加する。   According to this configuration, since the central portion of the light emitting unit 85 is formed to be particularly thick, more phosphors can be disposed in a region where the intensity of the light emitted from the light emitting end 55a is high. The emission intensity can be improved. That is, the intensity distribution of the light emitted from the light emitting end 55a is a Gaussian distribution in which the central portion of the light emitting end 55a is maximized. By increasing the thickness of the light emitting portion 85 corresponding to the region of high light intensity in this light intensity distribution, the number of phosphors that contribute to light emission increases. Thereby, the light emission intensity of the whole light emission part 85 increases.

<第3の発光部材の構成>
図5(C)に第3の発光部材81Cを示した。第3の発光部材81Cは、発光部85の光路後方側の光入射面95が光散乱効果を有する凹凸面で形成されている。その他の構成は、上記第1の発光部材81Aと同様である。
<Configuration of third light emitting member>
FIG. 5C shows a third light emitting member 81C. In the third light emitting member 81C, the light incident surface 95 on the rear side of the light path of the light emitting portion 85 is formed as an uneven surface having a light scattering effect. Other configurations are the same as those of the first light emitting member 81A.

この構成によれば、発光部85の光入射面95が光散乱効果を有するため、光出射端55aからの光が光拡散部83から発光部85に入射する際、入射光の強度分布が平均化されて、発光部85全体が均一に発光する。これにより、発光部材81Cからの出射光の強度分布を均等化でき、ムラのない高品位な照明光が得られる。   According to this configuration, since the light incident surface 95 of the light emitting unit 85 has a light scattering effect, when the light from the light emitting end 55a enters the light emitting unit 85 from the light diffusing unit 83, the intensity distribution of the incident light is an average. As a result, the entire light emitting unit 85 emits light uniformly. Thereby, the intensity distribution of the emitted light from the light emitting member 81C can be equalized, and high-quality illumination light without unevenness can be obtained.

<第4の発光部材の構成>
図6(A)に第4の発光部材81Dを示した。第4の発光部材81Dは、光拡散部83が透光性樹脂材料からなり、この透光性樹脂材料からなる光拡散部83の内部に、透光性樹脂材料とは異なる材料からなる微小バブル97が混在配置されている。微小バブル97は、シリコーン樹脂やアクリル、ポリプロピレン等の樹脂材料からなるバブル、又はこれら樹脂などによる中空球で中が気体、例えば空気による空孔で構成されたものとすることができる。その他の構成は、上記第1の発光部材81Aと同様である。
<Configuration of Fourth Light-Emitting Member>
FIG. 6A shows a fourth light emitting member 81D. In the fourth light emitting member 81D, the light diffusing portion 83 is made of a translucent resin material, and inside the light diffusing portion 83 made of the translucent resin material, there are micro bubbles made of a material different from the translucent resin material. 97 are mixedly arranged. The microbubble 97 can be a bubble made of a resin material such as silicone resin, acrylic, or polypropylene, or a hollow sphere made of such a resin and the like, and the inside can be constituted by pores of gas, for example, air. Other configurations are the same as those of the first light emitting member 81A.

この構成によれば、光出射端55aから光拡散部83に入射された光が微小バブル97によって効率良く光拡散され、均等な光分布となって発光部85に照射される。このため、発光部85における発光強度分布がより均一となる。   According to this configuration, the light incident on the light diffusing unit 83 from the light emitting end 55a is efficiently diffused by the microbubbles 97, and the light emitting unit 85 is irradiated with an even light distribution. For this reason, the light emission intensity distribution in the light emission part 85 becomes more uniform.

<第5の発光部材の構成>
図6(B)に第5の発光部材81Eを示した。第5の発光部材81Eは、第4の発光部材81Dの微小バブル97を、光ファイバ55の光出射端55a近傍の配置密度を、他の周辺領域より高めて配置している。
<Configuration of fifth light emitting member>
FIG. 6B shows a fifth light emitting member 81E. In the fifth light emitting member 81E, the microbubbles 97 of the fourth light emitting member 81D are arranged such that the arrangement density in the vicinity of the light emitting end 55a of the optical fiber 55 is higher than other peripheral regions.

この構成によれば、光出射端55aから出射される光の強度が大きい領域に微小バブル97をより多く配置でき、光拡散部83内における光拡散効果をより向上できる。   According to this configuration, more microbubbles 97 can be arranged in a region where the intensity of light emitted from the light emitting end 55a is high, and the light diffusion effect in the light diffusion portion 83 can be further improved.

<第6の発光部材の構成>
図6(C)に第6の発光部材81Fを示した。第6の発光部材81Fは、第4、第5の発光部材81D,87Eの微小バブル97を、光ファイバ55の光出射端55aを起点として光路前方に向けて延びる光軸を長軸とする回転楕円体の微小バブル99に形成している。つまり、微小バブル99を光の進行方向に対して長くなるように整列させている。また、発光部85にも前述の微小バブル97を混在配置している。これにより、光入射側に近い光強度分布の高い部分で散乱効率が高められ、光の透過損失を低減できる。
<Configuration of sixth light emitting member>
FIG. 6C shows a sixth light emitting member 81F. The sixth light emitting member 81F rotates the microbubbles 97 of the fourth and fifth light emitting members 81D and 87E with the optical axis extending from the light emitting end 55a of the optical fiber 55 toward the front of the optical path as the long axis. An ellipsoidal microbubble 99 is formed. That is, the microbubbles 99 are aligned so as to be longer than the light traveling direction. In addition, the above-described microbubbles 97 are also arranged in the light emitting unit 85. As a result, the scattering efficiency is increased at a portion having a high light intensity distribution close to the light incident side, and light transmission loss can be reduced.

回転楕円体の微小バブル99は、真球に近い形で形成後、加熱圧縮して潰して、封止樹脂に混入するような工程で形成できる。   The spheroid microbubbles 99 can be formed in a process in which the spheroid microbubbles 99 are formed in a shape close to a true sphere, and then heated and compressed to be crushed and mixed into the sealing resin.

この構成によれば、微小バブル99を回転楕円体とすることで、微小バブル99に入射した光が光路後方へ散乱することを減少させ、光利用効率を向上できる。また、発光部85に微小バブル97を配置することで、発光部85内における光拡散効果が向上し、発光部85における発光強度分布がより均一となる。   According to this configuration, by using the microbubbles 99 as spheroids, the light incident on the microbubbles 99 can be prevented from being scattered backward in the optical path, and the light utilization efficiency can be improved. In addition, by arranging the microbubbles 97 in the light emitting unit 85, the light diffusion effect in the light emitting unit 85 is improved, and the light emission intensity distribution in the light emitting unit 85 becomes more uniform.

発光部85に微小バブル97を配置することで、蛍光体の密度調整が行え、蛍光体が発生する蛍光の散乱性を向上できる。微小バブル97は、シリコーン樹脂以外にも、石英ガラスのビーズを用いれば発光部85の強度を調整でき、酸化鉄を用いれば温度安定性を向上できる。また、窒化珪素を用いれば熱伝導性が向上し、珪藻土を用いれば発光部85の硬度を調整できる。   By arranging the microbubbles 97 in the light emitting unit 85, the density of the phosphor can be adjusted, and the scattering property of the fluorescence generated by the phosphor can be improved. In addition to the silicone resin, the microbubbles 97 can adjust the strength of the light emitting portion 85 by using quartz glass beads, and the temperature stability can be improved by using iron oxide. Moreover, if silicon nitride is used, thermal conductivity will improve, and if diatomaceous earth is used, the hardness of the light emission part 85 can be adjusted.

<第7の発光部材の構成>
図7に第7の発光部材81Gを示した。第7の発光部材81Gは、光ファイバ55の光出射端55aと光拡散部83との間に、蛍光体の励起光となる青色レーザ光を透過し、蛍光体が発する緑色系の蛍光を反射する蛍光反射膜101を設けている。なお、発光部材81Gの光拡散部83、発光部85、レンズ87は、図示例においては第6の発光部材81Fと同一にしているが、他の発光部材81A〜81Eとしてもよい。
<Configuration of seventh light emitting member>
FIG. 7 shows a seventh light emitting member 81G. The seventh light emitting member 81G transmits blue laser light serving as excitation light of the phosphor between the light emitting end 55a of the optical fiber 55 and the light diffusion portion 83, and reflects green fluorescence emitted from the phosphor. A fluorescent reflecting film 101 is provided. The light diffusing portion 83, the light emitting portion 85, and the lens 87 of the light emitting member 81G are the same as the sixth light emitting member 81F in the illustrated example, but may be other light emitting members 81A to 81E.

蛍光反射膜101は、例えば、光ファイバ55の出射端面に、TiO膜を適当な厚さ(例えば、膜厚t=0.84×屈折率×設計波長(550nm))の薄膜を、スパッタ等で形成する。このようにして作製した薄膜の透過率、反射率の一特性例を図8に示した。この特性によれば、450nm付近の反射率に対して、それ以上の可視域の波長範囲の反射率を増加させることができる。 The fluorescent reflecting film 101 is formed by, for example, sputtering a TiO 2 film with an appropriate thickness (for example, film thickness t = 0.84 × refractive index × design wavelength (550 nm)) on the emission end face of the optical fiber 55. Form with. One characteristic example of the transmittance and reflectance of the thin film thus produced is shown in FIG. According to this characteristic, the reflectance in the visible wavelength range can be increased with respect to the reflectance near 450 nm.

この構成によれば、蛍光反射膜101により発光部からの蛍光が光ファイバ55を通じて光源側に戻ることを防止でき、光利用効率を向上できる。   According to this configuration, it is possible to prevent the fluorescence from the light emitting portion from returning to the light source side through the optical fiber 55 by the fluorescent reflection film 101, and to improve the light utilization efficiency.

<第8の発光部材の構成>
図9に第8の発光部材81Hを示した。第8の発光部材81Hは、前述の発光部材81A〜81Gのレンズ87の代わりに、ガラス、サファイア等の透光性無機材料層103を設けている。また、光拡散部83における光ファイバ55の光出射端55aから発光部85までの外周面(円錐側面)に、青色レーザ光、赤色レーザ光、及び蛍光体が発する蛍光を反射する金属反射膜105を設けている。その他の構成は、第7の発光部材81G(又は発光部材81A〜81F)の構成と同様である。
<Configuration of eighth light emitting member>
FIG. 9 shows an eighth light emitting member 81H. The eighth light emitting member 81H is provided with a light-transmitting inorganic material layer 103 such as glass or sapphire instead of the lens 87 of the light emitting members 81A to 81G. In addition, the metal reflection film 105 that reflects blue laser light, red laser light, and fluorescence emitted from the phosphor on the outer peripheral surface (conical side surface) from the light emitting end 55 a of the optical fiber 55 in the light diffusion portion 83 to the light emitting portion 85. Is provided. Other configurations are the same as the configuration of the seventh light emitting member 81G (or the light emitting members 81A to 81F).

透光性無機材料層103は、図示したように出射光を拡散するレンズ状である他にも、プレート状のカバーであってもよい。この透光性無機材料層103は、発光部85の直上に透光性樹脂層107によって固定される。   The translucent inorganic material layer 103 may be a plate-like cover in addition to the lens-like shape that diffuses the emitted light as illustrated. This translucent inorganic material layer 103 is fixed by a translucent resin layer 107 immediately above the light emitting portion 85.

この構成によれば、透光性無機材料層103を発光部材81Hの光出射面に配置することで、内視鏡洗浄時における耐薬品性、耐摩擦性を高め、発光部材の耐久性をより高めることができる。また、光拡散部83の外周面に金属反射膜105を設けることで、光の利用効率が向上し、出射光強度を高められる。また、金属反射膜105は、光拡散部83の外周面から外光が入り込むことを防止する。   According to this configuration, the translucent inorganic material layer 103 is disposed on the light emitting surface of the light emitting member 81H, thereby improving chemical resistance and friction resistance during endoscope cleaning and further improving the durability of the light emitting member. Can be increased. Further, by providing the metal reflection film 105 on the outer peripheral surface of the light diffusion portion 83, the light use efficiency is improved and the emitted light intensity can be increased. Further, the metal reflection film 105 prevents external light from entering from the outer peripheral surface of the light diffusion portion 83.

<第9の発光部材の構成>
図10に第9の発光部材81Iを示した。第9の発光部材81Iは、前述した光ファイバ55の光出射端55aの形状を変更している他は、前述の発光部材81A〜81Gの構成と同様に構成できる。光ファイバ55は、ファイバ中心のコア部109と、コア部109の外周を覆うクラッド部111を有するシングルモード又はマルチモードの光ファイバであり、光出射端55aが光拡散部83の内部に挿入されている。また、光出射端55aでは、コア部109をクラッド部111から外側に突出させている。
<Configuration of ninth light emitting member>
FIG. 10 shows a ninth light emitting member 81I. The ninth light emitting member 81I can be configured in the same manner as the light emitting members 81A to 81G except that the shape of the light emitting end 55a of the optical fiber 55 is changed. The optical fiber 55 is a single mode or multimode optical fiber having a core portion 109 at the center of the fiber and a clad portion 111 covering the outer periphery of the core portion 109, and a light emitting end 55 a is inserted into the light diffusion portion 83. ing. Further, at the light emitting end 55a, the core portion 109 is projected outward from the clad portion 111.

この構成によれば、光ファイバ55により導光された光は、光出射端55aの軸方向外側に突出したコア部109から出射され、光拡散部83内に拡散される。前述の発光部材においては、光ファイバ55の光出射端が軸線に垂直な断面で構成されているが、本構成においては、実質的に導光に寄与するコア部109がクラッド部111から所定長さ突出することで、コア部109の露出面積が拡大する。このため、コア部109の発光面積が増大し、光拡散性をより高めることができる。また、突出したコア部109が光拡散部83の内側に配置されることで、導光されてきた光を漏れなく光拡散部83に導入できる。更に、光拡散部83にも蛍光体を分散配置することで、発光部85からの蛍光と相まって、高強度の蛍光が得られる。   According to this configuration, the light guided by the optical fiber 55 is emitted from the core portion 109 protruding outward in the axial direction of the light emitting end 55 a and diffused in the light diffusion portion 83. In the light emitting member described above, the light emitting end of the optical fiber 55 is configured with a cross section perpendicular to the axis. However, in this configuration, the core portion 109 that substantially contributes to the light guide has a predetermined length from the cladding portion 111. By projecting, the exposed area of the core part 109 increases. For this reason, the light emission area of the core part 109 increases and light diffusibility can be improved more. Further, the protruding core portion 109 is disposed inside the light diffusing portion 83, so that the guided light can be introduced into the light diffusing portion 83 without leakage. Further, by dispersing and arranging the phosphors in the light diffusion portion 83, high intensity fluorescence can be obtained in combination with the fluorescence from the light emitting portion 85.

コア部109をクラッド部111から突出させるには、例えば光ファイバの先端をフッ化水素酸等の溶液に浸漬させ、クラッド部111が表出するように溶解する工法、光ファイバの先端を円錐状に切削する工法等が利用できる。   In order to protrude the core part 109 from the clad part 111, for example, a method of immersing the tip of the optical fiber in a solution such as hydrofluoric acid and dissolving so that the clad part 111 is exposed, and the tip of the optical fiber is conical. For example, a cutting method can be used.

<第10の発光部材の構成>
図11に第10の発光部材81Jを示した。第10の発光部材81Jは、図5に示す第1の発光部材81Aの光拡散部83を板状に形成した光拡散部83Aとし、発光部53とは反対側の面の中央に光ファイバ55の光出射端55aを接続している。また、光拡散部83Aの光ファイバ55の光出射端55aとの接続面を除く背面、及び側面に、青色レーザ光、赤色レーザ光、及び蛍光体が発する蛍光を反射する金属反射膜105を設けている。なお、図示例では光拡散部83Aは前述同様に透光性樹脂材料として示しているが、空気層であってもよい。
<Configuration of 10th light emitting member>
FIG. 11 shows a tenth light emitting member 81J. The tenth light emitting member 81J is a light diffusing portion 83A in which the light diffusing portion 83 of the first light emitting member 81A shown in FIG. 5 is formed in a plate shape, and the optical fiber 55 is located at the center of the surface opposite to the light emitting portion 53. The light emitting end 55a is connected. In addition, a metal reflection film 105 that reflects blue laser light, red laser light, and fluorescence emitted from the phosphor is provided on the back surface and side surfaces of the light diffusion portion 83A excluding the connection surface with the light emitting end 55a of the optical fiber 55. ing. In the illustrated example, the light diffusion portion 83A is shown as a translucent resin material as described above, but may be an air layer.

この構成によれば、発光部材81Jの厚みを小さくでき、よりコンパクトな構成にできる。よって、発光部材81Jの内視鏡への配置自由度が向上して、内視鏡挿入部の小型化に寄与できる。   According to this configuration, the thickness of the light emitting member 81J can be reduced, and a more compact configuration can be achieved. Therefore, the degree of freedom of arrangement of the light emitting member 81J on the endoscope is improved, which can contribute to the downsizing of the endoscope insertion portion.

<発光部材の他の構成例>
次に、上記発光部材の他の構成例を説明する。
図12に蛍光体を封止する樹脂材料の特性を示す説明図で、光耐久性と耐湿性との関係を示すグラフである。一般に、耐湿性の良いシリコーン等の樹脂材料(領域A1の材料)は、耐熱性に乏しく蛍光体の封止材料としては不適である。また、光耐久性が低いためにレンズ周縁部等の光路以外の部分にしか適用できず、使用範囲が限られる。
<Other structural examples of light emitting member>
Next, another configuration example of the light emitting member will be described.
FIG. 12 is an explanatory diagram showing the characteristics of the resin material for encapsulating the phosphor, and is a graph showing the relationship between light durability and moisture resistance. In general, a resin material such as silicone having good moisture resistance (material in the region A1) has poor heat resistance and is not suitable as a phosphor sealing material. Further, since the light durability is low, it can be applied only to portions other than the optical path such as the lens peripheral portion, and the use range is limited.

そこで、前述した構成のように、赤色蛍光体をなくして発光効率の高い緑色蛍光体を用い、レーザ照射時の温度上昇を抑えることで、フェニルメチルシリコーンを基材する樹脂材料(領域A2の材料)が蛍光体の封止材料として使用可能となる。フェニルメチルシリコーンは、150℃程度の耐熱性を有し、耐湿性と光耐久性をバランス良く備えて密封性が良好な材料である。   Therefore, as described above, a red phosphor is eliminated, a green phosphor having high luminous efficiency is used, and a temperature rise at the time of laser irradiation is suppressed, whereby a resin material (material in region A2) based on phenylmethyl silicone is used. ) Can be used as a phosphor sealing material. Phenylmethyl silicone has a heat resistance of about 150 ° C., is a material having a good balance between moisture resistance and light durability and good sealing properties.

このような光耐久性を向上した樹脂材料で蛍光体を封止することにより、発光部の光耐久性が向上する。しかし、光耐久性を更に向上させるために領域A3の材料を用いると、耐湿性の低下が無視できなくなる。内視鏡内部では、外部からの水の侵入の他、送気送水等による結露を生じることがあり、耐湿性が求められる。   By sealing the phosphor with such a resin material with improved light durability, the light durability of the light emitting portion is improved. However, if the material of the region A3 is used to further improve the light durability, a decrease in moisture resistance cannot be ignored. Inside the endoscope, in addition to intrusion of water from the outside, condensation may occur due to air supply / water supply, etc., and moisture resistance is required.

そこで本構成においては、蛍光体を封止する樹脂材料に対しては光耐久性の高い材料で構成すると共に、他の別部材によって発光部全体の耐湿性を向上させる構成にする。つまり、光耐久性と耐湿性の機能を、それぞれ別部材で実現する。   Therefore, in this configuration, the resin material for sealing the phosphor is made of a material having high light durability, and the moisture resistance of the entire light emitting unit is improved by another member. That is, the functions of light durability and moisture resistance are realized by separate members.

図13に本構成の発光部材の構成図を示す。
発光部材121は、光ファイバ55の光出射端に対面して配置され緑色蛍光体が分散配置された発光部85と、発光部85の光路前方に配置された透光性保護層となるカバーガラス123と、発光部85とカバーガラス123の外周を覆い、双方を内周面で支持するスリーブ125とを有して構成されている。このスリーブ125は、内視鏡挿入部の先端部に一端側が固定され、光出射側とは反対の図示しない他端側は、スリーブ125内を水密・気密構造にされている。
FIG. 13 shows a configuration diagram of the light emitting member of this configuration.
The light emitting member 121 is disposed facing the light emitting end of the optical fiber 55 and has a light emitting portion 85 in which green phosphors are dispersedly arranged, and a cover glass serving as a translucent protective layer disposed in front of the light path of the light emitting portion 85. 123 and a sleeve 125 that covers the outer periphery of the light emitting portion 85 and the cover glass 123 and supports both of them on the inner peripheral surface. One end side of the sleeve 125 is fixed to the distal end portion of the endoscope insertion portion, and the other end side (not shown) opposite to the light emitting side has a water-tight / air-tight structure inside the sleeve 125.

発光部85は、前述同様の緑色系の蛍光を発光する蛍光体を、図12に示す領域A3に属するメチルシリコン、特にゲル状メチルシリコン等の樹脂内に混在配置した構成である。なお、この樹脂で蛍光体を封止する際は、発光部85の外表面を外力による損傷を受けにくくするため、石英ガラスビーズや珪藻土を樹脂と混合することが好ましい。蛍光体を石英ガラスなどと混合することで、蛍光体の凝集や部分的な沈降による片寄りを防ぎ、均一に発光させることができる。   The light emitting unit 85 has a configuration in which phosphors that emit green fluorescent light similar to those described above are mixedly disposed in a resin such as methyl silicon belonging to the region A3 shown in FIG. 12, particularly gel-like methyl silicon. When sealing the phosphor with this resin, it is preferable to mix quartz glass beads or diatomaceous earth with the resin in order to make the outer surface of the light emitting portion 85 less susceptible to damage by external force. By mixing the phosphor with quartz glass or the like, it is possible to prevent deviation due to aggregation or partial sedimentation of the phosphor and to emit light uniformly.

蛍光体を封止する樹脂材料に要求される性状としては、硬さ、屈折率(光取り出し効率)、使用する波長範囲における透明性、温湿度・光に対する耐久性、ガス透過性等がある。これらの特性は上記樹脂を用いることで、いずれも良好な範囲に設定できる。   Properties required for the resin material for encapsulating the phosphor include hardness, refractive index (light extraction efficiency), transparency in the wavelength range to be used, temperature / humidity / light durability, gas permeability, and the like. These characteristics can be set in a favorable range by using the above resin.

カバーガラス123は、その光出射面123aとスリーブ125の光出射側端面125aとが同一の面上になるように配置されている。そして、カバーガラス123の光出射面123a上において、少なくとも光出射面123aの外周縁からスリーブ125の内周縁までの環状領域を含む範囲に、耐湿性を向上するための耐湿性コーティング層127が形成されている。   The cover glass 123 is arranged so that the light emission surface 123a thereof and the light emission side end surface 125a of the sleeve 125 are on the same surface. A moisture resistant coating layer 127 for improving moisture resistance is formed on the light emitting surface 123a of the cover glass 123 in a range including at least an annular region from the outer peripheral edge of the light emitting surface 123a to the inner peripheral edge of the sleeve 125. Has been.

耐湿性コーティング層127は、耐湿性、撥水性の高いセラミック系コーティング材料からなり、カバーガラス123とスリーブ125との界面から水分が侵入することを確実に防止する。   The moisture resistant coating layer 127 is made of a ceramic coating material having high moisture resistance and water repellency, and reliably prevents moisture from entering from the interface between the cover glass 123 and the sleeve 125.

この構成によれば、発光部85の蛍光体を封止する樹脂材料として耐湿性の低い材料を用いても、耐湿性コーティング層127によって水分の侵入が防止され、発光部85をスリーブ125内で水密、気密状態に維持できる。従って、高い水密性、気密性を維持しつつ、フェニルメチルシリコーンを基材する樹脂材料より更に光耐久性の高い樹脂材料を用いて蛍光体を封止し、発光部85全体の光耐久性を向上できる。   According to this configuration, even if a resin material having low moisture resistance is used as the resin material for sealing the phosphor of the light emitting unit 85, moisture entry is prevented by the moisture resistant coating layer 127, and the light emitting unit 85 is placed in the sleeve 125. It can be kept watertight and airtight. Therefore, while maintaining high watertightness and airtightness, the phosphor is sealed with a resin material having higher light durability than the resin material based on phenylmethylsilicone, and the light durability of the entire light emitting unit 85 is improved. It can be improved.

耐湿性コーティング層127は、図13に示すようにスリーブ125の光出射側端面125aとカバーガラス123の光出射面123aに設ける構成の他にも、図14に示すように、発光部85の外側表面を耐湿性コーティング層127Aで覆う構成としてもよい。この場合には、発光部85に対して、より確実な防湿効果が得られる。   As shown in FIG. 14, the moisture-resistant coating layer 127 is provided on the light emitting side end surface 125a of the sleeve 125 and the light emitting surface 123a of the cover glass 123 as shown in FIG. The surface may be covered with a moisture-resistant coating layer 127A. In this case, a more reliable moisture-proof effect can be obtained for the light emitting unit 85.

また、図15に示すように、スリーブ125の内周面とカバーガラス123の外周面との隙間に、耐湿性コーティング層127Bを形成する構成としてもよい。この場合には、水分の通路となるカバーガラス123の外周面全体が耐湿性コーティング層127Bで封止されているので、水分の侵入をより確実に防止できる。   Further, as shown in FIG. 15, a moisture-resistant coating layer 127 </ b> B may be formed in a gap between the inner peripheral surface of the sleeve 125 and the outer peripheral surface of the cover glass 123. In this case, since the entire outer peripheral surface of the cover glass 123 serving as a moisture passage is sealed with the moisture-resistant coating layer 127B, it is possible to more reliably prevent moisture from entering.

また、耐湿性コーティング層127は、上記のような照明窓のみならず、観察画像を得るための観察窓に対しても適用できる。その場合、良好な撥水性により、観察画像に液適による影響が生じることを防止できる。   The moisture resistant coating layer 127 can be applied not only to the illumination window as described above but also to an observation window for obtaining an observation image. In that case, the good water repellency can prevent the observation image from being affected by liquid suitability.

上記のコーティング層としては、アルコキシシランと混合物のコーティング層、より詳細には、アルコキシ金属塩の加水分解生成物と、金属微粒子又は金属酸化微粒子の分散物を含む層で構成される(例えば特開平10-279885を参照)。   The coating layer is composed of a coating layer of an alkoxysilane and a mixture, and more specifically, a layer containing a hydrolysis product of an alkoxy metal salt and a dispersion of metal fine particles or metal oxide fine particles (for example, Japanese Patent Laid-Open 10-279885).

アルコキシ金属塩によるコーティング剤は、アルコール性の加水分解・縮重合型コーティング剤で、疎水性・遮蔽性のあるガラス質の層を形成する。このコーティング層は、高硬度でしかも、耐熱性、撥水性、耐薬品性防蝕性に優れた性質を有する。このため、上記のように、コーティング膜を設けることで、耐湿性(密封性)が高められ、水分の侵入が防止される。また、コーティング層のベーキング処理時においても、銀反射膜に影響を及ぼすような不適正ガスの発生もない。   The coating agent with an alkoxy metal salt is an alcoholic hydrolysis / condensation type coating agent, and forms a glassy layer having hydrophobicity and shielding properties. This coating layer has high hardness and excellent properties such as heat resistance, water repellency, chemical resistance and corrosion resistance. For this reason, as described above, by providing the coating film, moisture resistance (sealing performance) is enhanced, and intrusion of moisture is prevented. Further, even when the coating layer is baked, there is no generation of inappropriate gas that affects the silver reflecting film.

上記アルコキシシランとしては、例えば以下の材料が挙げられる。テトラメトキシシラン、テトラエトキシシラン、テトラメトキシシランの縮合体(例えばメチルシリケート51)、テトラエトキシシランの縮合体(例えばメチルシリケート40)、メチルトリメトキシシラン、フェニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン。   Examples of the alkoxysilane include the following materials. Tetramethoxysilane, tetraethoxysilane, condensate of tetramethoxysilane (for example, methyl silicate 51), condensate of tetraethoxysilane (for example, methyl silicate 40), methyltrimethoxysilane, phenyltrimethoxysilane, 3-glycidoxypropyl Trimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane.

アルコキシキ金属塩を用いたコーティング層の材料としては、下記の材料を用いることができ、それぞれ特有の効果が得られる。
(A)アルコキシ金属塩と混合物(無機)
(1)SiO単独・・・艶が有り、高硬度であり、撥水性、絶縁性、擦れ耐久性に優れる。
(2)SiO+アルミナ(Al)フィラー混合・・・艶が有り、細かく、汚染防止、耐熱(膨張)性、照明光の散乱性に優れる。
(3)SiO+TiO(+アルミナ有り)・・・耐光性が向上し、抗菌性、耐熱性に優れる。
(4)更に、Agを添加・・・脱臭、抗菌、防かび効果があり、赤外線放射(放熱)性、耐蝕性に優れる。
(5)更に、ジルコニア(ZrO)を添加・・・高純度、高硬度にでき、高耐熱性、酸化防止効果がある。
(6)更に、酸化鉄を添加・・・高硬度で赤外線放射(放熱)性に優れる。
(7)CeO・・・紫外線吸収効果があり、例えば紫外線で励起させる場合に、波長変換されずに放射される紫外線を吸収する。
(8)酸化マグネシウム・・・密着性に優れる。
(9)Cu,酸化銅・・・放熱、抗菌、脱臭効果に優れる。
(10)アルミニウム
(11)チタン
(12)珪素、ボロン、窒化ホウ素BN、シアンCN等のセラミック
As the material of the coating layer using the alkoxy metal salt, the following materials can be used, and specific effects can be obtained respectively.
(A) Alkoxy metal salt and mixture (inorganic)
(1) SiO 2 alone: lustrous, high hardness, excellent in water repellency, insulation, and rubbing durability.
(2) SiO 2 + alumina (Al 2 O 3 ) filler mixture: lustrous, fine, anti-contamination, heat resistance (expansion), and excellent illumination light scattering.
(3) SiO 2 + TiO 2 (with + alumina): Improved light resistance and excellent antibacterial and heat resistance.
(4) Further, Ag is added ... has deodorizing, antibacterial and antifungal effects, and is excellent in infrared radiation (heat dissipation) and corrosion resistance.
(5) Further, zirconia (ZrO 3 ) is added ... High purity and high hardness can be obtained, and high heat resistance and antioxidant effect can be obtained.
(6) In addition, iron oxide is added ... High hardness and excellent infrared radiation (heat dissipation) properties.
(7) CeO 2 ... Has an ultraviolet absorption effect. For example, when excited with ultraviolet rays, it absorbs ultraviolet rays radiated without wavelength conversion.
(8) Magnesium oxide: Excellent adhesion.
(9) Cu, copper oxide: Excellent heat dissipation, antibacterial, and deodorizing effects.
(10) Aluminum (11) Titanium (12) Ceramics such as silicon, boron, boron nitride BN, cyan CN

(B)アルコキシ金属塩と混合物(無機と有機)
(1)アクリル・・・下地が荒れている場合に密着性が向上する(しかし、厚く形成すると剥離する)
(2)ブチラール・・・下地が荒れた金属等に好適に適用できる。
(3)フッ素
(4)シリコーン又は変性シリコーン・・・金属、樹脂、ガラスとの密着性が良好となる。
(B) Alkoxy metal salt and mixture (inorganic and organic)
(1) Acrylic: improves adhesion when the substrate is rough (but peels off when formed thick)
(2) Butyral: It can be suitably applied to a metal with a rough base.
(3) Fluorine (4) Silicone or modified silicone: Adhesiveness to metal, resin, glass is improved.

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。   As described above, the present invention is not limited to the above-described embodiments, and those skilled in the art can make changes and applications based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. This is also the scope of the present invention, and is included in the scope for which protection is sought.

以上の通り、本明細書には次の事項が開示されている。
(1) 内視鏡挿入部の先端に設けた照明窓から被検体に向けて照明光を照射する内視鏡用照明装置であって、
青色光を生成する青色半導体光源と、
赤色光を生成する赤色半導体光源と、
前記青色半導体光源からの青色光及び前記赤色半導体光源からの赤色光を導光する導光部材と、
前記照明窓の内側で前記導光部材の光出射端に対面して配置された発光部材と、
を備え、
前記発光部材が、前記赤色光を実質的に吸収せず透過させ、前記青色光の一部を励起光として吸収して緑色系の蛍光を発すると共に残りの一部を透過させる緑色蛍光体を含んで構成され、
前記緑色蛍光体が、前記発光部材内で樹脂材料により封止されている内視鏡用照明装置。
この内視鏡用照明装置によれば、赤色レーザ光で赤色光を生成するため、発光効率が比較的低い赤色発光の蛍光体を用いることなく、高効率で高輝度な照明光を生成できる。また、赤色光の強度を青色光の強度とは独立して制御可能になるため、照明光の色調の制御可能範囲が色空間内で拡大すると共に、より微妙な色調調整が可能となる。そして、樹脂材料により蛍光体を封止することで、内視鏡挿入部の先端に配置する発光部材の構造を大きく変更でき、より均一な強度分布の照明光を高効率で得られる構造にできる。
As described above, the following items are disclosed in this specification.
(1) An endoscope illumination device that irradiates illumination light toward an object from an illumination window provided at a distal end of an endoscope insertion portion,
A blue semiconductor light source that generates blue light;
A red semiconductor light source that generates red light; and
A light guide member for guiding blue light from the blue semiconductor light source and red light from the red semiconductor light source;
A light emitting member disposed facing the light exit end of the light guide member inside the illumination window;
With
The light emitting member includes a green phosphor that transmits the red light substantially without absorbing it, absorbs part of the blue light as excitation light, emits green-based fluorescence, and transmits the remaining part. Consists of
An endoscope illumination device in which the green phosphor is sealed with a resin material in the light emitting member.
According to this endoscope illumination device, since red light is generated by red laser light, high-efficiency and high-luminance illumination light can be generated without using a red-emitting phosphor having a relatively low emission efficiency. Further, since the intensity of red light can be controlled independently of the intensity of blue light, the controllable range of the color tone of illumination light is expanded in the color space, and more delicate color tone adjustment is possible. By sealing the phosphor with a resin material, the structure of the light emitting member disposed at the distal end of the endoscope insertion portion can be greatly changed, and the illumination light with a more uniform intensity distribution can be obtained with high efficiency. .

(2) (1)の内視鏡用照明装置であって、
前記導光部材が光ファイバからなる内視鏡用照明装置。
この内視鏡用照明装置によれば、細径な光ファイバにより、レーザ光を内視鏡挿入部を通じて内視鏡挿入部の先端の照明窓まで導光するので、内視鏡挿入部の細径化に寄与できる。
(2) The endoscope illumination device according to (1),
An endoscope illumination device in which the light guide member is made of an optical fiber.
According to this endoscope illumination device, the laser light is guided to the illumination window at the distal end of the endoscope insertion portion through the endoscope insertion portion by means of a thin optical fiber. It can contribute to diameter.

(3) (1)又は(2)の内視鏡用照明装置であって、
前記発光部材が、前記導光部材の光出射端に配置される光拡散部と、該光拡散部の光路前方に配置され前記緑色蛍光体が分散配置された発光部と、を有して構成される内視鏡用照明装置。
この内視鏡用照明装置によれば、導光部材からの出射光が光拡散部により分散され、発光部における広い面積に均一に照射される。このため、発光部から均一強度の蛍光が取り出せる。
(3) The endoscope illumination device according to (1) or (2),
The light emitting member includes a light diffusing portion disposed at a light emitting end of the light guide member, and a light emitting portion disposed in front of the light path of the light diffusing portion and in which the green phosphors are dispersedly disposed. Endoscope illumination device.
According to this endoscope illuminating device, the light emitted from the light guide member is dispersed by the light diffusing unit and is uniformly irradiated over a wide area in the light emitting unit. For this reason, fluorescence with uniform intensity can be extracted from the light emitting portion.

(4) (3)の内視鏡用照明装置であって、
前記発光部の光路前方側が、光散乱効果を有する凹凸面で形成された内視鏡用照明装置。
この内視鏡用照明装置によれば、発光部の光路前方側を凹凸面で形成することで、発光部の光出射面積を増加させると共に出射光の出射方向をランダムにでき、強度ムラの少ない照明光が得られる。
(4) The endoscope illumination device according to (3),
An endoscope illumination device in which an optical path front side of the light emitting unit is formed with an uneven surface having a light scattering effect.
According to this endoscope illuminating device, by forming the front side of the light path of the light emitting portion with a concavo-convex surface, the light emitting area of the light emitting portion can be increased and the emitting direction of the emitted light can be made random, and the intensity unevenness is small. Illumination light is obtained.

(5) (3)又は(4)の内視鏡用照明装置であって、
前記発光部の前記光路に対する垂直断面において、中央部が周辺部より厚肉に形成された内視鏡用照明装置。
この内視鏡用照明装置によれば、導光部材の光出射端からの出射光を、出射光強度の大きい領域に蛍光体をより多く配置できる。このため、発光部の発光強度を向上できる。
(5) The endoscope illumination device according to (3) or (4),
An endoscope illumination device in which a central part is formed thicker than a peripheral part in a vertical cross section of the light emitting part with respect to the optical path.
According to this endoscope illuminating device, a larger amount of phosphor can be arranged in a region where the intensity of emitted light from the light emitting end of the light guide member is high. For this reason, the emitted light intensity of a light emission part can be improved.

(6) (3)〜(5)のいずれか一つの内視鏡用照明装置であって、
前記発光部の光路後方側が、光散乱効果を有する凹凸面で形成された内視鏡用照明装置。
この内視鏡用照明装置によれば、導光部材の光出射端からの光が光拡散部から発光部に入射する際、入射光の強度分布が平均化されて、発光部全体を均一に発光させることできる。これにより、発光部材からの出射光の強度分布を均等化でき、ムラのない高品位な照明光が得られる。
(6) The endoscope illumination device according to any one of (3) to (5),
An endoscope illumination device in which an optical path rear side of the light emitting unit is formed with an uneven surface having a light scattering effect.
According to this endoscope illumination device, when light from the light exit end of the light guide member enters the light emitting portion from the light diffusing portion, the intensity distribution of the incident light is averaged to make the entire light emitting portion uniform. Can emit light. Thereby, the intensity distribution of the emitted light from the light emitting member can be equalized, and high-quality illumination light without unevenness can be obtained.

(7) (3)〜(6)のいずれか一つの内視鏡用照明装置であって、
前記光拡散部が透光性樹脂材料からなり、前記光拡散部の内部に前記透光性樹脂材料とは異なる材料からなる微小バブルが混在配置された内視鏡用照明装置。
この内視鏡用照明装置によれば、導光部材の出射端から光拡散部に入射された光が微小バブルによって反射・屈折され、効率良く光拡散される。このため、均等な光分布となって発光部に照射され、発光部における発光強度分布がより均一となる。
(7) The endoscope illumination device according to any one of (3) to (6),
An endoscope illumination apparatus in which the light diffusing portion is made of a translucent resin material, and microbubbles made of a material different from the translucent resin material are mixedly arranged inside the light diffusing portion.
According to this endoscope illuminating device, light incident on the light diffusing portion from the exit end of the light guide member is reflected and refracted by the microbubbles, and is efficiently diffused. For this reason, it becomes a uniform light distribution and is irradiated to the light emitting part, and the light emission intensity distribution in the light emitting part becomes more uniform.

(8) (7)の内視鏡用照明装置であって、
前記光拡散部の前記微小バブルが、前記導光部材の光出射端の近傍を他の領域より高い密度で配置された内視鏡用照明装置。
この内視鏡用照明装置によれば、導光部材の光出射端から出射される光が、微小バブルによって効率良く拡散され、光拡散部内の光拡散効果がより向上する。
(8) The endoscope illumination device according to (7),
Endoscopic illumination device in which the microbubbles of the light diffusing unit are arranged in the vicinity of the light emitting end of the light guide member at a higher density than other regions.
According to this endoscope illumination device, light emitted from the light exit end of the light guide member is efficiently diffused by the microbubbles, and the light diffusion effect in the light diffusion portion is further improved.

(9) (7)又は(8)の内視鏡用照明装置であって、
前記微小バブルが、前記導光部材の光出射端を起点として光路前方に向けて延びる光軸を長軸とする回転楕円体である内視鏡用照明装置。
この内視鏡用照明装置によれば、微小バブルに入射した光が光路後方へ散乱することを減少させ、光利用効率を向上できる。
(9) The endoscope illumination device according to (7) or (8),
The endoscope illumination device, wherein the microbubble is a spheroid whose major axis is an optical axis extending toward the front of the optical path starting from the light emitting end of the light guide member.
According to this endoscope illumination device, the light incident on the microbubbles can be reduced from being scattered to the rear of the optical path, and the light utilization efficiency can be improved.

(10) (7)〜(9)のいずれか一つの内視鏡用照明装置であって、
前記発光部に前記微小バブルが混在配置された内視鏡用照明装置。
この内視鏡用照明装置によれば、発光部にも微小バブルを設けることで、発光体内における蛍光体の密度調整が行え、蛍光体が発生する蛍光の散乱性を向上できる。
(10) The endoscope illumination device according to any one of (7) to (9),
An endoscope illumination device in which the microbubbles are mixedly disposed in the light emitting unit.
According to this endoscope illumination device, by providing microbubbles in the light emitting part, the density of the phosphor in the light emitter can be adjusted, and the scattering property of the fluorescence generated by the phosphor can be improved.

(11) (3)〜(10)のいずれか一つの内視鏡用照明装置であって、
前記導光部材の光出射端と前記光拡散部との間に、前記青色光及び前記赤色光を透過し、前記蛍光体が発する蛍光を反射する蛍光反射膜を設けた内視鏡用照明装置。
この内視鏡用照明装置によれば、蛍光反射膜により発光部からの蛍光が光ファイバを通じて光源側に戻ることを防止でき、光源を常に安定な状態に保つことができる。また、蛍光を無駄なく利用することで、光利用効率を向上できる。
(11) The endoscope illumination device according to any one of (3) to (10),
Endoscopic illumination device provided with a fluorescent reflection film that transmits the blue light and the red light and reflects the fluorescence emitted by the phosphor between the light emitting end of the light guide member and the light diffusion portion .
According to this endoscope illuminating device, it is possible to prevent the fluorescence from the light emitting portion from returning to the light source side through the optical fiber by the fluorescent reflection film, and the light source can always be kept in a stable state. Moreover, light utilization efficiency can be improved by using fluorescence without waste.

(12) (3)〜(11)のいずれか一つの内視鏡用照明装置であって、
前記光拡散部材における前記導光部材の光出射端から前記発光部までの外周面に金属反射膜を設けた内視鏡用照明装置。
この内視鏡用照明装置によれば、金属反射膜により光拡散部材内で反射が繰り返され、光路前方に向かう光成分を増加させることでき、光利用効率を向上できる。また、光拡散部材の外周面から外光が入り込むことを防止できる。
(12) The endoscope illumination device according to any one of (3) to (11),
An endoscope illuminating device in which a metal reflection film is provided on an outer peripheral surface from a light emitting end of the light guide member to the light emitting portion in the light diffusing member.
According to this endoscope illuminating device, reflection is repeated in the light diffusing member by the metal reflecting film, and the light component toward the front of the optical path can be increased, so that the light use efficiency can be improved. Moreover, it can prevent that external light enters from the outer peripheral surface of a light-diffusion member.

(13) (12)の内視鏡用照明装置であって、
前記金属反射膜が銀を含んで構成された内視鏡用照明装置。
この内視鏡用照明装置によれば、高反射率の銀を反射膜にすることで、光損失が抑えられる。
(13) The endoscope illumination device according to (12),
An endoscope illumination device in which the metal reflection film is configured to contain silver.
According to the endoscope illumination device, light loss can be suppressed by using high-reflectance silver as a reflective film.

(14) (3)〜(13)のいずれか一つの内視鏡用照明装置であって、
前記緑色蛍光体が、前記光拡散部に分散配置され、
前記導光部材の光出射端が、前記光拡散部の内部に挿入された内視鏡用照明装置。
この内視鏡用照明装置によれば、導光部材の光出射端が光拡散部の内部に配置されることで、導光された光を漏れなく光拡散部に照射できる。また、光拡散部にも緑色蛍光体が分散配置されることで、緑色蛍光体の総量を実質的に増量でき、光拡散部と発光部とから、より高強度の蛍光が得られる。
(14) The endoscope illumination device according to any one of (3) to (13),
The green phosphor is dispersedly disposed in the light diffusion portion;
An endoscope illumination device in which a light emitting end of the light guide member is inserted into the light diffusion portion.
According to this endoscope illumination device, the light output end of the light guide member is arranged inside the light diffusion portion, so that the light diffusion portion can be irradiated without leakage. Further, since the green phosphor is dispersedly arranged in the light diffusion portion, the total amount of the green phosphor can be substantially increased, and higher intensity fluorescence can be obtained from the light diffusion portion and the light emitting portion.

(15) (14)の内視鏡用照明装置であって、
前記導光部材の光出射端が、光ファイバのコア部がクラッド部から軸方向外側に突出して形成された内視鏡用照明装置。
この内視鏡用照明装置によれば、軸方向外側に突出したコア部から、導光部材を導光されてきた光が、露出したコア部全体から出射され、光拡散効果が高められる。
(15) The endoscope illumination device according to (14),
An endoscope illumination device in which the light emitting end of the light guide member is formed such that a core portion of an optical fiber protrudes axially outward from a cladding portion.
According to this endoscope illumination device, light guided through the light guide member from the core portion protruding outward in the axial direction is emitted from the entire exposed core portion, and the light diffusion effect is enhanced.

(16) (3)〜(15)のいずれか一つの内視鏡用照明装置であって、
前記発光部の光路前方に、前記発光部を覆う透光性無機材料層を有する内視鏡用照明装置。
この内視鏡用照明装置によれば、発光部が透光性無機材料層で覆われることで、内視鏡洗浄時における耐薬品性をより高めることができる。
(16) The endoscope illumination device according to any one of (3) to (15),
An endoscope illumination device having a light-transmitting inorganic material layer covering the light emitting unit in front of the light path of the light emitting unit.
According to the endoscope illumination device, the chemical resistance during endoscope cleaning can be further improved by covering the light emitting portion with the light-transmitting inorganic material layer.

(17) (16)の内視鏡用照明装置であって、
前記透光性無機材料層が、ガラス又はサファイアからなる内視鏡用照明装置。
この内視鏡用照明装置によれば、耐摩擦性を高め、発光部材の耐久性を高めることができる。
(17) The endoscope illumination device according to (16),
An endoscope illumination device in which the light-transmitting inorganic material layer is made of glass or sapphire.
According to the endoscope illumination device, it is possible to improve the friction resistance and the durability of the light emitting member.

(18) (1)〜(17)のいずれか一つの内視鏡用照明装置を搭載した内視鏡装置。
この内視鏡装置によれば、内視鏡挿入部の先端に配置する発光部材の構造を大きく変更でき、より均一な強度分布の照明光を高効率で得られる。
(18) An endoscope apparatus including the endoscope illumination device according to any one of (1) to (17).
According to this endoscope apparatus, the structure of the light emitting member disposed at the distal end of the endoscope insertion portion can be greatly changed, and illumination light with a more uniform intensity distribution can be obtained with high efficiency.

(19) (18)の内視鏡装置であって、
前記内視鏡挿入部の先端に、前記照明窓と該照明窓を収容する開口部とが配置され、
前記照明窓の光出射面上における、前記照明窓の外周縁と前記開口部の内周縁との間の環状領域を少なくとも含む範囲に、耐湿性コーティング層が形成された内視鏡装置。
この内視鏡装置によれば、照明窓の光出射面上における照明窓と開口部との間の環状領域に耐湿性コーティング層が形成されることで、この環状領域からの水分の侵入を確実に防止できる。
(19) The endoscope apparatus according to (18),
At the tip of the endoscope insertion portion, the illumination window and an opening for accommodating the illumination window are disposed,
An endoscope apparatus in which a moisture-resistant coating layer is formed in a range including at least an annular region between an outer peripheral edge of the illumination window and an inner peripheral edge of the opening on the light emission surface of the illumination window.
According to this endoscope apparatus, the moisture-resistant coating layer is formed in the annular region between the illumination window and the opening on the light emission surface of the illumination window, so that moisture can be reliably prevented from entering from the annular region. Can be prevented.

(20) (18)の内視鏡装置であって、
前記発光部の外側表面が、耐湿性コーティング層で覆われた内視鏡装置。
この内視鏡装置によれば、発光部が耐湿性コーティング層で覆われることで、発光部に対する水分の侵入を確実に防ぐことができる。
(20) The endoscope device according to (18),
An endoscope apparatus in which an outer surface of the light emitting unit is covered with a moisture-resistant coating layer.
According to this endoscope apparatus, since the light emitting part is covered with the moisture-resistant coating layer, it is possible to reliably prevent moisture from entering the light emitting part.

(21) (18)の内視鏡装置であって、
前記内視鏡挿入部の先端に、前記照明窓と、該照明窓の外周面と接合される内周面を有する開口部とが配置され、
前記照明窓の外周面と前記開口部の内周面との間に耐湿性コーティング層が形成された内視鏡装置。
この内視鏡装置によれば、水分の通路となる照明窓の外周面と開口部の内周面とが耐湿性コーティング層で封止されるため、水分の侵入をより確実に防止できる。
(21) The endoscope apparatus according to (18),
At the tip of the endoscope insertion portion, the illumination window and an opening having an inner peripheral surface joined to the outer peripheral surface of the illumination window are arranged,
An endoscope apparatus in which a moisture-resistant coating layer is formed between an outer peripheral surface of the illumination window and an inner peripheral surface of the opening.
According to this endoscope apparatus, since the outer peripheral surface of the illumination window serving as a moisture passage and the inner peripheral surface of the opening are sealed with the moisture-resistant coating layer, it is possible to prevent moisture from entering more reliably.

(22) (18)〜(21)のいずれか一つの内視鏡装置であって、
前記耐湿性コーティング層が、アルコキシ金属塩の加水分解生成物、金属微粒子又は金属酸化物の微粒子の分散物を含む組成である内視鏡装置。
この内視鏡装置によれば、撥水性の良好な材料により水分の侵入を確実に防止できる。
(22) The endoscope apparatus according to any one of (18) to (21),
An endoscope apparatus in which the moisture resistant coating layer has a composition containing a hydrolyzed product of an alkoxy metal salt, a dispersion of metal fine particles or metal oxide fine particles.
According to this endoscope apparatus, it is possible to reliably prevent moisture from entering with a material having good water repellency.

11 内視鏡
19 光源装置
25 挿入部
39 先端部(内視鏡先端部)
43A,43B 照明窓
47 光学部材
55,55A,55B 光ファイバ
55a 光出射端
57A,57B 発光部材
65 青色レーザ光
67 緑色の蛍光
69 赤色レーザ光
81,81A,81B,81C,81D,81E,81F,81G,81H,81I,81J 発光部材
83,83A 光拡散部
85 発光部
87 レンズ
89 光出射面
91 テーパ側面
93 光入射面
95 光入射面
97 微小バブル
99 微小バブル
100 内視鏡装置
101 蛍光反射膜
103 無機ガラス
105 金属反射膜
107 透光性樹脂層
109 コア部
111 クラッド部
121 発光部材
123 カバーガラス
125 スリーブ
125a 光出射側端面
127,127A,127B 耐湿性コーティング層
LD1 青色レーザ光源
LD2 赤色レーザ光源
DESCRIPTION OF SYMBOLS 11 Endoscope 19 Light source device 25 Insertion part 39 Front-end | tip part (endoscope front-end | tip part)
43A, 43B Illumination window 47 Optical member 55, 55A, 55B Optical fiber 55a Light emitting end 57A, 57B Light emitting member 65 Blue laser light 67 Green fluorescence 69 Red laser light 81, 81A, 81B, 81C, 81D, 81E, 81F, 81G, 81H, 81I, 81J Light emitting member 83, 83A Light diffusing portion 85 Light emitting portion 87 Lens 89 Light exit surface 91 Tapered side surface 93 Light incident surface 95 Light incident surface 97 Micro bubble 99 Micro bubble 100 Endoscope device 101 Fluorescent reflection film DESCRIPTION OF SYMBOLS 103 Inorganic glass 105 Metal reflecting film 107 Translucent resin layer 109 Core part 111 Cladding part 121 Light emitting member 123 Cover glass 125 Sleeve 125a Light emission side end surface 127, 127A, 127B Moisture resistant coating layer LD1 Blue laser light source LD2 Red laser light source

Claims (22)

内視鏡挿入部の先端に設けた照明窓から被検体に向けて照明光を照射する内視鏡用照明装置であって、
青色光を生成する青色半導体光源と、
赤色光を生成する赤色半導体光源と、
前記青色半導体光源からの青色光及び前記赤色半導体光源からの赤色光を導光する導光部材と、
前記照明窓の内側で前記導光部材の光出射端に対面して配置された発光部材と、
を備え、
前記発光部材が、前記赤色光を実質的に吸収せず透過させ、前記青色光の一部を励起光として吸収して緑色系の蛍光を発すると共に残りの一部を透過させる緑色蛍光体を含んで構成され、
前記緑色蛍光体が、前記発光部材内で樹脂材料により封止されている内視鏡用照明装置。
An endoscope illumination device that irradiates illumination light toward an object from an illumination window provided at a distal end of an endoscope insertion portion,
A blue semiconductor light source that generates blue light;
A red semiconductor light source that generates red light; and
A light guide member for guiding blue light from the blue semiconductor light source and red light from the red semiconductor light source;
A light emitting member disposed facing the light exit end of the light guide member inside the illumination window;
With
The light emitting member includes a green phosphor that transmits the red light substantially without absorbing it, absorbs part of the blue light as excitation light, emits green-based fluorescence, and transmits the remaining part. Consists of
An endoscope illumination device in which the green phosphor is sealed with a resin material in the light emitting member.
請求項1記載の内視鏡用照明装置であって、
前記導光部材が光ファイバからなる内視鏡用照明装置。
The endoscope illumination device according to claim 1,
An endoscope illumination device in which the light guide member is made of an optical fiber.
請求項1又は請求項2記載の内視鏡用照明装置であって、
前記発光部材が、前記導光部材の光出射端に配置される光拡散部と、該光拡散部の光路前方に配置され前記緑色蛍光体が分散配置された発光部と、を有して構成される内視鏡用照明装置。
An endoscope illumination device according to claim 1 or claim 2,
The light emitting member includes a light diffusing portion disposed at a light emitting end of the light guide member, and a light emitting portion disposed in front of the light path of the light diffusing portion and in which the green phosphors are dispersedly disposed. Endoscope illumination device.
請求項3記載の内視鏡用照明装置であって、
前記発光部の光路前方側が、光散乱効果を有する凹凸面で形成された内視鏡用照明装置。
An endoscope illumination device according to claim 3,
An endoscope illumination device in which an optical path front side of the light emitting unit is formed with an uneven surface having a light scattering effect.
請求項3又は請求項4記載の内視鏡用照明装置であって、
前記発光部の前記光路に対する垂直断面において、中央部が周辺部より厚肉に形成された内視鏡用照明装置。
An endoscope illumination device according to claim 3 or claim 4,
An endoscope illumination device in which a central part is formed thicker than a peripheral part in a vertical cross section of the light emitting part with respect to the optical path.
請求項3〜請求項5のいずれか一項記載の内視鏡用照明装置であって、
前記発光部の光路後方側が、光散乱効果を有する凹凸面で形成された内視鏡用照明装置。
An endoscope illumination device according to any one of claims 3 to 5,
An endoscope illumination device in which an optical path rear side of the light emitting unit is formed with an uneven surface having a light scattering effect.
請求項3〜請求項6のいずれか一項記載の内視鏡用照明装置であって、
前記光拡散部が透光性樹脂材料からなり、前記光拡散部の内部に前記透光性樹脂材料とは異なる材料の微小バブルが混在配置された内視鏡用照明装置。
An endoscope illumination device according to any one of claims 3 to 6,
An endoscope illumination device in which the light diffusing portion is made of a translucent resin material, and microbubbles made of a material different from the translucent resin material are mixedly arranged inside the light diffusing portion.
請求項7記載の内視鏡用照明装置であって、
前記光拡散部の前記微小バブルが、前記導光部材の光出射端の近傍を他の領域より高い密度で配置された内視鏡用照明装置。
The endoscope illumination device according to claim 7,
Endoscopic illumination device in which the microbubbles of the light diffusing unit are arranged in the vicinity of the light emitting end of the light guide member at a higher density than other regions.
請求項7又は請求項8記載の内視鏡用照明装置であって、
前記微小バブルが、前記導光部材の光出射端を起点として光路前方に向けて延びる光軸を長軸とする回転楕円体である内視鏡用照明装置。
An endoscope illumination device according to claim 7 or 8,
The endoscope illumination device, wherein the microbubble is a spheroid whose major axis is an optical axis extending toward the front of the optical path starting from the light emitting end of the light guide member.
請求項7〜請求項9のいずれか一項記載の内視鏡用照明装置であって、
前記発光部に前記微小バブルが混在配置された内視鏡用照明装置。
It is an illuminating device for endoscopes as described in any one of Claims 7-9,
An endoscope illumination device in which the microbubbles are mixedly disposed in the light emitting unit.
請求項3〜請求項10のいずれか一項記載の内視鏡用照明装置であって、
前記導光部材の光出射端と前記光拡散部との間に、前記青色光及び前記赤色光を透過し、前記蛍光体が発する蛍光を反射する蛍光反射膜を設けた内視鏡用照明装置。
An endoscope illumination device according to any one of claims 3 to 10,
Endoscopic illumination device provided with a fluorescent reflection film that transmits the blue light and the red light and reflects the fluorescence emitted by the phosphor between the light emitting end of the light guide member and the light diffusion portion .
請求項3〜請求項11のいずれか一項記載の内視鏡用照明装置であって、
前記光拡散部材における前記導光部材の光出射端から前記発光部までの外周面に金属反射膜を設けた内視鏡用照明装置。
An endoscope illumination device according to any one of claims 3 to 11,
An endoscope illuminating device in which a metal reflection film is provided on an outer peripheral surface from a light emitting end of the light guide member to the light emitting portion in the light diffusing member.
請求項12記載の内視鏡用照明装置であって、
前記金属反射膜が銀を含んで構成された内視鏡用照明装置。
An endoscope illumination device according to claim 12,
An endoscope illumination device in which the metal reflection film is configured to contain silver.
請求項3〜請求項13のいずれか一項記載の内視鏡用照明装置であって、
前記緑色蛍光体が、前記光拡散部に分散配置され、
前記導光部材の光出射端が、前記光拡散部の内部に挿入された内視鏡用照明装置。
An endoscope illumination device according to any one of claims 3 to 13,
The green phosphor is dispersedly disposed in the light diffusion portion;
An endoscope illumination device in which a light emitting end of the light guide member is inserted into the light diffusion portion.
請求項14の内視鏡用照明装置であって、
前記導光部材の光出射端が、光ファイバのコア部がクラッド部から外側に突出して形成された内視鏡用照明装置。
The endoscope illumination device according to claim 14,
An endoscope illumination device in which a light emitting end of the light guide member is formed such that a core portion of an optical fiber protrudes outward from a clad portion.
請求項3〜請求項15のいずれか一項記載の内視鏡用照明装置であって、
前記発光部の光路前方に、前記発光部を覆う透光性無機材料層を有する内視鏡用照明装置。
An endoscope illumination device according to any one of claims 3 to 15,
An endoscope illumination device having a light-transmitting inorganic material layer covering the light emitting unit in front of the light path of the light emitting unit.
請求項16記載の内視鏡用照明装置であって、
前記透光性無機材料層が、ガラス又はサファイアからなる内視鏡用照明装置。
The endoscope illumination device according to claim 16,
An endoscope illumination device in which the light-transmitting inorganic material layer is made of glass or sapphire.
請求項1〜請求項17のいずれか一項記載の内視鏡用照明装置を搭載した内視鏡装置。   An endoscope apparatus equipped with the endoscope illumination apparatus according to any one of claims 1 to 17. 請求項18記載の内視鏡装置であって、
前記内視鏡挿入部の先端に、前記照明窓と該照明窓を収容する開口部とが配置され、
前記照明窓の光出射面上における、前記照明窓の外周縁と前記開口部の内周縁との間の環状領域を少なくとも含む範囲に、耐湿性コーティング層が形成された内視鏡装置。
The endoscope apparatus according to claim 18, wherein
At the tip of the endoscope insertion portion, the illumination window and an opening for accommodating the illumination window are disposed,
An endoscope apparatus in which a moisture-resistant coating layer is formed in a range including at least an annular region between an outer peripheral edge of the illumination window and an inner peripheral edge of the opening on the light emission surface of the illumination window.
請求項18記載の内視鏡装置であって、
前記発光部の外側表面が、耐湿性コーティング層で覆われた内視鏡装置。
The endoscope apparatus according to claim 18, wherein
An endoscope apparatus in which an outer surface of the light emitting unit is covered with a moisture-resistant coating layer.
請求項18記載の内視鏡装置であって、
前記内視鏡挿入部の先端に、前記照明窓と、該照明窓の外周面と接合される内周面を有する開口部とが配置され、
前記照明窓の外周面と前記開口部の内周面との間に耐湿性コーティング層が形成された内視鏡装置。
The endoscope apparatus according to claim 18, wherein
At the tip of the endoscope insertion portion, the illumination window and an opening having an inner peripheral surface joined to the outer peripheral surface of the illumination window are arranged,
An endoscope apparatus in which a moisture-resistant coating layer is formed between an outer peripheral surface of the illumination window and an inner peripheral surface of the opening.
請求項18〜請求項21のいずれか一項記載の内視鏡装置であって、
前記耐湿性コーティング層が、アルコキシ金属塩の加水分解生成物、金属微粒子又は金属酸化物の微粒子の分散物を含む組成である内視鏡装置。
The endoscope apparatus according to any one of claims 18 to 21,
An endoscope apparatus in which the moisture resistant coating layer has a composition containing a hydrolyzed product of an alkoxy metal salt, a dispersion of metal fine particles or metal oxide fine particles.
JP2011233204A 2011-10-24 2011-10-24 Endoscopic illumination device and endoscope device Pending JP2013090674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233204A JP2013090674A (en) 2011-10-24 2011-10-24 Endoscopic illumination device and endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233204A JP2013090674A (en) 2011-10-24 2011-10-24 Endoscopic illumination device and endoscope device

Publications (1)

Publication Number Publication Date
JP2013090674A true JP2013090674A (en) 2013-05-16

Family

ID=48614331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233204A Pending JP2013090674A (en) 2011-10-24 2011-10-24 Endoscopic illumination device and endoscope device

Country Status (1)

Country Link
JP (1) JP2013090674A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104047A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Illumination device and endoscope system
WO2017203696A1 (en) * 2016-05-27 2017-11-30 オリンパス株式会社 Illumination unit
EP4024117A4 (en) * 2019-08-27 2022-11-02 FUJIFILM Corporation Lighting optical system for endoscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104047A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Illumination device and endoscope system
JPWO2017104047A1 (en) * 2015-12-17 2018-10-04 オリンパス株式会社 Lighting device and endoscope system
WO2017203696A1 (en) * 2016-05-27 2017-11-30 オリンパス株式会社 Illumination unit
CN109310308A (en) * 2016-05-27 2019-02-05 奥林巴斯株式会社 Lighting unit
US10598850B2 (en) 2016-05-27 2020-03-24 Olympus Corporation Lighting unit
EP4024117A4 (en) * 2019-08-27 2022-11-02 FUJIFILM Corporation Lighting optical system for endoscope

Similar Documents

Publication Publication Date Title
EP1672755B1 (en) Light emitting device
JP4375270B2 (en) Light emitting device
JP6246622B2 (en) Light source device and lighting device
EP1734302B1 (en) A light emitting device
JP4379530B2 (en) Light emitting device
JP4793684B2 (en) Light emitting device
JP4946188B2 (en) Light emitting device
JP2008262765A (en) Light-emitting diode lamp fitting with wave length conversion layer
JP4720177B2 (en) Light emitting device
JP2006173324A (en) Light emitting device
TW200930934A (en) Light source and illumination system having a predefined external appearance
JP2019179920A (en) Light emitting device
JP5358872B2 (en) Light emitting device
JP2013027432A (en) Endoscope apparatus and method of manufacturing the same
JP2011164537A (en) Display device
CN108474536A (en) Light conversion module
JP2013090674A (en) Endoscopic illumination device and endoscope device
JP2006314082A (en) Light-emitting unit, illuminating device using same unit and image reading apparatus
JP4730227B2 (en) Light emitting device
JP6827227B2 (en) Wavelength converter and lighting device
JP6986523B2 (en) Optical conversion device
JP2006257290A (en) Red phosphor and light-emitting device obtained using the same
JP5124908B2 (en) Light emitting device
JP5135735B2 (en) Light emitting device
JP6596582B2 (en) Lighting device