JP2012248402A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2012248402A
JP2012248402A JP2011119147A JP2011119147A JP2012248402A JP 2012248402 A JP2012248402 A JP 2012248402A JP 2011119147 A JP2011119147 A JP 2011119147A JP 2011119147 A JP2011119147 A JP 2011119147A JP 2012248402 A JP2012248402 A JP 2012248402A
Authority
JP
Japan
Prior art keywords
light
optical functional
functional member
optical
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011119147A
Other languages
Japanese (ja)
Other versions
JP5851119B2 (en
Inventor
Takeshi Ito
毅 伊藤
Yoshie Aikawa
良恵 相川
Hiroyuki Kamee
宏幸 亀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011119147A priority Critical patent/JP5851119B2/en
Priority to PCT/JP2012/063526 priority patent/WO2012165347A1/en
Priority to EP12793721.7A priority patent/EP2716967A4/en
Priority to CN201280025940.5A priority patent/CN103562623B/en
Publication of JP2012248402A publication Critical patent/JP2012248402A/en
Priority to US14/079,913 priority patent/US9134010B2/en
Application granted granted Critical
Publication of JP5851119B2 publication Critical patent/JP5851119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light source device with a diffusion function of a high light use efficiency.SOLUTION: The light source device 100 includes a primary light source 110 emitting a primary light, a first optical function member 150 to which the primary light enters and which changes a progressing direction of the first primary light, a second optical function member 143 for changing the progressing direction of the primary light of which the progressing direction is changed by the first optical function member 150, a third optical function member 133 which indicates a region between the first optical function member 150 and the second optical function member 143 and is arranged on an optical path of the primary light directed from the first optical function member 150 to the second optical function member 143, and a window part from which a part of the primary light is emitted to the outside without re-entering into the first optical function member 150. At least one of the first optical function member 150, the second optical function member 143, and the third optical function member 133 has a diffusion function for diffusing the primary light.

Description

本発明は、光源装置に関する。   The present invention relates to a light source device.

現在、小型固体光源と光ファイバとを組み合わせたファイバ光源が開発されている。このファイバ光源は、細い構造物の先端から光を照射する光源装置として用いられる。   Currently, fiber light sources combining a small solid light source and an optical fiber have been developed. This fiber light source is used as a light source device that emits light from the tip of a thin structure.

このような光源装置は、例えば特許文献1に開示されている。特許文献1において、レーザ光源と拡散板とを組み合わせたファイバ光源装置を搭載した内視鏡装置が提案されている。   Such a light source device is disclosed in Patent Document 1, for example. Patent Document 1 proposes an endoscope apparatus equipped with a fiber light source device in which a laser light source and a diffusion plate are combined.

図5に示すファイバ光源装置1において、3原色レーザであるHe−Cdレーザ20から出射されたレーザ光と、赤色レーザであるHe−Neレーザ21から出射されたレーザ光とは、ライトガイド10によって内視鏡2の先端部まで導光され、拡散板11と照度分布調整フィルタ12とを介して照明対象物である生体4を照射している。一般に、レーザ光を代表とする固体光源光の光強度は、光軸上で強く、光軸周辺部では弱い。また、固体光源光は可干渉性を有するため、照明対象物上にはスペックルと呼ばれる光の斑点模様が生じる場合がある。これらの特性は、照明を目的とした光源装置としては望ましくない。そこで、特許文献1では、拡散板11がレーザ光を拡散することで、所望の照明光を実現している。すなわち、内視鏡2等、細い管腔内を照明可能な光源装置において、スペックルなく、所望の照度分布を得る光源装置を可能としている。   In the fiber light source device 1 shown in FIG. 5, the laser light emitted from the He—Cd laser 20 that is the three primary color laser and the laser light emitted from the He—Ne laser 21 that is the red laser are transmitted by the light guide 10. The light is guided to the distal end portion of the endoscope 2, and irradiates the living body 4 that is an illumination object through the diffusion plate 11 and the illuminance distribution adjustment filter 12. In general, the light intensity of solid-state light source typified by laser light is strong on the optical axis and weak in the periphery of the optical axis. Further, since the solid light source light has coherence, a speckled pattern of light called speckle may occur on the illumination object. These characteristics are not desirable for a light source device for illumination purposes. Therefore, in Patent Document 1, desired light is realized by the diffusion plate 11 diffusing laser light. That is, in the light source device that can illuminate a narrow lumen such as the endoscope 2, a light source device that obtains a desired illuminance distribution without speckle is enabled.

特開平10−286234号公報Japanese Patent Laid-Open No. 10-286234

上述の特許文献1に提案されているファイバ光源装置1において、ライトガイド10から出射されたレーザ光は拡散板11に照射される。拡散板11は、レーザ光を拡散して前方に出射する機能を有している。このときレーザ光の一部は、拡散に伴い、後方、すなわちライトガイド10側にも放射される。この後方に放射されたレーザ光は、ロスとなるばかりでなく、内視鏡2の内部に吸収され熱となる。すなわち、照明光が暗くなり、ファイバ光源装置1の先端部の温度が上がってしまい、結果として拡散板11近傍での光利用効率が低くなるという問題がある。   In the fiber light source device 1 proposed in Patent Document 1 described above, the laser beam emitted from the light guide 10 is irradiated to the diffusion plate 11. The diffusion plate 11 has a function of diffusing laser light and emitting it forward. At this time, a part of the laser light is radiated to the rear side, that is, the light guide 10 side along with the diffusion. The laser light emitted backward is not only lost, but also absorbed into the endoscope 2 and becomes heat. That is, there is a problem that the illumination light becomes dark and the temperature of the distal end portion of the fiber light source device 1 rises, and as a result, the light use efficiency in the vicinity of the diffusion plate 11 is lowered.

本発明の目的は、これらの事情に鑑みてなされたものであり、光利用効率が高い拡散機能を有する光源装置を提供することを目的とする。   An object of the present invention is made in view of these circumstances, and an object thereof is to provide a light source device having a diffusion function with high light utilization efficiency.

本発明は目的を達成するために、1次光を出射する1次光源と、前記1次光が入射し、前記1次光の進行方向を転向する第1の光学機能部材と、前記第1の光学機能部材によって進行方向が転向した前記1次光の進行方向を転向する第2の光学機能部材と、前記第1の光学機能部材と前記第2の光学機能部材との間の領域を示し、前記第1の光学機能部材から前記第2の光学機能部材に向かう前記1次光の光路上に配設されている第3の光学機能部材と、前記1次光の一部が前記第1の光学機能部材と前記第3の光学機能部材と前記第2の光学機能部材との順で通過する際、前記1次光の一部が前記第1の光学機能部材に再び入射することなく外部に出射される窓部と、を具備し、前記第1の光学機能部材と前記第2の光学機能部材と前記第3の光学機能部材との少なくとも1つは、前記1次光を拡散する拡散機能を有することを特徴とする光源装置を提供する。   In order to achieve the object of the present invention, a primary light source that emits primary light, a first optical functional member that receives the primary light and turns the traveling direction of the primary light, and the first 2 shows a region between the first optical functional member and the second optical functional member, the second optical functional member redirecting the traveling direction of the primary light whose traveling direction is turned by the optical functional member of FIG. , A third optical functional member disposed on the optical path of the primary light from the first optical functional member toward the second optical functional member, and a part of the primary light is the first optical member. When the optical functional member, the third optical functional member, and the second optical functional member pass through in this order, a part of the primary light is not incident on the first optical functional member again. The first optical functional member, the second optical functional member, and the first optical functional member. At least one of the optical functional member is to provide a light source device characterized by having a diffusion function that diffuses the primary light.

本発明によれば、光利用効率が高い拡散機能を有する光源装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light source device which has a spreading | diffusion function with high light utilization efficiency can be provided.

図1Aは、本発明の第1実施形態に係る光源装置の概略図である。FIG. 1A is a schematic diagram of a light source device according to the first embodiment of the present invention. 図1Bは、光拡散ユニット及び導光部材の拡大斜視図である。FIG. 1B is an enlarged perspective view of the light diffusion unit and the light guide member. 図1Cは、光拡散ユニット及び導光部材の拡大断面図である。FIG. 1C is an enlarged cross-sectional view of the light diffusion unit and the light guide member. 図1Dは、拡散部材の拡大断面図である。FIG. 1D is an enlarged cross-sectional view of the diffusing member. 図1Eは、拡散部材の変形例であり、拡散部材の拡大断面図である。FIG. 1E is a modified example of the diffusing member and is an enlarged cross-sectional view of the diffusing member. 図2は、本実施形態の変形例における光拡散ユニット及び導光部材の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a light diffusing unit and a light guide member in a modification of the present embodiment. 図3Aは、本発明の第2実施形態に係る光源装置の概略図である。FIG. 3A is a schematic diagram of a light source device according to a second embodiment of the present invention. 図3Bは、光拡散ユニットの拡大断面図である。FIG. 3B is an enlarged cross-sectional view of the light diffusion unit. 図3Cは、光拡散ユニットの変形例であり、光拡散ユニットの断面図である。FIG. 3C is a modification of the light diffusion unit, and is a cross-sectional view of the light diffusion unit. 図4Aは、本発明の第3実施形態に係る光源装置の概略図である。FIG. 4A is a schematic diagram of a light source device according to a third embodiment of the present invention. 図4Bは、光拡散ユニットの拡大断面図である。FIG. 4B is an enlarged cross-sectional view of the light diffusion unit. 図5は、従来の光源装置の概略図である。FIG. 5 is a schematic view of a conventional light source device.

以下、図面を参照して本発明の実施形態について詳細に説明する。
[第1実施形態]
[構成]
図1Aと図1Bと図1Cと図1Dと図1Eとを参照して第1の実施形態について説明する。なお、図1A及び図1Bでは一部の部材の図示を省略している。また、図1Bでは、説明のために導光部材120と光拡散ユニット130の入射部141とを離間させて表示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
[Constitution]
The first embodiment will be described with reference to FIGS. 1A, 1B, 1C, 1D, and 1E. In FIG. 1A and FIG. 1B, illustration of some members is omitted. Moreover, in FIG. 1B, the light guide member 120 and the incident portion 141 of the light diffusion unit 130 are separated from each other for explanation.

光源装置100は、主に、1次光源110と光拡散ユニット130とによって構成されている。光源装置100は、1次光源110から出射された1次光L1を、光拡散ユニット130内に配設されている拡散部材150に照射する構成である。各部の詳細な構造を次に説明する。   The light source device 100 is mainly composed of a primary light source 110 and a light diffusion unit 130. The light source device 100 is configured to irradiate the diffusing member 150 disposed in the light diffusing unit 130 with the primary light L1 emitted from the primary light source 110. The detailed structure of each part will be described next.

1次光源110は、1次光L1を出射する半導体レーザ光源111と、半導体レーザ光源111から出射された1次光L1を集光する集光レンズ112と、集光レンズ112によって集光された1次光L1を拡散部材150に導光する導光路である導光部材120とを有している。
集光レンズ112は、1次光L1を導光部材120の1次光入射端121に集光する。
導光部材120には、例えば、コア径50μm、開口数FNA=0.2を有するマルチモード光ファイバが用いられる。導光部材120は、集光レンズ112によって集光した1次光L1が入射する1次光入射端121と、1次光L1を光源光として拡散部材150に出射する1次光出射端122とを有している。
The primary light source 110 is condensed by the semiconductor laser light source 111 that emits the primary light L1, the condensing lens 112 that condenses the primary light L1 emitted from the semiconductor laser light source 111, and the condensing lens 112. The light guide member 120 is a light guide path that guides the primary light L1 to the diffusion member 150.
The condensing lens 112 condenses the primary light L <b> 1 on the primary light incident end 121 of the light guide member 120.
For the light guide member 120, for example, a multimode optical fiber having a core diameter of 50 μm and a numerical aperture FNA = 0.2 is used. The light guide member 120 includes a primary light incident end 121 on which the primary light L1 collected by the condensing lens 112 is incident, and a primary light exit end 122 that emits the primary light L1 as light source light to the diffusion member 150. have.

光拡散ユニット130は、1次光出射端122から出射された1次光L1が入射する入射部141と、所望の照明光を外部の照射対象物160に出射する機能を有する出射部142を有している。また、光拡散ユニット130は、第1の光学機能部材としての反射型の拡散部材150と、第3の光学機能部材としての光透過部材133とを有し、導光部材120によって導光された1次光L1を所望の拡散光L2として拡散して出射する。第2の光学機能部材については、後述する。   The light diffusing unit 130 includes an incident portion 141 where the primary light L1 emitted from the primary light emitting end 122 is incident, and an emitting portion 142 having a function of emitting desired illumination light to the external irradiation object 160. is doing. The light diffusion unit 130 includes a reflective diffusion member 150 as a first optical function member and a light transmission member 133 as a third optical function member, and is guided by the light guide member 120. The primary light L1 is diffused and emitted as desired diffused light L2. The second optical function member will be described later.

拡散部材150は、拡散部材150に入射した入射光を、その波長を変えず、広がり角を広げ、過干渉性を低めた拡散光L2に変換する機能を有している。拡散部材150は、入射部141側から照射された1次光L1を拡散光L2として拡散し、拡散する拡散光L2の一部を入射部141側に出射する機能を有している。拡散部材150は、例えば円柱形状を有している。このような拡散部材150は、導光部材120の1次光出射端122に対面した第1の領域151と、第1の領域151と対向する第3の領域152と、第1の領域151及び第3の領域152に挟まれた側面である第2の領域153とを有している。第1の領域151は、1次光出射端122から離間している。第1の領域151は、1次光出射端122と入射部141とを通る、導光部材120の中心軸120a上に配設されている。   The diffusing member 150 has a function of converting incident light that has entered the diffusing member 150 into diffused light L2 that has a widening angle and reduced overcoherence without changing its wavelength. The diffusing member 150 has a function of diffusing the primary light L1 irradiated from the incident portion 141 side as diffused light L2, and emitting a part of the diffused diffused light L2 to the incident portion 141 side. The diffusion member 150 has, for example, a cylindrical shape. Such a diffusing member 150 includes a first region 151 facing the primary light emitting end 122 of the light guide member 120, a third region 152 facing the first region 151, a first region 151, and And a second region 153 which is a side surface sandwiched between the third regions 152. The first region 151 is separated from the primary light emitting end 122. The first region 151 is disposed on the central axis 120 a of the light guide member 120 that passes through the primary light emitting end 122 and the incident portion 141.

光透過部材133は、拡散部材150の第1の領域151と第2の領域153とを取り囲むように形成されており、拡散部材150の第1の領域151と第2の領域153とに接している。別言すれば、光透過部材133は、入射部141を円錐台の小径の第1面である上面、出射部142を大径の第2面である底面、側面をテーパ面とする、円錐台形状の立体である。光透過部材133は、例えば、拡散部材150の第1の領域151の中心が円錐台形状の中心軸上に配設され、拡散部材150の第3の領域152が出射部142に配設されるように、拡散部材150を内部に有している。なお光透過部材133は、立体の内部の空間の少なくとも一部に配設されている。また、光透過部材133は、1次光L1と、拡散部材150から出射される拡散光L2との両方を透過する性質を有している。光透過部材133の側面、すなわち、円錐台形状の傾斜面には、第2の光学機能部材としての正反射部143が直接形成されている。正反射部143は、立体の側面の少なくとも一部に配設されていればよい。   The light transmission member 133 is formed so as to surround the first region 151 and the second region 153 of the diffusion member 150, and is in contact with the first region 151 and the second region 153 of the diffusion member 150. Yes. In other words, the light transmitting member 133 has a truncated cone in which the incident portion 141 has a top surface that is the first surface with a small diameter of the truncated cone, the emission portion 142 has a bottom surface that is the second surface with a large diameter, and the side surface has a tapered surface. It is a solid shape. In the light transmitting member 133, for example, the center of the first region 151 of the diffusing member 150 is disposed on the center axis of the truncated cone, and the third region 152 of the diffusing member 150 is disposed in the emitting portion 142. As described above, the diffusion member 150 is provided inside. The light transmitting member 133 is disposed in at least a part of the space inside the solid body. The light transmitting member 133 has a property of transmitting both the primary light L1 and the diffused light L2 emitted from the diffusing member 150. A regular reflection portion 143 as a second optical function member is directly formed on the side surface of the light transmitting member 133, that is, the truncated cone-shaped inclined surface. The regular reflection part 143 should just be arrange | positioned in at least one part of the solid side surface.

正反射部143は、正反射部143に入射した入射光を正反射して反射光に変換する機能を有している。本実施形態においては、正反射部143に入射する入射光は、拡散部材150によって拡散されることでその進行方向が転向された拡散光L2である。また、正反射部143から出射する反射光は、正反射部143により正反射されることでその進行方向が転向された拡散光L2である。なお、正反射部143と拡散部材150とにおいて、理想的な反射面では、純粋な正反射や拡散反射を実現可能であるが、多くの場合、実際の反射面では、正反射する成分と拡散反射する成分とが混在する。本発明では、拡散部材150は、純粋な正反射を含む、主に拡散反射が支配的な反射機能を有する部材を意味する。また正反射部143は、純粋な正反射を含む、主に正反射が支配的な反射機能を有する部材を意味する。純粋な正反射に近い正反射部143は金属等の薄膜を成膜することで実現できる。これにより、テーパ形状の側面を活かし、より多くの反射光を出射部142側に導き易い正反射部143を実現できる。また、純粋な拡散反射に近い正反射部143は、酸化物や樹脂の粉末を塗布することで実現できる。これにより、正反射部143の形状の影響を受けにくい正反射部143を実現できる。   The regular reflection unit 143 has a function of regularly reflecting incident light incident on the regular reflection unit 143 and converting the incident light into reflected light. In the present embodiment, the incident light incident on the regular reflection portion 143 is diffused light L2 whose traveling direction is turned by being diffused by the diffusing member 150. Further, the reflected light emitted from the regular reflection part 143 is diffused light L2 whose traveling direction is turned by being regularly reflected by the regular reflection part 143. In addition, in the regular reflection part 143 and the diffusing member 150, pure regular reflection or diffuse reflection can be realized on an ideal reflection surface, but in many cases, an actual reflection surface and components that are regularly reflected and diffusion are realized. The component which reflects is mixed. In the present invention, the diffusing member 150 means a member having a reflection function mainly including diffuse reflection, including pure regular reflection. The regular reflection portion 143 means a member having a reflection function mainly including regular reflection, including pure regular reflection. The regular reflection part 143 close to pure regular reflection can be realized by forming a thin film of metal or the like. Thereby, the regular reflection part 143 which makes it easy to guide more reflected light to the emission part 142 side by utilizing the tapered side surface can be realized. Further, the regular reflection part 143 close to pure diffuse reflection can be realized by applying oxide or resin powder. Thereby, the regular reflection part 143 which is hard to be influenced by the shape of the regular reflection part 143 can be realized.

本発明の正反射部143は、光透過部材133の側面全面に形成されている。なお正反射部143は、光透過部材133のテーパ面の一部のみに形成されてもよい。   The regular reflection portion 143 of the present invention is formed on the entire side surface of the light transmission member 133. The regular reflection portion 143 may be formed only on a part of the tapered surface of the light transmission member 133.

円柱形状の拡散部材150の第3の領域152は、出射部142よりも面積が小さく、且つ、出射部142とほぼ同心で配置されている。このように配置することで、拡散部材150は、その全周にわたって正反射部143と離間して配置されている。また第3の領域152は出射部142の開口面の一部を形成している。すなわち、出射部142は、第3の領域152とそれ以外の領域(窓部と呼ぶ)とで構成されている。第3の領域152は拡散部材150の表面である。本実施形態では、拡散部材150は、1次光L1を透過せず、拡散部材150から出射される1次光L1は全て光透過部材133に向けて拡散反射する。窓部は、光透過部材133の出射部142に面した部分である。窓部は、出射部142の一部である。窓部は、1次光L1の一部が第1の光学機能部材(拡散部材150)と第3の光学機能部材(光透過部材133)と第2の光学機能部材(正反射部143)との順で通過する際、正反射部143で正反射された拡散光L2の一部が拡散部材150に再び入射することなく外部に出射されるために配設されている。窓部は、拡散部材150から光透過部材133の内部に出射された拡散光L2は、正反射部143によって反射光に変換され、窓部から反射光の状態で外部に出射される。   The third region 152 of the columnar diffusing member 150 has a smaller area than the emission part 142 and is arranged substantially concentrically with the emission part 142. By arranging in this way, the diffusing member 150 is arranged away from the regular reflection portion 143 over the entire circumference. The third region 152 forms a part of the opening surface of the emission part 142. That is, the emission part 142 is configured by a third region 152 and other regions (referred to as window portions). The third region 152 is the surface of the diffusing member 150. In the present embodiment, the diffusing member 150 does not transmit the primary light L 1, and all the primary light L 1 emitted from the diffusing member 150 is diffusely reflected toward the light transmitting member 133. The window portion is a portion facing the emitting portion 142 of the light transmitting member 133. The window part is a part of the emission part 142. In the window portion, a part of the primary light L1 is a first optical functional member (diffusing member 150), a third optical functional member (light transmitting member 133), and a second optical functional member (regular reflecting portion 143). Are arranged so that a part of the diffused light L2 specularly reflected by the regular reflection part 143 is emitted to the outside without entering the diffusing member 150 again. In the window portion, the diffused light L2 emitted from the diffusion member 150 to the inside of the light transmission member 133 is converted into reflected light by the regular reflection portion 143, and emitted from the window portion to the outside in the state of reflected light.

本実施形態では、光透過部材133は、拡散部材150と正反射部143との間に充填されるため、拡散部材150の側方全周に渡って入射部141から出射部142まで連続して形成されていることになる。本実施形態では、光透過部材133は、入射部141から出射部142まで連続した領域にて拡散部材150を取り囲んでいる例を示している。本発明の趣旨としては、光透過部材133は拡散部材150の側方の少なくとも一部に配設され、光透過部材133の一部が入射部141から出射部142まで連続して形成されていれば良い。言い換えると、光透過部材133は、入射部141から出射部142の少なくとも一部まで、連続して形成されていれば本発明の効果を得ることができる。   In the present embodiment, since the light transmission member 133 is filled between the diffusing member 150 and the regular reflection portion 143, the light transmitting member 133 is continuously formed from the incident portion 141 to the emitting portion 142 over the entire lateral periphery of the diffusing member 150. Will be. In the present embodiment, the light transmitting member 133 shows an example in which the diffusing member 150 is surrounded by a continuous region from the incident portion 141 to the emitting portion 142. For the purpose of the present invention, the light transmission member 133 is disposed at least at a part of the side of the diffusion member 150, and a part of the light transmission member 133 is continuously formed from the incident portion 141 to the emission portion 142. It ’s fine. In other words, the effect of the present invention can be obtained if the light transmission member 133 is continuously formed from the incident portion 141 to at least a part of the emission portion 142.

また、別の表現としては、正反射部143は、集光レンズ112と導光部材120と光透過部材133とを介して半導体レーザ光源111と光学的に接続されている。また、正反射部143は、1次光L1を透過する機能を有する光透過部材133を介して1次光出射端122と出射部142と拡散部材150とに光学的に接続されている。   As another expression, the regular reflection portion 143 is optically connected to the semiconductor laser light source 111 via the condensing lens 112, the light guide member 120, and the light transmission member 133. The regular reflection portion 143 is optically connected to the primary light emitting end 122, the emitting portion 142, and the diffusing member 150 through a light transmitting member 133 having a function of transmitting the primary light L1.

1次光出射端122は、入射部141に1次光L1が入射するように入射部141と接続している。より具体的には、1次光出射端122は、光透過部材133の円錐台の小径の第1面である入射部141の中央付近に接続されている。   The primary light emitting end 122 is connected to the incident part 141 so that the primary light L1 is incident on the incident part 141. More specifically, the primary light emitting end 122 is connected to the vicinity of the center of the incident portion 141 which is the first surface having a small diameter of the truncated cone of the light transmitting member 133.

1次光出射端122と拡散部材150との相対位置は、1次光出射端122から出射される1次光L1が略全て拡散部材150の第1の領域151上に照射されるように、光透過部材133のサイズおよび拡散部材150のサイズを設定する。このとき、導光部材120から出射された1次光L1は、拡散部材150の第1の領域151を含む平面上に、拡散部材150の第1の領域151よりも小さいビームスポットを形成する。ビームスポットとは、1次光の最大強度に対し、1/eより大きな光強度を有する領域と定義し、eは自然体数の底としてのネイピア数である。 The relative position between the primary light emitting end 122 and the diffusing member 150 is such that substantially all the primary light L1 emitted from the primary light emitting end 122 is irradiated onto the first region 151 of the diffusing member 150. The size of the light transmission member 133 and the size of the diffusion member 150 are set. At this time, the primary light L1 emitted from the light guide member 120 forms a beam spot smaller than the first region 151 of the diffusing member 150 on the plane including the first region 151 of the diffusing member 150. The beam spot is defined as a region having a light intensity greater than 1 / e 2 with respect to the maximum intensity of the primary light, and e is the number of Napiers as the base of the natural number.

ここで、各部材の形状及び材質の好ましい例について説明する。
光透過部材133のテーパ角は、導光部材120の中心軸120aに対し20degが好ましい。拡散部材150は0.17mmの半径を有する円柱形状がよい。このような構造とすることにより、入射部141から拡散部材150の第1の領域151までの距離が約0.6mmとなる。なお、導光部材120には、先のマルチモード光ファイバを用いている。
Here, a preferable example of the shape and material of each member will be described.
The taper angle of the light transmission member 133 is preferably 20 deg with respect to the central axis 120 a of the light guide member 120. The diffusion member 150 may have a cylindrical shape having a radius of 0.17 mm. With such a structure, the distance from the incident portion 141 to the first region 151 of the diffusing member 150 is about 0.6 mm. The light guide member 120 uses the above-described multimode optical fiber.

光透過部材133は、透明な光学用樹脂、一般的なガラスや石英ガラスなど、透明な材料で構成することが好ましい。そのような材料を選択することで、1次光L1および拡散光L2が効率よく透過し、光利用効率を高めることが可能であり、出射部142より多くの照明光を出射することができる。   The light transmitting member 133 is preferably made of a transparent material such as a transparent optical resin, general glass, or quartz glass. By selecting such a material, the primary light L1 and the diffused light L2 can be efficiently transmitted, the light use efficiency can be increased, and more illumination light can be emitted from the emission unit 142.

また、光透過部材133の側面に正反射部143を形成するためには、まず光透過部材133の上下面をマスキングし、反射材料を蒸着もしくはメッキすることが望ましい。反射材料としては、光透過部材の側面に形成しやすく、また、可視光に対し高い反射率を有する金属膜が望ましい。より望ましくは、アルミニウムか銀を選択されたい。なお、アルミニウムや銀などの反射材料は、空気中に放置すると、曇りや変色を生じるため、反射率が低下する場合がある。ひどい場合にはこの曇りや変色が光透過部材133との界面まで到達し、反射面としての機能が低下する恐れがある。このため、蒸着もしくはメッキにより形成した反射材料の上面に、保護膜を設けることが望ましい。保護膜はSiO、銅などが望ましい。 Further, in order to form the regular reflection portion 143 on the side surface of the light transmission member 133, it is desirable to mask the upper and lower surfaces of the light transmission member 133 and to deposit or plate the reflective material. As the reflective material, a metal film that is easy to be formed on the side surface of the light transmitting member and has a high reflectance with respect to visible light is desirable. More desirably, aluminum or silver should be selected. Note that when a reflective material such as aluminum or silver is left in the air, it may become cloudy or discolored, which may reduce the reflectance. In severe cases, this clouding or discoloration may reach the interface with the light transmitting member 133, and the function as a reflecting surface may be reduced. For this reason, it is desirable to provide a protective film on the upper surface of the reflective material formed by vapor deposition or plating. The protective film is preferably SiO 2 or copper.

拡散部材150は、図1Dに示すように、例えば光透過部材98が拡散粒子99を光透過部材98の内部で分散した状態で有することで、構成されている。このような拡散部材150は、反射面97上に取り付けられたものである。光透過部材98は、例えば光を透過するシリコーン樹脂等である。拡散粒子99は、例えばアルミナやシリカなどであり、1次光L1を拡散反射する。拡散粒子99の平均粒径は、例えば、8μmである。なお平均粒径は、1次光L1の波長と同程度から、1000倍程度のものまでを利用することができる。このとき、第1の領域151と第2の領域153とにおいて光透過部材98が露出しており、第3の領域152は反射面97と当接している。   As shown in FIG. 1D, the diffusing member 150 is configured by, for example, the light transmitting member 98 having the diffusing particles 99 dispersed in the light transmitting member 98. Such a diffusing member 150 is mounted on the reflecting surface 97. The light transmitting member 98 is, for example, a silicone resin that transmits light. The diffusion particles 99 are, for example, alumina or silica, and diffusely reflect the primary light L1. The average particle diameter of the diffusion particles 99 is, for example, 8 μm. The average particle diameter can be from about the same as the wavelength of the primary light L1 to about 1000 times. At this time, the light transmitting member 98 is exposed in the first region 151 and the second region 153, and the third region 152 is in contact with the reflecting surface 97.

また図1Eに示すように、拡散部材150において、反射面97には、光透過部材133とは屈折率が異なる透光性部材95が配設されていても良い。透光性部材95は、透光性部材95の表面に微小な凸凹96を有している。微小な凸凹96は、1次光L1の波長と同程度から、1000倍程度のものまでを利用することができる。   As shown in FIG. 1E, in the diffusing member 150, a light transmissive member 95 having a refractive index different from that of the light transmissive member 133 may be disposed on the reflective surface 97. The translucent member 95 has minute irregularities 96 on the surface of the translucent member 95. The minute unevenness 96 can be from about the same as the wavelength of the primary light L1 to about 1000 times.

[動作]
半導体レーザ光源111から出射する本実施形態の1次光L1の挙動について説明する。
半導体レーザ光源111から出射された1次光L1は、集光レンズ112によって1次光入射端121に集光されて、1次光入射端121から導光部材120に高効率に入射する。
[Operation]
The behavior of the primary light L1 emitted from the semiconductor laser light source 111 of this embodiment will be described.
The primary light L <b> 1 emitted from the semiconductor laser light source 111 is condensed on the primary light incident end 121 by the condenser lens 112, and enters the light guide member 120 from the primary light incident end 121 with high efficiency.

導光部材120に入射した1次光L1は、導光部材120の内部を導光し、導光部材120の1次光出射端122から光透過部材133に向かって出射される。このとき1次光L1は、導光部材120が有する開口数(NA)と光透過部材133の屈折率などに応じた広がり角で出射される。   The primary light L1 incident on the light guide member 120 is guided inside the light guide member 120 and is emitted from the primary light emission end 122 of the light guide member 120 toward the light transmission member 133. At this time, the primary light L1 is emitted at a spread angle corresponding to the numerical aperture (NA) of the light guide member 120, the refractive index of the light transmitting member 133, and the like.

1次光L1は、光透過部材133を透過して拡散部材150の第1の領域151を照射する。このとき、拡散部材150の第1の領域151の大きさは、1次光L1が拡散部材150の第1の領域151を含む平面上に形成するビームスポットより大きくなるように構成されている。このため、1次光L1の大部分は、拡散部材150を照射する。この結果、拡散部材150を経由せず直接外部に出射される1次光L1は、ほとんどない。   The primary light L1 passes through the light transmission member 133 and irradiates the first region 151 of the diffusion member 150. At this time, the size of the first region 151 of the diffusing member 150 is configured so that the primary light L1 is larger than the beam spot formed on the plane including the first region 151 of the diffusing member 150. For this reason, most of the primary light L1 irradiates the diffusing member 150. As a result, there is almost no primary light L1 emitted directly outside without passing through the diffusing member 150.

1次光L1は、拡散部材150を照射し、拡散部材150の内部を進行しながら拡散し、1次光L1と波長は等しいが放射角が広く過干渉性が低い拡散光L2に変換される。このとき拡散光L2は、反射面97によって反射し、1次光L1の入射側、すなわち光透過部材133に向かって出射される。この結果、拡散光L2の一部は、光透過部材133に向かうように拡散部材150の第2の領域153又は第1の領域151から出射する。   The primary light L1 irradiates the diffusing member 150, diffuses while traveling through the diffusing member 150, and is converted into diffused light L2 having the same wavelength as the primary light L1, but a wide radiation angle and low overcoherence. . At this time, the diffused light L2 is reflected by the reflecting surface 97 and is emitted toward the incident side of the primary light L1, that is, toward the light transmitting member 133. As a result, part of the diffused light L2 is emitted from the second region 153 or the first region 151 of the diffusing member 150 so as to be directed to the light transmitting member 133.

光透過部材133に向かう拡散光L2の一部は、光透過部材133を透過した後、光透過部材133の側面に形成された第2の光学機能部材としての正反射部143によって反射される(一部反射光に変換される)。正反射部143は、照明光出射側すなわち照射対象物160側に開いたテーパ面となっている。よって、正反射部143で反射された拡散光L2は、もとの進行方向と比べ、照明光出射側に向かって進行する成分が増加する。   A part of the diffused light L2 toward the light transmission member 133 is reflected by the regular reflection portion 143 as the second optical function member formed on the side surface of the light transmission member 133 after being transmitted through the light transmission member 133 ( Partially converted to reflected light). The regular reflection part 143 has a tapered surface that opens to the illumination light exit side, that is, the irradiation object 160 side. Therefore, in the diffused light L2 reflected by the regular reflection portion 143, the component traveling toward the illumination light exit side increases compared to the original traveling direction.

詳細には、正反射部143で反射された拡散光L2において、拡散光L2の一部は再び正反射部143に向かい、また拡散光L2の別の一部は拡散部材150に向かい、拡散光L2の残りの一部は光透過部材133を経由して反射光の状態で出射部142の窓部から出射し、外部の照射対象物160を照射する。   Specifically, in the diffused light L2 reflected by the regular reflection part 143, a part of the diffused light L2 is directed again to the regular reflection part 143, and another part of the diffused light L2 is directed to the diffusing member 150. The remaining part of L2 is emitted from the window part of the emission part 142 in the state of reflected light via the light transmission member 133, and irradiates the external irradiation object 160.

正反射部143で一度反射され、再び正反射部143に向かう拡散光L2において、拡散光L2の一部は再び上述の工程を繰り返してさらに正反射部143に向かい、拡散光L2の別の一部は拡散部材150に向かい、拡散光L2の残りの一部は出射部142の窓部から外部に出射する。   In the diffused light L2 that is once reflected by the regular reflection unit 143 and travels toward the regular reflection unit 143 again, a part of the diffused light L2 is repeated again to the regular reflection unit 143 by repeating the above-described process, and another diffused light L2 is returned. The portion is directed to the diffusing member 150, and the remaining part of the diffused light L2 is emitted to the outside from the window portion of the emitting portion 142.

正反射部143や拡散部材150に向かった拡散光L2は、以降、上述の過程を繰り返す。   The diffused light L2 toward the regular reflection part 143 and the diffusing member 150 repeats the above process thereafter.

以上をまとめると、1次光L1は、第1の光学機能部材である拡散部材150によって進行方向を転向され、且つ拡散されて1次光L2に変換される。1次光L2は、第1の光学機能部材(拡散部材150)と第2の光学機能部材(正反射部143)との間に配設された第3の光学機能部材である光透過部材133の内部を進行する。光透過部材133は、第1の光学機能部材(拡散部材150)と第2の光学機能部材(正反射部143)との間の領域を示し、第1の光学機能部材(拡散部材150)から第2の光学機能部材(正反射部143)に向かう1次光L1の光路上に配設されている。1次光L1の一部は、第2の光学機能部材(正反射部143)を照射する。第2の光学機能部材(正反射部143)を照射した1次光L1は、第2の光学機能部材(正反射部143)により進行方向を転向される。第2の光学機能部材(正反射部143)により進行方向を転向された1次光L1は再び第3の光学機能部材(光透過部材133)の内部を進行し、この1次光L1の一部は窓部から外部に出射される。   In summary, the primary light L1 is turned in the traveling direction by the diffusion member 150, which is the first optical functional member, and is diffused and converted into the primary light L2. The primary light L2 is a light transmitting member 133 that is a third optical functional member disposed between the first optical functional member (diffusing member 150) and the second optical functional member (regular reflection portion 143). Progress inside. The light transmission member 133 indicates a region between the first optical function member (diffusing member 150) and the second optical function member (regular reflection portion 143), and from the first optical function member (diffusing member 150). It is disposed on the optical path of the primary light L1 toward the second optical function member (regular reflection portion 143). Part of the primary light L1 irradiates the second optical functional member (regular reflection portion 143). The primary light L1 irradiated to the second optical functional member (regular reflection portion 143) is turned in the traveling direction by the second optical functional member (regular reflection portion 143). The primary light L1 whose direction of travel has been turned by the second optical function member (regular reflection portion 143) travels again inside the third optical function member (light transmission member 133), and one of the primary lights L1. The part is emitted from the window part to the outside.

[作用・効果]
上述のように、拡散部材150の第1の領域151から出射した拡散光L2の一部は、拡散部材150に直接再入射することなく、光透過部材133を通って出射部142から外部に出射される。よって本実施形態では、図5に示す透過型拡散部材である拡散板11に比べて、拡散部材150の自己吸収による光量低下が少ないため、1次光L1の利用効率が高く、拡散光L2の取出し効率の高い光源装置100を実現することが可能となる。特に、拡散の度合いを高めたい場合、1次光L1が直接照射される第1の領域151から高い割合で拡散光L2が出射される。第1の領域151から出射された拡散光L2の一部は、拡散部材150より1次光源110側に配設されている光透過部材133に出射される。そして、この拡散光L2の一部は、正反射部143と光透過部材133とを経由して拡散部材150に入射することなく出射部142まで進行し、光の利用効率が高い状態で外部の照射対象物160を照射できる。
[Action / Effect]
As described above, a part of the diffused light L2 emitted from the first region 151 of the diffusing member 150 is emitted from the emitting part 142 to the outside through the light transmitting member 133 without directly entering the diffusing member 150 again. Is done. Therefore, in this embodiment, since the light amount decrease due to self-absorption of the diffusing member 150 is less than that of the diffusing plate 11 that is a transmissive diffusing member shown in FIG. 5, the utilization efficiency of the primary light L1 is high, and The light source device 100 with high extraction efficiency can be realized. In particular, when it is desired to increase the degree of diffusion, the diffused light L2 is emitted at a high rate from the first region 151 that is directly irradiated with the primary light L1. A part of the diffused light L2 emitted from the first region 151 is emitted from the diffusing member 150 to the light transmitting member 133 disposed on the primary light source 110 side. Then, a part of the diffused light L2 travels to the emitting part 142 without entering the diffusing member 150 via the regular reflection part 143 and the light transmitting member 133, and in the state where the light use efficiency is high, The irradiation object 160 can be irradiated.

また、正反射部143と拡散部材150とは、拡散部材150側方全周に渡って離間しているため、拡散光L2が拡散部材150に再び入射せず出射部142より出射する割合を高めており、より光の利用効率が高くなる。   Moreover, since the regular reflection part 143 and the diffusing member 150 are separated over the entire circumference of the diffusing member 150, the ratio of the diffused light L2 not entering the diffusing member 150 again and being emitted from the emitting part 142 is increased. , More efficient use of light.

また、光透過部材133を、1次光L1及び拡散光L2に対する透過率の高いガラスまたは樹脂で作製しているため、1次光L1及び拡散光L2の光透過部材133によるロスが少なく、より光の利用効率が高い。   Further, since the light transmitting member 133 is made of glass or resin having a high transmittance with respect to the primary light L1 and the diffused light L2, the loss of the primary light L1 and the diffused light L2 due to the light transmitting member 133 is small, and more High light utilization efficiency.

また、光透過部材133は、入射部141から出射部142にかけて広がる円錐台形状を有しているため、拡散光L2が側面全面に形成された正反射部143により反射を行う毎に、出射方向が出射部142に向かうため、より光の利用効率が高くなる。   In addition, since the light transmission member 133 has a truncated cone shape that spreads from the incident portion 141 to the emission portion 142, each time the diffused light L2 is reflected by the regular reflection portion 143 formed on the entire side surface, the emission direction Since it goes to the output part 142, the utilization efficiency of light becomes higher.

また、拡散部材150は円柱形状であり、第1の領域151は1次光L1のビームスポットより大きいため、1次光L1が効率よく拡散部材150を照射し拡散部材150によって拡散光L2に変換されるため、より光の利用効率が高くなる。   Further, since the diffusing member 150 has a cylindrical shape and the first region 151 is larger than the beam spot of the primary light L1, the primary light L1 efficiently irradiates the diffusing member 150 and is converted into the diffusing light L2 by the diffusing member 150. Therefore, the light utilization efficiency is further increased.

また、正反射部143は、光透過部材133の側面全面に形成しているため、出射部142以外から拡散光L2が外部に出射されたり他部材に吸収されたりしてしまうことがないため、出射部142からの効率よく拡散光L2を出射できる。   In addition, since the regular reflection portion 143 is formed on the entire side surface of the light transmission member 133, the diffused light L2 is not emitted to the outside from other than the emission portion 142 or absorbed by other members. The diffused light L2 can be efficiently emitted from the emission part 142.

また、正反射部143は、可視光に対する反射率の高い金属を用いているため、正反射部143による反射の際の吸収が少なく、光のロスが小さく利用効率が高い。   Moreover, since the regular reflection part 143 uses the metal with a high reflectance with respect to visible light, there is little absorption at the time of the reflection by the regular reflection part 143, there is little loss of light, and utilization efficiency is high.

また、正反射部143は光透過部材133の側面に直接形成しているため、拡散光L2は、光透過部材133の外部に漏れだすことが無く、反射の際に反射膜の外側の構造の影響を受けることが無い。この結果、正反射部143を透明部材と別体で作製し、接着するような構成と比較して、拡散光L2を接着剤などを透過させず正反射部143によって高効率に反射できるため、光のロスが少なく利用効率が高い。   Further, since the regular reflection portion 143 is formed directly on the side surface of the light transmission member 133, the diffused light L2 does not leak out of the light transmission member 133, and has a structure outside the reflection film at the time of reflection. Not affected. As a result, the regular reflection part 143 is manufactured separately from the transparent member, and compared with a configuration in which the regular reflection part 143 is bonded, the diffused light L2 can be reflected with high efficiency by the regular reflection part 143 without transmitting the adhesive or the like. There is little loss of light and utilization efficiency is high.

また、本実施形態では、光透過部材133と拡散部材150とを第1の領域151と第2の領域153との2つと接する構造としたため、拡散部材150が脱落することが無く、信頼性が高い光源装置100を提供することができる。   In the present embodiment, since the light transmitting member 133 and the diffusing member 150 are in contact with the two of the first region 151 and the second region 153, the diffusing member 150 does not fall off and the reliability is improved. The high light source device 100 can be provided.

また、本実施形態では、拡散部材150を反射面97上に配設し、拡散粒子99を光透過部材98の内部に分散させているため、拡散部材150を照射する1次光L1は拡散する前に反射されることなく、また1次光L1は拡散する前に外部に出射されることがない。よって、1次光L1が直接外部に出射されることに起因する不具合が発生しにくく、照射面上のスペックルの発生を抑えることができる。   In this embodiment, since the diffusing member 150 is disposed on the reflecting surface 97 and the diffusing particles 99 are dispersed inside the light transmitting member 98, the primary light L1 that irradiates the diffusing member 150 is diffused. It is not reflected before, and the primary light L1 is not emitted outside before diffusing. Therefore, it is difficult for problems caused by the primary light L1 to be directly emitted to the outside, and speckles on the irradiation surface can be suppressed.

以上のように構成することで、1次光L1の利用効率が高く、かつ、拡散光L2の取出し効率の高い光源装置100を提供することが可能となる。   With the configuration as described above, it is possible to provide the light source device 100 with high utilization efficiency of the primary light L1 and high extraction efficiency of the diffused light L2.

また、以上のように構成することで、レーザ光を照明光に適した照度分布となるように放射角を広げ、かつ、過干渉性を低めることでスペックルの発生しづらい拡散光L2を実現する、光利用効率の高い光拡散ユニットを実現することができる。これにより、1次光源から放射される1次光L1の光強度が同じ場合と比べ、より明るく、また、先端部での発熱の小さな光源装置を実現することが可能となる。
なお、本実施形態では、図1Dに示すように、反射面97が配設されることで、1次光L1が光透過部材133を経由せずに外部に出射しないように構成した例を示したが、これに限定される必要は無い。例えば拡散部材150が反射面97を有さず、これにより1次光L1の一部は直接照明対象物160に向けて出射し、1次光L1の別の一部が光透過部材133に向けて出射するように構成してもかまわない。これにより、拡散部材150の構成をシンプルにすることができる。
[変形例]
図2に示すように、本変形例では、拡散部材150は円錐台形状の光透過部材133の出射部142側の面に接して設置されている。この場合、出射部142は、円錐台形状の光透過部材133の出射部142側の面のうち拡散部材150に接していないエリア、及び拡散部材150の1次光出射端に面している面以外の外表面すべてである。この屈曲面全てから拡散光L2が外部に出射される。第1の領域151は光透過部材133と接しており、第2の領域153と第3の領域152とは出射部142上に位置しており、出射部142は第2の領域153と第3の領域152と窓部とにより構成されている。
In addition, by configuring as described above, the diffusion angle L2 that makes it difficult for speckles to occur is realized by widening the radiation angle so that the illuminance distribution of the laser light is suitable for the illumination light and reducing over-interference. Thus, a light diffusion unit with high light utilization efficiency can be realized. Accordingly, it is possible to realize a light source device that is brighter and generates less heat at the tip than in the case where the light intensity of the primary light L1 emitted from the primary light source is the same.
In the present embodiment, as shown in FIG. 1D, an example is shown in which the reflecting surface 97 is provided so that the primary light L1 does not go outside without passing through the light transmitting member 133. However, it need not be limited to this. For example, the diffusing member 150 does not have the reflecting surface 97, whereby a part of the primary light L <b> 1 is emitted directly toward the illumination object 160, and another part of the primary light L <b> 1 is directed toward the light transmission member 133. May be configured to emit light. Thereby, the structure of the diffusion member 150 can be simplified.
[Modification]
As shown in FIG. 2, in this modification, the diffusing member 150 is installed in contact with the surface of the frustoconical light transmitting member 133 on the emitting portion 142 side. In this case, the emission part 142 is an area that is not in contact with the diffusion member 150 in the surface on the emission part 142 side of the light-transmitting member 133 having a truncated cone shape, and a surface that faces the primary light emission end of the diffusion member 150. All outside surfaces. The diffused light L2 is emitted to the outside from all the bent surfaces. The first region 151 is in contact with the light transmission member 133, the second region 153 and the third region 152 are located on the emission unit 142, and the emission unit 142 is connected to the second region 153 and the third region 153. Region 152 and a window portion.

このような構造とすることで、光透過部材の形状がより単純になり作製しやすい。   By adopting such a structure, the shape of the light transmission member becomes simpler and easier to manufacture.

また、本実施形態の変形例では、光透過部材133と拡散部材150とを第1の領域151とのみで接している構造としたため、作製が簡便な光源装置100を提供することができる。   Further, in the modification of the present embodiment, since the light transmitting member 133 and the diffusing member 150 are in contact with only the first region 151, the light source device 100 that is easy to manufacture can be provided.

[第2実施形態]
[構成]
図3Aに本発明の第2実施形態による光拡散ユニット130を示す。
第1実施形態では、1次光L1が直接照射される第1の光学機能部材が反射型の拡散部材150であり、第2の光学機能部材は光透過部材133のテーパ面に形成された正反射部143であり、第3の光学部材は拡散部材150と正反射部143との間に配設される光透過部材133である。
しかし、本実施形態では、第1の光学機能部材は正反射部250であり、第2の光学機能部材は反射型の拡散部材243であり、この点が第1の実施形態とは異なっている。
[Second Embodiment]
[Constitution]
FIG. 3A shows a light diffusion unit 130 according to the second embodiment of the present invention.
In the first embodiment, the first optical functional member that is directly irradiated with the primary light L 1 is the reflective diffusion member 150, and the second optical functional member is a positive surface formed on the tapered surface of the light transmitting member 133. The third optical member is a light transmitting member 133 disposed between the diffusing member 150 and the regular reflection portion 143.
However, in the present embodiment, the first optical functional member is a regular reflection portion 250, and the second optical functional member is a reflective diffusing member 243, which is different from the first embodiment. .

本実施形態の正反射部250は、基材の上面に金属製の反射面がコートされることで、構成されている。正反射部250は、例えば、円柱状のガラス基板の上面に反射膜であるアルミ膜が成膜されることで、構成されている。なお、アルミ膜の代わりに銀やその他の金属膜等を用いることができる。   The regular reflection part 250 of the present embodiment is configured by coating the upper surface of a base material with a metal reflection surface. The regular reflection unit 250 is configured, for example, by forming an aluminum film as a reflection film on the upper surface of a cylindrical glass substrate. Silver or other metal film can be used instead of the aluminum film.

すなわち、円柱状のガラス板の各面を、第1実施形態に倣い、第1の領域251と、第2の領域253と、第3の領域252としたときに、第3の領域252上に反射膜であるアルミ膜が形成されており、第1の領域251と第2の領域253とにはガラス面が露出している。ガラスの屈折率は、光透過部材133の屈折率と同じであっても良く、または異なっていても良い。屈折率が異なっている場合、第3の領域252だけでなく第1の領域251も1次光L1を反射する。また、ガラス基板と光透過部材133との界面において、1次光L1や反射光や拡散光L2は屈折するため、より光路が複雑に絡み合うこととなり、スペックル等を軽減しやすくなる。   That is, when each surface of a cylindrical glass plate is made into the 1st field 251, the 2nd field 253, and the 3rd field 252 according to the 1st embodiment, it will be on the 3rd field 252. An aluminum film that is a reflective film is formed, and the glass surface is exposed in the first region 251 and the second region 253. The refractive index of the glass may be the same as or different from the refractive index of the light transmitting member 133. When the refractive indexes are different, not only the third region 252 but also the first region 251 reflects the primary light L1. In addition, since the primary light L1, reflected light, and diffused light L2 are refracted at the interface between the glass substrate and the light transmitting member 133, the optical path becomes more intertwined, making it easier to reduce speckles and the like.

また図3Bに示すように、光透過部材133のテーパ面299上には、拡散部材243が形成されている。拡散部材243は、光透過部材133のテーパ面299の少なくとも一部と光学的に接続している。拡散部材243は、シリカやアルミナ等の拡散粒子99が光透過部材98等に混合することで構成されている拡散面である。拡散部材243は、光透過部材133のテーパ面299上に面状に塗布されている。拡散部材243は、テーパ面299の少なくとも一部に塗布されてもよい。シリカやアルミナ等の拡散粒子99は照射された光を効率よく拡散反射するため、反射膜等がテーパ面299に配設されていなくても、光は良好に拡散反射する。また、拡散粒子99の光透光性が高い場合と、拡散粒子99の厚みが薄い場合と、光透過部材98に対する拡散粒子99の濃度が低い場合とのいずれかにおいて、図示しない反射面が拡散部材243の外側に配設されることで、拡散部材243の反射率が向上し、1次光L1が外部に漏出することによる光ロスが軽減する。   Further, as shown in FIG. 3B, a diffusion member 243 is formed on the tapered surface 299 of the light transmission member 133. The diffusing member 243 is optically connected to at least a part of the tapered surface 299 of the light transmitting member 133. The diffusing member 243 is a diffusing surface formed by mixing diffusing particles 99 such as silica or alumina into the light transmitting member 98 or the like. The diffusing member 243 is applied in a planar shape on the tapered surface 299 of the light transmitting member 133. The diffusion member 243 may be applied to at least a part of the tapered surface 299. Since the diffusing particles 99 such as silica and alumina efficiently diffuse and reflect the irradiated light, the light is diffusely reflected well even if the reflecting film or the like is not disposed on the tapered surface 299. In addition, the reflection surface (not shown) diffuses when the diffusion particle 99 has high light transmissivity, when the diffusion particle 99 is thin, or when the concentration of the diffusion particle 99 with respect to the light transmission member 98 is low. By being disposed outside the member 243, the reflectance of the diffusing member 243 is improved, and light loss due to leakage of the primary light L1 to the outside is reduced.

この様に構成することで、比較的容易に、光透過部材133のテーパ面299を拡散部材243として形成することができる。   With this configuration, the tapered surface 299 of the light transmission member 133 can be formed as the diffusion member 243 relatively easily.

なお図3Cに示すように、拡散部材243は、光透過部材133の表面が粗らされたすりガラス状に形成された微小な凸凹96であってもよい。このとき、拡散部材243は、光透過部材133の微小な凸凹96が形成された面に、1次光L1を反射する反射面97を有している。反射面97が拡散部材243の外側に配設されることで、拡散部材243の反射率が向上し、1次光L1が外部に漏出することによる光ロスが軽減する。   As shown in FIG. 3C, the diffusing member 243 may be a minute unevenness 96 formed in a ground glass shape in which the surface of the light transmitting member 133 is roughened. At this time, the diffusing member 243 has a reflecting surface 97 that reflects the primary light L1 on the surface of the light transmitting member 133 on which the minute unevenness 96 is formed. By disposing the reflecting surface 97 outside the diffusing member 243, the reflectance of the diffusing member 243 is improved, and light loss due to leakage of the primary light L1 to the outside is reduced.

なお光透過部材133を保持する図示しない保持部材は、テーパ面299と対向する面上に、上述した拡散部材243を有してもよい。   Note that a holding member (not shown) that holds the light transmitting member 133 may have the above-described diffusion member 243 on the surface facing the tapered surface 299.

[動作]
半導体レーザ光源111から出射する本実施形態の1次光L1の挙動について説明する。
半導体レーザ光源111から出射された1次光L1は、第1実施形態と同様の動作により光透過部材133の内部に向かって出射される。
[Operation]
The behavior of the primary light L1 emitted from the semiconductor laser light source 111 of this embodiment will be described.
The primary light L1 emitted from the semiconductor laser light source 111 is emitted toward the inside of the light transmitting member 133 by the same operation as in the first embodiment.

1次光L1は、光透過部材133を透過して正反射部250の第1の領域251を経由して第3の領域252を照射する。このとき、第3の領域252の大きさは、1次光L1が第3の領域252を含む平面上に形成するビームスポットより大きくなるように構成されている。このため、1次光L1の大部分は、反射面である正反射部250の第3の領域252上を照射する。この結果、正反射部250を経由せず直接外部に出射される1次光L1は、ほとんどない。   The primary light L1 passes through the light transmission member 133 and irradiates the third region 252 through the first region 251 of the regular reflection unit 250. At this time, the size of the third region 252 is configured such that the primary light L1 is larger than the beam spot formed on the plane including the third region 252. For this reason, most of the primary light L1 irradiates the third region 252 of the regular reflection unit 250, which is a reflection surface. As a result, there is almost no primary light L1 emitted directly to the outside without passing through the regular reflection portion 250.

1次光L1は、正反射部250によって反射され、1次光L1の入射側、すなわち、光透過部材133に向かって出射される。   The primary light L <b> 1 is reflected by the regular reflection unit 250 and is emitted toward the incident side of the primary light L <b> 1, that is, toward the light transmission member 133.

光透過部材133に向かって出射された反射光の一部は、光透過部材133を透過した後、光透過部材133の側面に形成された拡散部材243によって拡散反射される。拡散部材243は、照明光出射側、すなわち照射対象物160側に開いたテーパ面となっている。このため拡散部材243で拡散反射された拡散光L2は、もとの進行方向と比べ、照明光出射側に向かって進行する成分が増加する。   A part of the reflected light emitted toward the light transmission member 133 is diffused and reflected by the diffusion member 243 formed on the side surface of the light transmission member 133 after passing through the light transmission member 133. The diffusing member 243 has a tapered surface opened to the illumination light exit side, that is, the irradiation object 160 side. For this reason, the diffused light L2 diffusely reflected by the diffusing member 243 has a component that travels toward the illumination light exit side in comparison with the original traveling direction.

以上をまとめると、1次光L1は、第1の光学機能部材である正反射部250によって進行方向を転向される。1次光L1は、第1の光学機能部材(正反射部250)と第2の光学機能部材(拡散部材243)との間に配置された第3の光学機能部材である光透過部材133の内部を進行する。1次光L1の一部は、第2の光学機能部材(拡散部材243)を照射する。第2の光学機能部材(拡散部材243)を照射した1次光L1は、第2の光学機能部材(拡散部材243)により進行方向を転向され、且つ拡散されて拡散光L2に変換される。拡散光L2は再び第3の光学機能部材(光透過部材133)の内部を進行し、拡散光L2の一部は窓部から外部に出射される。   In summary, the primary light L1 is redirected in the traveling direction by the regular reflection unit 250 that is the first optical functional member. The primary light L1 is emitted from the light transmitting member 133 that is a third optical functional member disposed between the first optical functional member (regular reflection portion 250) and the second optical functional member (diffusing member 243). Progress inside. Part of the primary light L1 irradiates the second optical functional member (diffusing member 243). The primary light L1 irradiated to the second optical functional member (diffusing member 243) is turned in the traveling direction by the second optical functional member (diffusing member 243) and is diffused to be converted into diffused light L2. The diffused light L2 again travels inside the third optical function member (light transmitting member 133), and a part of the diffused light L2 is emitted to the outside from the window portion.

[作用]
以上のように構成することで、1次光L1は、正反射部250により効率よく反射され、光透過部材133を通ってテーパ面299上に形成された拡散部材243を広く照射する。拡散部材243を広く照射する反射光である1次光L1は、拡散部材243の広い領域で反射拡散され、拡散光L2として出射部242の窓部から外部に出射される。
[Action]
With the configuration described above, the primary light L1 is efficiently reflected by the regular reflection unit 250 and irradiates the diffusion member 243 formed on the tapered surface 299 through the light transmission member 133 widely. The primary light L1 that is reflected light that irradiates the diffusing member 243 widely is reflected and diffused in a wide area of the diffusing member 243, and is emitted to the outside as a diffused light L2 from the window portion of the emitting portion 242.

[効果]
本実施形態のように構成することで、第1実施形態と比較して、反射拡散する領域の面積を大きくすることができる。一般に、拡散反射は正反射と比較して光を吸収し、吸収した光は熱に変換される。本実施形態のように拡散反射する領域の面積を大きくすることで、局所的な発熱を軽減できる。また、拡散部材243は図示しない保持部材と近接しているため、保持部材から放熱し易い構成となる。
[effect]
By configuring as in the present embodiment, it is possible to increase the area of the region to be reflected and diffused as compared with the first embodiment. In general, diffuse reflection absorbs light compared to regular reflection, and the absorbed light is converted into heat. Increasing the area of the diffusely reflecting region as in this embodiment can reduce local heat generation. Moreover, since the diffusing member 243 is close to a holding member (not shown), the heat dissipation from the holding member is facilitated.

[第3実施形態]
[構成]
図4Aに本発明の第3実施形態による光拡散ユニット130を示す。
第1実施形態では、1次光L1が直接照射される第1の光学機能部材が反射型の拡散部材150であり、第2の光学機能部材は光透過部材133のテーパ面に形成された正反射部143であり、第3の光学部材は拡散部材150と正反射部143との間に配設される光透過部材133である。
また、第2実施形態では、1次光L1が直接照射される第1の光学機能部材が正反射部250であり、第2の光学機能部材が反射型の拡散部材243であり、第3の光学機能部材は正反射部250と拡散部材243との間に配設される光透過部材133である。
しかし本実施形態では、第1の光学機能部材が正反射部250であり、第2の光学機能部材が正反射部143であり、第3の光学機能部材は正反射部250と正反射部143との間に配設されている透過型の拡散部材233であり、この点が第1,2実施形態とは異なっている。
[Third Embodiment]
[Constitution]
FIG. 4A shows a light diffusion unit 130 according to a third embodiment of the present invention.
In the first embodiment, the first optical functional member that is directly irradiated with the primary light L 1 is the reflective diffusion member 150, and the second optical functional member is a positive surface formed on the tapered surface of the light transmitting member 133. The third optical member is a light transmitting member 133 disposed between the diffusing member 150 and the regular reflection portion 143.
In the second embodiment, the first optical functional member to which the primary light L1 is directly irradiated is the regular reflection portion 250, the second optical functional member is the reflective diffusion member 243, and the third The optical function member is a light transmission member 133 disposed between the regular reflection portion 250 and the diffusion member 243.
However, in the present embodiment, the first optical functional member is the regular reflection unit 250, the second optical functional member is the regular reflection unit 143, and the third optical functional member is the regular reflection unit 250 and the regular reflection unit 143. This is a transmission type diffusing member 233 arranged between the first and second embodiments.

本実施形態の正反射部143は第1実施形態と同様に構成されており、また正反射部250は第2実施形態と同様に構成されている。   The regular reflection unit 143 of the present embodiment is configured in the same manner as in the first embodiment, and the regular reflection unit 250 is configured in the same manner as in the second embodiment.

拡散部材233は、図4Bに示すように、光透過部材98が拡散粒子99を光透過部材98の内部で分散した状態で有することで、構成されている。光透過部材98は、光を透過するシリコーン樹脂等である。拡散粒子99は、例えばシリカ、アルミナなどの、光を拡散する粒子であればどのようなものでも利用することができる。拡散粒子99の粒径は、1次光L1の波長程度のものからその1000倍程度のものまで利用することができる。   As shown in FIG. 4B, the diffusing member 233 is configured such that the light transmitting member 98 has the diffusing particles 99 dispersed in the light transmitting member 98. The light transmitting member 98 is a silicone resin or the like that transmits light. As the diffusing particles 99, any particles that diffuse light, such as silica and alumina, can be used. The particle size of the diffusing particles 99 can be used from the wavelength of the primary light L1 to about 1000 times that of the primary light L1.

拡散粒子99は、アルミナ等、1次光L1を拡散反射するものでもよい。このような粒子が用いられと、拡散性能が向上する。また、拡散粒子99は、1次光L1に対し透過性を有し、シリコーン樹脂等分散させる側(光透過部材98)とは異なる屈折率を有していてもよい。このような拡散粒子99は、例えばシリカ等である。このような粒子が用いられると、拡散粒子99が吸収する光量が軽減され、透過性、すなわち、1次光L1の利用効率が向上する。なお拡散粒子99が1次光L1に対し透過性を有する場合、拡散粒子99は、粒径および/または屈折率が異なる2種類以上の粒子が混合している粒子であってもよい。この場合、拡散粒子99の拡散性能が調整される。    The diffusion particles 99 may be one that diffusely reflects the primary light L1 such as alumina. When such particles are used, the diffusion performance is improved. Further, the diffusing particles 99 are transmissive to the primary light L1, and may have a refractive index different from that of the side on which the silicone resin or the like is dispersed (light transmitting member 98). Such diffusing particles 99 are, for example, silica. When such particles are used, the amount of light absorbed by the diffusing particles 99 is reduced, and the transparency, that is, the utilization efficiency of the primary light L1 is improved. In the case where the diffusing particles 99 are transmissive to the primary light L1, the diffusing particles 99 may be particles in which two or more kinds of particles having different particle sizes and / or refractive indexes are mixed. In this case, the diffusion performance of the diffusion particles 99 is adjusted.

透過型の拡散部材233は、正反射部250の有効な反射領域上の一点と、正反射部143の有効な反射領域上の一点とを結んだ直線が通る領域の全ての領域に配設されている。つまり透過型の拡散部材233は、1次光L1が第1の光学機能部材(正反射部250)から第2の光学機能部材(正反射部143)に向かう光路上にのみ配設されていれば、本発明の趣旨を実現できる。本実施形態では、円錐台形状の全領域が拡散部材233である。すなわち、拡散部材233は円錐台形状を有している。   The transmissive diffusing member 233 is disposed in all regions where a straight line connecting one point on the effective reflection region of the regular reflection unit 250 and one point on the effective reflection region of the regular reflection unit 143 passes. ing. That is, the transmission type diffusing member 233 is disposed only on the optical path of the primary light L1 from the first optical function member (regular reflection unit 250) toward the second optical function member (regular reflection unit 143). Thus, the gist of the present invention can be realized. In the present embodiment, the entire region of the truncated cone shape is the diffusion member 233. That is, the diffusion member 233 has a truncated cone shape.

[動作]
半導体レーザ光源111から出射する本実施形態の1次光L1の挙動について説明する。
半導体レーザ光源111から出射された1次光L1は、第1実施形態と同様の動作により拡散部材233の内部に向かって出射される。
[Operation]
The behavior of the primary light L1 emitted from the semiconductor laser light source 111 of this embodiment will be described.
The primary light L1 emitted from the semiconductor laser light source 111 is emitted toward the inside of the diffusion member 233 by the same operation as in the first embodiment.

1次光L1は、透過型の拡散部材233を照射し、拡散粒子99によって光路を曲げながら拡散部材233の内部を進行する。すなわち1次光L1は、拡散部材233によって徐々に拡散しながら進行する。以下では、拡散部材233を経由した1次光L1を便宜上、拡散光L2と呼ぶこととする。   The primary light L1 irradiates the transmission type diffusing member 233 and travels inside the diffusing member 233 while bending the optical path by the diffusing particles 99. That is, the primary light L1 travels while being gradually diffused by the diffusion member 233. Hereinafter, the primary light L1 that has passed through the diffusing member 233 will be referred to as diffused light L2 for convenience.

この拡散光L2の一部は、拡散部材233の内部から正反射部250に向かって進行し、正反射部250によって正反射され、再び拡散部材233の内部を進行する。また拡散光L2の別の一部は、拡散部材233の内部から正反射部143に向かって進行し、正反射部143によって正反射され、再び拡散部材233の内部を進行する。また、拡散光L2の別の一部は、拡散部材233の内部から出射部242の窓部を介して外部に向かって放射される。正反射部250または正反射部143で正反射され、拡散部材233の内部を進行する拡散光L2は、上記のような動作を繰り返し、それらの一部は出射部242の窓部から外部に向けて出射される。   A part of the diffused light L2 travels from the inside of the diffusing member 233 toward the regular reflection unit 250, is regularly reflected by the regular reflection unit 250, and travels inside the diffusing member 233 again. Another part of the diffused light L2 travels from the inside of the diffusing member 233 toward the regular reflection portion 143, is regularly reflected by the regular reflection portion 143, and travels inside the diffusing member 233 again. Further, another part of the diffused light L <b> 2 is radiated from the inside of the diffusing member 233 toward the outside through the window part of the emission part 242. The diffused light L2 that is specularly reflected by the regular reflection part 250 or the regular reflection part 143 and travels inside the diffusion member 233 repeats the above-described operation, and a part of them is directed outward from the window part of the emission part 242. Are emitted.

以上をまとめると、1次光L1は、第3の光学機能部材である透過型の拡散部材233の内部を進行し、第3の光学機能部材(拡散部材233)により進行方向を転向され、かつ、拡散されて拡散光L2となる。拡散光L2の一部は第1の光学機能部材である正反射部250を照射し、拡散光L2の一部は第2の光学機能部材である正反射部143を照射する。拡散光L2は、第1の光学機能部材(正反射部250)と第2の光学機能部材(正反射部143)とにより進行方向を転向される。拡散光L2は再び第3の光学機能部材(拡散部材233)の内部を進行し、拡散光L2の一部は窓部から外部に出射される。   In summary, the primary light L1 travels inside the transmission type diffusing member 233, which is the third optical functional member, and the traveling direction is turned by the third optical functional member (diffusing member 233), and Are diffused to become diffused light L2. A part of the diffused light L2 irradiates the specular reflection part 250 that is the first optical functional member, and a part of the diffused light L2 irradiates the specular reflection part 143 that is the second optical functional member. The diffusion light L2 is turned in the traveling direction by the first optical functional member (regular reflection portion 250) and the second optical functional member (regular reflection portion 143). The diffused light L2 again travels inside the third optical function member (diffusion member 233), and part of the diffused light L2 is emitted to the outside from the window portion.

[作用・効果]
以上のように構成することで、1次光L1は、拡散部材233により効率よく拡散され、また、2つの正反射部143,250により反射されることで、十分に拡散されて外部に出射される。このため、第1,2実施形態の構成と比較して、スペックル等が発生しにくい拡散光L2となる。
[Action / Effect]
By configuring as described above, the primary light L1 is efficiently diffused by the diffusion member 233, and is reflected by the two regular reflection portions 143 and 250, so that it is sufficiently diffused and emitted to the outside. The For this reason, compared to the configurations of the first and second embodiments, the diffused light L2 is less likely to cause speckle and the like.

なお上述した各実施形態では、第1の光学機能部材と第2の光学機能部材と第3の光学機能部材とのいずれか1つのみが拡散機能を有する部材である例を示したが、これに限らない。第1の光学機能部材と第2の光学機能部材と第3の光学機能部材との少なくとも1つが拡散機能を有していてもよい。これにより、拡散機能を最大化することが可能となる。または、1つ1つの部材の拡散機能のレベルが低下しても、全体が十分な拡散機能を有することができる。特に、第1の光学機能部材と第2の光学機能部材とが拡散機能を有し、第3の光学機能部材が拡散機能を有さず光透過部材とすることで、拡散性能を向上でき、かつ、光の利用効率を向上できる。   In each of the above-described embodiments, an example in which only one of the first optical functional member, the second optical functional member, and the third optical functional member is a member having a diffusion function is shown. Not limited to. At least one of the first optical functional member, the second optical functional member, and the third optical functional member may have a diffusion function. This makes it possible to maximize the diffusion function. Alternatively, even if the level of the diffusion function of each member is lowered, the whole can have a sufficient diffusion function. In particular, the first optical functional member and the second optical functional member have a diffusing function, and the third optical functional member does not have a diffusing function as a light transmitting member, thereby improving the diffusing performance, In addition, the light use efficiency can be improved.

また上述した各実施形態では、第1の光学機能部材と第2の光学機能部材と第3の光学機能部材とに用いられる、反射面と反射部と拡散粒子と樹脂等の部材との光学的特性は、450nmから650nmの可視光領域の光に対し、フラットな反射、拡散、透過特性を有することが望ましい。各特性のボトムとなる値は、ピークとなる値の2分の1より大きいことが望ましい。例えば可視光領域の光に対する反射率において、最小の反射率の値は、最大の反射率の値の2分の1倍より大きい。   In the above-described embodiments, the optical surfaces of the reflecting surface, the reflecting portion, the diffusing particles, the resin, and the like, which are used for the first optical function member, the second optical function member, and the third optical function member, are used. It is desirable that the characteristics have flat reflection, diffusion, and transmission characteristics with respect to light in the visible light region of 450 nm to 650 nm. The bottom value of each characteristic is preferably larger than half of the peak value. For example, in the reflectance with respect to light in the visible light region, the minimum reflectance value is larger than half the maximum reflectance value.

なお、本発明において1次光源110は、半導体レーザ光源111と集光レンズ112と導光路としての導光部材120とを組み合わせた例を示したが、これに限らない。1次光源110は、発光ダイオードやスーパールミネッセントダイオード(SLD)などの固体光源や、固体レーザ、ガスレーザ等に置き換えることが可能である。また、導光部材120は複数の光ファイバを束ねたバンドルファイバや、樹脂基板や半導体基板上に屈折率分布を持たせて導光路を形成した一般的なフィルム型やスラブ型の導波路に置き換えることが可能である。さらに、集光レンズ112を用いず、半導体レーザ光源111や発光ダイオード、SLD等の発光面に導光路の入射端を直接接合することも可能である。また、これらを適宜組み合わせて用いることが可能である。   In the present invention, the primary light source 110 is an example in which the semiconductor laser light source 111, the condensing lens 112, and the light guide member 120 as a light guide are combined. However, the present invention is not limited to this. The primary light source 110 can be replaced with a solid light source such as a light emitting diode or a super luminescent diode (SLD), a solid laser, a gas laser, or the like. The light guide member 120 is replaced with a bundle fiber in which a plurality of optical fibers are bundled, or a general film type or slab type waveguide in which a light guide path is formed by providing a refractive index distribution on a resin substrate or a semiconductor substrate. It is possible. Furthermore, the incident end of the light guide path can be directly joined to the light emitting surface of the semiconductor laser light source 111, the light emitting diode, the SLD, or the like without using the condenser lens 112. These can be used in appropriate combination.

また本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。   Further, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.

100…光源装置、110…1次光源、130…光拡散ユニット、133…光透過部材、143…正反射部、150…拡散部材、151…第1の領域、152…第3の領域、153…第2の領域、233…拡散部材、243…拡散部材、250…正反射部、251…第1の領域、252…第3の領域、253…第2の領域。   DESCRIPTION OF SYMBOLS 100 ... Light source device, 110 ... Primary light source, 130 ... Light diffusion unit, 133 ... Light transmission member, 143 ... Regular reflection part, 150 ... Diffusing member, 151 ... 1st area | region, 152 ... 3rd area | region, 153 ... 2nd area | region, 233 ... diffusion member, 243 ... diffusion member, 250 ... regular reflection part, 251 ... 1st area | region, 252 ... 3rd area | region, 253 ... 2nd area | region.

Claims (22)

1次光を出射する1次光源と、
前記1次光が入射し、前記1次光の進行方向を転向する第1の光学機能部材と、
前記第1の光学機能部材によって進行方向が転向した前記1次光の進行方向を転向する第2の光学機能部材と、
前記第1の光学機能部材と前記第2の光学機能部材との間の領域を示し、前記第1の光学機能部材から前記第2の光学機能部材に向かう前記1次光の光路上に配設されている第3の光学機能部材と、
前記1次光の一部が前記第1の光学機能部材と前記第3の光学機能部材と前記第2の光学機能部材との順で通過する際、前記1次光の一部が前記第1の光学機能部材に再び入射することなく外部に出射される窓部と、
を具備し、
前記第1の光学機能部材と前記第2の光学機能部材と前記第3の光学機能部材との少なくとも1つは、前記1次光を拡散する拡散機能を有することを特徴とする光源装置。
A primary light source that emits primary light;
A first optical functional member that receives the primary light and turns the traveling direction of the primary light;
A second optical functional member that redirects the traveling direction of the primary light whose traveling direction is turned by the first optical functional member;
An area between the first optical functional member and the second optical functional member is shown, and is disposed on the optical path of the primary light from the first optical functional member toward the second optical functional member. A third optical functional member being
When a part of the primary light passes in the order of the first optical functional member, the third optical functional member, and the second optical functional member, a part of the primary light is the first optical functional member. A window portion that is emitted to the outside without re-entering the optical functional member,
Comprising
At least one of the first optical functional member, the second optical functional member, and the third optical functional member has a diffusion function of diffusing the primary light.
前記第1の光学機能部材は、前記1次光の一部を前記1次光の入射方向に反射する反射型の光学機能部材であり、
前記第2の光学機能部材は、前記1次光の一部を前記1次光の入射方向に反射する反射型の光学機能部材であり、
前記第3の光学機能部材は、前記1次光の一部を透過する透過型の光学機能部材であることを特徴とする請求項1に記載の光源装置。
The first optical functional member is a reflective optical functional member that reflects a part of the primary light in the incident direction of the primary light.
The second optical functional member is a reflective optical functional member that reflects part of the primary light in the incident direction of the primary light,
The light source device according to claim 1, wherein the third optical function member is a transmissive optical function member that transmits a part of the primary light.
可視光領域の光に対する前記第1の光学機能部材の反射率と前記第3の光学機能部材の反射率とにおいて、最小の反射率の値は、最大の反射率の値の2分の1倍より大きいことを特徴とする請求項2に記載の光源装置。   In the reflectance of the first optical functional member and the reflectance of the third optical functional member with respect to light in the visible light region, the minimum reflectance value is half the maximum reflectance value. The light source device according to claim 2, wherein the light source device is larger. 前記第1の光学機能部材と前記第2の光学機能部材と前記第3の光学機能部材とは、前記1次光を拡散して出射する拡散ユニットを形成しており、
前記拡散ユニットは、前記1次光が入射する入射部と、前記1次光を出射する出射部とを有し、
前記窓部は、前記出射部の一部であり、
前記第1の光学機能部材は、前記出射部近傍に配設されており、
前記第2の光学機能部材は、前記入射部を上面、前記出射部を底面とする立体の側面の少なくとも一部に配設されており、
前記第3の光学機能部材は、前記立体の内部の空間の少なくとも一部に配設されていることを特徴とする請求項2または請求項3に記載の光源装置。
The first optical functional member, the second optical functional member, and the third optical functional member form a diffusion unit that diffuses and emits the primary light,
The diffusion unit has an incident part on which the primary light is incident and an emission part that emits the primary light,
The window part is a part of the emitting part,
The first optical functional member is disposed in the vicinity of the emitting portion,
The second optical functional member is disposed on at least a part of a three-dimensional side surface having the incident portion as an upper surface and the emitting portion as a bottom surface,
4. The light source device according to claim 2, wherein the third optical function member is disposed in at least a part of a space inside the solid.
前記拡散機能を有する前記光学機能部材は、前記第1の光学機能部材であることを特徴とする請求項4に記載の光源装置。   The light source device according to claim 4, wherein the optical function member having the diffusion function is the first optical function member. 前記第1の光学機能部材と前記第2の光学機能部材とは離間しており、
前記第3の光学機能部材は、前記第1の光学機能部材と前記第2の光学機能部材と間には配設されており、前記1次光に対し透光性を有することを特徴とする請求項5に記載の光源装置。
The first optical functional member and the second optical functional member are separated from each other,
The third optical functional member is disposed between the first optical functional member and the second optical functional member, and has a light-transmitting property with respect to the primary light. The light source device according to claim 5.
前記第1の光学機能部材は、前記1次光に対し透光性を有する部材が前記1次光を拡散反射する拡散粒子を前記部材の内部で分散した状態で有することで、構成されていることを特徴とする請求項6に記載の光源装置。   The first optical functional member is configured such that a member having translucency with respect to the primary light has diffusing particles that diffusely reflect the primary light in a dispersed state inside the member. The light source device according to claim 6. 前記第1の光学機能部材は、微小な凸凹を有し、前記1次光に対して透光性を有する透光性部材によって形成され、前記1次光に対する前記透光性部材の屈折率は、前記第3の光学機能部材の屈折率とは異なることを特徴とする請求項6に記載の光源装置。   The first optical functional member is formed of a light-transmitting member having minute irregularities and having a light-transmitting property with respect to the primary light, and a refractive index of the light-transmitting member with respect to the primary light is The light source device according to claim 6, wherein the light source device has a refractive index different from that of the third optical function member. 前記第1の光学機能部材は、前記1次光が前記第1の光学機能部材に入射する入射面と、前記入射面と対向する面に前記1次光を反射する反射面とを有していることを特徴とする請求項7または請求項8に記載の光源装置。   The first optical functional member has an incident surface on which the primary light is incident on the first optical functional member, and a reflective surface that reflects the primary light on a surface facing the incident surface. 9. The light source device according to claim 7, wherein the light source device is a light source device. 前記拡散機能を有する光学機能部材は、前記第2の光学機能部材であることを特徴とする請求項4に記載の光源装置。   The light source device according to claim 4, wherein the optical functional member having a diffusion function is the second optical functional member. 前記第2の光学機能部材は、前記第3の光学機能部材の表面の少なくとも一部と光学的に接続していることを特徴とする請求項10に記載の光源装置。   The light source device according to claim 10, wherein the second optical function member is optically connected to at least a part of a surface of the third optical function member. 第2の光学機能部材は、前記1次光を拡散反射する拡散粒子が前記第3の光学機能部材の表面の少なくとも一部に塗布されることで、構成されていることを特徴とする請求項11に記載の光源装置。   The second optical functional member is configured by applying diffusing particles that diffusely reflect the primary light to at least a part of the surface of the third optical functional member. 11. The light source device according to 11. 前記第2の光学機能部材は、前記第3の光学機能部材の表面に形成された微小な凸凹であることを特徴とする請求項11に記載の光源装置。   The light source device according to claim 11, wherein the second optical function member is a minute unevenness formed on a surface of the third optical function member. 前記第2の光学機能部材は、前記第3の光学部材と光学的に接続する面と対向する面に、前記1次光を反射する反射面を有していることを特徴とする請求項12または請求項13に記載の光源装置。   13. The second optical functional member has a reflective surface that reflects the primary light on a surface facing a surface optically connected to the third optical member. Alternatively, the light source device according to claim 13. 前記拡散機能を有する光学機能部材は、前記第3の光学機能部材であることを特徴とする請求項4に記載の光源装置。   The light source device according to claim 4, wherein the optical function member having the diffusion function is the third optical function member. 前記第3の光学機能部材は、前記第1の光学機能部材の有効な反射領域上の一点と、前記第2の光学機能部材の有効な反射領域上の一点とを結んだ直線が通る領域の全ての領域に配設されていることを特徴とする請求項15に記載の光源装置。   The third optical function member is an area where a straight line connecting one point on the effective reflection area of the first optical function member and one point on the effective reflection area of the second optical function member passes. The light source device according to claim 15, wherein the light source device is disposed in all regions. 前記第3の光学機能部材は、前記1次光に対し透光性を有する部材が前記1次光を拡散反射する拡散粒子を前記部材の内部で分散した状態で有することで、構成されていることを特徴とする請求項16に記載の光源装置。   The third optical functional member is configured such that a member that is transparent to the primary light has diffused particles that diffusely reflect the primary light in a dispersed state inside the member. The light source device according to claim 16. 前記第3の光学機能部材は、前記1次光に対し透過性を有する透過性部材が透過性粒子を前記透過性部材の内部で分散した状態で有することで、構成され、
前記透過性粒子は、前記1次光に対し透過性を有し、前記透過性部材とは異なる屈折率を有することを特徴とする請求項16に記載の光源装置。
The third optical functional member is configured such that a transmissive member having transparency to the primary light has transmissive particles dispersed in the transmissive member,
The light source device according to claim 16, wherein the transmissive particles are transmissive to the primary light and have a refractive index different from that of the transmissive member.
前記透過性粒子は、粒径および/または屈折率が異なる2種類以上の粒子が混合している粒子であることを特徴とする請求項17または18に記載の光源装置。   The light source device according to claim 17 or 18, wherein the transmissive particles are particles in which two or more kinds of particles having different particle diameters and / or refractive indexes are mixed. 前記第3の光学機能部材は円錐台形状であり、前記入射部は円錐台の小径の上面であり、前記出射部は円錐台の大径の下面であり、前記第2の光学機能部材は、前記円錐台のテーパ面上に形成されていることを特徴とする請求項4に記載の光源装置。   The third optical functional member has a truncated cone shape, the incident portion is a small-diameter upper surface of the truncated cone, the emitting portion is a large-diameter lower surface of the truncated cone, and the second optical functional member is The light source device according to claim 4, wherein the light source device is formed on a tapered surface of the truncated cone. 前記第1の光学機能部材と前記第2光学機能部材と前記第3の光学機能部材との少なくとも2つの光学機機能部材が、前記拡散機能を有することを特徴とする請求項4に記載の光源装置。   5. The light source according to claim 4, wherein at least two optical machine functional members of the first optical functional member, the second optical functional member, and the third optical functional member have the diffusion function. apparatus. 前記第1の光学機能部材と前記第2の光学機能部材とのみが前記拡散機能を有していることを特徴とする請求項21に記載の光源装置。   The light source device according to claim 21, wherein only the first optical functional member and the second optical functional member have the diffusion function.
JP2011119147A 2011-05-27 2011-05-27 Light source device Active JP5851119B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011119147A JP5851119B2 (en) 2011-05-27 2011-05-27 Light source device
PCT/JP2012/063526 WO2012165347A1 (en) 2011-05-27 2012-05-25 Light source device
EP12793721.7A EP2716967A4 (en) 2011-05-27 2012-05-25 Light source device
CN201280025940.5A CN103562623B (en) 2011-05-27 2012-05-25 Light supply apparatus
US14/079,913 US9134010B2 (en) 2011-05-27 2013-11-14 Light source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119147A JP5851119B2 (en) 2011-05-27 2011-05-27 Light source device

Publications (2)

Publication Number Publication Date
JP2012248402A true JP2012248402A (en) 2012-12-13
JP5851119B2 JP5851119B2 (en) 2016-02-03

Family

ID=47468667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119147A Active JP5851119B2 (en) 2011-05-27 2011-05-27 Light source device

Country Status (1)

Country Link
JP (1) JP5851119B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222851A1 (en) 2012-11-12 2014-05-15 Suzuki Motor Corporation Mounting structure for an electronic unit
WO2018083780A1 (en) * 2016-11-04 2018-05-11 オリンパス株式会社 Illuminating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339526A (en) * 1998-05-28 1999-12-10 Minebea Co Ltd Transmission flat lighting system
JP2003298117A (en) * 2002-04-05 2003-10-17 Toyoda Gosei Co Ltd Light emitting diode
JP2005108647A (en) * 2003-09-30 2005-04-21 Fujitsu Kasei Kk Light source device and lighting system
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2007207572A (en) * 2006-02-01 2007-08-16 Toshiba Corp Light source device, back-light unit, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339526A (en) * 1998-05-28 1999-12-10 Minebea Co Ltd Transmission flat lighting system
JP2003298117A (en) * 2002-04-05 2003-10-17 Toyoda Gosei Co Ltd Light emitting diode
JP2005108647A (en) * 2003-09-30 2005-04-21 Fujitsu Kasei Kk Light source device and lighting system
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2007207572A (en) * 2006-02-01 2007-08-16 Toshiba Corp Light source device, back-light unit, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222851A1 (en) 2012-11-12 2014-05-15 Suzuki Motor Corporation Mounting structure for an electronic unit
WO2018083780A1 (en) * 2016-11-04 2018-05-11 オリンパス株式会社 Illuminating device

Also Published As

Publication number Publication date
JP5851119B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2012165347A1 (en) Light source device
JP5478232B2 (en) Lighting device
US8882321B2 (en) Light source device with optical element and wavelength conversion member
JP2012174551A (en) Light-emitting device
US9631794B2 (en) Lighting apparatus
JP2014523603A (en) Waveguide device for illumination system
JP6697765B2 (en) Light source device and light projecting device
JP2012248401A (en) Light source device
US9341344B2 (en) Illumination apparatus
US20140328047A1 (en) Light source device
JP5851119B2 (en) Light source device
JP5648372B2 (en) Light source device
JP6239016B2 (en) Light source device and endoscope device
JP6300080B2 (en) Light emitting device and vehicle lamp
JP2014023815A (en) Light source device
JP2011134509A (en) Lighting fixture
JP7106028B1 (en) lighting equipment
JP7287491B2 (en) Light source device
JP7113999B1 (en) lighting equipment
WO2017104047A1 (en) Illumination device and endoscope system
WO2023276256A1 (en) Lighting device
WO2023276257A1 (en) Lighting device
JP2014067548A (en) Solid-state lighting apparatus
JP2017011115A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R151 Written notification of patent or utility model registration

Ref document number: 5851119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250