JPWO2017061487A1 - Austenitic stainless steel sheet and manufacturing method thereof - Google Patents

Austenitic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JPWO2017061487A1
JPWO2017061487A1 JP2017505262A JP2017505262A JPWO2017061487A1 JP WO2017061487 A1 JPWO2017061487 A1 JP WO2017061487A1 JP 2017505262 A JP2017505262 A JP 2017505262A JP 2017505262 A JP2017505262 A JP 2017505262A JP WO2017061487 A1 JPWO2017061487 A1 JP WO2017061487A1
Authority
JP
Japan
Prior art keywords
content
stainless steel
less
austenitic stainless
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017505262A
Other languages
Japanese (ja)
Other versions
JP6197974B2 (en
Inventor
慎一 寺岡
慎一 寺岡
安達 和彦
和彦 安達
雄一 福村
雄一 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Application granted granted Critical
Publication of JP6197974B2 publication Critical patent/JP6197974B2/en
Publication of JPWO2017061487A1 publication Critical patent/JPWO2017061487A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

質量%で、C:0.03〜0.15%、Si:0.20〜2.5%、Mn:0.2〜4.5%、P:0.010〜0.030%、S:0.0001〜0.0010%、Cr:20.0〜26.0%、Ni:10.0〜15.0%、Cu:0.01〜2.0%、Mo:0.01〜2.0%、Co:0.05〜2.50%、Al:0.01〜0.20%、N:0.1〜0.6%、V:0.02〜0.15%、B:0.0002〜0.0050%、Nb:0〜0.10%、Ti:0〜0.10%、Y:0〜0.10%、Ca:0〜0.010%、Mg:0〜0.010%、REM:0〜0.10%、残部がFeおよび不純物であり、Mnの含有量[Mn](質量%)、Sの含有量[S](質量%)が、[Mn]×[S]≦0.0020を満たし、板厚が0.5mm以下であり、結晶粒の長軸の長さをL1、結晶粒の短軸の長さをL2とするとき、アスペクト比の値L1/L2≧1.5を満たし、600℃で400時間保持後の表面硬度(HV)が300以上であるオーステナイト系ステンレス鋼板。このオーステナイト系ステンレス鋼板は、耐食性と耐熱性に優れる。In mass%, C: 0.03-0.15%, Si: 0.20-2.5%, Mn: 0.2-4.5%, P: 0.010-0.030%, S: 0.0001-0.0010%, Cr: 20.0-26.0%, Ni: 10.0-15.0%, Cu: 0.01-2.0%, Mo: 0.01-2. 0%, Co: 0.05-2.50%, Al: 0.01-0.20%, N: 0.1-0.6%, V: 0.02-0.15%, B: 0 .0002-0.0050%, Nb: 0-0.10%, Ti: 0-0.10%, Y: 0-0.10%, Ca: 0-0.010%, Mg: 0-0. 010%, REM: 0 to 0.10%, balance is Fe and impurities, Mn content [Mn] (mass%), S content [S] (mass%) is [Mn] × [ S] ≦ 0.0020, board Is 0.5 mm or less, and when the length of the major axis of the crystal grain is L1 and the length of the minor axis of the crystal grain is L2, the aspect ratio value L1 / L2 ≧ 1.5 is satisfied, and at 600 ° C. An austenitic stainless steel sheet having a surface hardness (HV) of 300 or more after holding for 400 hours. This austenitic stainless steel sheet is excellent in corrosion resistance and heat resistance.

Description

本発明は、オーステナイト系ステンレス鋼板に関する。   The present invention relates to an austenitic stainless steel sheet.

自動車エンジンのシリンダーヘッドとエンジンブロック間のガスケット(ヘッドガスケット)には、SUS301、SUS403等のばね用ステンレス鋼が用いられている。SUS301は冷間圧延により一部が加工誘起マルテンサイトに変態し強化される。SUS403は焼入れ、焼戻しにより大部分がマルテンサイト相となり強化される。ヘッドガスケットは200℃以下の環境で使用されるため、マルテンサイト相が使用環境でも安定相として存在し、ガスケットとしてのシール性を発揮する。   Stainless steel for springs such as SUS301 and SUS403 is used for a gasket (head gasket) between a cylinder head and an engine block of an automobile engine. SUS301 is partly transformed into work-induced martensite and strengthened by cold rolling. SUS403 is mostly strengthened into a martensite phase by quenching and tempering. Since the head gasket is used in an environment of 200 ° C. or lower, the martensite phase exists as a stable phase even in the environment of use, and exhibits a sealing property as a gasket.

一方、自動車の排気系部品を接続するフランジ間に使用されるガスケットは、エンジンブロック又は、シリンダーヘッドよりも高温の部品を接続するために、最高温度が500〜700℃まで加熱される。SUS301、SUS403の耐熱温度は約350℃であり、このような高温環境では強度を維持できないため、排気系部品用のガスケットとしては、JIS G 4902(耐食耐熱超合金板)に規定されるNCF625、NCF718、JIS G 4312(耐熱鋼板および鋼帯)に規定されるSUH660、SUH310などが用いられる。   On the other hand, the gasket used between the flanges that connect the exhaust system parts of the automobile is heated to a maximum temperature of 500 to 700 ° C. in order to connect parts that are hotter than the engine block or cylinder head. Since the heat resistance temperature of SUS301 and SUS403 is about 350 ° C. and the strength cannot be maintained in such a high temperature environment, NCF625 specified in JIS G 4902 (corrosion-resistant heat-resistant superalloy plate) is used as a gasket for exhaust system parts. NCF718, SUH660, SUH310 etc. which are prescribed | regulated to JISG4312 (heat-resistant steel plate and steel strip) are used.

NCF625、NCF718は金属間化合物による析出強化合金であり、50%以上のNiを含有する。SUH660は24〜27%のNiを含む析出強化鋼であり、SUH310は19〜22%のNiを含有するオーステナイト系の耐熱鋼である。いずれも多量のNiを含有するために高価である。そこで同じオーステナイトの安定化元素であるNを含有させ、Niを低減した鋼種も開発され用いられている。   NCF625 and NCF718 are precipitation strengthened alloys made of intermetallic compounds, and contain 50% or more of Ni. SUH660 is a precipitation strengthened steel containing 24 to 27% Ni, and SUH310 is an austenitic heat resistant steel containing 19 to 22% Ni. Both are expensive because they contain a large amount of Ni. Therefore, a steel type containing N, which is the same austenite stabilizing element, and having reduced Ni has been developed and used.

しかしながら、近年ではエンジンの低燃費化要求、排出ガス規制が高まっており、EGR、ターボチャージャー、DPF、排熱回収器等の排気系部品が小型車にまで搭載されるようになってきた。燃費を高めるためエンジンのダウンサイジング化が進み、小型高出力化が指向されるため、排気ガス温度が高くなり、ガスケットには従来以上の残留応力が加わるようになっている。   However, in recent years, demands for lower fuel consumption of engines and exhaust gas regulations have increased, and exhaust system parts such as EGR, turbocharger, DPF, and exhaust heat recovery device have been installed even in small cars. The downsizing of the engine is progressing to improve the fuel efficiency, and the miniaturization and the high output are aimed at. Therefore, the exhaust gas temperature becomes high, and the residual stress more than conventional is applied to the gasket.

また、排気系部品は小型化し、冷却効率を上げるために水冷機構が加わるものもあるため、近年開発された省Niの耐熱材料では、高温に加熱されている間の強度は維持できるものの、エンジン停止後に結露した排ガスにより、オーステナイト系ステンレス鋼に特有の応力腐食割れ(以下SCCと記載する。)が生じる事例が現れるようになった。   In addition, because some exhaust system parts are miniaturized and a water cooling mechanism is added to increase cooling efficiency, recently developed Ni-saving heat-resistant materials can maintain the strength while being heated to high temperatures, but the engine There has been a case where stress corrosion cracking (hereinafter referred to as SCC) peculiar to austenitic stainless steel appears due to exhaust gas that has condensed after the stoppage.

特許文献1では、Mnを1.0〜10.0%に高めることでNの固溶限を高め、Nを0.35〜0.8%とすることでNの固溶強化で高温強度を高めた鋼板が開示されている。   In Patent Document 1, the solid solubility limit of N is increased by increasing Mn to 1.0 to 10.0%, and the high temperature strength is improved by solid solution strengthening of N by increasing N to 0.35 to 0.8%. An enhanced steel sheet is disclosed.

特許文献2では、C−Si−Nを高め、C+2N+0.12Si+1.4Nbを0.45%以上に調整することで高温雰囲気に曝されても優れた耐へたり性を維持するメタルガスケットとして使用されるオーステナイト系ステンレス鋼が開示されている。C、Nはマトリックスの固溶強化元素として、Si、Nbも高温雰囲気における転位の移動を抑制し、高温強度を高める元素である。   In Patent Document 2, it is used as a metal gasket that maintains excellent sag resistance even when exposed to a high temperature atmosphere by increasing C-Si-N and adjusting C + 2N + 0.12Si + 1.4Nb to 0.45% or more. An austenitic stainless steel is disclosed. C and N are elements for strengthening the solid solution of the matrix, and Si and Nb are elements that suppress the movement of dislocations in a high temperature atmosphere and increase the high temperature strength.

特許文献3では、ガスケットに必要な形状平坦度を矯正工程にて確保するために、固溶強化元素としてNの使用量を低減し、Nを0.05%以下とし、その代わりにSiを2.0%超、5.0%以下としたメタルガスケット用耐熱オーステナイト系ステンレス鋼が開示されている。   In patent document 3, in order to ensure the shape flatness required for a gasket in a correction process, the usage-amount of N is reduced as a solid solution strengthening element, N is made into 0.05% or less, and Si is 2 instead. A heat-resistant austenitic stainless steel for metal gaskets of more than 0.0% and 5.0% or less is disclosed.

特許文献4では、安定したオーステナイト相を有し、回復・再結晶を抑制させるとともに、時効硬化を生じ得るステンレス鋼として、7〜25%Ni、16〜30%Cr、0.1〜0.4%Nを含有し、バネ限界値が220MPa以上とする冷間圧延オーステナイト系ステンレス鋼が開示されている。   In Patent Document 4, as a stainless steel having a stable austenite phase, suppressing recovery / recrystallization, and capable of causing age hardening, 7 to 25% Ni, 16 to 30% Cr, 0.1 to 0.4 Cold rolled austenitic stainless steel containing% N and having a spring limit value of 220 MPa or more is disclosed.

特開平9−279315号公報Japanese Patent Laid-Open No. 9-279315 特開2003−82441号公報JP 2003-82441 A 特開2011−252208号公報JP 2011-252208 A 特開2012−211348号公報JP 2012-2111348 A

しかしながら、上記の従来技術には、以下のような課題がある。
特許文献1の発明は、強度、高温強度、耐へたり性、高温酸化性に優れた材料である反面、耐食性に関しては検討されておらず、耐食性に関しては十分な特性を得ることができない。
However, the above prior art has the following problems.
The invention of Patent Document 1 is a material excellent in strength, high-temperature strength, sag resistance, and high-temperature oxidation property, but has not been examined for corrosion resistance and cannot provide sufficient characteristics for corrosion resistance.

特許文献2に記載の鋼種は、高温でのへたり性、硬度以外は検討されておらず、十分な耐食性を得ることができない。   The steel type described in Patent Document 2 has not been studied except for sagability and hardness at high temperatures, and sufficient corrosion resistance cannot be obtained.

特許文献3の発明においても、常温での加工性と耐へたり性は改善すると思われるが、耐食性に関しては検討されていない。   Even in the invention of Patent Document 3, it seems that the workability and sag resistance at room temperature are improved, but the corrosion resistance has not been studied.

特許文献4の発明においても、高温使用時におけるバネ限界値および硬さにのみ検討がなされており、耐食性に関しては十分に検討されていない。   Also in the invention of Patent Document 4, only the spring limit value and hardness at the time of high temperature use are studied, and the corrosion resistance is not sufficiently studied.

上記を踏まえ、本発明は、自動車エンジンなどの排気ガス流路部品を接続する際に使用されるメタルガスケット用の材料として好適な、耐熱性と、従来メタルガスケット用材料においては十分に検討されてこなかった耐食性とを両立させ、しかも低コストなオーステナイト系ステンレス鋼板を供給することを目的とする。   Based on the above, the present invention has been well studied in terms of heat resistance, which is suitable as a material for metal gaskets used when connecting exhaust gas flow path components such as automobile engines, and conventional metal gasket materials. An object of the present invention is to supply a low-cost austenitic stainless steel sheet that is compatible with corrosion resistance that has not been achieved.

本発明者らは前記課題を解決すべく鋭意検討を行った。まず、耐熱ガスケットにおいて生じた腐食は、排気系部品を冷却装置で部分的に冷却している部品において生じやすいこと、加熱冷却による熱サイクルにより残留応力が発生する場合に生じていること、また腐食形態から、主にSCCであると推測した。   The present inventors have intensively studied to solve the above problems. First, corrosion that occurs in heat-resistant gaskets is likely to occur in parts in which exhaust system parts are partially cooled by a cooling device, occurs when residual stress occurs due to thermal cycles due to heating and cooling, and corrosion. From the form, it was presumed to be mainly SCC.

SCC感受性を下げるためには、フェライト系ステンレス鋼を用いることが有効だが、十分な高温強度が得られなかった。また、オーステナイト系ステンレス鋼で耐SCC性を改善するためには、Si、Moといった元素が有効であるが、Si、Moの過度な含有は、シグマ相の形成により疲労寿命を損ねる場合があるので、不適切と考えられた。また一般的にステンレス鋼の耐食性は耐孔食指数としてCr+3Mo+16Nで表されるように、Cr又はNを高めることも有効であるが、CrはSi、Moと同様にシグマ相の形成による問題があり、Nの過度な含有は、常温での強度が高くなり製造性を損ねるほか、ガスケット形状へのプレス成形における形状凍結性に問題があることが分かった。   In order to reduce SCC sensitivity, it is effective to use ferritic stainless steel, but sufficient high-temperature strength has not been obtained. In order to improve SCC resistance in austenitic stainless steel, elements such as Si and Mo are effective, but excessive inclusion of Si and Mo may impair fatigue life due to the formation of sigma phase. Was considered inappropriate. In general, it is also effective to increase Cr or N as the corrosion resistance of stainless steel is expressed as Cr + 3Mo + 16N as the pitting corrosion index, but Cr has a problem due to the formation of sigma phase like Si and Mo. , N excessive content increases the strength at normal temperature and impairs manufacturability, and it has been found that there is a problem in shape freezing property in press molding into a gasket shape.

そこで、その他の元素の影響を、実環境を模擬したSCC試験で個々に調べた結果、耐熱性、加工性、およびプレス成形性を損ねずに耐SCC性を改善する方法として、以下の知見を得た。   Therefore, as a result of individually examining the influence of other elements in the SCC test simulating the actual environment, the following knowledge was obtained as a method for improving SCC resistance without impairing heat resistance, workability, and press formability. Obtained.

1)耐SCC性を改善するためには、SCC発生の起点となる介在物(MnS)を低減することが有効である。そのため、Mn、Sを低減することが考えられるが、MnはNの固溶量を高める元素でもある。Nは、高温強度の観点からは、凝固時の気泡欠陥および、圧延時の耳割れなどの製造性の問題を生じない範囲で一定量含有させることが好ましい。そこで、Mnを低減するのではなく、Sを10ppm以下(0.0010%以下)に低減することが必須である。   1) In order to improve the SCC resistance, it is effective to reduce inclusions (MnS) that are the starting point of SCC generation. Therefore, it is conceivable to reduce Mn and S, but Mn is also an element that increases the solid solution amount of N. From the viewpoint of high-temperature strength, N is preferably contained in a certain amount within a range that does not cause problems of manufacturability such as bubble defects during solidification and ear cracks during rolling. Therefore, it is essential not to reduce Mn but to reduce S to 10 ppm or less (0.0010% or less).

2)微量にCoを含有させることはシグマ相の析出を促進することなく、耐食性と高温強度に有効である。   2) Inclusion of a small amount of Co is effective for corrosion resistance and high temperature strength without promoting precipitation of the sigma phase.

本発明はかかる知見に基づき完成されたものであって、その要旨は以下のとおりである。   The present invention has been completed based on such findings, and the gist thereof is as follows.

(1)質量%で、C:0.03〜0.15%、Si:0.20〜2.5%、Mn:0.2〜4.5%、P:0.010〜0.030%、S:0.0001〜0.0010%、Cr:20.0〜26.0%、Ni:10.0〜15.0%、Cu:0.01〜2.0%、Mo:0.01〜2.0%、Co:0.05〜2.50%、Al:0.01〜0.20%、N:0.1〜0.6%、V:0.02〜0.15%、B:0.0002〜0.0050%、Nb:0〜0.10%、Ti:0〜0.10%、Y:0〜0.10%、Ca:0〜0.010%、Mg:0〜0.010%、REM:0〜0.10%、残部がFeおよび不純物であり、Mnの含有量[Mn](質量%)、Sの含有量[S](質量%)が、[Mn]×[S]≦0.0020を満たし、板厚が0.5mm以下であり、結晶粒の長軸の長さをL1、結晶粒の短軸の長さをL2とするとき、アスペクト比の値L1/L2≧1.5を満たし、600℃で400時間保持後の表面硬度(HV)が300以上であるオーステナイト系ステンレス鋼板。   (1) By mass%, C: 0.03 to 0.15%, Si: 0.20 to 2.5%, Mn: 0.2 to 4.5%, P: 0.010 to 0.030% , S: 0.0001 to 0.0010%, Cr: 20.0 to 26.0%, Ni: 10.0 to 15.0%, Cu: 0.01 to 2.0%, Mo: 0.01 -2.0%, Co: 0.05-2.50%, Al: 0.01-0.20%, N: 0.1-0.6%, V: 0.02-0.15%, B: 0.0002 to 0.0050%, Nb: 0 to 0.10%, Ti: 0 to 0.10%, Y: 0 to 0.10%, Ca: 0 to 0.010%, Mg: 0 -0.010%, REM: 0-0.10%, the balance is Fe and impurities, Mn content [Mn] (mass%), S content [S] (mass%) is [Mn ] × [S] ≦ 0.0020 When the plate thickness is 0.5 mm or less, the length of the major axis of the crystal grains is L1, and the length of the minor axis of the crystal grains is L2, the aspect ratio value L1 / L2 ≧ 1.5 is satisfied, An austenitic stainless steel sheet having a surface hardness (HV) of 300 or more after being held at 600 ° C. for 400 hours.

(2)質量%で、Nb:0.01〜0.10%、および/または、Ti:0.01〜0.10%を含む(1)記載のオーステナイト系ステンレス鋼板。   (2) The austenitic stainless steel sheet according to (1), which contains Nb: 0.01 to 0.10% and / or Ti: 0.01 to 0.10% by mass.

(3)質量%で、Y:0.01〜0.10%、Ca:0.001〜0.010%、Mg:0.0002〜0.010%、およびREM:0.01〜0.10%から選択される1種以上を含む(1)または(2)記載のオーステナイト系ステンレス鋼板。   (3) By mass%, Y: 0.01-0.10%, Ca: 0.001-0.010%, Mg: 0.0002-0.010%, and REM: 0.01-0.10 The austenitic stainless steel sheet according to (1) or (2), which contains one or more selected from%.

(4)冷間圧延において圧下率が20%以上の調質圧延が施された(1)〜(3)のいずれかに記載のオーステナイト系ステンレス鋼板。   (4) The austenitic stainless steel sheet according to any one of (1) to (3), which has been subjected to temper rolling with a rolling reduction of 20% or more in cold rolling.

本発明によれば、SUH310、SUH660、NCF625、およびNCF718などのように20%以上のNiを用いずに、少ないNi量で高温強度と耐食性を両立するオーステナイト系ステンレス鋼板を提供でき、特に、自動車排気系の耐熱メタルガスケット用として好適である。   According to the present invention, it is possible to provide an austenitic stainless steel sheet that achieves both high temperature strength and corrosion resistance with a small amount of Ni without using 20% or more of Ni, such as SUH310, SUH660, NCF625, and NCF718. Suitable for heat-resistant metal gasket for exhaust system.

図1は実施例で用いた試験片を示す図である。(a)は平面図であり、(b)は(a)におけるA−A´断面拡大図である。FIG. 1 is a view showing a test piece used in Examples. (A) is a top view, (b) is the AA 'cross-section enlarged view in (a).

本発明に係るステンレス鋼板の化学組成、および鋼板の好ましい製造方法について説明する。なお、以下の説明において、各元素の含有量を表す「%」は、特に断りがない限り「質量%」を意味する。   The chemical composition of the stainless steel plate according to the present invention and a preferred method for producing the steel plate will be described. In the following description, “%” representing the content of each element means “mass%” unless otherwise specified.

<C:0.03〜0.15%>
Cは、オーステナイト組織の安定と高温強度を高めるために有効である。また、Cは、Crと炭化物を形成しオーステナイト粒の成長を抑制して粒界酸化を適度に成長させ、耐スケール剥離特性を向上させる。この効果を得るためには、C含有量は、0.03%以上とする。また、粒成長を安定的に抑制するために、C含有量は0.10%以上であるのが好ましい。一方、Cを、0.15%を超えて含有させると、Cr炭化物の量が増えて、粒界のクロム欠乏層が増加し、本鋼の様な高Crオーステナイト系ステンレス鋼であっても自動車のエキゾーストマニホールド部材、ターボ部品等としても必要とされる耐食性が維持できなくなる。そのため、C含有量は、0.15%以下とする。耐食性の観点から、C含有量は、0.12%以下であるのが好ましい。
<C: 0.03-0.15%>
C is effective for increasing the stability of the austenite structure and the high temperature strength. C forms carbides with Cr, suppresses the growth of austenite grains, moderately grows grain boundary oxidation, and improves the scale peeling resistance. In order to obtain this effect, the C content is 0.03% or more. Further, in order to stably suppress grain growth, the C content is preferably 0.10% or more. On the other hand, if C is contained in an amount exceeding 0.15%, the amount of Cr carbide increases and the chromium-deficient layer at the grain boundary increases, and even a high Cr austenitic stainless steel such as this steel is an automobile. Corrosion resistance required for exhaust manifold members, turbo parts, etc. cannot be maintained. Therefore, the C content is 0.15% or less. From the viewpoint of corrosion resistance, the C content is preferably 0.12% or less.

<Si:0.20%〜2.5%>
Siは耐酸化性に効果があり、特に断続酸化におけるスケール剥離の防止に効果がある。1000℃を超える環境で粒界酸化を形成し、表面のスケール剥離を抑制するためには、0.20%以上のSiが必要である。そのため、Si含有量は、0.20%以上とする。耐酸化性を高めるためには、Si含有量は、0.50%以上であるのが好ましい。またSiはフェライト安定化元素であり、凝固組織におけるδフェライト量を増加させ、熱間圧延において熱間加工性の低下が問題になる。そのため、Si含有量は2.5%以下とする。そのほか、Siはシグマ層の生成も促進し、高温長時間使用時の脆化も危惧されるため、Si含有量は2.0%以下であるのが好ましく、1.5%以下であるのがより好ましい。
<Si: 0.20% to 2.5%>
Si is effective in oxidation resistance, and is particularly effective in preventing scale peeling during intermittent oxidation. In order to form grain boundary oxidation in an environment exceeding 1000 ° C. and suppress surface scale peeling, 0.20% or more of Si is required. Therefore, the Si content is 0.20% or more. In order to improve oxidation resistance, the Si content is preferably 0.50% or more. Further, Si is a ferrite stabilizing element, and increases the amount of δ ferrite in the solidified structure, which causes a problem of a decrease in hot workability in hot rolling. Therefore, the Si content is 2.5% or less. In addition, since Si promotes the formation of a sigma layer and there is a risk of embrittlement when used at a high temperature for a long time, the Si content is preferably 2.0% or less, more preferably 1.5% or less. preferable.

<Mn:0.2〜4.5%>
Mnは、脱酸剤として使用される元素であるとともに、オーステナイト単相域を拡大し、組織の安定化に寄与する。また、MnはNの固溶限を拡大することで、高温強度の確保に寄与する。その効果は0.2%以上で明確に現れる。そのため、Mn含有量は0.2%以上とする。また、硫化物を形成し鋼中の固溶S量を低減することで、熱間加工性を向上させる効果もあることから、Mn含有量は0.5%以上であるのが好ましい。一方、過度の含有は耐食性を低下させる。そのため、Mn含有量は4.5%以下とする。また耐酸化性の点ではCr主体の酸化物が望ましく、Mn酸化物は好ましくないため、Mn含有量は、2.0%以下であるのが好ましい。
<Mn: 0.2 to 4.5%>
Mn is an element used as a deoxidizer and expands the austenite single phase region and contributes to the stabilization of the structure. Moreover, Mn contributes to securing high temperature strength by expanding the solid solubility limit of N. The effect appears clearly at 0.2% or more. Therefore, the Mn content is 0.2% or more. Moreover, since there exists an effect which improves hot workability by forming sulfide and reducing the amount of solid solution S in steel, it is preferable that Mn content is 0.5% or more. On the other hand, excessive content reduces corrosion resistance. Therefore, the Mn content is 4.5% or less. Further, from the viewpoint of oxidation resistance, an oxide mainly composed of Cr 2 O 3 is desirable, and Mn oxide is not preferable. Therefore, the Mn content is preferably 2.0% or less.

<P:0.010〜0.030%>
Pは、原料である溶銑、フェロクロム等の主原料中に不純物として含まれる元素である。熱間加工性に対しては有害な元素である。そのため、P含有量は0.030%以下とする。過度な低減は高純度原料の使用を必須にするなど、コストの増加に繋がるため、P含有量は0.010%以上とする。経済的には、0.020%以上含有させることが好ましい。
<P: 0.010 to 0.030%>
P is an element contained as an impurity in the main raw materials such as hot metal and ferrochrome as raw materials. It is an element harmful to hot workability. Therefore, the P content is 0.030% or less. An excessive reduction leads to an increase in cost, for example, making it necessary to use a high-purity raw material, so the P content is 0.010% or more. Economically, it is preferable to contain 0.020% or more.

<S:0.0001〜0.0010%>
Sは、硫化物系介在物を形成し、鋼材の一般的な耐食性(全面腐食又は孔食)を劣化させるため、その含有量の上限は少ないほうが好ましい。また、SCC発生の起点となる介在物(MnS)を低減するために、その含有量は0.0010%以下とする。また、S含有量は少ないほど耐食性は良好となるので、0.0008%以下が好ましいが、低S化には脱硫負荷が増大し、製造コストが増大するので、その含有量は0.0001%以上とするのが好ましい。一般的に、製造コストの観点から、S含有量を上記の0.0001〜0.0010%の範囲で調整することは、少ない。しかしながら、本発明では、介在物(MnS)を低減するため、上記範囲としており、極めて低いS含有量と言える。
<S: 0.0001 to 0.0010%>
S forms sulfide inclusions and degrades the general corrosion resistance (entire corrosion or pitting corrosion) of the steel material, so that the upper limit of its content is preferably small. Moreover, in order to reduce the inclusion (MnS) which becomes the starting point of SCC generation | occurrence | production, the content shall be 0.0010% or less. Further, since the corrosion resistance becomes better as the S content is smaller, 0.0008% or less is preferable. However, since the desulfurization load increases and the production cost increases for lowering the S content, the content is 0.0001%. The above is preferable. Generally, from the viewpoint of production cost, there is little adjustment of the S content in the range of 0.0001 to 0.0010%. However, in the present invention, in order to reduce inclusions (MnS), the above range is set, and it can be said that the S content is extremely low.

<Cr:20.0〜26.0%>
Crは、本発明において、耐酸化性および耐食性確保のために必須な元素である。Cr含有量が、20.0%未満では、これらの効果は発現せず、一方で、26.0%超ではオーステナイト単相域が縮小し、製造時の熱間加工性を損ねる。そのため、Cr含有量は20.0〜26.0%とする。なお、耐酸化性の観点から、Cr含有量は24.0%以上であるのが好ましい。また、Cr量を高くするとシグマ相の形成により脆化する。そのため、Cr含有量は25.0%以下であるのが好ましい。
<Cr: 20.0 to 26.0%>
In the present invention, Cr is an essential element for securing oxidation resistance and corrosion resistance. If the Cr content is less than 20.0%, these effects are not exhibited. On the other hand, if it exceeds 26.0%, the austenite single phase region is reduced, and the hot workability during production is impaired. Therefore, the Cr content is 20.0 to 26.0%. In addition, from the viewpoint of oxidation resistance, the Cr content is preferably 24.0% or more. In addition, when the Cr content is increased, embrittlement occurs due to formation of a sigma phase. Therefore, the Cr content is preferably 25.0% or less.

<Ni:10.0〜15.0%>
Niは、オーステナイト相を安定化させる元素であり、Mnと異なって耐酸化性に有効な元素である。これらの効果は10.0%以上で得られる。そのためNi含有量は10.0%以上とする。シグマ相の生成を抑制する効果もあるので、Ni含有量は11.0%以上であるのが好ましい。一方、過度な含有は凝固割れ感受性を高めるとともに、熱間加工性も低下させる。そのため、Ni含有量は15.0%以下とする。さらに、断続酸化におけるスケール剥離を抑制するためには、Ni含有量は14.0%以下であるのが好ましい。
<Ni: 10.0-15.0%>
Ni is an element that stabilizes the austenite phase, and unlike Mn, is an element that is effective in oxidation resistance. These effects are obtained at 10.0% or more. Therefore, the Ni content is 10.0% or more. The Ni content is preferably 11.0% or more because it also has an effect of suppressing the formation of the sigma phase. On the other hand, excessive inclusion increases susceptibility to solidification cracking and also decreases hot workability. Therefore, the Ni content is 15.0% or less. Furthermore, in order to suppress scale peeling in intermittent oxidation, the Ni content is preferably 14.0% or less.

<Cu:0.01〜2.0%>
Cuは、オーステナイト安定化元素としてNiを代替する相対的に安価な元素である。さらに、隙間腐食や孔食の進展抑制に効果があり、そのためには0.01%以上含有させるのが好ましい。ただし、オーステナイト系ステンレス鋼の製造においてCuは、スクラップ等の原料から混入することが多く、不可避的な不純物として0.2%程度含まれることが多い。ただし、2.0%を超えると熱間加工性を低下させるため、Cu含有量は、2.0%以下とする。
<Cu: 0.01 to 2.0%>
Cu is a relatively inexpensive element that substitutes for Ni as an austenite stabilizing element. Furthermore, it is effective in suppressing the progress of crevice corrosion and pitting corrosion. For that purpose, it is preferable to contain 0.01% or more. However, in the production of austenitic stainless steel, Cu is often mixed from raw materials such as scrap, and is often included in an amount of about 0.2% as an inevitable impurity. However, if it exceeds 2.0%, the hot workability is lowered, so the Cu content is set to 2.0% or less.

<Mo:0.01〜2.0%>
MoもSiまたはCrとともに、表面の保護性スケール形成に有効であり、その効果は0.01%で得られることから、Mo含有量は0.01%以上とする。また、耐食性の向上にも有効な元素であることから、Mo含有量は0.3%以上であるのが好ましい。一方、フェライト安定化元素でもあり、Mo含有量が増えるとNiの含有量も増やす必要が生じるため、過度な含有は好ましくない。また、シグマ相の形成を促進して脆化を生じることがある。そのため、Mo含有量は、2.0%以下とする。耐食性や耐酸化性の向上効果は0.8%を超えるとほぼ飽和する。そのため、Mo含有量は、0.8%以下であるのが好ましい。
<Mo: 0.01 to 2.0%>
Mo, together with Si or Cr, is effective for forming a protective scale on the surface, and the effect is obtained at 0.01%. Therefore, the Mo content is set to 0.01% or more. Moreover, since it is an element effective also in improving corrosion resistance, the Mo content is preferably 0.3% or more. On the other hand, it is also a ferrite stabilizing element, and when the Mo content increases, the Ni content also needs to be increased, so excessive content is not preferable. Moreover, the formation of a sigma phase may be promoted to cause embrittlement. Therefore, the Mo content is set to 2.0% or less. The effect of improving corrosion resistance and oxidation resistance is almost saturated when it exceeds 0.8%. Therefore, the Mo content is preferably 0.8% or less.

<Co:0.05〜2.50%>
Coは微量の含有でも耐熱性の向上にきわめて有効である。そのため、Co含有量は0.05%以上とする。ただし、過度な含有は熱間加工性を損ねるため、Co含有量は2.50%以下とする。耐食性にも有効な元素であるため、Co含有量は0.10%以上であるのが好ましい。また、シグマ相の形成を抑制するためには、Co含有量は2.0%以下であるのが好ましい。
<Co: 0.05-2.50%>
Co is extremely effective in improving heat resistance even when contained in a trace amount. Therefore, the Co content is 0.05% or more. However, excessive content impairs hot workability, so the Co content is 2.50% or less. Since it is an element effective for corrosion resistance, the Co content is preferably 0.10% or more. In order to suppress the formation of the sigma phase, the Co content is preferably 2.0% or less.

<Al:0.01〜0.20%>
Alは、脱酸元素として使用される他、耐酸化性を向上させる元素である。そのため、Al含有量は0.01%以上とする。また、脱酸効率を高めるためには、Al含有量は0.05%以上であるのが好ましい。一方、過度な含有は窒化物を形成して、固溶N量を低下させ高温強度が低下する。そのため、Al含有量は0.20%以下とする。溶接性も考慮すると、Al含有量は0.15%以下であるのが好ましい。
<Al: 0.01-0.20%>
In addition to being used as a deoxidizing element, Al is an element that improves oxidation resistance. Therefore, the Al content is 0.01% or more. In order to increase the deoxidation efficiency, the Al content is preferably 0.05% or more. On the other hand, excessive inclusion forms nitrides, lowers the amount of solute N, and lowers the high temperature strength. Therefore, the Al content is 0.20% or less. In consideration of weldability, the Al content is preferably 0.15% or less.

<N:0.1〜0.6%>
Nは、本発明において非常に重要な元素のひとつである。Cと同様に高温強度を上げる他、オーステナイト安定度を上げることでNiの低減も可能になる。また、Cよりも鋭敏化による耐食性低下影響が小さいため、Cよりも多量の含有が可能である。高温環境に耐える高温強度を得るために、N含有量は、0.10%以上とする。Niの低減効果も考慮すると、N含有量は0.25%以上であるのが好ましい。一方、多量に含有させると製鋼工程で凝固時に気泡系欠陥が生じるために、0.6%以下とする。その他にも、加圧溶解設備が必要となる点、および常温における強度が高すぎて冷間圧延時の負荷が高くなり、生産性を損なうため、N含有量は0.4%以下にすること好ましく、より好ましくは、0.3%以下である。
<N: 0.1 to 0.6%>
N is one of the very important elements in the present invention. In addition to increasing the high temperature strength in the same manner as C, it is possible to reduce Ni by increasing the austenite stability. Further, since the corrosion resistance lowering effect due to sensitization is smaller than that of C, it can be contained in a larger amount than C. In order to obtain a high temperature strength that can withstand a high temperature environment, the N content is 0.10% or more. Considering the Ni reduction effect, the N content is preferably 0.25% or more. On the other hand, if it is contained in a large amount, a bubble defect occurs during solidification in the steel making process. In addition, the N content should be 0.4% or less because a pressure melting facility is required and the strength at normal temperature is too high, increasing the load during cold rolling and impairing productivity. Preferably, it is 0.3% or less.

<V:0.02〜0.15%>
Vは、ステンレス鋼の合金原料に不純物として混入し、精錬工程における除去が困難であるため、一般的に0.02〜0.15%の範囲で含有される。また、微細な炭窒化物を形成し、粒成長抑制効果を有するため、必要に応じて、意図的に含有させる。その効果を安定して発現させるため、V含有量は0.02%以上とする。結晶粒径を一定範囲にするためには、V含有量は0.08%以上であるのが好ましい。一方、過剰に含有させると、析出物が粗大化するおそれがあり、その結果、焼入れ後の靭性が低下してしまう。そのため、V含有量は0.15%以下とする。なお、製造コストおよび製造性を考慮すると、V含有量は0.10%以下であるのが好ましい。
<V: 0.02 to 0.15%>
V is generally contained in the range of 0.02 to 0.15% because it is mixed into the alloy raw material of stainless steel as an impurity and is difficult to remove in the refining process. Moreover, since fine carbonitride is formed and it has a grain growth inhibitory effect, it contains intentionally as needed. In order to stably exhibit the effect, the V content is set to 0.02% or more. In order to keep the crystal grain size within a certain range, the V content is preferably 0.08% or more. On the other hand, when it contains excessively, a precipitate may coarsen and, as a result, the toughness after hardening will fall. Therefore, the V content is 0.15% or less. In view of manufacturing cost and manufacturability, the V content is preferably 0.10% or less.

<B:0.0002〜0.0050%>
Bは、熱間加工性の向上に有効な元素であり、その効果は0.0002%以上で発現するため、B含有量は0.0002%以上とする。より広い温度域における熱間加工性を向上させるためには、B含有量は0.0005%以上とすることが好ましい。一方、過度な含有は熱間加工性の低下により表面疵の原因となるため、B含有量は0.0050%以下とする。耐食性も考慮すると、B含有量は0.0025%以下であるのが好ましい。
<B: 0.0002 to 0.0050%>
B is an element effective for improving hot workability, and its effect is manifested at 0.0002% or more. Therefore, the B content is set to 0.0002% or more. In order to improve the hot workability in a wider temperature range, the B content is preferably 0.0005% or more. On the other hand, excessive content causes surface flaws due to a decrease in hot workability, so the B content is 0.0050% or less. In consideration of corrosion resistance, the B content is preferably 0.0025% or less.

<Nb:0〜0.10%>
Nbは、炭窒化物を形成することでステンレス鋼におけるクロム炭窒化物の析出による鋭敏化および耐食性の低下を抑制する元素であるので、含有させてもよい。しかしながら、大型の製鋼介在物を形成することで、表面疵の原因になりやすく、ガスケットの疲労寿命低下の原因にもなる。そのため、Nb含有量は0.10%以下とする。固溶C、N量の確保による高温強度向上を考慮すると、Nb含有量は0.05%以下であるのが好ましい。上記の効果を得るためには、0.01%以上含有させるのが好ましい。
<Nb: 0 to 0.10%>
Nb is an element that suppresses deterioration of sensitization and corrosion resistance due to precipitation of chromium carbonitride in stainless steel by forming carbonitride, and thus may be contained. However, the formation of large steel-making inclusions can easily cause surface flaws and can also cause a reduction in the fatigue life of the gasket. Therefore, the Nb content is 0.10% or less. Considering the improvement in high temperature strength by securing the solid solution C and N content, the Nb content is preferably 0.05% or less. In order to acquire said effect, it is preferable to make it contain 0.01% or more.

<Ti:0〜0.10%>
Tiは炭窒化物を形成することで、ステンレス鋼におけるクロム炭窒化物の析出による鋭敏化および耐食性の低下を抑制する元素であるので、含有させてもよい。しかしながら、大型の製鋼介在物を形成することで、ガスケットの疲労寿命を下げる原因になるため、Ti含有量は0.10%以下とする。固溶C,N量の確保による高温強度向上を考慮すると、Ti含有量は0.05%以下とすることが好ましい。上記の効果を得るためには、0.01%以上含有させるのが好ましい。
<Ti: 0 to 0.10%>
Ti is an element that suppresses deterioration of sensitization and corrosion resistance due to precipitation of chromium carbonitride in stainless steel by forming carbonitride, and thus Ti may be contained. However, since the formation of large steel-making inclusions causes a decrease in the fatigue life of the gasket, the Ti content is 0.10% or less. Considering the improvement in high-temperature strength by securing the amount of dissolved C and N, the Ti content is preferably 0.05% or less. In order to acquire said effect, it is preferable to make it contain 0.01% or more.

<Y:0〜0.10%>
Yは耐酸化性を高める効果とともに、脱硫元素でもあるので、含有させてもよい。しかしながら過度な含有は連続鋳造時にノズル閉塞の問題を生じるほか、大型の酸化物系介在物の形成により、ガスケットの疲労寿命を損ねるため、Y含有量は0.10%以下であるのが好ましい。上記効果を得るには、Y含有量は、0.01%以上であるのが好ましい。
<Y: 0 to 0.10%>
Y is an element for desulfurization as well as an effect of improving oxidation resistance, and therefore may be contained. However, excessive content causes the problem of nozzle clogging during continuous casting, and the fatigue life of the gasket is impaired due to the formation of large oxide inclusions, so the Y content is preferably 0.10% or less. In order to acquire the said effect, it is preferable that Y content is 0.01% or more.

<Ca:0〜0.010%>
Caは脱硫元素として使用され、鋼中のSを低減して熱間加工性を向上させる効果があるので、含有させてもよい。一般には、溶解精錬時のスラグ中にCaOとして添加させ、この一部が鋼中にCaとして溶解しているものである。また、CaO−SiO−Al−MgOなどの複合酸化物としても鋼中に含有される。一方、多量に含有させると、比較的粗大な水溶性介在物CaSが析出し、耐食性を低下させる。そのため、Ca含有量は0.010%以下であるのが好ましい。熱間加工性の改善効果を得るためには、Ca含有量は、0.001%以上であるのが好ましい。
<Ca: 0 to 0.010%>
Ca is used as a desulfurization element, and has the effect of reducing S in steel and improving hot workability. Therefore, Ca may be contained. Generally, it is added as CaO in the slag at the time of melting and refining, and a part of this is dissolved as Ca in the steel. Moreover, also included in steel as a composite oxide such as CaO-SiO 2 -Al 2 O 3 -MgO. On the other hand, when it is contained in a large amount, a relatively coarse water-soluble inclusion CaS is precipitated, and the corrosion resistance is lowered. Therefore, the Ca content is preferably 0.010% or less. In order to obtain the effect of improving hot workability, the Ca content is preferably 0.001% or more.

<Mg:0〜0.010%>
MgはCaと同様に脱硫元素として含有され、一般にはスラグ中から溶鋼中に平衡量が固溶するほか、複合酸化物中にMgOとして含有される場合もある。また、耐火物中のMgOが溶鋼中に溶け出す場合もある。一方、過度な含有は水溶性介在物MgSが粗大析出し耐食性を低下させる。そのため、Mg含有量は、0.010%以下であるのが好ましい。Mg含有量は0.0002%以上であるのが好ましい。
<Mg: 0 to 0.010%>
Similar to Ca, Mg is contained as a desulfurization element. In general, the equilibrium amount is solid-solved from slag into molten steel, and may be contained as MgO in the composite oxide. In addition, MgO in the refractory may be dissolved into the molten steel. On the other hand, excessive inclusion causes coarse precipitation of the water-soluble inclusion MgS and lowers the corrosion resistance. Therefore, the Mg content is preferably 0.010% or less. The Mg content is preferably 0.0002% or more.

<REM:0〜0.10%>
REMは耐酸化性を高める効果とともに、脱硫元素でもあるので、含有させてもよい。しかしながら、過度な含有は連続鋳造時にノズル閉塞の問題を生じるほか、大型の酸化物系介在物の形成により、ガスケットの疲労寿命を損ねる。そのため、REM含有量は、0.10%以下であるのが好ましい。上記の効果を得るには、REM含有量は、0.01%以上であるのが好ましい。
<REM: 0 to 0.10%>
Since REM is a desulfurization element as well as an effect of improving oxidation resistance, it may be contained. However, excessive inclusion causes a problem of nozzle clogging during continuous casting, and also deteriorates the fatigue life of the gasket due to the formation of large oxide inclusions. Therefore, the REM content is preferably 0.10% or less. In order to obtain the above effects, the REM content is preferably 0.01% or more.

REMとは、Scおよびランタノイドの総称であり、REMの含有量は上記元素の合計量を意味し、通常はREMの中にYも含まれるが、本発明では、記載を分けている。   REM is a general term for Sc and lanthanoid, and the content of REM means the total amount of the above elements, and usually Y is also included in REM, but the description is divided in the present invention.

本発明の鋼板において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。   In the steel sheet of the present invention, the balance is Fe and impurities. Here, “impurities” are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when steel is industrially manufactured, and are allowed within a range that does not adversely affect the present invention. Means something.

<[Mn]×[S]≦0.0020>
MnとSは硫化物MnSを形成して、耐熱ガスケットの使用環境における耐食性を低下させる。特にSCCが問題であり、割れの発生を抑制するためには、Mnの含有量[Mn](質量%)、Sの含有量[S](質量%)の積、[Mn]×[S]≦0.0020とすることが必要である。腐食の起点となるMnSを低減することで、SCCの発生を大幅に抑制することが可能となる。低S化には脱硫負荷が増大し、低Mn化するとオーステナイト安定化のためにより多くのNiが必要となり製造コストが増大するので、下限を0.0001とすることが好ましい。加工性なども考慮すると[Mn]×[S]≦0.0015とすることが好ましい。
<[Mn] × [S] ≦ 0.0020>
Mn and S form sulfide MnS, and lower the corrosion resistance in the environment where the heat resistant gasket is used. In particular, SCC is a problem, and in order to suppress the occurrence of cracking, the product of Mn content [Mn] (mass%), S content [S] (mass%), [Mn] × [S] It is necessary to satisfy ≦ 0.0020. By reducing MnS that is the starting point of corrosion, it becomes possible to significantly suppress the occurrence of SCC. Lowering the sulfur content increases the desulfurization load, and lowering the Mn content requires more Ni to stabilize the austenite and increases the manufacturing cost. Therefore, the lower limit is preferably set to 0.0001. Considering workability and the like, it is preferable to satisfy [Mn] × [S] ≦ 0.0015.

<結晶粒のアスペクト比>
本発明は、冷間加工後、熱処理を行わない。このため、最終時の結晶粒が圧延組織となっている。本発明においては、結晶粒の長軸の長さをL1、結晶粒の短軸の長さをL2とし、アスペクト比であるL1/L2を規定しており、十分な表面硬度を得るためにアスペクト比:L1/L2≧1.5とする。アスペクト比:L1/L2<1.5である場合には、メタルガスケットとしての表面硬度が十分でなく、加えて、長時間高温に曝されたとき、具体的に言えば、600℃で400時間曝露された際の表面硬度(HV)が300以上であるということを満足しない。アスペクト比:L1/L2は、L1/L2≦25であるのが好ましく、L1/L2≧5であるのが好ましい。なお、アスペクト比を測定するために、光学顕微鏡にて観察・記録した金属組織を画像解析し、測定した。
<Aspect ratio of crystal grains>
In the present invention, no heat treatment is performed after cold working. For this reason, the crystal grains at the end have a rolled structure. In the present invention, the length of the major axis of the crystal grain is L1, the length of the minor axis of the crystal grain is L2, and the aspect ratio L1 / L2 is defined, and the aspect ratio is obtained in order to obtain sufficient surface hardness. Ratio: L1 / L2 ≧ 1.5. When the aspect ratio is L1 / L2 <1.5, the surface hardness of the metal gasket is not sufficient, and more specifically, when exposed to a high temperature for a long time, specifically, at 600 ° C. for 400 hours. It is not satisfied that the surface hardness (HV) when exposed is 300 or more. Aspect ratio: L1 / L2 is preferably L1 / L2 ≦ 25, and preferably L1 / L2 ≧ 5. In order to measure the aspect ratio, the metal structure observed and recorded with an optical microscope was subjected to image analysis and measured.

<600℃で400時間保持後の表面硬度(HV)>
本発明は、メタルガスケットに用いられるオーステナイト系ステンレス鋼板であり、メタルガスケットは、通常、その使用部位でも異なるが、排気系部品周辺で使用される場合、500〜700℃といった高温域で長時間曝される。このため、使用中に変形が生じ、シール性および硬度が低下する、いわゆる「へたり」が発生する。600℃で使用時のへたりを抑制するためには、600℃で400時間曝露された際の表面硬度(HV)を300以上とする必要がある。
このため、後述する実施例では、上記の使用環境を模擬し、600℃400時間保持後の表面硬度等の測定を行っている。
<Surface hardness (HV) after holding at 600 ° C. for 400 hours>
The present invention is an austenitic stainless steel plate used for a metal gasket, and the metal gasket is usually different in its use part, but when used in the vicinity of exhaust system parts, it is exposed for a long time in a high temperature range of 500 to 700 ° C. Is done. For this reason, deformation occurs during use, and so-called “sagging” occurs in which the sealing performance and hardness are reduced. In order to suppress sag during use at 600 ° C., the surface hardness (HV) when exposed at 600 ° C. for 400 hours needs to be 300 or more.
For this reason, in the Example mentioned later, the said use environment is simulated and the surface hardness etc. after holding | maintaining 600 degreeC 400 hours are measured.

なお、本発明者等が、種々の熱履歴を加えた後に、さらに600℃で400時間保持後の硬度を調べたところ、いずれも表面硬度(HV)が300以上となることを確認している。すなわち、実際に使用されている素材、あるいは前の熱履歴が不明の材料を用いても、実際の使用環境を想定した、600℃、400時間曝露後の表面硬度(HV)が300以上であれば、本発明のこの要件を満足することとなる。なお、表面硬度(ビッカース硬度)はJIS Z 2244に準拠した手法で荷重4.903N(HV0.5)で5点以上測定し、平均値を持って代表値とする。   In addition, after adding various heat histories, the present inventors further examined the hardness after being held at 600 ° C. for 400 hours, and it was confirmed that the surface hardness (HV) was 300 or more. . That is, even if a material that is actually used or a material with an unknown previous heat history is used, the surface hardness (HV) after exposure at 600 ° C. for 400 hours is 300 or more, assuming the actual usage environment. Thus, this requirement of the present invention will be satisfied. The surface hardness (Vickers hardness) is measured at a load of 4.903N (HV0.5) at 5 points or more by a method based on JIS Z 2244, and an average value is taken as a representative value.

また、へたりについては、高温での変形という点においても、評価する必要があるため、600℃で400時間保持後のビード高さの変化量で評価を行った。ビード高さとは、断面形状で円弧状に張り出した部分の高さであり、600℃で400時間、保持後の上記部分の高さ変化を計測した。   Moreover, since it is necessary to evaluate about a sagging also in the point of a deformation | transformation at high temperature, it evaluated by the variation | change_quantity of the bead height after hold | maintaining at 600 degreeC for 400 hours. The bead height is the height of the portion of the cross-sectional shape protruding in an arc shape, and the change in the height of the portion after holding at 600 ° C. for 400 hours was measured.

<耐SCC性>
上述のようにMnおよびSの量比[Mn]×[S]≦0.0020とすることで、耐SCC性が向上する。耐SCC性は、0.08%NaCl水溶液中で150℃のオートクレーブ試験40時間で評価する。オートクレーブ試験とは高温の水溶液腐食環境を得るため、耐圧性の容器を用いて行う試験である。SCC試験の方法はJIS G0576に準じ、液の温度、組成を調整した。
<SCC resistance>
As described above, the SCC resistance is improved by setting the quantity ratio of Mn and S to [Mn] × [S] ≦ 0.0020. SCC resistance is evaluated in an autoclave test at 150 ° C. for 40 hours in a 0.08% NaCl aqueous solution. The autoclave test is a test performed using a pressure-resistant container in order to obtain a hot aqueous solution corrosive environment. The SCC test method was carried out in accordance with JIS G0576, and the temperature and composition of the liquid were adjusted.

<製造工程>
本発明におけるオーステナイト系ステンレス鋼の製造方法において、冷間の調質圧延に供される鋼板を製造する工程は、特に限定されない。公知の手段(例えば電気炉)により溶製された鋼を連続鋳造機で150〜250mm厚のスラブに鋳造し、場合によっては表面を研削した後、1200℃以上に加熱して、熱間圧延機で熱間圧延を行って板厚3〜6mm程度の熱延鋼帯とする。熱延鋼帯を1100℃程度の温度で焼鈍し、酸洗する。引き続き冷間圧延と焼鈍を繰り返して、0.5mm以下の厚みの薄板とする。より好ましくは0.3mm以下の厚みである。仕上げ焼鈍は焼鈍酸洗仕上げ(2B仕上げ)でも、無酸化雰囲気で焼鈍するBA仕上げでも構わない。尚、ここでいう仕上げ焼鈍は、調質圧延前の焼鈍行程をいう。
<Manufacturing process>
In the method for producing austenitic stainless steel according to the present invention, the step of producing a steel plate to be subjected to cold temper rolling is not particularly limited. A steel rolled by a known means (for example, an electric furnace) is cast into a slab having a thickness of 150 to 250 mm by a continuous casting machine, and in some cases, after grinding the surface, the steel is heated to 1200 ° C. or higher to be a hot rolling mill. Is hot rolled to obtain a hot rolled steel strip having a thickness of about 3 to 6 mm. The hot-rolled steel strip is annealed at a temperature of about 1100 ° C. and pickled. Subsequently, cold rolling and annealing are repeated to obtain a thin plate having a thickness of 0.5 mm or less. More preferably, the thickness is 0.3 mm or less. The finish annealing may be an annealed pickling finish (2B finish) or a BA finish annealed in a non-oxidizing atmosphere. In addition, finish annealing here means the annealing process before temper rolling.

一方、仕上げ焼鈍後に行う冷間の調質圧延工程は、ガスケット用バネ材として必要な強度(表面硬度)を得るために、必要とされる強度(表面硬度)に応じて圧下率を変えて行われる。耐熱ガスケットに必要とされる強度を得るためには調質圧延は、20%以上の圧下率とすることが望ましい。また600℃で400時間保持後の表面硬度(HV)が300以上を満足するためには、本発明の成分系とするとともに、調質圧延の圧下率を20%以上とするのが好ましく、30%以上の圧下率にすることがより好ましい。また圧下率の上限は、調質圧延パス回数の増加により生産性を損ねるために80%以下にすることが好ましく、60%以下にすることがより好ましい。   On the other hand, the cold temper rolling process after finish annealing is performed by changing the rolling reduction ratio according to the required strength (surface hardness) in order to obtain the strength (surface hardness) required for the spring material for gaskets. Is called. In order to obtain the strength required for the heat-resistant gasket, the temper rolling is desirably a rolling reduction of 20% or more. In order to satisfy the surface hardness (HV) of 300 or more after being held at 600 ° C. for 400 hours, it is preferable to use the component system of the present invention and the temper rolling reduction to be 20% or more. It is more preferable to set the rolling reduction to be at least%. The upper limit of the rolling reduction is preferably 80% or less and more preferably 60% or less in order to impair the productivity due to an increase in the number of temper rolling passes.

本発明では、調質圧延後に焼鈍工程は行わないが、焼鈍以外の行程であれば、調質圧延後の工程は特に限定されない。形状強制又は脱脂洗浄工程を付与する場合もある。   In the present invention, the annealing process is not performed after temper rolling, but the process after temper rolling is not particularly limited as long as it is a process other than annealing. A shape forced or degreasing cleaning process may be applied.

以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。   Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.

まず、表1に示す成分組成の鋼を溶製して200mm厚のスラブに鋳造した。このスラブを1250℃に加熱後、粗熱延、仕上熱延を経て板厚4mmの熱延鋼板とし、800℃の温度域での巻取りをシミュレーションするために800℃の熱処理に挿入し、1時間保持後空冷した。引き続き、熱延板焼鈍を、1100℃で20秒行った後水冷した。その後、ショットブラストし、酸洗してスケールを除去した。冷間圧延、焼鈍や酸洗を数回繰り返して0.25〜0.5mmの冷延鋼板とした。また、アスペクト比については前述した手法を用い、測定した。   First, steel having the composition shown in Table 1 was melted and cast into a 200 mm thick slab. This slab is heated to 1250 ° C., then subjected to rough hot rolling and finish hot rolling to obtain a hot rolled steel plate having a thickness of 4 mm, which is inserted into a heat treatment at 800 ° C. in order to simulate winding in a temperature range of 800 ° C. After holding for an hour, it was air-cooled. Subsequently, hot-rolled sheet annealing was performed at 1100 ° C. for 20 seconds and then water-cooled. Then, it was shot blasted and pickled to remove scale. Cold rolling, annealing and pickling were repeated several times to obtain a cold rolled steel sheet having a thickness of 0.25 to 0.5 mm. The aspect ratio was measured using the method described above.

Figure 2017061487
Figure 2017061487

図1に示すように、各ステンレス鋼板1から内径80mmの円形開口2を有し、開口2の周辺に幅2.5mm、高さ0.25mm、突起部2Rのビード3をプレス成形して、メタルガスケットを模擬した試験片10を製作した。試験片10を600℃で400時間保持後、表面硬度を測定した。表面硬度はJIS Z 2244に準拠した手法で荷重4.903N(HV0.5)で5点以上測定し、平均値を持って代表値とした。   As shown in FIG. 1, each stainless steel plate 1 has a circular opening 2 having an inner diameter of 80 mm, and a bead 3 having a width of 2.5 mm, a height of 0.25 mm, and a protrusion 2R is press-formed around the opening 2; A test piece 10 simulating a metal gasket was produced. After holding the test piece 10 at 600 ° C. for 400 hours, the surface hardness was measured. The surface hardness was measured at 5 points or more with a load of 4.903N (HV0.5) by a method based on JIS Z 2244, and an average value was taken as a representative value.

また、ビード高さ変化を測定し、ガスケットへたりとして評価した。ビード高さ変化は30%以下を合格とした。さらに、SCCを、0.08%NaCl水溶液中で150℃のオートクレーブ試験40時間で評価した。比較例として、本発明外の組成になるサンプルについても同様の評価を行った。SCC試験の方法はJIS G0576に準じ、液の温度、組成を調整した。   Further, the change in bead height was measured and evaluated as a gasket flange. A bead height change of 30% or less was accepted. Furthermore, SCC was evaluated in an autoclave test at 150 ° C. for 40 hours in a 0.08% NaCl aqueous solution. As a comparative example, the same evaluation was performed on a sample having a composition outside the present invention. The SCC test method was carried out in accordance with JIS G0576, and the temperature and composition of the liquid were adjusted.

結果を表2に示す。なお、最後に行った冷間圧延(調質圧延)の圧下率を「調質圧下率」として、示す。   The results are shown in Table 2. The rolling reduction of the last cold rolling (temper rolling) is shown as “temper rolling reduction”.

Figure 2017061487
Figure 2017061487

本発明例である試験No.1〜25は、本発明の組成の規定を満たし、[Mn]×[S]≦0.0020、アスペクト比L1/L2≧1.5、600℃、400時間保持後の表面硬度(HV)が300以上であり、ビード高さ変化が目標値(30%以下)を満足し、SCC、表面疵も生じなかった。   Test No. which is an example of the present invention. 1 to 25 satisfy the definition of the composition of the present invention, and [Mn] × [S] ≦ 0.0020, aspect ratio L1 / L2 ≧ 1.5, 600 ° C., surface hardness (HV) after holding for 400 hours. It was 300 or more, the bead height change satisfied the target value (30% or less), and SCC and surface flaws did not occur.

一方、比較例である試験No.26〜47は、本発明の組成の規定を満足せず、600℃、400時間保持後の表面硬度が300未満、SCC発生、ビード高さ変化が30%超、又は表面疵のいずれかが発生した。   On the other hand, test No. which is a comparative example. Nos. 26 to 47 do not satisfy the definition of the composition of the present invention, the surface hardness after holding at 600 ° C. for 400 hours is less than 300, SCC generation, bead height change exceeds 30%, or surface flaws occur. did.

また、比較例である試験No.48は、本発明の組成の規定を満足せず、アスペクト比の値が低く、600℃、400時間保持後の表面硬度(HV)が低い値となった。加えて、ビード高さ変化が30%超となった。   Moreover, test No. which is a comparative example. No. 48 did not satisfy the definition of the composition of the present invention, had a low aspect ratio, and a low surface hardness (HV) after holding at 600 ° C. for 400 hours. In addition, the bead height change exceeded 30%.

比較例である試験No.49は、各元素においては本発明の規定の範囲内であるが、[Mn]×[S]≦0.0020を満足せず、アスペクト比も低く、600℃、400時間保持後の表面硬度(HV)が低い値となった。加えて、SCCが発生し、ビード高さ変化も30%超となった。   Test No. which is a comparative example. 49 is within the range defined by the present invention for each element, but does not satisfy [Mn] × [S] ≦ 0.0020, has a low aspect ratio, and has a surface hardness after holding at 600 ° C. for 400 hours ( HV) was a low value. In addition, SCC occurred and the bead height change exceeded 30%.

比較例である試験No.50は、各元素においては本発明の規定の範囲内であるが、[Mn]×[S]≦0.0020を満足せず、SCCが発生した。   Test No. which is a comparative example. 50 is within the range of the present invention in each element, but [Mn] × [S] ≦ 0.0020 was not satisfied and SCC was generated.

比較例である試験No.51は、本発明の組成の規定を満足しているが、アスペクト比の値が低く、600℃、400時間保持後の表面硬度(HV)が低い値となり、ビード高さ変化も30%超となった。   Test No. which is a comparative example. No. 51 satisfies the definition of the composition of the present invention, but has a low aspect ratio, a low surface hardness (HV) after holding at 600 ° C. for 400 hours, and a bead height change of more than 30%. became.

1 ステンレス鋼板
2 開口
3 ビード
10 試験片
1 Stainless steel plate 2 Opening 3 Bead 10 Test piece

本発明は、オーステナイト系ステンレス鋼板およびその製造方法に関する。 The present invention relates to an austenitic stainless steel sheet and a method for producing the same .

(4)冷間圧延において圧下率が20%以上の調質圧延を施す(1)〜(3)のいずれかに記載のオーステナイト系ステンレス鋼板の製造方法(4) The method for producing an austenitic stainless steel sheet according to any one of (1) to (3), wherein temper rolling with a rolling reduction of 20% or more is performed in cold rolling.

Claims (4)

質量%で、
C :0.03〜0.15%、
Si:0.20〜2.5%、
Mn:0.2〜4.5%、
P :0.010〜0.030%、
S :0.0001〜0.0010%、
Cr:20.0〜26.0%、
Ni:10.0〜15.0%、
Cu:0.01〜2.0%、
Mo:0.01〜2.0%、
Co:0.05〜2.50%、
Al:0.01〜0.20%、
N:0.1〜0.6%、
V:0.02〜0.15%、
B:0.0002〜0.0050%、
Nb:0〜0.10%、
Ti:0〜0.10%、
Y:0〜0.10%、
Ca:0〜0.010%、
Mg:0〜0.010%、
REM:0〜0.10%、
残部がFeおよび不純物であり、
Mnの含有量[Mn](質量%)、Sの含有量[S](質量%)が、
[Mn]×[S]≦0.0020を満たし、
板厚が0.5mm以下であり、
結晶粒の長軸の長さをL1、結晶粒の短軸の長さをL2とするとき、
アスペクト比の値L1/L2≧1.5を満たし、
600℃で400時間保持後の表面硬度(HV)が300以上であるオーステナイト系ステンレス鋼板。
% By mass
C: 0.03-0.15%,
Si: 0.20 to 2.5%,
Mn: 0.2 to 4.5%
P: 0.010-0.030%,
S: 0.0001 to 0.0010%,
Cr: 20.0-26.0%,
Ni: 10.0-15.0%,
Cu: 0.01 to 2.0%,
Mo: 0.01 to 2.0%,
Co: 0.05-2.50%
Al: 0.01-0.20%,
N: 0.1-0.6%
V: 0.02-0.15%,
B: 0.0002 to 0.0050%,
Nb: 0 to 0.10%,
Ti: 0 to 0.10%,
Y: 0 to 0.10%,
Ca: 0 to 0.010%,
Mg: 0 to 0.010%,
REM: 0 to 0.10%,
The balance is Fe and impurities,
Mn content [Mn] (mass%), S content [S] (mass%)
[Mn] × [S] ≦ 0.0020 is satisfied,
The plate thickness is 0.5 mm or less,
When the length of the major axis of the crystal grain is L1, and the length of the minor axis of the crystal grain is L2,
Satisfies the aspect ratio value L1 / L2 ≧ 1.5,
An austenitic stainless steel sheet having a surface hardness (HV) of 300 or more after being held at 600 ° C. for 400 hours.
質量%で、
Nb:0.01〜0.10%、および/または、
Ti:0.01〜0.10%
を含む請求項1記載のオーステナイト系ステンレス鋼板。
% By mass
Nb: 0.01-0.10%, and / or
Ti: 0.01-0.10%
The austenitic stainless steel sheet according to claim 1, comprising:
質量%で、
Y:0.01〜0.10%、
Ca:0.001〜0.010%、
Mg:0.0002〜0.010%、および
REM:0.01〜0.10%
から選択される1種以上を含む請求項1または2記載のオーステナイト系ステンレス鋼板。
% By mass
Y: 0.01-0.10%,
Ca: 0.001 to 0.010%,
Mg: 0.0002 to 0.010%, and REM: 0.01 to 0.10%
The austenitic stainless steel sheet according to claim 1, comprising at least one selected from the group consisting of:
冷間圧延において圧下率が20%以上の調質圧延が施された請求項1〜3のいずれかに記載のオーステナイト系ステンレス鋼板。   The austenitic stainless steel sheet according to any one of claims 1 to 3, which has been subjected to temper rolling with a rolling reduction of 20% or more in cold rolling.
JP2017505262A 2015-10-06 2016-10-05 Austenitic stainless steel sheet and manufacturing method thereof Active JP6197974B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015198213 2015-10-06
JP2015198213 2015-10-06
PCT/JP2016/079660 WO2017061487A1 (en) 2015-10-06 2016-10-05 Austenitic stainless steel sheet

Publications (2)

Publication Number Publication Date
JP6197974B2 JP6197974B2 (en) 2017-09-20
JPWO2017061487A1 true JPWO2017061487A1 (en) 2017-10-05

Family

ID=58487692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017505262A Active JP6197974B2 (en) 2015-10-06 2016-10-05 Austenitic stainless steel sheet and manufacturing method thereof

Country Status (5)

Country Link
US (1) US20180274055A1 (en)
JP (1) JP6197974B2 (en)
KR (1) KR102077414B1 (en)
TW (1) TWI639712B (en)
WO (1) WO2017061487A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866241B2 (en) * 2017-06-12 2021-04-28 日鉄ステンレス株式会社 Austenitic stainless steel sheet, its manufacturing method, and exhaust parts
JP6429957B1 (en) * 2017-08-08 2018-11-28 新日鐵住金ステンレス株式会社 Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
WO2019045001A1 (en) * 2017-08-30 2019-03-07 新日鐵住金株式会社 Alloy plate and gasket
JP7166082B2 (en) * 2018-06-18 2022-11-07 日鉄ステンレス株式会社 Austenitic stainless steel sheet and manufacturing method thereof
TWI715852B (en) * 2018-07-11 2021-01-11 永鼎應用金屬股份有限公司 Austenitic alloy steel
CN112368411B (en) * 2018-10-30 2022-05-10 日铁不锈钢株式会社 Austenitic stainless steel sheet
CN109234510A (en) * 2018-10-31 2019-01-18 唐山中厚板材有限公司 A kind of device for avoiding heat-treated steel plate from generating mass defect because of furnace hearth roller salamander
CN113396239B (en) * 2019-06-14 2022-11-08 日铁不锈钢株式会社 Austenitic stainless steel and method for producing same
EP3995599A1 (en) * 2020-11-06 2022-05-11 Outokumpu Oyj Austenitic stainless steel
CN113388790B (en) * 2021-06-08 2022-11-25 常州腾飞特材科技有限公司 06Cr19Ni10N austenitic stainless steel pipe and production process thereof
CN113564468B (en) * 2021-07-15 2022-06-28 振石集团东方特钢有限公司 Stainless steel for heating pipe of nickel-saving water heater and preparation process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082441A (en) * 2001-09-10 2003-03-19 Nisshin Steel Co Ltd High strength austenitic stainless steel for metal gasket
WO2014157655A1 (en) * 2013-03-28 2014-10-02 新日鐵住金ステンレス株式会社 Heat-resistant austenitic stainless steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347582B2 (en) 1996-04-12 2002-11-20 大同特殊鋼株式会社 Austenitic stainless steel for metal gasket and method for producing the same
KR101330903B1 (en) * 2008-11-05 2013-11-18 혼다 기켄 고교 가부시키가이샤 High-strength steel sheet and the method for production therefor
JP5717359B2 (en) 2010-06-03 2015-05-13 日新製鋼株式会社 Heat-resistant austenitic stainless steel for metal gaskets
JP5720347B2 (en) 2011-03-18 2015-05-20 新日鐵住金株式会社 Cold rolled stainless steel sheet excellent in high temperature sag resistance and method for producing the same
US20140347565A1 (en) * 2013-05-21 2014-11-27 Aliphcom Media devices configured to interface with information appliances
JP6029611B2 (en) * 2014-04-02 2016-11-24 日新製鋼株式会社 Austenitic stainless steel sheet and gasket for gasket

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082441A (en) * 2001-09-10 2003-03-19 Nisshin Steel Co Ltd High strength austenitic stainless steel for metal gasket
WO2014157655A1 (en) * 2013-03-28 2014-10-02 新日鐵住金ステンレス株式会社 Heat-resistant austenitic stainless steel sheet

Also Published As

Publication number Publication date
KR102077414B1 (en) 2020-02-13
WO2017061487A1 (en) 2017-04-13
TWI639712B (en) 2018-11-01
KR20180059548A (en) 2018-06-04
US20180274055A1 (en) 2018-09-27
TW201718905A (en) 2017-06-01
JP6197974B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6197974B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
CN107429358B (en) Stainless steel sheet for exhaust system member having excellent intermittent oxidation characteristics, and exhaust system member
JP6552385B2 (en) Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP6128291B2 (en) Martensitic stainless steel
JP6768929B2 (en) Ferritic stainless steel with excellent high-temperature wear resistance, manufacturing method of ferritic stainless steel sheet, exhaust parts, high-temperature sliding parts, and turbocharger parts
KR20220099566A (en) Ferritic stainless steel sheet
JP5904306B2 (en) Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
JP2009215648A (en) Ferritic stainless steel having excellent high temperature strength, and method for producing the same
TWI548760B (en) Fat iron stainless steel
JP6684629B2 (en) Austenitic stainless steel with excellent high-temperature slidability, and turbocharger parts manufactured using it
KR20120036296A (en) Precipitation hardening metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JP7050520B2 (en) Manufacturing method of austenitic stainless steel sheet for exhaust parts and austenitic stainless steel sheet for exhaust parts and exhaust parts
JP7333729B2 (en) Ferritic stainless steel bars, automotive fuel system parts and automotive fuel system parts
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2022098633A (en) Austenitic stainless steel sheet, method for producing austenitic stainless steel sheet and automobile exhaust component
JP2003105502A (en) Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket
KR102463015B1 (en) High-strength austenitic stainless steel with excellent hot workability
TWI722377B (en) Fertilizer stainless steel
JP2024028047A (en) Ferritic stainless steel plate
JP2002317251A (en) High strength martensitic stainless steel for metal gasket having excellent high temperature setting resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6197974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350