JP6552385B2 - Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel - Google Patents

Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel Download PDF

Info

Publication number
JP6552385B2
JP6552385B2 JP2015217605A JP2015217605A JP6552385B2 JP 6552385 B2 JP6552385 B2 JP 6552385B2 JP 2015217605 A JP2015217605 A JP 2015217605A JP 2015217605 A JP2015217605 A JP 2015217605A JP 6552385 B2 JP6552385 B2 JP 6552385B2
Authority
JP
Japan
Prior art keywords
stainless steel
heat resistance
workability
steel plate
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015217605A
Other languages
Japanese (ja)
Other versions
JP2017088928A (en
Inventor
濱田 純一
純一 濱田
睦子 多久島
睦子 多久島
敦久 矢川
敦久 矢川
拓二 横尾
拓二 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2015217605A priority Critical patent/JP6552385B2/en
Publication of JP2017088928A publication Critical patent/JP2017088928A/en
Application granted granted Critical
Publication of JP6552385B2 publication Critical patent/JP6552385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、耐熱性と加工性が要求される耐熱部品の素材となるオーステナイト系ステンレス鋼板に関するものであり、特に自動車のエキゾーストホールド、コンバーター、ターボチャージャー部品に適用されるものである。また、その中でも特に、ガソリン車やディーゼル車に搭載されるターボチャージャーのノズルマウント、ノズルプレート、ベーン、バックプレート等の内部精密部品およびハウジングに最適な材料に関するものである。   The present invention relates to an austenitic stainless steel plate as a heat-resistant component material that requires heat resistance and workability, and is particularly applicable to automobile exhaust hold, converter, and turbocharger parts. In particular, the present invention relates to materials suitable for internal precision parts and housings such as nozzle mounts, nozzle plates, vanes, and back plates of turbochargers mounted on gasoline vehicles and diesel vehicles.

自動車の排気マニホールド、フロントパイプ、センターパイプ、マフラーおよび排気ガス浄化のための環境対応部品は、高温の排気ガスを安定的に通気させるために、耐酸化性、高温強度、熱疲労特性等の耐熱性に優れた材料が使用される。また、凝縮水腐食環境でもあることから耐食性に優れることも要求される。排気ガス規制の強化、エンジン性能の向上、車体軽量化等の観点からも、これらの部品にはステンレス鋼が多く使用されている。また、近年では、排気ガス規制の強化が更に強まる他、燃費性能の向上、ダウンサイジング等の動きから、特にエンジン直下のエキゾーストマニホールドを通気する排気ガス温度は上昇傾向にある。加えて、ターボチャージャーの様な過給機を搭載するケースも多くなっており、エキゾーストマニホールドやターボチャージャーに使用されるステンレス鋼には耐熱性の一層の向上が求められる。排気ガス温度の上昇に関しては、従来900℃程度であった排気ガス温度が1000℃程度まで上昇することも見込まれている。   Environment-friendly parts for automobile exhaust manifold, front pipe, center pipe, muffler and exhaust gas purification have high heat resistance such as oxidation resistance, high temperature strength, thermal fatigue characteristics, etc. in order to allow high temperature exhaust gas to flow stably. Good materials are used. Moreover, since it is also a condensed water corrosive environment, it is also required to have excellent corrosion resistance. Stainless steel is often used for these parts from the viewpoints of stricter exhaust gas regulations, improved engine performance, and lighter body weight. In recent years, exhaust gas regulations have been further strengthened, and the exhaust gas temperature flowing through the exhaust manifold directly below the engine has been on the rise due to improvements in fuel efficiency and downsizing. In addition, turbochargers and other turbochargers are often installed, and stainless steel used in exhaust manifolds and turbochargers is required to have further improved heat resistance. Regarding the rise in the exhaust gas temperature, it is expected that the exhaust gas temperature, which was conventionally about 900 ° C., will rise to about 1000 ° C.

一方、ターボチャージャーの内部構造は複雑で、過給効率を高めるとともに、耐熱信頼性の確保が重要であり、主として耐熱オーステナイト系ステンレス鋼の使用が開示されている。代表的な耐熱オーステナイト系ステンレス鋼であるSUS310S(25%Cr−20%Ni)やNi基合金等の他、特許文献1には高Cr、Mo添加鋼が開示されている。また、Siを2~4%添加したオーステナイト系ステンレス鋼を用いたノズルベーン式ターボチャージャーの排気ガイド部品が特許文献2に開示されている。特許文献2では熱間加工性を考慮して鋼成分が規定されているが、上記部品に要求される高温特性を十分満足するとは言えない。また、打ち抜き穴の穴拡げ加工性を維持する事が重要とされているが、熱間加工性から規定された鋼成分では十分な穴拡げ性を得ることは出来なかった。   On the other hand, the internal structure of the turbocharger is complicated, and it is important to increase the supercharging efficiency and to ensure the heat-resistant reliability. The use of heat-resistant austenitic stainless steel is mainly disclosed. In addition to SUS310S (25% Cr-20% Ni), which is a typical heat-resistant austenitic stainless steel, Ni-based alloy, and the like, Patent Document 1 discloses a high Cr, Mo-added steel. Further, Patent Document 2 discloses an exhaust guide part of a nozzle vane type turbocharger using austenitic stainless steel added with 2 to 4% of Si. In Patent Document 2, although steel components are defined in consideration of hot workability, it cannot be said that the high temperature characteristics required for the above parts are sufficiently satisfied. In addition, it is important to maintain the hole expansion workability of the punched holes, but sufficient hole expandability could not be obtained with the steel components specified from the hot workability.

本願発明の主な対象となる部品は、ターボチャージャーの中でノズルベーン式ターボチャージャー内部の精密部品である。内部の精密部品は、バックプレート、オイルディフレクターと呼ばれる部品は、タービン部分およびコンプレッサー部分とセンターコアの間に位置し、各部のシール性を保ちつつタービンおよびコンプレッサーホイールを安定的に回転させる部品であるため、耐酸化性や高温強度の他に表面平滑性が重要となる。また、排気ガスの流速および流量を調整するために、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーといった精密部品から構成されるノズル部品がある。これらは、高温の排気ガスに接するため、高温強度、クリープ特性、耐酸化性が重要となる。この他、排気ガス流速および流量をベーンの開閉で調整するため、高温摺動性という高温での摩擦・摩耗特性が重要となる。   The main object parts of the present invention are the precision parts inside the nozzle vane type turbocharger in the turbocharger. The internal precision parts are parts called back plate and oil deflector, which are located between the turbine part and compressor part and the center core, and stably rotate the turbine and compressor wheel while maintaining the seal of each part. Therefore, surface smoothness is important in addition to oxidation resistance and high temperature strength. In addition, in order to adjust the flow rate and flow rate of exhaust gas, there is a nozzle component composed of precision components such as a nozzle mount, a nozzle plate, a nozzle vane, a drive ring, and a drive lever. Since these are in contact with high-temperature exhaust gas, high-temperature strength, creep characteristics, and oxidation resistance are important. In addition, since the exhaust gas flow rate and flow rate are adjusted by opening and closing the vanes, the friction and wear characteristics at high temperatures such as high temperature slidability are important.

更に、ノズル部品は穴開け、穴拡げ加工が施されるが、極めて高い寸法精度、板厚精度が要求されるため、加工性も大切となる。従来、耐熱性に優れる材料は硬質であるため、鋳物が使用されたり、鋼板を用いた加工では部品加工時に亀裂、割れの発生および加工精度の点から加工後に切削や研削処理を施した上で使用されていた。しかしながら、素材および部品加工のコストが高くなる欠点があった。特に、特許文献2の様な高Si成分では、板材加工の際に割れ等の不具合が生じやすく、当該部品の板金化は困難な状況であった。   Furthermore, the nozzle parts are subjected to drilling and hole expansion, but since extremely high dimensional accuracy and plate thickness accuracy are required, workability is also important. Conventionally, materials with excellent heat resistance are hard, so castings are used, and in processing using steel sheets, after processing and cutting and grinding treatment from the viewpoint of cracks, cracks and processing accuracy during parts processing It was used. However, there is a drawback that the cost of processing the material and parts is high. In particular, with the high Si component as described in Patent Document 2, defects such as cracking are likely to occur during plate processing, and sheet metallizing of the part has been difficult.

特開2013−069220号公報JP, 2013-069220, A 特許第4937277号公報Patent No. 4937277 gazette

本発明の目的は、既知技術の問題点を解決し、特に自動車排気部品の中でターボチャージャーの部品用として適合する耐熱性と加工性が要求されるオーステナイト系ステンレス鋼板を提供することにある。   An object of the present invention is to solve the problems of the known technology, and in particular, to provide an austenitic stainless steel sheet that is required to have heat resistance and workability suitable for turbocharger parts in automobile exhaust parts.

上記課題を解決するために、本発明者らはオーステナイト系ステンレス鋼板およびその製造方法に関して、鋼成分、加工特性、表面性状、金属組織、高温特性の見地から詳細な研究を行った。その結果、例えばターボチャージャーの様な極めて過酷な熱環境に曝される部品の中で耐熱性が要求される素材に対して、鋼成分により耐熱性を確保するとともに、金属組織と硬さを制御することにより、板厚および寸法精度に優れた部品が得られることを知見した。
加工性の点では、特許文献2記載の様な鋼成分だけでは満足されないことから、結晶粒度や断面硬度の調整によって精密加工性を格段に向上させることに成功した。加えて、排気効率や熱効率を向上させるために、表面粗さを制御する方法を知見し、耐熱性と加工性に優れたオーステナイト系ステンレス鋼板の提供を可能とした。
表面平滑性を得るためには、鋳造品の切削処理や研削処理、あるいは冷延焼鈍後に研磨処理することが考えられるが、本発明では冷延焼鈍後の酸洗処理によって表面平滑性を確保できるので、切削や研削工程の省略あるいは負荷低減に寄与することが可能である。
MEANS TO SOLVE THE PROBLEM In order to solve the said subject, the present inventors conducted detailed research regarding the austenitic stainless steel plate and its manufacturing method from the viewpoint of steel composition, processing characteristics, surface characteristics, metal structure, high temperature characteristics. As a result, for components that are required to have heat resistance among parts exposed to extremely severe thermal environments such as turbochargers, for example, the heat resistance is ensured by the steel component, and the metal structure and hardness are controlled. It has been found that, by doing this, it is possible to obtain parts with excellent board thickness and dimensional accuracy.
From the viewpoint of formability, it is not satisfied only with the steel components as described in Patent Document 2, so that we have succeeded in significantly improving the precision formability by adjusting the grain size and the cross-sectional hardness. In addition, in order to improve exhaust efficiency and thermal efficiency, we have found a method of controlling the surface roughness, and have made it possible to provide an austenitic stainless steel sheet excellent in heat resistance and processability.
In order to obtain surface smoothness, it is conceivable to grind the casted article after cutting processing, grinding processing or cold rolling annealing, but in the present invention, surface smoothness can be ensured by pickling processing after cold rolling annealing. Therefore, it is possible to contribute to omission or load reduction of the cutting and grinding processes.

上記課題を解決する本発明の要旨は、以下のとおりである。
(1)
質量%で、C:0.005〜0.2%、Si:0.1〜4%、Mn:0.1〜5%、P:0.01〜0.05%、S:0.0001〜0.01%、Ni:5〜20%、Cr:15〜30%、N:0.01〜0.4%、Al:0.005〜1%、Cu:0.05〜3%、Mo:0.01〜3%、V:0.05〜1%を含有し、残部がFe及び不可避的不純物からなり、断面硬度Hvが190以下、結晶粒度番号が8.5以下であることを特徴とする耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。
以下、更に追加含有する元素は、Feの一部を代替して追加含有される。
(2)
前記ステンレス鋼板の表面粗度がRzで30μm以下であることを特徴とする(1)に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。
(3)
前記ステンレス鋼板が、更に、質量%でTi:0.005〜0.3%、Nb:0.005〜0.3%、B:0.0002〜0.0050%、Ca:0.0005〜0.01%の1種又は2種以上を含有することを特徴とする(1)又は(2)に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。
(4)
前記ステンレス鋼板が、更に、質量%で、W:0.1〜3%、Zr:0.05〜0.3%、Sn:0.01〜0.5%、Co:0.03〜0.3%、Mg:0.0002〜0.01%、Sb:0.005〜0.5%、REM:0.001〜0.2%、Ga:0.0002〜0.3%、Ta:0.001〜1.0%の1種又は2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。
(5)
請求項1〜4のいずれか1項に記載のステンレス鋼板の製造方法であって、請求項1、3および4のいずれか1項に記載の成分を有する鋼を熱間圧延し、得られた熱延鋼板を1100℃〜1200℃まで加熱した後、400℃まで20℃/sec以上で冷却し、その後酸洗処理を施すことを特徴とする耐熱性と加工性に優れたオーステナイト系ステンレス鋼板の製造方法。
(6)
さらに、前記ステンレス鋼板を圧下率50%以下で冷間圧延し、得られた冷延鋼板を1100℃〜1200℃まで加熱した後、400℃まで20℃/sec以上で冷却し、その後酸洗処理を施すことを特徴とする(5)に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板の製造方法。
(7)
(1)〜(4)のいずれか1項に記載のステンレス鋼板を排気部品に用いたことを特徴とするオーステナイト系ステンレス鋼製排気部品。
The gist of the present invention for solving the above problems is as follows.
(1)
C: 0.005 to 0.2%, Si: 0.1 to 4%, Mn: 0.1 to 5%, P: 0.01 to 0.05%, S: 0.0001 to C in mass% 0.01%, Ni: 5 to 20%, Cr: 15 to 30%, N: 0.01 to 0.4%, Al: 0.005 to 1%, Cu: 0.05 to 3%, Mo: 0.01 to 3%, V: 0.05 to 1%, the balance is Fe and inevitable impurities, the cross-sectional hardness Hv is 190 or less, the grain size number is 8.5 or less Austenitic stainless steel sheet with excellent heat resistance and workability.
Hereinafter, the element additionally contained is additionally contained in place of a part of Fe.
(2)
The austenitic stainless steel sheet having excellent heat resistance and workability as described in (1), wherein the stainless steel sheet has a surface roughness Rz of 30 μm or less.
(3)
The stainless steel sheet is further, in mass%, Ti: 0.005-0.3%, Nb: 0.005-0.3%, B: 0.0002-0.0050%, Ca: 0.0005-0. The austenitic stainless steel sheet excellent in heat resistance and workability according to (1) or (2), characterized by containing 0.01% or one or more.
(4)
The stainless steel sheet further contains, in mass%, W: 0.1 to 3%, Zr: 0.05 to 0.3%, Sn: 0.01 to 0.5%, Co: 0.03 to 0. 3%, Mg: 0.0002 to 0.01%, Sb: 0.005 to 0.5%, REM: 0.001 to 0.2%, Ga: 0.0002 to 0.3%, Ta: 0 An austenitic stainless steel sheet excellent in heat resistance and processability according to any one of (1) to (3) characterized by containing one or more of 0.001 to 1.0%.
(5)
It is the manufacturing method of the stainless steel plate of any one of Claims 1-4, Comprising: The steel which has the component of any one of Claims 1, 3, and 4 was hot-rolled, and was obtained. The heat-rolled steel plate is heated to 1100 ° C. to 1200 ° C., and then cooled to 400 ° C. at 20 ° C./sec or more, and then subjected to pickling treatment, which is an austenitic stainless steel plate excellent in heat resistance and workability. Production method.
(6)
Furthermore, after cold rolling the stainless steel plate at a rolling reduction of 50% or less and heating the obtained cold rolled steel plate to 1100 ° C. to 1200 ° C., it is cooled to 400 ° C. at 20 ° C./sec or more and then pickling treatment (5) The method for producing an austenitic stainless steel sheet excellent in heat resistance and processability according to (5).
(7)
An austenitic stainless steel exhaust part characterized in that the stainless steel plate according to any one of (1) to (4) is used for the exhaust part.

本発明によれば、部品加工する際の加工精度に優れ、研削処理や研磨処理の削減できるとともに、高温摺動性、ガス流れおよび熱効率に優れた自動車排気部品用(特にターボチャージャー部品用)オーステナイト系ステンレス鋼を提供できる。併せて、切削や研削工程の省略あるいは負荷低減に寄与する。   According to the present invention, austenite for automobile exhaust parts (particularly for turbocharger parts) having excellent processing accuracy when processing parts, reducing grinding and polishing processes, and excellent high-temperature slidability, gas flow and thermal efficiency. We can provide stainless steel. At the same time, it contributes to the omission or reduction of load of the cutting and grinding processes.

以下に本発明の限定理由について説明する。耐熱用途として使用されるオーステナイト系ステンレス鋼板の特性として重要なのは高温強度であるが、特に上記の様なターボチャージャー部品の場合、加工性や表面性状も極めて重要である。先述した様に、ターボチャージャー内部部品に加工した際の加工精度が悪いと、部品同士の接触や焼きつきの他、ガスの気密性やガス流れ不良等が生じて、破損や熱効率低下を招き、部品性能の信頼性低下に繋がる。   The reasons for limitation of the present invention will be described below. High temperature strength is important as a characteristic of an austenitic stainless steel sheet used for heat-resistant applications, but particularly in the case of turbocharger parts as described above, workability and surface properties are also extremely important. As mentioned above, if the processing accuracy when processing into the internal parts of the turbocharger is poor, the parts may be in contact with each other or burned in, gas tightness and poor gas flow, etc., leading to damage and reduced thermal efficiency. It leads to the deterioration of performance reliability.

[断面硬度Hv:190以下]
先ず、断面硬度Hvについて説明する。排気部品は鋼板を成形加工して部品化されることが多いが、特にターボチャージャーのような精密部品では、加工品の加工精度の厳格化が要求される。例えば、前述したノズルプレートやノズルマウントと呼ばれる部品の場合、穴あけや穴拡げといった加工が施されるため、穴あけ時の穴寸法、穴内面性状、割れ有無、穴拡げ時の端部割れ、立ち上げ角度等がこれに該当する。また、ハウジングの場合にはスプリングバック等や減肉率が関連する。これらは、素材となるオーステナイト系ステンレス鋼板の硬度や介在物が影響し、本願発明では素材の断面硬度がビッカース硬度(Hv)で190以下とすることで、ターボチャージャーの穴拡げ加工において加工不良が生じないことを知見した。具体的には、ノズルプレートやマウントを穴拡げ加工した際に、端部の亀裂深さが0.1mm以下に抑制され、十分な加工精度が得られることである。これにより穴拡げ加工後に端部に過度な切削処理を施す必要が無くなり、コスト面も有益となる。この他、穴開け加工時の穴寸法精度についても、上記硬さを満足することにより、優れた穴寸法精度が得られる。さらに、加工性を確保するために断面硬度の上限はHv160にすることが好ましい。ここで断面硬度は、例えば鋼板断面(圧延方向と平行方向の断面)を研磨したサンプルを用いてJIS Z 2244によって測定されるもので、板厚中心部近傍について5か所以上測定して平均値を用いれば良い。尚、過度な軟質化は耐熱性に影響を与えるため、断面硬度の下限はHv110にすることが望ましい。
[Section hardness Hv: 190 or less]
First, the cross-sectional hardness Hv will be described. Exhaust parts are often formed into parts by forming steel sheets, but precision parts such as turbochargers are required to have stricter processing accuracy. For example, in the case of the above-mentioned nozzle plate or part called a nozzle mount, since processing such as drilling and hole expansion is performed, hole dimensions at the time of drilling, hole inner surface condition, presence or absence of cracks, end cracks at hole expansion, rising An angle etc. correspond to this. Further, in the case of the housing, a springback etc. and a thinning rate are relevant. These are affected by the hardness and inclusions of the austenitic stainless steel plate that is the material. In the present invention, the cross-sectional hardness of the material is 190 or less in Vickers hardness (Hv), so that processing defects occur in hole expansion processing of the turbocharger. It was found that it did not occur. Specifically, when the nozzle plate or mount is expanded, the crack depth at the end is suppressed to 0.1 mm or less, and sufficient processing accuracy is obtained. As a result, it is not necessary to apply an excessive cutting process to the end after the hole expanding process, and the cost is also beneficial. In addition, with regard to the hole dimension accuracy at the time of drilling, by satisfying the above-mentioned hardness, excellent hole dimension accuracy can be obtained. Furthermore, in order to ensure processability, the upper limit of the cross-sectional hardness is preferably Hv160. Here, the cross-sectional hardness is measured according to JIS Z 2244 using, for example, a sample obtained by polishing a cross section of a steel plate (a cross section in a direction parallel to the rolling direction). Should be used. In addition, since excessive softening affects heat resistance, it is desirable to set the lower limit of cross-sectional hardness to Hv110.

[結晶粒度番号:8.5以下]
前記の様に本願発明では各種耐熱部品の加工性を考慮して軟質な素材を提供するが、Hv190以下を満足するために結晶粒度番号を8.5番以下とする。但し、過度な粗粒化により加工時の肌荒れ(オレンジピール)が顕著に生じるため、4番以上が望ましい。結晶粒度番号については、例えば鋼板断面(圧延方向と平行方向の断面)を研磨したサンプルを用いて、JIS G 0551によって結晶粒度番号が測定される。更に、製造性や耐熱性を考慮すると、結晶粒度の下限は4.5、上限は7.5にすることが望ましい。
[Grain size number: 8.5 or less]
As described above, in the present invention, a soft material is provided in consideration of the workability of various heat-resistant components, but in order to satisfy Hv190 or less, the crystal grain size number is set to 8.5 or less. However, since the surface roughening (orange peel) at the time of processing occurs notably by excessive coarse graining, No. 4 or more is desirable. As for the grain size number, for example, the grain size number is measured according to JIS G 0551 using a sample obtained by polishing a cross section of a steel plate (a cross section in the direction parallel to the rolling direction). Furthermore, in consideration of manufacturability and heat resistance, it is preferable to set the lower limit of the grain size to 4.5 and the upper limit to 7.5.

[表面粗度がRz:30μm以下]
上記の他、特にターボチャージャーやエキゾーストマニホールドの場合、素材の表面粗さが重要になることを本願では知見した。表面粗さは部品を切削加工する際に切削工程の負荷の点からも平滑表面が良い。また、精密部品の場合、ガスシール性の点からも平滑な方が良い。本願ではこれらに加えて、ガス流れを良好にして熱効率やターボチャージャーの効率を上げる効果があることを知見し、これらの効果が最大粗さ(Rz)を30μmにすることで得られることを見出した。従来の鋳鋼部品では表面粗さが大きいため、研磨あるいは切削処理によってこの効果を得ることが出来るが、本願では素材表面粗さを制御することで、研磨あるいは切削処理を省略するメリットが得られる。表面粗さ測定については、JIS B 0601に従い、鋼板表面に対して圧延方向と平行方向および直角方向に表面粗さが測定され、各々のRzの平均値を求める。素材の表面粗さと他部品との接触性ならびに排気効率、熱効率を種々検討した結果、圧延方向および圧延方向と直角方向の粗さ(Rz)の平均値が30μm以下であれば、シール性を保ちガス流動が局所的に乱れることなくスムーズに流動することを知見した。ガス流動が均一であることはターボチャージャーの排気効率向上ならびに排気管システム全体の熱効率の向上につながり、車の燃費向上にも直結する。更に、鋼板製造時の生産性やプレス加工による粗さの増加を考慮すると、Rzは5μm以下が望ましい。
[Surface roughness Rz: 30 μm or less]
In addition to the above, it has been found in the present application that the surface roughness of the material is important particularly in the case of a turbocharger or an exhaust manifold. The surface roughness is preferably a smooth surface also from the point of load of the cutting process when cutting parts. In the case of precision parts, it is better to be smooth in terms of gas sealability. In the present application, in addition to these, they have found that they have the effect of improving the gas flow to increase the thermal efficiency and the efficiency of the turbocharger, and found that these effects can be obtained by setting the maximum roughness (Rz) to 30 μm. The In conventional cast steel parts, this effect can be obtained by polishing or cutting because the surface roughness is large. However, in the present application, by controlling the surface roughness of the material, the merit of omitting the polishing or cutting can be obtained. Regarding the surface roughness measurement, the surface roughness is measured in a direction parallel to and perpendicular to the rolling direction with respect to the steel sheet surface in accordance with JIS B 0601, and the average value of each Rz is obtained. As a result of various investigations of surface roughness of the material and contact with other parts, exhaust efficiency, and thermal efficiency, if the average value of the rolling direction and the roughness (Rz) in the direction perpendicular to the rolling direction is 30 μm or less, the sealability is maintained. It was found that the gas flow smoothly flows without being disturbed locally. The uniform gas flow leads to the improvement of the exhaust efficiency of the turbocharger and the improvement of the thermal efficiency of the whole exhaust pipe system, which directly leads to the improvement of the fuel efficiency of the car. Furthermore, in consideration of the productivity at the time of steel plate production and the increase in roughness due to pressing, Rz is desirably 5 μm or less.

[成分]
次に鋼の成分範囲について説明する。成分含有量に関する%は、特に断りのない限り質量%を示す。
[component]
Next, the component range of steel will be described. The% with respect to the component content indicates% by mass unless otherwise specified.

Cは、オーステナイト組織形成と高温強度の確保のために0.005%を下限とする。一方、過度な添加は硬質化を招く他、Cr炭化物形成により耐食性、特に溶接部の粒界腐食性の劣化、炭化物に起因した高温摺動性の劣化、冷延焼鈍板酸洗時の粒界浸食溝形成により表面粗さが粗くなるため、上限を0.2%とする。更に、製造コストと熱間加工性を考慮するとC含有量の下限は0.008%、上限は0.1%にすることが望ましい。   C has a lower limit of 0.005% in order to form an austenite structure and ensure high temperature strength. On the other hand, excessive addition leads to hardening, corrosion resistance due to Cr carbide formation, especially degradation of intergranular corrosion of welds, degradation of high-temperature slidability due to carbides, grain boundaries during pickling of cold-rolled annealed plates The upper limit is made 0.2% because the surface roughness becomes rough due to the formation of the erosion groove. Furthermore, in consideration of manufacturing cost and hot workability, the lower limit of the C content is preferably 0.008% and the upper limit is 0.1%.

Siは、脱酸元素として添加される場合がある他、Siの内部酸化により耐酸化性、高温摺動性および高温強度の向上をもたらすため、0.1%以上添加する。一方、4.0%以上の添加により硬質化するとともに、粗大なSi系酸化物が生成し、部品の加工精度が著しく低下するため、上限を4%とする。尚、製造コスト、鋼板製造時の酸洗性、溶接時の凝固割れ性を考慮すると、Si含有量の下限は0.4%、上限は3.5%にすることが望ましい。更に、高温摺動性を考慮するとSiの下限は2%にすることが望ましい。   In addition to being added as a deoxidizing element, Si is added in an amount of 0.1% or more because internal oxidation of Si brings about an improvement in oxidation resistance, high temperature slidability and high temperature strength. On the other hand, the addition of 4.0% or more makes the steel hard and coarse Si-based oxides are formed, and the processing accuracy of the parts is significantly reduced, so the upper limit is made 4%. In view of the manufacturing cost, the pickling property at the time of steel plate manufacture, and the solidification cracking property at the time of welding, it is desirable to set the lower limit of the Si content to 0.4% and the upper limit to 3.5%. Furthermore, considering the high temperature slidability, the lower limit of Si is desirably 2%.

Mnは、脱酸元素として利用する他、オーステナイト組織形成およびスケール密着性を確保するために0.1%以上添加する。一方、5%超の添加により介在物清浄度が著しく劣化し穴拡げ性が低下する他、酸洗性が著しく劣化し製品表面が粗くなるため上限を5%とする。更に、製造コスト、鋼板製造時の酸洗性を考慮すると、Mn含有量の下限は0.2%、上限は3%にすることが望ましい。   Mn is used as a deoxidizing element, and 0.1% or more is added to secure austenite structure formation and scale adhesion. On the other hand, addition of more than 5% significantly deteriorates the cleanliness of inclusions and lowers the hole expansibility, and the pickling property deteriorates significantly and the product surface becomes rough, so the upper limit is made 5%. Furthermore, considering the manufacturing cost and the pickling property when manufacturing the steel sheet, the lower limit of the Mn content is preferably 0.2% and the upper limit is preferably 3%.

Pは、製造時の熱間加工性や凝固割れを助長する元素である他、硬質化するためその含有量は少ないほど良いが、精錬コストを考慮して上限を0.05%、下限を0.01%とする。更に、製造コストを考慮すると、P含有量の下限は0.02%、上限は0.04%にすることが望ましい。   P is an element that promotes hot workability and solidification cracking at the time of manufacture, and its content is preferably as low as possible because it hardens. However, considering refining costs, the upper limit is 0.05% and the lower limit is 0. .01%. Furthermore, considering the manufacturing cost, it is desirable that the lower limit of the P content is 0.02% and the upper limit is 0.04%.

Sは、製造時の熱間加工性を低下させる他、耐食性を劣化させる元素である。また、粗大な硫化物(MnS)が形成されると清浄度が著しく悪くなり、穴拡げ性を劣化させるため、上限を0.01%とする。一方、過度な低減は精錬コストの増加に繋がることから、下限を0.0001%とする。更に、製造コストや耐酸化性を考慮すると、S含有量の下限は0.0005%、上限は0.0050%にすることが望ましい。   S is an element that degrades hot workability during production and deteriorates corrosion resistance. In addition, when coarse sulfides (MnS) are formed, the degree of cleanliness significantly deteriorates and the hole expansibility is deteriorated, so the upper limit is made 0.01%. On the other hand, the excessive reduction leads to an increase in the refining cost, so the lower limit is made 0.0001%. Furthermore, considering the manufacturing cost and oxidation resistance, it is desirable that the lower limit of the S content is 0.0005% and the upper limit is 0.0050%.

Niはオーステナイト組織形成元素であるとともに、耐食性や耐酸化性を確保する元素である。また、5%未満では結晶粒の粗大化が顕著に生じてしまうため5%以上添加する。一方、過度な添加はコストの上昇と硬質化を招くことから上限を20%とする。更に、製造性、高温強度および耐食性を考慮すると、Ni含有量の下限は10%にすることが望ましい。   Ni is an element forming an austenite structure and an element that ensures corrosion resistance and oxidation resistance. Further, if it is less than 5%, the crystal grains are remarkably coarsened, so 5% or more is added. On the other hand, excessive addition causes cost rise and hardening, so the upper limit is made 20%. Furthermore, in consideration of manufacturability, high temperature strength and corrosion resistance, the lower limit of the Ni content is desirably 10%.

Crは、耐食性、耐酸化性および高温摺動性を向上させる元素であり、排気部品環境を考慮すると異常酸化抑制の観点から15%以上が必要である。一方過度な添加は、硬質となり成形性を劣化させる他、コストアップに繋がることから上限を30%とした。更に、製造コスト、鋼板製造性ならびに加工性を考慮すると、Cr含有量の下限は17%、上限は25.5%にすることが望ましい。   Cr is an element that improves the corrosion resistance, oxidation resistance and high temperature sliding property, and needs 15% or more from the viewpoint of abnormal oxidation suppression in consideration of the exhaust part environment. On the other hand, excessive addition makes it hard and degrades moldability, and also increases the cost, so the upper limit is made 30%. Furthermore, considering the manufacturing cost, steel plate manufacturability and workability, it is desirable that the lower limit of the Cr content is 17% and the upper limit is 25.5%.

Nは、Cと同様にオーステナイト組織形成と高温強度、高温摺動性の確保の有効な元素である。高温強度に関しては固溶強化元素として知られているが、本願においてはN単独の効果以外にCrとのクラスター形成による高温強度も考慮し、0.01%以上添加する。一方、0.4%超の添加により常温材質が著しく硬質化し、鋼板製造段階の冷間加工性が劣化する他、部品加工時の成形性や部品精度が悪くなるため、上限を0.4%とする。尚、軟質化、溶接時のピンホール抑制、溶接部の粒界腐食抑制の観点から、N含有量の下限は0.02%、上限は0.3%にすることが望ましい。更に、高温強度、摺動性の観点から、N含有量の下限は0.04%にすることが望ましい。   N, like C, is an effective element for austenite structure formation, high temperature strength, and high temperature slidability. The high temperature strength is known as a solid solution strengthening element, but in the present application, in addition to the effect of N alone, the high temperature strength due to the formation of clusters with Cr is also taken into consideration, and 0.01% or more is added. On the other hand, addition of more than 0.4% remarkably hardens the normal temperature material and deteriorates the cold workability at the steel plate manufacturing stage, and also deteriorates the formability and part accuracy during part processing. I assume. From the viewpoints of softening, suppression of pinholes during welding, and suppression of intergranular corrosion of welds, the lower limit of the N content is preferably 0.02% and the upper limit is preferably 0.3%. Furthermore, from the viewpoint of high temperature strength and slidability, the lower limit of the N content is preferably 0.04%.

Alは、脱酸元素として添加し、介在物清浄度を向上させることで穴拡げ性を向上させる。この他、酸化スケールの剥離抑制、微量内部酸化により高温摺動性の向上に寄与する効果があり、その作用は0.005%から発現するため、下限を0.005%とした。また、フェライト生成元素であるため、1%以上の添加はオーステナイト組織の安定性が低下する他、酸洗性の低下から表面粗さの増加を招くため上限を1%とする。更に、精錬コストと表面疵を考慮するとAl含有量の下限は0.007%、上限は0.5%にすることが望ましい。   Al is added as a deoxidizing element, and improves hole expansibility by improving inclusion cleanliness. In addition, there is an effect that contributes to the improvement of high temperature slidability by suppressing peeling of oxide scale and a small amount of internal oxidation, and since its action is manifested from 0.005%, the lower limit was made 0.005%. Further, since it is a ferrite-forming element, addition of 1% or more lowers the stability of the austenite structure, and also causes an increase in surface roughness due to a decrease in pickling properties, so the upper limit is made 1%. Furthermore, in consideration of refining costs and surface defects, the lower limit of the Al content is preferably 0.007% and the upper limit is 0.5%.

Cuは、オーステナイト相の安定化や軟質化のために有効な元素あり、0.05%以上添加する。一方、過度な添加は耐酸化性の劣化や製造性の劣化に繋がるため、上限を3%とする。更に、耐食性や製造性を考慮すると、Cu含有量の下限は0.1%、上限は1%にすることが望ましい。   Cu is an element effective for stabilizing and softening the austenite phase, and is added at 0.05% or more. On the other hand, excessive addition leads to deterioration of oxidation resistance and manufacturability, so the upper limit is made 3%. Furthermore, considering corrosion resistance and manufacturability, it is desirable that the lower limit of the Cu content is 0.1% and the upper limit is 1%.

Moは、耐食性を向上させる元素であるとともに、高温強度の向上に寄与する。本願発明においては、固溶強化の他にMo炭化物による析出強化を活用するために下限を0.01%、上限を3%とする。更に、Moは高価な元素であること、上記析出物による強化安定性ならびに介在物清浄度を考慮すると、Mo含有量の下限は0.4%、上限は1.6%にすることが望ましい。   Mo is an element that improves the corrosion resistance and contributes to the improvement of the high-temperature strength. In the present invention, in order to utilize precipitation strengthening by Mo carbide in addition to solid solution strengthening, the lower limit is made 0.01% and the upper limit is made 3%. Furthermore, considering that Mo is an expensive element, strengthening stability due to the precipitates, and inclusion cleanliness, the lower limit of the Mo content is preferably 0.4% and the upper limit is preferably 1.6%.

Vは、耐食性を向上させる元素であるとともに、V炭化物を形成し高温強度を向上させるため0.05%以上添加する。一方、過度な添加は合金コストの増加や異常酸化限界温度の低下を招くことから、上限を1%とする。更に、製造性や介在物清浄度を考慮するとV含有量の下限は0.1%、上限は0.5%にすることが望ましい。
以上が、主要元素であるが、その他Feの一部の代替として以下の元素の1種または2種以上を含有することができる。
V is an element that improves the corrosion resistance, and is added by 0.05% or more in order to form V carbide and improve high-temperature strength. On the other hand, excessive addition causes an increase in alloy cost and a decrease in abnormal oxidation limit temperature, so the upper limit is made 1%. Furthermore, in consideration of the manufacturability and the cleanliness of inclusions, the lower limit of the V content is preferably 0.1% and the upper limit is 0.5%.
Although the above is a main element, it may contain one or more of the following elements as a substitute for a part of the other Fe.

Tiは、C、Nと結合して耐食性、耐粒界腐食性を向上させるために添加する元素である。C、N固定作用は0.005%から発現するため、下限を0.005%とした。また、0.3%超の添加は鋳造段階でのノズル詰まりが生じ易くなり、製造性を著しく劣化させる他、粗大なTi炭窒化物により穴拡げ加工性の劣化を招くことから、上限を0.3%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、Ti含有量の下限は0.01%、上限は0.2%にすることが望ましい。   Ti is an element added to combine with C and N to improve corrosion resistance and intergranular corrosion resistance. Since the C and N fixing action starts from 0.005%, the lower limit was made 0.005%. In addition, addition of more than 0.3% tends to cause nozzle clogging at the casting stage, which significantly deteriorates manufacturability and causes deterioration of hole expansion workability due to coarse Ti carbonitride, so the upper limit is 0. .3%. Furthermore, in view of high temperature strength, intergranular corrosion of welds and alloy cost, the lower limit of the Ti content is preferably 0.01% and the upper limit is 0.2%.

Nbは、Tiと同様にC、Nと結合して耐食性、耐粒界腐食性を向上させる他、高温強度を向上させる元素である。C、N固定作用は0.005%から発現するため、下限を0.005%とした。また、0.3%超の添加は鋼板製造段階での熱間加工性が著しく劣化する他、粗大なNb炭窒化物により穴拡げ性の劣化を招くことから、上限を0.3%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、Nb含有量の下限は0.01%、上限は0.20%にすることが望ましい。   Nb is an element that, like Ti, combines with C and N to improve corrosion resistance and intergranular corrosion resistance, as well as improve high-temperature strength. Since the C and N fixing action starts from 0.005%, the lower limit was made 0.005%. In addition, addition of more than 0.3% significantly deteriorates hot workability in the steel plate manufacturing stage, and also causes deterioration of hole expansibility due to coarse Nb carbonitride, so the upper limit is made 0.3%. . Furthermore, in view of high temperature strength, intergranular corrosion of welds and alloy cost, the lower limit of the Nb content is preferably 0.01% and the upper limit is 0.20%.

Bは、鋼板製造段階での熱間加工性を向上させる元素であり、0.0002%以上とする。但し、過度な添加はホウ炭化物の形成により清浄度および穴拡げ性の低下、粒界腐食性の劣化をもたらすため、上限を0.0050%とした。更に、精錬コストや延性低下を考慮すると、B含有量の下限は0.0003%、上限は0.002%にすることが望ましい。   B is an element that improves the hot workability in the steel plate manufacturing stage, and is set to 0.0002% or more. However, excessive addition causes a decrease in cleanliness and hole expansibility and deterioration of intergranular corrosion due to the formation of borocarbides, so the upper limit was made 0.0050%. Furthermore, in consideration of the refining cost and the decrease in ductility, the lower limit of the B content is desirably 0.0003% and the upper limit is 0.002%.

Caは、脱硫のために必要に応じて添加される。この作用は0.0005%未満では発現しないため、下限を0.0005%とする。また、0.01%超添加すると水溶性の介在物CaSが生成して清浄度の低下および耐食性の著しい低下を招くため、上限を0.01%とする。更に、製造性、表面品質の観点から、Ca含有量の下限は0.0010%、上限は0.0030%にすることが望ましい。   Ca is added as needed for desulfurization. Since this effect does not appear at less than 0.0005%, the lower limit is made 0.0005%. In addition, when it is added in excess of 0.01%, water-soluble inclusions CaS are formed to cause a decrease in cleanliness and a marked decrease in corrosion resistance, so the upper limit is made 0.01%. Furthermore, from the viewpoint of manufacturability and surface quality, it is desirable that the lower limit of the Ca content is 0.0010% and the upper limit is 0.0030%.

Wは、耐食性と高温強度の向上に寄与するため、必要に応じて0.1%以上添加する。3%超の添加により硬質化、鋼板製造時の靭性劣化やコスト増につながるため、上限を3%とする。更に、精錬コストや製造性を考慮すると、W含有量の下限は0.1%、上限は2%にすることが望ましい。   W contributes to the improvement of corrosion resistance and high temperature strength, so 0.1% or more is added as necessary. The upper limit is made 3% because addition of more than 3% leads to hardening, toughness deterioration at the time of steel plate production and cost increase. Furthermore, considering refining costs and manufacturability, it is desirable that the lower limit of the W content is 0.1% and the upper limit is 2%.

Zrは、CやNと結合して溶接部の粒界腐食性や耐酸化性を向上させるため、必要に応じて0.05%以上添加する。但し、0.3%超の添加によりコスト増になる他、製造性や穴拡げ性を著しく劣化させるため、上限を0.3%とする。更に、精錬コストや製造性を考慮すると、Zr含有量の下限は0.05%、上限は0.1%にすることが望ましい。   Zr is added in an amount of 0.05% or more as needed in order to combine with C and N to improve intergranular corrosion resistance and oxidation resistance of the weld. However, the addition of more than 0.3% increases the cost and remarkably deteriorates manufacturability and hole expandability, so the upper limit is made 0.3%. Furthermore, considering refining costs and manufacturability, it is desirable that the lower limit of the Zr content is 0.05% and the upper limit is 0.1%.

Snは、耐食性と高温強度の向上に寄与するため、必要に応じて0.01%以上添加する。0.03%以上で効果が顕著になり、さらに0.05%以上でより顕著となる。0.5%超の添加により鋼板製造時のスラブ割れが生じる場合があるため上限を0.5%とする。更に、精錬コストや製造性を考慮すると、上限は0.3%にすることが望ましい。   Sn contributes to the improvement of corrosion resistance and high-temperature strength, so 0.01% or more is added as necessary. The effect becomes remarkable at 0.03% or more, and becomes more remarkable at 0.05% or more. Since addition of more than 0.5% may cause slab cracking during steel sheet production, the upper limit is made 0.5%. Furthermore, considering the refining cost and manufacturability, the upper limit is preferably 0.3%.

Coは、高温強度の向上に寄与するため、必要に応じて0.03%以上添加する。0.3%超の添加により、硬質化、鋼板製造時の靭性劣化やコスト増につながるため、上限を0.3%とする。更に、精錬コストや製造性を考慮すると、Co含有量の下限は0.03%、上限は0.1%にすることが望ましい。   Co contributes to improving the high-temperature strength, so 0.03% or more is added as necessary. The addition of more than 0.3% leads to hardening, deterioration of toughness during steel plate production and cost increase, so the upper limit is made 0.3%. Furthermore, considering refining costs and manufacturability, the lower limit of the Co content is preferably 0.03%, and the upper limit is preferably 0.1%.

Mgは、脱酸元素として添加させる場合がある他、スラブの組織を酸化物の微細化分散化により介在物清浄度の向上や組織微細化に寄与する元素である。これは、0.0002%以上から発現するため、下限を0.0002%とした。但し、過度な添加は、溶接性や耐食性の劣化、粗大介在物による穴拡げ性の低下につながるため、上限を0.01%とした。精錬コストを考慮すると、Mg含有量の下限は0.0003%、上限は0.005%にすることが望ましい。   Mg may be added as a deoxidizing element, and is an element that contributes to improvement in the cleanliness of inclusions and refinement of the structure by refining and dispersing the oxide of the slab. Since this is expressed from 0.0002% or more, the lower limit was made 0.0002%. However, excessive addition leads to deterioration of weldability and corrosion resistance, and reduction of hole expansibility due to coarse inclusions, so the upper limit is made 0.01%. Considering the refining cost, it is desirable that the lower limit of the Mg content is 0.0003% and the upper limit is 0.005%.

Sbは、粒界に偏析して高温強度を上げる作用をなす元素である。添加効果を得るため、0.005%以上とする。但し、0.5%を超えると、Sb偏析が生じて、溶接時に割れが生じるので、上限を0.5%とする。高温特性と製造コスト及び靭性を考慮すると、Sb含有量の下限は0.03%、上限は0.3%にすることが望ましい。更に望ましくはSb含有量の下限は0.05%、上限は0.2%にすることが望ましい。   Sb is an element that segregates at the grain boundary to increase the high temperature strength. In order to obtain the effect of addition, the content is made 0.005% or more. However, if it exceeds 0.5%, Sb segregation occurs and cracks occur during welding, so the upper limit is made 0.5%. Considering the high temperature characteristics, production cost and toughness, the lower limit of the Sb content is preferably 0.03% and the upper limit is preferably 0.3%. More preferably, the lower limit of the Sb content is 0.05%, and the upper limit is 0.2%.

REM(希土類元素)は、耐酸化性や高温摺動性の向上に有効であり、必要に応じて0.001%以上添加する。また、0.2%を超えて添加してもその効果は飽和し、REMの粒化物による耐食性低下を生じるため、0.001〜0.2%で添加する。製品の加工性や製造コストを考慮すると、下限を0.002%とし、上限を0.10%とすることが望ましい。
REM(希土類元素)は、一般的な定義に従う。スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で添加しても良いし、混合物であっても良い。
REM (rare earth element) is effective in improving the oxidation resistance and the high temperature sliding property, and is added by 0.001% or more as needed. Moreover, even if it is added in excess of 0.2%, the effect is saturated and corrosion resistance is reduced due to REM particulates, so 0.001 to 0.2% is added. In consideration of the processability and the manufacturing cost of the product, it is preferable to set the lower limit to 0.002% and the upper limit to 0.10%.
REM (rare earth element) follows the general definition. It is a generic term for two elements of scandium (Sc) and yttrium (Y) and 15 elements (lanthanoid) from lanthanum (La) to lutetium (Lu). It may be added alone or as a mixture.

Gaは、耐食性向上や水素脆化抑制のため、0.3%以下で添加しても良いが、0.3%超の添加により粗大硫化物が生成しr値が劣化する。硫化物や水素化物形成の観点から下限は0.0002%とする。更に、製造性やコストの観点から0.002%以上が更に好ましい。   Ga may be added at 0.3% or less for the purpose of improving corrosion resistance and suppressing hydrogen embrittlement, but addition of more than 0.3% causes formation of coarse sulfides and deterioration of the r value. From the viewpoint of sulfide and hydride formation, the lower limit is made 0.0002%. Furthermore, from the viewpoint of manufacturability and cost, 0.002% or more is more preferable.

Ta、Hfは高温強度向上のために各0.001〜1.0%添加しても良い。0.001%以上で効果があり、0.01%以上でさらに高強度が得られる。また、Biを必要に応じて0.001〜0.02%含有してもかまわない。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが望ましい。   Ta and Hf may be added in an amount of 0.001 to 1.0% for improving the high temperature strength. An effect is obtained at 0.001% or more, and even higher strength is obtained at 0.01% or more. Moreover, Bi may be contained in an amount of 0.001 to 0.02% as necessary. Note that it is desirable to reduce general harmful elements and impurity elements such as As and Pb as much as possible.

[製造方法]
次に製造方法について説明する。本発明の鋼板の製造方法は、製鋼−熱間圧延−焼鈍・酸洗あるいは製鋼−熱間圧延−焼鈍・酸洗−冷間圧延−焼鈍・酸洗よりなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、電気炉溶製あるいは転炉溶製し、続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造など)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。上記の様に本願発明が対象となる部品には熱間圧延以降の工程において所定の結晶粒度、断面硬度、表面粗さを確保した製造条件が設定される。
熱間圧延後の鋼板は、熱延板焼鈍と酸洗処理が施される。通常、熱延板焼鈍温度は1000〜1100℃未満で成されて再結晶組織を得るが、本願では1100〜1200℃と高い温度で熱処理し、断面硬度Hvが190以下、結晶粒度番号が8.5以下を確保し、軟質で穴開け性、穴拡げ性および各種加工精度を確保する。
[Production method]
Next, the manufacturing method will be described. The manufacturing method of the steel plate of the present invention comprises steelmaking-hot rolling-annealing / pickling or steelmaking-hot rolling-annealing / pickling-cold rolling-annealing / pickling. In steelmaking, a method in which steel containing the essential components and components added as necessary is subjected to electric furnace melting or converter melting, followed by secondary refining is preferable. The molten steel is made into a slab according to a known casting method (continuous casting etc.). The slab is heated to a predetermined temperature and hot rolled by continuous rolling to a predetermined thickness. As described above, manufacturing conditions in which predetermined grain size, cross-sectional hardness, and surface roughness are secured in the steps after hot rolling are set for parts to which the present invention is applied.
The hot rolled steel sheet is subjected to hot rolled sheet annealing and pickling treatment. Normally, the hot-rolled sheet annealing temperature is less than 1000-1100 ° C. to obtain a recrystallized structure, but in the present application, heat treatment is performed at a high temperature of 1100-1200 ° C., the cross-sectional hardness Hv is 190 or less, and the grain size number is 8. 5 or less to ensure soft, hole-piercing ability, hole-expanding ability and various processing accuracy.

一方、高温焼鈍を施すことで、酸化スケールが過度に生成して、後の酸洗性が阻害される。酸洗性が阻害されると、ショットブラストやベンダー等の機械的なデスケールを強くするか、硫酸や硝弗酸洗等の化学的なデスケールにおいて高濃度化、高温化あるいは通板速度ダウン等の処理が必要となる。これらは、生産効率を低下させるだけでなく、製品表面の粗さを増加させ排気部品の効率を落とすことに繋がる。本願では、熱処理時の冷却速度を速くすることで酸洗性を低下させること無く、表面粗さを確保することを知見した。表面粗さがRzで30μm以下とするためには、最高温度からの400℃までの冷却速度を20℃/sec以上とすることが有効であることを知見した。冷却速度を20℃/secとする方法は注水冷却あるいは通風冷却等適宜選択すれば良いが、冷却過程でのスケール剥離を促進する方法としては注水冷却が望ましく、酸洗効率や鋼板形状を考慮すると、冷却速度は30〜100℃/secが望ましい。   On the other hand, by performing high temperature annealing, an oxide scale is excessively generated, and subsequent pickling properties are inhibited. When pickling is hindered, mechanical descaling such as shot blasting or bender is strengthened, or chemical descaling such as sulfuric acid or nitric acid hydrofluoric acid is used to increase the concentration, increase the temperature, or decrease the plate speed. Processing is required. These not only reduce the production efficiency but also increase the roughness of the product surface and lead to the reduction of the efficiency of the exhaust parts. In the present application, it has been found that by increasing the cooling rate during heat treatment, the surface roughness can be ensured without deteriorating the pickling property. In order to make the surface roughness Rz be 30 μm or less, it was found that it is effective to set the cooling rate to 400 ° C. from the maximum temperature to 20 ° C./sec or more. The method for setting the cooling rate to 20 ° C./sec may be appropriately selected, such as water injection cooling or ventilation cooling, but water injection cooling is desirable as a method for promoting scale peeling in the cooling process, considering the pickling efficiency and the steel plate shape. The cooling rate is preferably 30 to 100 ° C./sec.

本願では、熱延板焼鈍・酸洗後に冷間圧延を施し、その後に冷延板焼鈍・酸洗処理を行うことで、更に平滑表面が得られる。冷間圧延工程は、タンデム圧延、ゼンジミア圧延、クラスター圧延等で行えば良い。通常、冷間圧延の圧下率は50%超で成されるが、50%超の圧下率で圧延した場合、その後の焼鈍で細粒組織に成りやすく、結晶粒度番号8.5以下が得られない場合があるため、圧下率は50%以下とする。更に、製造コストや鋼板形状を考慮すると圧下率は15〜45%以下が望ましい。   In this application, a smooth surface is further obtained by performing cold rolling after hot-rolled sheet annealing and pickling, and performing cold-rolled sheet annealing and pickling after that. The cold rolling process may be performed by tandem rolling, Sendzimir rolling, cluster rolling, or the like. Usually, the rolling reduction of cold rolling is over 50%, but when rolling at a reduction of over 50%, subsequent annealing tends to form a fine grain structure, and a grain size number of 8.5 or less is obtained. Since there is no case, the rolling reduction is 50% or less. Furthermore, when considering the manufacturing cost and the steel plate shape, the rolling reduction is preferably 15 to 45% or less.

通常、表面平滑性が要求される鋼板に対しては、冷間圧延後に光輝焼鈍によって低酸素雰囲気で熱処理され、酸化スケールが生じない熱処理が施される。一般的にはBA製品と呼ばれる表面仕上げがこれに当たるが、BA製品ではコスト増加につながる。本願では光輝焼鈍では無く、通常の連続焼鈍・酸洗処理プロセスを活用することによって軟質化と表面平滑性を確保する。これは、先述した熱延板焼鈍・酸洗工程と同様な考えであり、通常の焼鈍温度である1000〜1100℃未満よりも高い1100〜1200℃と高い温度で熱処理し、断面硬度Hvが190以下、結晶粒度番号が8.5以下を確保し、軟質で穴開け性、穴拡げ性および各種加工精度を確保する。   Usually, steel sheets that require surface smoothness are heat-treated in a low-oxygen atmosphere by bright annealing after cold rolling, and are subjected to heat treatment that does not produce oxide scale. Generally, this is a surface finish called a BA product, but the BA product leads to an increase in cost. In the present application, softening and surface smoothness are ensured by utilizing a normal continuous annealing / pickling process instead of bright annealing. This is the same idea as the hot-rolled sheet annealing / pickling step described above, and heat treatment is performed at a high temperature of 1100 to 1200 ° C., which is higher than the normal annealing temperature of 1000 to 1100 ° C., and the cross-sectional hardness Hv is 190. Hereinafter, the crystal grain size number is ensured to be 8.5 or less, and the hole is easy to drill, expandability and various processing accuracy are ensured.

一方、高温焼鈍を施すことで、酸化スケールが過度に生成して、後の酸洗性が阻害される。酸洗性が阻害されると、中性塩電解や溶融アルカリ処理といった前処理あるいは硝弗酸や硝酸電解といった酸洗処理を強化する必要があり、通板速度ダウンや表面粗さの増加に繋がる。本願では、熱処理時の冷却速度を速くすることで酸洗性を低下させること無く、表面粗さを確保することを知見した。表面粗さがRzで30μm以下とするためには、最高温度からの400℃までの冷却速度を20℃/sec以上とすることが有効であることを知見した。冷却速度を20℃/secとする方法は注水冷却あるいは通風冷却等適宜選択すれば良いが、冷却過程でのスケール剥離を促進する方法としては注水冷却が望ましく、酸洗効率や鋼板形状を考慮すると、冷却速度は30〜100℃/secが望ましい。   On the other hand, by performing high temperature annealing, an oxide scale is excessively generated, and subsequent pickling properties are inhibited. If pickling is hindered, it is necessary to strengthen pretreatment such as neutral salt electrolysis and molten alkali treatment or pickling treatment such as nitric hydrofluoric acid and nitric acid electrolysis, which leads to a reduction in sheet feeding speed and an increase in surface roughness. . In the present application, it has been found that by increasing the cooling rate during heat treatment, the surface roughness can be ensured without deteriorating the pickling property. In order to make the surface roughness Rz be 30 μm or less, it was found that it is effective to set the cooling rate to 400 ° C. from the maximum temperature to 20 ° C./sec or more. The method for setting the cooling rate to 20 ° C./sec may be appropriately selected, such as water injection cooling or ventilation cooling, but water injection cooling is desirable as a method for promoting scale peeling in the cooling process, considering the pickling efficiency and the steel plate shape. The cooling rate is preferably 30 to 100 ° C./sec.

表1と表2に示す成分組成の鋼を溶製しスラブに鋳造し、熱延、熱延板焼鈍・酸洗あるいは、その後に冷延、最終焼鈍・酸洗を施して4.3〜7.3mm厚の製品板を得た。各鋼に対して、断面硬度、結晶粒度、表面粗さを先述した方法で測定するとともに、穴拡げ試験、JISZ2281に準拠した900℃での高温引張試験を行った。
穴拡げ試験では、φ25mmの打ち抜き穴を内径32mmまで穴拡げした後、6mm高さの立ち上げ部端部の割れ状況を確認した。割れ深さが0.4mm以下であればターボ部品性能に支障をきたさないため、0.4mm以下の場合を合格(○)、0.4mm超の亀裂が生じた場合を不合格(×)とした。高温引張については、900℃において20MPa以上の耐力を有する鋼について合格(○)、20MPa未満の場合を不合格(×)とした。
Steels of the composition shown in Table 1 and Table 2 are melted and cast into slabs, and hot rolled, hot rolled sheet annealing and pickling, and then cold rolling and final annealing and pickling are applied to 4.3 to 7 A product plate of .3 mm thickness was obtained. For each steel, the cross-sectional hardness, grain size, and surface roughness were measured by the method described above, and a hole expansion test and a high temperature tensile test at 900 ° C. in accordance with JIS Z 2281 were performed.
In the hole expansion test, a punched hole with a diameter of 25 mm was expanded to an inner diameter of 32 mm, and then the cracking state at the end of the rising portion having a height of 6 mm was confirmed. If the crack depth is 0.4 mm or less, it does not affect the turbo parts performance, so the case of 0.4 mm or less is passed (○) and the case of cracks exceeding 0.4 mm is rejected (×) did. Regarding high temperature tension, a steel having a proof stress of 20 MPa or more at 900 ° C. was accepted (○), and a case of less than 20 MPa was rejected (×).

また、供試材をノズルマウント、ノズルプレートと呼ばれる部品に加工し、ノズルベーン式ターボチャージャーに搭載し、ノズルの開閉を繰り返しながら高温(900℃)の排気ガスを流して、ガス流れ性を調べた。この際、ガス流れに問題が生じなかった鋼を合格(○)、ガス流れ不良やノズル開閉に不具合が生じた鋼を不合格(×)とした。
表3と表4に示す製造条件で製造した結果、本発明例の鋼は加工性、耐熱性、表面性状に優れ、ターボチャージャー部品としての性能を満足することが確認される。断面硬度、結晶粒度、表面粗さの内1つ以上が本発明範囲外では、加工精度やターボチャージャー性能が不良となり不具合が生じる。また、高温強度が不良の場合もクリープ変形によってターボチャージャー性能に不良が生じてしまう。
In addition, the sample material was processed into parts called nozzle mounts and nozzle plates, mounted on a nozzle vane type turbocharger, and exhaust gas of high temperature (900 ° C) was flowed while repeating opening and closing of the nozzles, and gas flowability was examined. . Under the present circumstances, the steel in which the problem in the gas flow did not occur was made into pass ((circle)), and the steel in which the defect in gas flow defect and nozzle opening and closing had a failure was made into rejection (x).
As a result of manufacturing under the manufacturing conditions shown in Tables 3 and 4, it is confirmed that the steel of the example of the present invention is excellent in workability, heat resistance and surface properties, and satisfies the performance as a turbocharger part. If one or more of the cross-sectional hardness, the grain size, and the surface roughness are out of the range of the present invention, the processing accuracy and the turbocharger performance become poor and a problem occurs. In addition, even when the high-temperature strength is poor, creep deformation causes a defect in turbocharger performance.

Figure 0006552385
Figure 0006552385

Figure 0006552385
Figure 0006552385

Figure 0006552385
Figure 0006552385

Figure 0006552385
Figure 0006552385

なお、製造工程における他の条件は適宜選択すれば良い。例えば、スラブ厚さ、熱間圧延板厚などは適宜設計すれば良い。冷間圧延においては、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは適宜選択すれば良い。冷間圧延の途中に中間焼鈍を入れても構わず、バッチ式焼鈍でも連続式焼鈍でも良い。また、酸洗時の前処理として中性塩電解処理やソルト浴浸漬処理のいずれを施しても、省略しても構わず、酸洗工程は、硝酸、硝酸電解酸洗の他、硫酸や塩酸を用いた処理を行っても良い。冷延板の焼鈍・酸洗後に調質圧延やテンションレベラー等により形状および材質調整を行っても良い。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。加えて、部品加工後に窒化処理や浸炭処理等の特殊な表面処理を施して耐熱性を更に向上させても構わない。   The other conditions in the manufacturing process may be appropriately selected. For example, the slab thickness, the hot-rolled sheet thickness, etc. may be designed as appropriate. In cold rolling, the roll roughness, the roll diameter, the rolling oil, the number of rolling passes, the rolling speed, the rolling temperature and the like may be appropriately selected. Intermediate annealing may be put in the middle of cold rolling, and may be batch annealing or continuous annealing. In addition, any of the neutral salt electrolytic treatment and the salt bath immersion treatment may be omitted as a pretreatment at the time of pickling, and the pickling process may be omitted in addition to nitric acid, nitric acid electrolytic pickling, sulfuric acid and hydrochloric acid. You may process using. After annealing and pickling of the cold-rolled sheet, shape and material adjustment may be performed by temper rolling, a tension leveler or the like. Furthermore, the product plate may be lubricated to further improve press molding, and the type of lubricating film may be appropriately selected. In addition, heat resistance may be further improved by performing special surface treatment such as nitriding treatment or carburizing treatment after parts processing.

本発明によれば、耐熱性に加えて加工性が要求される排気部品に対して優れた特性を有するオーステナイト系ステンレス鋼板を提供することが可能であるとともに、表面平滑性に優れているため排気ガスの流動性が良くなることで、熱効率やターボチャージャーの効率が良好となる。本発明を適用した材料を、特に自動車の排気部品として使用することによって、排ガス規制、軽量化、燃費向上につなげることが可能となる。また、部品の切削および研削加工の省略、表面加工処理省略も可能となり、低コスト化にも大きく寄与する。更に、自動車、二輪の排気部品に限らず、各種ボイラー、燃料電池システム等の高温環境に使用される部品に適用することも可能であり、本発明は産業上極めて有益である。   According to the present invention, it is possible to provide an austenitic stainless steel sheet having excellent characteristics for exhaust parts that require workability in addition to heat resistance, and exhaust is excellent because of excellent surface smoothness. By improving the gas fluidity, the thermal efficiency and turbocharger efficiency are improved. By using the material to which the present invention is applied, particularly as an exhaust part of an automobile, it becomes possible to lead to exhaust gas regulation, weight reduction, and fuel efficiency improvement. Also, it is possible to omit parts cutting and grinding and surface processing, which greatly contributes to cost reduction. Furthermore, the present invention can be applied not only to automobile and two-wheeled exhaust parts, but also to parts used in high-temperature environments such as various boilers and fuel cell systems, and the present invention is extremely useful industrially.

Claims (7)

質量%で、C:0.005〜0.2%、Si:0.1〜4%、Mn:0.1〜5%、P:0.01〜0.05%、S:0.0001〜0.01%、Ni:5〜20%、Cr:15〜30%、N:0.01〜0.4%、Al:0.005〜1%、Cu:0.05〜3%、Mo:0.01〜3%、V:0.05〜1%を含有し、残部がFe及び不可避的不純物からなり、断面硬度Hvが190以下、結晶粒度番号が8.5以下であることを特徴とする耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。   C: 0.005 to 0.2%, Si: 0.1 to 4%, Mn: 0.1 to 5%, P: 0.01 to 0.05%, S: 0.0001 to C in mass% 0.01%, Ni: 5 to 20%, Cr: 15 to 30%, N: 0.01 to 0.4%, Al: 0.005 to 1%, Cu: 0.05 to 3%, Mo: 0.01 to 3%, V: 0.05 to 1%, the balance is Fe and inevitable impurities, the cross-sectional hardness Hv is 190 or less, the grain size number is 8.5 or less Austenitic stainless steel sheet with excellent heat resistance and workability. 前記ステンレス鋼板の表面粗度がRzで30μm以下であることを特徴とする請求項1に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。   2. The austenitic stainless steel plate excellent in heat resistance and workability according to claim 1, wherein the stainless steel plate has a surface roughness Rz of 30 μm or less. 前記ステンレス鋼板が、更に、質量%でTi:0.005〜0.3%、Nb:0.005〜0.3%、B:0.0002〜0.0050%、Ca:0.0005〜0.01%の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。   The stainless steel sheet is further, in mass%, Ti: 0.005-0.3%, Nb: 0.005-0.3%, B: 0.0002-0.0050%, Ca: 0.0005-0. The austenitic stainless steel sheet having excellent heat resistance and workability according to claim 1 or 2, characterized by containing 0.01% of one kind or two or more kinds. 前記ステンレス鋼板が、更に、質量%で、W:0.1〜3%、Zr:0.05〜0.3%、Sn:0.01〜0.5%、Co:0.03〜0.3%、Mg:0.0002〜0.01%、Sb:0.005〜0.5%、REM:0.001〜0.2%、Ga:0.0002〜0.3%、Ta:0.001〜1.0%の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板。   The stainless steel sheet further contains, in mass%, W: 0.1 to 3%, Zr: 0.05 to 0.3%, Sn: 0.01 to 0.5%, Co: 0.03 to 0. 3%, Mg: 0.0002 to 0.01%, Sb: 0.005 to 0.5%, REM: 0.001 to 0.2%, Ga: 0.0002 to 0.3%, Ta: 0 The austenitic stainless steel sheet excellent in heat resistance and workability according to any one of claims 1 to 3, comprising 0.001 to 1.0% of one kind or two or more kinds. 請求項1〜4のいずれか1項に記載のステンレス鋼板の製造方法であって、請求項1、3および4のいずれか1項に記載の成分を有する鋼を熱間圧延し、得られた熱延鋼板を1100℃〜1200℃まで加熱した後、400℃まで20℃/sec以上で冷却し、その後酸洗処理を施すことを特徴とする耐熱性と加工性に優れたオーステナイト系ステンレス鋼板の製造方法。   It is the manufacturing method of the stainless steel plate of any one of Claims 1-4, Comprising: The steel which has the component of any one of Claims 1, 3, and 4 was hot-rolled, and was obtained. An austenitic stainless steel sheet excellent in heat resistance and workability characterized by heating a hot-rolled steel sheet to 1100 ° C. to 1200 ° C., cooling to 400 ° C. at 20 ° C./sec or more, and then performing pickling treatment. Production method. さらに、前記ステンレス鋼板を圧下率50%以下で冷間圧延し、得られた冷延鋼板を1100℃〜1200℃まで加熱した後、400℃まで20℃/sec以上で冷却し、その後酸洗処理を施すことを特徴とする請求項5に記載の耐熱性と加工性に優れたオーステナイト系ステンレス鋼板の製造方法。   Further, the stainless steel plate is cold-rolled at a reduction rate of 50% or less, and the obtained cold-rolled steel plate is heated to 1100 ° C. to 1200 ° C., then cooled to 400 ° C. at 20 ° C./sec or more, and then pickled. The method for producing an austenitic stainless steel sheet excellent in heat resistance and processability according to claim 5, characterized in that 請求項1〜4のいずれか1項に記載のステンレス鋼板を排気部品に用いたことを特徴とするオーステナイト系ステンレス鋼製排気部品。   An exhaust part made of austenitic stainless steel, wherein the stainless steel plate according to any one of claims 1 to 4 is used as an exhaust part.
JP2015217605A 2015-11-05 2015-11-05 Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel Active JP6552385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217605A JP6552385B2 (en) 2015-11-05 2015-11-05 Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217605A JP6552385B2 (en) 2015-11-05 2015-11-05 Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel

Publications (2)

Publication Number Publication Date
JP2017088928A JP2017088928A (en) 2017-05-25
JP6552385B2 true JP6552385B2 (en) 2019-07-31

Family

ID=58768216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217605A Active JP6552385B2 (en) 2015-11-05 2015-11-05 Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel

Country Status (1)

Country Link
JP (1) JP6552385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527913A (en) * 2019-09-24 2019-12-03 沈阳工业大学 A kind of novel Fe-Ni-Cr-N alloy and preparation method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866241B2 (en) * 2017-06-12 2021-04-28 日鉄ステンレス株式会社 Austenitic stainless steel sheet, its manufacturing method, and exhaust parts
JP6879877B2 (en) * 2017-09-27 2021-06-02 日鉄ステンレス株式会社 Austenitic stainless steel sheet with excellent heat resistance and its manufacturing method
JP7050520B2 (en) * 2018-02-19 2022-04-08 日鉄ステンレス株式会社 Manufacturing method of austenitic stainless steel sheet for exhaust parts and austenitic stainless steel sheet for exhaust parts and exhaust parts
JP6999475B2 (en) * 2018-03-30 2022-02-04 日鉄ステンレス株式会社 Highly Si-containing austenitic stainless steel with excellent manufacturability
CN108642373A (en) * 2018-04-18 2018-10-12 江苏理工学院 A kind of high-temperature oxidation resistant austenitic heat-resistance steel and its preparation process
JP7270419B2 (en) * 2019-03-11 2023-05-10 日鉄ステンレス株式会社 AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN HIGH-TEMPERATURE, HIGH-CYCLE FATIGUE CHARACTERISTICS, METHOD FOR MANUFACTURING SAME, AND EXHAUST COMPONENTS
JP7270445B2 (en) * 2019-03-29 2023-05-10 日鉄ステンレス株式会社 AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN HIGH-TEMPERATURE, HIGH-CYCLE FATIGUE CHARACTERISTICS, METHOD FOR MANUFACTURING SAME, AND EXHAUST COMPONENTS
JP7021706B2 (en) * 2019-07-31 2022-02-17 Jfeスチール株式会社 Austenitic stainless steel sheet for base material of fuel cell separator
WO2021241131A1 (en) * 2020-05-28 2021-12-02 日鉄ステンレス株式会社 Austenitic stainless steel product and corrosion resistant component
CN111575464B (en) * 2020-05-29 2022-04-08 青岛丰东热处理有限公司 Method for improving surface hardening layer of austenitic stainless steel
KR102463015B1 (en) * 2020-11-23 2022-11-03 주식회사 포스코 High-strength austenitic stainless steel with excellent hot workability
JP7439776B2 (en) 2021-01-28 2024-02-28 Jfeエンジニアリング株式会社 Water Concrete Structures and Caissons

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109006B2 (en) * 1987-08-13 1995-11-22 新日本製鐵株式会社 Method for producing A-l containing austenitic stainless steel
JP3217088B2 (en) * 1991-07-26 2001-10-09 三桜工業株式会社 Stainless steel multiple winding pipe
JPH07197205A (en) * 1993-12-29 1995-08-01 Nkk Corp Austenitic stainless steel sheet and its production
JP3720154B2 (en) * 1996-12-02 2005-11-24 日新製鋼株式会社 Austenitic stainless steel with excellent polishability after press working
JP3888282B2 (en) * 2002-10-17 2007-02-28 住友金属工業株式会社 Austenitic stainless steel strip and method for producing the same
JP4403029B2 (en) * 2004-07-02 2010-01-20 日新製鋼株式会社 Austenitic stainless steel for the inner side of the double structure exhaust manifold
EP2245202B1 (en) * 2007-12-20 2011-08-31 ATI Properties, Inc. Austenitic stainless steel low in nickel containing stabilizing elements
JP5720347B2 (en) * 2011-03-18 2015-05-20 新日鐵住金株式会社 Cold rolled stainless steel sheet excellent in high temperature sag resistance and method for producing the same
MX2015013607A (en) * 2013-03-28 2016-01-12 Nippon Steel & Sumikin Sst Heat-resistant austenitic stainless steel sheet.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527913A (en) * 2019-09-24 2019-12-03 沈阳工业大学 A kind of novel Fe-Ni-Cr-N alloy and preparation method
CN110527913B (en) * 2019-09-24 2021-03-23 沈阳工业大学 Novel Fe-Ni-Cr-N alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2017088928A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6552385B2 (en) Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel
KR102165108B1 (en) Manufacturing method of austenitic stainless steel sheet for exhaust parts and turbocharger parts with excellent heat resistance and workability, and austenitic stainless steel sheet for exhaust parts
JP6621254B2 (en) Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same
JP6768929B2 (en) Ferritic stainless steel with excellent high-temperature wear resistance, manufacturing method of ferritic stainless steel sheet, exhaust parts, high-temperature sliding parts, and turbocharger parts
US11242578B2 (en) Ferrite-based stainless steel sheet having low specific gravity and production method therefor
KR102306578B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and exhaust parts
JP6879877B2 (en) Austenitic stainless steel sheet with excellent heat resistance and its manufacturing method
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP6746035B1 (en) Austenitic stainless steel sheet
JP7166082B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP7050520B2 (en) Manufacturing method of austenitic stainless steel sheet for exhaust parts and austenitic stainless steel sheet for exhaust parts and exhaust parts
JP6778621B2 (en) Austenitic stainless steel sheet for exhaust parts and its manufacturing method, and exhaust parts and their manufacturing method
JP6866241B2 (en) Austenitic stainless steel sheet, its manufacturing method, and exhaust parts
JP6684629B2 (en) Austenitic stainless steel with excellent high-temperature slidability, and turbocharger parts manufactured using it
JP7270445B2 (en) AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN HIGH-TEMPERATURE, HIGH-CYCLE FATIGUE CHARACTERISTICS, METHOD FOR MANUFACTURING SAME, AND EXHAUST COMPONENTS
JP2020147770A (en) Austenitic stainless steel sheet having excellent high-temperature and high cycle fatigue characteristic and method for producing the same, and exhaust parts
JP2022067816A (en) Austenite-based stainless steel sheet and production method thereof
JP2023144403A (en) Ferritic stainless steel plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190702

R150 Certificate of patent or registration of utility model

Ref document number: 6552385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250