JP7166082B2 - Austenitic stainless steel sheet and manufacturing method thereof - Google Patents

Austenitic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP7166082B2
JP7166082B2 JP2018115391A JP2018115391A JP7166082B2 JP 7166082 B2 JP7166082 B2 JP 7166082B2 JP 2018115391 A JP2018115391 A JP 2018115391A JP 2018115391 A JP2018115391 A JP 2018115391A JP 7166082 B2 JP7166082 B2 JP 7166082B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
temperature
steel sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115391A
Other languages
Japanese (ja)
Other versions
JP2019218588A (en
Inventor
睦子 吉井
純一 濱田
貞弘 連川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018115391A priority Critical patent/JP7166082B2/en
Publication of JP2019218588A publication Critical patent/JP2019218588A/en
Application granted granted Critical
Publication of JP7166082B2 publication Critical patent/JP7166082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、耐熱性が要求される耐熱部品の素材となるオーステナイト系ステンレス鋼板に関するものであり、特に自動車や二輪車のエキゾーストホールド、コンバーター、ターボチャージャー部品ならびにプラント等に適用されるものである。 The present invention relates to an austenitic stainless steel sheet that is used as a material for heat-resistant parts that require heat resistance, and is particularly applicable to exhaust holds of automobiles and motorcycles, converters, turbocharger parts, plants, and the like.

自動車の排気マニホールド、フロントパイプ、センターパイプ、マフラーおよび排気ガス浄化のための環境対応部品は、高温の排気ガスを安定的に通気させるために、耐酸化性、高温強度、熱疲労特性等の耐熱性に優れた材料が使用される。また、凝縮水腐食環境でもあることから耐食性に優れることも要求される。 Exhaust manifolds, front pipes, center pipes, mufflers, and environmentally friendly parts for purifying exhaust gas in automobiles are required to have heat resistance such as oxidation resistance, high-temperature strength, and thermal fatigue properties in order to stably ventilate high-temperature exhaust gas. Good materials are used. In addition, it is also required to be excellent in corrosion resistance because it is also a condensed water corrosive environment.

排気ガス規制の強化、エンジン性能の向上、車体軽量化等の観点からも、これらの部品にはステンレス鋼が多く使用されている。また、近年では、排気ガス規制の強化が更に強まる他、燃費性能の向上、ダウンサイジング等の動きから、特にエンジン直下のエキゾーストマニホールドを通気する排気ガス温度は上昇傾向にある。加えて、ターボチャージャーの様な過給機を搭載するケースも多くなっており、エキゾーストマニホールドやターボチャージャーに使用されるステンレス鋼には耐熱性の一層の向上が求められる。排気ガス温度の上昇に関しては、従来900℃程度であった排気ガス温度が1000℃程度まで上昇することも見込まれている。 Stainless steel is often used for these parts from the standpoint of tightening exhaust gas regulations, improving engine performance, and reducing vehicle weight. In recent years, exhaust gas regulations have become even more stringent, fuel efficiency has improved, and automobiles have been downsized, so the temperature of the exhaust gas passing through the exhaust manifold directly below the engine is on the rise. In addition, the number of cases where a supercharger such as a turbocharger is installed is increasing, and the stainless steel used for exhaust manifolds and turbochargers is required to have further improved heat resistance. As for the rise in exhaust gas temperature, it is expected that the exhaust gas temperature, which was conventionally about 900°C, will rise to about 1000°C.

一方、ターボチャージャーの内部構造は複雑で、過給効率を高めるとともに、耐熱信頼性の確保が重要であり、主として耐熱オーステナイト系ステンレス鋼の使用が開示されている。代表的な耐熱オーステナイト系ステンレス鋼であるSUS310S(25%Cr-20%Ni)やNi基合金等の他、特許文献1には高Cr、Mo添加鋼が開示されている。また、Siを2~4%添加したオーステナイト系ステンレス鋼を用いたノズルベーン式ターボチャージャーの排気ガイド部品が特許文献2に開示されている。 On the other hand, the internal structure of a turbocharger is complicated, and it is important to improve supercharging efficiency and ensure heat resistance reliability. In addition to SUS310S (25% Cr-20% Ni), which is a typical heat-resistant austenitic stainless steel, Ni-based alloys, and the like, Patent Document 1 discloses steel with high Cr and Mo additions. Further, Patent Document 2 discloses an exhaust guide component for a nozzle vane type turbocharger using austenitic stainless steel to which Si is added by 2 to 4%.

特許文献2では鋼製造時の熱間加工性を考慮して鋼成分が規定されているが、上記部品に要求される高温特性を十分満足するとは言えない。また、打ち抜き穴の穴拡げ加工性を維持する事が重要とされているが、熱間加工性から規定された鋼成分では十分な穴拡げ性を得ることは出来なかった。更に、ターボチャージャーのハウジングにはステンレス鋳鋼が使用されているが、肉厚が厚いため薄肉軽量化ニーズがある。 In Patent Document 2, the steel composition is specified in consideration of the hot workability during steel production, but it cannot be said that the high-temperature properties required for the above parts are sufficiently satisfied. In addition, it is important to maintain the hole expandability of punched holes, but it was not possible to obtain sufficient hole expandability with the steel composition specified from the hot workability. Furthermore, the housing of a turbocharger is made of cast stainless steel, which has a large wall thickness.

特許文献3には、Nb、V、C、N、Al、Tiの含有量の最適範囲を定め、製造プロセスを最適化することにより、耐熱オーステナイト系ステンレス鋼板の高温強度及びクリープ特性を向上することが開示されている。しかし、特許文献3に開示された発明の技術的課題は、800℃での高温強度及びクリープ特性の向上であり、特許文献3に開示された発明は、900℃を超える排気ガスへの対応には不十分である。 In Patent Document 3, the optimum range of Nb, V, C, N, Al, and Ti contents is determined, and the manufacturing process is optimized to improve the high-temperature strength and creep properties of heat-resistant austenitic stainless steel sheets. is disclosed. However, the technical problem of the invention disclosed in Patent Document 3 is to improve high temperature strength and creep characteristics at 800 ° C. is insufficient.

また、特許文献4には、材料組成及び処理条件を最適化することにより、700℃で400時間熱処理後の室温における硬さが40HRC以上である耐熱オーステナイト系ステンレス鋼が開示されている。しかし、特許文献4に開示された発明の課題は、550℃以上の使用環境に耐え得る高温強度を有することであり、特許文献4には700℃での高温強度が示されているに過ぎず、特許文献4に開示された発明に係る耐熱オーステナイト系ステンレス鋼は、900℃を超える排気ガスへの対応には不十分である。 Patent Document 4 discloses a heat-resistant austenitic stainless steel having a hardness of 40 HRC or more at room temperature after heat treatment at 700° C. for 400 hours by optimizing the material composition and treatment conditions. However, the problem of the invention disclosed in Patent Document 4 is to have high temperature strength that can withstand use environments of 550 ° C. or higher, and Patent Document 4 only shows high temperature strength at 700 ° C. , the heat-resistant austenitic stainless steel according to the invention disclosed in Patent Document 4 is insufficient for handling exhaust gas exceeding 900°C.

また、特許文献5には、低ΣCSL粒界頻度、および結晶平均粒径等を制御することにより、小粒径の材料で、耐粒界腐食性の向上および高温強度の改善を実現できることが開示されている。しかし、特許文献5における「高温強度」とは、水中における高温強度であって、900℃を超える排気ガスに対する強度を達成するための具体的な解決手段は、開示されていない。 In addition, Patent Document 5 discloses that by controlling the low ΣCSL grain boundary frequency and the crystal average grain size, etc., it is possible to improve intergranular corrosion resistance and high temperature strength with a small grain size material. It is However, the "high-temperature strength" in Patent Document 5 means high-temperature strength in water, and no specific means for achieving strength against exhaust gas exceeding 900° C. is disclosed.

また、特許文献6に開示された原子力用ステンレス鋼は、鋼中の双晶粒界比率を増加することによって、高温水中において優れた耐粒界腐食性を確保することを特徴としている。しかし、特許文献6は、前記原子力用ステンレス鋼の高温強度を開示しておらず、また、特許文献6には、900℃を超える排気ガスに対する強度を達成するための具体的な解決手段は、開示されていない。 Further, the stainless steel for nuclear power use disclosed in Patent Document 6 is characterized by ensuring excellent intergranular corrosion resistance in high-temperature water by increasing the twin grain boundary ratio in the steel. However, Patent Document 6 does not disclose the high-temperature strength of the stainless steel for nuclear power use, and Patent Document 6 discloses a specific solution for achieving strength against exhaust gas exceeding 900 ° C. Not disclosed.

また、特許文献7に開示された耐食性オーステナイト系合金は、オーステナイト系合金に30%を超える冷間加工と加熱処理とを施して、オーステナイト結晶粒内に双晶境界を形成するとともに、オーステナイト粒界及び/又は双晶境界上に析出物を分散形成してなることを特徴とする。前記特徴によって、粒界すべりが抑制されて粒界強度が高められるので、前記耐食性オーステナイト系合金は、より高い耐応力腐食割れ進展性を有する。しかし、特許文献7に示された耐応力腐食割れ進展性は、高温水中における特性であって、特許文献7には、900℃を超える排気ガスに対する強度を達成するための具体的な解決手段は、開示されていない。 In addition, the corrosion-resistant austenitic alloy disclosed in Patent Document 7 is subjected to cold working and heat treatment of more than 30% to the austenitic alloy to form twin boundaries in the austenite grains, and the austenite grain boundaries and/or precipitates are dispersedly formed on twin boundaries. Due to the above characteristics, intergranular sliding is suppressed and intergranular strength is increased, so that the corrosion-resistant austenitic alloy has higher resistance to stress corrosion crack growth. However, the stress corrosion cracking resistance shown in Patent Document 7 is a characteristic in high-temperature water, and Patent Document 7 describes a specific solution for achieving strength against exhaust gas exceeding 900 ° C. , not disclosed.

双晶粒界比率を増加することによる特性改善は、主に耐食性改善が目的である。また、そのための鋼成分や製造条件については、特許文献8~14にも種々記載されている。鋼成分についてはSUS304やSUS316系が対象であり、本願で特徴とするSiが1%超の材料に関する記載は無い。圧延条件については、低圧下率が基本になっており例えば特許文献9では2~15%、特許文献12や13では2~5%である。また、その後の熱処理条件については、比較的長時間の熱処理になっており、例えば特許文献9では900~1000℃で5時間以上、特許文献13では927~1227℃で1~60分、特許文献11では900~950℃で10~48時間である。一方、特許文献12では1052℃以上で2分以内となっている。再結晶が促進し多数の大角粒界が生成すると双晶粒界頻度は低下してしまうため、双晶粒界頻度を増加させるためには、再結晶が進行せずに元々存在する大角粒界を粒界移動させるために、上記の様に比較的低温で長時間の熱処理が施されると考えられる。 The main purpose of improving properties by increasing the twin grain boundary ratio is to improve corrosion resistance. In addition, the steel composition and manufacturing conditions for that purpose are variously described in Patent Documents 8 to 14. As for the steel composition, SUS304 and SUS316 series are targeted, and there is no description of a material containing more than 1% of Si, which is a feature of the present application. As for the rolling conditions, a low rolling reduction is the basic, for example, 2 to 15% in Patent Document 9 and 2 to 5% in Patent Documents 12 and 13. In addition, the heat treatment conditions after that are relatively long heat treatments. 11 at 900-950° C. for 10-48 hours. On the other hand, in Patent Literature 12, it is within 2 minutes at 1052° C. or higher. If recrystallization is accelerated and a large number of large-angle grain boundaries are generated, the twin grain boundary frequency will decrease. It is considered that the heat treatment is performed at a relatively low temperature for a long time as described above in order to move the grain boundary.

また、特許文献15に開示されたオーステナイト系ステンレス鋼板は、焼鈍双晶の頻度が高い方が900℃の高温強度が高いという知見に基づいて発明された鋼板であって、特許文献14は、耐食性オーステナイト系ステンレス鋼板の焼鈍双晶の頻度を40%以上にすることによって70MPa以上の高強度材が得られることを開示している。しかしながら、900℃を超える排気ガスに対する強度は不十分である。 Further, the austenitic stainless steel sheet disclosed in Patent Document 15 is a steel sheet invented based on the knowledge that the higher the frequency of annealing twins, the higher the high temperature strength at 900 ° C. It discloses that a high-strength material of 70 MPa or more can be obtained by increasing the frequency of annealing twins in an austenitic stainless steel sheet to 40% or more. However, the strength against exhaust gas exceeding 900° C. is insufficient.

国際公開第2014/157655号WO2014/157655 特許第4937277号公報Japanese Patent No. 4937277 特開2013-209730号公報JP 2013-209730 A 特開2005-281855号公報JP 2005-281855 A 特開2011-168819号公報JP 2011-168819 A 特開2005-15896号公報JP-A-2005-15896 特開2008-63602号公報Japanese Patent Application Laid-Open No. 2008-63602 特開平11-80905号公報JP-A-11-80905 特開2003-253401号公報Japanese Patent Application Laid-Open No. 2003-253401 特開2009-161802号公報Japanese Patent Application Laid-Open No. 2009-161802 特開2009-191341号公報Japanese Patent Application Laid-Open No. 2009-191341 特開2009-287104号公報JP 2009-287104 A 特開2010-275569号公報JP 2010-275569 A 特開2014-5509号公報JP 2014-5509 A 国際公開第2017/164344号WO2017/164344

F.B. Pickering, in :G.D. Dunlup(Ed.), Proceedings of the Stainless steels 84, Chalmers University of Technology, Goteborg, September 3-4, (1984), The institute of Metals, London(1985)12.F.B. Pickering, in :G.D. Dunlup(Ed.), Proceedings of the Stainless steels 84, Chalmers University of Technology, Goteborg, September 3-4, (1984), The institute of Metals, London(1985)12.

耐熱部品では高温環境に曝された際に、高温強度や剛性不足により過度な変形や極端な場合は破壊が生じる。加えて振動による高サイクルあるいは低サイクル疲労破壊も課題となる。従来のオーステナイト系ステンレス鋼板では、高温強度を高めるために合金元素添加を行うと常温延性が不足する他、コストアップにもつながる。本発明の目的は、前記の問題点を解決し、耐熱部品に使用されるオーステナイト系ステンレス鋼板の組織制御により耐熱性を向上させるものである。 When heat-resistant parts are exposed to high-temperature environments, excessive deformation or, in extreme cases, destruction occurs due to insufficient high-temperature strength and rigidity. In addition, high-cycle or low-cycle fatigue failure due to vibration is also an issue. In conventional austenitic stainless steel sheets, addition of alloying elements to increase high-temperature strength results in insufficient room-temperature ductility and leads to an increase in cost. SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and improve heat resistance by controlling the structure of an austenitic stainless steel sheet used for heat-resistant parts.

本願の解決しようとする課題の対象となる部品は、自動車や二輪車等の輸送用排気部材、プラント部材等の耐熱部品である。その中でも、特に自動車の排気系部品であり、エキゾーストマニホールドやターボチャージャーといった部品が対象となる。ターボチャージャーについては、外枠を構成するハウジング、ノズルベーン式ターボチャージャー内部の精密部品(例えば、バックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーと呼ばれるもの)がある。 The parts to be solved by the present application are heat-resistant parts such as exhaust parts for transportation such as automobiles and motorcycles, and plant parts. Among them, it is especially the exhaust system parts of automobiles, such as exhaust manifolds and turbochargers. For turbochargers, the housing that makes up the outer frame, precision parts inside the nozzle vane type turbocharger (for example, back plate, oil deflector, compressor wheel, nozzle mount, nozzle plate, nozzle vane, drive ring, drive lever) be.

オーステナイト系ステンレス鋼では冷延・焼鈍後に結晶粒界が形成され、多結晶体となる。結晶粒界では原子配列が規則的あるいは不規則的となる。結晶粒界での原子配列が規則的で隙間が少ない場合は低エネルギー構造となり、粒界劣化現象が引き起こされ難い。この特殊粒界の代表として、対応粒界が挙げられている。これに対して、結晶粒界での原子配列が規則的でない場合はランダム粒界と呼ばれ高エネルギー構造を有する。対応方位関係は幾何学的に多くの組み合わせで出現するが、Σ3~29までの対応方位関係によって形成される粒界が対応粒界と呼ばれている。このΣ値は奇数であり、この値が小さい程対応格子点密度が高く、低エネルギー粒界としての性格が強まる。 In austenitic stainless steel, grain boundaries are formed after cold rolling and annealing, resulting in a polycrystalline body. At the grain boundary, the atomic arrangement becomes regular or irregular. If the atomic arrangement at the crystal grain boundary is regular and there are few gaps, the structure will have a low energy, and the grain boundary deterioration phenomenon will not easily occur. Corresponding grain boundaries are cited as representatives of these special grain boundaries. On the other hand, when the atomic arrangement at the crystal grain boundary is not regular, it is called a random grain boundary and has a high energy structure. Corresponding orientation relationships appear geometrically in many combinations, and grain boundaries formed by corresponding orientation relationships of Σ3 to Σ29 are called corresponding grain boundaries. This Σ value is an odd number, and the smaller this value is, the higher the corresponding lattice point density is and the stronger the character as a low-energy grain boundary is.

上記の従来知見ではこの対応粒界頻度を増やすことで耐食性を向上させるものが大半であり、例えば特許文献9は、Si含有量が0.59%のSUS304に対してΣ29以下の対応粒界頻度が75%以上とすることで粒界腐食を抑制するものである。一方、対応粒界頻度を増加させるために特許文献9では、900~1000℃で5時間以上の熱処理を必要としており、工業的な大量生産としては非効率であった。また、特許文献9に開示された発明は、対応粒界頻度を増加させて粒界への析出を抑制し、耐食性を向上させるものであるが、高温での機械的性質に与える影響は不明であった。 Most of the above conventional knowledge improves corrosion resistance by increasing the corresponding grain boundary frequency. is 75% or more, intergranular corrosion is suppressed. On the other hand, Patent Document 9 requires heat treatment at 900 to 1000° C. for 5 hours or more to increase the frequency of corresponding grain boundaries, which is inefficient for industrial mass production. In addition, the invention disclosed in Patent Document 9 increases the frequency of corresponding grain boundaries to suppress precipitation at grain boundaries and improve corrosion resistance, but the effect on mechanical properties at high temperatures is unknown. there were.

上記課題を解決するために、本発明者らはオーステナイト系ステンレス鋼板の金属組織と高温特性ならびに常温加工性の関係について詳細な研究を行った。その結果、例えばターボチャージャーの様な極めて過酷な熱環境に曝される部品の中で耐熱性が要求される素材に対して、鋼成分により耐熱性を確保するとともに、冷延工程及びその後の焼鈍工程によって、金属組織における結晶粒界の性格を制御することにより、高温強度に著しく優れた特性が得られることを見出した。また、加工性の点では、特許文献2記載の様な鋼成分だけでは満足されず、冷延工程及びその後の焼鈍工程により上記の結晶粒界の性格の制御により高温強度との両立に成功した。 In order to solve the above problems, the present inventors conducted detailed research on the relationship between the metallographic structure of an austenitic stainless steel sheet, high-temperature properties, and room-temperature workability. As a result, for materials that require heat resistance in parts that are exposed to extremely harsh thermal environments, such as turbochargers, the heat resistance is ensured by the steel composition, and the cold rolling process and subsequent annealing It has been found that by controlling the characteristics of the grain boundaries in the metallographic structure through the process, remarkably excellent high-temperature strength properties can be obtained. Also, in terms of workability, the steel composition described in Patent Document 2 alone is not satisfactory, and by controlling the characteristics of the grain boundaries described above through the cold rolling process and the subsequent annealing process, we have succeeded in achieving both high-temperature strength. .

さらに、非特許文献1に記載された下記式より求められる積層欠陥エネルギー(stacking fault energy)値SFEが小さくなるような鋼成分にすることで対応粒界頻度を増大させるための焼鈍時間を短時間化できることを見出した。
SFE(mJm-2)=25.7+2×Ni+410×C-0.9×Cr-77×N-13×Si-1.2×Mn
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
Furthermore, the annealing time for increasing the corresponding grain boundary frequency by making the steel composition such that the stacking fault energy (stacking fault energy) value SFE obtained from the following formula described in Non-Patent Document 1 becomes small is shortened. I found that I can make it.
SFE (mJm −2 )=25.7+2×Ni+410×C−0.9×Cr−77×N−13×Si−1.2×Mn
However, the element symbol in the formula means the content (% by mass) of the element, and 0 is substituted when the element is not contained.

上記課題を解決する本発明の要旨は、
(1)質量%で、C:0.005~0.300%、Si:1.00超~4.00%、Mn:0.10~10.00%、Ni:2.00~25.00%、Cr:15.0~30.0%、N:0.005~0.400%未満、Al:0.001~1.000%、Cu:0.05~4.00%、Mo:0.02~3.00%、V:0.02~1.00%、P:0.050%以下、S:0.0100%以下を含有し、残部がFe及び不可避的不純物からなり、下記(1)式の値が50以下、Σ値が3~29までの対応粒界の対応粒界頻度が合計で80%以上であり、Σ値が5~29までの対応粒界の対応粒界頻度が合計で10%~25%であることを特徴とする、オーステナイト系ステンレス鋼板。
25.7+2×Ni+410×C-0.9×Cr-77×N-13×Si-1.2×Mn・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
(2)前記鋼板が、更に、質量%でTi:0.005~0.300%、Nb:0.005~0.300%、B:0.0002~0.0050%、Ca:0.0005~0.0100%、W:0.10~3.00%、Zr:0.05~0.30%、Sn:0.01~0.50%、Co:0.03~0.30%、Mg:0.0002~0.0100%、Sb:0.005~0.300%、REM:0.002~0.200%、Ga:0.0002~0.3000%、Ta:0.01~1.00%、Hf:0.01~1.00%、Bi:0.001~0.020%の1種又は2種以上を含有することを特徴とする、(1)に記載のオーステナイト系ステンレス鋼板。
(3)排気部品に用いられることを特徴とする、(1)又は(2)に記載のオーステナイト系ステンレス鋼板。
(4)(1)または(2)に記載のステンレス鋼板の製造方法であって、冷間圧延工程にて80%以下の圧下率で圧延し、続く冷延板焼鈍において加熱速度10℃/sec以上、温度1000~1200℃で焼鈍を施した後、圧下率10%以下で冷間圧延し、続く冷延板焼鈍において900℃未満までの加熱速度を10℃/sec以上、900℃以上の加熱速度を1℃/sec以上、10℃/sec未満とし950~1150℃で20分以下の冷延板焼鈍を施すことを特徴とする、オーステナイト系ステンレス鋼板の製造方法。
The gist of the present invention for solving the above problems is
(1) In mass%, C: 0.005 to 0.300%, Si: more than 1.00 to 4.00%, Mn: 0.10 to 10.00%, Ni: 2.00 to 25.00 %, Cr: 15.0 to 30.0%, N: 0.005 to less than 0.400%, Al: 0.001 to 1.000%, Cu: 0.05 to 4.00%, Mo: 0 .02 to 3.00%, V: 0.02 to 1.00%, P: 0.050% or less, S: 0.0100% or less, the balance being Fe and unavoidable impurities, the following ( 1) The corresponding grain boundary frequency of corresponding grain boundaries with a formula value of 50 or less and a Σ value of 3 to 29 is 80% or more in total, and the corresponding grain boundary frequency of corresponding grain boundaries with a Σ value of 5 to 29 is a total of 10% to 25%, an austenitic stainless steel sheet.
25.7+2×Ni+410×C−0.9×Cr−77×N−13×Si−1.2×Mn (1)
However, the element symbol in the formula means the content (% by mass) of the element, and 0 is substituted when the element is not contained.
(2) The steel sheet further contains, in mass%, Ti: 0.005 to 0.300%, Nb: 0.005 to 0.300%, B: 0.0002 to 0.0050%, Ca: 0.0005 ~0.0100%, W: 0.10-3.00%, Zr: 0.05-0.30%, Sn: 0.01-0.50%, Co: 0.03-0.30%, Mg: 0.0002-0.0100%, Sb: 0.005-0.300%, REM: 0.002-0.200%, Ga: 0.0002-0.3000%, Ta: 0.01- 1.00%, Hf: 0.01 to 1.00%, Bi: 0.001 to 0.020%, characterized by containing one or more of (1), the austenitic system according to (1) stainless steel plate.
(3) The austenitic stainless steel sheet according to (1) or (2), which is used for exhaust parts.
(4) In the method for producing a stainless steel sheet according to (1) or (2), the steel sheet is rolled at a rolling reduction of 80% or less in the cold rolling step, and the subsequent cold-rolled sheet annealing is performed at a heating rate of 10°C/sec. As described above, after annealing at a temperature of 1000 to 1200 ° C., cold rolling is performed at a reduction rate of 10% or less, and in the subsequent cold-rolled sheet annealing, the heating rate is 10 ° C./sec or more to less than 900 ° C., and the heating is 900 ° C. or more. A method for producing an austenitic stainless steel sheet, characterized by performing cold-rolled sheet annealing at a rate of 1° C./sec or more and less than 10° C./sec at 950 to 1150° C. for 20 minutes or less.

本発明によれば、常温の成形性とともに高温特性に優れたオーステナイト系ステンレス鋼板を提供することが可能となり、特に自動車排気部品に適用することにより、軽量化や高排気温化に大きく寄与する。 According to the present invention, it is possible to provide an austenitic stainless steel sheet with excellent room temperature formability and high temperature properties.

以下に本発明の限定理由について説明する。耐熱用途として使用されるオーステナイト系ステンレス鋼板の特性として重要なのは高温強度やクリープ特性である。特に先述したターボチャージャーのハウジングは複雑形状をしているとともに、高温環境下で変形が過度に生じてしまうと部品同士の接触やガス流れ不良等が生じて、破損や熱効率低下を招き、部品性能の信頼性低下に繋がる。そこで、これらの信頼性を確保するために、オーステナイト系ステンレス鋼の結晶粒界構造の微視的研究を鋭意すすめ、以下の知見を得た。 The reasons for limitation of the present invention will be described below. High-temperature strength and creep properties are important characteristics of austenitic stainless steel sheets used for heat-resistant applications. In particular, the previously mentioned turbocharger housing has a complex shape, and if it deforms excessively in a high-temperature environment, contact between parts and poor gas flow will occur, leading to damage and a decrease in thermal efficiency, which will lead to deterioration in part performance. lead to a decrease in the reliability of Therefore, in order to ensure the reliability of these, the following findings were obtained by diligently conducting microscopic research on the grain boundary structure of austenitic stainless steel.

先ず、対応粒界頻度が80%以上とする点について説明する。オーステナイト系ステンレス鋼では冷延・焼鈍後に結晶粒界が形成され、多結晶体となる。前述したように、結晶粒界が対応粒界である場合、当該粒界は原子配列が規則的で隙間が少ない低エネルギー構造になるので、粒界劣化現象が引き起こされ難い。隣接する2つの結晶粒が形成する対応格子のΣ値は3~29であり、前記対応粒界は、この範囲内の対応格子において形成される。また、Σ値は値が小さい程対応格子点密度が高く、低エネルギー粒界としての性格が強まる。 First, the point that the corresponding grain boundary frequency is 80% or more will be described. In austenitic stainless steel, grain boundaries are formed after cold rolling and annealing, resulting in a polycrystalline body. As described above, when the grain boundary is a corresponding grain boundary, the grain boundary has a low energy structure with regular atomic arrangement and few gaps, so that the grain boundary deterioration phenomenon is less likely to occur. The Σ value of the corresponding lattice formed by two adjacent crystal grains is 3 to 29, and the corresponding grain boundary is formed in the corresponding lattice within this range. Also, the smaller the Σ value, the higher the corresponding lattice point density, and the stronger the character of the low-energy grain boundary.

対応粒界の中で最も低Σ粒界であるΣ3粒界は焼鈍双晶からなる。焼鈍双晶は熱処理時に生成し鋼成分に起因する積層欠陥エネルギーが密接に関係している。従って、粒界劣化を防止する観点から、材料全体の結晶粒界のうち対応粒界の占める割合、特に、焼鈍双晶が占める割合が多い方が好ましい。 The Σ3 grain boundary, which is the lowest Σ grain boundary among the corresponding grain boundaries, consists of annealing twins. Annealing twins are closely related to stacking fault energies that are generated during heat treatment and are caused by the steel composition. Therefore, from the viewpoint of preventing grain boundary deterioration, it is preferable that the ratio of corresponding grain boundaries, particularly the ratio of annealing twins, to the grain boundaries of the entire material is large.

対応粒界頻度は、材料の断面において結晶粒界の総長さに対する前記対応粒界の長さの割合で求められる。EBSP(Electron Back-Scatering Difraction pattern)を用いて材料の板厚中心から板厚1/4~1/2程度の範囲について、約300μm厚さ×約100μm巾の領域について結晶方位解析を行い、観察した範囲内に存在する結晶粒界の総長さと対応粒界の長さ測定する。 The corresponding grain boundary frequency is determined by the ratio of the length of the corresponding grain boundary to the total length of the grain boundaries in the cross section of the material. Using EBSP (Electron Back-Scatering Diffraction pattern), crystal orientation analysis is performed on a region of about 300 μm thickness × about 100 μm width in the range of about 1/4 to 1/2 of the plate thickness from the center of the plate thickness of the material, and observed. The total length of grain boundaries and the length of corresponding grain boundaries are measured.

対応粒界頻度が高くなるほど、原子配列が規則的で隙間が少ない低エネルギー構造を有する粒界の割合が高くなるので、高温下においても粒界劣化現象が引き起こされ難くなり、高温強度およびクリープ寿命の向上がもたらされる。本発明のオーステナイト系ステンレス鋼板の優れた耐熱性は、対応粒界頻度を80%以上とすることによってもたらされる。 The higher the corresponding grain boundary frequency, the higher the proportion of grain boundaries with a low-energy structure with a regular atomic arrangement and few gaps. resulting in an improvement in The excellent heat resistance of the austenitic stainless steel sheet of the present invention is brought about by setting the corresponding grain boundary frequency to 80% or more.

従って、本発明で規定した製造方法により製造されたオーステナイト系ステンレス鋼板の対応粒界頻度は、Σ3粒界頻度の上昇およびΣ3粒界以外の対応粒界頻度の上昇の両立により80%以上となっている。そのため本発明のオーステナイト系ステンレス鋼板におけるΣ3粒界以外の対応粒界頻度は、10%~25%とすることが好ましく、12%~20%にすることが好ましい。 Therefore, the corresponding grain boundary frequency of the austenitic stainless steel sheet manufactured by the manufacturing method specified in the present invention is 80% or more due to both the increase in the Σ3 grain boundary frequency and the increase in the corresponding grain boundary frequency other than the Σ3 grain boundary. ing. Therefore, the frequency of corresponding grain boundaries other than the Σ3 grain boundary in the austenitic stainless steel sheet of the present invention is preferably 10% to 25%, more preferably 12% to 20%.

本発明では対応粒界頻度を増加させるために、鋼成分を規定する。本願では、以下の式(1)で求められる積層欠陥エネルギー(SFE)値が50(mJm-2)以下となる様に成分調整することで、短時間の熱処理でも焼鈍双晶が生成し易くなり、対応粒界頻度の増加が可能になることを見出した。SFE値を下げるためには、NiとCを減少させ、Cr、N、SiおよびMnを増加させることが有効であるが、SFE値を過度に低減すると製造性が著しく悪くなることから、下限を-50以上とする。また、本発明の効果であるクリープ特性をより有効に改善し、かつ酸化特性等を考慮すると、30以下が望ましい。
SFE(mJm-2)=25.7+2×Ni+410×C-0.9×Cr-77×N-13×Si-1.2×Mn・・・式(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
In the present invention, the steel composition is specified in order to increase the corresponding grain boundary frequency. In the present application, by adjusting the composition so that the stacking fault energy (SFE) value obtained by the following formula (1) is 50 (mJm −2 ) or less, annealing twins are easily generated even in a short heat treatment. , it is possible to increase the corresponding grain boundary frequency. In order to lower the SFE value, it is effective to decrease Ni and C and increase Cr, N, Si and Mn. -50 or more. Further, in order to more effectively improve the creep property, which is the effect of the present invention, and in consideration of the oxidation property and the like, it is desirable to be 30 or less.
SFE (mJm −2 )=25.7+2×Ni+410×C−0.9×Cr−77×N−13×Si−1.2×Mn Formula (1)
However, the element symbol in the formula means the content (% by mass) of the element, and 0 is substituted when the element is not contained.

次に本発明のオーステナイト系ステンレス鋼の成分範囲について説明する。
Cは、オーステナイト組織形成、高温強度およびクリープ寿命の確保のために0.005%を下限とする。一方、過度な添加は硬質化を招く他、Cr炭化物形成により耐食性、特に溶接部の粒界腐食性の劣化、炭化物に起因した高温摺動性の劣化、冷延焼鈍板酸洗時の粒界浸食溝形成により表面粗さが粗くなる。また、Cは積層欠陥エネルギーを上げて焼鈍双晶の頻度が低下するため、上限を0.300%とする。更に、製造コストと熱間加工性を考慮すると、Cの含有量は、0.010%以上0.200%以下が望ましい。
Next, the composition range of the austenitic stainless steel of the present invention will be explained.
The lower limit of C is set to 0.005% in order to form an austenite structure, ensure high-temperature strength and creep life. On the other hand, excessive addition causes hardening, deterioration of corrosion resistance, especially intergranular corrosion of welds due to the formation of Cr carbides, deterioration of high-temperature slidability due to carbides, and grain boundaries during pickling of cold-rolled annealed sheets. The formation of erosion grooves increases the surface roughness. Also, since C raises the stacking fault energy and lowers the frequency of annealing twins, the upper limit is made 0.300%. Furthermore, considering the manufacturing cost and hot workability, the C content is desirably 0.010% or more and 0.200% or less.

Siは、脱酸元素として添加される場合がある他、Siの内部酸化により耐酸化性、高温摺動性の向上、対応粒界頻度の増加による高温強度およびクリープ寿命の向上をもたらすため、1%超添加する。一方、4.00%以上の添加により硬質化するとともに、粗大なSi系酸化物が生成し、部品の加工精度が著しく低下するため、上限を4.00%とする。尚、製造コスト、鋼板製造時の熱間加工性、酸洗性、溶接時の凝固割れ性を考慮すると、Siの含有量は、1.00%超3.50%以下が望ましい。積層欠陥エネルギーの観点から下限を1.50%超とし、更に、高温摺動性や析出物抑制を考慮すると2.00%以上3.00%以下が望ましい。 Si is sometimes added as a deoxidizing element, and internal oxidation of Si improves oxidation resistance and high-temperature slidability. % is added. On the other hand, addition of 4.00% or more results in hardening and formation of coarse Si-based oxides, which significantly lowers the processing accuracy of parts, so the upper limit is made 4.00%. Considering the production cost, hot workability during steel sheet production, pickling property, and solidification crack resistance during welding, the Si content is preferably more than 1.00% and 3.50% or less. From the standpoint of stacking fault energy, the lower limit is set to more than 1.50%, and considering high-temperature slidability and precipitation suppression, 2.00% or more and 3.00% or less is desirable.

Mnは、脱酸元素として利用する他、オーステナイト組織形成およびスケール密着性を確保するために0.10%以上添加する。一方、10.00%超の添加により介在物清浄度が著しく劣化し穴拡げ性が低下する他、酸洗性が著しく劣化し製品表面が粗くなるため上限を10.00%とする。また、積層欠陥エネルギーを効果的に下げるために、8.00%以下が望ましい。更に、製造コスト、鋼板製造時の酸洗性、酸化特性を考慮すると、Mnの含有量は、0.80%以上5.00%以下が望ましい。 Mn is used as a deoxidizing element, and is added in an amount of 0.10% or more in order to form an austenite structure and secure scale adhesion. On the other hand, if the addition exceeds 10.00%, the cleanness of inclusions is remarkably deteriorated, the hole expansibility is lowered, and the pickling property is remarkably deteriorated, resulting in a rough product surface. Moreover, in order to effectively lower the stacking fault energy, it is desirable to be 8.00% or less. Furthermore, considering the production cost, the pickling property during the steel plate production, and the oxidation property, the Mn content is preferably 0.80% or more and 5.00% or less.

Niはオーステナイト組織形成元素であるとともに、耐食性や耐酸化性を確保する元素である。また、2.00%未満では結晶粒の粗大化が顕著に生じてしまうため2.00%以上添加する。一方、過度な添加はコストの上昇と焼鈍双晶の頻度の低下を招くことから上限を25.00%とする。また、製造性、常温延性および耐食性を考慮し、積層欠陥エネルギーを下げて対応粒界頻度を効果的に増加させるために5.00~20.00%以下が望ましい。更に、コストの面から13%以下が望ましい。 Ni is an austenitic structure-forming element and an element that secures corrosion resistance and oxidation resistance. Also, if it is less than 2.00%, crystal grain coarsening occurs remarkably, so 2.00% or more is added. On the other hand, excessive addition causes an increase in cost and a decrease in the frequency of annealing twins, so the upper limit is made 25.00%. Also, in consideration of manufacturability, normal temperature ductility and corrosion resistance, it is desirable to be 5.00 to 20.00% or less in order to lower the stacking fault energy and effectively increase the corresponding grain boundary frequency. Furthermore, 13% or less is desirable from the aspect of cost.

Crは、耐食性、耐酸化性および高温摺動性を向上させる元素であり、排気部品環境を考慮すると異常酸化抑制の観点から必要な元素である。また双晶を十分に生成させるには15.0%以上が必要である。一方過度な添加は、硬質となり成形性を劣化させる他、コストアップに繋がることから上限を30.0%とした。更に、製造コスト、鋼板製造性ならびに加工性を考慮すると、Crの含有量は、17.0%以上25.5%以下が望ましい。 Cr is an element that improves corrosion resistance, oxidation resistance, and high-temperature slidability, and is a necessary element from the viewpoint of suppressing abnormal oxidation in consideration of the environment of exhaust parts. In addition, 15.0% or more is required to sufficiently generate twin crystals. On the other hand, excessive addition causes hardness and deterioration of moldability, and also leads to an increase in cost, so the upper limit was made 30.0%. Furthermore, considering the manufacturing cost, steel sheet manufacturability and workability, the Cr content is desirably 17.0% or more and 25.5% or less.

Nは、Cと同様にオーステナイト組織形成と高温強度、クリープ、高温摺動性の確保の有効な元素である。高温強度に関しては固溶強化元素として知られているが、また、Nは双晶生成にも効果的である。本願においてはN単独の効果以外にCrとのクラスター形成による高温強度も考慮し、0.005%以上添加する。一方、0.400%以上の添加により常温材質が著しく硬質化し、鋼板製造段階の冷間加工性が劣化する他、部品加工時の成形性や部品精度が悪くなるため、上限を0.400%未満とする。尚、軟質化、溶接時のピンホール抑制、溶接部の粒界腐食抑制の観点から、Nの含有量は、0.020%以上0.350%以下が望ましい。更に、高温強度、摺動性および常温延性の観点から、0.040%超且つ0.350%未満が望ましい。また、クリープ特性の観点から、N含有量を0.150%超、0.350%未満とすることが望ましい。 N, like C, is an effective element for forming an austenitic structure and securing high-temperature strength, creep, and high-temperature slidability. N is known as a solid-solution strengthening element with respect to high-temperature strength, and is also effective for twinning. In the present application, considering the high-temperature strength due to cluster formation with Cr in addition to the effect of N alone, 0.005% or more is added. On the other hand, addition of 0.400% or more significantly hardens the room temperature material, degrades cold workability in the steel sheet manufacturing stage, and deteriorates formability and part accuracy during parts processing, so the upper limit is 0.400%. Less than From the viewpoint of softening, suppression of pinholes during welding, and suppression of intergranular corrosion of welded portions, the N content is preferably 0.020% or more and 0.350% or less. Furthermore, from the viewpoint of high-temperature strength, slidability, and room-temperature ductility, it is desirable that the content is more than 0.040% and less than 0.350%. Also, from the viewpoint of creep properties, it is desirable that the N content is more than 0.150% and less than 0.350%.

Alは、脱酸元素として添加し、介在物清浄度を向上させることで穴拡げ性を向上させる。この他、酸化スケールの剥離抑制、微量内部酸化により高温摺動性の向上に寄与する効果があり,その作用は0.001%から発現するため、下限は0.001%である。また、フェライト生成元素であるため、1.000%以上の添加はオーステナイト組織の安定性が低下する他、酸洗性の低下から表面粗さの増加を招くため上限は1%である。更に、精錬コストと表面疵を考慮すると、Alの含有量は、0.007%以上0.500%以下が望まく、溶接性の観点から0.010%以上0.100%以下がより好ましい。 Al is added as a deoxidizing element to improve cleanliness of inclusions, thereby improving hole expansibility. In addition, it has the effect of suppressing the peeling of oxide scale and contributing to the improvement of high-temperature slidability due to a small amount of internal oxidation, and the action is manifested from 0.001%, so the lower limit is 0.001%. Further, since it is a ferrite-forming element, addition of 1.000% or more lowers the stability of the austenitic structure and causes an increase in surface roughness due to a decrease in pickling property, so the upper limit is 1%. Furthermore, considering refining costs and surface defects, the Al content is preferably 0.007% or more and 0.500% or less, and more preferably 0.010% or more and 0.100% or less from the viewpoint of weldability.

Cuは、オーステナイト相の安定化や軟質化のために有効な元素あり、0.05%以上添加する。一方、過度な添加は耐酸化性の劣化や製造性の劣化に繋がるため、上限を4.00%とする。また、本発明鋼においては、4.00%超含有すると焼鈍双晶の頻度の低下を招く。更に、耐食性や製造性を考慮すると、Cuの含有量は、0.30%以上1%以下が望ましい。 Cu is an element effective for stabilizing and softening the austenite phase, and is added in an amount of 0.05% or more. On the other hand, excessive addition leads to deterioration of oxidation resistance and productivity, so the upper limit is made 4.00%. In addition, in the steel of the present invention, if the content exceeds 4.00%, the frequency of annealing twins is lowered. Furthermore, considering corrosion resistance and manufacturability, the Cu content is desirably 0.30% or more and 1% or less.

Moは、耐食性を向上させる元素であるとともに、高温強度の向上に寄与する。高温強度向上は、固溶強化が主体であるが、σ相等の析出促進元素であるため、双晶界面への微細析出強化にも寄与する。本発明においては、固溶強化の他にMo炭化物による析出強化を活用するために下限を0.02%とする。但し、過度な添加は焼鈍双晶の頻度を低下させるため上限を3.00%とする。更に、Moは高価な元素であること、上記析出物による強化安定性ならびに介在物清浄度を考慮すると、Moの含有量は、0.40%以上1.60%以下が望ましく、異常酸化特性を考慮すると0.40%以上1.00%以下がより好ましい。 Mo is an element that improves corrosion resistance and contributes to improvement of high-temperature strength. The improvement of high-temperature strength is mainly due to solid-solution strengthening, but since it is a precipitation-promoting element such as the σ phase, it also contributes to fine precipitation strengthening at the twin interface. In the present invention, the lower limit is set to 0.02% in order to utilize precipitation strengthening by Mo carbide in addition to solid solution strengthening. However, excessive addition lowers the frequency of annealing twins, so the upper limit is made 3.00%. Furthermore, considering that Mo is an expensive element, the strengthening stability due to the precipitates, and the cleanliness of inclusions, the Mo content is desirably 0.40% or more and 1.60% or less, and abnormal oxidation characteristics are improved. Taking this into account, it is more preferable to be 0.40% or more and 1.00% or less.

Vは、耐食性を向上させる元素であるとともに、V炭化物やσ相の生成を促進し高温強度を向上させるため0.02%以上添加する。一方、過度な添加は合金コストの増加や異常酸化限界温度の低下を招くことから、上限を1.00%とする。更に、製造性や介在物清浄度を考慮すると、Vの含有量は、0.10%以上0.50%以下が望ましい。 V is an element that improves corrosion resistance, promotes the formation of V carbide and σ phase, and is added in an amount of 0.02% or more to improve high-temperature strength. On the other hand, excessive addition causes an increase in alloy cost and a decrease in the abnormal oxidation limit temperature, so the upper limit is made 1.00%. Furthermore, considering manufacturability and cleanliness of inclusions, the V content is desirably 0.10% or more and 0.50% or less.

Pは不純物であり、製造時の熱間加工性や凝固割れを助長する元素である他、硬質化して延性を低下させるためその含有量は少ないほど良いが、精錬コストを考慮して上限0.050%、下限0.010%の範囲で含有しても良い。更に、製造コストを考慮すると、Pの含有量は、0.020%以上0.040%以下が望ましい。 P is an impurity, and is an element that promotes hot workability and solidification cracking during production, and hardens to reduce ductility, so the lower the content, the better. 050%, lower limit of 0.010%. Furthermore, considering the manufacturing cost, the P content is desirably 0.020% or more and 0.040% or less.

Sは不純物であり、製造時の熱間加工性を低下させる他、耐食性を劣化させる元素である。また、粗大な硫化物(MnS)が形成されると清浄度が著しく悪くなり、常温延性を劣化させるため、0.0100%を上限として含有しても良い。一方、過度な低減は精錬コストの増加に繋がることから、0.0001%を下限として含有しても良い。更に、製造コストや耐酸化性を考慮すると、Sの含有量は、0.0005%以上0.0050%以下が望ましい。 S is an impurity, and is an element that lowers the hot workability during manufacturing and also deteriorates the corrosion resistance. In addition, when coarse sulfides (MnS) are formed, cleanliness is remarkably deteriorated and normal temperature ductility is deteriorated. On the other hand, excessive reduction leads to an increase in refining costs, so the lower limit may be 0.0001%. Furthermore, considering the manufacturing cost and oxidation resistance, the S content is desirably 0.0005% or more and 0.0050% or less.

発明の排気部品用オーステナイト系ステンレス鋼板は、前述した元素以外に、下記の成分を含有しても良い。 The austenitic stainless steel sheet for exhaust parts of the invention may contain the following components in addition to the elements described above.

Tiは、C,Nと結合して耐食性、耐粒界腐食性を向上させるために添加する元素である。C,N固定作用は0.005%から発現するため、下限を0.005%として必要に応じて添加しても良い。また、0.300%超の添加は鋳造段階でのノズル詰まりが生じ易くなり、製造性を著しく劣化させる他、粗大なTi炭窒化物により延性の劣化を招くことから、上限を0.3%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、Tiの含有量は、0.010%以上0.200%以下が望ましい。また、クリープ特性の観点から、Tiの含有量は、0.030%超、0.300%以下とすることが望ましい。 Ti is an element added to improve corrosion resistance and intergranular corrosion resistance by combining with C and N. Since the C and N fixing action is manifested from 0.005%, it may be added as necessary with the lower limit set to 0.005%. In addition, addition of more than 0.300% tends to cause nozzle clogging in the casting stage, which significantly deteriorates manufacturability and causes deterioration of ductility due to coarse Ti carbonitrides, so the upper limit is 0.3%. and Furthermore, considering the high-temperature strength, the intergranular corrosion resistance of the weld zone, and the alloy cost, the Ti content is desirably 0.010% or more and 0.200% or less. From the viewpoint of creep properties, the Ti content is preferably more than 0.030% and 0.300% or less.

Nbは、Tiと同様にC,Nと結合して耐食性、耐粒界腐食性を向上させる他、高温強度を向上させる元素である。C,N固定作用の他、固溶Nbによる高温高強度化、Laves相の双晶界面析出による高強度化は0.005%から発現するため、下限を0.005%として必要に応じて添加しても良い。また、0.300%超の添加は鋼板製造段階での熱間加工性が著しく劣化する他、粗大なNb炭窒化物により延性の劣化を招くことから、上限を0.300%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、Nbの含有量は、0.010%以上0.200%以下が望ましい。また、クリープ特性の観点から、Nbの含有量は、0.005%超、0.050%以下とすることが望ましい。 Nb, like Ti, is an element that combines with C and N to improve corrosion resistance and intergranular corrosion resistance as well as high-temperature strength. In addition to the action of fixing C and N, high-temperature strength enhancement due to solute Nb and high-strength enhancement due to Laves phase twin crystal interface precipitation occur from 0.005%, so the lower limit is 0.005% and added as necessary You can Further, addition of more than 0.300% significantly deteriorates hot workability in the steel sheet manufacturing stage and causes deterioration of ductility due to coarse Nb carbonitrides, so the upper limit is made 0.300%. Furthermore, considering the high-temperature strength, the intergranular corrosion resistance of the weld zone, and the alloy cost, the Nb content is desirably 0.010% or more and 0.200% or less. From the viewpoint of creep properties, the Nb content is preferably more than 0.005% and 0.050% or less.

Bは、鋼板製造段階での熱間加工性を向上させる元素であり、0.0002%以上として必要に応じて添加しても良い。また、Bの双晶界面偏析による高強度化も作用する。但し、過度な添加はホウ炭化物の形成により清浄度および延性の低下、粒界腐食性の劣化をもたらすため、上限を0.0050%とした。更に、精錬コストや延性低下を考慮すると、Bの含有量は、0.0003%以上0.0030%以下が望ましい。 B is an element that improves hot workability in the steel sheet manufacturing stage, and may be added as necessary in an amount of 0.0002% or more. In addition, the segregation of B at the twin crystal interface also acts to increase the strength. However, excessive addition results in a decrease in cleanliness and ductility and intergranular corrosion due to the formation of borocarbides, so the upper limit was made 0.0050%. Furthermore, considering the refining cost and the reduction in ductility, the content of B is desirably 0.0003% or more and 0.0030% or less.

Caは、脱硫のために必要に応じて添加される。この作用は0.0005%未満では発現しないため、下限を0.0005%として必要に応じて添加しても良い。また、0.0100%超添加すると水溶性の介在物CaSが生成して清浄度の低下および耐食性の著しい低下を招くため、上限を0.0100%とする。更に、製造性、表面品質の観点から、Caの含有量は、0.0010%以上0.0030%以下が望ましい。 Ca is added as needed for desulfurization. Since this effect is not exhibited at less than 0.0005%, it may be added as necessary with the lower limit of 0.0005%. Further, if added in excess of 0.0100%, water-soluble inclusions CaS are formed, leading to a decrease in cleanliness and a significant decrease in corrosion resistance, so the upper limit is made 0.0100%. Furthermore, from the viewpoint of manufacturability and surface quality, the Ca content is preferably 0.0010% or more and 0.0030% or less.

Wは、耐食性と高温強度の向上に寄与するため,必要に応じて0.10%以上添加しても良い。3.00%超の添加により硬質化、鋼板製造時の靭性劣化やコスト増につながるため、上限を3.00%とする。更に、精錬コストや製造性を考慮すると、Wの含有量は、0.10%以上2.00%以下が望ましく、異常酸化特性を考慮すると0.10%以上1.50%以下がより好ましい。 W contributes to the improvement of corrosion resistance and high-temperature strength, so it may be added in an amount of 0.10% or more, if necessary. Addition of more than 3.00% leads to hardening, deterioration of toughness during steel sheet production, and an increase in cost, so the upper limit is made 3.00%. Furthermore, considering refining cost and manufacturability, the W content is preferably 0.10% to 2.00%, and more preferably 0.10% to 1.50% in consideration of abnormal oxidation characteristics.

Zrは、CやNと結合して溶接部の粒界腐食性や耐酸化性を向上させるため、必要に応じて0.05%以上添加しても良い。但し,0.30%超の添加によりコスト増になる他,製造性や穴拡げ性を著しく劣化させるため,上限を0.30%とする.更に,精錬コストや製造性を考慮すると、Zrの含有量は、0.05%以上0.10%以下が望ましい。 Zr combines with C and N to improve the intergranular corrosion resistance and oxidation resistance of the weld zone, so 0.05% or more may be added as necessary. However, addition of more than 0.30% increases the cost and significantly deteriorates manufacturability and hole expandability, so the upper limit is made 0.30%. Furthermore, considering the refining cost and manufacturability, the Zr content is desirably 0.05% or more and 0.10% or less.

Snは、耐食性と高温強度の向上に寄与するため、必要に応じて0.01%以上添加しても良い。0.03%以上で効果が顕著になり、さらに0.05%以上でより顕著となる。0.50%超の添加により鋼板製造時のスラブ割れが生じる場合があるため上限を0.50%とする。更に、精錬コストや製造性を考慮すると、Snの含有量は、0.05%以上0.30%以下が望ましい。 Sn contributes to the improvement of corrosion resistance and high-temperature strength, so it may be added in an amount of 0.01% or more, if necessary. The effect becomes remarkable at 0.03% or more, and becomes more remarkable at 0.05% or more. Addition of more than 0.50% may cause slab cracking during steel sheet production, so the upper limit is made 0.50%. Furthermore, considering the refining cost and manufacturability, the Sn content is desirably 0.05% or more and 0.30% or less.

Coは、高温強度の向上に寄与するため、必要に応じて0.03%以上添加しても良い。0.30%超の添加により、硬質化、鋼板製造時の靭性劣化やコスト増につながるため,上限を0.30%とする.更に,精錬コストや製造性を考慮すると、Coの含有量は、0.03%以上0.10%以下が望ましい。 Co contributes to the improvement of high-temperature strength, so 0.03% or more may be added as necessary. Addition of more than 0.30% leads to hardening, deterioration of toughness during steel sheet manufacturing, and an increase in cost, so the upper limit is made 0.30%. Furthermore, considering the refining cost and manufacturability, the Co content is desirably 0.03% or more and 0.10% or less.

Mgは、脱酸元素として添加させる場合がある他、スラブの組織を酸化物の微細化分散化により介在物清浄度の向上や組織微細化に寄与する元素である。これは、0.0002%以上から発現するため、下限を0.0002%として必要に応じて添加しても良い。但し、過度な添加は、溶接性や耐食性の劣化、粗大介在物による穴拡げ性の低下につながるため、上限を0.0100%とした。精錬コストを考慮すると、Mgの含有量は、0.0003%以上0.0050%以下が望ましい。 Mg is sometimes added as a deoxidizing element, and is an element that contributes to improving the cleanliness of inclusions and refining the structure of the slab by refining and dispersing oxides. Since this is manifested from 0.0002% or more, it may be added as necessary with the lower limit of 0.0002%. However, excessive addition leads to deterioration of weldability and corrosion resistance, and deterioration of hole expansibility due to coarse inclusions, so the upper limit was made 0.0100%. Considering the refining cost, the Mg content is desirably 0.0003% or more and 0.0050% or less.

Sbは、粒界に偏析して高温強度を上げる作用をなす元素である。添加効果を得るため、必要に応じて0.005%以上とする添加しても良い。但し、0.300%を超えると、Sb偏析が生じて、溶接時に割れが生じるので、上限を0.300%とする。高温特性と製造コスト及び靭性を考慮すると、Sbの含有量は、0.030%以上0.300%以下が望ましく、更に望ましくは0.050%以上0.200%以下である。 Sb is an element that segregates at grain boundaries to increase high-temperature strength. In order to obtain the effect of addition, it may be added in an amount of 0.005% or more, if necessary. However, if it exceeds 0.300%, Sb segregation occurs and cracks occur during welding, so the upper limit is made 0.300%. Considering high-temperature properties, manufacturing costs, and toughness, the Sb content is preferably 0.030% or more and 0.300% or less, more preferably 0.050% or more and 0.200% or less.

REM(希土類元素)は、耐酸化性や高温摺動性の向上に有効であり、必要に応じて0.002%以上で添加しても良い。また、0.200%を超えて添加してもその効果は飽和し、REMの粒化物による耐食性低下を生じるため、0.002%以上0.200%以下で添加する。製品の加工性や製造コストを考慮すると、下限を0.002%とし、上限を0.10%とすることが望ましい。尚、REM(希土類元素)は、一般的な定義に従う。スカンジウム (Sc)、イットリウム (Y)の2元素と、ランタン(La)からルテチウム(Lu) までの15元素(ランタノイド)の総称を指す。単独で添加しても良いし、混合物であっても良い。 REM (rare earth element) is effective in improving oxidation resistance and high-temperature slidability, and may be added in an amount of 0.002% or more, if necessary. Further, even if it is added in excess of 0.200%, the effect is saturated, and the corrosion resistance is lowered due to REM granules. Considering the workability and manufacturing cost of the product, it is desirable to set the lower limit to 0.002% and the upper limit to 0.10%. In addition, REM (rare earth element) follows a general definition. A general term for two elements, scandium (Sc) and yttrium (Y), and fifteen elements (lanthanoids) from lanthanum (La) to lutetium (Lu). They may be added singly or as a mixture.

Gaは、耐食性向上や水素脆化抑制のため、必要に応じて0.3000%以下で添加しても良いが、0.3000%超の添加により粗大硫化物が生成してr値が劣化する。硫化物や水素化物形成の観点から下限は0.0002%とする。更に、製造性やコストの観点から0.0020%以上が更に好ましい。 Ga may be added at 0.3000% or less as necessary in order to improve corrosion resistance and suppress hydrogen embrittlement. . From the viewpoint of formation of sulfides and hydrides, the lower limit is made 0.0002%. Furthermore, 0.0020% or more is more preferable from the viewpoint of manufacturability and cost.

その他の成分について本発明では特に規定するものではないが、Ta、Hfは高温強度向上のために0.01%以上1.00%以下で添加しても良い。また、Biを必要に応じて0.001~0.020%含有してもかまわない。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが望ましい。 Other components are not particularly specified in the present invention, but Ta and Hf may be added in an amount of 0.01% or more and 1.00% or less in order to improve high-temperature strength. Also, Bi may be contained in an amount of 0.001 to 0.020%, if necessary. In addition, it is desirable to reduce general harmful elements such as As and Pb and impurity elements as much as possible.

次に製造方法について説明する。本発明の鋼板の製造方法は、製鋼-熱間圧延-焼鈍・酸洗-冷間圧延-焼鈍・酸洗-冷間圧延-焼鈍・酸洗より成るが、必要に応じて熱間圧延後の焼鈍を省略しても構わない。 Next, a manufacturing method will be described. The method for producing the steel sheet of the present invention comprises steelmaking-hot rolling-annealing/pickling-cold rolling-annealing/pickling-cold rolling-annealing/pickling. Annealing may be omitted.

製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、電気炉溶製あるいは転炉溶製し、続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとされ、公知の熱間圧延の方法に従って、前記スラブは所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。上記の様に本発明が対象となる部品には熱間圧延以降の工程において、公知の方法に従って所定の結晶粒度、断面硬度、表面粗さを確保するための製造条件が設定されるが、本願では対応粒界頻度を80%とするために以下の製造条件が規定される。 In steelmaking, a method of smelting steel containing the above essential components and optionally added components in an electric furnace or a converter, followed by secondary refining is preferable. The melted molten steel is made into a slab according to a known casting method (continuous casting), and the slab is heated to a predetermined temperature according to a known hot rolling method and continuously hot rolled to a predetermined thickness. be. As described above, manufacturing conditions for ensuring a predetermined crystal grain size, cross-sectional hardness, and surface roughness are set according to known methods in the processes after hot rolling for the parts to which the present invention is applied. In order to set the corresponding grain boundary frequency to 80%, the following manufacturing conditions are defined.

熱間圧延後あるいは熱間圧延工程後の焼鈍・酸洗後において、本願では2回の冷間圧延および焼鈍・酸洗工程を付与する。先ず、1回目の冷間圧延工程では圧下率を80%以下とする。本工程の圧下率が80%超になるとその後の再結晶において結晶粒成長が抑制され、Σ値が3~29までの対応粒界の対応粒界頻度が増加し難くなるためである。また、過度に圧下率が低いと再結晶が生じ難くなるため、圧下率は3%以上が望ましい。更に、材質や板形状を考慮すると70~80%が望ましい。 After hot rolling or after annealing and pickling after the hot rolling process, in the present application, two cold rolling and annealing and pickling processes are applied. First, in the first cold rolling step, the rolling reduction is set to 80% or less. This is because when the rolling reduction in this step exceeds 80%, grain growth is suppressed in subsequent recrystallization, and the corresponding grain boundary frequency of corresponding grain boundaries with a Σ value of 3 to 29 becomes difficult to increase. Further, if the rolling reduction is too low, recrystallization becomes difficult to occur, so the rolling reduction is preferably 3% or more. Furthermore, 70 to 80% is desirable considering the material and plate shape.

次に、1回目の焼鈍・酸洗工程では、2回目の冷延・焼鈍・酸洗工程後の対応粒界頻度、特に焼鈍双晶を増やすために900℃までおよび900℃以上の加熱速度を10℃/sec以上とし、焼鈍温度を1000~1200℃とする。全ての温度域を高加熱速度とすることにより、低温で析出するσ相やCr炭窒化物の生成を抑制し、高温での過度な結晶粒成長を抑制できる。低温で生成する析出物は特に、2回目冷延・焼鈍時の対応粒界の形成を阻害する。2回目焼鈍時に対応粒界の形成を促進するためには、1回冷延・焼鈍・酸洗後の結晶粒は細粒であることが望ましい。上記の技術観点より、10℃/sec以上とする。製造性の観点からは100℃/sec以下が望ましい。 Next, in the first annealing/pickling process, the heating rate up to 900°C and above 900°C is increased in order to increase the corresponding grain boundary frequency after the second cold-rolling/annealing/pickling process, especially the annealing twins. The annealing temperature is set to 1000 to 1200°C at 10°C/sec or more. By setting the entire temperature range to a high heating rate, it is possible to suppress the formation of the σ phase and Cr carbonitrides that precipitate at low temperatures, and to suppress excessive grain growth at high temperatures. Precipitates formed at low temperatures particularly inhibit the formation of corresponding grain boundaries during the second cold rolling and annealing. In order to promote the formation of corresponding grain boundaries during the second annealing, it is desirable that the crystal grains after the first cold rolling, annealing and pickling are fine. From the above technical point of view, the rate is set to 10° C./sec or more. From the viewpoint of manufacturability, 100° C./sec or less is desirable.

焼鈍温度は、1200℃超になると結晶粒成長が過度に生じ、材質劣化や加工時のオレンジピールの課題が生じるためである。ターボ部品の場合にオレンジピールが生じると高温摺動性や排ガスの流れが悪くなるため、上限を1200℃までとする。一方、焼鈍温度が1000℃未満になると再結晶不良が生じるため、下限温度を1000℃とした。更に、材質の安定性を考慮すると1100~1180℃が望ましい。 This is because if the annealing temperature exceeds 1200° C., crystal grain growth occurs excessively, resulting in problems such as material deterioration and orange peel during processing. In the case of turbo parts, if orange peel occurs, high-temperature slidability and flow of exhaust gas deteriorate, so the upper limit is made up to 1200°C. On the other hand, if the annealing temperature is less than 1000°C, poor recrystallization occurs, so the lower limit temperature was set to 1000°C. Furthermore, considering the stability of the material, 1100 to 1180°C is desirable.

2回目の冷間圧延工程では、冷間圧延における圧下率を10%以下とする。これは、圧下率が10%超になると、その後の焼鈍工程で再結晶が進行して新たにランダム粒界が形成されるために、対応粒界頻度が低減されるためである。圧下率の過度な低減は鋼板形状が不良となるため、圧下率の下限は1%以上が望ましい。また、製造性や焼鈍双晶の形成を考慮すると3~7%が望ましい。 In the second cold rolling step, the cold rolling reduction is set to 10% or less. This is because when the rolling reduction exceeds 10%, recrystallization proceeds in the subsequent annealing step and new random grain boundaries are formed, thereby reducing the frequency of corresponding grain boundaries. Since an excessive reduction in the rolling reduction results in a defective steel sheet shape, the lower limit of the rolling reduction is preferably 1% or more. Further, 3 to 7% is desirable in consideration of manufacturability and formation of annealing twins.

2回目の焼鈍・酸洗工程では、対応粒界頻度、特に焼鈍双晶を増やすために900℃未満までの加熱速度を10℃/sec以上、900℃以上の加熱速度を1℃/sec以上、10℃/sec未満とし、最高温度950~1150℃で20分以下の熱処理を施すものである。 In the second annealing and pickling process, in order to increase the corresponding grain boundary frequency, especially annealing twins, the heating rate to below 900 ° C. is 10 ° C./sec or more, the heating rate to 900 ° C. or more is 1 ° C./sec or more, Heat treatment is performed at a maximum temperature of 950 to 1150° C. for 20 minutes or less at a rate of less than 10° C./sec.

900℃までの温度域では高加熱速度とすることにより、低温で析出するσ相やCr炭窒化物の生成を抑制する。これらの析出物は、対応粒界の形成を阻害する他、新たに生成するランダム粒界の核になるためである。上記の技術観点より、10℃/sec以上とする。製造性の観点からは100℃/sec以下が望ましい。 A high heating rate is used in the temperature range up to 900° C. to suppress the formation of the σ phase and Cr carbonitrides that precipitate at low temperatures. This is because these precipitates inhibit the formation of corresponding grain boundaries and become nuclei for newly generated random grain boundaries. From the above technical point of view, the rate is set to 10° C./sec or more. From the viewpoint of manufacturability, 100° C./sec or less is desirable.

一方、900℃以上においては低加熱速度とする。これは、再結晶が促進しない温度域で軟質化を図り、ランダム粒界の移動を促進する、および上記析出物を十分固溶させる目的である。これによりランダム粒界の核生成を抑制しつつ粒界移動を促進し、対応粒界頻度を増加させることが出来る。上記の技術観点より、1℃/sec以上、10℃/sec未満とする。5℃/sec以下が望ましい。製造性の観点からも上記範囲が適切である。 On the other hand, the heating rate is set to be low at 900° C. or higher. This is for the purpose of softening in a temperature range where recrystallization is not promoted, promoting the movement of random grain boundaries, and sufficiently dissolving the precipitates. As a result, grain boundary migration can be promoted while suppressing nucleation of random grain boundaries, and the corresponding grain boundary frequency can be increased. From the above technical point of view, the rate should be 1° C./sec or more and less than 10° C./sec. 5° C./sec or less is desirable. The above range is appropriate also from the viewpoint of manufacturability.

焼鈍の最高温度は過度に高すぎると新たなランダム粒界を有する再結晶粒界が多く生成し、対応粒界頻度が低減するため、950~1150℃とする。材料の成形性の観点から1030℃以上が望ましく、過度な粒成長を抑制するために1100℃以下が望ましい。最高温度における保持時間は粒成長によるランダム粒界の移動を促進し、対応粒界頻度を増加させるために20min以下とする。これは、20分超にすると過度な粒成長が生じ材質劣化やオレンジピールの発生が生じる他、対応粒界の移動も加速するためである。また、生産性の観点からは20sec以上が望ましい。更に、軟質化による材質向上を考慮すると30sec以上が望ましい。 If the maximum annealing temperature is excessively high, a large number of recrystallized grain boundaries having new random grain boundaries are formed, and the corresponding grain boundary frequency is reduced. From the viewpoint of formability of the material, the temperature is preferably 1030° C. or higher, and 1100° C. or lower is desirable for suppressing excessive grain growth. The holding time at the maximum temperature is set to 20 minutes or less in order to promote movement of random grain boundaries due to grain growth and increase the frequency of corresponding grain boundaries. This is because if the time exceeds 20 minutes, excessive grain growth occurs, which causes material deterioration and orange peel, and also accelerates the movement of corresponding grain boundaries. Moreover, from the viewpoint of productivity, 20 sec or more is desirable. Furthermore, it is desirable to set the time to 30 seconds or more in consideration of the improvement of the quality of the material due to the softening.

本願では、熱延板焼鈍・酸洗後に冷間圧延を施し、その後に冷延板焼鈍・酸洗処理を行うことで、更に平滑表面が得られる。冷間圧延工程は、タンデム圧延、ゼンジミア圧延、クラスター圧延等で行えば良い。自動車の排気部品の様な機能用途には、一般的に2Bあるいは2D製品が適用されるが、高い表面平滑性や光沢が要求される場合は、冷間圧延後に光輝焼鈍を施してBA製品としても良い。酸洗処理は。中性塩電解や溶融アルカリ処理といった前処理あるいは硝弗酸や硝酸電解といった酸洗処理を適宜選択すれば良い。 In the present application, the hot-rolled sheet is annealed and pickled, then cold-rolled, and then the cold-rolled sheet is annealed and pickled to obtain a smoother surface. The cold rolling process may be performed by tandem rolling, Sendzimir rolling, cluster rolling, or the like. 2B or 2D products are generally applied to functional applications such as automobile exhaust parts, but if high surface smoothness and gloss are required, bright annealing is applied after cold rolling to produce BA products. Also good. pickling treatment. Pretreatment such as neutral salt electrolysis or molten alkali treatment, or pickling treatment such as nitric hydrofluoric acid or nitric acid electrolysis may be appropriately selected.

表1-1、表1-2に示す成分組成の鋼を溶製しスラブに鋳造し、熱延、熱延板焼鈍・酸洗を行った後、表2-1~表2-3に示す条件にて冷延及び最終焼鈍を行い、更に酸洗を施して2.0mm厚の製品板を得た。尚、表1-1、表1-2の符号“*”が付された欄内の値は、該当する成分が本発明の要件を満たさないことを示す。 Steels having the chemical compositions shown in Tables 1-1 and 1-2 are melted, cast into slabs, hot-rolled, hot-rolled sheet annealing and pickled, and then shown in Tables 2-1 to 2-3. Cold rolling and final annealing were performed under the conditions, and pickling was further performed to obtain a product sheet with a thickness of 2.0 mm. The values in the columns marked with a symbol "*" in Tables 1-1 and 1-2 indicate that the corresponding component does not satisfy the requirements of the present invention.

表2-1~表2-3に示す各製品板に対して、先に記載した方法によって対応粒界頻度(%)を測定するとともに、900℃および950℃でクリープ試験を行った。ここでクリープ試験は製品板の圧延方向に荷重が作用する様に試験片を切り出し、加熱炉付きのクリープ試験機で900℃―20MPa、950℃―15MPaの定荷重クリープ試験を行った。この際、試験温度で無負荷の時間を1時間とし、1時間後に荷重を付与した。また、製品板の圧延方向に引張が作用する様に試験片を切り出し(JIS13号B試験片)、常温で引張試験を行い、破断伸びを求めた。また、表中の項目「Σ3~Σ29」は、Σ値が3~29までの対応粒界の対応粒界頻度の合計(%)を示し、項目「Σ5~Σ29」は、Σ値が5~29までの対応粒界の対応粒界頻度の合計(%)を示す。 For each product sheet shown in Tables 2-1 to 2-3, the corresponding grain boundary frequency (%) was measured by the method described above, and a creep test was performed at 900°C and 950°C. Here, the creep test was carried out by cutting out a test piece so that a load acts in the rolling direction of the product sheet, and performing a constant load creep test at 900° C.-20 MPa and 950° C.-15 MPa with a creep tester equipped with a heating furnace. At this time, the no-load time was set to 1 hour at the test temperature, and the load was applied after 1 hour. Also, a test piece was cut out so that tension acts in the rolling direction of the product sheet (JIS No. 13 B test piece), and a tensile test was performed at room temperature to determine the elongation at break. In addition, the item "Σ3 to Σ29" in the table indicates the total (%) of corresponding grain boundary frequencies of corresponding grain boundaries with a Σ value of 3 to 29, and the item "Σ5 to Σ29" indicates that the Σ value is from 5 to The sum (%) of corresponding grain boundary frequencies of up to 29 corresponding grain boundaries is shown.

表2-1~表2-3の項目「焼鈍双晶の頻度(%)」の欄内に符号“*”が付された値は、本発明における対応粒界頻度の要件を満たさないことを示す。また、表2-1~表2-3の項目「クリープ試験」の欄内に符号“×”が付された材料は、破断寿命が100時間未満であったことを示す。更に、表2-1~表2-3の項目「破断伸び」の欄内に符号“×”が付された材料は、破断伸びが30%未満であったことを示す。 The values marked with a symbol “*” in the “annealing twinning frequency (%)” column in Tables 2-1 to 2-3 do not satisfy the requirements for the corresponding grain boundary frequency in the present invention. show. In addition, materials marked with a symbol “x” in the column “creep test” in Tables 2-1 to 2-3 indicate that the rupture life was less than 100 hours. Further, the materials marked with a symbol "x" in the column "elongation at break" in Tables 2-1 to 2-3 indicate that the elongation at break was less than 30%.

本願発明で規定される成分、製造条件で製造した鋼はクリープ破断寿命が長く、極めて耐熱性に優れていることが確認される。加えて、破断伸びが高く、成形加工性にも優れている。これに対して、表2-1~表2-3に示すように、比較鋼はクリープ破断寿命が短い。比較鋼でクリープ破断寿命が長い鋼についても、成形性が著しく悪いため耐熱部品としての適用は不適であることがわかる。 It is confirmed that the steel manufactured under the composition and manufacturing conditions specified in the present invention has a long creep rupture life and is extremely excellent in heat resistance. In addition, it has high elongation at break and excellent moldability. On the other hand, as shown in Tables 2-1 to 2-3, the comparative steels have a short creep rupture life. It can be seen that the comparative steel, which has a long creep rupture life, is also unsuitable for application as a heat-resistant part because its formability is extremely poor.

例えば、スラブ厚さ、熱間圧延板厚などは適宜設計すれば良い。冷間圧延においては、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは適宜選択すれば良い。冷間圧延の途中に中間焼鈍を入れても構わず、バッチ式焼鈍でも連続式焼鈍でも良い。また、酸洗時の前処理として中性塩電解処理やソルト浴浸漬処理のいずれを施しても、省略しても構わず、酸洗工程は、硝酸、硝酸電解酸洗の他、硫酸や塩酸を用いた処理を行っても良い。冷延板の焼鈍・酸洗後に調質圧延やテンションレベラー等により形状および材質調整を行っても良い。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。加えて、部品加工後に窒化処理や浸炭処理等の特殊な表面処理を施して耐熱性を更に向上させても構わない。 For example, the thickness of the slab, the thickness of the hot-rolled plate, etc. may be appropriately designed. In cold rolling, the roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature, etc. may be appropriately selected. Intermediate annealing may be performed during cold rolling, and batch annealing or continuous annealing may be used. In addition, as a pretreatment for pickling, either neutral salt electrolytic treatment or salt bath immersion treatment may be performed or omitted. may be used for processing. After the cold-rolled sheet is annealed and pickled, the shape and material may be adjusted by temper rolling, a tension leveler, or the like. Further, the product sheet may be coated with a lubricating coating to further improve press forming, and the type of lubricating film may be appropriately selected. In addition, special surface treatment such as nitriding treatment or carburizing treatment may be applied after the parts are processed to further improve the heat resistance.

Figure 0007166082000001
Figure 0007166082000001

Figure 0007166082000002
Figure 0007166082000002

Figure 0007166082000003
Figure 0007166082000003

Figure 0007166082000004
Figure 0007166082000004

Figure 0007166082000005
Figure 0007166082000005

本発明によれば、耐熱性が要求される排気部品に対して優れた特性を有するオーステナイト系ステンレス鋼板を提供することが可能である。本発明を適用した材料を、特に自動車のエキゾーストマニホールドやターボチャージャー用として使用することによって、従来の鋳物よりも大幅に軽量化が図られ、排ガス規制、軽量化、燃費向上につなげることが可能となる。また、部品の切削および研削加工の省略、表面加工処理省略も可能となり、低コスト化にも大きく寄与する。なお、本発明は、ターボチャージャー用として使用する場合、当該部品のいずれに対しても適用対象にすることができる。具体的にはターボチャージャーの外枠を構成するハウジング、ノズルベーン式ターボチャージャー内部の精密部品(例えば、バックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーと呼ばれるものなど)である。また、エキゾーストマニホールドの場合は、板プレス部品、パイプ部品、2重管部品のいずれでも構わない。更に、自動車、二輪車に限らず、各種ボイラー、燃料電池システム、プラント等の高温環境に使用される排気部品に適用することも可能であり、本発明は産業上極めて有益である。 According to the present invention, it is possible to provide an austenitic stainless steel sheet having excellent properties for exhaust parts requiring heat resistance. By using the material to which the present invention is applied, especially for automotive exhaust manifolds and turbochargers, it is possible to significantly reduce weight compared to conventional castings, leading to exhaust gas regulations, weight reduction, and fuel efficiency improvement. Become. In addition, it becomes possible to omit cutting and grinding of parts, and omit surface treatment, which greatly contributes to cost reduction. Note that the present invention can be applied to any of these parts when used for a turbocharger. Specifically, the housing that makes up the outer frame of the turbocharger, precision parts inside the nozzle vane type turbocharger (for example, back plate, oil deflector, compressor wheel, nozzle mount, nozzle plate, nozzle vane, drive ring, drive lever) etc.). Also, in the case of the exhaust manifold, any one of plate press parts, pipe parts, and double pipe parts may be used. Furthermore, the present invention is industrially very useful because it can be applied not only to automobiles and motorcycles, but also to various types of boilers, fuel cell systems, and exhaust parts used in high-temperature environments such as plants.

Claims (4)

質量%で、C:0.005~0.300%、Si:1.00超~4.00%、Mn:0.10~10.00%、Ni:2.00~25.00%、Cr:15.0~30.0%、N:0.005~0.400%未満、Al:0.001~1.000%、Cu:0.05~4.00%、Mo:0.02~3.00%、V:0.02~1.00%、P:0.050%以下、S:0.0100%以下を含有し、残部がFe及び不可避的不純物からなり、
下記(1)式の値が50以下、
Σ値が3~29までの対応粒界の対応粒界頻度が合計で80%以上であり、Σ値が5~29までの対応粒界の対応粒界頻度が合計で10%~25%であることを特徴とする、オーステナイト系ステンレス鋼板。
25.7+2×Ni+410×C-0.9×Cr-77×N-13×Si-1.2×Mn・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
% by mass, C: 0.005 to 0.300%, Si: more than 1.00 to 4.00%, Mn: 0.10 to 10.00%, Ni: 2.00 to 25.00%, Cr : 15.0-30.0%, N: 0.005-0.400%, Al: 0.001-1.000%, Cu: 0.05-4.00%, Mo: 0.02- 3.00%, V: 0.02 to 1.00%, P: 0.050% or less, S: 0.0100% or less, the balance being Fe and inevitable impurities,
The value of the following (1) formula is 50 or less,
The corresponding grain boundary frequency of corresponding grain boundaries with a Σ value of 3 to 29 is 80% or more in total, and the corresponding grain boundary frequency of corresponding grain boundaries with a Σ value of 5 to 29 is 10% to 25% in total. An austenitic stainless steel sheet, characterized by:
25.7+2×Ni+410×C−0.9×Cr−77×N−13×Si−1.2×Mn (1)
However, the element symbol in the formula means the content (% by mass) of the element, and 0 is substituted when the element is not contained.
前記鋼板が、更に、質量%でTi:0.005~0.300%、Nb:0.005~0.300%、B:0.0002~0.0050%、Ca:0.0005~0.0100%、W:0.10~3.00%、Zr:0.05~0.30%、Sn:0.01~0.50%、Co:0.03~0.30%、Mg:0.0002~0.0100%、Sb:0.005~0.300%、REM:0.002~0.200%、Ga:0.0002~0.3000%、Ta:0.01~1.00%、Hf:0.01~1.00%、Bi:0.001~0.020%の1種又は2種以上を含有することを特徴とする、請求項1に記載のオーステナイト系ステンレス鋼板。 The steel sheet further contains Ti: 0.005-0.300%, Nb: 0.005-0.300%, B: 0.0002-0.0050%, Ca: 0.0005-0. 0100%, W: 0.10-3.00%, Zr: 0.05-0.30%, Sn: 0.01-0.50%, Co: 0.03-0.30%, Mg: 0 .0002-0.0100%, Sb: 0.005-0.300%, REM: 0.002-0.200%, Ga: 0.0002-0.3000%, Ta: 0.01-1.00 %, Hf: 0.01 to 1.00%, and Bi: 0.001 to 0.020%. 排気部品に用いられることを特徴とする、請求項1又は2に記載のオーステナイト系ステンレス鋼板。 3. The austenitic stainless steel sheet according to claim 1, wherein the austenitic stainless steel sheet is used for exhaust parts. 請求項1または2に記載のステンレス鋼板の製造方法であって、
冷間圧延工程にて80%以下の圧下率で圧延し、続く冷延板焼鈍において加熱速度10℃/sec以上、温度1000~1200℃で焼鈍を施した後、圧下率10%以下で冷間圧延し、続く冷延板焼鈍において900℃未満までの加熱速度を10℃/sec以上、900℃以上の加熱速度を1℃/sec以上、10℃/sec未満とし950~1150℃で20分以下の冷延板焼鈍を施すことを特徴とする、オーステナイト系ステンレス鋼板の製造方法。
A method for manufacturing a stainless steel plate according to claim 1 or 2,
Rolled at a reduction rate of 80% or less in the cold rolling process, and then annealed at a heating rate of 10 ° C./sec or more and a temperature of 1000 to 1200 ° C. in the subsequent cold-rolled sheet annealing, and then cold rolled at a reduction rate of 10% or less. In the subsequent cold-rolled sheet annealing, the heating rate to less than 900°C is set to 10°C/sec or more, the heating rate to 900°C or more is set to 1°C/sec or more and less than 10°C/sec, and the temperature is 950 to 1150°C for 20 minutes or less. A method for producing an austenitic stainless steel sheet, characterized in that cold-rolled sheet annealing is performed.
JP2018115391A 2018-06-18 2018-06-18 Austenitic stainless steel sheet and manufacturing method thereof Active JP7166082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115391A JP7166082B2 (en) 2018-06-18 2018-06-18 Austenitic stainless steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115391A JP7166082B2 (en) 2018-06-18 2018-06-18 Austenitic stainless steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2019218588A JP2019218588A (en) 2019-12-26
JP7166082B2 true JP7166082B2 (en) 2022-11-07

Family

ID=69095593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115391A Active JP7166082B2 (en) 2018-06-18 2018-06-18 Austenitic stainless steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7166082B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021259899B2 (en) * 2020-04-20 2023-06-29 Nippon Steel Stainless Steel Corporation Austenitic stainless steel and spring
CN115948694B (en) * 2022-11-07 2023-07-14 鞍钢股份有限公司 High-performance austenitic stainless steel plate with diameter of less than 45mm and manufacturing method thereof
CN115652210B (en) * 2022-11-07 2023-05-12 鞍钢股份有限公司 Austenitic stainless steel billet with ultralow carbide content and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159011A1 (en) 2015-03-31 2016-10-06 新日鐵住金ステンレス株式会社 Stainless steel sheet for exhaust system component having excellent intermittent oxidation characteristics, and exhaust system component
WO2017061487A1 (en) 2015-10-06 2017-04-13 新日鐵住金株式会社 Austenitic stainless steel sheet
WO2017141907A1 (en) 2016-02-17 2017-08-24 新日鐵住金ステンレス株式会社 Ferritic-austenitic two-phase stainless steel material and method for manufacturing same
WO2017164344A1 (en) 2016-03-23 2017-09-28 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159011A1 (en) 2015-03-31 2016-10-06 新日鐵住金ステンレス株式会社 Stainless steel sheet for exhaust system component having excellent intermittent oxidation characteristics, and exhaust system component
WO2017061487A1 (en) 2015-10-06 2017-04-13 新日鐵住金株式会社 Austenitic stainless steel sheet
WO2017141907A1 (en) 2016-02-17 2017-08-24 新日鐵住金ステンレス株式会社 Ferritic-austenitic two-phase stainless steel material and method for manufacturing same
WO2017164344A1 (en) 2016-03-23 2017-09-28 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component

Also Published As

Publication number Publication date
JP2019218588A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
CN108779532B (en) Austenitic stainless steel sheet for exhaust gas members excellent in heat resistance and workability, turbocharger member, and method for producing austenitic stainless steel sheet for exhaust gas members
JP6621254B2 (en) Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same
JP6552385B2 (en) Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
JP5025671B2 (en) Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same
US11242578B2 (en) Ferrite-based stainless steel sheet having low specific gravity and production method therefor
JP6768929B2 (en) Ferritic stainless steel with excellent high-temperature wear resistance, manufacturing method of ferritic stainless steel sheet, exhaust parts, high-temperature sliding parts, and turbocharger parts
JP6796708B2 (en) Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
JP6879877B2 (en) Austenitic stainless steel sheet with excellent heat resistance and its manufacturing method
JP7166082B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP6746035B1 (en) Austenitic stainless steel sheet
JP6866241B2 (en) Austenitic stainless steel sheet, its manufacturing method, and exhaust parts
JP6778621B2 (en) Austenitic stainless steel sheet for exhaust parts and its manufacturing method, and exhaust parts and their manufacturing method
JP7270445B2 (en) AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN HIGH-TEMPERATURE, HIGH-CYCLE FATIGUE CHARACTERISTICS, METHOD FOR MANUFACTURING SAME, AND EXHAUST COMPONENTS
JP7270419B2 (en) AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN HIGH-TEMPERATURE, HIGH-CYCLE FATIGUE CHARACTERISTICS, METHOD FOR MANUFACTURING SAME, AND EXHAUST COMPONENTS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221025

R150 Certificate of patent or registration of utility model

Ref document number: 7166082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150